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Abstract

The majority of Internet of Things (IoT) devices are Bluetooth Low Energy (BLE)
devices, which can be found every day in a variety of settings, including smart
homes, the workplace, sports, entertainment, and medicine. The number of BLE
devices is growing rapidly due to their low power consumption. However, BLE
devices have the disadvantage that the transmitted data contains personal infor-
mation and can be tracked. Therefore, the protection of personal information has
become very important. This can be achieved by classifying the BLE devices into
device types to identify unauthorized devices. This thesis focuses on creating a
dataset by passively sniffing BLE packets to extract features that can be used to
train Machine Learning (ML) models to identify and classify BLE devices. The
ML models used in this thesis are the Random Forest (RF) classifier and the
Multi-Layer Perceptron (MLP) model. The highest accuracy is achieved by the
RF classifier at 99.98%.
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Abstrakt

Die meisten Geräte des Internet of Things (IoT) sind Bluetooth Low Energy
(BLE)-Geräte, die tagtäglich in einer Vielzahl von Umgebungen anzutreffen sind,
zum Beispiel in Smart Home, am Arbeitsplatz, im Sport, in der Unterhaltung
und in der Medizin. Die Zahl der BLE-Geräte nimmt aufgrund ihres geringen
Stromverbrauchs rasch zu. Darüber hinaus haben BLE-Geräte den Nachteil, dass
die übertragenen Daten persönliche Informationen enthalten und nachverfolgt wer-
den können. Daher ist der Schutz persönlicher Informationen sehr wichtig gewor-
den. Dies kann durch eine Klassifizierung der BLE-Geräte in Gerätetypen erreicht
werden, um nicht autorisierte Geräte zu identifizieren. Diese Arbeit konzentri-
ert sich auf die Erstellung eines Datensatzes durch passives Schnüffeln von BLE-
Paketen, um Merkmale zu extrahieren, die zum Trainieren von Machine Learning
(ML)-Modellen verwendet werden können, um BLE-Geräte zu identifizieren und
zu klassifizieren. Die in dieser Arbeit verwendeten ML-Modelle sind der Random
Forest (RF) classifier und das Multi-Layer Perceptron (MLP) Modell. Die höchste
Genauigkeit erreicht der RF classifier mit 99,98%.
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Chapter 1

Introduction

We are currently surrounded by a large number of IoT devices. Many of these
devices are BLE devices and are controlled via Bluetooth technology [11]. These
devices are often used in everyday life, such as in the kitchen, for sports, enter-
tainment, gaming, in the office, in healthcare, in the security department, in smart
homes, in the infrastructure, and in many other areas [9, 17]. BLE devices in
e-healthcare measure the heart rate or blood flow [11]. In smart home environ-
ments, BLE devices include smart lights, smart thermostats, smart locks, or smoke
detectors [24]. In sports, they are used for fitness tracking via smartwatches that
measure the number of steps or heart rate [24]. Furthermore, the position of ob-
jects can be tracked using BLE devices such as AirTags. Attaching AirTags to
keys or items of luggage, they can be quickly localized and found in the event of
loss [24].

Billions of BLE devices are developed by the Bluetooth Special Interest Group
(SIG) [9]. The Bluetooth specification includes Bluetooth Classic and BLE [22].
BLE devices are first introduced with version 4.0 of the Bluetooth Standard [12].
BLE differs from Bluetooth Classic by its link layer packet format and low power
consumption capacity [12]. Thanks to their fast communication, they are widely
used and are an essential part of our daily lives such as smartphones. BLE devices
discover the connection via three different channels, making their connection much
faster than that of Bluetooth Classic devices [10]. In addition, BLE devices are
used for communication over short distances and for transmitting small amounts
of data [24]. BLE is therefore a low power technology and is integrated into small
devices with low-charge capacity and limited power supply, such as batteries [9, 11].
The low power consumption of BLE devices results from the fact that the screens
are switched off as much as possible and the small amount of data transmission
at low transmission speeds [24, 10]. Due to their low power consumption, short-
range and fast communication, they are becoming increasingly popular and the
number of BLE devices is growing rapidly [11]. Another important factor for
the increasing number of BLE devices is the low-cost development compared to
other technologies [24]. The biggest advantage of BLE is that it is integrated
into smartphones [10]. With over 4.7 billion BLE devices developed in 2018, BLE
devices are the most widely used wireless communication technology [12]. Despite
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2 CHAPTER 1. INTRODUCTION

their many advantages, BLE devices also have some disadvantages such as their
limited data throughput [24]. Only very little data can be transmitted per defined
period of time [24]. Furthermore, their range is limited as they are developed for
applications with a short range [10]. With a range of only around 2.4 GHz in the
ISM spectrum, metal objects or walls can block data transmission [24, 10].

To establish connectivity, BLE devices constantly transmit and exchange data
[1, 2, 4]. They send data to another device that acts as a receiver [11]. The
transmitted data is so-called Advertising Data (AdvData), which may include the
user’s location or personal information such as email addresses or usernames linked
to an Apple ID on a smartphone [1, 11]. Unfortunately, these data exchanges also
provide opportunities for external attackers to exploit this personal information for
their purposes [1, 2, 4]. There are numerous security and privacy threats caused
by having access to AdvData [23]. For example, DDoS attacks are one such threat,
where the attackers obtain personal information or spy on the owner of the device
through the camera [17]. By determining the location of a fitness tracker user, the
attacker can locate the user [12, 21]. This private and personal information can
be used for malicious activities and cause privacy threats by revealing a device’s
information [14, 23]. By hacking a medical device, an attacker could learn the
user’s health status and use this information to their own advantage [23].

Therefore, the protection of personal data has become very important in our in-
creasingly interconnected world through BLE devices [2]. As the use of these
devices increases, so does the number of attacks [20]. As most BLE devices are
used in smart home environments, there is a high demand for the classification of
BLE devices to distinguish between authorized and unauthorized devices [14]. De-
vices that should not send or receive BLE packets in an environment are so-called
unauthorized or malicious devices and must be detected. Once an attacker device
hacks into an environment and gains access to all connected devices, it can gain
hidden access to all information [21]. Electronic locks, alarm systems, or medical
devices that are controlled via BLE devices such as smartphones or laptops are
also susceptible to security vulnerabilities and can be attacked [22].

With the rapid increase in devices, it is becoming increasingly difficult to track
which devices are sending or receiving data to or from our own devices. Therefore,
identifying and classifying such unauthorized devices is important [14]. To achieve
better security for BLE devices and to overcome malicious attacks, identification
of devices is needed [15]. If the types of devices connected in a smart home en-
vironment are known, these devices can be better managed and unknown devices
can be more easily detected [16]. By identifying unknown devices, they can be
blocked by the environment to prevent data exchange.

1.1 Motivation

Since most BLE devices are smart home devices that contain personal information,
malicious attacks can have serious consequences. Due to security and privacy issues
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as well as the high need for personal data protection, the motivation of this thesis
is to classify BLE devices so that unauthorized devices can be identified. This
ensures a more secure environment for the users of these devices. As many attacks
are passive and difficult to detect, the goal of this thesis is to develop a classification
method. Within the scope of this thesis work, the transmitted packet data from
BLE devices is collected and analyzed. The features of this data are extracted and
ML models are developed that enable the identification and classification of BLE
devices based on their features.

1.2 Description of Work

This thesis aims to generate a large dataset by collecting BLE packets through
passive sniffing to determine if there are patterns in the data that could iden-
tify specific BLE devices, such as AirTags. ML approaches analyze the features
extracted from the collected BLE packets and predict their device type.

In summary, the main objectives of this thesis are:

• Capturing of BLE packets through sniffing over an extended period of time

• Preprocessing and creation of a large dataset for analysis and pattern recog-
nition

• Extracting features from the dataset that are characteristics of a device type

• Evaluating and developing ML models to classify and identify BLE devices
based on their characteristics

1.3 Thesis Outline

Chapter 2 provides an overview of related work on BLE data collection, BLE device
identification, and classification. Chapter 3 provides a brief background on BLE
devices and their potential attacks. Chapter 4 explains the proposed methodology
of data collection using a sniffing tool, extracting features, and designing two ML
approaches to classify unknown devices based on the extracted features. Chapter
5 presents the results, evaluation, and limitations of the proposed methodology.
Finally, Chapter 6 concludes this thesis with the conclusion and provides some
potential future research approaches.
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Chapter 2

Related Work

This chapter provides an overview of existing research related to this thesis. Most
of the current research focuses on classifying IoT devices rather than BLE devices.
There is limited research on classifying BLE devices. However, since BLE devices
are a subset of IoT devices, the research on IoT device classification is closely re-
lated to this thesis. All related work is summarized in Table 2.1 by their number of
devices, types of devices, number of features, if there are multiple models, and the
model with the highest accuracy. The full list is in Appendix B. After introducing
the related work, the research gap between existing literature and the objective of
this thesis is explained.

Since the security of IoT devices plays an important role in ensuring that the user’s
data is protected, [3] developed an automatic IoT device classification. Their
classifier can identify malicious devices. The traffic flows of each device packet
are analyzed and important features such as the packet length, the timestamp, the
protocol are extracted. The classifier is a Long Short-Term Memory Convolutional
Neural Network (LSTM-CNN) model trained with the extracted features. The goal
is to find patterns in the features to predict the type of an unseen device. Their
dataset consisted of 21 devices categorized into 4 types of devices. Their model
had a performance of 74.8%.

To detect unauthorized devices, [4] developed an intrusion detection method. Their
dataset consists of six ZigBee devices. A CNN was used to extract unique features
for each device from the physical layer of the packets. Afterward, the features were
clustered. The training dataset consists of features from authorized devices. Their
CNN model was an unsupervised classification model and did classification based
on the clustering approach. Their results have shown that detecting unauthorized
devices enhances the security of the devices.

[5] used Radio Frequency (RF) fingerprinting to identify Wi-Fi IoT devices by
training an ML algorithm with their collected data. Similar to [4], they also
extracted features from the physical layer of the devices. These features form the
fingerprints and based on them, the model analyzes the traffic behavior of the
devices to classify and identify unknown devices. The results have shown that

5
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the fingerprints are similar to the same device but different from the fingerprints
of other devices and that the Selective Kernel Network (SKNET) achieved the
highest accuracy.

[13] also developed an ML algorithm to identify IoT devices. Their dataset is
labeled and consists of 9 IoT devices. The ML algorithm is a supervised binary
classifier that can group devices into IoT and non-IoT devices. Furthermore, it
can group IoT devices into their device category. The network traffic of devices
has been analyzed and network features were extracted from the Transmission
Control Protocol (TCP) packets. These features include the IP address and the
port number of a device, and they are unique. By training the classifier with these
features, it can classify feature vectors into their device type. During training, the
ML algorithm was optimized and achieved an accuracy of 99.28%.

[14] analyzed the communication traffic of the Wi-Fi devices to achieve a device
classification. Their dataset consists of Wi-Fi devices in the smart home envi-
ronment. They extracted features from the traffic of the devices. By using the
dimensionality reduction and the Information Gain (IG) method to keep just the
most important features, they have, in total, 13 extracted features. These features
are the input for training the Logistic Regression (LR) model. The model has
shown an accuracy of 99.79% in classifying devices into their type.

[15] developed an automated classification of IoT devices. Their developed classifier
is a Decision Tree (DT) model, which classifies their 23 IoT device into device
types by analyzing the selected features. These features are selected by a Genetic
Algorithm (GA). Using just half of the features from the packet header is sufficient
to classify the devices. Furthermore, the results showed that the accuracy was
higher when using just half of the features rather than all features.

[16] developed a DT model too. The model aims to classify newly connected
devices in smart home environments. Their dataset is labeled and they extracted
features from the traffic flow and the packet payloads of the packets. Features
such as the average packet length, inter-arrival times, flow size, and protocols were
used to train the binary DT classifier. The model achieved an accuracy of 97%
in automatically identifying newly connected devices. This has shown that home
security was enhanced by correctly identifying smart home devices.

Due to vulnerabilities of IoT devices to attacks, [17] developed a stacked Autoen-
coder model. This model can learn the distribution of packet flows of devices to
automatically extract features from the traffic network. These features are then
clustered and are the input for training the model. By calculating the similarity
between two distributions of flow packets and by comparing them, the Autoencoder
model assigns the device to one cluster class and classifies it.

[18] has done similar work. They also extracted features from the traffic flow
to identify devices and detect malicious ones. These features are the packets’
direction, size, timestamp, and transport protocol and are the input for training
the classifier. They build two classifiers: an RF and a DT classifier. The goal is to
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detect malicious devices and to define the type of attack. The results have shown
that RF achieves the best results.

Because of the increasing attacks on IoT devices, [?] developed a deep learning
model, namely a multiclass classifier, to identify known and unknown devices.
Unknown devices are those not on their so-called white list and should be unau-
thorized in the network traffic. Training a fully connected network model with 10
different IoT devices, the model achieves an accuracy of over 99% to detect and
identify unauthorized devices correctly. Similar [21] had also a so-called white list.
Devices not on that list should not be connected to the network and should be
detected. By detecting them, the network flow is controlled and the sensitive data
of devices from the white list can be protected. The extracted features from the
network traffic are the input for training a supervised ML algorithm, namely an RF
classifier. By learning the behavior of the devices from the white list, unauthorized
IoT devices can be identified. Their white list consists of 17 IoT devices catego-
rized into 9 types. The RF classifier should predict the device type by comparing
the output with a given threshold. If the output value is above the threshold, the
device is classified as unauthorized. The results have shown an accuracy of 96% to
correctly detect unauthorized devices and an accuracy of 99% to correctly predict
the type of devices from the white list.

To achieve autonomous IoT device type identification, [44] developed an unsu-
pervised ML model focusing on periodic communication patterns. Their dataset
includes 33 IoT devices. The model clusters communication fingerprints based on
policy sets describing the network behavior without requiring a labeled dataset.
Key features in these fingerprints include periodic flow count, protocol layer, flow
type, port changes, period accuracy, duration, and stability. The model is a k-
Nearest Neighbor (KNN) classifier. The goal of the classifier is to match the
fingerprints with device types.

[45] collected BLE packets and extracted fingerprints from their Link Layer (LL).
Fingerprints are unique patterns in the traffic flow of a device. They developed an
MLP model that predicts the type of BLE devices based on differences in the LL.
Their dataset consists of 7 different types with a total of 23 BLE devices. Their
model is trained on fingerprint vectors focusing on characteristics such as packet
headers, AdvData types, and specific fields like service UUIDs and manufacturer
identifiers. After removing explicit identifiers and filtering relevant packet types
the vectors are zero-padded and normalized. The MLP model is trained on these
vectors to classify the BLE device types. They achieved an accuracy of 99.8% in
correctly identifying BLE device types.

The goal of [47] is to classify Wi-Fi devices such as smartphones and laptops. They
extracted features from the sniffed network communication. The RF classifier
has shown the best performance among other ML models in correctly predicting
the device type. The classifier is trained on features and their dataset includes
279 devices with known device types. One important feature is the Inter-Probe
Period (IPP) indicating the frequency of transmitting data. Laptops have shown
a higher frequency than smartphones. Another important feature is the standard
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deviation of the Received Signal Strength (RSS) which reflects the mobility of
devices. Smartphones have shown a higher standard deviation of the RSS since
they are more mobile than laptops.

Instead of classifying smartphones and laptops, [48, 49] focused on classifying de-
vices as hubs, cameras, switches, healthcare devices, light bulbs, electronics, smart-
watches, or sensors. They analyzed the packet header and extracted features such
as the domain name, packet sent rate, packet length, and the number of protocol
types. Their dataset has 12 devices categorized into 7 categories. They devel-
oped three different ML models: LR, RF, and Support Vector Machine (SVM).
Results have shown that hubs have more temporary packet transmission compared
to cameras.

To predict the device type, [50] developed also three ML models: RF, DT, and
SVM. Their dataset includes 22 IoT devices categorized into 11 types like IP
cameras, Amazon smart speakers, smart printers, and smartphones. By looking
at the MAC address of the devices, their type could be inferred and thus they
could label the dataset. The extracted features from the traffic include type and
sub-type, size, direction, interarrival time, and rate of frames. These features are
the input for training the classifiers.

Another important feature to identify devices is extracted by [51]. This feature is
the Received Signal Strength Indication (RSSI) and is extracted from BLE packets.
Since RSSI depends on the distance between two communicating devices, it can
be used to calculate the distance between them. There are two types of vectors
generated the so-called matched and non-matched vector. If two devices have the
same device type, their features are marked as matched, otherwise, they are marked
as non-matched. These two types of vectors train the classifier to predict whether
two devices share the same device type. Furthermore, the trained classifier can
also predict the device type of a given device.

[52] collected IoT devices in the smart home environment and labeled the dataset.
They extracted features such as the TCP window size, entropy, and payload
lengths. They defined a session as a series of packets with identical source addresses
and computed metrics such as the total session packets and packets per session for
each device. Packet header features consist of binary TCP features, while payload
features encompass payload entropy, TCP payload length, and TCP window size.
Small devices like light bulbs often have small window sizes, while more powerful
devices such as video cameras tend to have variable and larger window sizes. They
developed four different classifiers comparing the features of a given device with
the features of devices from the dataset. Results have shown that the Gradient
Boosting (GB) classifier has the best performance of detecting similar device types
over KNNs, DT, and Majority voting.

To secure the communication for the BLE devices and to countermeasure spoof-
ing attacks, [56] sniffed data traffic of BLE packets with the Ubertooth tool and
extracted features from the LL and ATT/GATT service layer. Feature extraction
involves analyzing advertising event intervals for transmission frequency, advertis-
ing channel sequences across three channels, and the probability distribution of
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advertising delays. The extracted features are the number of packets sent, the
average throughput, and the burst rate. Fingerprints of devices are created based
on these features and are stored in a database marked as a whitelist or blacklist
device. They developed a RF model which is a supervised ML model. Results
have shown that different device types have unique packet sequences indicating
that the packet sequence feature is a characteristic of a device type.

[57] collected the traffic of BLE and Wi-Fi devices via the BLE sniffer and Wi-Fi
adapter. Their dataset consists of 6 device types including door sensors, locks,
temperature sensors, smart bulbs, cameras, and smart plugs. They extracted
features such as the packet count, packet length, LL header length, Protocol Data
Unit (PDU) type, and RF channel number. The device name and the Advertising
Address (AdvA) are used to identify the type of device to label the dataset but are
not used as features. After extracting features, they developed three classification
models: KNN, Linear Discriminant Analysis (LDA), and RF. The models are
trained on their extracted features and aim to identify the device type. The KNN
classifier achieved the best performance. Results have shown that a device with a
packet length greater than 80 bytes is a locking device, with a packet count over 40
packets/sec is a sensor device, with a packet count between 20-40 packets/sec is a
locking device, and with the PDU type of scan request (SCAN REQ), advertising
direct indications (ADV DIRECT IND), or connection requests (CONNECT REQ)
is a door device. They calculated the feature’s importance score and took the
three most important features with the highest values. The three most important
features are the packet length, LL header length, and packet count. The model
is retrained using just these three features as input. Here the results have shown
that the door and temperature sensor devices were misclassified because of having
similar packet lengths, LL header lengths, and packet counts.

Unlike the others who have a labeled dataset, [55] have an unlabeled dataset and
used deep reinforcement learning, namely an autoencoder model. The goal is to
predict the device type based on the BLE RSSI. They clustered the feature vector
in a cluster and assumed that if two feature vectors of two devices are close to each
other and in the same cluster, then these devices should have the same device type.
Labeling is done through user feedback and the reward function of reinforcement
learning. The autoencoder model learns from the rewards and policies given to it
and takes the optimal action to predict the device type.

2.1 Research Gap

As already mentioned, most of the existing research is based on IoT device classifi-
cation, and very little research is done with a specific focus on BLE devices such as
[45, 51, 55, 56, 57]. Therefore, there is little research gap in current research with
a focus on BLE device classification. Since BLE devices are affected by attacks
and most BLE devices appear in smart home environments, there is a high need to
protect personal information. To address this issue, this thesis’s goal is to classify
BLE devices. By classifying BLE devices into their device types once, devices that
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Paper No.
of
De-
vices

Type of Devices No.
of
Fea-
tures

Mulitple
Models

Model

[13] 9 PCs and Smartphones 4 no Multi-stage
Meta Classifier

[14] 41 4 types of Smart Home
Environment

13 yes LR, Logiboost

[15] 23 N/A 212 no DT
[16] 6 Camera, Plug, Switch,

Smart Home
6 yes DT, Naive Bayes

(NB), LR, SVM
and RF

[17] N/A Cameras, Switches, Trig-
gers, Hubs, Air Quality
Sensors, Healthcare de-
vices, Light Bulbs, Lap-
tops, Mobile Phones, and
Tablets

3 yes NB, LSTM-
Autoencoder

[18] 7 2 types 6 yes RF, DT, RNN,
ResNet, and
ConvNet

[21] 17 9 types 300 no RF
[58] 4 Security Camera, Motion

Sensor, Smart Bulb, and
Smart Plug

38 yes RF, DT, SVM,
KNN, Artificial
Neural Network
(ANN) and NB

[59] N/A N/A 37 yes DT, SVM, NB,
KNN, RF, GB

[45] 15 Smart Bands, Smart
Watches, Smart Oxime-
ters, Smart Humidifiers,
Headphones, Smart-
phones, and PCs

10 no MLP

[47] N/A Smartphones and Lap-
tops

6 yes RF, NB, SVM,
DT

[50] 22 10 types 3 yes RF, DT and
SVM

[52] 14 7 types 6 yes KNN, DT, GB,
and Majority
Voting

[48] 12 Hubs, Cameras,
Switches, Triggers,
Air Quality Sensors,
Healthcare devices,
Light Bulbs, Smart-
watches, and Router

9 yes LR, RF, SVM,
MLP, LSTM,
CNN

[57] N/A Door Sensors, Locks,
Temperature Sensors,
Smart Bulbs, Cameras,
and Smart Plugs

6 yes KNN, LDA, RF

Table 2.1: Summary of Related Work
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are not part of a smart home environment could be detected. Since there are five
similar existing research, this thesis differs from them by sniffing BLE packets with
another tool, creating a data set with other devices, extracting other features, and
developing other ML models.
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Chapter 3

Background Knowledge

The background knowledge required for this thesis is provided in this chapter.
First, it explains what BLE devices are and how they differ from other IoT devices.
To analyze the BLE packets, the BLE protocol stack, and the BLE packet format
are described. Moreover, malicious attacks that affect BLE devices and how they
occur are explained. Lastly, seven different ML models are shown and discussed,
as this thesis develops ML models to classify BLE devices.

