Communication Systems Group, Prof. Dr. Burkhard Stiller

MASTER PROJECT

University of
Zurich™

7

Design and Prototypical
Implementation of HomeScout

Dylan Puser, Remo Hertig, Zhishan Yan
Zurich, Switzerland
Student ID: 14-924-054, 13-738-323, 20-752-689

Supervisor: Katharina O. E. Muller, Dr. Bruno Rodrigues,
Prof. Dr. Burkhard Stiller
Date of Submission: February 15, 2023

University of Zurich
Department of Informatics (IFI)
Binzmuhlestrasse 14, CH-8050 Zirich, Switzerland —

Master Project

Communication Systems Group (CSQ)
Department of Informatics (IFI)

University of Zurich

BinzmUhlestrasse 14, CH-8050 Ztirich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Bluetooth Low Energy (BLE) trackers, also known as item finders, have become a popular
tool for people to keep track of their items. However, they can also be abused for nefarious
purposes, for example to stalk people or to mark other people’s property. While there are
ways to mitigate this risk, depending on the particular tracker vendor and smartphone
operating system, there is no universal application that works across operating systems
and tracker vendors. To address this, the authors of this paper conceptualize HomeScout,
a cross-platform mobile application with an advanced device detection and classification
algorithm based on four application scenarios. They implement a proof of concept version
of this application and test and validate it in a series of experiments. They find that it
works well for the four defined application scenarios.

1

Zusammenfassung

Bluetooth Low Energy (BLE) Tracker, auch bekannt als “Item finders”, sind in den letzten
Jahren zunehmend beliebter geworden, als eine Methode, die personlichen Gegensténde
zu orten. Sie werden jedoch auch fiir schiadliche Zwecke missbraucht. So kénnen sie zum
Beispiel verwendet werden, um Leute zu stalken, oder um die Gegenstdnde anderer Per-
sonen zu verfolgen. Es gibt zwar Methoden, dies zu verhindern, sie sind aber abhéngig
vom jeweiligen Tracker oder Betriebssystem des Smartphones der Person. Um dies zu
adressieren, wurde HomeScout konzipiert. Es ist eine plattformiibergreifende Applikation,
die mittels fortschrittlichen Detektions- und Klassifizierungsalgorithmen basierend auf vier
Applikationsszenarien fungiert. Ein konzeptioneller Beweis dieser Applikation wurde im-
plementiert und in verschiedenen Experimenten getestet und validiert. Es wurde gefunden,
dass die Applikation fiir die Applikationsszenarien gut funktioniert.

iii

v

Acknowledgments

Many thanks to Katharina O. E. Miiller, Dr. Bruno Rodrigues and Prof. Dr. Burkhard
Stiller for the opportunity to work on this master project at the Communication Systems
Group.

We are extremely grateful to our main supervisor Katharina O. E. Miiller, for her continued
support and time during our weekly meetings, her knowledgeable insights and her valuable
feedback throughout the duration of the project.

vi

Contents

Abstract

Zusammenfassung

Acknowledgments

1 Introduction

1.1 Motivation L
1.2 Problem Description
1.3 Report Outline

2 Related Work

3 Background

3.1 Bluetooth Low Energy L o
3.1.1 Generic Access Profile (GAP)
3.1.2 Link Layer

3.2 Bluetooth Trackers
3.2.1 Crowd-Sourced Location Tracking
3.2.2 Tile Trackers
3.2.3 Apple AirTag Trackers,
3.2.4 Samsung Galaxy Trackers
3.2.5 Chipolo One Spot

3.3 Apple Ecosystem

vil

iii

viii CONTENTS
3.3.1 Offline Finding 11

3.3.2 Tracking Workflow o 11

3.3.3 Item Safety Alerts 12
3.3.4 Find My Network Accessory Program 12

3.4 Other Tracking Detection Applications 13
3.4.1 Tracker Detect 13
342 AirGuard 13

4 Design 15
4.1 Requirements Lo 15
4.1.1 Design and Implementation Constraints 15
4.1.2 Functional Requirements 16
4.1.3 Nonfunctional Requirements 17
4.1.4 Additional Design Assumptions 17

4.2 Application Scenarioso 18
4.2.1 Normal Mode 19
4.2.2 Heightened Awareness Mode, 19
4.2.3 Location Designation oo 19
4.2.4 Device Block- and Allowlisting 20

4.3 Application Architectureo 20
4.3.1 Logical View 20
432 DataView Lo 21

4.3.3 Development Structure Lo 21
4.3.4 Threat Service L 22

4.4 Tracker Detection 23
4.4.1 Detection Algorithm L. 24

4.5 User Interface Lo 26

4.5.1 Homepage 27

CONTENTS

4.5.2 Designate Locations,
4.5.3 Pop-out Window oo
4.5.4 Listso
4.5.5 Device Detailso
4.5.6 Tracking Alert
4.6 Experimental Design oo
4.6.1 Experiment 1: Tracker Detection
4.6.2 Experiment 2: Allowlisting
4.6.3 Experiment 3: Blocklisting 000
4.6.4 Experiment 4: False alarms
4.6.5 Experiment 5: Location Designation

5 Implementation

5.1 Dependencies
5.2 Development workflow L
53 Android
5.3.1 Background Location Acquisition
5.3.2 Background Bluetooth Scanning
5.4 G0S . . e
5.5 Application Scenario Parameters.
5.5.1 Location Designation
5.5.2 Device Block- and Allowlisting
Evaluation
6.1 Experiment 1: Tracker Detection
6.1.1 Detection Rate oo
6.1.2 Tracker Differenceso
6.2 Experiment 2: Allowlisting oL
6.3 Experiment 3: Blocklisting 000
6.4 Experiment 4: False alarms 00

6.5 Experiment 5: Location Designation

ix
28
29
30
31
32
33
34
35
37
38
39

41
41
43
43
43
45
46
46
46
47

S CONTENTS

7 Conclusion and Future Work 57
7.1 Conclusion 57
7.2 Future Work 58

Bibliography 58

Abbreviations 65

Glossary 67

List of Figures 70

List of Tables 71

A Installation Guidelines 73
A.1 Development instructions 73
A.2 Experiment instructions Lo 73

B Contents of the Zip file 75

Chapter 1

Introduction

1.1 Motivation

With the fast-growing adoption of Internet of Things (IoT) solutions, Bluetooth Low
Energy (BLE) technologies have become increasingly popular in a wide range of aspects
in our daily life. According to market research, the global BLE market is expected to
surpass $16.7 billion by 2026 [1]. One of the most significant and exclusive applications of
BLE is asset tracking, which refers to the location-based tracking of items by attaching
smart tags to them [2]. Smart tags, also known as BLE beacons, BLE trackers or item
finders, are small devices that can be attached to an asset and then broadcast an Unique
Identifier (UID) to allow for the identification and tracking of assets or items. An UID is
an identifier that marks that device record as unique, the Media Access Control (MAC)
address can be used for this purpose [3].

The main purpose of introducing these smart tags is to help users locate and monitor their
belongings since the smart tags support multiple networks and communication protocols
[4]. However, while the smart tags are designed to track users’ own possessions, they can
also be misused for malicious purposes. For example, due to the small size and ease of
use, stalkers may use these smart tags to establish real-time tracking of targets by briefly
accessing their personal belongings and hiding these tags within [5]. The media quickly
reported articles linking smart tags to domestic abuse and stalking [6, 7]. Tracker abuse
goes beyond stalking or domestic abuse, it can also be used to track valuable items such as
cars [5]. On the other hand, people worry that organizations could combine and correlate
the information learned from trackers to build profiles of people for nefarious purposes
as more data is stored day by day. Both concerns raise important issues around personal
privacy and technology surveillance, causing widespread societal concern due to the misuse
of smart tags [6].

There are several BLE tracking products available on the market, such as the Apple
AirTags, Tile Finders, Samsung’s Galaxy SmartTags, and the Chipolo ONE Spot. While
all of these smart trackers have relatively accurate location capabilities, each one has
its own limitations. For example, Apple’s Find My network prioritizes privacy, offering
enhanced security and privacy protection compared to other finder networks.

2 CHAPTER 1. INTRODUCTION

It effectively shields the location of AirTag owners from both outsiders and within Apple’s
own ecosystem, but it only works with updated iOS devices that use the Find My feature
[8]. The same goes for Samsung’s SmartTags, which are only compatible with Galaxy
phones running Android and the SmartThings Find app. Chipolo ONE Spot heavily relies
on Apple’s Find My network, it requires pairing up with an iOS device to locate items [9].
The Tile Finder is the only popular tracker that works with both iOS and Android, but
its app can be confusing with many options and the Tile app itself cannot be removed
once activated, which causes inconvenience for users who no longer use it [10].

1.2 Problem Description

It is a well-established fact that maliciously using smart tags presents a significant hazard
to users in scenarios where abuse is prevalent [11]. This is due to the fact that only
some smartphone systems are compatible with each other, therefore mandatory tracking
protections are often needed. Consider Apple’s AirTag as the case and point. Despite
its release, it took the company more than six months to launch an Android app called
"Tracker Detect” on December 11, 2021, in an effort to partially address this issue [12].
Despite this measure taken, the Android app has limitations as it requires frequent manual
scans to locate a tracker, rendering it ineffective in practical real-life scenarios.

HomeScout (HS), a secure cross-platform application for both iOS and Android was
developed to quickly detect unwanted tracking. The app enables users to scan for harmful
BLE trackers using an optimized algorithm and emphasizes customizable operation,
prioritizing the app interface usability for non-experts. The key contributions made include
the following:

(1) Design and implementation of the open-source HomeScout application in Flutter to
protect users across platforms.

(2) Conducting of tests of HomeScout and generation of an anonymized dataset for
analysis.

(3) Evaluation of the algorithm’s performance in regards to detecting IoT devices as
dangerous or non-dangerous.

1.3 Report Outline

This Master project report is structured as follows: in chapter 2 works related to BLE
scanning are discussed. In chapter 3 the background on BLE and Bluetooth Trackers is
introduced. The app interface mock-ups and the architecture of the app are presented in
chapter 4, along with a description of its features, highlighting the user interface design
and tracking detection methods. It also includes the experimental setup for the evaluation.
In chapter 5 the implementation of the app is discussed. In chapter 6, the data gathered
from testing is analyzed. The limitations of the current design are discussed in chapter 7,
followed by suggestions for future work and final conclusions.

Chapter 2

Related Work

With the rise of IoT and the ubiquity of BLE devices, a lot of research has gone into
the tracking and position-finding of devices using BLE. [13] create an indoor positioning
system (IPS) using BLE beacons’ received signal strength indicator (RSSI) to approximate
the location of a device moving through the location. [14] develop a smartphone based
application, called LocBLE, that allows users to assess the location of nearby BLE beacons
in a fine-grained manner.

Following the rise in popularity of BLE trackers, especially with the release of Apple’s
AirTags in 2021, some research has shifted to address benefits and issues concerning these
trackers. [15] show that BLE devices can be used to track patients with dementia. As
more elaborate trackers, such as ones using GPS, would need to be regularly removed for
charging or for cleaning of the patients, BLE devices are uniquely suited for this purpose.
Similarly, [16] propose and demonstrate a system that uses BLE and UWB within a
location to detect emergency situations of elderly or infirm people.

A lot of other works occupy themselves with the privacy concerns raised by BLE devices.
[17] analyse wearable fitness trackers, which periodically synchronise data with the user’s
smartphone. They show that due to a majority of fitness trackers using unchanged BLE
addresses, they can be abused to track and learn information from the user wearing them.
Of particular concern is the transmission of a user’s gait, which, as it is fairly unique for
each person, allows for a sort of fingerprinting of a user. [18] showed how BLE devices
can also be fingerprinted at the physical level and show mitigation strategies to limit this
practice.

Many past studies have examined various aspects of Apple’s wireless services in particular.
Analysis by [19] proposes and assesses a proof-of-concept protocol that utilizes Apple’s
Find My network and a custom tag with a basic microcontroller. [20, 21] conduct a reverse
engineering of the Apple Find My system and allow a set of BLE devices to appear as
tags inside Apple’s Find My network. Both analyses demonstrate how the Apple Find
My service can serve as a privacy-sensitive tool for crowd monitoring and how it may
unintentionally reveal a person’s location, if deliberately tracked. Another study by [22]
explores the Handoff services, which allow seamless communication between multiple
Apple devices under the same iCloud account with enabled Find My network.

4 CHAPTER 2. RELATED WORK

They have been found to potentially undermine random MAC addresses and to identify
devices belonging to a single user. Several privacy issues are also uncovered, including
device fingerprinting and activity tracking. These works support the need to examine
proprietary systems that could impact billions of users worldwide. [23] show that Apple’s
safety alerts, which are intended to warn a user that they are being tracked, can be
circumvented by creating a custom BLE tracker that can participate in the Find My
network, while not triggering the safety alerts.

Some of the research concerns itself with solving some of the issues illustrated above.
[24] propose and demonstrate an enhanced Find My protocol, Blind My, that introduces
additional cryptographic verification into the protocol to guarantee that devices can be
detected when tracking. [25] introduce PrivateFind, a finder protocol that improves on
privacy concerns of existing protocols by improving on parts of the entire crowd search
system. [26] too, introduce a design for a secure and privacy-retaining crowdsourced
tracking system, called SECgrow .

[12] on the other hand take a different approach, by creating a smartphone application
that lets users more accurately or more actively detect if they are being tracked. In this
vein they introduce AirGuard, an Android application that addresses issues of Apple’s
own Android app, Tracker Detect. [27] too present an Android application that improves
on the speed and precision of tracker detection.

Chapter 3

Background

3.1 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is short-range wireless technology similar to classic Bluetooth.
While classic Bluetooth has achieved wide-spread adoption, it is not the ideal technology
for every use case. Especially for use cases related to the Internet of Things (IoT), which
are characterized by asymmetric communication (e.g. a smart sensor transmits more data
and only occasionally receives data) and low power consumption (e.g battery powered
sensors that last for years). For these use cases, classic Bluetooth is too complex, expensive
and uses too much power. As a response, Bluetooth SIG, the designer of classic Bluetooth,
developed a new Bluetooth variant, "Bluetooth Low Energy”, specifically for low power
consumption, low complexity and low cost applications.

It uses 40 physical channels (2 MHz wide) in the 2.4 GHz band [28]. At the physical layer
there exist two types of channels, advertising channels (3) and general purpose channels
(37). The advertising channels play a central role in BLE, they are used for devices to
broadcast packets to other nearby devices, without having to establish a connection first.

