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Abstract

Persönliche Bluetooth-Tracking-Geräte, wie AirTags, sind nützliche zum Auffinden verlo-
rener Gegenstände. Allerdings können diese Tracker auch zur Verletzung der Privatsphä-
re, d. h. zum Stalking, missbraucht werden. Bislang ist die Erkennung von Bluetooth-
Trackern, die in die Privatsphäre eindringen, schwierig. Der derzeitige Stand der Forschung
legt nahe, dass es möglich ist, Bluetooth-Tracking-Geräte anhand ihrer übertragenen Pake-
te zu erkennen. Andere Forschende haben gezeigt, dass maschinelle Lernmodelle zwischen
Paketen von Tracking-Geräten und Nicht-Tracking-Geräten unterscheiden können. Ziel
dieser Arbeit ist es, diese binäre Klassifizierung zu einer kategorialen Klassifizierung von
Bluetooth-Tracking-Geräte und deren Status zu erweitern. Darüber hinaus sollte die Klas-
sifizierung auch in stark frequentierten realen Umgebungen funktionieren, um praktisch
nutzbar zu sein. Zu diesem Zweck werden Bluetooth-Pakete von einer Vielzahl von Geräten
aufgezeichnet, um einen grossen Datensatz für das Training von maschinellen Lernmodel-
len zu generieren. Die erfassten Daten werden dann ausfürlich analysiert, um geeignete
Klassen für die kategoriale Klassifizierung zu bilden. Mehrere verschiedene maschinel-
le Lernmodelle werden auf diesem Datensatz trainiert und evaluiert. Schliesslich wird ein
maschinelles Lernmodell für die Inferenz auf reale Daten verwendet, um Bluetooth-Pakete
zu klassifizieren, die am Hauptbahnhof Zürich aufgezeichnet wurden. Diese Klassifizierung
wird mit einem qualitativen Ansatz evaluiert, indem die auf der Grundlage der Klassifizie-
rung erstellten Grafiken interpretiert werden. Die Evaluation zeigt, dass die kategorische
Klassifizierung von Bluetooth-Tracking-Geräten in stark frequentierten realen Umgebun-
gen mit einem hohen Grad an Genauigkeit möglich ist.
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Personal Bluetooth tracking devices, such as AirTags, are useful for locating lost items.
However, these trackers can also be misused for privacy invasion, i.e., stalking. As of right
now, the detection of privacy-invading Bluetooth trackers is difficult. The current state
of research suggests that it is possible to detect Bluetooth tracking devices based on their
transmitted packets. Other researchers have shown that machine learning models can
distinguish between packets of tracking and non-tracking devices. The goal of this thesis
is to extend this binary classification to a categorical classification of Bluetooth tracking
devices and their states. Furthermore, the classification should also work in high-traffic
real-world environments to be practically usable. For this purpose, Bluetooth packets
from a variety of devices are captured to generate a large dataset for training of machine
learning models. The captured data is then analyzed extensively to form appropriate
classes for categorical classification. Several different machine learning models are trained
and evaluated on this dataset. Finally, one machine learning model is used for inference
on real-world data to classify Bluetooth packets captured at Zürich central station. This
classification is evaluated with a qualitative approach by interpreting plots generated
based on the classification. The evaluation shows that the categorical classification of
Bluetooth tracking devices in high-traffic real-world environments is possible with a high
degree of accuracy.
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Chapter 1

Introduction

Personal Bluetooth-based tracking devices like the AirTag from Apple or the SmartTag
from Samsung have recently gained in popularity. These devices are helpful in finding lost
items such as keys or handbags. However, similar to tracking lost items, these trackers
can also be misused for the malicious purpose of stalking. It does not require a lot of
imagination to come up with ideas on how this could be achieved without the victim’s
knowledge. As these trackers are relatively small in size, sometimes only as large as a
coin, they can be hidden practically everywhere. Therefore, detecting malicious Bluetooth
trackers by the naked eye can be challenging, if not impossible. For instance, a tracker
could very well be mounted under a vehicle and, therefore, be nearly invisible and hard
to spot.

Therefore, as high as these trackers’ utility is, so is the privacy risk they impose. Addition-
ally, this risk of privacy intrusion is certainly not beneficial to the widespread adoption
of these (useful) devices. Therefore, vendors of these Bluetooth trackers, such as Ap-
ple, have created smartphone apps that can detect malicious privacy-invading trackers of
their brand [1]. In other words, the tracker detection app from Apple can detect Apple’s
AirTags and Apple’s AirTags only. This is not the most consumer-friendly approach. It
would, therefore, be highly beneficial to have a universal approach for tracker detection
that could detect trackers of various vendors.

1.1 Motivation and Thesis Goals

Given that the current state of detection of malicious Bluetooth trackers is not consumer-
friendly and inadequate from a privacy point of view, this thesis attempts to create a
machine learning model for Bluetooth tracker detection. Machine learning is known to
be highly effective in classification tasks, especially when trained on large-scale training
datasets.

In an ideal scenario, machine learning models generalize from the given training data and
learn the underlying hidden patterns in the data to reach their target. This is especially
important in the case of previously unseen data samples where adequately trained machine

1



2 CHAPTER 1. INTRODUCTION

learning models thrive in contrast to traditional, more rule-based approaches. General-
ization is essential because collecting data from all Bluetooth devices, Bluetooth trackers,
and other non-tracker Bluetooth devices would never be possible. Any approach for Blue-
tooth tracker detection must be able to correctly classify data samples from devices not
seen during training. Therefore, the strengths of machine-learning-based approaches are
promising for identifying Bluetooth trackers.