3.1 Introduction of Bluetooth Low Energy Devices

There are over 10 billion IoT devices in daily use such as smart home devices or de-
vices that support people with their medical issues [24]. Bluetooth was introduced
in 2003 by the group Bluetooth SIG as a short-range technology [24]. There are
two types: the Bluetooth Classic and the BLE [24]. BLE was released with version
4.0 in 2010 [24]. While Bluetooth Classic devices have a higher throughput and
transmit more data, BLE devices have a very low throughput [24]. BLE devices
have a low power consumption while Bluetooth Classic devices need more power
energy [24]. This is the main reason why BLE is the most popular and most widely
used wireless communication application among others such as ZigBee, Bluetooth
Classic, and WiFi [24]. In recent years, the number of BLE devices is increased
enormously because of the low power consumption [24].

3.2 BLE Protocol Stack

The BLE protocol, depicted in Figure 3.1 is a stack divided into three main parts:
the Application, the Host, and the Controller [11]. On top of the BLE stack is
the Application part which directly interacts with the user of the device via an
interface [11, 26]. Highlighted in red is the Host Controller Interface (HCI) which
is the communication transfer of the Controller and the Host [11, 22]. The Host
and the Controller parts with their layers are described in the subchapters.

13
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Figure 3.1: BLE Protocol Stack [11]

3.2.1 Host

The second part of the BLE stack is the Host. It has six sublayers: Generic Ac-
cess Profile (GAP), Generic Attribute Profile (GATT), Attribute Protocol (ATT),
Security Manager Protocol (SMP), Logical Link Control and Adaptation Protocol
(L2CAP), and HCI (host side).

Generic Access Profile

The first layer of the Host is the GAP layer. It defines how BLE devices com-
municate and interact with each other [26, 24]. To discover other BLE devices
and to ensure the connection between them, GAP needs to define the device roles,
modes, and procedures [11, 9]. These device roles are: the Broadcaster, Observer,
Peripheral, and Central [9]. Being a Broadcaster, the device only broadcasts data.
Whereas, the device as an Observer only receives the broadcasted data [9]. A
device has the Central role when it has multiple connections. When a device uses
only one single connection with another device in the Central role, then it has the
Peripheral role [9]. The Central role is also called the Master, and the Peripheral
role is called the Slave. At any given time, a device can be either a Master or a
Slave, but not both [9].

Generic Attribute Profile

The GATT layer defines rules on how the data should be packaged and transmit-
ted from one device to another and who can access that data [26, 9]. To establish
communication, the devices must be either a Client or a Server [26]. The Server



3.2. BLE PROTOCOL STACK 15

device receives requests from a Client device and stores them for subsequent pro-
cessing and response [26]. Then the Client device requests data from the Server
devices and gets access to READ or WRITE that stored data [26, 9].

Attribute Protocol

The ATT layer provides the basis for the functioning of the GATT layer [26].
As previously mentioned, a device can be either a Client or a Server. This rule
is defined in the ATT layer [26, 9]. Additionally, the ATT layer structures the
exchanging data into attributes containing a 16-bit attribute handle, a Universal
Unique Identifier (UUID), a value, and a set of permissions [26, 11]. It also defines
the access to the stored data in the server. In other words, it defines which device
is allowed to READ or WRITE that stored data in the server [26]. In summary,
the ATT layer defines the rules of the exchanging data between the Client and
Server in the GATT layer, and the GATT layer then follows these rules defined in
the ATT layer so that communication between devices can be established [11].

Security Manager Protocol

The SMP layer does just one thing: it ensures communication security by encrypt-
ing and decrypting the transmitted data [26, 11].

Logical Link Control and Adaptation Protocol

The L2CAP is a multiplexer layer converting multiple protocols from the upper
layers into standard BLE packets [26]. This step is necessary so that the BLE
packets can be passed down to the lower layers, to the Controller part [24]. When
the packet size exceeds the defined maximum BLE payload size of 23 bytes, the
L2CAP breaks that packet into chunks [9, 10]. In contrast, for forwarding data into
the upper layers, L2CAP combines multiple little packets into one single packet
[10].

3.2.2 Controller

The third part of the BLE stack is the Controller. It has three sublayers: HCI
(controller side), LL, and Physical Layer (PHY).

Host Controller Interface

The HCI is an interface for communication between the Controller and the Host
parts [10]. There are commands defined so that the data can be converted into
data packets and sent from the Controller to the Host [11]. On the other hand, it
sends events back from the Controller to the Host [10].
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Link Layer

The LL has three states: advertising, scanning, and connected states [10]. As
explained in Chapter 3.2.1 there are the Broadcaster and the Observer roles. The
Broadcaster only broadcasts data and the Observer receives the broadcasted data.
By broadcasting data, the data is transmitted as advertising packets through a so-
called advertising channel and the Observer receives the data through this channel
[9]. The Broadcaster is also called an Advertiser and the Observers are also called
Scanners [9]. The communication between two devices is established through the
Broadcaster (Advertiser) mode and the Observer (Scanner) mode [11]. To get two
devices connected, the Advertiser advertises through the channels a message that
is ready to be connected [9]. It periodically sends messages to any Scanner device
[11]. Broadcasting is the quickest method for sending data to multiple devices
simultaneously [11]. On the other side of the channel, the Scanner device waits
to get such messages and continuously scans the availability of them [9, 11]. As
soon as the Scanner receives a message from its Advertiser, it sends a connection
request message to the Advertiser. If the Advertiser approves the connection re-
quest, they enter the connected state and can communicate [10, 9]. The connected
devices transmit permanently and periodically data [11]. In the connected state,
the Advertiser device is also called Master and the Scanner device Slave [9]. A
Master can have multiple connections with multiple Slaves, but each Slave has
only one Master [9]. The reason BLE devices have low power consumption is that
the Slaves are by default turned into sleep mode when they are not used [9].

The identification of devices during communication is done by the Bluetooth De-
vice Address (BDADDR) [23]. It is a 48-bit identifier found within the AdvA field
of the device packet [23]. There are two types of AdvA: Public Addresses and
Random Addresses [10]. Public Addresses are the unique MAC addresses [23].
While the Public Addresses are fixed and do not change, Random Addresses are
randomized [10]. Random Addresses have two types: Static or Private Addresses
[10]. To prevent tracking, the Random Addresses are changed at intervals of up
to 15 minutes [23].

Physical Layer

The last layer of the Controller is the PHY layer. Identical to Bluetooth Classic
and Wi-FI, the frequency range of BLE is a 2.4 GHz Industrial Scientific Medical
(ISM) band [22]. This band is divided into 40 RF channels [9, 10, 22]. There
are two RF channels: the advertising and the data channels [9]. The goal of the
devices in the advertising channel is to broadcast data and find another device to
establish a connection with [9]. In the data channels, connected devices communi-
cate [9]. Three of the 40 channels are advertising channels, the remaining 37 are
data channels [9]. Since the frequency range is the same as for Bluetooth Classic
and other wireless protocols, BLE devices use frequency hopping [22]. The three
advertising channels 37, 38, and 39 are equally spread over the ISM band as shown
in Figure 3.2. The advertising channels are the red ones and the data channels
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are the blue ones. This distribution of the advertising channels avoids interference
with other protocols [22].

Figure 3.2: Distribution of Advertisement Channels over the ISM Band [33]

3.3 BLE LL Packet Format

In this chapter, the reference [76] can be assumed to be the source unless otherwise
stated. There are two packet formats, the uncoded and the coded PHY, defined
by the BLE v5.1 specification. Most BLE devices use the uncoded PHY shown
in Figure 3.3. Each packet contains fields such as Preamble, Access Address, PD,
and Cycling Redundancy Check (CRC). The constant tone field is optional. When
data is transmitted on the LE 1M PHY the Permeable field is 1 octet, and on the
LE 2M PHY it is 2 octets. The access address is the unique identifier of the packet.
As data is transmitted on the advertising physical channel, the PDU is also known
as an Advertising Physical Channel PDU.

Figure 3.3: Packet Format of the Uncoded PHY [76]

The PDU field contains the 16-bit PDU Header and the variable-size PDU Pay-
load. The PDU Header is further subdivided into PDU Type, Reserved for Future
Use (RFU), Channel Selection (ChSel), Transmitting Address (TxAdd), Target
Address (RxAdd), and Length fields as shown in Figure 3.4. The ChSel field has
a value of 1 if the ChSel Algorithm is supported, otherwise 0. The TxAdd field
indicates whether the transmitter address is public or random. If it is public, the
value of the TxAdd field is 1, otherwise 0. The same applies to the RxAdd field.
The Length field is the payload length.
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Figure 3.4: PDU Header of the Advertising Physical Channel

The PDU Type field indicates the type of PDU. There are three types of PDU. The
advertising PDU has values as ADV IND, ADV DIRECT IND, ADV NONCONN IND,
or ADV SCAN IND. The scanning PDU has values of SCAN REQ or SCAN RSP.
The initiating PDU has a value of CONNECT IND. The descriptions of these PDU
types are shown in Table 3.1.

PDU Type Description
ADV IND Undirected advertising
ADV DIRECT IND Direct advertising
ADV NONCONN IND Undirected, nonconnectable, nonscannable advertising
ADV SCAN IND Undirected, scannable advertising
SCAN REQ Scan request
SCAN RSP Scan response
CONNECT IND Connect request

Table 3.1: PDU Types and their Descriptions

If a device wants to transmit data, it has a PDU type of ADV IND. On the other
hand, a device of type ADV NONCONN IND will not accept a connection. The
ADV IND device sends connection requests to other devices to let them know that
it wants to connect. The payload of type ADV IND is shown in Figure 3.5. The
payload has AdvA and AdvData fields. AdvA is the address of the advertiser
which can be public or random. The AdvData contains the information about the
device as defined by the manufacturer.

Figure 3.5: Payload of PDU Type of ADV IND

The AdvData is further divided into several structures. Each structure has Length,
AD Type, and AD Data fields, as shown in Figure 3.6. The AD Type field is the
type of AD data and the Length field is the length of the AD type and data.
The AD Data field contains the information about the device as defined by the
manufacturer. The AD type can have values such as Device Name, Company
ID, Service UUID, Flags, Manufacturer Specific Data, Tx Power Level, Service
Data, Service Class, Local Name, Appearance, BIGInfo, BD ADDR, Public Target
Address, and Random Target Address [77].
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Figure 3.6: AdvData Structure

3.4 BLE Evolution

BLE was first introduced by version 4.0 in 2010. Since then, many other versions
have been released. With each release of a new version, the Bluetooth specifica-
tion changes such that the security of the devices is improved [22]. The security
implementations of devices of version 4.0 can vary extremely. On one side, no
security mechanisms are implemented, while on the other side, the highest level of
security is that the exchanged data is encrypted and the data is protected against
Man-in-the-Middle (MITM) attacks [22]. Because of security threats in version
4.0 and 4.1, version 4.2 introduced in 2014 has a major security update by im-
plementing a pairing mechanism [22]. To ensure secure communication between
devices, encryption is necessary. This means that MITM has to guess the right bits
of a passkey to convince both connected devices to be the legitimate device [22].
By guessing a wrong bit, the MITM is detected [22]. However, MITM could still
occur by forwarding messages between two connected devices [22]. The legitimate
devices fail to realize that they are not directly communicating with each other
[22]. Version 5.0 was introduced in 2016 with a main update that the security
mode was strengthened [22]. In 2019 versions 5.1 and 5.2 are released [22].

3.5 BLE Attacks

Despite many advantages of BLE devices, such as low power consumption, they
also have some weaknesses. As [22] said, there are some security gaps and pri-
vacy weaknesses of BLE devices such as sniffing, spoofing, injection of messages,
Denial-Of-Service (DOS) attacks, localization tracking, and user behavior track-
ing. Through these attacks, attackers gain access to the privacy and personal
information of the device user [22]. For example, having access to the personal
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information of Apple headsets, the attacker gains information about the full name
of the user [23]. The location and user behavior can be tracked by having access to
the fitness tracker device [22]. The attacker can gain information about the route
while jogging and use this information for their benefit. Another issue is when the
attacker can gain information about the medical condition of the user by tracking
medical devices [23]. This kind of information should be kept private and out of
the hands of others [23].

3.5.1 Sniffing Attack

Sniffing attacks involve passively sniffing BLE packets with a sniffer tool [22]. Pas-
sive sniffing does not disrupt the connection, the packets are just caught [25, 22].
Catching is done either in the advertising or connection mode [25]. In the adver-
tising mode, the sniffer catches advertising packets [25]. Conversely, in connection
mode, it catches packets transmitted during a connection of devices [25]. A con-
nection between devices is created with an Access Address (AA) which is only
transmitted at the beginning of that connection [22]. To get access to transmitted
data, the attack has to catch this AA at the beginning state of the connection [22].
There exist two types of sniffers: those based on development kits and dedicated
BLE sniffers [25]. The development kit-based BLE sniffers only catch one con-
nection and miss other packets [25]. The price for these sniffers is under 100 US
dollars [25]. In contrast, dedicated BLE sniffers are much more expensive because
they can catch packets on all 40 channels and multiple connections simultaneously
[25].

3.5.2 Man in the Middle Attack

Whereas sniffing attacks do not disrupt the connection, the MITM attacks can
manipulate it [22]. As shown in Figure 3.7, the attacker places himself between
two connected devices without being detected by them [22]. One device is the
sender and the other one is the receiver. The data transmission can be disturbed
or even injected with new messages by the attacker [27, 28]. Once the sender device
sends data to the receiver device, the data first gets to the malicious device [22].
After data modification by the attacker, the malicious device passes the message
further to the receiver device [22]. The two devices think they are communicating
with each other, but in reality, the messages are being manipulated by the attacker
[39]. Therefore, in the MITM attack the attacker can have unauthorized access to
sensitive information such as passwords of accounts [28].

3.5.3 Replay Attack

The replay attack is shown in Figure 3.8 which is quite different from the MITM
attack. The transmitted data packets from the sender device are intercepted and
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Figure 3.7: MITM Attack [28]

retransmitted at a later point in time by the attacker [27]. The receiver device
thinks that the data retransmitted by the malicious device is coming directly from
the sender device [27]. Also here, the attacker gains information about sensitive
information such as login credentials [27]. The difference to MITM attacks is that
replay attacks replay the data packets and do not modify them [28].

Figure 3.8: Replay Attack [28]

3.5.4 Spoofing

Devices that do not have secure pairing to communicate with other devices are
affected by spoofing attacks [32]. For a spoofing attack to take place, two devices
must already be connected [31]. For reasons like moving, the connection between
devices may be lost due to the large communication distance [31]. As soon as they
reach the distance to get connected again, the attacker imitates the BDADDR of a
server device and pretends to be that device [31]. The attacker can insert spoofed
data and send it to the previously connected client device [31]. That device will
accept that data by thinking it is from a server device [31]. Figure 3.9 shows an
example of a spoofing attack. The server device is the temperature sensor and
the client device is the smartphone. The attacker pretends to be the temperature
sensor and sends spoofed data to the smartphone by changing the real temperature
value. The smartphone thinks the value comes from the temperature sensor and
will adjust the temperature.
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Figure 3.9: Spoofing [32]

3.5.5 Jamming

While spoofing attackers pretend to be legitimate devices, the jamming attackers
want to disrupt communication between two devices by emitting the communica-
tion channel with noise [33]. This is done by doing interference during commu-
nication [40]. The jamming attacker therefore prevents the devices from getting
connected. When disrupting the communication channels, the devices try to recon-
nect [38]. A jammer attacker can jam either a single channel or multiple channels
at a time [33]. One limitation of jamming attacks is that the attacker must be
within a range of one meter of the target devices [38].

3.5.6 Session Hijacking

In the session hijacking attack, the attacker forces the user to terminate its connec-
tion from an Access Point (AP) [34]. This forcing is due to the attacker imitating
the AP’s MAC address and de-authenticating the device, which leads to a termi-
nation of its connection [35]. By pretending to be that disconnected device, the
attacker takes control of that existing communication session between two devices
[34, 35]. Now the attacker can inject malicious data into that existing connection
[36]. In Figure 3.10 a session hijacking attack is shown where an attacker pretends
to be device A and sends malicious data to the server victim. However, session
hijacking attacks do not change the connection state or do not cut the commu-
nication, it takes over the connection without breaking it with the other device
[36]. That other device does not notice that a malicious device has taken over the
communication session [36]. This attack occurs in the LL [36]. Hijacking the data
of medical devices that measure the blood sugar level, oxygen level, or pulse leads
to serious issues [36, 37].

3.5.7 Packet Injection

In a packet injection attack, the attacker injects manipulated packets into networks
[42]. For example, a temperature sensor measures the temperature every hour and
informs the user via an application whether the temperature is rising or falling. By
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Figure 3.10: Session Hijacking [41]

injecting manipulated sensor data into the network, such that the sensor should
measure the temperature once every four hours, the user will receive a delayed
notification that a high temperature has been reached [30]. This type of attack
also leads to serious problems. A limitation of the packet injection attack is that
the attacker should be within ten meters of the target device that wants to inject
malicious packets [38].

3.5.8 Eavesdropping

Eavesdropping is listening to private communications or packets being transmitted
over a network [40]. The attacker tries to locate the data or the request to be
transmitted [40]. Eavesdropping does not disrupt the conversation or manipulate
the data, the attacker listens in silence to the data exchange. Since there is no
disruption of the communication, eavesdropping is harder to detect compared to
spoofing or jamming.

3.6 Machine Learning

ML covers three main categories: unsupervised, supervised, and reinforcement
learning. In supervised ML the dataset should be labeled [61]. The task of super-
vised ML is to train a model by using input-output samples so that it can map an
unseen input sample to its corresponding output sample [65]. These input-output
samples are known as the training data. The training dataset is the input for
training the model. By learning the pattern within the training data, the model
should be able to predict the output variable for the test datasets [63]. Contrarily,
unsupervised ML does not have a labeled dataset and must learn patterns within
the data without knowing the outputs [66]. The goal is to cluster the data into
clusters and categorize the data into subclasses to discover the classes of the un-
labeled dataset [61]. Unsupervised ML is commonly used for description tasks
and supervised ML for prediction tasks [66]. Within supervised ML, there are
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two subtypes: classification and regression. Classification is used to predict cate-
gorical outcomes, and regression is used to predict continuous outcomes [66]. In
reinforcement learning, the agent should achieve the highest cumulative reward
while interacting with the environment [65]. To interact with the environment,
the agent takes actions and receives rewards [61]. Based on the received rewards,
the agent chooses actions from a given set with the highest reward [63]. Since this
thesis aims to classify BLE devices, these supervised ML models are introduced:
DT, RF, LR, NB, KNN, SVM, and neural networks.

3.6.1 Decision Trees

DT are types of trees that arrange and classify the data based on feature values
[61, 62]. Every branch of a DT is a decision rule, and every node is a feature of
the data that needs to be classified [61, 62]. Data is classified and sorted based on
the feature values, starting at the root node [61, 62]. The root node does not have
incoming edges [63]. The DT depends on selecting the features that best partition
the data at the root. To select the best features, the gini index could be used [61].
Each node in the tree is split and nonoverlapping sub-trees are created by dividing
the data into subsets until the data is separated into subsets that belong to the
same class [61, 62]. The nodes without outgoing edges are leaves and are at the
bottom of the tree [63]. These leaves are the predicted outcomes, that belong to
the most common class [63, 66]. It is a recursive partition algorithm starting at
the root node and ending in the leave nodes [63, 66].

A disadvantage of DTs is that they can lead to overfitting [61, 62]. To avoid
overfitting, the algorithm should be stopped before a data point fits the data
perfectly, or it should be pruned and the DT should not grow to its full size
[61, 62]. Furthermore, errors can spread across the trees [64]. Since DTs are graphs
that show decisions and their outcomes, their main advantage is that they are
easily understood [61, 65]. Moreover, DT manages interactions between features,
is unaffected by outliers, is robust to noise, can handle linearly inseparable data,
and can handle missing and redundant values [64]. According to [61], DTs perform
well in classification when the data have discrete or categorial features.

3.6.2 Random Forest

Since DTs are prone to overfitting, combining multiple DTs and training them
simultaneously together, prevents overfitting [66]. These stacked DTs are called
RF classifiers and are shown in Figure 3.11. RF is an ensemble tree-based ML
classification algorithm combining several DT models into an ensemble approach
for classifying instances [66, 60]. Each tree has a random subsample of the training
data [60]. Therefore unlike DT, the trees in the RF classifier do not depend just on
one dataset [60]. Like DT also RF is a recursive partitioning classifier and iterates
through each branch and node until reaching the leaves [66]. Each tree predicts an
outcome result as shown in Figure 3.11. Overfitting is prevented since all trained
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trees are averaged and make a more accurate prediction [66]. Instead of averaging
all trained trees, another approach is to take the class prediction through majority
voting over all trained trees [64]. This aggregation outperforms every individual
DT’s output.