BLE is organized as a layered stack of protocols and modules. They are grouped into two
parts, host, and controller. Usually, but not necessarily, the controller is implemented
directly in a System-on-Chip (SoC), whereas the host is implemented in software and
provided as a driver by the operating system. This organization is illustrated in Figure 3.1.
The complete BLE stack is of considerable complexity and the details of each layer are
out of scope of this work, with the exception of the Generic Access Profile (GAP) and the
link layer [28]. In the remainder of this section, only those parts of BLE are discussed,
which are of relevance for this work’s use case, namely scanning for common Bluetooth
trackers such as the Apple AirTag. Some of the details are discussed exemplarily for the
AirTag, because their use of BLE has been studied considerably in literature, among the
available Bluetooth trackers [29, 12, 30].

6 CHAPTER 3. BACKGROUND

Generic Access Profile (GAP)

Security Manager
(SMP)

Loegical Link Control & Adaptation Protocol
(L2CAP)

Host Controller Interface

Isochronous Adaptation Layer

Link Layer

Physical Layer

CONTROLLER

RADIO

Figure 3.1: BLE stack

Source: [31]

3.1.1 Generic Access Profile (GAP)

GAP is concerned with device discovery and connection. For this, it defines procedures
for advertising packets, which allows for connectionless communication. The device which
intends to send data connectionless is said to operate in the Broadcaster role. In this
role, the host can instruct the controller via the Host Controller Interface to enable
advertising, which puts the Link Layer in the Advertising state. In this state, the Link
Layer sends packets regularly during Advertising events. A particular advertising packet
can be transmitted up to three times, because it’s copied on all three primary advertising
channels. Which increases the probability of successful transmission if there are other
interfering devices or radio-frequency sources [28].

Conversely, a device that intends to search for this advertising signal is said to operate
in the Observer role. In this role, the host, respectively the user application, instructs
the BLE controller via the Host Controller Interface to enable scanning, which puts the
Link Layer in the Scanning state. In this state, the Link Layer listens for advertising
packets on the primary advertising channels and forwards the content back to the host
upon receipt [28].

3.1. BLUETOOTH LOW ENERGY 7

3.1.2 Link Layer

The Link Layer in BLE is concerned with the low-level packets and the management of
links. The actual transmission of bits over the air on a particular channel is handled by
the Physical Layer (see Figure 3.1). These two layers are analogous to the first two ISO
Reference model layers [32].

Carries physical channel Carries logical transport
access code and logical link identifiers

[|
Preamble Access Address Cl TERM1 | PDU Header TERM2

‘ Carries one of the following: LZCAP
Access ‘ signals, LZCAP frames, ISOAL segments,

Header isochronous data, or other user data

Carries the Link Layer Protocol

Figure 3.2: BLE packet structure

Source: [28]

In BLE a packet consists of a Preamble, an Access-Address, Protocol Data Unit (PDU)
and a Cyclic redundancy check (CRC) (see Figure 3.2). In the Advertising state the Link
Layer populates the packet with an Advertising physical channel PDU consisting of a
16-bit header and a payload. The header contains the length of the payload and the type
of the PDU [28].

Data

-
- -

- Significant part - Non-significant part >
AD Structure 1 AD Structure 2 ... WAD Structure 'N| 0b000...000
i T
I R e e L
B e
| T——
1 octet LengihoctelsiFi i R
Length Data
| |
| |
! n octets Length - n octets !
AD Type AD Data

Figure 3.3: Advertising data format

Source: [28]

8 CHAPTER 3. BACKGROUND

An Apple AirTag will use the ADV_IND PDU type in its advertising packets [29]. The
payload of type ADV_IND contains a 6 bytes address part and a 32 byte data part. The
data part can consist of multiple sub fields, each prefixed by a byte indicating its length as
shown in Figure 3.3. Each sub field contains one byte indicating the AD Type and a AD
Data part, which can take up all the remaining space in the PDU Payload. The maximum
size for a data sub field in the ADV_IND payload is thus 30 bytes' [28].

3.2 Bluetooth Trackers

Bluetooth trackers are devices that allow for localization of objects using the Bluetooth LE
technology, which can include indoor positioning. They have a wide range of applications,
among others in Industrial IoT, as an example for asset tracking in a warehouse. Common
consumer applications include the recovery of lost items such as keys or wallets. In this
context, Bluetooth trackers are sometimes referred to as "key finders”, Bluetooth finder
[25] or Item Finders [30].

A Bluetooth tracker is usually a small device consisting of a battery, antenna and a
Bluetooth chip. To keep the costs of such a tracker low, they don’t include additional
capabilities such as mobile internet access or a Global Positioning System (GPS) receiver,
which would also require a much larger battery. This device is physically attached to the
object of interest. Whoever is looking for that object needs a second computing device
with Bluetooth capabilities and a special application. While the object of interest is within
range of the finder device, they can occasionally share information using Bluetooth. To
locate the object, the finder device can utilize information from the Bluetooth exchange
to estimate the object’s location. It can also instruct the Bluetooth tracker to play a
sound to assist the user with locating it. One such method is to use the received signal
strength indicator (RSSI) of the Bluetooth connection as an indicator for relative distance
(33, 34]. This method uses physical properties of electro-magnetic information transmission.
Particularly, the inverse-square law of electromagnetic radiation, which states that the
power of a point source is inversely proportional to the squared distance. However, in
practice, RSSI based ranging is more complex. The orientation of the finder’s device can
influence the measured signal strength (depending on the used antenna). Additionally, the
Bluetooth protocol itself optimizes for power consumption and can reduce the transmission
power as long as the transmission error rates are acceptable [33].

3.2.1 Crowd-Sourced Location Tracking

When the object of interest is no longer within range to establish a Bluetooth connection,
the finder’s application can use historical information of the location of last contact to
indicate where the object might be. However, the object might no longer be at the last
seen location, for example because it was lost somewhere else after the last contact point
or because the object with the attached tracker was stolen.

132 bytes - 1 byte Length - 1 byte AD Type

3.2. BLUETOOTH TRACKERS 9

In such a case, the Bluetooth tracker purely on its own cannot be localized anymore,
because the Bluetooth tracker can only communicate to devices within a limited radius.
To remedy this situation, the signal would have to be relayed to the finder by an additional
third device. An innovative approach for this problem was commercially first introduced by
the startup Tile in 2013, where they use crowd sourcing, crowd search or crowd finding [35].
Large hardware companies, such as Apple and Samsung, have added similar functionalities

to their platforms a few years later.
-~
e
g iy,
> - -
-~ [y
% SS

Server i »
Finder

Last finder report
4
- : |'
. 0
Found your finder) |

iy

v

Reporter

Owner

Figure 3.4: Illustration of crowd-sourced location tracking

Source: [25]

The general idea in Crowd-Sourced Location Tracking is that the signal of a lost Bluetooth
tracker could be picked up by many other networking-capable devices, such as the ubiquitous
smartphones, which usually have Bluetooth capability. The lost Bluetooth tracker needs to
transmit two pieces of information to the third-party finder: its status, that the tracker is
lost and an unique identifier such that the owner of the device can identify the Bluetooth
tracker. The third-party finder then needs to relay that information to the owner of that
device together with the precise location of where the signal was picked up. With this
information the finder device of the owner can inform the user that the lost Bluetooth
tracker, hopefully with the attached object, has been found at an approximate location
[25]. This mechanism is visualized in Figure 3.4. If a large enough crowd equipped
with smartphones and a specific crowd-finder application were to continuously listen for
signals from lost Bluetooth trackers, then they could be found reliably. Important for this
functionality is thus the size of the crowd or the finder network.

3.2.2 Tile Trackers

Network The main crowd-source network used by Tile trackers constitutes of users of
the Tile app on Apple and Android devices [35]. Tile does not publicly report the size
of its crowd sourcing network. Tile trackers also use the crowd-source network of other
companies, such as the Amazon Sidewalk network, which is used by the Amazon Echo
products [36].

10 CHAPTER 3. BACKGROUND

3.2.3 Apple AirTag Trackers

AirTag is a Bluetooth tracker released in 2021 by Apple [37]. It contains a nRF52832
System-on-Chip (SoC) which supports BLE 5.2 and Near-field communication (NFC).
Additionally it has an Apple U1 chip for Ultra-Wideband (UWB) communication [29].
AirTags use Apple’s Find My network which uses iPhones and iPads with GPS capabilities
[20]. According to [29], AirTags use undirected BLE advertising to inform nearby devices
of its presence. For this it uses the Manufacturer Specific Data field in the ADV_IND
PDU by setting the AD Type to OxFF [38]. The Manufacturer Specific Data field is at
least 2 bytes long and uses the first two bytes to identify the manufacturer [39]. In case of
the AirTag, the manufacturer is 0x004C (Apple, Inc.) [38]. The rest of the Manufacturer
Specific Data is in a proprietary and used for multiple of Apple’s products. This proprietary
format starts with an Apple payload type field, followed by an Apple payload length field.
An Apple payload type of 0x12 indicates that the message is related to Apple’s Find My
network [29, 20].

3.2.4 Samsung Galaxy Trackers

Samsung announced their Bluetooth tracker products Galaxy SmartTag and Galaxy
SmartTag+ in 2021. The device is equipped with both BLE and UWB technology, allowing
it to accurately locate missing items [40]. The Galaxy SmartTag+ has strong detection
abilities with the help of SmartThings Find app, which allows users to locate lost items
on a map using BLE and the Galazy device network. To use the feature, the user needs
to let their Galaxy smartphone or other compatible device with the Galaxy SmartTag
app login to assist in finding lost SmartTags for others. The other advantage of using
Galaxy SmartTag+ is allowing users to find lost items using AR Finder thanks to UWB
technology. Once a missing item is found, the Galary SmartTag+ will guide the user with
a user-friendly interface showing the distance to the Galary SmartTag+ and by pointing
the user in its direction [41].

Network Samsung reported in 2022 that their crowd-sourcing network comprises of over
200 million devices [42]. Both Samsung and Tile took a similar approach to networking
their devices and application [43, 44]. Therefore these networks operate very similarly:
Devices and items use BLE to broadcast their presence to nearby supported devices, which
then identify and upload their location to a cloud service [45].

3.2.5 Chipolo One Spot

Chipolo One Spot is a key tracking tag that helps people find personal items with the
Apple Find My network, which is made up of hundreds of millions of Apple devices around
the world [9]. As Chipolo relies on the entire Apple Find My network, it works exclusively
with the Find My app and is not shareable. Therefore other users can never see the
location of the user’s Chipolo One Spot [46].

3.3. APPLE ECOSYSTEM 11

3.3 Apple Ecosystem

3.3.1 Offline Finding

The Offline Finding (OF) system was introduced by Apple in 2019. It is a crowd-sourced
location tracking system for offline devices and now officially is called the Find My network
[47]. The basic idea behind OF is to allow users to locate their lost or stolen devices even
when they are in a location where they do not have any internet access.

To use the feature successfully, users need to sign in to their iCloud account and have
the Find My settings enabled. Once enabled, the so-called finder device can detect the
presence of the offline device to periodically send an approximate location back to iCloud
[19]. iCloud is an online cloud-based service for all Apple services that handle online
data storage and synchronization via Apples’ servers. All apple users will have their own
account that synchronizes itself via iCloud, and OF uses iCloud to share keys across all
owner devices that are signed in to the same Apple account [48].

Following this, the owners can use other Apple devices to log in to iCloud to check the
location of their lost item. Additionally, users can also set their lost device to "Lost Mode”,
which allows them to remotely display a message on the screen, or to lock or erase the
device if needed [49].

3.3.2 Tracking Workflow

Apple’s Find My network tracks devices that opt in via anonymous crowd-sourced location
reports. Once the devices are marked as lost, its owner can access location reports through
their iCloud account and view them using the Find My application [50]. These smart tags
are constantly transmitting, even without the presence of their owners. To set it up, the
iCloud and tag owner create a public-private key pair using API calls for tracking the
device [51]. The process of recovering lost devices involves the following:

1. Broadcast: Find My accessories are initialized with a private-public key pair that
allows devices to generate an infinite number of rotating key pairs that help link
devices. Once the device loses its Bluetooth or internet connection to the owner’s
device, it will broadcast the Bluetooth advertisements with rotating public keys [20].

2. Upload reports: Finder devices that detect the Bluetooth advertisements extract
the public key, and then create a temporary private-public key pair to encrypt the
finder’s location report, containing (1) the beacon reception time, (2) the confidence
about that contact, (3) the MAC address, (4) the key location information, and (5)
an authentication label to further validate the report. These reports are securely
uploaded along with the finder’s public key to Apple’s iCloud after a certain time
period. In addition to these data fields, the batch of reports from a single finder is
annotated with a timestamp of when it was received on the server side [19].

3. Download reports: With the public keys, the owner can download and retrieve
available location reports on the lost device with secure HI'TPS GET requests.

12 CHAPTER 3. BACKGROUND

HTTP POST {Report, ..} l

- Apple FindMy

HTTP GET
Errreerrrrrrree, : Timestamp | Confidence {Report, ..}

Lat | Lng | Acc |Status

AES-GCM Authentication

Lost
Device Owner

Figure 3.5: Delay in sensing and reporting a tag

3.3.3 Item Safety Alerts

With the launch of AirTags, Apple also introduced Item Safety Alert (ISA) into i0S, with
the intent to notify the owner of an iPhone that they may be tracked by a malicious
tracking device. Since Apple’s Find My network has significantly more participating
devices than other similar services, it makes it a highly effective tool for finding lost items
at relatively low cost. The item safety alerts on iPhone appear when the same lost message
is received consistently, exceeding certain elapsed time and distance thresholds [52]. If a
device keeps receiving the same lost message, it infers that there is an unknown AirTag
tracking device nearby and alerts the users [24]. The Item Safety Alert (ISA) includes a
warning of a possible malicious tracking device and instructions on how to identify and
disable it.

3.3.4 Find My Network Accessory Program

The old Find My app made it easy to locate Apple devices while protecting user privacy,
but the new updated Find My Network Accessory Program extends these capabilities by
locating missing devices even if there is no internet connection, as the Find My network
is a crowd-sourced network of Apple devices that use BLE technology to detect missing
items nearby, and then to report their approximate location back to the owner.

The updated Find My app was introduced by Apple in April 2021. the goal of the app
is to allow third-party products to use the private finding capabilities of Apple’s Find
My network, which includes hundreds of millions of Apple devices. Due to the Find My
Network Accessory Program, the vast and global Find My network opens up to third-party
device manufacturers to build products utilizing the service, so their customers can use
the Find My app to keep track of their important devices, as well as keep up with friends
and family [47].

3.4. OTHER TRACKING DETECTION APPLICATIONS 13

3.4 Other Tracking Detection Applications

3.4.1 Tracker Detect

Tracker Detect? is an Android app developed by Apple in December 2021. This app was
Apple’s answer to numerous concerns about malicious tracking of Android users by AirTags
[53].

However, Tracker Detect only offers limited features with certain restrictions applied. For
example, it only allows users to scan manually for nearby Find My accessories. This can
potentially reduce the likelihood of detections [19]. Once an accessory is found, the user
has to wait 10 minutes before they can play a sound on the device to locate it. Unlike its
counterpart, it also provides limited functionality to scan for Apple AirTags while the app
is open, but not in the background [51].

3.4.2 AirGuard

AirGuard is an Android app by [12], developed to address some of the shortcomings of
Tracker Detect and to protect Android users from malicious uses of AirTags. It includes
automatic background BLE scanning, similar to the one on iOS, rather than having to
manually initiate scans as with Tracker Detect. AirGuard performs such a scan every 15
minutes. It filters found devices for Find My advertisements in the separated BLE state
and stores them along with the device’s current location in a local database. It then runs a
tracker classification algorithm, in which it iterates through all devices in the database and
checks (1) if the device’s advertisements have been received for longer than 30 minutes, (2)
if the device has been picked up a minimum of three times, (3) if the device has followed
the user for more than 400 meters, and (4) if the user has not been issued a tracking alert
by AirGuard in the last seven hours. If all four conditions apply, the user is alerted.

Upon receiving a tracking alert, the user can view more details on the tracking device. It
includes a map with the locations where the device was detected, and allows for the user
to play a sound on the tracker, ignore it and more.

AirGuard also includes a manual scan mode. It can be used to manually get the approximate
distance, using RSSI as a basis for approximation, of nearby devices. Lastly, the app
contains a dashboard that provides a user with an overview of how many trackers were
found, when the last one was detected, as well as a risk level card. The risk level card is
green if there were no tracking devices detected in the past two weeks, orange if more than
one device was found to be following a user for less than 24 hours, or red, if more than
one device was detected as to be following a user for more than 24 hours. This system
provides users with a simple insight into their risk of being tracked, without having to
evaluate tracking activity themselves.

2https://play.google.com/store/apps/details?id=com.apple.trackerdetect

https://play.google.com/store/apps/details?id=com.apple.trackerdetect

14

CHAPTER 3. BACKGROUND

Chapter 4

Design

4.1 Requirements

In a first phase of the Master project, several requirements were extracted from the task
description of the Master project [54]. These requirements were categorized into design
and implementation constraints (4.1.1), functional (4.1.2) or nonfunctional requirements
(4.1.3). In addition to the requirements stated in the task description, we made further
assumptions about the environment and usage of the application which are described in
4.1.4. Based on these requirements several use-cases were modeled as shown in Figure 4.1.

4.1.1 Design and Implementation Constraints

Design and Implementation constraints are issues that restrict the available options for
development, including but not limited to hardware availability and limitations or language
requirements [55].

e HS must operate on Android mobile phones supporting BLE and at least with version
Android 12.

e HS must run on handheld devices with limited memory, storage, and computing
capacity.

e The user interface of HS must adapt to small screen sizes.

e HS must be able to run in the background, whereas it is subject to constraints from
the Android OS scheduler (battery saving).

e HS must be implemented in the Dart language using the Flutter framework.

15

16 CHAPTER 4. DESIGN

uc Anwendungsfalle)

Modify Known Locations
List Devices per Location

Activate Background Scanning Protection
Smspicious% Activate High Alert Mode

i User\ View Device Detail
Knowledge Worker «extend»\v

Put Device on Whitelist |
/
0S Timer
Track BLE Devices
\\u

] P\" \“.
[» S [q_
r«includes» ‘\ «extend» ™

1 «includes»
! * BLE Device Malicious Tracker
AY
Assess threat Y
Classify Location

Figure 4.1: Modelled Use-cases

4.1.2 Functional Requirements

Functional requirements describe which functions can be performed by the application

[55].
1. The systems should access precise location data (Lat/Long) from the respective OS
APL
2. The system should scan nearby BLE devices.
3. The system should persist information about nearby BLE devices across app restarts.
4. The system should classify discovered devices as either dangerous or not.
5. The system should notify the user if it is close to a dangerous device (blocklisted).

6. The user can mark a device as safe. All such marked devices are visible on an
allowlist.

7. The system should classify the current location according to the user-defined location
zones.

4.1. REQUIREMENTS 17

4.1.3 Nonfunctional Requirements

Nonfunctional requirements describe properties of the applications, for example, quality
attributes of the software [55].

Extensibility It should be easy to extend HS with new functionality and data sources.

Efficiency HS should use system resources sparingly to not drain the smartphone’s battery.
During passive tracking, it should use up no more than 10% of the battery.

Storage Capacity The persistent data of HS should use up no more than 1Gb of flash
storage.

Portability HS primarily runs on Android devices but shall be usable on iOS devices with
minimal modifications.

Privacy The collected geolocations are personal data. HS should only keep data as long
as necessary to perform its functions and remove older data regularly.

4.1.4 Additional Design Assumptions

The design space of potential solutions spanned by the original task description was still
of considerable size. To keep the scope of the Master project reasonable, it was further
constrained by making two additional assumptions about the operating environment.

Focus on Dedicated Bluetooth Trackers Bluetooth trackers as described in section 3.2
are dedicated devices to track objects. But they are not the only devices that can be used
for tracking purposes. For example, other devices from Apple such as Macbooks are also
connected to Apple’s Find My network and supposedly emit similar BLE signals as an
AirTag when they lose connection to the internet and the owner’s phone. Technically, it
should be possible to track objects or even people using laptops or other similar devices
from Apple. However, these scenarios were deemed as out of scope for the current project.
Thus, the main focus will be on the tracker detection of the provided Bluetooth trackers,
which can be identified by their BLE signals. The application will however be designed to
allow for the detection of generic BLE devices.

Focus on Outdoor Tracking Relatively accurate location measurements are necessary
to detect if a malicious device is following a user. In an outdoor setting the location can
be measured on standard smartphones with reasonable accuracy of about 5 meters by
using only GPS [56]. When using GPS signals in combination with other signals as it is
commonly performed in modern mobile operation systems, the accuracy can be further
improved. However, tracking the movement of a smartphone in an indoor setting is much
more difficult. While it is technically possible to receive GPS signals even indoors, the
indoor accuracy in concrete buildings varies with the size of the building as well as the
composition of the surrounding buildings [57].

18 CHAPTER 4. DESIGN

For smaller buildings, it is usually below 10 meters but can worsen up to 60 meters for
large multi-story buildings. Another problem indoors is that the signal acquisition takes
much longer and thus also increases the energy consumption of the smartphone [58].

@ O

o&H
, O%F

O

o
Q

O

Figure 4.2: Visualization of location drift

The problem with GPS accuracy when not in ideal open field conditions was observed when
periodically recording the location as reported by an Android smartphone. In Figure 4.2,
the holder of the smartphone was mostly stationary at the point indicated in red and
recorded the locations in regular intervals. However the location measurements varied
noticeably.

Given the difficulties of accurate indoor localization, the scope of the project is restricted
to outdoor scenarios. Therefore, the assumption is made that the typical user of the
HomeScout application will only be using it to detect trackers over larger outdoor distances
and not within buildings.

4.2 Application Scenarios

One goal of HS is to help users with tracker detection in a multitude of different scenarios.
Users should have control over things such as the aggressiveness of tracker detection,
detection based on location and more. For this purpose, four scenarios were defined. In
the following subsections, each will be elaborated upon further.

4.2. APPLICATION SCENARIOS 19

4.2.1 Normal Mode

The first scenario concerns a user who suspects they are being tracked. They can then
open the app and enable scanning. Unless constrained by the specific device, this can be
done both with the app open and active, or with the app in the background. The app
will then periodically scan for nearby devices, filter and annotate them, as well as gather
additional data such as the user’s location. It then, based on data on the device, the
device’s detection history, the user’s location and some other factors, evaluates the threat
level of the detected trackers and potentially alerts the user.

4.2.2 Heightened Awareness Mode

Heightened awareness mode is a mode of the application that users can enable or disable.
It is intended for cases where a user is more suspicious of being tracked, e.g. if they left
their bag unattended for a while, or for cases where a user might be at a higher risk of
being tracked, e.g. late at night walking home alone. In such cases, the user can enable
heightened awareness mode. This mode both changes the scan frequency and duration,
as well as the conditions in the threat classification algorithm that lead to a device being
assessed as a threat.

4.2.3 Location Designation

Often it is desirable to mark certain locations as “safe”, i.e. finding a tracker in this location
should not be of concern. This could the case in an office building, where there are likely
to be a multitude of trackers belonging to other people. In such a situation, one would
receive too many false positives to be helpful. Originally, the concept was for the threat
assessment to ignore devices in such cases. This was however more elegantly solved by
requiring both the user and a tracker to move with each other for a certain distance and
time, eliminating cases where one would be stationary for a long time. Therefore, locations
were reworked to alter the conditions that lead to the threat assessment to classify a
tracker as a threat. In the case of a “safe” location, it will increase the conditions needed
for a tracker to be deemed a threat.

Alternatively, one might want to mark certain areas as particularly “dangerous”, for
example a bad neighbourhood. In such locations then, as opposed to the “safe” locations,
the threat assessment should be more sensitive and be quicker to alert users.

For HS, a rudimentary proof of concept was developed, that let users mark their current
location, as well as a radius, as either safe or unsafe, as well as see what location they are
currently in.

It is worth noting, that “safe” in this context means safe from being tracked, not safe
in a more general sense. For example, someone might want to designate their home as
“dangerous”, as being tracked to your home would be of high risk.

20 CHAPTER 4. DESIGN

4.2.4 Device Block- and Allowlisting

An important part of a tracker detection application is the ability to mark detected trackers.
Then, that information can be taken into account on a repeat detection. Two scenarios
take place:

First, the detected tracker is familiar and benign to the user. This would for example
be the case if the tracker belonged to a friend of the user. In such a situation, the user
could mark the device as “harmless”, or in more technical terms, the user could add it to
the allowlist. This would then be taken into account during the threat classification on a
repeat detection.

Second, the detected tracker is unknown and there exists reasonable suspicion that it
might be dangerous. In that case, the user could mark it as “dangerous”, or again more
technically, add it to the blocklist. This will lead to the device being more quickly classified
as a threat if it is detected again.

4.3 Application Architecture

4.3.1 Logical View

Figure 4.3 shows a high-level view into the logical components of the application and the
flow of information. Two data sources, the BLE scanner and the GPS location service,
provide data to a location based classifier. It, together with data from the allowlist and
blocklist, are used by the device risk assessor.

BLE Scanner

> Location based classifier > Device Risk Assesser

GPS Location Service

Blocklist Allowlist

Figure 4.3: Information flow

4.3. APPLICATION ARCHITECTURE 21

4.3.2 Data View

The application uses a SQLite database to store the data received by scanning for BLE
devices. The used database scheme is shown in Figure 4.4. The core functionality of the
application uses only four tables. For the experiments an additional table is used to log
certain events used for data analysis.

cls DB Schema)

User Location
. + name
Waypoints + lat
+ lat + long
+ long + rad
+ timestamp + classification
+ place + id
+ id
Detections
Device -
+ waypoint
+ address ————— |+ device
+ name + rssi
+type + advertisement data
+ classification + suspect

Figure 4.4: Database schema

4.3.3 Development Structure

The application was developed using a three-layer architecture, similar to the one described
by [59]. A schematic view can be seen in Figure 4.5. The bottom-most layer is the data
layer, where the business logic resides. It in turn is comprised of repositories and data
sources. Data sources, as the name suggests, are the points of origin of data. In our
application, two examples would be the database and the BLE scanner. Repositories then
are used to expose the data to the rest of the app. Each repository is responsible for for a
certain type of data, e.g. a device repository in our case. The next layer, the domain layer,
is optional and encapsulates additional business logic that might be used across multiple
repositories. HomeScout, as an example, makes use of a device domain. Lastly, the Ul
layer is responsible for displaying the data on screen. It is mainly comprised of widgets,
the name given to components built with Flutter.

22 CHAPTER 4. DESIGN

Ul Layer
‘ Domain Layer ‘ l
Y / Repositories]
‘ Data Layer ‘ l

Figure 4.5: The architecture used to develop the app. It shows the 3 layers and a zoomed-in
look at the data layer.

4.3.4 Threat Service

The threat service is responsible for taking a scanned device and assessing its threat based
on certain factors. These factors include the device’s journey, the user’s journey since it
first spotted the device, the saved user locations a user might currently be in and whether
or not the device has previously been allow- or blocklisted. As the heightened awareness
mode scenario requires the app to be able to switch between two modes of differing threat
assessment strategies, and to keep the app open to future extension, the strateqy design
pattern was used [60]. It delegates the logic to a separate and exchangeable interface,
which can be implemented to create a new strategy. Figure 4.6 shows a diagram of this
service.

ThreatService =<interfaces>
ThreatAssessmentStrategy

»

+classifyThreatFromDevice()
+isThreat{device, devicedourney,
userJourney, userLocationsUserlsin)

a

DefaultStrategy HeightenedAwarenessStrateqgy
+isThreat(device, deviceJourney, +isThreat(device, deviceJourney,
userJourney, userLocationsUserlsin) userJourney, userLocationsUserlsin)

Figure 4.6: Class diagram of the threat service, which uses the strategy pattern to
implement different threat assessment strategies.

4.4. TRACKER DETECTION 23

Furthermore, to simplify the setting of strategies, the factory pattern was used. Thus, the
strategy can easily be set using an enum. Listing 1 exemplifies this.

set threatAssessmentStrategy(ThreatAssessmentStrategies threatAssessmentStrategy) {
_threatAssessmentStrategy = ThreatAssessmentStrategyFactory
.of (threatAssessmentStrategy) ;

Listing 1: Example listing of the threat assessment strategy being set.

4.4 Tracker Detection

The tracker detection contains three classifiers. A classifier for the location to determine
whether the current location is marked as extra dangerous or save. A classifier to detect
the device type which uses the data published by each device during their BLE advertise-
ments. Finally a classifier to determine whether a device is potentially malicious. The
interconnections between these subsystems are shown in Figure 4.7.

ScanCtrl oS Classifiers

y
Initiate Scan

i
H
! JRequest GPS\ o Perform GPs
Coordinates Lookup

-<| GPS Coordinates Ik Classify GPS
| coordinates
Location
- i T H
Symbolic LocatloJ\

o Request BLE). S Perform BLE
“___Scan scan
T
BLE Device [&
i Classify
H Device
i
|: Device Type !
| 1
v

\
\
3

Store Device
Info
7 \
\

/l N,
/ \
12 N

Lookup Lookup User
Device Location
Detection History
History N
y N
N N
User Location History || Device Location [History
Son

H
i 5| Classify Threat

isDangerous

Send S BN Display
Notification Notification
y
C8 '

Figure 4.7: Scanner Overview

24 CHAPTER 4. DESIGN

4.4.1 Detection Algorithm
Normal Mode

Normal mode is the default mode the app runs in when scanning is enabled. It initiates
periodic scans of nearby BLE devices and the user’s current location. Both location and
devices are classified and stored in a local database. Then, using data already gathered on
a device, such as its previous detections, the threat is assessed. The exact algorithm used
to classify a device as a threat can be seen in Figure 4.8.