Figure 3.11: RF Classifier [60]

In addition to the advantage of preventing overfitting, RF is robust to noise and
during training, the classifier feature importance is measured which shows which
features are most relevant to predict the outcome [66]. Based on this the splits are
determined by sorting the features and pure subsets are created [66]. Therefore
the model’s ability to discriminate between classes is improved [66]. It can handle
missing data by maintaining accuracy and can also handle many input samples
simultaneously. Having too many trees the RF classifier is very slow to be trained
[64]. Another disadvantage compared to DT is that the trees in RF are less visually
interpretative than one single tree in DT [66].

3.6.3 Logistic Regression

LR classifier measures the relationship between the input and output variables by
returning conditional probabilities [46]. The input variables are the features in the
dataset and the output variable is the target value [63]. Based on the relationship
between them, the goal of the classifier is to predict the target value [63]. By
finding the best curve that fits the dataset, LR takes the highest probability of a
device belonging to a class. It can handle non-linearity but a disadvantage is that
LR requires a large dataset to produce stable predictions [64].

3.6.4 Naive Bayes

Another ML model is the NB model. It is also a probability model that predicts
the probability of an instance belonging to a class rather than classifying it [61].
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The probability of belonging to a class should be as large as possible [61]. NB is
robust to noise and needs less computational time for training the model cause of
its simplicity [63, 64]. Because of its simplicity, the NB classifier assumes indepen-
dence across all features in the dataset [61, 65] Therefore it is less accurate than
other ML models [61].

3.6.5 K-Nearest Neighbour

KNN is an instance-based ML algorithm, which is a lazy-learning algorithm [61].
Compared to eager-learning algorithms such as DT, NB, and neural networks,
KNN needs less computation time during training the model but more computation
time during the classification of instances [61]. The classification of an input
instance from the dataset into its class is done by looking at its k nearest neighbors
[61]. The neighbor with the majority of instances that are near to that input
instance is then the class label of it [61]. KNNs are affected by noise in the
dataset and are sensitive to irrelevant features [64]. Furthermore, the output is
dependent on the choice of the parameter k which affects the performance [64].
Another disadvantage is that KNNs need to store all computations and therefore
are computationally expensive [61].

3.6.6 Support Vector Machines

The goal of SVM models is to find the best margin of a hyperplane to divide the
data instances into classes by taking the largest distances from the hyperplane
to the nearest data instance [61, 66]. The goal of the margins is to minimize
the classification error by maximizing the distance between the margin and the
classes [65]. If linearly separable data can not be separated by the hyperplane
without having misclassifications, then a soft margin is used [61]. For nonlinearly
separable data, the data are projected into a higher-dimensional feature space by
selecting kernel functions [61, 65, 66]. The challenge here is the choice of the best
kernel function [61]. Using kernel function, SVM can handle nonlinearly separable
data. Furthermore, SVM is independent of the data size and number of features
[64]. However, SVM depends on the choice of parameters and is very complex
[64]. Additionally, SVM models are binary classifiers and a multi-class problem
must be reduced to a collection of several binary classification problems [61]. This
leads to a very low speed of training [61]. It is not specified how the predictions
are integrated to get the best hyperplane because SVMs are black-box algorithms
[66].

3.6.7 Neural Network

Neural networks are a collection of algorithms developed to mimic the human brain
to find relationships in a given dataset [65]. They are capable of understanding the
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pattern in the dataset and generalizing the output [46]. Neural networks have three
layers: the input, hidden, and output layers as shown in Figure 3.12. The input
layer receives the input sample of the dataset [65]. The hidden layer processes
these input samples and the output layer gives the computed output which is the
prediction of a class [65]. The actual and computed output values of the neural
networks are compared [65]. Based on the errors the parameters are adjusted
and the the model is retrained [65]. Neural networks can also classify non-linear
separable datasets [62]. One drawback is determining the number of hidden layers.
Neural networks with too many hidden layers are prone to overfitting, whereas if
there are too few hidden layers, the performance of the network will decline [62].
Therefore neural networks are sensitive to the number of hidden layers [64]. The
most commonly used neural network is MLP which is robust to irrelevant input
samples and to noise [64]. MLPs are very complex and hard to train, resulting in
slower training of the model [64].

Figure 3.12: Neural Network [70]
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Chapter 4

Methodology

In this chapter, the methodology of the thesis is explained in six parts as shown in
Figure 4.1. At the bottom of the figure, BLE devices are collected. The different
colors indicate their device types. By collecting the data of BLE devices using a
sniffer tool, the dataset is generated. Features are extracted and selected from the
dataset, which are specific characteristics of device types. The dataset undergoes
four preprocessing steps described in Chapter 4.5 and is split into training and test
datasets. In the end, ML models are implemented to do the classification task.
The goal of the models is to predict the device type of given BLE devices.

Figure 4.1: Methodology Overview

29
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4.1 Device Collection

To generate a dataset, BLE devices need to be collected. Since the sniffer tool sniffs
all BLE devices at a certain distance, the BLE devices should be brought into an
isolated room. This means that devices are collected that can be easily transported
to an isolated room and are accessible, such as personal devices and devices from
friends and acquaintances. The goal is to have as many different types of devices
as possible. For the ML model to recognize unique patterns in the dataset of
device types, each device type should include at least two devices. Based on the
unique patterns of device types, the model can better identify and classify devices,
improving its ability to make accurate predictions. All devices that are collected
and sniffed are listed in Table 4.1. In total, there are 10 different device types
such as headphones, smartphones, smartwatches, laptops, iPads, AirTags, TVs,
kitchen devices, cameras, and bathroom devices. Each device type has at least
two devices. The Headphone category is the largest group, including 8 devices.
The dataset includes a total of 49 devices. The number of devices and the name
of manufacturer of the devices per device type are listed in Table 4.1.

No. Type Count Name of Manufacturer
1 Headphone 8 2 Bose, Samsung, Sony Linkbuds, Sony XM3, Sony

XM4, Apple, Beats
2 Smartphone 6 2 Apple, Google, Huawei, Samsung, Nokia
3 Smartwatch 6 2 Apple, Ericsson, Huawei, Fitbit, Galaxy
4 Camera 6 GoPro4, GoPro5, GoPro9, GoPro10, Canon, Rollei
5 Laptop 5 2 HP, 2 Dell, Apple
6 TV 5 3 Samsung, 2 LG
7 iPad 4 All Apple
8 AirTag 4 All Apple
9 Kitchen 3 All Xiaomi
10 Bathroom 2 Oral-B Toothbrush, AquaClean Shower Toilet

Table 4.1: BLE Device Types and Their Name of Manufacturer

4.2 Data Collection via Passive Sniffing with nRF Snif-

fer Tool

The data packets of the collected BLE devices are sniffed via the nRF Sniffer tool
and compiled into a dataset. Several BLE sniffers are available online1, such as
the nRF52840 Dongle, nRF52840 DK, nRF52833 DK, nRF52 DK, nRF51 DK,
and nRF51 Dongle. In this thesis, the nRF52840 DK2, known as the Nordic nRF
Sniffer, is used. This tool sniffs nearby BLE packets within a specified range

1https://www.nordicsemi.com/Products/Development-tools/

nrf-sniffer-for-bluetooth-le
2https://www.nordicsemi.com/Products/Development-hardware/nRF52840-DK

https://www.nordicsemi.com/Products/Development-tools/nrf-sniffer-for-bluetooth-le
https://www.nordicsemi.com/Products/Development-tools/nrf-sniffer-for-bluetooth-le
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-DK
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passively and in real-time [7]. The sniffed BLE packets are transmitted or received
data by a device [7]. As already mentioned in Chapter 3.2.2, randomized addresses
are changed at intervals of up to 15 minutes. Therefore the BLE packets are sniffed
for 20 minutes to ensure consistency in data collection. The Appendix A.1 explains
the installation guidelines for the nRF Sniffer and Wireshark tools. The Wireshark
tool is used to sniff and visualize the captured data packets. These packets are
saved as PCAP files and are converted into CSV files for further analysis.

4.2.1 Initial Capturing of BLE Packets in Public Places

Feasibility tests have been made by first sniffing data packets from devices in three
public places. These three following places are selected:

• Department of Informatics (IFI) of the University of Zurich (UZH): The
reason this place is chosen is that the IFI has a large number of BLE devices
and can therefore generate a large dataset.

• Smart Home: As most BLE devices are smart home devices and because of
the weaknesses of BLE devices personal information can end up in the hands
of attackers, also smart home devices are sniffed. This allows these devices
to be classified and unauthorized ones to be identified.

• Train Station: BLE devices are sniffed at the train station to determine the
high-traffic area. This shows the true volume of data transmission.

Based on the initial data capturing, it appears that specific data information in the
packets is limited. Most AdvA are randomized and most packets do not contain
information about the device name. The reason is that BLE devices’ privacy is
preserved while they are being sniffed. As there is not enough information about
the packets due to privacy protection, it is difficult to identify the device type of
each packet. Due to the limitation of having no clue about a device type, another
approach is chosen which is described in the next subchapter.

4.2.2 Capturing BLE Packets from Known Device Types

Capturing BLE packets from known device types listed in Table 4.1 avoids the
limitation of having no clue about a device type. The packets from these devices
are sniffed in an isolated room to ensure that the sniffer tool only captures packets
of devices with known device types and no packets from other devices. This iso-
lated room is located in the basement of the IFI to minimize disturbance during
sniffing. To be able to assign the packets to the corresponding device type later,
devices of different types but with the same name of manufacturer, such as Apple
smartphones, Apple headphones, or Apple laptops, must be sniffed separately. The
reason for this is that the name of manufacturer on the device packets only reads
Apple and it is therefore difficult to identify the device type. Separate sniffing of
these devices ensures distinct identification.
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4.3 Dataset Labeling

After evaluating the initial approach, a new approach is made where devices with
known device types are sniffed. Each sniffed packet is annotated with its device
type. The device type is also called a label. The information in the BLE LL is
analyzed to identify the packets. This information contains the device name, the
company ID, and the UUID of the sniffed packets, from which the device type
can be derived. Conditions are implemented in Python so that each packet has a
label in the dataset. One example of labeling two HP laptops, one Apple laptop,
one Bose headphone, one Samsung headphone, and one Samsung TV is shown in
Algorithm 1. The file name is checked and for each AdvA group, the company ID
which is the name of manufacturer, and/or the UUID, and/or the device name is
compared to a value to label that packet. Additionally, a second label subcategory
is added to the CSV files which is the name of manufacturer. This subcategory
label is needed for data splitting which is explained in Chapter 4.7.

Algorithm 1: Labeling Data Packets Example

1 Input: input file path, output file path Output: Labeled data packets
2 Load CSV file from input_file_path into dataframe df
3 Group by AdvA into unique_advertising_address

4 Initialize new columns label and subcategory in df

5 for advertising address in unique advertising address do
6 Extract device_name, company_ID, and UUID

7 if ’2 HP laptops, 1 Apple laptop, Bose & Samsung headphones,

Samsung TV’ in input_file_path then
8 if company_ID equals ’Apple, Inc.’ then
9 Set label to ’Laptop’ and subcategory to ’Apple laptop’

10 if company_ID equals ’Microsoft’ then
11 Set ’label’ to ’Laptop’ and subcategory to ’Hp laptop’

12 if company_ID equals ’Samsung Electronics Co. Ltd.’ then
13 Set label to ’Headphone’ and subcategory to ’Samsung

headphone’

14 if advertising_address starts with ’Bose 33:04:64’ or
company_ID equals ’Lucimed’ or UUID equals ’Bose
Corporation,Google,Amazon.com Services, Inc.’ then

15 Set label to ’Headphone’ and subcategory to ’Bose-1 headphone’

16 if advertising_address starts with ’SamsungElect 25:41:bd’ or
device_name equals ’[TV] Samsung Q60BA 65 TV Mind’ then

17 Set label to ’TV’ and subcategory to ’Samsung TV’

18 Save dataframe df to output_file_path



4.4. FEATURE EXTRACTION 33

4.4 Feature Extraction

Features that are characteristic of a device type are extracted from the sniffed BLE
packets in the dataset. Certain features are directly extracted from them, while
others are derived through subsequent calculations based on the packet data. The
extracted features are the input for training the ML model. The goal of the model
is to learn the unique pattern of a device type to predict the type of that device.

4.4.1 Direct Extraction of Feature from Sniffed BLE Packets

The column headers of CSV files are the extracted features. The complete list of
these features is provided in Appendix C after the data preprocessing step. A sum-
mary of the most important features in the BLE LL is shown in Table 4.2. There
are features related to the packet header and AdvData. Packet Header Length is
a feature due to its variability across devices. The PDU Type feature is the type
of broadcast packet, while the ChSel Algorithm feature is the ChSel strategy used.
The AdvData Type feature lists all types such as Flags, Manufacturer Specific, Tx
Power Level, Service Class UUIDs, Serice Data, Appearance, and Device Name.
The Length of the AdvData Type feature is the corresponding length of the types.
The Power Level (dBm) feature is the power used to transmit packets. As these
features are extracted by [45], they are also extracted as features in this thesis. As
mentioned in Chapter 2, other researchers have extracted features such as RSSI,
Length of Payload, Channel Index, and Delta Time. The RSSI feature is the signal
strength of a transmitted packet, the Length of Payload feature is the length of the
transmitted messages, and the Delta Time feature is the measured time to send or
receive a packet in microseconds. As their values vary between devices, they are
also extracted as features.

Category Features

Packet Header
Packet Header Length
PDU Type
ChSel Algorithm

AdvData
AdvData Type
Length of the AdvData Type
Power Level (dBm)

Table 4.2: Features in the BLE LL

4.4.2 Derived Feature Extraction from Sniffed BLE Packets

Additional features can be derived from the directly extracted features of the
sniffed BLE packets. A flow is defined as packets from the same AdvA. A device
has at least two flows, as the AdvA is changed at intervals of up to 15 minutes
and the sniffing process takes 20 minutes. The complete list of derived features
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is in Appendix D. The Duration Time feature is calculated by taking the differ-
ence between the minimum and maximum time for each flow. The minimum and
maximum time is the time captured by the sniffer while sniffing the packets. The
Number of Packets feature is the sum of all packets of a flow. The frequency is
calculated by how many packets are transmitted per second and how long it takes
to transmit one packet by each flow. These are the Packets per Second feature and
Time per Packet feature respectively. As [44] noted, the frequency is decreased
if the screen of a device is switched off and on very infrequently and increased
if the screen is switched on several times. That means that laptop devices will
have a higher frequency than smartphone devices since the screen of laptop de-
vices is not switched on and off frequently. The Bytes per Second feature is the
total Packet Header Length feature divided by the Duration feature. Calculating
the maximum, minimum, average, standard deviation, and variance of the Packet
Header Length feature, the RSSI feature, the Length of Payload feature, and
the Delta Time feature, more features are derived. The RSSI varies depending
on the distance between two communicating devices. By calculating the standard
deviation of the RSSI feature, devices with a higher likelihood of movement, such
as smartphone devices, tend to have a higher standard deviation of RSSI values
compared to less mobile devices like laptop devices [44]. Another feature is the
direction of the packet, being either forward or backward. The direction is deter-
mined by analyzing the Tx and Rx Address features. Tx stands for transmitting
and Rx for receiving and both either have a value of public or random. If a packet
has a value in the Rx Address column, then this packet is marked as backward
because it is receiving packets. If this field is empty and the Tx Address column
has a value, then it is marked as forward because it is transmitting packets. Un-
like all other derived features which are calculated per flow, the Packet Direction
feature is done for each packet. Knowing the direction of each packet, the Number
of Forward Packets and the Number of Backward Packets features are calculated
for each flow by summing all packets of a flow which are marked as forward and
backward respectively.

To summarize, these features are the derived features and are attached as new
columns in the CSV files:

• Number of Packets

• Packets per Second

• Time per Packet

• Bytes per Second

• Packet Header Length: Maximum, Minimum, Average, Standard Deviation,
Variance

• RSSI: Maximum, Minimum, Average, Standard Deviation, Variance

• Delta Time: Maximum, Minimum, Average, Standard Deviation, Variance
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• Packet Direction

• Number of Forward Packets

• Number of Backward Packets

4.5 Data Preprocessing

The dataset undergoes four preprocessing steps: data cleaning, removal of unique
identifiers, data transformation, and data balancing. To consolidate the prepro-
cessing steps all CSV files are merged into a single CSV file.

4.5.1 Data Cleaning

By converting the PCAP files into CSV files, some values such as µ or
√

are
automatically converted into nonreadable values and must be replaced with ”mi-
croseconds” and ”true” accordingly. Columns with too many missing and constant
values are removed from the CSV file. The reason is that they do not contribute
to the classification task and are thus irrelevant. Additionally, columns such as
No. and Time are also removed, as they are the chronological order in which the
packets are sniffed and therefore do not contribute to the classification task.

4.5.2 Removal of Unique Identifiers

Unique identifiers, such as the AdvA, company ID (name of manufacturer), device
name, and UUID, are highly specific to a single type of device. By training the
model with distinct identifiers, the model can be easily trained to predict the device
type. For example, if all packets with the device name ”LE-WH-4” belong to the
device type Headphone, the model will only predict the device type based on the
device name and will not learn the pattern from the features. Therefore, removing
unique identifiers directly linked to specific types is essential for a more robust and
generalized model.

4.5.3 Data Transformation

Within the dataset, columns are numerical or categorial. Since ML models accept
only numerical input, the categorial data needs to be transformed into numerical
representation to solve classification problems [70]. Encoding techniques exist for
this purpose, such as label encoding, and one-hot encoding [70]. There are two
categories of categorial data: nominal with no specific order and ordinal with a
specific order [70]. Nominal data do not have order or ranking and for ordinal data
the order matters but the distinction between values is irrelevant [70].
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Label encoding is used to encode ordinal data [70]. Every value in label encoding is
transformed into an integer value while the order is maintained [70]. These integer
values are arranged in an ordered sequence, with values closer to each other being
very similar. For example, value 1 is closer to value 2 than to value 4. On the
other hand, nominal data is transformed using one-hot encoding where there is no
link between the categorial values [70]. In this technique, the categorial values are
replaced by a set of binary values, with each unique integer value represented by a
binary vector [70]. A value of 0 denotes the category’s absence and 1 its presence
[70]. For example, if there are three unique categorial values, the encoding might
appear as [1, 0, 0], [0, 1, 0], or [0, 0, 1], indicating the presence or absence of
each categorical value. As the extracted features in the dataset do not have an
ordinal relationship between the categorial values, one-hot encoding is the preferred
approach. These values are transformed using the get_dummies() function from
the Pandas library3.

4.5.4 Data Balancing

Some device types may transmit and have more packets than others, resulting
in an imbalance. This can lead to misclassification of underrepresented classes
[68]. To address this issue and prevent certain types from being overrepresented
while others are underrepresented, data balancing techniques are used. Undersam-
pling the majority classes and oversampling the minority classes are two common
approaches used for handling imbalanced data [68, 69].

Undersampling involves reducing the number of samples in the majority classes by
randomly removing samples from them until all classes have the same number of
samples [68, 69]. This strategy creates a more balanced dataset and helps mitigate
the bias introduced by the overrepresented classes [69]. In contrast, oversampling
increases the number of samples in underrepresented classes by creating synthetic
samples or duplicating existing ones [68]. This ensures that minority classes have
a comparable influence during training as the majority classes [69].

For this thesis, considering the availability of a large dataset with 49 devices and
sufficient sniffed packets for minority device classes, undersampling is used. This
decision aims to address the data imbalance effectively while maintaining the in-
tegrity of the dataset. The undersampling method is performed after the models
have been trained. If the accuracy is high enough, this step is not necessary. How-
ever, if the accuracy is low, undersampling is applied to the dataset and the models
are retrained.

4.6 Feature Selection

Having a high number of features as input, it is difficult for ML models to handle
it [72]. Feature selection is an important step as it helps refine the set of features

3https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html

https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html
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by selecting the most relevant subset of features and discarding the irrelevant
ones [72]. The reason is that not all extracted features are equally important
for training a model to predict the outcome. Features are less important if they
are used to train the model but do not improve the accuracy [71]. Therefore
these features can be omitted. By excluding less important features, the risk
of overfitting is reduced [72]. Additionally, feature selection reduces the training
time and improves accuracy by focusing only on the most informative features [72].
By using the smallest subset of features, the trained model achieves an optimal
performance.

In supervised ML, feature selection techniques are filter, embedded, and wrapper
methods, as shown in Figure 4.2 [72]. Filter methods remove features based on
their relation to the target value [72]. Features with a low correlation to the target
value are excluded [72]. The classifier is trained on the remaining features [72].
Filter methods include the IG, Chi-square, Correlation, and Relief [72]. They
do not interact with the classifier and are therefore independent of it [72]. They
also have low computational cost and are fast [72]. Embedded methods train
the classifier and check the accuracy of different subsets of features [72]. The
subset of features with the highest accuracy is selected [72]. Unlike filter methods,
embedded methods interact with the classifier and are able to capture feature
dependencies [72]. The disadvantage is that they depend on the classifier [72].
Wrapper methods use a subset of features and train the classifier on that subset
[72]. The subset is adjusted according to the output and the model is retrained
[72]. As embedded methods, wrapper methods also interact with the classifier on
which they depend. While the feature dependencies can be captured, wrapper
methods are computationally expensive and overfitting may occur [72].