. Tracker is detected

N
" Is tracker

. allowlisted
NS

NG
Ino
e
\
7N
Is user in safe™. yes
. location

/
.
"

e
jno
¥

e
A Y8 7 s tracker ™
A & . blocklisted

N
N4

T

A /__
N g

)—oyes = |©|

MNot a threat

"

.
/

Is a threat

>

.,

yes

Figure 4.8: The algorithm of the normal mode threat classification.

/

\

h

// s
< tracker active
.QLE tracker.”

N
Ino
AN

N

Is user

<n any dangercus)L
~._locations
S e

NP4

Y
Setthresholds to:
user distance: 600
min detections: 3 ‘
min overlap: 0.8 J
S

.

\\

/ Setthresholdsto:

yes

\\

user distance: 300
min detections: 3
min overlap: 0.7

-

-

.,

user distance: 200
min detections: 2
min overlap: 0.7

user distance,

device journey

detections and
device journey tracking
istance greater th
thresholds

no

N Y
../. Not a threat

-

/
S/

/ Setthresholdsto:

/
S

4.4. TRACKER DETECTION 25

Heightened Awareness Mode

Heightened awareness mode, as described in section 4.2.2, is a application mode that users
can enable if they more strongly suspect they are being tracked. It modifies two aspects
of HS. It modifies two aspects of HS. One the one hand, it modifies the frequency and
duration of scans. The frequency is changed from scanning every 15 minutes in normal
mode to every minute in heightened awareness mode. The duration of a scan is increased
from 4 seconds in normal mode to 5 seconds. On the other hand, heightened awareness
mode also changes the threat classification algorithm. It is shown in Figure 4.9.

. Tracker is detected

|

AN
e

" Is tracker . Y5 N N
<._allowiisted />—@ Not a threat

™ /
~

Ino
v
PO
yes \\
v Is tracker
Is a threat | ».._—<\ blocklisted

-4
i R /
~

T

N - ™~
o \\ / Setthresholdsto:

e : yes user distance: 100
\\t\reafléetfr ;(;;:re/ >~ min detections: 3 ‘
. minoverlap:0.5
e \ Vs

>

NS ~
\[no

s - _
N .
Is user / Setthresholdsto:
yes user distance: 100
dn\ar.'gc‘;?{:ﬁ;“’“/s>—“‘ min detections: 2 ‘
~ e \ minoverlap:05 /
NS ~ /

I~ T

- T,

-~ Y
I.-’ Set thresholds to:
user distance: 200
‘ min detections: 3 ‘
_ minoverlap:0.6 /
. e

i

user distance,
yes device journey no B
detections and N N
device journey tracking \,/’I Not a threat
istance greater th
thresholds

Figure 4.9: The algorithm of the heightened awareness mode threat classification.

26 CHAPTER 4. DESIGN

4.5 User Interface

The following detailed designs showcase the progression throughout the project, where
the application was designed and iterated on from the initial paper-based wireframes
prototype to a medium-high fidelity prototype made with Adobe XD and finally to a fully
developed proof-of-concept app made with Flutter. From the iterations of the app design,
it is apparent that the goal was to design and develop a product that was functional and
user-friendly to the application users. A screenshot of the final homepage is shown in
Figure 4.10.

Home Scout

My Nearby BLE Device

g B2

DESIGNATE BLOCK ALLOW HEIGHTENED
LOCATIONS LISTING LISTING AWARENESS
Enable scanning »

Data Overview

Scans performed: 480

Devices: 0
Trackers : 0 °

Figure 4.10: Homepage of HomeScout App (Screenshot)

4.5. USER INTERFACE 27

4.5.1 Homepage

The first page that initializes and refreshes the application would be the homepage, where
users check the real-time map to assure their safety, a mockup is shown in Figure 4.11.
Besides the location-display in the background, there is a navigation bar that consists of
four main options which allow users to access various screens easily.

In the middle of the screen, there is a control button that gives the option for users to
turn the current heightened awareness mode on or off, and the icon on the top-right hand
that represents the current mode will also switch colors accordingly to further inform and
bring awareness to users. At the bottom of the page, the total number of scanned devices
and the number of suspicious devices found will be displayed. To further check on the
scanning statistics, users can click the support button on the right.

My nearby BLE devices My nearby BLE devices
DESIGNATE BLOCK ALLOW HEIGHTENED DESIGNATE BLOCK ALLOW HEIGHTENED
LOCATIONS LISTING LISTING AWARMESS LOCATIONS LISTING LISTING AWARNESS

o o
Q o
* L
@ Q
*4 o

o 4 ™ o Turn off the App

I: Turn on the App :I

N /

Data Overview Data Overview

Number of devices scanned: 5 Number of devices scanned: 5

Suspicious devices found: Suspicious devices found:

(a) Normal Mode (b) Heightened Awareness Mode

Figure 4.11: Homepage of the HomeScout App (Mockup)

28 CHAPTER 4. DESIGN

4.5.2 Designate Locations

The location designate page, shown in Figure 4.12, allows users to save the current location
with a certain label. There are two labels to choose from, the safe and the dangerous
label. Underneath the label selection, the radius range can be adjusted by users. The
idea of having labels and distance settings for each location is that the app will take
the safety (from being tracked) of a location into account when assessing the threat of a
device. Below that, a list of locations the user has created and their corresponding data
are shown. Locations that a user is currently in, receive a green icon instead of the blue
one. A location can be deleted with a button to the right of each location.

i~ Designate a location
Where you looking for? Q
Location Type v

RADIUS RANGE
100m 500m

O

Q 497 Evergreen Rd. Roseville, CA 8050

RESET LOCATION APPLY

Figure 4.12: Location Designate page of HomeScout App (Mockup)

4.5. USER INTERFACE 29

4.5.3 Pop-out Window

The pop-out window, shown in Figure 4.13, appears a few seconds after the key features
have been turned on or turned off, drawing the user’s attention to the current operating
state of the selected feature.

The heightened awareness The heightened awareness
mode is ON mode is OFF

Ok, thanks Ok, thanks

(a) Heightened Awareness Mode (b) Normal Mode

Figure 4.13: Pop-out Window example of HomeScout App (Mockup)

30 CHAPTER 4. DESIGN

4.5.4 Lists

There are two lists in our App, one is for collecting all the devices that are considered to
be “friendly” and other list is a collection of “malicious” devices. Both lists have the same
design, which consists of a search bar on the top that allows the user to search the devices.
More information can be viewed by pressing a device. By clicking the Fdit icon on the
upper right screen, devices can be deleted. The two lists are shown in Figure 4.14.

LISTVIEW LISTVIEW

r 4 T

° Device 1 o Device 1 Delete

June 1, 2022 June 1, 2022

Device 2 Device 2 Delete

June 1, 2022 June 1, 2023

Device 3 Device 3 Delete

June 1, 2022 June 1, 2022

Device 4 Device 4 Delete

June 1, 2022 June 1, 2022

Device 5 Device 5 Delet

June 1, 2022 June 1, 2022 Ll

Device 6 Device 6 Delete

June 1, 2022 June 1, 2022

(a) Allowlist (b) Blocklist

Figure 4.14: Allow- and blocklist pages of HomeScout App (Mockup)

4.5. USER INTERFACE 31

4.5.5 Device Details

This is an information page that is designed for users to view more details on the selected
device. Followed by the tracking map, the details of the device consist of tracking device,
first time seen with you, total tracking time, and total tracking distance. This data will
bring awareness to the users on a detected tracker, and allows a user to add it to the
allowlist or blocklist. A mockup of the device details page is shown in Figure 4.15.

More on this Device

TRACKING DEVICE: Apple Airtag

FIRST SEEN WITH YOU: 9:30am

TOTAL TRACKING TIME:30 mins
TOTAL TRACKING DISTANCE: 1000m

X v

Add to Block List Add to Allow List

Figure 4.15: Device details page of HomeScout App (Mockup)

32 CHAPTER 4. DESIGN

4.5.6 Tracking Alert

The tracking alert page will only be triggered if a threatening tracker is detected. It is
shown in Figure 4.16. Tracking information such as device name and the starting time
will also be displayed. This page works as a warning for users to get informed about the
ongoing tracking and then to further take safety precautions.

BLE Devices Detected
Near you

TRACKING DEVICE: Apple Airtag
FIRST SEEN WITH YOU: 9:30am

Figure 4.16: Tracking alert page of HomeScout App (Mockup)

4.6. EXPERIMENTAL DESIGN 33

4.6 Experimental Design

The performance of the HS application regarding the four application scenarios will be
assessed with real-world experiments. Using the platform specific knowledge obtained dur-
ing the application implementation, several experiments were devised. These experiments
cover all four application scenarios.

The target deployment of the HS application is with regular end-users living under various
different conditions. The app should work not just in a controlled lab environment, but
also in a busy city bus. To account for these circumstances, it was opted to evaluate the
app in a non-lab environment with varying potential interference sources. For this, the
diverse set of trackers made available to us were carried throughout different locations,
for example by going grocery shopping with the trackers in the bag, real-world usage was
closely mimicked.

To gather diverse data samples the data collection was distributed onto all team members.
To collect a data sample, each team member loaded the HS application with the experiment
extension onto the phone used in the experiment and walked outside, depending on the
experiment conditions, with or without trackers. For better reproducibility, the exact
instructions for the experimental setup can be found in section A.2. The experiment
app-extension stores additional metadata in the database. After the data collection step,
the SQLite database was extracted from the phone’s internal storage using the Flutter
development tools respectively Xcode. The experiment logs were then extracted from the
database and preprocessed using an R script. For the analysis all the extracted samples
from multiple phones were pooled into one dataset.

Experiment Questions

The four application scenarios are evaluated using the following questions.

1. Does the Heightened Awareness Mode detect trackers faster than the normal mode?

2. How does the false alarm rate differ for the Heightened Awareness Mode and the
baseline mode?

3. Do blocklisted devices lead to quicker alerts? Do allowlisted devices not trigger
alerts?

4. Do locations designated as safe reduce the alarm rate? Do dangerous locations
increase it?

34 CHAPTER 4. DESIGN

Measures

For most experiments the following measures were recorded:

1. Duration

2. Distance traveled

3. Number of trackers carried

4. Number of BLE scans performed
5. Number of trackers detected

6. Time to first tracker detection

7. Distance to first tracker detection

4.6.1 Experiment 1: Tracker Detection

The goal of this experiment is to assess the performance and detection rates of the HS
application when known trackers are in close proximity. In this experiment, a user carries
one or more trackers in their pocket or bag and travels with the HS application active.
The data for this experiment is collected with the following procedure:

Conditions

1. User puts one or mulitple active trackers in a pocket or bag

2. User loads the HS application

Experiment Round

1. User notes the start time and conditions

2. User activates the experiment mode

3. User activates the HS scanner, either normal or Heightened Awareness Mode
4. User travels around for at least xm and ymin

5. User acknowledges any tracker detection notifications

6. User stops experiment mode

4.6. EXPERIMENTAL DESIGN 35

Measures For this experiment the following measures were recorded:

1. Duration

2. Distance traveled

3. Number of trackers carried

4. Number of BLE scans performed
5. Number of trackers detected

6. Time to first tracker detection

7. Distance to first tracker detection

Detection rate

The detection rate will be estimated with multiple approaches. First, as the ratio of
experiments runs that lead to a tracker notification and those that do not. However, this
measure will be dependent on the experiment run time and distance traveled. Since it
is planned to collect data in different circumstances like a walk in a park or a ride in a
tram, the duration and distances will vary greatly across experiments. This measure will
be called detection_rate_experiment.

Second, as the rate of trackers detected within some reasonable time interval. According to
the used tracker detection algorithm, the minimum number of scans in which a device has
to show up in the Heightened Awareness Mode is 3. For this mode, a detection statistic
could be the ratio of trackers detected at the third scan. This statistic has to be interpreted
carefully, since not every scan is able to pick up the signal of a particular tracker, due
to interference or the tracker not advertising during the scan period. This measure will
be called detection_rate_fast. Alternatively, the numbers of scans can be interpreted
as a time interval, since the scan period is constant. Then another detection statistic
could be the ratio of trackers detected within 15 minutes, given that there was sufficient
movement that would allow such a detection in the first place. This measure will be called
detection_rate_t15m.

4.6.2 Experiment 2: Allowlisting

The goal of this experiment is to check whether a specific device can be added to the
allowlist manually by the user to avoid receiving threat alerts. This experiment will
be performed based on the previous setting and the result of the experiment “Tracker
detection”. The data for this experiment was collected as described on the following page.