(a) Filter Method [72] (b) Embedded Method [72] (c) Wrapper Method [72]

Figure 4.2: Feature Selection Methods [72]

In this thesis, the filter and embedded methods are used to find the smallest sub-
set of the most important features with the highest accuracy. Due to memory
constraints and because wrapper methods are computationally expensive, they
are not used. The filter method is implemented using the SelectKBest()4 func-
tion from the scikit-learn Python library. The SelectKBest() function works for
classification tasks and selects the k-best features based on their relation to the
target variable. Since the dataset has numeric features, the SelectKBest() func-
tion is implemented to calculate the ANOVA F-value. This value is computed
between each feature in the dataset and the device type. A high F-value indicates
that the variance between the feature’s value across different device types is very

4https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.

SelectKBest.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
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high compared to the variance within the device types. The embedded method
is implemented using the RandomForestClassifier()5 model and the Select-

FromModel()6 function, both from the scikit-learn Python library. This method
takes into consideration the feature’s importance to the RF model. The calculated
importance scores of the features show the importance of each feature in making
accurate predictions. The features with the highest score have a greater impact
on the model to make predictions.

4.7 Data Splitting

The dataset is divided into training and test datasets. The training dataset is used
to train the ML models. During model training, the training dataset is further
divided into training and validation subsets. The validation dataset is used to
evaluate and tune the models during training. Once the models are trained, their
performance on unseen data is evaluated using the test dataset by measuring the
difference between the actual and predicted values.

4.7.1 Train-Test Splitting

A common data splitting method for developing ML models, used by many other
researchers such as [4] and [14], is to split the dataset approximately 80% into
training and 20% into test datasets. Other common data splitting methods are
60/40, 70/30, or 90/10 if the dataset is large enough [78]. The split is done
randomly. An alternative data splitting approach takes into account the name of
manufacturer. One device per device type with a specific name of manufacturer
is excluded from the training dataset, but all devices of that type are included
in the test dataset. In order to retain 80% of the data in the training dataset
and 20% in the test dataset, the device with the fewest data packets in its device
type is excluded from the training dataset. For example, if there are smartwatch
devices with names of manufacturer Apple, Samsung, and Huawei, and Huawei is
the device with the fewest data packets, the packets from the Huawei smartwatch
are not in the training dataset. The training dataset only contains packets from
Apple and Samsung smartwatches. In contrast, the test dataset contains packets
from all three devices. This approach aims to evaluate the ability of the model to
predict unseen device packets from a certain name of manufacturer.

5https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
6https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.

SelectFromModel.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
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4.7.2 Train-Validation Splitting

The training dataset is further divided into training and validation subsets. Ac-
cording to [62, 61, 73], the performance of trained ML models can be evaluated
using three methods. One method is to split two-thirds of the training dataset for
training and use the remaining third for performance estimation. An alternative
approach, known as k-fold cross-validation, involves dividing the training dataset
into k-equal subsets [73]. One subset is the validation subset and the other k-1
subsets are the training subsets. For each subset that is the validation subset, the
classifier is trained on the union of the k-1 subsets and evaluated on the valida-
tion subset [73]. The performance of the classifier is the average of the error rates
of each subset. A special method of the k-fold cross-validation approach is the
leave-one-out cross-validation [73]. Here, each validation subset contains a single
instance and therefore the number of instances equals the number of folds [73].
This method is more computationally intensive and is used when the number of
instances is small [73]. On the other hand, when the amount of data is large, k-
fold cross-validation is used [73]. As the dataset in this thesis contains 10 different
device types and 49 devices, the k-fold cross-validation approach is used.

4.8 Device Classification via ML Approach

Two ML models are selected for the device classification task. The goal is to predict
the device types by training the models with the provided training dataset and
evaluating them with the provided test dataset. There are several ML models to
consider, as listed and described in Chapter 3.6. In this thesis, the RF classifier and
the lightweight MLP model are selected. The reason for the selection is discussed
in the subsections 4.8.3 and 4.8.4.

4.8.1 Training of ML Models

Both ML models are trained on the training dataset including all extracted fea-
tures, followed by measuring the performance of the model using the test data. As
there are two approaches to data splitting, both models are trained twice, once us-
ing the 80/20 data splitting approach and once using the alternative data splitting
approach. Additionally, all four models with the same structure as before are then
trained by using the selected features by the methods described in Chapter 4.6.
The RF classifier is trained using the features selected from the embedded method
and the MLP model from the filter method. The number of features is chosen to
be between 1 and 30. The models are trained on these n = [1, 30] selected features,
and the best number of features with the highest accuracy is selected. A total of
eight ML models are trained, four RF classifiers, and four MLP models.
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4.8.2 Evaluation Metrics

One evaluation metric is the accuracy. It is the proportion of the number of correct
predictions to the total number of predictions made by the model [70]. The training
accuracy measures how well the model performs on the training dataset and the
test accuracy on the unseen test dataset.

The accuracy for each device type is calculated to determine which device type
achieves the highest accuracy, as well as to compare the accuracies across device
types and the influence of each device type on the overall accuracy. The formula
is:

Accuracy =
Number of Correct Predictions

Total Number of Predictions Made
(1)

Evaluation metrics such as True Positive (TP), True Negative (TN), False Positive
(FP), False Negative (FN), precision, recall, specificity, and F1-score are measured
for each device type. TP and TN values show how many instances are correctly
classified, and FP and FN values show how many instances are incorrectly classi-
fied by the model [74]. Precision is the proportion of correctly predicted positive
instances to the total predicted positive instances [66, 70]. Recall also known as
sensitivity is the proportion of correctly predicted positive instances to all instances
that should have been identified as positive [66, 70]. Specificity is the proportion
of correctly predicted negative instances to all instances that should have been
identified as negative [66]. F1-score also known as F-measure or F-score is the
weighted average of precision and recall [70]. It is calculated to show the balance
between precision and recall [70]. The formulas are,

Precisiont =
TPt

TPt + FPt

(2)

Recallt =
TPt

TPt + FNt

(3)

Specificityt =
TNt

TNt + FPt

(4)

F-Scoret =
2× Precisiont × Recallt
Precisiont +Recallt

(5)

where t denotes the device type and where TPt, TNt, FPt, and FNt are the TP,
TN, FP, and FN predictions for device type t [75].

Furthermore, the confusion matrix is plotted which is a k × k matrix, where k is
the number of device types [74]. Its rows are the true labels and its columns are
the labels predicted by the model [75]. It shows how many instances per device
type are correctly and incorrectly predicted by the model. The elements on the
diagonal of the confusion matrix show the number of correct predictions for each
device type [75]. High values on the diagonal indicate that the model correctly
classified the data. The off-diagonal values show the number of misclassifications
[75]. It also shows how many instances of one device type are incorrectly assigned
to which other device type.
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4.8.3 Random Forest Classifier

The RF classifier is an ensemble ML model that combines multiple DT. The RF
classifier is selected because it can handle a large number of features in the dataset.
Since the dataset has many features and is complex, the RF classifier is suitable. As
already mentioned in Chapter 3.6.2, the RF classifier computes feature importance,
and by combining several DTs the RF classifier prevents overfitting. Furthermore,
RF classifiers are robust to noise and can handle missing and nonlinear data. The
RF classifier is implemented using RandomForestClassifier() function from the
scikit-learn Python library7 and require setting several parameters defined in the
scikit-learn Python library8 including:

• n estimators, default=100: Number of trees

• criterion gini, entropy, log loss, default=gini: Function used to measure the
quality of a split

– Gini: Gini impurity function

– Log loss and entropy: Shannon IG function

• max depth, default=None: Maximum depth of the trees

– If None: Nodes are extended until a minimum of min samples split
samples is present in every leaf, or until every leaf is pure.

• min samples split default=2: Minimum number of samples needed to split
an internal node

• min samples leaf, default=1: Minimum number of samples needed at a leaf
node

• max features, sqrt, log2, None, default=sqrt: Number of features to take
into account while choosing the ideal split

– If sqrt, then max features=sqrt(n features).

– If log2, then max features=log2(n features).

– If None, then max features=n features.

• bootstrap, default=True:

– If True: each tree is built using bootstrap samples

– If False: each tree is built using the entire dataset

The model is trained on the default parameters. To improve the resulting accuracy,
the model is finetuned with hyperparameters defined in Table 4.3. The goal is to
achieve a higher accuracy than with the default parameters.

7https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
8https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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Hyperparameter Values
n estimators [50, 100, 200]
criterion [”gini”, ”entropy”]

max depth [10, 20, None]
min samples split [2, 4, 10]
min samples leaf [1, 2, 5]
max features [”sqrt”, None]
bootstrap [True, False]

Table 4.3: Hyperparameters for the RF Classifier

To check overfitting, the training and test accuracies are compared, and cross-
validation with k = 5 is done. Overfitting occurs when the difference between the
training and test accuracies is high, indicating that the training accuracy is close
to 1 and the test accuracy is comparatively very low. Such values indicate that
the model could memorize the training data, but does not perform well on unseen
data. If the two accuracies are close to each other and there is not such a large
difference between them, there is no overfitting.

Cross-validation is used to evaluate the performance of the model and to show how
robust and stable the model is. The model is trained five times on k = 5 different
subsets of the data. The cross-validation scores of k = 5 subsets and the average
accuracy across all k = 5 cross-validation folds are calculated and compared to the
test accuracy. If the cross-validation scores are close to the test accuracy, it means
that the model performs well on unseen data. The learning curve is plotted which
shows the accuracy of the model on the training dataset, the training score, and
the cross-validation score with an increasing number of training samples. If the
training score is high but the cross-validation score is low, this indicates overfitting
and the model performs poorly on unseen data. If both scores converge and are
high, it indicates that the model performs well on unseen data. If the training
score does not decrease and the cross-validation score increases, it means that the
model is performing better with more data.

4.8.4 Multi-Layer Perceptron

The reason for choosing the lightweight MLP model is that the research published
in [45] uses a lightweight neural network based on MLP and is comparable to this
thesis. They use a lightweight MLP model for three reasons. As the BLE packets
differ amongst devices of the same type, this variation is difficult to measure.
MLPs are capable of identifying different types of devices based on this variation.
Furthermore, MLPs can automatically extract features from BLE packets. Since
the data in the AdvData are characteristics specific to the device types, MLP
models can identify devices by analyzing these characteristics. Because the data
structure is simple and is not complex having images or text, a lightweight MLP
is sufficient.
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They use features such as the PDU and the ChSel from the packet header, the Type
of AdvData, Length of the type of AdvData, Flags, Service Data, Service UUID,
Manufacturer Specific, Appearance, and Power Level. Their dataset consists of
23 BLE devices categorized into 7 types as shown in Figure 4.3. Their BLE
packets are collected with software radio-based BLE receivers. In total, they have
collected 48’623 packets and formed training, validation, and test datasets in the
ratio of 7:2:1 of the data. Using an MLP model, their goal is to recognize and
categorize BLE devices. They achieve an accuracy of 99.8% to correctly classify
the BLE devices with precision, recall, and F1-score being 0.9903, 0.9890, and
0.9888 respectively. By also using an MLP model in this thesis but with a different
dataset and extracting different features, it is possible to compare the classification
accuracies of the model from the research published in [45] and the model in this
thesis.

Figure 4.3: Dataset of BLE Devices from Research published in [45]

The structure of the lightweight MLP model is the same as described in [45]. It
consists of two hidden layers of 128 neurons each. It uses the Rectified Linear
Unit (ReLU) activation function and the Softmax activation on the output layer.
Dropout layers are added between the two hidden layers, and between the hidden
layer and the output layer, with probability P set to 0.3 to avoid overfitting. The
structure of the MLP model is shown in Figure 4.4. After removing unique identi-
fiers from the dataset, the data is preprocessed by zero padding and normalization.
This is done by converting the hexadecimal value to a numerical representation
and dividing it by 16. Since the dataset in this thesis undergoes one-hot-encoding
to be transformed into numerical representation, zero-padding is not needed and
the dataset only undergoes an additional preprocessing step of dividing the values
by 16 to achieve the same data structure as in [45]. Data splitting remains as
described in Chapter 5.7 and the 7:2:1 ratio is not applied.

The MLP model is implemented using the TensorFlow library9 and is trained using
50 epochs, a batch size of 32, and a validation dataset of 20% of the data. After each

9https://www.tensorflow.org/guide/core/mlp_core

https://www.tensorflow.org/guide/core/mlp_core
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Figure 4.4: Structure of the MLP Model [45]

epoch, training accuracy, training loss, validation accuracy, and validation loss are
computed. The loss measures how well the prediction made by the model matches
the actual labels by calculating the difference between the predicted labels and
the actual labels. A lower loss indicates a better performance of the model. The
validation accuracy is the accuracy of the validation dataset and shows how well
the model performs on unseen data. As already mentioned, overfitting occurs when
the training accuracy increases at each epoch during training, but the validation
accuracy decreases, and when the training loss decreases during training at each
epoch and the validation loss increases. The error on the training data decreases
but not on the validation data, indicating poor generalization.

4.9 Comparing ML Models

In summary, there are nine trained ML models:

1. RF classifier with 80/20 data splitting method

2. RF classifier with 80/20 data splitting method on selected features

3. RF classifier with alternative data splitting method

4. RF classifier with alternative data splitting method on selected features
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5. MLP model with 80/20 data splitting method

6. MLP model with 80/20 data splitting method on selected features

7. MLP model with alternative data splitting method

8. MLP model with alternative data splitting method on selected features

9. MLP model from research published in [45]

Their performances are compared by looking at the difference in their accuracies.
The model with the highest accuracies is declared to perform the best for the
device classification task.
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Chapter 5

Results and Evaluation

This chapter presents the results and evaluation of the proposed methodology.
The sniffed BLE packets, the extracted features, and the ability of the models to
correctly classify the packets are shown and discussed.

5.1 Device Collection

As mentioned in Chapter 4.1, the dataset consists of 49 devices, representing 10
different device types. There are 8 headphones, 6 smartphones, 6 smartwatches, 6
cameras, 5 laptops, 5 TVs, 4 iPads, 4 AirTags, 3 kitchen devices, and 2 bathroom
devices as shown in Figure 5.1. Each device type consists of at least two devices.
There are differences in the distribution of the devices within the device types.
For example, the Headphone category is the most common, with a total of 8
devices, while the Bathroom category devices are the least common, with only 2
devices. The reason for this different distribution of devices is the accessibility
and use of the devices in different circumstances. The fact that headphones are
so widespread and commonplace explains their high number in the dataset. Being
portable, they are easy to obtain. In addition, many people own more than one
pair of headphones, which also increases the number of headphones. On the other
hand, the reason for the lack of bathroom devices is that many people do not
have BLE bathroom devices. This problem also applies to kitchen devices, where
Bluetooth connectivity may not be as useful or desirable as for other devices.

There are limitations and potential biases in the device collection process. One
limitation is the device selection criterion as only devices that are considered to
be easily portable are collected. Less portable devices, such as security cameras or
stationary devices, are excluded from this criterion. As a result, the dataset may
not accurately represent the range of BLE devices. There is also an additional
limitation when collecting devices through friends and acquaintances. Device cat-
egories that are less commonly owned or used by friends and acquaintances cannot
be included due to the difficulty in accessing the devices.

47
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Figure 5.1: Number of Devices per Device Type

5.2 Data Collection via Passive Sniffing with nRF Tool

The packet data of BLE devices is passively sniffed for 20 minutes using the nRF
Sniffer tool. Two approaches are taken: the first is to sniff all BLE devices in three
public places, and the second is to sniff the 49 BLE devices.

5.2.1 Initial Capturing of BLE Packets in Public Places

BLE packet data is sniffed in three public places such as at the IFI, at home,
and the train station. The packet details for packets sniffed at the IFI are shown
in Figure 5.2. There is information about the nRF Sniffer tool and the BLE
LL. The LL contains the most informative information such as the Packet Header,
the AdvA, and the AdvData fields with information about flags, and manufacturer-
specific data. Due to the strong privacy protection, the AdvA is mostly not public.
As shown in Figure 5.2 the TxAdd is random which means that the AdvA is
randomized. If the addresses are not randomized, the MAC address Lookup tool1

could be used to determine the device type. Some BLE packets such as the one
in Figure 5.2 contain information about the company ID. However, knowing that
a packet is from an Apple device does not help to determine the device type.
Furthermore, there are online databases with information about the packets and
their device type, but they are not published.

One way to determine the device type is to filter the packets and keep only those
packets where the Device Name field is not empty. By sniffing the packets at the
IFI and home, and filtering for non-empty Device Name fields, these are the unique
device names:

1https://dnschecker.org/mac-lookup.php

https://dnschecker.org/mac-lookup.php
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Figure 5.2: Packet Detail of Sniffed Packets

• Apple Pencil

• COTSUBU

• EDIFIER BLE

• JBL LIVE400BT-
LE

• LE-Bose

• LE-LinkBuds

• LE WF-C500

• LE WH-1000XM3

• LE WH-1000XM4

• MOMENTUM 4

• Q26 Pro(ID-F569)

• Venue-Tile

• Hue Lamp

• LE WH-1000XM4

• Smart Tag

• VMAT

An online search of these device names can be used to determine the device type.
The majority of known device names are packets of headphones. Other BLE
packets with known device names belong to the Apple Pencil, Smartwatch, Lamp,
or AirTag categories. However, some device names are not recognizable, such as
VMAT, and their device type cannot be inferred. Calculating the percentage of
packets with a known device name out of all sniffed packets, it is 3.16% at IFI and
4.88% at home. Only a tiny fraction of the sniffed data can be determined with
the device type.

Another way to determine the device type is to take non-empty Company ID
fields, which are the name of manufacturer, or non-empty UUID fields. Applying
the filter for non-empty Company ID fields to the packets sniffed at the IFI and
home will return these unique names of manufacturer:
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• 3Com

• 3DiJoy Corporation

• 9Solutions Oy

• A & R Cambridge

• ACOS CO.,LTD.

• APT Ltd.

• Accel Semiconduc-
tor Ltd.

• Airtago

• Apple, Inc.

• Atheros Communi-
cations, Inc.

• Avago Technologies

• Barnacle Systems
Inc.

• Beats Electronics

• Beautiful Enter-
prise Co., Ltd.

• Belkin Interna-
tional, Inc.

• Berner Interna-
tional LLC

• BlackBerry Limited

• Blue Clover Devices

• Broadcom Corpora-
tion

• C Technologies

• CONWISE Tech-
nology Corporation
Ltd

• CORE Lighting Ltd

• Carol Cole Com-
pany

• Conexant Systems
Inc.

• connectBlue AB

• Continental Auto-
motive Systems

• Digianswer A/S

• Eclipse (HQ Es-
pana) S.L.

• Eijkelkamp Soil &
Water

• Elgato Systems
GmbH

• Enflux Inc.

• Equinux AG

• Ericsson Technol-
ogy Licensing

• For use in internal
and interoperability
tests

• Garmin Interna-
tional, Inc.

• General Motors

• Gimbal Inc.

• GimmiSys GmbH

• Group Sense Ltd.

• HM Electronics,
Inc.

• Hewlett-Packard
Company

• HUIZHOU DESAY
SV AUTOMOTIVE
CO., LTD.

• IBM Corp.

• Icom inc.

• Innovative Yachtter
Solutions

• Intel Corp.

• Inventel

• John Deere

• KC Technology Inc.

• Life Laboratory Inc.

• LifeStyle Lock, LLC

• Lucent

• Lucimed

• Ludus Helsinki Ltd.

• M-Way Solutions
GmbH

• Macronix Interna-
tional Co. Ltd.

• Marvell Technology
Group Ltd.

• MediaTek, Inc.

• Mesh-Net Ltd

• Metanate Limited

• Microchip Technol-
ogy Inc.

• Microsoft

• Microtronics Engi-
neering GmbH

• Mitsubishi Electric
Corporation

• Nanoleq AG

• Norwood Systems
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• ORSO Inc.

• Otter Products,
LLC

• Parthus Technolo-
gies Inc.

• Pepperl + Fuchs
GmbH

• Plantronics, Inc.

• Qualcomm Tech-
nologies Interna-
tional, Ltd. (QTIL)

• Quintic Corp

• Renesas Electronics
Corporation

• Revvo Technolo-
gies, Inc.

• Samsung Electron-
ics Co. Ltd.

• Sam Labs Ltd.

• Seiko Epson Corpo-
ration

• Selfly BV

• Senix Corporation

• SiFli Technologies
(shanghai) Inc.

• Socket Mobile

• Sony Corporation

• Staccato Communi-
cations, Inc.

• Summit Data Com-
munications, Inc.

• TTPCom Limited

• TYRI Sweden AB

• Tangerine, Inc.

• Toshiba Corp.

• VEGA Grieshaber
KG

• Vonkil Technologies
Ltd

• Xiaomi Inc.

• Xtrava Inc.

• Zumtobel Group
AG

• iopool s.a.

Applying the filter for non-empty UUID fields to the packets sniffed at the IFI
and home will return these values:

• Amazon.com Ser-
vices, Inc.

• Andreas Stihl AG &
Co. KG

• Apple Inc.

• August Home Inc

• Ayla Networks

• Battery Service

• Blue Bite

• Bose Corporation

• CRESCO Wireless,
Inc

• CSR

• Device Information

• Duracell U.S. Oper-
ations Inc.

• ERi, Inc.

• FTP

• Google

• Harman Interna-
tional

• Huawei Technolo-
gies Co., Ltd.

• Logitech Interna-
tional SA

• Nokia

• Philips Lighting
B.V.

• Procter & Gamble

• Robert Bosch
GmbH

• SENNHEISER elec-
tronic GmbH & Co.
KG

• SMART INNOVA-
TION Co., Ltd

• Samsung Electron-
ics Co.

• Sonos, Inc.

• Sony Corporation

• TASER Interna-
tional, Inc.

• Telit Wireless Solu-
tions GmbH

• Tile, Inc.
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• Volkswagen AG • alibaba • ruwido austria
gmbh

The majority of the names of manufacturer cannot be used to determine the device
type as the device could cover several device types rather than one. For example,
the device with the name of manufacturer ”Apple” could be a smartphone, laptop,
iPad, headphones, or an AirTag. Analogously, non-empty UUIDs cannot determine
the device type as most UUIDs could cover multiple device types.

In summary, packets sniffed in public places cannot be uniquely categorized by
device type. If they can be categorized by looking at the non-empty Device Name
fields, only a tiny fraction of the sniffed packets can be categorized, and most will
be headphones. For this reason, this approach to capturing BLE packets in public
places is not useful for the classification task. Therefore, another approach is taken
where BLE packets from known device types are sniffed.

5.2.2 Capturing of BLE Packets from Known Device Types

Since the packets sniffed in public places are not useful for the classification task,
the approach is to capture BLE packets from known device types. The packets
from the 49 devices already collected are sniffed in an isolated room to generate
the dataset, except for the TVs and the AquaClean shower toilet device since
they cannot be transported to that isolated room. Since they have unique device
names, they are easily distinguishable from other sniffed BLE devices in the same
location. Devices with the same name of manufacturer that belong to different
device types are sniffed at different times and stored in different PCAP files. In
addition, devices with no device name, company ID, or UUID information are
sniffed separately and stored in separate PCAP files so that the type can still be
determined. Devices whose packets contain device name, company ID, or UUID
information can be sniffed together as long as they can be distinguished. As devices
are brought by friends and acquaintances at different times and are immediately
sniffed and returned, 22 PCAP files are stored, as shown in Table 5.1.

The PCAP file of sniffed packets from an Apple iPad and a Xiaomi kettle is visual-
ized in Wireshark as shown in Figure 5.3. There are fields like No., Time, Length
of Payload, Length of Packet, Channel Index, PHY, RSSI, Delta Time, Access
Address, Packet Header, Type, Length, PDU, Protocol, Info, Reserved, Channel
Selection, Tx Address, RX Address, Length, Scanning Address, Target Address,
AdvA, Simultaneous LE and BR/EDR to Same Device Capable (Host), Simul-
taneous LE and BR/EDR to Same Device Capable (Controller), BR/EDR Not
Supported, LE General Discoverable Mode, LE Limited Discoverable Mode, Power
Level, Company ID, Address Type, Simultaneous LE and BR/EDR to Same Device
Capable (Host), LE Supported By Host, OOB Data Present, Hash C, Data, Cus-
tom UUID, UUID 16, Service Data, Device Name, BIG Offset, BIG Offset Units,
ISO Interval, Num BIS, NSE, BN, Sub Interval, PTO, BIS Spacing, IRC, Max
PDU, Seed Access Address, BD ADDR, SSP OOB Length, CRC, and Malformed
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No. of File No. of Devices Devices
1 1 Ericsson smartwatch
2 4 all Apple AirTags
3 3 all Apple iPads
4 5 2 HP laptops, Apple laptop, Bose-1 headphone,

Samsung headphone
5 2 Apple smartwatch, Samsung TV
6 1 Google smartphone
7 1 Huawei smartwatch
8 3 Sony XM3 headphone, Sony XM4 headphone,

Sony Linkbuds headphone
9 2 all Dell laptops
10 3 Nokia smartphone, Galaxy smartwatch, Sam-

sung TV
11 2 Apple iPad, Xiaomi kettle
12 4 Samsung smartphone, Apple smartwatch, Oral-

B tootbrush, Rollei camera
13 3 2 Apple smartphone, Huawei smartphone
14 2 Apple headphone, Fitbit smartwatch
15 4 Bose-2 headphone, Xiaomi mixer, Beats head-

phone, AquaClean shower toilet
16 2 Xiaomi airfryer, LG TV
17 2 LG TV, Samsung TV
18 1 GoPro9 camera
19 1 GoPro10 camera
20 1 GoPro5 camera
21 1 GoPro4 camera
22 1 Canon camera

Table 5.1: Stored PCAP Files of Sniffed BLE Packets
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Packet. The No. field is the number of the packet sniffed and the Time field is
the sniffing time when each packet is sniffed. Both are chronological. The Length
of Payload, Length of Packet, Channel Index, PHY, RSSI, and Delta Time fields
are from the nRF Sniffer data. The Channel Index field is either 37, 38, or 39 and
indicates on which channel in the PHY layer the packets are sniffed. The PHY
field is the PHY layer which has a value of LE 1M. The RSSI field indicates the
signal strength. The Delta Time field is in microseconds and indicates the time
taken to transmit the packet. The remaining fields are from the BLE LL. Detailed
information is already described in Chapter 3.3.

Figure 5.3: Sniffed Packets from an Apple iPad and a Xiaomi Kettle visualized in
Wireshark

5.3 Dataset Labeling

The PCAP files are converted to CSV files. The device type of the packets sniffed
is determined by at least one of the fields such as Device Name, Company ID,
and UUID. Therefore, these fields are analyzed in every single file. The values of
these fields, which determine the device type, are listed in Table 5.2. For example,
the Ericsson smartwatch is determined as a smartwatch by the value ”Ericcson
Technology Licensing” in the Company ID field or by the value ”UM59 (ID-2663)”
in the Device Name field. By implementing conditions that match the values as
shown in Algorithm 1, each packet in the files is labeled. The label is the device
type and is added to the CSV files as a new column called label. In addition, a
second label is added as a new column called subcategory, which is the name of
manufacturer.

Figure 5.4 shows the total and average number of packets for each device type.
Because headphone devices are most commonly sniffed, they have the largest total
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Device Field(s) Value of the Field(s)

Ericsson smartwatch
Company ID
Device Name

Ericsson Technology Licensing
UM59 (ID-2663)

Apple AirTags Company ID Apple, Inc.
Apple iPads Company ID Apple, Inc.
HP laptop Company ID Microsoft
Apple laptop Company ID Apple, Inc.
Bose-1 headphone UUID Bose Corporation
Samsung headphone Company ID Samsung Electronics Co. Ltd.
Apple smartwatch Company ID Apple, Inc.
Samsung TV Device Name [TV] Samsung Q60BA 65 TV Mind
Google smartphone UUID Google
Huawei smartwatch Company ID HUAWEI Technologies Co., Ltd.
Sony XM3 headphone Device Name LE WH1000XM3
Sony XM4 headphone Device Name LE WH1000XM4
Sony Linkbuds headphone Device Name LE LinkBuds S
Dell laptop Company ID Microsoft
Nokia smartphone Company ID Nokia Mobile Phones
Galaxy smartwatch Device Name Galaxy Watch4 (5FHX)
Samsung TV Device Name [TV] Samsung Q80AA 50 TV
Xiaomi kettle UUID Xiaomi Inc.
Samsung smartphone Company ID Samsung Electronics Co. Ltd.
Oral-B toothbrush Device Name Oral-B
Rollei camera Device Name Rollei SmartBT
Apple smartphone Company ID Apple, Inc.
Huawei smartphone UUID Huawei Technologies Co., Ltd.
Apple headphone Company ID Apple, Inc.
Fitbit smartwatch Device Name Charge 2
Bose-2 headphone Device Name LE-Moonbeam
Xiaomi mixer UUID Xiaomi Inc.
Beats headphone Company ID Beats Electronics
AquaClean shower toilet Device Name Geberit AC PRO
Xiaomi airfryer UUID Xiaomi Inc.
LG TV Device Name [LG] webOS TV UP77009LB
LG TV Device Name [LG] webOS TV OLED55C17LB
Samsung TV Device Name [TV] Samsung 7 Series (55) Ba

GoPro4 camera
Company ID
UUID

GoPro, Inc.
GoPro, Inc.

GoPro5 camera
Company ID
UUID

GoPro, Inc.
GoPro, Inc.

GoPro9 camera
Company ID
Device Name
UUID

GoPro, Inc.
GoPro 3267
GoPro, Inc.

GoPro10 camera
Company ID
UUID

GoPro, Inc.
GoPro, Inc.

Canon camera
Company ID
Device Name

Canon Inc.
EOSM50

Table 5.2: BLE devices and their Identifiers
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number of packets. By considering the average number of packets per device type,
bathroom devices have the highest average amount of packets compared to other
devices, namely 65’402 packets. Laptops, cameras, smartwatches, smartphones,
iPads, and kitchen devices have similar average packet counts, ranging between
12’000 and 28’000 packets. TVs and AirTags are the devices with the lowest
average packet counts, with AirTags being the least. In total, there are 901’623
packets. The difference in the number of packets is related to the different uses of
the devices. Even though headphones are widely used and actively transmit data,
their average number of packets is not as high as bathroom devices. This indicates
that bathroom devices must transmit data frequently for functions such as status
updates or ongoing tracking. The low number of packets from the AirTags and
TVs is because they transmit data infrequently during the sniffing process.

Figure 5.4: Number of Packets by Device Types

Figure 5.5 also shows the number of packets but by devices rather than by the
device types. It can be seen that the toothbrush device contains the highest num-
ber of packets with 129’761 packets. As mentioned before, the toothbrush has to
transmit data continuously while it is being used to update the status of the den-
tal cleaning in real-time. The Rollei camera, Apple headphones, Sony Linkbuds
headphones, Apple smartwatch, and Canon camera each transmit around 40’000
packets. This group of devices, along with the toothbrush device, has the highest
number of packets. This indicates that these devices require frequent data trans-
mission, possibly for ongoing data synchronization. The Nokia smartphone, Sony
XM4 headphone, and Dell laptop each have around 30’000 packets. This amount
of data transfer may be standard for devices such as laptops and smartphones in
normal use, or for headphones when listening to music which need to transmit
data regularly but not continuously. The kettle and the HP laptop each transmit
around 20’000 packets and the Huawei smartphone, Apple iPad, Ericsson smart-
watch, Google smartphone, Samsung smartphone, GoPro9 camera, Sony XM3
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headphone, and GoPro10 camera each transmit around 10’000 packets. These de-
vices show lower BLE activity. All other devices that are not mentioned transmit
fewer than 10’000 packets each. The Beats headphones with only 16 packets and
the Galaxy smartwatch with only 46 packets are the devices that transmit the
least. This may be because these devices are used less frequently during sniffing
or have a lower need for continuous transmission of packets.

Figure 5.5: Number of Packets by Devices

By excluding the Beats headphones, Galaxy smartwatch, and Oral-B toothbrush
from the data, Figure 5.6 provides a clearer view of the packet distribution among
the remaining devices. It is noticeable that devices of the same type, such as
headphones, have quite different values. For example, there are more than 40’000
packets for Apple headphones but less than 10’000 for Bose and Samsung head-
phones. Even devices of the same type can have different numbers of packets. Some
of them may be actively used during the sniffing process and therefore transmit a
large number of packets, while others are not actively used and therefore transmit
a small number of packets. This shows a limitation of capturing BLE packets as
devices can have different numbers of packets depending on how they are used in
the sniffing process.

5.4 Feature Extraction

The main features are extracted from the sniffed BLE packets. First, features that
are directly accessible from the sniffed data are extracted. Secondly, additional
features are extracted as derived features by performing statistical calculations.
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Figure 5.6: Number of Packets by Devices without Outliers

5.4.1 Direct Extraction of Feature from Sniffed BLE Packets

As already mentioned in Chapter 5.2.2 there are columns in the CSV files with
column header names such as Length of Payload, Length of Packet, Channel Index,
PHY, RSSI, Delta Time, Access Address, Packet Header, Type, Length, PDU, Pro-
tocol, Info, Reserved, Channel Selection, Tx Address, RX Address, Length, Scan-
ning Address, Target Address, and AdvA. The data of these column header names
are data from the nRF Sniffer and the BLE LL. Due to the data preprocessing step
described in the next chapter, some of these column header names are removed.
The remaining column header names are the Length of Payload, Channel Index,
RSSI, Delta Time, Packet Header, Type, Length, PDU, Info, Reserved, Channel
Selection, Tx Address, RX Address, Length, Simultaneous LE and BR/EDR to
Same Device Capable (Controller), BR/EDR Not Supported, LE General Discov-
erable Mode, LE Limited Discoverable Mode, Power Level, Simultaneous LE and
BR/EDR to Same Device Capable (Host), and LE Supported By Host. These are
the extracted features that are specific to device types and therefore important
for the ML model to learn the pattern of device types. Some of them are shown
in the subchapter and some of them are shown in Appendix E due to their lower
importance for the classification task.

Length of Payload

The range of the Length of Payload feature is between 25 and 56 as shown in
Figure 5.7. The y-axis is the number of packets. The device types are shown in
different colors. AirTags have a length that varies from 25 to 56, showing that
the AirTags data can vary in size or structure. On the other hand, bathroom
devices transmit most of their packets with a length of 43, showing that the data
of bathroom devices is almost a standard size. Cameras have a length of 31, 41,
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42 48, 49, 52, and 56. Headphones, smartphones, and smartwatches have lengths
ranging from 25 to 56, showing common characteristics. The majority of packets
transmitted by kitchen devices have a length of 44. Laptops have lengths of 33,
39, 42, 43, 44, and 56, with 56 being the most common length. TVs have lengths
of 31, 53, 55, and 56. The Length of Payload value with the most packets for TV
is 55. Lastly, iPads have lengths of 25, 31, 33, 39, 42, 43, 44, 51, and 56. The
variation in the Length of Payload feature indicates that devices of the same device
type have variations in the size or structure of the data packets. By learning this
pattern of variation within the device type, the ML model can predict the device
type.

Figure 5.7: Number of Packets by Length of Payload Feature

Channel Index

The Channel Index feature has a value of either 37, 38, or 39 as shown in Figure
5.8. As can be seen, the values of the Channel Index feature for each type are
evenly distributed across all 3 values. This shows that this feature does not help
to characterize device types as all devices have a similar pattern.

RSSI

The strength of the signal received from different BLE devices is measured by the
RSSI values, which vary from -93 dBm to -17 dBm as shown in Figure 5.9. Stronger
signals are indicated by higher values, while lower values indicate weaker signals.
IPads, laptops, and headphones have high RSSI values compared to others, while
TVs have low RSSI values indicating that TVs have lower signal strength. The
reason for the low signal strength could be that these devices have limited transmit-
ting power. Kitchen and bathroom devices are in the middle range. Smartphones,
cameras, and smartwatches have values in almost all x-values. This broad distri-
bution means that the signals from these devices can be both strong and weak.
By additionally learning the pattern of RSSI values of the device types, the model
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Figure 5.8: Number of Packets by Channel Index Feature

can make more accurate and reliable predictions about the device type because
the pattern of RSSI values provides additional information about the device types.

Figure 5.9: Number of Packets by RSSI Feature

Delta Time

The Delta Time feature is the time taken to transmit a packet in microseconds.
As shown in Figure 5.10, the values range from 132 to 502 microseconds across all
device types. A short Delta Time value indicates a fast transmission of the packets
due to small packets or more power of the device. A value of 188 microseconds
is unique to the Laptop category, a value of 384 microseconds to the Smartwatch
category, a value of 455 to the Camera category, and a value of 502 microseconds
to the Headphone category. With a value of 502 microseconds, the Headphone
category has the highest value. This indicates that headphones need more time
to transmit packets due to the transmission of audio data. This uniqueness is a
characteristic of the device types and can be used for ML models to determine the
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device type. Also here by additionally adding the Delta Time as a feature, the
model can make more accurate predictions.

Figure 5.10: Number of Packets by Delta Time Feature

Info

The Info feature is the PDU type of AD. It includes values such as ADV IND,
ADV NONCONN IND, ADV SCAN IND, SCAN REQ, SCAN RSP as shown in
Figure 5.11. The majority of packets have a value of ADV IND indicating that
this PDU type is used by the majority of devices. The majority of laptops have a
type of ADV NONCONN IND meaning that they are not accepting a connection.
Some headphones, smartphones, smartwatches, and iPads also have the same type.
It is difficult to determine which device type corresponds to which specific type
as all device types have at least three out of five possible values. This shows that
this feature does not help to characterize device types. Furthermore, this variation
shows that when the devices communicate with other devices, they send or receive
packets, or send a request or a response.

Length

The Length feature is the length of the packet header and is shown in Figure 5.12.
The x-axis ranges from 6 to 37. The data is spread across most device types,
although lengths of 21, 26, and 27 are specific to the Headphone category, while
a length of 10 is specific to the Smartphone category. Bathroom devices have
lengths of 12 or 24, with most packets having a length of 24. The kitchen devices
have a length of 25, while most laptops have a length of 37. TV devices have
lengths of 12, 36, or 37. The lengths of the remaining devices are distributed along
the x-axis. This distribution shows that some device types have a broad range
of the Length feature, while others have specific lengths. This variation is due to
the communication protocols that are specific to each device type. These specific
length values are crucial for the ML model to learn the pattern in the data as they
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Figure 5.11: Number of Packets by Info Feature

are specific to a device type. By training the ML model with additional features,
each feature provides unique insight into distinguishing between device types.

Figure 5.12: Number of Packets by Length Feature

Power Level

The Power Level feature measures the power intensity of a device, ranging from
-44 to 17 dBm, as shown in Figure 5.13. Most of the Power Level feature values
are specific to some device types. For example, a value of -44 dBm corresponds to
TVs, values of -21 and -7 dBm to headphones, and a value of 0 dBm to bathroom
devices. The other values are shared between device types. The value of 6 dBm
is seen in AirTags and cameras and 7 dBm in AirTags and smartphones. In addi-
tion, smartphones only have a value of 7, bathroom devices 0, and TVs -44 dBm.
AirTags have values of 6, 7, 9, 12, and 17 dBm. IPads, laptops, and smartwatches
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tend to have higher values, appearing on the right side of the x-axis, while head-
phones, bathroom devices, and TVs tend to be on the left side, indicating lower
values. Lower values could mean that the device has less data to transmit or that
the distance to its communicating device is shorter. This distribution shows that
while some devices have unique Power Level characteristics, others share common
values due to their different power consumption patterns. This indicates that dif-
ferent types of devices have different patterns of signal strength and power usage.
Training ML models on these different patterns of the Power Level feature helps
to classify devices since certain values indicate a specific device type. By adding
the Power Level feature as an additional feature, the model is trained on a diverse
set of features. This results in a model that is better able to generalize to unseen
data than a model trained on a few features.

Figure 5.13: Number of Packets by Power Level Feature

Type

The Type feature is the AD type and is shown in Figure 5.14. Some device types
have the same Type features and some have specific Type features. Headphones
have AD types such as a combination of Service Class UUIDs, Device Name,
Flags, Manufacturer Specific, Tx Power Level, LE Bluetooth Device Address, and
Service Data. Cameras have AD types such as a combination of Flags, Service
Class, Manufacturer Specific, Appearance, and Device Name. Smartphones have
unique AD types such as a combination of Service Class, Flags, Device Name,
and Manufacturer Specific. The AD Type of Flags, Manufacturer Specific, Tx
Power Level, Service Class, LE Bluetooth Device Address is unique to TVs. The
Type feature shows that different device types have specific combinations of AD
types. This uniqueness of combinations is characteristic of devices such that the
ML model can differentiate between the device types. Adding the Type feature to
the set of features allows the model to make a more accurate prediction because
each feature provides unique patterns to differentiate between device types.
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Figure 5.14: Number of Packets by Type Feature

5.4.2 Derived Feature Extraction from Sniffed BLE Packets

Based on the directly extracted features, further features are extracted. By taking
the directly extracted features and performing statistical calculations based on
them the derived features are extracted. The calculations are done by grouping
the packets by their AdvA. Since each device is sniffed for 20 minutes and the
AdvA is changed at intervals of up to 15 minutes, each device has at least two
unique AdvAs. The full list of derived features is given in Appendix D. Some of
these derived features are shown in the subchapter and some of them are shown
in Appendix F due to the large number of them.

Packets per Second

The Packets per Second feature is shown in Figure 5.15 and is calculated by taking
the number of packets per AdvA and dividing it by the time duration. The time
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duration is the difference between the minimum and maximum sniffed time of
packets from that AdvA. This time duration is also an extracted feature and is
shown in Appendix F. AirTags have a simple behavior, they have values of either
1 or 3. Bathroom devices have values of either 1 or 108. The value of 108 with
129’757 packets is excluded from the bar chart to avoid distortion. While one
bathroom device has a low frequency of transmitting packets, the other bathroom
device has a very high one. Cameras have six values: 1, 5, 6, 12, 34, and 37.
However, headphones have a wide range of 14 different values, the most common
being 27 and 46. Most kitchen devices have a value of 26. Laptops have values
of 1 and a range between 28 and 31. This range of values shows that laptops
have a more or less stable transmission rate. Smartphones have 9 different values
with the most common being 30. Smartwatches have values of 8, 14, 31, and in
a range from 1 to 5 showing a high variation due to their different functionalities.
TVs have values of 1, 6, or 11. The most common values of iPads are 10, 11, or
12 showing a stable transmission rate. The values in Figure 5.15 are rounded for
better visualization of the data. If the values are not rounded, each specific value
uniquely identifies the device type. This indicates that the Packets per Second
feature can distinguish between device types and is a feature that helps the ML
model learn the pattern of device type to classify devices.