36 CHAPTER 4. DESIGN

Conditions

1. The active trackers can be accurately labeled
2. User puts one or multiple active trackers in a pocket or bag

3. User loads the HS application

Experiment Round 1

1. User notes conditions
. User activates the experiment mode
. User activates the HS scanner, either normal or Heightened Awareness Mode

2
3
4. User travels around to get tracker detection notifications
5. User adds the tracker to the allowlist

6

. User stops experiment mode

Experiment Round 2

1. User notes conditions

User activates the experiment mode

User activates the HS scanner

User travels around to get tracker detection notifications

User finds no alerts are shown for devices that were added to the allow list

A A e B

User stops experiment mode

Experiment Round 3

1. User selects allow page from the homepage
User clicks the ‘edit’ icon from the listing page
User deletes the device from the listing page
User notes conditions

User activates the experiment mode

User activates the HS scanner

User travels around to get tracker detection notifications

A B A T

User finds that alerts are again shown for devices that were deleted from the allow
list

4.6. EXPERIMENTAL DESIGN 37

Measures For this experiment the following measures were recorded:

1. Duration

2. Distance traveled

3. Number of trackers detected added to the allow list

4. User finds no alerts for the device that has been added to the allow list

5. User finds alerts for the device that has been deleted from the allow list

4.6.3 Experiment 3: Blocklisting

The goal of this experiment is to check whether a specific device can be added to the
blocklist manually by the user to immediately be notified of it on a repeat detection. This
experiment will be performed based on the previous setting and the result of the experiment
“Tracker detection”. The data for this experiment is collected with the following procedure:

Conditions

1. The active trackers can be accurately labeled
2. User puts one or multiple active trackers in a pocket or bag

3. User loads the HS application

Experiment Round 1

1. User notes conditions

2. User activates the experiment mode

3. User activates the HS scanner, either normal or Heightened Awareness Mode
4. User travels around to get tracker detection notifications

5. User adds the tracker to the blocklist

6. User stops experiment mode

38 CHAPTER 4. DESIGN

Experiment Round 2

1. User notes conditions

2. User activates the experiment mode

3. User activates the HS scanner

4. User travels around to get tracker detection notifications

5. User very quickly is notified of previously blocklisted device having been detected

6. User stops experiment mode

Measures For this experiment the following measures were recorded:

1. Duration
2. Distance traveled
3. Number of trackers detected added to the block list

4. User finds quick notification of previously blocklisted device having been detected

4.6.4 Experiment 4: False alarms

The goal of this experiment is to estimate the false alarm rate of the HS application when
no known trackers are in proximity. In this experiment a user carries no trackers in a
pocket or bag and travels with the HS application active. The data for this experiment is
collected with the same procedure as in section 4.6.1, but under different conditions:

Conditions

1. User does not carry any trackers

2. User loads the HS application

Measures For this experiment the following measures were recorded:

1. Duration
2. Distance traveled
3. Number of BLE scans performed

4. Number of trackers detected

4.6. EXPERIMENTAL DESIGN 39

4.6.5 Experiment 5: Location Designation

The goal of this experiment is to assess the performance of the geofencing component and
to check whether the user is able to designate certain locations as safe or dangerous. The
data for this experiment is collected with the following procedure:

Conditions

1. The active trackers can be accurately labeled
2. User puts one or multiple active trackers in a pocket or bag

3. User loads the HS application

Experiment Round 1

1. User notes conditions

2. User determines a large area that they will remain in for the duration of the
experiment

3. User activates the experiment mode
4. User activates the HS scanner, either normal or Heightened Awareness Mode
5. User travels around while remaining in the area to get tracker detection notifications

6. User stops experiment mode

Experiment Round 2

1. User notes conditions

2. User designates the location they previously chose and remained in as safe or
dangerous in the app

3. User activates the experiment mode
4. User activates the HomeScout scanner

5. User travels around while remaining in the area for approximately the same amount
of time or trackers detected as in the previous experiment

6. User receives less or more alerts respectively than in the previous experiment

7. User stops experiment mode

40 CHAPTER 4. DESIGN

Measures For this experiment the following measures were recorded:

1. Number of trackers detected during experiment round 1
2. Time to first tracker detection during experiment round 1
3. Number of trackers detected during experiment round 2

4. Time to first tracker detection during experiment round 2

Chapter 5

Implementation

5.1 Dependencies

Flutter The HomeScout is implemented using Google’s Flutter framework. The latest
available version at the start of the project was chosen, which was Flutter 3.0.3. Google
releases a new Flutter version approximately every 3 months, where new features are
added and some functionalities are deprecated and removed [61]. Initially, dependency
versions were kept fixed, to not introduce complications through upgrades. At the end of
August 2022, a new version was released: Flutter 3.5.0, which provided some additional
useful functionalities regarding the user interface (UI), specifically the extended Material
Design 3 support. Unfortunately, some features used in the user interface (UI) code was
already deprecated, thus a simple upgrade was not possible and would have required a
rewrite of some of the Ul code.

However, later on in the development process it became tedious to not use the latest
version of Flutter due to Google’s peculiar documentation policies: only the documentation
of the latest Flutter version is published and after each release the old documentation is
deleted from the website. After a while, the documentation became less helpful, because it
was also was not marked if a particular function or parameter was only recently introduced,
which slowed down development a bit. Therefore, in October the Ul components were
rewritten to allow for an upgrade to Flutter 3.3.6. On the plus side, this enabled the use
of some newer Material Design 3 components on the main screen to facilitate the creation
of the labeled buttons with icons.

GPS Flutter itself does not provide any APIs for accessing GPS on smartphones. However,
they publish recommendations called the Flutter Favorite Program® for third-party packages
of high quality for certain use cases. The geolocator plugin® is the recommended way to
access the location APIs on Android and iOS.

"https://docs.flutter.dev/development/packages-and-plugins/favorites
2https://pub.dev/packages/geolocator

41

https://docs.flutter.dev/development/packages-and-plugins/favorites
https://pub.dev/packages/geolocator

42 CHAPTER 5. IMPLEMENTATION

Database For storing persistent data, Flutter recommends two solutions: a library offering
object relational mapping (ORM) on top of SQLite called Drift® and a NoSQL database
called Hive. Since the data model of the HS application fits the relational model nicely and
because SQLite is a well known and very high quality embedded database, the first option,
Drift, was explored initially. On one hand, as an ORM, Drift offers a good integration of
the SQLite database in a Dart application. For this it uses code generation based on the
database models specified directly with Dart code. Thus, it allows for type safe interaction
with the SQLite database. On the other hand, it comes with all the usual complexity
of an ORM and requires a non-negligible development effort to figure out how to query
the models through the ORM APIs. It does however allow one to specify certain queries
directly in SQL, for which it then creates appropriate type-safe glue code. Drift is also a
package designated as a Flutter Favorite.

Bluetooth For the functionality of interacting with the Bluetooth system, there was
unfortunately no package that met the quality standards of the Flutter Favorite Program.
In the package repository* for Dart and Flutter one can find more than twenty packages for
interacting with Bluetooth in various states of abandonment. Since most of these packages
have not been updated in quite some time, they are unusable in a new Flutter codebase.
This is mostly due the rapid changes in Dart and Flutter which renders older software
incompatible quickly. One relatively newer concept in Dart is Null-safety [62]. Variables
designated as null safe can never be assigned a null value. Thus, certain runtime errors
can be avoided since a static analyzer prevents the mixing of nullable and non-nullable
types in newer Dart versions. However, this makes it difficult to interact with older Dart
code which were written with nullable types in their APIs. Most of the Bluetooth packages
were therefore ignored since building upon them would have either required migrating the
package to null safety or disabling the null safety features for the whole application.

The most popular Bluetooth package for Flutter is called flutter_blue. However, it has
been abandoned by the original developer about two years ago and therefore has also not
received any updates and compatibility fixes for newer Flutter versions. Unfortunately, the
original developer did not hand over the package to any new maintainer, with the result
that new issues and patches are filed on a regular basis, almost weekly, to report new bugs
and to fix older bugs. But, since nobody can update the Github project, it appears that
most of the bug reporters or bug-fix contributors are unaware that the package is no longer
maintained. A number of forks have emerged, where each new maintainer declared to
remedy the situation, integrate all new patches and maintain the package moving forwards.
The most healthy of these forks appeared to be the flutter_blue_plus package °.

3https://pub.dev/packages/drift
“https://pub.dev/
Shttps://pub.dev/packages/flutter_blue_plus

https://pub.dev/packages/drift
https://pub.dev/
https://pub.dev/packages/flutter_blue_plus

5.2. DEVELOPMENT WORKFLOW 43

5.2 Development workflow

The source code was hosted in a GitHub repository®. A GitHub action was used for
continuous integration. On a push or pull request to either the master or develop branch,
a static analysis of the source code was performed (also known as linting) using the builtin
tool flutter analyze. This guaranteed that the shared source code was always in a state
that would at least compile. After the linting a small set of unit tests was run, which
verified that the parsing of device data from the BLE system and certain interactions with
the database were always working as intended. The Ul was not tested using unit tests. A
Kanban board hosted on Trello was used to keep track of tasks.

5.3 Android

The primary development target for HS is the Android platform (see subsection 4.1.1).
During development and testing of the scanner component numerous issues specific to
Android showed up.

5.3.1 Background Location Acquisition

The scanner component first tries to acquire the physical location of the device to register
a waypoint and then scans for BLE devices nearby. As specified in the requirements
(subsection 4.1.1) this should be possible to perform in the background. Initially the
workmanager plugin’ was used to run the scanner component independently from the UL
This plugin works by using the WorkManager functionality on the Android platform®.
The acquisition of the GPS location worked at first in the background after obtaining all
required Android permissions for the application. However after some days of testing and
usage in the background, the execution of the scanner component suddenly stopped without
any exception thrown at the Dart/Flutter level. This posed some difficulties for two reasons,
first code executed with the workmanager is unreliable to debug in AndroidStudio, because
execution seemed to no stop reliably at breakpoints for unknown reasons. It is not clear
whether this is a fundamental limitation, a bug in the used Flutter/Android/AndroidStudio
combination or whether certain additional Android/Flutter API calls are needed to facilitate
debugging in this case. These complications might be related to the fact that code executed
within workmanager runs in a separate Dart engine with no direct way to communicate
with the main application code which runs in the Flutter UI engine. A second issue is that
Android limits the execution in the background using workmanager to at most once every
15 minutes, but the timing is not guaranteed, thus the code might be necessarily executed
exactly every 15 minutes. Thus, investigating the issue of no longer working GPS location
acquisition was very tedious.

Shttps://github.com/home-scout-project/app
"https://pub.dev/packages/workmanager
8https://developer.android.com/topic/libraries/architecture/workmanager

https://github.com/home-scout-project/app
https://pub.dev/packages/workmanager
https://developer.android.com/topic/libraries/architecture/workmanager

44 CHAPTER 5. IMPLEMENTATION

It turned out that there are multiple power-saving modes on Android some from stock
Android and others specific to the respective smartphone manufacturer. Depending on the
particular smartphone these modes are called “Optimize battery usage”, “Auto optimize
daily” or “Adaptive battery”. When one of these modes was activated for the HomeScout
application, the background execution was suddenly limited or completely halted. These
power-saving modes would simply block the application during acquisition of the GPS
location until the application returned to the foreground again. The issue with these
modes is that they can kick in without any notification to the user, based on some heuristic
which is dependent on the phone manufacturer. It is apparently not possible to ask for
exceptions with code similar to Android’s permission system. Whether the occurrence of
this can be detected by the application itself was not investigated. To resolve the issue, the
HomeScout application had to be manually exempted from these power-saving modes in
the Android system settings. This appears to be a common issue for background execution
in Android phones from different manufacturers®.

As an additional resolution for difficult to diagnose issues in the scanner component,
the background execution was switched from using the workmanager to using flut-
ter_foreground_task'®. On Android, compared to workmanager, where a specific function
which is scheduled to run in the background, is executed in a different process, flut-
ter_foreground_task allows to run specific Dart functions within the same Dart engine,
but in a different Dart isolate. A Dart isolate allows the single threaded execution of a
piece of Dart code which shares no mutable state with other isolates. Message passing
allows communication between different Dart isolates [63]. The advantage of using flut-
ter_foreground_task is that it allows to schedule recurring tasks at any interval, compared
to the 15 minutes limit of workmanager. The disadvantage is that the recurring task is
essentially running in the HomeScout application process, thus if the application is closed
then the scanning stops as well. Initially this type of background execution was planned
only for the use of the Heightened Awareness Mode which tries to scan more aggressively
than possible with the workmanager, but after discovering the issues mentioned above, the
Normal Mode also uses the flutter_foreground_task.

A hybrid of both execution modes was considered and the implementation of HomeScout
allows running the scanner with both modes by setting a specific flag in the code. However
this combination has additional drawbacks because it hits another set of limitations from
Android. Starting with version 8 (API level 26) the acquisition of a GPS location is limited
to “[...] only a few times each hour”, the precise numerical limits are not public [64]. Thus
when scanning at a certain frequency the request for the GPS locations are occasionally
paused.

https://issuetracker.google.com/issues/122098785
DOhttps://pub.dev/packages/flutter_foreground_task

https://issuetracker.google.com/issues/122098785
https://pub.dev/packages/flutter_foreground_task

5.3. ANDROID 45

5.3.2 Background Bluetooth Scanning

Another major issue on Android was the scanning for Bluetooth devices in the background
with either of the two methods as described in the previous section. After the scanning
component was implemented in the Ul Dart isolate and working at the press of a button,
the calls to this component were moved into the background. However this did not simply
work out of the box. This appeared to be a frequently raised, but still unsolved issue
in both the original flutter_blue'' as well as the newer fork flutter_blue_plus'?. Upon
closer inspection it was discovered that there is another limitation from the Android
power-management system that results in the suspension of execution when scanning for
Bluetooth devices in the background and when the device screen is off, which resumes
after the application returns into the foreground. However, at that point, the Bluetooth
subsystem returns data to the Dart plugin after it has already closed certain resource
handles and the scan results do not necessarily reach the Flutter application anymore.
Similar to the issue with the GPS location request in the background, the Bluethooth
scan with screen off does not lead to an exception or similar notice, instead the whole
Flutter engine appears to be just paused. Here, the limitation is that recent Android
versions disallow an unfiltered Bluetooth scan in the background, presumably to save
power. To receive Bluetooth scan results in the background, a ScanFilter has to be used
from Android’s BLE API [65]. With a ScanFilter the BLE subsystem only returns those
scan results to the Flutter application, that match the filter. Results can be filtered for
names, Service UUIDs, MAC addresses or some other fields.

Although the flutter plugin used for the Bluetooth functionality (flutter_blue_plus) did
provide support to filter for known MAC addresses and for Service UUIDs, it allows only
one type of filter at the same time. For the use case of HomeScout, multiple types of
ScanFilters are essential, using a MAC address it would be possible to look for previously
seen devices however this way new devices could only be detected when the screen is
on. Alternatively with a ScanFilter on Service UUIDs the Tile (subsection 3.2.2) and
Samsung SmartTag (subsection 3.2.4) trackers could be detected. To allow detection of
these two trackers in the background, the source code of the flutter_blue_plus plugin had
to be patched. The changes that fixes this bug and allows for setting multiple ScanFilter
types at the same time was contributed back to the open source community with a pull
request'®. However, at the time of writing the maintainer of the plugin has not yet resumed
activity and thus neither integrated nor interacted in any way with the pull request. Thus
the HomeScout application uses the forked version of the flutter_blue_plus plugin.

Unlike the Tile or Samsung SmartTag devices, which publish information about their
kind through Service UUIDs, an AirTag can only be identified through the Manufacturer
Data field (see subsection 3.2.3). Unfortunately, flutter_blue_plus did not expose any
API to enable a ScanFilter on the Manufacturer Data. Therefore another patch for the
flutter_blue_plus plugin was developed. Unlike the first patch, which only dealt with a bug
in the Dart code, the changes for the Manufacturer Data required modifications in the
Dart interface, the Java implementation and the serialization between the two languages

Hgee issues: #113, #140, #663, #900, #1070 and #1112 in flutter_blue
1250e issues: #26, #74 and #167 in flutter_blue_plus
Bhttps://github. com/boskokg/flutter_blue_plus/pull/173

https://github.com/boskokg/flutter_blue_plus/pull/173

46 CHAPTER 5. IMPLEMENTATION

using Protocol Buffers'*. These changes were again contributed back to the open source
plugin with a pull request'®. With this patch it is possible to enable a ScanFilter for
devices manufactured by Apple which are part of the Find My network, by setting a byte
mask to the appropriate values on the Manufacturer Data field. As with the first patch,
these changes have not been reviewed nor integrated by the maintainer of the plugin.