Figure 5.15: Number of Packets by Packets per Second Feature

Time per Packet

The Time per Packet feature is shown in Figure 5.16 and is calculated by dividing
the time duration by the number of packets and represents the time it takes to
transmit a packet in milliseconds. AirTags take 353, 704, or 736 milliseconds to
transmit one packet. Bathroom devices have two values of either 9 or 1151. This
large variation indicates that the devices are either in standby or active mode.
Cameras have a range of packet transmission times of 27, 29, 83, 85, 175, 201,
and 859. Most headphones have a value below 100 milliseconds showing that they
require very little time to transmit a packet due to low-latency communication.
Kitchen devices have values of 39, 422, 610, 623, and 689 with the majority of 39



66 CHAPTER 5. RESULTS AND EVALUATION

milliseconds showing a short interval. This is due to regular updates or sensor read-
ings which are common in kitchen devices. The majority of laptops have a time of
either 33, 35, or 36 milliseconds showing a stable transmission frequency. Smart-
phones mainly transmit a packet for 34 milliseconds, with a few values around 100,
300, or 700 milliseconds. Most smartwatches have packet transmission times of 70,
315, or 423 milliseconds. TVs have packet transmission times of 93, 171, 691, and
820 milliseconds. IPads have values in the range of 87 to 171, and also values
of 640 and 648 milliseconds. The Time per Packet feature shows that different
devices have different patterns due to their communication needs. Devices such as
cameras, headphones, laptops, and smartphones have low-latency communication,
while others such as TVs and smartwatches take more time to transmit a packet.
Using these unique patterns of each device type, the ML model can learn to distin-
guish between device types. Again, by adding this feature as an additional feature,
the model is trained on a diverse set of features, resulting in better generalization
to unseen data.

Figure 5.16: Number of Packets by Time per Packet Feature

Bytes per Second

The Bytes per Second feature is the total packet header length per AdvA divided
by the time duration and is shown in Figure 5.17. Laptop devices have a speed of
over 1000 bytes per second. Camera devices have a speed of around 34, 144, 166,
317, 323, 1125, or 1159 bytes per second with the majority over 1000 bytes per
second. Headphones have a wide range of values with a majority speed of 1251
bytes per second. The majority of kitchen devices have a speed of 639 bytes per
second with a small subset below 100 bytes per second. Smartphones also have a
wide range of values but with a majority value of 852. The values for smartwatches
also show a wide variation on the x-axis. The highest speed of TVs is 329 bytes
per second, other values are 22, 47, and 210. The majority of iPad values are
between 220 and 365 bytes per second. AirTags have values of 50, 52, and 71.
Bathroom devices have values of either 20 or 2573. Again, the value of 2573
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bytes per second is not shown in the bar chart to avoid distortion. Headphones,
cameras, laptops, smartphones, and kitchen devices have the highest values, and
smartwatches, AirTags, and TVs have the lowest. This shows a clear pattern in
the distribution of the values that characterize the device types. By training the
ML model on these characteristics of each device type, the model can learn specific
patterns of device types to classify each device into its device type.

Figure 5.17: Number of Packets by Bytes per Second Feature

Average RSSI

The Average RSSI feature is shown in Figure 5.18. Laptop devices have the highest
Average RSSI feature value of -19 dBm. Other values in the Laptop category range
between -38 and -34 dBm. Smartphones have the second highest value of -23 dBm,
but the majority have values of -74 dBm. IPads therefore have the second-highest
values of -25 and 28 dBm. The majority of values for camera devices are between
-59 and -42 dBm and for headphones between -49 and -31 dBm. Kitchen devices
have values of -59, -57, -54, -49, and -46 dBm with the majority being -59 dBm.
Smartwatches have a majority of -63, -61, and -57 dBm values. TVs have values
of either -86, -79, -74, or -59 dBm, and AirTags have values of either -78, -41, -38,
or -36 dBm. To avoid distortion, the value of -45 dBm from bathroom devices
is removed. While some devices such as laptops have high values, others have a
range of values across the x-axis. Headphones and cameras have a wide range of
their values. On the other hand, most of the values are specific to device types
which helps the ML model learn the pattern for classification tasks. By adding
more features to train the ML model, the model can better understand the pattern
of each device type and make predictions.

Standard Deviation RSSI

The Standard Deviation RSSI feature is shown in Figure 5.19 with a range on the
x-axis between 1 and 19 dBm. The values of 14 or 19 dBm are assigned to camera
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Figure 5.18: Number of Packets by Average RSSI Feature

devices, while other values are assigned to multiple device types. The majority
of the laptops tend to have a very low standard deviation of RSSI namely 1 or 2
dBm, with a small number of packets having values of 4 or 6 dBm. AirTags have a
standard deviation of either 3, 4, 6, or 8 dBm. Values in the Headphone category
range from 2 to 7 dBm. Kitchen devices have values of either 5, 6, or 7 dBm.
Smartphones range from 3 and 8 dBm and smartwatches from 5 and 10 dBm. TVs
have a standard deviation of either 2, 5, 10, or 13 dBm. The values of bathroom
devices are either 6 or 7 dBm. IPads have a wide range of values between 2 and
9 dBm. Overall, cameras and smartwatches have high Standard Deviation RSSI
feature values, while laptops and headphones have low values. These high and low
standard deviation values are strong indicators for the ML model to identify them.
The broad ranges of other devices make them more difficult for the ML model to
classify but they still have a pattern that can be recognized by the ML model.

Figure 5.19: Number of Packets by Standard Deviation RSSI Feature
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Variance RSSI

Instead of calculating the standard deviation of the RSSI, the variance of the
RSSI is calculated which is more specific to device types as shown in Figure 5.20.
Laptop devices have a very low variance of RSSI meaning that the RSSI values
are around the average, and have stable positions. On the other hand, cameras,
TVs, and smartwatches have a very high variance which means that their RSSI
values vary a lot, are spread around the average value, and are in a moving state.
Kitchen devices have a majority value of 38 dBm which is neither low nor high.
Headphones, smartphones, and iPads have a wide variance, but most of their values
are specific to them. TVs have an ambiguous behavior of their variance values,
being either 2, 29, or over 100 dBm. AirTags have values of 10, 19, 40, or 61 dBm,
and bathroom devices have values of either 34 or 46 dBm. Since each value on
the x-axis is unique to the device types assigned, the Variance RSSI feature has a
more specific pattern behavior of device types than the Standard Deviation RSSI
feature. This is because most devices have either low or high overall values, while
only a small number of device types have a wide range of values. The classification
task can be performed by using this pattern to train the ML model.

Figure 5.20: Number of Packets by Variance RSSI Feature

Average Packet Length

The Average Packet Length feature is shown in Figure F.11. Bathroom devices
have an average of 24 and laptop devices 37. AirTags have values of 14, 23, 25, or
37. Camera devices have values ranging from 27 to 33. Headphones have values of
20, 26, 27, 28, 33, 36, and 37 showing a wide range. Smartphones, smartwatches,
and iPads also show a wide range, ranging from 10 to 37 and 14 to 37, respectively.
The majority of kitchen devices have a value of 25. TVs have values of 18, 30, 32,
and 36. While bathroom devices and laptops have specific values, the values of
other device types vary widely and therefore do not have an obvious pattern for
this feature. The ML model has difficulty learning this unobvious pattern, while
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the pattern for bathroom devices and laptops is easy to learn by the model to
classify them.

Figure 5.21: Number of Packets by Average Packet Length Feature

Standard Deviation Packet Length

Many device types such as AirTags, cameras, headphones, laptops, smartphones,
smartwatches, and iPads have a Standard Deviation Packet Length feature values
of 0 as shown in Figure 5.22. This means that most of these devices have the same
packet length value within their type. Most smartwatches and TVs tend to have
a higher standard deviation, above 7. While iPads tend to have a low standard
deviation of below 4. Bathroom devices have values of 4 or 19, with the value 19
being the highest one. AirTags have values of 0, 2, and 3, cameras have values of
0, 5, 6, and 8, headphones have values of 0, 1, 2, 4, 5, and 6, and smartphones
have values of 0, 2, 3, 4, 5, and 8. Kitchen devices have a narrower range of
values of 1, 4, 7, and 8. Since smartwatches, TVs and bathroom devices have
significant values, this shows that the Standard Deviation Packet Length feature is
a characteristic feature for these devices. Based on this feature the ML model can
differentiate these device types. Adding this feature to model training allows the
model to capture more complex patterns and relationships in the data, resulting
in more accurate predictions.

Variance Packet Length

The Variance Packet Length feature is shown in Figure 5.23. AirTags, cameras,
headphones, laptops, smartphones, smartwatches, and iPads again have values of
0. Bathroom devices have specific values of 14 or 352, with the majority being
14 and the highest value being 352. As for the Standard Deviation Packet Length
feature, smartwatches, and TVs tend to have high Variance Packet Length feature
values, above 72. IPads and AirTags tend to have low values of less than 13 and 7
respectively. In addition to having a value of 0, the values of cameras, headphones,
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Figure 5.22: Number of Packets by Standard Deviation Packet Length Feature

and smartphones are in the middle of the bar chart which means that they do not
have as high values as TVs and smartwatches. The majority of kitchen devices
have a value of 2. Unlike the Standard Deviation Packet Length feature, the values
of the Variance Packet Length feature are more specific to different device types.
This specific pattern is useful for training the ML model to differentiate between
device types. By including this feature, the model can better distinguish between
different types of devices because it has more unique information.

Figure 5.23: Number of Packets by Variance Packet Length Feature

Average Delta Time

The Average Delta Time feature is shown in microseconds in Figure 5.24. AirTags
have values above 55’325 microseconds showing a very high average of delta time.
Smartwatches, smartphones, headphones, and kitchen devices also have high av-
erage delta times but also low ones. Laptops and iPads have a medium to high
average delta time compared to other device types. On the other hand, TVs and
cameras have a medium to low average delta time. To avoid distortion in the bar
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chart, the values of bathroom devices are removed. They have values of either
5’353 or 5’465 which are in the medium to low average delta time category. Each
value on the x-axis is uniquely assigned to a device type showing that this feature
has a specific pattern for each device type. Because the pattern is specific, the ML
model can learn the characteristics of each device type and easily predict the device
type. By adding this feature, the set of features is more diverse which improves
the model’s ability to classify devices.

Figure 5.24: Number of Packets by Average Delta Time Feature

Standard Deviation and Variance Delta Time

The Standard Deviation Delta Time feature is also shown in microseconds in Figure
5.25. Its distribution is quite similar to the distribution of the Average Delta Time
feature but with different values. AirTags, laptops, and iPads have a medium to
high, TVs and cameras have a medium to low, and smartwatches, smartphones,
headphones, and kitchen devices have a high but also a low average delta time. The
values of bathroom devices are also removed from the bar chart and are of either
5’103 or 8’945 showing a medium to low average delta time. Once again, each value
on the x-axis is uniquely assigned to a device type that shows a specific pattern
to train the ML model to predict the device type. By including this feature, the
model can capture more variability in delta times and is better able to distinguish
between different device types.

Since the distribution of the Variance Delta Time features is also quite similar to
the distribution of the Average Delta Time feature but with different values, it is
shown in Figure F.17 in Appendix F. For Variance Delta Time feature, the same
conclusion about the characteristics of the device types applies as for Standard
Deviation Delta Time feature.
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Figure 5.25: Number of Packets by Standard Deviation Delta Time Feature

5.5 Data Preprocessing

The data labeling and feature extraction are done individually on the 22 CSV
files, adding new columns with header names such as ”label” and the name of the
extracted features. These files are merged into a single CSV file with a total of
901’623 packets. This merged file is preprocessed by cleaning the data, removing
unique identifiers, and transforming categorial data into a numerical representa-
tion.

5.5.1 Data Cleaning and Removal of Unique Identifiers

The extracted features are the columns in the CSV file. Columns with more than
99% of their data having missing values are removed. Additionally, columns with
the same constant values do not contribute to the prediction task and are also
removed. Furthermore, the columns No. and Time represent the chronological
order of the sniffed packets and are therefore unnecessary and are removed from
the dataset. Unique identifiers such as AdvA, Company ID, UUID, and Device
Name are also removed. The label column which is the device type is not removed
from the dataset since it is the target value that should be predicted by the ML
models. After performing data splitting, the subcategory column is also removed.
These columns are removed from the dataset:

• Target Address

• Address Type

• Simultaneous LE and BR/EDR to
Same Device Capable (Host).1

• LE Supported By Host

• OOB Data Present

• Hash C

• Custom UUID

• BIG Offset

• BIG Offset Units
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• ISO Interval

• Num BIS

• NSE

• BN

• Sub Interval

• PTO

• BIS Spacing

• IRC

• Max PDU

• Reserved.1

• Seed Access Address

• SSP OOB Length

• Malformed Packet

• Length of packet

• PHY

• Access Address

• Protocol

• No.

• Time

• AdvA

• Company ID

• UUID 16

• Device Name

• Subcategory

5.5.2 Data Transformation

Using one-hot encoding, categorial features are transformed into a numerical rep-
resentation. These are the categorial features:

• Packet Header

• Type

• Length

• PDU Type

• Info

• Channel Selection Algorithm

• Tx Address

• Rx Address

• Scanning Address

• Simultaneous LE and BR/EDR to
Same Device Capable (Host)

• Simultaneous LE and BR/EDR to
Same Device Capable (Controller)

• BR/EDR Not Supported

• LE General Discoverable Mode

• LE Limited Discoverable Mode

• Power Level (dBm)

• Data

• Custom UUID.1

• Service Data

• BD ADDR

• CRC

• Label

• Packet Direction
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The Packet Header feature is not transformed into numerical by one-hot encoding
since all values start with ’0x’ followed by integers. Instead, the substring ’0x’
is removed from the start of the string to transform it into a numerical value.
Furthermore, the Type and Length feature are not transformed by one-hot encoding
either. Each packet in the Type column is a combination of packet header types
such as flags, manufacturer specific, service class, and device name. Using one-hot
encoding would add a new column for each combination of the types. Because
there are many combinations of the types in the dataset, one-hot encoding is not
used. Instead, all unique type values are picked out, resulting in a total of 49. For
each unique type value, a new column is added to the file. After that, each packet
is iterated through and a value of 1 is appended to the type columns that occur
in the combination, and a value of 0 is appended to the remaining type columns.
The same is done with the Length feature, which also adds 49 new columns with
values of their corresponding lengths.

The remaining categorial features are transformed using one-hot encoding. Since
it takes the unique values of a feature and adds as many new columns as unique
values, it is important to know how many new columns are added. Table 5.3 lists
the features with their number of unique values. Features with more than 300
unique values are removed from the dataset to prevent an excessive increase in the
file size and the training of the ML models. As a result, the Scanning Address,
Data, Service Data, BD ADDR and CRC are removed. The remaining catego-
rial features, except the label column, are converted to numerical representation.
Lastly, empty values are filled with 0.

5.6 Feature Selection

Since not all extracted features are relevant for predicting the device type, two
feature selection methods are implemented. Applying the filter methods, the 30
most important features based on their relation to the target variable are listed in
Table 5.4. The order of the importance of the features is descending. The feature
Number of Forward Packets is at the top with the highest score value followed
by features such as Number of Packets, Sum Payload Length, Sum Packet Length,
and Sum RSSI. The scores are the ANOVA F-values. A high score means that the
variance of the feature values across the device types is very high compared to the
variance within the device types indicating that the feature is highly specific to a
device type. The feature Min Payload Length has the same score as Min Packet
Length, the feature Average Packet Length has the same score as Average Payload
Length, and the feature Standard Deviation Payload Length has the same score as
Standard Deviation Packet Length.

Applying the embedded methods, the 30 most important features in relation to
the RF model are listed in Table 5.5. The order of the importance of the features
is also descending. The feature Sum Payload Length has the highest importance
score of 0.0602 followed by the features such as Sum Packet Length, Average Pay-
load Length, Number of Forward Packets, and Sum of Delta Time. Higher scores
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Feature No. Unique Values
PDU Type 7
Info 24
Channel Selection Algorithm 2
Tx Address 2
Rx Address 2
Scanning Address 617
Simultaneous LE and BR/EDR to Same Device Capable
(Host)

10

Simultaneous LE and BR/EDR to Same Device Capable
(Controller)

10

BR/EDR Not Supported 10
LE General Discoverable Mode 9
LE Limited Discoverable Mode 10
Data 6732
Custom UUID 47
Service Data 1867
BD ADDR 382
CRC 7430
label 10
Packet Direction 2

Table 5.3: Categorical Features and their Number of Unique Values

indicate a greater impact of the feature on the accuracy of the model. The feature
Sum Payload Length has the most influence on the model in making predictions.
Compared to the second important feature Sum Packet Length with a score of
0.0486, the first important feature Sum Payload Length has about 1.24 times more
influence on the model than the second feature meaning that it characterizes device
types more accurately.

Comparing the selected features of both methods, most of the features appear in
both tables but in different order. Features such as Info ADV NONCONN IND,
PDU Type 0x2, LE Limited Discoverable Mode True, BR/EDR Not Supported True,
LE Bluetooth Device Address, Standard Deviation RSSI, Flags, 16-bit Service Class
UUIDs (incomplete), Tx Address Random, Manufacturer Specific Length, Power
Level (dBm), Standard Deviation Payload Length, and Average Number of For-
ward Packet are selected as important only by the filter method and features such
as Time per Packet, Average Backward Delta Time, Average Delta Time, Sum
Backward Delta Time, Standard Deviation Delta Time, Max Packet Length, Std
Forward Delta Time, Var Forward Delta Time, Average Forward Delta Time, Max
Delta Time, Variance Delta Time, Max Payload Length, Average Number of Back-
ward Packet, and Var Backward Delta Time by the embedded method. While the
filter method selects features extracted directly from the BLE LL, the embedded
method selects only derived features to be the first 30 most important.
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Feature Score
Number of Forward Packets 1012683.7
Number of Packets 994208.4
Sum Payload Length 781632.5
Sum Packet Length 650533.5
Sum RSSI 571983.9
Number of Backward Packets 312498
Min Payload Length 173258.3
Min Packet Length 173258.3
Min RSSI 158535.4
Info ADV NONCONN IND 150512.4
PDU Type 0x2 150101.4
LE Limited Discoverable Mode True 128495.8
BR/EDR Not Supported True 103749.1
Duration 92221.8
Average RSSI 78899.1
Average Packet Length 75267
Average Payload Length 75267
Sum of Delta Time 74557.6
Sum Forward Delta Time 74439.1
LE Bluetooth Device Address 69129.1
Standard Deviation RSSI 68867.3
Flags 68182.6
16-bit Service Class UUIDs (incomplete) 66783.7
Tx Address Random 65373.2
Manufacturer Specific Length 64314.2
Power Level (dBm) 61154
Standard Deviation Payload Length 57397.4
Standard Deviation Packet Length 57397.4
Average Number of Forward Packet 56421.5

Table 5.4: Filter Method: Selected Features and Their Scores
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Feature Score
Sum Payload Length 0.0602
Sum Packet Length 0.0486
Average Payload Length 0.0468
Number of Forward Packets 0.0447
Sum of Delta Time 0.0438
Number of Packets 0.0432
Sum RSSI 0.0398
Average Packet Length 0.0397
Time per Packet 0.0370
Min RSSI 0.0337
Number of Backward Packets 0.0332
Sum Forward Delta Time 0.0327
Min Packet Length 0.0285
Min Payload Length 0.0277
Average Backward Delta Time 0.0260
Average Delta Time 0.0202
Average RSSI 0.0194
Sum Backward Delta Time 0.0187
Standard Deviation Delta Time 0.0186
Max Packet Length 0.0185
Std Forward Delta Time 0.0183
Var Forward Delta Time 0.0182
Duration 0.0174
Average Forward Delta Time 0.0171
Max Delta Time 0.0161
Variance Delta Time 0.0151
Max Payload Length 0.0146
Standard Deviation Packet Length 0.0145
Average Number of Backward Packet 0.0142
Var Backward Delta Time 0.0127

Table 5.5: Embedded Method: Selected Features and Their Importance Scores
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5.7 Data Splitting

5.7.1 80/20 Data Splitting Method

The dataset is divided into 80% training and 20% testing datasets. The training
dataset contains 721’298 packets and the test dataset contains 180’325 packets.
Figure 5.26 shows the number of packets of each device type in the training dataset
in blue and in the test dataset in red.

Figure 5.26: Total Packets of Training and Test Datasets

5.7.2 Alternative Data Splitting Approach

According to the alternative data splitting approach, the training dataset has
687’463 packets and the test dataset has 214’160 packets which is 76.25% and
23.75% of the total dataset. Table 5.6 shows which devices are included in the
training dataset and which are additionally included in the test dataset and ex-
cluded from the training dataset. Since devices of the device types iPad and
AirTags have the same name of manufacturer, these devices are included in both
datasets.

5.8 Device Classification via ML Approach

The RF classifier and the MLP model are trained on the dataset divided once
by the 80/20 data splitting method and once by the alternative data splitting
method. This results in two RF classifiers and two MLP models. Then the two
RF classifiers are trained with the selected features from the embedded feature
selection method, and the two MLP models are trained with the selected features
from the filter feature selection method. In total, eight models are trained and
their accuracies are compared.
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Device Type Devices in Training Dataset Devices in Test
Dataset

Laptop Dell laptop, Hp laptop + Apple laptop
Headphone Apple headphone, Sony Linkbuds head-

phone, Bose-1 headphone, Bose-2 head-
phone Sony XM4 headphone, Sony XM3
headphone, Samsung headphone

+ Beats head-
phone

iPad Apple iPad Apple iPad
AirTag Apple AirTag Apple AirTag
TV LG TV + Samsung TV
Kitchen Xiaomi kettle, Xiaomi airfryer + Xiaomi mixer
Smartwatch Apple smartwatch, Ericsson smartwatch,

Fitbit smartwatch, Huawei smartwatch
+ Galaxy
smartwatch

Camera GoPro5, GoPro9, Rollei camera, Canon,
GoPro10

+ GoPro4

Smartphone Nokia smartphone, Samsung smart-
phone, Huawei smartphone, Google
smartphone

+ Apple smart-
phone

Bathroom Oral-B toothbrush + AquaClean
shower toilet

Table 5.6: Devices in Training and Test Datasets

5.8.1 Random Forest Classifier

RF Classifier with 80/20 Data Splitting Method

Training the RF classifier with default parameters and on the training dataset gen-
erated by the 80/20 data splitting method, the model achieves a training accuracy
of 99.9992% and a test accuracy of 99.9717%. Since both accuracies are close to
each other and there is no large gap between them, there is no overfitting.

Training the model on k=5 different subsets of the data, the cross-validation scores
are [0.85721336 0.98913628 0.86761126 0.99332868 0.87166434] and the average
accuracy across all k=5 cross-validation folds is 91.58%. Since the cross-validation
scores are close to the test accuracy, the model performs well on unseen data.
Figure 5.27 shows the learning curves of the training and cross-validation scores.
The training score is shown in red and the cross-validation score is shown in green.
The shaded areas are the standard deviations of the scores. Both scores converge
and have high values, which means that the model performs well on unseen data.
Since the training score does not decrease and the cross-validation score increases,
the model performs better with more data.

The accuracies for each device type are calculated and are shown in Table 5.7. All
accuracies of the device types are above 99.597%. The highest accuracy is achieved
through the TV devices and the lowest through the AirTags. The accuracy of
AirTags may have to do with the fact that it has the least amount of data packets
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Figure 5.27: Learning Curves of the RF Classifer with 80/20 Data Splitting Method

compared to the other device types. Even when AirTags have the fewest data
packets and therefore the lowest accuracy, the data balancing technique is not
applied because their accuracy is still very high. These high accuracies of all
device types show that the model performs very well in classifying each device
type.

Device Type Test Accuracy
Laptop 99.937
Headphone 99.993
iPad 99.96
AirTag 99.597
TV 100
Kitchen 99.987
Smartwatch 99.968
Camera 99.992
Smartphone 99.985
Bathroom 99.996

Table 5.7: Test Accuracies of each Device Type of the RF Classifer with 80/20
Data Splitting Method

The evaluation metrics such as precision, recall, specificity, F1-score, TP, TN, FP,
and FN are computed for each device type and are listed in Table 5.8 except for TP
and TN. Precision, recall, specificity, and F1-score are above 99%. High precision
values mean that the model has a very low FP rate, which means that when the
model predicts the type of a device, the prediction is almost always correct. High
values of recall mean that the model has a very low rate of FN, which means that
the model identifies the device types of almost all devices. High values of specificity
mean that the model correctly identifies negative class types, for example when a
device is predicted not to be a specific type, the prediction is almost always correct.
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High F1-scores mean that the model performs well in both precision and recall.
Overall, the model predicts the device types accurately. TP and TN have high
values which indicates that the model correctly classified positive and negative
instances, respectively. Additionally, the very low values of FP and FN indicate
that the model makes very few incorrect predictions.

Label Precision Recall Specificity F1-Score FN FP
AirTag 0.996585 0.995966 0.999938 0.996276 13 11
Bathroom 1.000000 0.999962 1.000000 0.999981 1 0
Camera 1.000000 0.999923 1.000000 0.999962 2 0
Headphone 0.999965 0.999931 0.999993 0.999948 2 1
Kitchen 1.000000 0.999870 1.000000 0.999935 1 0
Laptop 0.999646 0.999371 0.999942 0.999509 16 9
Smartphone 1.000000 0.999852 1.000000 0.999926 3 0
Smartwatch 0.999278 0.999684 0.999899 0.999481 7 16
TV 1.000000 1.000000 1.000000 1.000000 0 0
iPad 0.999057 0.999596 0.999915 0.999326 6 14

Table 5.8: Performance Metrics of the RF Classifier with 80/20 Data Splitting
Method

The confusion matrix is shown in Figure 5.28. The elements on the diagonal show
the number of correct predictions for each device type. High diagonal elements
indicate that the model accurately classifies data of its type. For example, the
model correctly predicted 3’210 data as AirTags, 26’102 as bathroom devices, and
26’086 as camera devices. The off-diagonal elements show the misclassification.
For example, the model incorrectly classified 4 AirTags and 6 laptop devices as
smartwatch devices. Overall, the model has very high values along the diagonal
and very few on the off-diagonal, which results in a good performance of the model.

As already mentioned in Chapter 5.6 using the embedded filter selection method
Table 5.5 shows the first 30 most important features. The number of features
with the highest accuracy for iterative training of the RF classifier is 16. This is
achieved by starting with the top feature and iteratively adding one feature at a
time until all 30 features are included. The model trained on the first 16 selected
features achieves the highest training accuracy of 99.995% and test accuracy of
99.956%. Comparing the training and test accuracies with the accuracies of the
model trained on all features shows that feature selection does not improve the
model’s performance, as they are lower than 99.9991% and 99.9717%, respectively.
However, the accuracy of the model trained on the 16 most important features is
still high and in addition, the training time is shorter and the computational cost
is lower than the model trained with all features.

Due to memory limitations, hyperparameter tuning for the RF model could not
be performed. However, even if the parameters are fine-tuned, the accuracy may
not change much since it is high anyway.
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Figure 5.28: Confusion Matrix of the RF Classifier with 80/20 Data Splitting
Method

RF Classifier with Alternative Data Splitting Method

Using the training and test datasets created by the alternative data splitting
method, the training accuracy is 99.9994% and the test accuracy is 83.5992%.
Comparing these accuracies with the accuracies from the RF classifier using the
80/20 data splitting method, the training accuracy is higher but the test accuracy
is much lower than that one. Performing cross-validation with k=5 the cross-
validation scores are 85.72%, 98.91%, 86.76%, 99.33%, and 87.17%, and the mean
cross-validation accuracy is 91.58%. The learning curves of the training and cross-
validation scores are shown in Figure 5.29. While the training accuracy is very
high showing that the model fits the training data perfectly, the test accuracy is
lower showing that the model does not generalize well to unseen data. Since there
is a gap between the training and test accuracies, overfitting is occurring. The
cross-validation scores range from 85.72% to 99.33% which are variable showing
that the performance of the model is not consistent across different folds of the
data. The mean cross-validation accuracy is much lower than the training accu-
racy and closer to the test accuracy showing that the model may perform well on
some subsets of the data but not on others. This leads to overfitting where the
model fits the training data too well but does not generalize well to new data.

The test accuracies for each device type are shown in Table 5.9. Six device types
have an accuracy greater than 96% except laptops have an accuracy of 76.08%,
TVs of 28.27%, kitchen devices of 65.46%, and smartphones of 57.13%. The lowest
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Figure 5.29: Learning Curves of the RF Classifier with Alternative Data Splitting
Method

accuracy is 28.27% of the TV devices. The reason might be that the LG TVs and
the Samsung TVs do not have a similar pattern in their data packets and the model
cannot predict the device type of the Samsung TVs based on the learned pattern
of the LG TVs. The same reason for low test accuracy applies to smartphones,
bathroom devices, and laptops. While the model learns the pattern of Nokia,
Samsung, Huawei, and Google smartphones, it could not correctly predict the
type of Apple smartphones. The test accuracies of the other device types are very
high showing that the model performs well on unseen data of these device types
but not on TVs, smartphones, kitchen devices, and laptops. Since the reason for
the low accuracy of laptops, TVs, kitchen, and bathroom devices is due to the
data splitting approach, and these devices have enough data packets compared to
the AirTags with a high accuracy, the data balancing technique is not applied.

Device Type Test Accuracy
Laptop 76.08
Headphone 99.94
iPad 99.93
AirTag 99.57
TV 28.27
Kitchen 65.46
Smartwatch 99.95
Camera 99.99
Smartphone 57.13
Bathroom 96.13

Table 5.9: Test Accuracies of each Device Type of the RF Classifier with Alterna-
tive Data Splitting Method

The precision, recall, specificity, F1-score, FP, and FN of each device type are listed
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in Table 5.10. AirTags have a high recall and specificity showing that the model
performs well at identifying actual AirTag devices, but have a lower precision and
F1-score showing that there are some FP. Bathroom devices and cameras have
high precision, recall, specificity, and F1-score showing that the model performs
well with no FP and very few FN. Headphones also have high precision, recall,
specificity, and F1-score with very few FP or FN. Kitchen devices, laptops, and
smartphones have high precision and specificity but low recall and F1-score showing
that the model correctly predicts the device type but misses some devices to classify
them as kitchen devices, laptops, and smartphones, respectively. On the other
hand, smartwatches and iPads have high recall and specificity but low precision
showing a very high number of FP. TVs have very high precision and specificity
but very low recall and F1-score showing that most TV devices are missed by
the model to be classified as a TV but the devices classified as TV are correctly
predicted. These results show which devices are difficult for the model to classify.
The devices with high FN and FP are not correctly classified into their category,
and thus the model cannot predict each device to its correct type based on the
training data.

Label Precision Recall Specificity F1-Score FN FP
AirTag 0.640656 0.995702 0.991375 0.779661 14 1819
Bathroom 1.000000 0.961292 1.000000 0.980264 1045 0
Camera 1.000000 0.999937 1.000000 0.999969 2 0
Headphone 0.931880 0.999378 0.988580 0.964449 18 2115
Kitchen 1.000000 0.654645 1.000000 0.791282 3658 0
Laptop 1.000000 0.760788 1.000000 0.864145 7561 0
Smartphone 0.997755 0.571291 0.999781 0.726567 13338 40
Smartwatch 0.626538 0.999540 0.932637 0.770258 10 12961
TV 1.000000 0.282749 1.000000 0.440848 9467 0
iPad 0.449968 0.999261 0.908721 0.620517 11 18189

Table 5.10: Performance Metrics of the RF Classifier with Alternative Data Split-
ting Method

The confusion matrix is shown in Figure 5.30 which shows the misclassification
on the off-diagonal. 1’045 bathroom devices are classified as smartwatches, 2’108
kitchen devices as headphones, 1’550 kitchen devices as smartwatches, 5’035 lap-
tops as iPads, 13’135 smartphones as iPads, and 9’467 TVs as smartwatches. This
means that half of all kitchen devices, almost half of all smartphones, and 3/4
of all TVs are misclassified by the model indicating that the model has difficulty
learning the pattern of these device types to make predictions. The reason is the
same as mentioned above, that the LG TVs and the Samsung TVs do not have
a similar pattern in their data packets and the model cannot predict the device
type of the Samsung TVs. The same applies to smartphones and kitchen devices.
By excluding the devices with specific names of manufacturer from the training
dataset and applying the learning pattern from the training data, the device type
of kitchen devices, TVs, and smartphones is difficult to predict because they have
a different pattern in their data.
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Figure 5.30: Confusion Matrix of the RF Classifier with Alternative Data Splitting
Method

Using the first most important feature selected by the embedded filter selection
method and iteratively adding one feature at a time until the top 30 features are
included, the number of features with the highest training accuracy of 99.9968%
and the highest test accuracy of 87.8385% is 22. Comparing these accuracies with
the accuracies of the model trained on all features shows that the test accuracy is
higher and the training accuracy slightly lower but still high enough. This shows
that training the RF model on the most important features increases the test
accuracy by 4.2% which means that the model performs better on unseen data
than the model trained on all features.

5.8.2 Multi-Layer Perceptron Model

MLP Model with 80/20 Data Splitting Method

Training the MLP model as described in Chapter 4.8.4, Table 5.11 shows the
training accuracies, training losses, validation accuracies, and validation losses of
epochs 1, 10, 20, 30, 40, and 50. The training accuracy in the first epoch is 97.62%
and increases to a maximum of 99.69% in the 10th epoch. It remains stable for
the remaining epochs and decreases slightly to 99.65% in the last epoch. The
validation accuracy is 99.70% in the first epoch and increases to 99.74% in the
50th epoch. The training loss decreases from 0.1139 to 0.0255 and then increases
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to 0.0556 by the 50th epoch. The validation loss decreases from 0.0124 to 0.0072
and then fluctuates slightly, reaching a value of 0.0106 by the 50th epoch. Since the
training and validation accuracies are very high and stable the model performs well
on both the training and validation datasets. The training loss increases after the
20th epoch, while the validation loss remains low. The overall training accuracy is
99.766% and the test accuracy is 99.7682% showing that the model performs well
on unseen data. Overall, the model shows good performance with high and stable
training and validation accuracies with a slight increase in training loss. Since the
training and test accuracies are almost the same value, there is no overfitting and
the model has learned the patterns in the data rather than memorizing them.

Epoch Training Acc. Training Loss Validation Acc. Validation Loss
1/50 0.9762 0.1139 0.9970 0.0124
10/50 0.9969 0.0255 0.9976 0.0112
20/50 0.9968 0.0322 0.9978 0.0072
30/50 0.9968 0.0313 0.9973 0.0103
40/50 0.9968 0.0453 0.9975 0.0121
50/50 0.9965 0.0556 0.9974 0.0106

Table 5.11: Training Metrics of the MLP Model with 80/20 Data Splitting Method

The test accuracies of each device type are computed and are shown in Table
5.12. All accuracies are above 99.4%, except for AirTags, which have an accuracy
of 98.0137%, and TVs, which have an accuracy of 98.8940%. The accuracies of
AirTags and TVs are slightly lower than the accuracies of the other device types,
but still high. The lower accuracy of AirTags could be due to the dataset containing
less data from AirTag devices compared to other device types. Even when AirTags
have the fewest data packets and therefore a lower accuracy, the data balancing
technique is not applied because their accuracy is still very high. The reason for
the lower accuracy for TVs could be that TVs have similar patterns in their data
to other device types, leading to misclassification of TVs.

Device Type Test Accuracy
AirTag 98.01365611421478
Bathroom 99.8695318495779
Camera 99.90100517819068
Headphone 99.87534626038781
Kitchen 99.82046678635548
Laptop 99.77060591678532
Smartphone 99.84120682810639
Smartwatch 99.96373197932723
TV 98.89404209775241
iPad 99.44007465671244

Table 5.12: Test Accuracies of each Device Type of the MLP Model with 80/20
Data Splitting Method

Precision, recall, specificity, F1-score, FP, and FN are computed and listed in
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Table 5.13. All device types have precision values close to 1 showing that the
model makes very few FP errors. The recall values are also close to 1 for all device
types showing that the model seldom misclassified devices. Specificity values are
close to 1 across all device types showing that the model correctly classifies devices
with very few errors. F1-scores are also close to 1 for all device types showing a
good balance between precision and recall. Overall the model performs very well
with very few FP and FN and can distinguish between different device types.

Label Precision Recall Specificity F1-Score FN FP
AirTag 0.991834 0.980137 0.999853 0.985951 32 13
Bathroom 0.999923 0.998695 0.999987 0.999309 17 1
Camera 0.999924 0.999010 0.999987 0.999467 13 1
Headphone 0.999931 0.998753 0.999987 0.999342 18 1
Kitchen 1.000000 0.998205 1.000000 0.999102 7 0
Laptop 0.999762 0.997706 0.999961 0.998733 29 3
Smartphone 1.000000 0.998412 1.000000 0.999205 16 0
Smartwatch 0.984199 0.999637 0.997763 0.991858 4 177
TV 0.998919 0.988940 0.999966 0.993905 31 3
iPad 0.998661 0.994401 0.999879 0.996526 42 10

Table 5.13: Performance Metrics of the MLP Model with 80/20 Data Splitting
Method

The confusion matrix is shown in Figure 5.31. The elements on the diagonal show
the number of correct predictions for each device type. High diagonal elements
show that the model accurately classifies data of those types. For example, the
model correctly predicted 1’579 AirTags, 13’013 bathroom devices, and 13’119
cameras. The off-diagonal elements show the misclassification. For example, the
model incorrectly classified 27 AirTags as a smartwatch device and 24 laptops also
as a smartwatch device. Overall, there are very few misclassifications and very
high values on the diagonal showing that the model performs well.

Training the MLP model with the first feature selected from the filter feature
selection method from Table 5.4 and iteratively adding one more feature till all
30 features are included, the MLP model achieves the highest training accuracy of
99.7861% and the highest test accuracy of 99.8048% trained on the first 27 features.
Comparing these accuracies with the accuracies of the MLP model trained on all
features, both accuracies of the MLP model trained on the 27 selected features
are slightly higher than the accuracies of the model trained on all features. This
shows that training the MLP model with the selected features improves accuracy
while reducing training time and computational costs.

MLP Model with Alternative Data Splitting Method

Training the MLP model based on the dataset generated by the alternative data
splitting method, the training accuracy, training loss, validation accuracy, and
validation loss of epochs 1, 10, 20, 30, 40, and 50 are shown in Table 5.14. The
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Figure 5.31: Confusion Matrix of the MLP Model with 80/20 Data Splitting
Method

overall training accuracy is 84.7443% and the test accuracy is 77.6223%. The
training accuracy ranges between 97.89% and 99.76% and is high across epochs.
The training loss is low indicating that the model fits the training data well. On
the other hand, the validation accuracy is very low and stays at the same value
between 24.45% and 24.46%. The validation loss increases greatly from 60.3486
at epoch 1 to 1252.6884 at epoch 50. There is a large gap between the values of
the training accuracy and validation accuracy, indicating overfitting. The model
performs well on the training data but cannot generalize to the validation data.
In addition, the increasing validation loss indicates that there is overfitting. The
high increase of the validation loss over the epochs shows that the model may not
learn the specific pattern of each device type from the training data. This leads
to poor generalization as the model remembers the training data. Furthermore,
the training accuracy is high but the test accuracy is very low, indicating that
there is overfitting as the performance drops when the model should predict the
device type of unseen data. As already mentioned, the reason could be that devices
with specific names of manufacturer such as Samsung TVs are not included in the
training dataset and the model is trained on data of other devices with different
names of manufacturer such as LG TVs. Therefore, the model is not able to apply
the learned pattern for example of LG TVs to Samsung TVs. To overcome this
issue, the dataset should be more diverse, including more devices with different
names of manufacturer in each device type category.

The test accuracies for each device type are shown in Table 5.15. While AirTags,
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Epoch Training Acc. Training Loss Validation Acc. Validation Loss
1/50 0.9789 0.1076 0.2445 60.3486
10/50 0.9976 0.0230 0.2445 248.7953
20/50 0.9975 0.0242 0.2446 537.5908
30/50 0.9975 0.0334 0.2446 640.1320
40/50 0.9974 0.0790 0.2445 908.9257
50/50 0.9975 0.0340 0.2446 1252.6884

Table 5.14: Training Metrics of the MLP Model with Alternative Data Splitting
Method

cameras, headphones, kitchen devices, smartwatches, and iPads have a very high
accuracy of over 96%, laptops have an accuracy of 82.82%, smartphones of 80.2%,
TVs of 33.3%, and bathroom devices of 0%. The high accuracy shows that the
model performs well in classifying AirTags, cameras, headphones, kitchen devices,
smartwatches, and iPads. The model misclassifies some laptops, smartphones, and
TVs and cannot distinguish them well from other device types. An accuracy of
0% shows that the model cannot correctly identify and classify bathroom devices
correctly and always misclassifies them. While laptops, TVs, smartphones, and
bathroom devices have lower accuracy than other device types in the RF classifier
with an alternative data splitting method, here laptops, TVs, smartphones, and
bathroom devices have lower accuracy than other device types. The same reason
as for the RF classifier with an alternative data splitting method applies. The 0%
accuracy of bathroom devices could be because the AquaClean shower toilet device
and the toothbrush do not have a similar pattern in their data packets, and the
model cannot predict the device type of the AquaClean shower toilet device based
on the learned pattern of the toothbrush. Since the reason for the low accuracy
of laptops, TVs, smartphones, and bathroom devices is due to the data splitting
approach, and these devices have enough data packets compared to the AirTags
with high accuracy, the data balancing technique is not applied.

Device Type Test Accuracy
AirTag 96.22351857537611
Bathroom 0.0
Camera 99.93396018742727
Headphone 99.83765673033747
Kitchen 98.60271903323263
Laptop 82.82396861554037
Smartphone 80.20377989200309
Smartwatch 99.56329870368668
TV 33.29797711947875
iPad 99.3217379625277

Table 5.15: Test Accuracies of each Device Type of the MLP Model with Alterna-
tive Data Splitting Method

The precision, recall, specificity, F1-score, FP, and FN of each device type are listed
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in Table 5.16. AirTags have high recall and specificity but low precision, indicating
that the model predicts many FPs. Bathroom devices have a precision, recall, and
F1-score of 0, and specificity of 1.00, indicating that the model fails to identify
them. Cameras have high precision, recall, specificity, and F1-score, indicating
that the model performs well in identifying them. Headphones have high recall
but low precision, indicating a high FP value. Kitchen devices have high precision
and specificity but low recall, showing that the model fails to correctly classify
some kitchen devices. Laptops have high precision, specificity, F1-score, and good
recall, showing that the model performs well in identifying laptops. Smartphones
have high precision and specificity but low recall, showing that many smartphones
are not identified by the model. Smartwatches have high recall and specificity but
low precision, showing that the model predicted some FP. TVs have very high
precision and specificity but very low recall, indicating that many TVs are not
identified by the model. IPads have high recall and specificity but low precision,
showing that the model also predicts many FP of them. High recall but low
precision values of AirTags, headphones, smartwatches, and iPads show that the
model predicts many FP on these types. Low recall but high precision values of
kitchen devices, laptops, smartphones, and TVs show that many devices of these
types are not identified by the model. The balanced performance values with high
F1-scores such as cameras show a good balance between precision and recall and
are well identified by the model.