5.4 1i0S

Although i0S was not the primary target as specified in the requirements (subsection 4.1.1),
the HomeScout application was also developed to work for iOS. For the most part, only
smaller fixes were needed to get certain things working for iOS. A handful of errors only
manifested themselves in release builds, but not in debug builds. As such, they were
particularly hard to debug. Most of these errors originated from issues with isolates.

Due to limitations imposed by i0S, flutter_foreground_task was not in practice able to
reliably perform background tasks. While it was more robust using the workmanager
plugin, as the overall experience with flutter_foreground_task was preferable, as well as
because of the benefits of using a unified system across systems, it was decided to use
flutter_foreground_task on iOS as well. However, as previously mentioned, workmaneger
still remains included in the application, behind a flag.

5.5 Application Scenario Parameters

5.5.1 Location Designation

As described in section 4.2.3, we introduce the concept of saving certain locations as either
safe or dangerous. This data is then taken into account during threat detection, i.e. being
in a safe location generally reduces the threat likelihood, whereas being in an dangerous
one increases it. The exact parameters are as follows: Safe locations are used in the threat
assessment to immediately classify a tracker as a non-threat, if a tracker is detected while
a user is in a safe location and in normal mode. If a user is in a dangerous area, the
threshold values needed to classify a device as a threat are lowered, i.e. a device is more
quickly classified as a threat. In heightened awareness mode, if a user is in a dangerous
location, it too lowers the threshold values for a device to be considered a threat.

Yhttps://developers.google.com/protocol-buffers/
https://github. com/boskokg/flutter_blue_plus/pull/195

https://developers.google.com/protocol-buffers/
https://github.com/boskokg/flutter_blue_plus/pull/195

5.5. APPLICATION SCENARIO PARAMETERS 47

5.5.2 Device Block- and Allowlisting

Section 4.2.4 described the ability to mark devices as being familiar or unknown, or in
more technical terms to allowlist or blocklist a device. This information is then taken
into account by the threat classification algorithm. In the normal running mode, if an
allowlisted tracker is detected it is immediately classified as a non-threat. In heightened
awareness mode however, even allowlisted devices are not immediately discounted from
being a threat, but must go through the rest of the checks as well.

A blocklisted device in heightened awareness mode will lead to a device immediately being
classified as a threat on a subsequent detection. In normal running mode it will not do so
immediately, but it does increase the likelihood of it being classified as a threat.

48

CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

To perform the experiments, a special experiment mode was added to the HomeScout
application. In this mode the threat analysis component only considers data gathered
within the experiment’s lifetime. This allows for efficient data collection under various
conditions. As described in detail in section 4.6, for each experiment run, the experiment
mode was enabled prior to enabling the scanner. The first scan performed is therefore
performed at ty. The experiments were conducted with multiple smartphones and different
numbers and types of trackers. Prior to the analysis, the data from each smartphone was
pooled into one dataset. The data was filtered for experiments which contained at least
two scans, which removes spurious data where the experiment toggle button was activated
only briefly without the intention to actually perform an experiment.

6.1 Experiment 1: Tracker Detection

For the first experiment, we collected 21 data traces in the Heightened Awareness Mode
and 7 in the Normal Mode. Descriptive statistics about the data collected in each mode is
shown in Table 6.1 and Table 6.2. On average, a potentially malicious BLE tracker was
detected after 4.75 minutes in the Heightened Awareness Mode compared to 60.5 minutes
in the Normal Mode.

Table 6.1: Descriptive statistics for runs in Heightened Awareness Mode (N = 21)

Statistic Mean St. Dev. Min Max
Duration [min] 124 9.9 3.5 36.6
Number of BLE scans performed 10.8 10.0 3 35

Time to first tracker detection [s] 285.2 211.8 13 737
Distance to first tracker detection [m] 229.0 160.7 110 658
Average Nr. of Devices observed per scan 16.0 24.2 0.8 86.4
Average Nr. Trackers observed per scan 2.3 1.2 0.8 5.8
Average Nr. Threats observed per scan 3.4 6.5 0.0 29.6

49

90 CHAPTER 6. EVALUATION

Table 6.2: Descriptive statistics for runs in Normal Mode (N = 7)

Statistic Mean St. Dev. Min Max
Duration [min] 113.3 59.9 19.1 191.2
Number of BLE scans performed 8.4 2.4 6 13
Time to first tracker detection [s] 3,631.6 2,970.6 1,015 9918
Distance to first tracker detection [m)] 1,537.6 1,171.4 138 3,472
Average Nr. of Devices observed per scan 13.2 9.0 6.3 31.4
Average Nr. Trackers observed per scan 2.0 1.1 0.9 3.8
Average Nr. Threats observed per scan 1.4 1.0 0.2 3.2

6.1.1 Detection Rate

Several measures have been computed for the estimation of the detection rate, which are
shown in Table 6.3. The first statistic is (detection_rate_experiment), which measures
the ratio of experiments that ended up in an alert for a tracker versus those that did not.
It is very high for both modes, but this result is heavily dependent on the duration of each
experiment. The longer an experiment took, the higher the probability that a tracker can
be detected over the whole length of the experiment.

Table 6.3: Detection rate estimates for both scan modes

Statistic Normal Mode Heightened Awareness Mode
detection_rate_experiment 0.58 0.80
detection_rate_fast 0.34 0.5
detection_rate_t15m [s] - 0.76

The second statistic (detection_rate_fast), measures the ratio of experiments that
detected a tracker within the shortest possible time, given the specific detection parameters
used in the tracker detection algorithm. Only a small fraction of the experiment runs in
the Heightened Awareness Mode resulted in the fastest possible detection at the third scan.
Most of the detections occurred on the fourth scan as can be seen in Figure 6.1, which
shows a histogram of the number of scans performed before the tracker was detected. In
the Normal Mode no tracker was detected at this threshold, which is expected since as
seen with the Heightened Awareness Mode, not every scan discovers all carried devices
and usually at least four scans are required. Furthermore the sample size in the Normal
Mode is lower, thus if more data would be collected, this detection rate would presumably
be non-zero.

The third statistic (detection_rate_t15m), is closely related to the second one, but with
the unit of time instead of number of scans. Also, the threshold is more relaxed compared
to detection_rate_fast. Since the Normal Mode has a scan interval of 15 minutes, this
statistics cannot be computed for that mode. For the Heightened Awareness Mode the
results show that a potentially malicious BLE tracker is detected within 15 minutes in
89% of the experiments.

6.1. EXPERIMENT 1: TRACKER DETECTION o1

20~

15-

Count
.
>

.. B Hﬂ

10 20 30
Scans until detection

Figure 6.1: Distribution of required scans to detect a tracker

6.1.2 Tracker Differences

Depending on the availability, the experiment runs were carried out with multiple trackers
at the same time. This allows to compare the detection rates for different trackers. For
the Heightened Awareness Mode the number of detected devices for each device type per
experiment run are shown in Figure 6.2. Since at most only one device of each device
type was carried during the experiment, it can be assumed for some device types, that the
additionally detected devices are false positives. Particularly for the Tile trackers, this
allows for the estimation of false positive rate, since their MAC address does not change,
unlike the AirTags or SmartTags. For these devices additional detections might be a false
positive or simply the same tracker detected multiple times, by observing it during the
MAC randomization cycle.

52 CHAPTER 6. EVALUATION

Detected devices per experiment

° °
4-
°
2-
(]
AppleléindMy SamsungISmartTag Tille

Device type

Figure 6.2: Distribution of number of detected devices per device type for all experiments

With the simplifying assumption that all additionally detected unique MAC addresses
were not the ones carried during the experiment. An estimation of the false alarm rate
can be made. In Table 6.4 a false alarm rate was computed as the rate of experiments
with extra devices detected to the number of total experiments for each device type and
scan mode.

The false alarm rate is the highest for devices identified as participating in the Apple Find
My network, presumably AirTags, which can also be seen in Figure 6.2. This might be
due to the popularity of AirTags compared to the other device types, in that there are
simply more of the Bluetooth trackers used by the general public.

Table 6.4: Detection rate estimates

Scan Mode Device Type Number of experiments False Alarm ratio
HA AppleFindMy 10 0.50
HA SamsungSmartTag 8 0.25
HA Tile 16 0.00
Normal AppleFindMy 2 0.00

Normal Tile 4 0.25

6.1. EXPERIMENT 1: TRACKER DETECTION 23

Another interesting insight is that the Samsung SmartTag was not detected in the Normal
Mode. Tt was hypothesized that this might be due to MAC address randomization at a faster
interval than the scan interval of the Normal Mode. This behaviour has previously been
reported with an interval of approximately 15 minutes for certain BLE advertisement data
such as the Samsung specific Agin Counter, Privacy ID and Signature fields [66]. However
the exact MAC address rotation for Samsung SmartTags depends on the separation state
and separation duration, allegedly it is however similar to the behaviour of AirTags [66].

@ Device type FJ Samsung SmartTag Tile E=J Apple FindMy
3

o5 250+

o

o

¥ 200+

e

2

> 1501

[

2

GE) 100 m

o

8

o 501 .

5 s

9 g —edeath __shelem
% Samsung SmartTag Tile Apple FindMy
p

Device type

Figure 6.3: Distribution of number of observations per device address

From collected data of the experiments described in this report, the behaviour of the
Samsung SmartTags can be further investigated. In Figure 6.3, the distribution of the
number of waypoints at which a particular device was observed, identified by its MAC
address, across multiple experiments was plotted. For the Tile trackers, the two outlier
data points represent the two Tile trackers used in this work. Because they do not change
their MAC address, their identification is trivial.

If Samsung SmartTags change their MAC address at a frequency of 15 minutes, then
no device should be detected for a longer period. This can be observed in Figure 6.4,
which shows the distribution of the number of observations at a distinct waypoint for
each observed unique device. For better visibility the histogram was split into two figures,
where the first one (Figure 6.4a) shows only devices which have been observed for at
most 15 waypoints, the second (Figure 6.4b) shows devices which were observed for more
waypoints. In the Heightened Awareness Mode a waypoint occurs at approximately every
minute, thus the horizontal axis can be interpreted as the duration in minutes over which
a particular device has been observed. From Figure 6.4a it is apparent, that no Samsung
SmartTag was observed for more than 15 minutes.

o4 CHAPTER 6. EVALUATION

Device type Apple FindMy III Samsung SmartTag | || Tile Device type Apple FindMy III Tile
34 '
750 ! !
| :
[21 1
l 1
€ 500 ! € !
> >
o L o !
© | © \
I 14 1
250 ; !
| :
0 H | : [} n - - - - -— - - 0 :
5 10 50 100 150 200 250
Number of observed waypoints per device Number of observed waypoints per device
(a) Number of observed waypoints < 15 (b) Number of observed waypoints > 15

Figure 6.4: Distribution of number of observations per device address

The rotation of the MAC address is supposedly recommended in the Bluetooth Core
Specification [28] to prevent tracking of a BLE device [67]. Conversely, Samsung’s com-
pliance with this recommendation for their SmartTag products leads to increased risks
from malicious usage of these trackers. As discussed in subsection 5.3.1, this is relevant
especially for Android smartphones, where the usual background scanning is limited to 15
minutes [64]. Other anti-tracking solutions such as AirGuard, which use the WorkManager
from Android, are also limited to the 15 minuute scan interval [12].

6.2. EXPERIMENT 2: ALLOWLISTING 5}

6.2 Experiment 2: Allowlisting

The second experiment provides data on the performance of the allowlist of HomeScout
application. Allow list is a dynamic library that can add the specific device manually by
the user to avoid ominous messages. The experiment was run three times with several
trackers to validate the functionality of the allowlist. In all three runs, the user found no
alerts as the trackers were no longer detected, once the trackers were added to the allowlist.
This indicates that the allowlist was effectively ignored trackers that had already been
added. After being once again removed from the allowlist, one tracker continued to not
show alerts.In two out of three experiment runs, the user found alerts for the device that
have been deleted successfully, however, further analysis is needed to determine the cause
of the false negative.

Table 6.5: Experiment 2: Allowlisting

Duration(s) Distance(m) Number of track- User finds no User finds
ers added to the alerts for al- alerts for device
allowlist lowlisted device deleted from the

(Y/N) allow list (Y/N)

1320 1846 6 Y Y

732 1040 4 Y N

505 717 3 Y Y

6.3 Experiment 3: Blocklisting

The third experiment is similar to the previous one, which also consists of three trials
performed with multiple trackers. The block list is also a dynamic library but it enables
users to add devices that expecting having more alerts. The first and the second column
represents the time and the distance taken for each trial, and the third column records
the number of trackers added to the block list with an average of 4 trackers added per
experiment approximately. And the last column presents the outcome of whether the
user received a quick notification upon detecting previously blocklisted devices. Across all
trackers and trials, trackers were more quickly classified as a threat after being added to
the blocklist.

Table 6.6: Experiment 3: Blocklisting

Duration(s) Distance(m) Number of track- User finds quick alerts of
ers added to the previously blocklisted device

block list having been detected(Y/N)
47 1060) Y
672 940 3 Y

702 985 4 Y

96 CHAPTER 6. EVALUATION

6.4 Experiment 4: False alarms

This experiment studied the false alarm rate of the HomeScout application when there is
no known trackers are in proximity. The quantitative data was collected, involved in three
trials, and the result of each trial contains three variables: duration, distance, the number
of BLE scans performed in total and the number of false alarms received. Across all trials,
users get alerts without taking any trackers themselves. It is worth raising concerns that
false alarms can have crucial an impact on the reliability of the tracking device as it may
lead to unnecessary interruption for users which will be considered annoying or disruptive
when using the application.

Table 6.7: Experiment 4: False alarms

Duration(s) Distance(m) Number of BLE Number of false
scans performed alarms received

347 485 4 1

586 832 10 2

457 650 8 2

6.5 Experiment 5: Location Designation

The last experiment aims to access the efficacy of the geofencing component in tracking
devices and to examine the users’ability to designate specific locations as either safe or
unsafe depending on the high or low risk of being tracked. The experiment consists of
two rounds for each trial, with data collected in terms of location label, time to tracker
detected and the number of the trackers detected in the first and second round.

In the first trial, the time taken to detect the same amount of trackers in Unsafe location
were faster than the location was designated as Unsafe. The second and the third trial
were showing the opposite, which is the time taken to detect the same number of trackers
in Safe location is longer than before the location was designated as Safe. Therefore, the
result indicates that the users are able to designate certain locations as high or low risk of
being tracked.

Table 6.8: Experiment 5: Location designation

Location La- Time to track- Number of first Time to track- Number of track-

bel(Safe or ers detected dur- tracker detection ers detected dur- ers detected dur-

Unsafe) ing experiment during experi- ing experiment ing experiment
round 1(s) ment round 1 round 2(s) round 2

Unsafe 720 2 580 2

Safe 467 1 47 0

Safe 641 1 966 1

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this paper it was examined, how BLE devices can be used beyond their originally
designed purpose of tracking lost items. Previous work demonstrates, how smart trackers
can be utilized as crowd-sensing devices and the limitations of products utilizing different
platforms have also been discussed, which leads to raising awareness of such possibilities
to design an extensible modular application that operates across multiple platforms.

In consequence, this paper proceeded to introduce HomeScout, a cross-platform, smartphone-
based BLE counter-surveillance solution. The purpose of HS is to provide users with a
reliable and effective way of detecting potential malicious tracking from nearby Bluetooth
trackers. To achieve this goal, the tracker detection and classification algorithm was
improved and implemented into HS. The algorithm was based on four use-case scenarios
that provide users with a better understanding of interacting with the system and raising
concerns about potential threats. Throughout the design and development phase, the limi-
tations of a smartphone application were considered and tested in a series of experiments.
To measure the performance outcome of the algorithm, a validation dataset was collected
and analyzed for later evaluation. The results of this evaluation analysis showcased that
HS is considered to be effective in detecting potential threats, as it provides users with
actionable alerts whether the tracking device is assumed as dangerous or non-dangerous.

The HS application improves upon existing alternative solution in multiple ways. First,
it considers four tracking scenarios, with modifiable thresholds to adapt to each of them
differently, whereas other anti-tracking solutions provide only a ,one size fits all threshold.
Second, it offers the technical framework to perform scans at any time interval, by using
all available APIs offered by the Flutter platform, whereas other solutions are limited
to at most 15 minutes intervals. Third, it provides a special experiment mode, which
allows easy collection of real-world data in the field, next to providing protection from
trackers. And fourth, it fixes and extends the capabilities of the Flutter BLE driver plugin,
allowing scanning in the background as well as more efficient scanning overall, by filtering
for potentially malicious devices at the BLE driver level directly, without having to process
all available devices in user space.

o7

58 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2 Future Work

The current implementation of HS serves as a proof-of-concept, drawing on the research
outcomes of related papers. It solves the purpose of performing quick detections across
different platforms through the use of an advanced device detection and classification
algorithm. However, it should be noted that the current development is not completed
and does not include all the features that a such a system could possess.

In the future, the design of HS could aim to enhance its functionality and provide a more
comprehensive experience for users. For instance, the integration of a map to show tracker
detections, marked locations and more. Future iterations of the work could prioritize
the incorporation of increased customization options to better meet individual needs.
Additionally, an effort could be made to improve compatibility with a wider range of
devices and platforms. In particular, the limitations imposed by tracker manufacturers
such as MAC randomization, would be of interest. While HS did a first step in designing,
refining and testing certain parameters and algorithmic flows, this could be further refined
through large-scale tests and feedback from users. Lastly, additional use-case scenarios
could be conceptualized and implemented, to further cover the situations in which users
might need an application such as HomeScout.

Two specific avenues for future investigations are some sort of heuristic device matching,
which tries to match different observed MAC addresses to the same physical device, when
it undergoes MAC address randomization. In the case of the Samsung SmartTag the
device identifier as advertised in the service data rotates not at the same time as the MAC
address, thus at least two consecutive MAC addresses could be tied to the same device.
Then, depending on the occurrences of other devices, certain guesses could be made that
two MAC addresses are in fact the same device if they are non-overlapping in time, but
observed at the same rate from the moving user of HS.

Another interesting avenue, would be to use the information contained in the RSSI to
create a device type specific metric to estimate the actual distance of the device to the
smartphone. It might be possible to calibrate such a metric for a range of devices and
thus improve the device distance traveled measure.

Bibliography

[1] Asset Infinity, “Reasons why you should choose ble asset tracking over rfid

2]

3]

[4]

[10]

[11]

asset tracking,” Sep 2022. [Online]. Available: https://www.assetinfinity.com/blog/
why-choose-ble-asset-tracking-over-rfid-asset-tracking

“Ble asset tracking - what you need to know - bluetooth ble tags,” Jan 2023. [Online].
Available: https://radiantrfid.com/blog/ble-asset-tracking-what-you-need-to-know /

IEEE, IEEE Standard for Local and Metropolitan Area Networks: Qverview and
Architecture, 2002.

N. Mitro, M. Krommyda, and A. Amditis, “Smart tags: lot sensors for monitoring
the micro-climate of cultural heritage monuments,” Applied Sciences, vol. 12, no. 5,
2022. [Online|. Available: https://www.mdpi.com/2076-3417/12/5/2315

R. Mac and K. Hill, “Are apple airtags being used to track people and steal cars?”
Dec 2021. [Online|. Available: https://www.nytimes.com/2021/12/30/technology/
apple-airtags-tracking-stalking.html

K. Hill and P. T. Heisler, “I used apple airtags, tiles and a gps
tracker to watch my husband’s every move,” Feb 2022. [Online]. Available:
https://www.nytimes.com/2022/02/11/technology /airtags-gps-surveillance.html

M. Allison, “Apple’s airtags keep being tagged in domestic abuse
cases,” Apr 2022. [Online]. Available: https://www.digitaltrends.com/mobile/
apple-airtag-domestic-abuse-police-reports/

A. Heinrich, M. Stute, T. Kornhuber, and M. Hollick, “Who can find my devices?
security and privacy of apple’s crowd-sourced bluetooth location tracking system,”
Proceedings on Privacy Enhancing Technologies, vol. 2021, pp. 227-245, 07 2021.

Chipolo, “Chipolo one spot: How it works,” 2022. [Online]. Available:
https://chipolo.net/en/blogs/chipolo-one-spot-how-it-works

A. Johnson, “The search is over: Smart trackers from apple, samsung, and tile
compared,” Jul 2021. [Online]. Available: https://www.theverge.com/22570161/
apple-airtag-samsung-smarttag-tile-pro-bluetooth-tracker-review-test-comparison

K. Balasaygun, “The biggest risks of using bluetooth trackers like apple
airtag, tile,” Jan 2023. [Online]. Available: https://www.cnbc.com/2023/01/14/
the-biggest-security-pros-and-cons-of-using-bluetooth-gps-trackers.html

39

https://www.assetinfinity.com/blog/why-choose-ble-asset-tracking-over-rfid-asset-tracking
https://www.assetinfinity.com/blog/why-choose-ble-asset-tracking-over-rfid-asset-tracking
https://radiantrfid.com/blog/ble-asset-tracking-what-you-need-to-know/
https://www.mdpi.com/2076-3417/12/5/2315
https://www.nytimes.com/2021/12/30/technology/apple-airtags-tracking-stalking.html
https://www.nytimes.com/2021/12/30/technology/apple-airtags-tracking-stalking.html
https://www.nytimes.com/2022/02/11/technology/airtags-gps-surveillance.html
https://www.digitaltrends.com/mobile/apple-airtag-domestic-abuse-police-reports/
https://www.digitaltrends.com/mobile/apple-airtag-domestic-abuse-police-reports/
https://chipolo.net/en/blogs/chipolo-one-spot-how-it-works
https://www.theverge.com/22570161/apple-airtag-samsung-smarttag-tile-pro-bluetooth-tracker-review-test-comparison
https://www.theverge.com/22570161/apple-airtag-samsung-smarttag-tile-pro-bluetooth-tracker-review-test-comparison
https://www.cnbc.com/2023/01/14/the-biggest-security-pros-and-cons-of-using-bluetooth-gps-trackers.html
https://www.cnbc.com/2023/01/14/the-biggest-security-pros-and-cons-of-using-bluetooth-gps-trackers.html

60

[12]

[13]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

A. Heinrich, N. Bittner, and M. Hollick, “Airguard-protecting android users from
stalking attacks by apple find my devices,” in Proceedings of the 15th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, 2022, pp. 26-38.

A. Ozer and E. John, “Improving the accuracy of bluetooth low energy indoor
positioning system using kalman filtering,” in 2016 International Conference on
Computational Science and Computational Intelligence (CSCI), 2016, pp. 180-185.

D. Chen, K. G. Shin, Y. Jiang, and K.-H. Kim, “Locating and tracking ble beacons
with smartphones,” in Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies, ser. CONEXT ’'17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 263-275. [Online]. Available:
https://doi.org/10.1145/3143361.3143385

Y.-J. Lin, H.-S. Chen, and M.-J. Su, “A cloud based bluetooth low energy tracking
system for dementia patients,” in 2015 Fighth International Conference on Mobile
Computing and Ubiquitous Networking (ICMU), 2015, pp. 88-89.

J. Kolakowski, V. Djaja-Josko, M. Kolakowski, and K. Broczek, “Uwb/ble tracking
system for elderly people monitoring,” Sensors, vol. 20, no. 6, 2020. [Online].
Available: https://www.mdpi.com/1424-8220/20/6/1574

A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra, “Uncovering privacy
leakage in ble network traffic of wearable fitness trackers,” in Proceedings of the
17th International Workshop on Mobile Computing Systems and Applications, ser.
HotMobile 16. New York, NY, USA: Association for Computing Machinery, 2016,
p. 99-104. [Online]. Available: https://doi.org/10.1145/2873587.2873594

H. Givehchian, N. Bhaskar, E. R. Herrera, H. R. L. Soto, C. Dameff, D. Bharadia,
and A. Schulman, “Evaluating physical-layer ble location tracking attacks on mobile
devices,” in 2022 IEEE Symposium on Security and Privacy (SP), 2022, pp. 1690-1704.

L. Tonetto, A. Carrara, A. Y. Ding, and J. Ott, “Where is my tag? unveiling alternative
uses of the apple findmy service,” in 2022 IEEE 23rd International Symposium on a
World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2022, pp. 396-405.

A. Heinrich, M. Stute, T. Kornhuber, and M. Hollick, “Who Can Find My Devices?
Security and Privacy of Apple’s Crowd-Sourced Bluetooth Location Tracking System,”
Mar. 2021.

A. Heinrich, M. Stute, and M. Hollick, “Openhaystack: A framework for tracking
personal bluetooth devices via apple’s massive find my network,” in Proceedings of
the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks,
ser. WiSec 21. New York, NY, USA: Association for Computing Machinery, 2021, p.
374-376. [Online|. Available: https://doi.org/10.1145/3448300.3468251

J. Martin, D. Alpuche, K. Bodeman, L. Brown, E. Fenske, L. Foppe, T. Mayberry,
E. Rye, B. Sipes, and S. Teplov, “Handoff all your privacy — a review of apple’s blue-

tooth low energy continuity protocol,” Proceedings on Privacy Enhancing Technologies,
vol. 2019, pp. 34-53, 10 2019.

https://doi.org/10.1145/3143361.3143385
https://www.mdpi.com/1424-8220/20/6/1574
https://doi.org/10.1145/2873587.2873594
https://doi.org/10.1145/3448300.3468251

BIBLIOGRAPHY 61

[23]

[26]

[35]

T. Mayberry, E. Fenske, D. Brown, J. Martin, C. Fossaceca, E. C. Rye, S. Teplov,
and L. Foppe, “Who tracks the trackers? circumventing apple’s anti-tracking
alerts in the find my network,” in Proceedings of the 20th Workshop on Workshop
on Privacy in the FElectronic Society, ser. WPES ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 181-186. [Online]. Available:
https://doi.org/10.1145/3463676.3485616

T. Mayberry, E.-O. Blass, and E. Fenske, “Blind my - an improved cryptographic
protocol to prevent stalking in apple’s find my network,” Proceedings on Privacy
Enhancing Technologies, vol. 2023, no. 1, pp. 85-97, 2023.

M. Weller, J. Classen, F. Ullrich, D. Wafimann, and E. Tews, “Lost and found:
Stopping bluetooth finders from leaking private information,” in Proceedings of the
13th ACM Conference on Security and Privacy in Wireless and Mobile Networks.
Linz Austria: ACM, Jul. 2020, pp. 184-194.

C. Garg, A. Machiry, A. Continella, C. Kruegel, and G. Vigna, “Toward a secure
crowdsourced location tracking system,” in Proceedings of the 14th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, ser. WiSec '21. New
York, NY, USA: Association for Computing Machinery, 2021, p. 311-322. [Online].
Available: https://doi.org/10.1145/3448300.3467821

J. Briggs and C. Geeng, “Ble-doubt: Smartphone-based detection of malicious blue-
tooth trackers,” in 2022 IEEE Security and Privacy Workshops (SPW), 2022, pp.
208-214.

Bluetooth Core Specification, Bluetooth SIG, 2019, rev. 5.2.

A. Catley, “Apple AirTag Reverse Engineering,” https://adamcatley.com/AirTag.html,
2022.

T. Roth, F. Freyer, M. Hollick, and J. Classen, “AirTag of the Clones: Shenanigans
with Liberated Item Finders,” in 2022 IEEE Security and Privacy Workshops (SPW).
San Francisco, CA, USA: IEEE, May 2022, pp. 301-311.

M. Woolley, “The Bluetooth®) Low Energy Primer,” Tech. Rep., 2022.
A. Tanenbaum, Computer Networks, 3rd ed. Pearson Prentice Hall, 1996.

F. Forno, G. Malnati, and G. Portelli, “Design and implementation of a Bluetooth ad
hoc network for indoor positioning,” IFE Proceedings - Software, vol. 152, no. 5, p.
223, 2005.

D. Schwarz, M. Schwarz, J. Stiickler, and S. Behnke, “Cosero, Find My Keys! Object
Localization and Retrieval Using Bluetooth Low Energy Tags,” in RoboCup 2014:
Robot World Cup XVIII, R. A. C. Bianchi, H. L. Akin, S. Ramamoorthy, and
K. Sugiura, Eds. Cham: Springer International Publishing, 2015, vol. 8992, pp.
195-206.

N. Lomas, “Tile Wants You To Stop Losing Important Stuff With Its Bluetooth Tags
Plus App Combo,” 2013. [Online]. Available: https://techcrunch.com/2013/06/20/
tile/

https://doi.org/10.1145/3463676.3485616
https://doi.org/10.1145/3448300.3467821
https://techcrunch.com/2013/06/20/tile/
https://techcrunch.com/2013/06/20/tile/

62 BIBLIOGRAPHY

[36) Amazon, “Echo, Tile, and Level devices join Amazon Sidewalk,”
2021. [Online]. Available: https://www.aboutamazon.com/news/devices/
echo-tile-and-level-devices-join-amazon-sidewalk

[37] Apple, “Apple introduces airtag,” Apple, 2021. [Online]. Available: https:
//www.apple.com/newsroom/2021/04 /apple-introduces-airtag/

[38] Assigned Numbers, Bluetooth SIG, 2023.
[39] Supplement to the Bluetooth Core Specification, Bluetooth SIG, 2021, rev. 10.