Label Precision Recall Specificity F1-Score FN FP
AirTag 0.517115 0.997237 0.985619 0.681065 9 3033
Bathroom 0.000000 0.000000 1.000000 0.000000 26997 0
Camera 1.000000 0.999937 1.000000 0.999969 2 0
Headphone 0.496652 0.999033 0.841730 0.663470 28 29313
Kitchen 0.949043 0.734989 0.997947 0.828412 2807 418
Laptop 0.999958 0.760757 0.999995 0.864109 7562 1
Smartphone 0.997973 0.569748 0.999803 0.725375 13386 36
Smartwatch 0.610336 0.995633 0.928131 0.756765 95 13828
TV 0.971116 0.282749 0.999448 0.437977 9467 111
iPad 0.519576 0.994560 0.931279 0.682567 81 13694

Table 5.16: Performance Metrics of the MLP Model with Alternative Data Split-
ting Method

The confusion matrix of this MLP model is shown in Figure 5.32. On the diag-
onal is the number of correctly predicted data samples, and on the off-diagonal
is the number of incorrectly predicted samples. The majority of data samples of
AirTags, cameras, headphones, kitchen devices, laptops, smartwatches, and iPads
are correctly classified into their device types, indicating that the model performs
well for these device types. No data samples of bathroom devices are correctly
predicted as bathroom devices, 24’777 data samples of them are misclassified as
cameras, and 1’744 are misclassified as iPads. This shows that the model has
difficulty distinguishing them based on their features. The misclassification of
bathroom devices as cameras or iPads shows that the learned pattern of bathroom
devices by the model is similar to the pattern of cameras and iPads, so the model
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cannot distinguish bathroom devices from them. Nearly 1/7 of the laptop data is
misclassified as either smartwatches or iPads, and nearly 1/4 of the smartphone
data is misclassified as either AirTag or iPad. It shows that the pattern of laptops
is similar to the pattern of smartwatches and iPads, and the pattern of smart-
phones is similar to the pattern of AirTags or iPads, as the model has difficulty
distinguishing between them. The majority of TV data are misclassified, mostly as
smartwatches or smartphones, with only about 1/3 correctly predicted. The model
cannot differentiate TVs and confuses them with smartwatches and smartphones.

Figure 5.32: Confusion Matrix of the MLP Model with Alternative Data Splitting
Method

Training the MLP model using the first selected features by the filter feature se-
lection method from Table 5.4 and iteratively adding one more feature till all 30
features are included, the highest training accuracy of 84.7625% and the highest
test accuracy of 74.2188% is achieved by training the MLP model with 27 features.
The training accuracy is slightly better but almost the same as the training accu-
racy of the MLP model trained on all features but the test accuracy drops by 3%
compared to the test accuracy of the model trained on all features. The training
accuracy is relatively high, which indicates that the model performs well in fitting
the training data using the selected 27 features. The drop in test accuracy shows
that the selected 27 features may not be good enough characteristics of the device
types to train the model to generalize well to unseen data. Some other impor-
tant information may be lost and the selected features may not fully represent the
characteristics of the device types.
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5.9 Comparing ML Models

Additionally, the DT2, LR3, and NB4 are trained on the dataset generated by the
80/20 data splitting method with default parameters from the scikit-learn Python
library. The KNN and SVM models could not be trained because training takes a
very long time, at least 36 hours. All trained models are shown in Table 5.17. The
RF classifier with an 80/20 data splitting approach has the highest test accuracy
among all models which shows the best performance in classifying devices. The
RF classifier with an 80/20 data splitting approach on selected features slightly
reduces the accuracy compared to using all features showing that feature selection
does not improve the performance of RF. The RF classifier with an alternative
data splitting approach has a lower test accuracy than the RF classifier with an
80/20 data splitting method indicating that the model performance is dependent
on the data splitting method. Since devices with specific names of manufacturer
are only present in the test dataset in the alternative method, the model cannot
apply the learned patterns from other devices of the same type to these devices,
which means that the characteristics of the devices of the same type are not the
same. If more devices per type and devices of different specific names of man-
ufacturer are included in the training dataset, the model would perform better.
The RF classifier with an alternative data splitting method on selected features
shows a small increase in accuracy compared to using all features. This shows that
feature selection increases the accuracy with the alternative data splitting method
compared to the 80/20 data splitting method where feature selection decreases the
accuracy.

The MLP model with an 80/20 data splitting method has a high accuracy, com-
parable to the RF classifier with the same data splitting method. This shows that
the MLP model also classifies devices accurately. The MLP model with an 80/20
data splitting method on selected features achieves a higher accuracy compared to
using all features showing that feature selection improves the MLP performance.
On the other hand, the MLP model with an alternative data splitting method has a
lower accuracy compared to the MLP model with an 80/20 data splitting method,
which is consistent with the pattern shown in the RF classifier. The MLP model
with an alternative data splitting method on selected features shows a decrease in
accuracy compared to using all features indicating that feature selection may not
be as effective with alternative data splitting.

Comparing the MLP model with an 80/20 data splitting method on all features
with the MLP model from the research published in [45], the model from the
research has an accuracy of 99.8% which is the same as the accuracy of this MLP
model of 99.768% just rounding up. Since they extracted different features from

2https://scikit-learn.org/stable/modules/generated/sklearn.tree.

DecisionTreeClassifier.html
3https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegression.html
4https://scikit-learn.org/stable/modules/naive_bayes.html

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/naive_bayes.html
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data packets of different devices as in this thesis, it is shown that the accuracies
of the MLP models are the same.

DT achieves the second highest test accuracy, showing that the model performs
well comparable to the RF classifier and the MLP models. LR has a relatively low
accuracy compared to other models, indicating that the LR model does not perform
well in classifying BLE devices and that the relationship between the features and
the device type value may not be captured by a linear model. NB also has a
low accuracy compared to other models indicating that NB has difficulty learning
the pattern of the BLE device data and that the NB algorithm’s assumptions of
feature independence do not hold for this dataset. Overall, the RF classifier with
an 80/20 data splitting method on all features, DT, and the MLP model with an
80/20 data splitting method on all features perform the best among the evaluated
models.

ML Model Test Accuracy
RF with 80/20 data splitting 99.972
RF with 80/20 data splitting on selected features 99.956
RF with alternative data splitting 83.599
Rf with alternative data splitting on selected features 87.839
MLP with 80/20 data splitting 99.768
MLP with 80/20 data splitting on selected features 99.805
MLP with alternative data splitting 77.622
MLP with alternative data splitting on selected features 74.219
MLP from research published in [45] 99.8
DT 99.961
LR 38.87
NB 39.86

Table 5.17: ML Models and their Accuracies

5.10 Summary of Limitations

As already mentioned, one of the limitations is that only devices that are portable
and easy to obtain are included in the dataset. The reason for this is that the
devices must be placed in an isolated room to sniff their data to enable the later
process of identifying and labeling the data. To do this, no data from other un-
known devices may be sniffed. This isolation of devices excludes many device types
from the dataset, such as security cameras and other stationary devices that can-
not be brought to an isolated room and are difficult to obtain. Furthermore, the
dataset has more devices that are widely used and commonplace, such as head-
phones. The dataset could be skewed during the sniffing process and not represent
the full range of different BLE devices.

Another limitation is that the data set does not contain enough different devices
per device type. Splitting the dataset using the alternative data splitting method
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shows that the model fits the training data too well, but does not generalize well to
new data. For example, if only Samsung and LG TVs are present and the Samsung
TVs are excluded from the training data, the model cannot accurately predict the
device type of Samsung TVs. By including more devices with different manufac-
turer names per device type, the dataset is more diverse and could overcome this
limitation.

As already shown in Figure 5.6, devices of the same type, such as headphones,
have quite different values. This shows that even devices of the same type can have
different numbers of packets. The reason could be that some devices are actively
used and transmit a lot of packets during the sniffing process, while others are
inactive and only transmit a tiny amount of packets. This shows a limitation of
capturing BLE packets because the number of packets of devices varies on how the
devices are used during the sniffing process.
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Chapter 6

Conclusion and Future Work

This chapter summarizes and concludes the main findings of this thesis. Further-
more, this chapter provides potential future work that can be done for further
research.

6.1 Conclusion

Since the number of attacks on BLE devices is increasing and there are many
security and privacy threats, there is a high need to identify and classify BLE
devices. This thesis addresses the security and privacy threats of BLE devices
by generating a dataset of different BLE devices and developing ML models to
classify them. The motivation for this thesis is that most BLE devices are smart
home devices that contain personal information, and since they are vulnerable to
attacks, there is a high need to protect personal data.

The first objective is to capture BLE packets by sniffing over an extended period
of time. This is achieved by first collecting BLE devices of different device types.
In total, there are 10 types such as AirTags, cameras, headphones, smartphones,
smartwatches, laptops, TVs, iPads, kitchen and bathroom devices, and 49 devices.
The nRF Sniffer tool is used to collect BLE packets from each device. The second
objective of preprocessing and creating a large dataset for analysis and pattern
recognition is achieved by removing sniffed data that does not contribute to the
classification task and transforming the data into a numerical representation. In
addition, features that are characteristic of a device type are extracted from the
dataset. Using feature selection methods, features such as Number of Forward
Packets, Number of Packets, Sum Payload Length, Sum Packet Length, Sum RSSI,
and Sum Delta Time are selected as the most important features to train the
ML models. The final objective, to evaluate and develop ML models to classify
and identify different BLE devices based on their characteristics, is achieved by
developing RF classifiers and MLP models and training them on two different
training datasets.

97
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Training the RF classifier on the training dataset created by the 80/20 data split-
ting method achieves the highest accuracy of 99.972%. Training it with features
selected by the embedded feature selection method does not improve the accuracy,
but it is still high. Using the alternative data splitting method to create the train-
ing and test datasets, the accuracy of the RF classifier is reduced to 83.599%. The
reason for the decrease in accuracy is that since devices with specific names of
manufacturer, such as Samsung TVs, are not included in the training dataset, the
model cannot apply the learned pattern of other TVs from the training dataset to
unseen TVs.

The second highest accuracy of 99.961% is achieved by the DT classifier, followed
by the MLP model trained on the training dataset created by the 80/20 data
splitting method and with the first 27 features selected by the filter feature selection
method with an accuracy of 99.805%. Again, using the alternative data splitting
method to create the training and test datasets reduces the accuracy of the MLP
model for the same reason as the RF classifier. Since the structure of the MLP
model is the same as in the research published in [45], it is interesting to compare
the accuracies. Since the accuracy from the research published in [45] is 99.8%
and rounding up the accuracy of the MLP model in this thesis is also 99.8%, it
shows that even with a different dataset and different extracted features, the MLP
model in this thesis achieves the same accuracy.

6.2 Future Work

Several limitations of this thesis can be addressed for further research. Firstly, the
generated dataset consists of only 10 device types. In the future, the dataset can be
expanded to include more device types. Since the generated dataset only has easily
portable devices to bring them into an isolated room, other devices such as security
cameras and medical devices can also be included in the dataset to generate a more
diverse dataset. This can be achieved by removing the condition that BLE devices
should be brought into an isolated room to sniff their data packets. Since this
condition arises because there is not enough information from the sniffed data to
label the BLE packets, a solution should be found to allow other devices to be
sniffed even if they are not brought into an isolated room.

In addition, each device type in the generated dataset has a minimum of 2 devices.
This minimum can also be expanded to a larger number of devices per type so
that there are enough devices with different names of manufacturer per device
type. By increasing the number of devices per type, the accuracy of the trained
ML models on the dataset generated by the alternative data splitting method
could be increased. By training the ML models on different devices with different
names of manufacturer and excluding the data packets of just one device with
a specific name of manufacturer from the training dataset, the ML models can
learn the pattern of device type based on the data packets of different devices
with different names of manufacturer to accurately predict the device type of the
excluded device.
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BLE Device Any device that has BLE capabilities, allowing for energy-efficient
short-range wireless communication.
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Appendix A

Installation Guidelines

A.1 nRF Sniffer Tool

In order to sniff the data packets of BLE devices with the nRF Sniffer tool, the
nRF Sniffer for Bluetooth LE application should be installed from the Nordicsemi1

website in the Downloads section. The section Documentation describes the min-
imum requirements, installation, running the nRF sniffer, using the nRF sniffer,
and common sniffing actions. Furthermore, the Wireshark application should also
be installed from the Wireshark2 website.

A.2 Running the Application

Jupyter Notebook and Python v3.12 should be installed to run the application.
All dependencies needed to run the application are included in the Python files
in the GitHub repository. The generated dataset is a CSV file that should be
downloaded from the link provided in the README file in the GitHub repository.
The file path to the dataset should be adjusted in the Python files to read the
dataset correctly.

1https://www.nordicsemi.com/Products/Development-tools/

nrf-sniffer-for-bluetooth-le
2https://www.wireshark.org/
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Appendix B

Full List of Related Work

Paper No.
of
De-
vices

Type of Devices Features Model

[3] 21 4 types Packet Number, Packet
Length Average, Packet
Length Peak, Control Packet
Number, Control Packet
Average, Control Packet Peak

N/A

[13] 9 PCs, Smartphones TCP packets (4-tuples of
Source and Destination IP
Addresses and Port Numbers,
from SYN to FIN)

Multi-
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Classifier

[14] 41 4 types of Smart Home
Environment

13 Network Traffic Features LR, Logi-
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Continued on next page
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Table B.1 – continued from previous page
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Times between the first N
Packets Received

RF, DT,
SVM,
KNN,
ANN, and
NB

[59] N/A N/A 37 features: Protocol, Des-
tination and Aource Ports,
Amount of Packets, Bytes
per Flow, Amount of Packets
without Quaternary Data
(TCP/UDP), Flow Start-
ing Time, Flow Ending
Time, Duration, Average
Speed in Packets and Bytes,
Max/Min/Avg/Std of Packet
Sizes and Interpacket Gaps,
Amount of TCP Packets, Sizes
of the first 10 Packets

DT, SVM,
NB, kNN,
RF, GB

Continued on next page
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Table B.1 – continued from previous page
Paper No.

of
De-
vices

Type of Devices Features Model

[67] 28 Cameras, Lights, Plugs,
Motion Sensors, Ap-
pliances, and Health-
Monitors

Source/Destination Port
Number, Payload Volume,
TCP Window Size, Inter-
arrival Time and Direction
of Traffic, Average Time Be-
tween Successive Flows, Flow
Duration, Inbound/Outbound
Traffic Volume, Packet Size,
Byte Distribution of Payload,
Inter-arrival Times of Packets

N/A

[44] N/A 23 types: IP Cam-
eras, Smart Power Plugs,
Light Bulbs, Sensors

v: Flow as a Sequence of Net-
work Packets Sent from a given
Source MAC Address, Periodic
Flow, Period Accuracy, Period
Duration, Period Stability

Unsupervised
Clustering

[45] 23 7 types: Smart Bands,
Smartwatches, Smart
Oximeters, Smart Hu-
midifiers, Headphones,
Smartphones, and PCs

PDU and the Channel Selec-
tion from the Packet Header,
the Type of AdvData, Length
of the Type of AdvData,
Flags, Service Data, Service
UUID, Manufacturer Specific,
Appearance, and Power Level

MLP

[47] N/A Smartphones and Lap-
tops

Inter-Probe Period (IPP), Re-
ceived Signal Strength (RSS),
Coefficients of Variation, Num-
ber of Probe Requests with
broadcast/known SSID, De-
vice Manufacturer, Probe Re-
quest Frames

RF, NB,
SVM, DT

[48] 12 7 types: Hubs, Cameras,
Switches, Triggers, Air
Quality Sensors, Health-
care, Light bulbs, Smart-
watches and Router

Number of Packets, Traffic
Send Rate, Number of Desti-
nation Addresses, Variation of
Number of Send Packets, Sum
of Packet Lengths, Average of
Packet Lengths, Number of
Protocol Types, and Number
of Destination Addresses

LR, RF,
SVM,
MLP,
LSTM,
CNN

[50] 22 10 types Header Information, Frame
Size and the Timestamp of
Frameâs Capture

RF, DT,
and SVM.

Continued on next page
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Table B.1 – continued from previous page
Paper No.

of
De-
vices

Type of Devices Features Model

[52] 14 7 types TCP Window Size, Entropy
and Payload Lengths, Packet
Header Feature, TCP Payload
Length

KNN, DT,
GB, and
Majority
voting

[57] N/A 6 types: Door Sensors,
Locks, Temperature Sen-
sors, Smart Bulbs, Cam-
eras, and Smart Plugs

7 features: Packet Length,
BLE Link Layer Header
Length, Packet Count, RF
Channel Number, PDU type,
Device Name, and Packet
Time

KNN,
LDA, RF

[55] 13 iBeacon iBeaconsâ RSSI Autoencoder
[56] N/A N/A Advertising eEvent Inter-

val, Advertising Channel
Sequence: PDU, Advertising
Delay Distribution, Through-
put, Number Packets Sent,
Burst Rate

RF

Table B.1: Full List of Related Work



Appendix C

Direct Feature Extraction

• Length of Payload

• Channel Index

• RSSI

• Delta time (µs end to start)

• Packet Header

– PDU Type

– Info

– Reserved

– Channel Selection Algorithm

– Tx Address

– Rx Address

– Packet Header Length

• Scanning Address

• AdvData

– AdvData Type

– Length of the AdvData Type

– Simultaneous LE and BR/EDR to Same Device Capable (Host)

– Simultaneous LE and BR/EDR to Same Device Capable (Controller)

– BR/EDR Not Supported

– LE General Discoverable Mode

– LE Limited Discoverable Mode

– Power Level (dBm)
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– Data

– Service Data

– BD ADDR

• CRC



Appendix D

Derived Feature Extraction

• Duration

• Number of Packets

• Packets per Second

• Time per Packet

• Bytes per Second

• Packet Header Length: Maximum, Minimum, Average, Standard Deviation,
Variance

• RSSI: Maximum, Minimum, Average, Standard Deviation, Variance

• Length of Payload: Maximum, Minimum, Average, Standard Deviation,
Variance

• Delta Time: Maximum, Minimum, Average, Standard Deviation, Variance

• Packet Direction

• Number of Forward Packets

• Number of Backward Packets

• Delta Time of Forward Packets: Maximum, Minimum, Average, Standard
Deviation, Variance

• Delta Time of Forward Packets: Maximum, Minimum, Average, Standard
Deviation, Variance
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Appendix E

Results of Direct Feature Extraction

Figure E.1: Number of Packets by Reserved Feature

Figure E.2: Number of Packets by Channel Selection Algorithm Feature
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128 APPENDIX E. RESULTS OF DIRECT FEATURE EXTRACTION

Figure E.3: Number of Packets by Tx Address Feature

Figure E.4: Number of Packets by Rx Address Feature

Figure E.5: Number of Packets by Simultaneous LE and BR EDR to Same Device
Capable (Host) Feature
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Figure E.6: Number of Packets by Number of Packets by Simultaneous LE and
BR EDR to Same Device Capable (Controller) Feature

Figure E.7: Number of Packets by Number of Packets by BR EDR Not Supported
Feature

Figure E.8: Number of Packets by LE General Discoverable Mode Feature
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Figure E.9: Number of Packets by LE Limited Discoverable Mode Feature



Appendix F

Results of Derived Feature Extraction

Figure F.1: Number of Packets by Duration Feature

Figure F.2: Number of Packets by Minimum RSSI Feature
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Figure F.3: Number of Packets by Maximum RSSI Feature

Figure F.4: Number of Packets by Sum RSSI Feature

Figure F.5: Number of Packets by Minimum Packet Length Feature
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Figure F.6: Number of Packets by Maximum Packet Length Feature

Figure F.7: Number of Packets by Sum Packet Length Feature

Figure F.8: Number of Packets by Minimum Payload Length Feature
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Figure F.9: Number of Packets by Maximum Payload Length Feature

Figure F.10: Number of Packets by Sum Payload Length Feature

Figure F.11: Number of Packets by Average Packet Length Feature
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Figure F.12: Number of Packets by Standard Deviation Payload Length Feature

Figure F.13: Number of Packets by Variance Payload Length Feature

Figure F.14: Number of Packets by Minimum Delta Time Feature
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Figure F.15: Number of Packets by Maximum Delta Time Feature

Figure F.16: Number of Packets by Sum Delta Time Feature
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Figure F.17: Number of Packets by Variance Delta Time Feature

Figure F.18: Number of Packets by Packet Direction Feature

Figure F.19: Number of Packets by Number of Forward Packets Feature
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Figure F.20: Number of Packets by Number of Backward Packets Feature

Figure F.21: Number of Packets by Average Number of Forward Packet Feature

Figure F.22: Number of Packets by Average Number of Backward Packet Feature
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Figure F.23: Number of Packets by Minimum Delta Time Feature of Forward
Packets

Figure F.24: Number of Packets by Maximum Delta Time Feature of Forward
Packets
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Figure F.25: Number of Packets by Sum Delta Time Feature of Forward Packets

Figure F.27: Number of Packets by Standard Deviation Delta Time Feature of
Forward Packets
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Figure F.28: Number of Packets by Variance Delta Time Feature of Forward
Packets

Figure F.29: Number of Packets by Minimum Delta Time Feature of Backward
Packtes
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Figure F.30: Number of Packets by Maximum Delta Time Feature of Backward
Packtes

Figure F.31: Number of Packets by Sum Delta Time Feature of Backward Packtes

Figure F.32: Number of Packets by Average Delta Time Feature of Backward
Packtes
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Figure F.33: Number of Packets by Standard Deviation Delta Time Feature of
Backward Packtes

Figure F.34: Number of Packets by Variance Delta Time Feature of Backward
Packtes
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