[40] Samsung, “[Update] Introducing the New Galaxy SmartTag+: The Smart Way
to Find Lost Items,” 2021. [Online]. Available: https://news.samsung.com/us/
introducing-the-new-galaxy-smarttag-plus/

[41] B. K, “Samsung galaxy smarttag+ to use ar to visually locate your
missing items,” Apr 2021. [Online|. Available: https://www.techradar.com/news/
samsung-galaxy-smarttag-to-use-ar-to-visually-locate-your-missing-items

[42] Samsung, “Samsung SmartThings Find Hits New Milestone With 200 Million Nodes
Helping Find Lost Devices,” 2022. [Online]. Available: https://news.samsung.com/us/
smartthings-find-milestone-nodes-devices/

[43] D. Thomas, “How to enable offline finding on your galaxy
so you can locate your phone in airplane = mode,” Dec
2020. [Online]. Available: https://android.gadgethacks.com /how-to/

enable-offline-finding-your-galaxy-so-you-can-locate-your-phone-airplane-mode-0384159 /

[44] H. Jin, “Who tracks who? an surveillance capitalist examination of commercial
bluetooth tracking networks,” arXiv preprint arXiw:2211.11070, 2022.

[45] A. Greenberg, “The clever cryptography behind apple’s ’find my’
feature,” Jun 2019. [Online|. Available: https://www.wired.com/story/
apple-find-my-cryptography-bluetooth/

[46] Chipolo, “What’s the difference between chipolo one and chipolo
one spot?” 2022. [Online]. Available: https://chipolo.net/en/blogs/
whats-the-difference-between-chipolo-one-and-chipolo-one-spot

[47] Apple, “Apple’s find my network now offers new third-party finding experiences,”
Nov 2022. [Online]. Available: https://www.apple.com/newsroom/2021/04/
apples-find-my-network-now-offers-new-third-party-finding-experiences/

[48] L. Xing, X. Bai, T. Li, X. Wang, K. Chen, X. Liao, S.-M. Hu, and X. Han,
“Cracking app isolation on apple: Unauthorized cross-app resource access on
mac os x and ios,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’'15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 31-43. [Online]. Available:
https://doi.org/10.1145/2810103.2813609

[49] Apple, “Use the find my app to locate a missing device or item,” Sep 2022. [Online].
Available: https://support.apple.com/en-az/HT210515

https://www.aboutamazon.com/news/devices/echo-tile-and-level-devices-join-amazon-sidewalk
https://www.aboutamazon.com/news/devices/echo-tile-and-level-devices-join-amazon-sidewalk
https://www.apple.com/newsroom/2021/04/apple-introduces-airtag/
https://www.apple.com/newsroom/2021/04/apple-introduces-airtag/
https://news.samsung.com/us/introducing-the-new-galaxy-smarttag-plus/
https://news.samsung.com/us/introducing-the-new-galaxy-smarttag-plus/
https://www.techradar.com/news/samsung-galaxy-smarttag-to-use-ar-to-visually-locate-your-missing-items
https://www.techradar.com/news/samsung-galaxy-smarttag-to-use-ar-to-visually-locate-your-missing-items
https://news.samsung.com/us/smartthings-find-milestone-nodes-devices/
https://news.samsung.com/us/smartthings-find-milestone-nodes-devices/
https://android.gadgethacks.com/how-to/enable-offline-finding-your-galaxy-so-you-can-locate-your-phone-airplane-mode-0384159/
https://android.gadgethacks.com/how-to/enable-offline-finding-your-galaxy-so-you-can-locate-your-phone-airplane-mode-0384159/
https://www.wired.com/story/apple-find-my-cryptography-bluetooth/
https://www.wired.com/story/apple-find-my-cryptography-bluetooth/
https://chipolo.net/en/blogs/whats-the-difference-between-chipolo-one-and-chipolo-one-spot
https://chipolo.net/en/blogs/whats-the-difference-between-chipolo-one-and-chipolo-one-spot
https://www.apple.com/newsroom/2021/04/apples-find-my-network-now-offers-new-third-party-finding-experiences/
https://www.apple.com/newsroom/2021/04/apples-find-my-network-now-offers-new-third-party-finding-experiences/
https://doi.org/10.1145/2810103.2813609
https://support.apple.com/en-az/HT210515

BIBLIOGRAPHY 63

[50]

[51]

[52]

[59]

[60]

[61]

[62]
[63]

[64]

[65]

——, “Icloud - find my,” 2022. [Online]. Available: https://www.apple.com/icloud/
find-my/

J. Briggs and C. Geeng, “Ble-doubt: Smartphone-based detection of malicious blue-
tooth trackers,” in 2022 IEEE Security and Privacy Workshops (SPW), 2022, pp.
208-214.

A. Newsroom, “An update on airtag and unwanted tracking,”
Feb 2022. [Online]. Available: https://www.apple.com/newsroom/2022/02/
an-update-on-airtag-and-unwanted-tracking/

A. F. Cahn, “Apple’s airtags are a gift to stalkers,” May 2021. [Online]. Available:
https://www.wired.com/story/opinion-apples-air-tags-are-a-gift-to-stalkers/

K. O. E. Miiller, B. Rodrigues, and B. Stiller, “Master project (map) for dylan puser,
remo tobias hertig, and zhishan yan,” Tech. Rep., 2022.

ISO, ISO/IEC/IEEE International Standard - Systems and software engineering —

Life cycle processes —Requirements engineering, 2011.

F. Van Diggelen and P. Enge, “The world’s first gps mooc and worldwide laboratory
using smartphones,” in Proceedings of the 28th international technical meeting of the
satellite division of the institute of navigation (ION GNSS+ 2015), 2015, pp. 361-369.

B. Eissfeller, A. Teuber, and P. Zucker, “Indoor-gps: Ist der satellitenempfang in gebau-
den moglich?” ZfV-Zeitschrift fir Geoddsie, Geoinformation und Landmanagement,
no. zfv 4/2005, 2005.

M. B. Kjaergaard, H. Blunck, T. Godsk, T. Toftkjeer, D. L. Christensen, and K. Grgn-
baek, “Indoor positioning using gps revisited,” in Pervasive Computing: 8th Interna-
tional Conference, Pervasive 2010, Helsinki, Finland, May 17-20, 2010. Proceedings
8. Springer, 2010, pp. 38-56.

Google Developers, “Guide to app architecture,” Android, 2022. [Online|. Available:
https://developer.android.com /topic/architecture

E. Gamma, Design patterns: elements of reusable object-oriented software. Addison-
Wesley, 1995.

Flutter, “Hotfixes to the stable channel,” https://github.com /flutter /flutter /wiki/Hotfixes-

to-the-Stable-Channel, 2023.
Dart, “Sound null safety,” 2022. [Online]. Available: https://dart.dev/null-safety

——, “Concurrency in dart,” 2023. [Online]. Available: https://dart.dev/guides/
language/concurrency

Google Developers, “Background location limits,” Android, 2022. [Online]. Available:
https://developer.android.com/about /versions/oreo/background-location-limits

——, “Scanfilter,” Android, 2022. [Online]. Available: https://developer.android.com/
reference/android /bluetooth /le/ScanFilter

https://www.apple.com/icloud/find-my/
https://www.apple.com/icloud/find-my/
https://www.apple.com/newsroom/2022/02/an-update-on-airtag-and-unwanted-tracking/
https://www.apple.com/newsroom/2022/02/an-update-on-airtag-and-unwanted-tracking/
https://www.wired.com/story/opinion-apples-air-tags-are-a-gift-to-stalkers/
https://developer.android.com/topic/architecture
https://dart.dev/null-safety
https://dart.dev/guides/language/concurrency
https://dart.dev/guides/language/concurrency
https://developer.android.com/about/versions/oreo/background-location-limits
https://developer.android.com/reference/android/bluetooth/le/ScanFilter
https://developer.android.com/reference/android/bluetooth/le/ScanFilter

64 BIBLIOGRAPHY

[66] T. Yu, J. Henderson, A. Tiu, and T. Haines, “Privacy Analysis of Samsung’s Crowd-
Sourced Bluetooth Location Tracking System,” Oct. 2022.

[67] G. Celosia and M. Cunche, “Saving private addresses: An analysis of privacy issues
in the bluetooth-low-energy advertising mechanism,” in Proceedings of the 16th FAI
International Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services. Houston Texas USA: ACM, Nov. 2019, pp. 444-453.

Abbreviations

API Application Programming Interface. 41-45, 57

BLE Bluetooth Low Energy. i, iii, 1-7, 10, 12, 13, 15-17, 20, 21, 23, 24, 38, 43, 45, 49, 50,
53, 54, 57, 67

CRC Cyclic redundancy check. 7

GAP Generic Access Profile. 5, 6
GPS Global Positioning System. 3, 8, 10, 17, 18, 20, 41, 43-45

HS HomeScout. i, iii, 2, 15, 17-19, 21, 25, 33, 34, 36-39, 41-46, 49, 55-58

IoT Internet of Things. 1-3, 5
IPS indoor positioning system. 3

ISA Ttem Safety Alert. 12
MAC Media Access Control. 1, 11, 45, 51-54, 58
NFC Near-field communication. 10

OF Offline Finding. 11

ORM object relational mapping. 42

PDU Protocol Data Unit. 7, 10

RSSI received signal strength indicator. 3, 8, 13, 58
SoC System-on-Chip. 5, 10

UI user interface. 41, 43, 45
UID Unique Identifier. 1
UWB Ultra-Wideband. 3, 10

65

66

ABBREVIATONS

Glossary

Allowlist A list of BLE devices which are owned by the user or devices known to be not
used for malicious tracking purposes.

Blocklist A list of BLE devices which are deemed untrustworthy or potentially malicious.

Bluetooth tracker A small device containing a battery and a BLE chip, which broadcasts
signals according to some offline finding protocol and thus allows the owner of the
tracker to monitor the location of the tracker 25, 30].

67

68

GLOSSARY

List of Figures

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5

4.6

4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

4.15

BLE stack 6
BLE packet structure oo 7
Advertising data format oL 7
[ustration of crowd-sourced location tracking 9
Delay in sensing and reporting atag 12
Modelled Use-cases 16
Visualization of location drift 18
Information flowo 20
Database schemao 21
The architecture used to develop the app. It shows the 3 layers and a

zoomed-in look at the data layer. 0. 22
Class diagram of the threat service, which uses the strategy pattern to

implement different threat assessment strategies. 22
Scanner OVErview 23
The algorithm of the normal mode threat classification. 24
The algorithm of the heightened awareness mode threat classification. . . . 25
Homepage of HomeScout App (Screenshot) 26
Homepage of the HomeScout App (Mockup) 27
Location Designate page of HomeScout App (Mockup) 28
Pop-out Window example of HomeScout App (Mockup) 29
Allow- and blocklist pages of HomeScout App (Mockup) 30
Device details page of HomeScout App (Mockup) 31

69

70

LIST OF FIGURES
4.16 Tracking alert page of HomeScout App (Mockup) 32
6.1 Distribution of required scans to detect a tracker. 51

6.2 Distribution of number of detected devices per device type for all experiments 52
6.3 Distribution of number of observations per device address 53

6.4 Distribution of number of observations per device address 54

List of Tables

6.1 Descriptive statistics for runs in Heightened Awareness Mode (N =21) . . 49
6.2 Descriptive statistics for runs in Normal Mode (N =7) 50
6.3 Detection rate estimates for both scan modes 50
6.4 Detection rate estimates Lo 52
6.5 Experiment 2: Allowlisting L. 55
6.6 Experiment 3: Blocklisting 0oL 55
6.7 Experiment 4: False alarms 0oL 56
6.8 Experiment 5: Location designation 56

71

72

LIST OF TABLES

Appendix A

Installation Guidelines

A.1 Development instructions

1. Install Flutter using the following guide:
https://docs.flutter.dev/get-started/install

2. Clone the HomeScout source code:
git clone https://github.com/home-scout-project/app.git

3. Install all dependencies: flutter pub get

4. Run the app on a device: flutter run

A.2 Experiment instructions

Preparation

1. Arm available BLE trackers: put them into Lost state
2. Enter Debug view (button on bottom right)

3. Verify that the trackers are sending Bluetooth signals by clicking the Perform device
scan button. The List below should populate with the device details if it’s either an
AirTag, SmartTag or Tile.

4. Go back to the Homepage

73

https://docs.flutter.dev/get-started/install

74 APPENDIX A. INSTALLATION GUIDELINES

Experiment round

1. Start an Experiment by toggling the Run Ezperiment slider
2. Enable the scanner in the desired mode
3. Perform the experiment: travel around

4. Disable the experiment

Data extraction

1. Connect the phone to a computer with AndroidStudio
2. Open the Device File Explorer pane (on bottom right side)

3. Open the HomeScout data folder:
e.g /data/data/ch.uzh.csg.home_scout/app_flutter

4. Download the homescout.sqlite file (right click: Save as)

Appendix B

Contents of the Zip file

FinalReport.pdf this report

FinalReport folder with the sources for this report

data folder with the raw collected data

analysis folder with scripts used to analyse the data

HomeScout folder with source code of the app

flutter_blue_plus folder with patched version for the dependencies

presentation folder with the slides of the presentations

75

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Motivation
	Problem Description
	Report Outline

	Related Work
	Background
	Bluetooth Low Energy
	Generic Access Profile (GAP)
	Link Layer

	Bluetooth Trackers
	Crowd-Sourced Location Tracking
	Tile Trackers
	Apple AirTag Trackers
	Samsung Galaxy Trackers
	Chipolo One Spot

	Apple Ecosystem
	Offline Finding
	Tracking Workflow
	Item Safety Alerts
	Find My Network Accessory Program

	Other Tracking Detection Applications
	Tracker Detect
	AirGuard

	Design
	Requirements
	Design and Implementation Constraints
	Functional Requirements
	Nonfunctional Requirements
	Additional Design Assumptions

	Application Scenarios
	Normal Mode
	Heightened Awareness Mode
	Location Designation
	Device Block- and Allowlisting

	Application Architecture
	Logical View
	Data View
	Development Structure
	Threat Service

	Tracker Detection
	Detection Algorithm

	User Interface
	Homepage
	Designate Locations
	Pop-out Window
	Lists
	Device Details
	Tracking Alert

	Experimental Design
	Experiment 1: Tracker Detection
	Experiment 2: Allowlisting
	Experiment 3: Blocklisting
	Experiment 4: False alarms
	Experiment 5: Location Designation

	Implementation
	Dependencies
	Development workflow
	Android
	Background Location Acquisition
	Background Bluetooth Scanning

	iOS
	Application Scenario Parameters
	Location Designation
	Device Block- and Allowlisting

	Evaluation
	Experiment 1: Tracker Detection
	Detection Rate
	Tracker Differences

	Experiment 2: Allowlisting
	Experiment 3: Blocklisting
	Experiment 4: False alarms
	Experiment 5: Location Designation

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Abbreviations
	Glossary
	List of Figures
	List of Tables
	Installation Guidelines
	Development instructions
	Experiment instructions

	Contents of the Zip file