From a practical point of view, the actual identification of the devices, i.e. the inference
on the machine learning models, should happen in a real-world high-traffic environment.
The environment should contain typical Bluetooth devices, i.e., be ”real-world”, and the
more devices that are seen during inference, the more there is to evaluate. Hence, the
environment should be high-traffic.

Therefore, the goals of this thesis are:

• Collect Bluetooth packet data from Bluetooth devices, both trackers and non-
trackers.

• Train a machine learning model on the collected data.

• Use the machine learning model to identify Bluetooth trackers in real-world high-
traffic environments and evaluate the result.

1.2 Description of Work and Scope

As this thesis is rather extensive, this section shall give some guidance on the scope and
the most important content of this thesis:

• There is a brief introduction to the functionality of Bluetooth tracking networks
and Bluetooth Low Energy (BLE). This does not aim to provide a deep dive into
Bluetooth. A look into the Bluetooth Core Specification might be advisable to gain
a deeper understanding.

• A focus of this thesis is certainly the aspect of data collection. This is reasonable
given that the quality of machine learning models largely depends on the data they
were trained on. One out of the many results of this thesis is, therefore, an extensive
dataset collected over 600 hours and containing 30 million Bluetooth packets. This
dataset could potentially be used by other researchers.

• Given the large amounts of data involved, a custom solution for data processing
became necessary. The result of this is the Task-Group-Framework, a high-level
implementation for complex data pipelines focusing on flexibility at runtime. An
entire chapter is dedicated to outlining the core aspects and functionality of this
framework. A detailed documentation of the framework does not exist yet as of
writing this thesis.
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• Three approaches for data preprocessing and subsequent modeling are detailed in
this thesis. Two of these three approaches were then applied to the training dataset
using various machine learning models. These models are the main result of this
thesis. All of these models were also evaluated on separate test sets.

• One of the numerous created machine learning models was ultimately selected for
inference on real-world data collected in a high-traffic environment, Zürich central
station (HB). The result of this inference is evaluated to the best of my abilities
using insightful visualizations. These plots are the thesis’s highlight.

Additionally, the Python source code, including the Task-Group Framework, my Jupyter
Notebooks, all plots, and the entire dataset, can be found on the GitHub page for this
thesis. The link to the repository is in the appendix.

1.3 Thesis Outline

The following chapters of this thesis cover roughly the following topics. At the end of
every chapter, a brief section summarizes the key takeaways.

Chapter 2 introduces fundamental theoretical concepts that are essential for understand-
ing what follows. Reading through this to understand the terminology and definitions
used in this thesis is especially recommended.

Chapter 3 discusses related work. Furthermore, it outlines a baseline feasibility experiment
that mimics and summarizes the current state of research.

Chapter 4 discusses the data collection process in detail, ranging from an overview of
popular BLE trackers to a deep dive into the challenges faced during data collection,
especially labeling.

Chapter 5 introduces a custom data processing framework focusing on runtime flexibility,
the Task-Group-Framework. This framework was created for this thesis to tackle the
challenges of processing the large amounts of data that were collected.

In Chapter 6, the collected data is extensively analyzed with visual plots in order to gain
insights for feature extraction and modeling.

Chapter 7 covers the training and evaluation of various machine learning models following
different approaches.

In Chapter 8, the most relevant chapter, the machine learning models from the previous
chapter are used for inference on a real-world data set collected in a high-traffic environ-
ment. The result is evaluated and discussed with visual plots.

Finally, Chapter 9 analyzes the success of this thesis in the context of the goals set above
and outlines potential future work.
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Chapter 2

Theory

This chapter introduces numerous theoretical concepts and definitions crucial to this the-
sis. Therefore, it is split into three sections, which are only loosely connected with each
other. Any other extensive theoretical introduction is omitted for brevity.

The first section introduces the fundamental concepts behind these devices. This includes
the definition of trackers, an introduction to tracking networks, and an introduction to
the operating states of trackers. Next, there is a brief introduction to the functionality
of Bluetooth Low Energy (BLE) on a protocol level, focusing on aspects relevant to this
thesis. The final section introduces numerous machine learning approaches for BLE device
classification and discusses their respective advantages, disadvantages, and limitations.

2.1 Bluetooth Tracking Devices

2.1.1 Tracking Networks

As of writing this thesis, there are two fundamentally different types of trackers: GPS
trackers and the already discussed BLE trackers. On the one hand, there are GPS trackers
that use a GPS receiver to locate themselves and a cellular modem to transmit the location
data to the trackers’ owner via the Internet. These trackers can operate everywhere as
long as GPS and cellular signals are present. However, their technical complexity, size,
and battery life limit their applicability for privacy invasion.

BLE trackers, on the other hand, have neither a GPS module nor a cellular modem
onboard. They contain nothing but a tiny logic board, a small battery (usually a coin
battery), and a Bluetooth modem, precisely a Bluetooth Low Energy modem, to save
power compared to traditional Bluetooth. Therefore, these trackers are often tiny and
not larger than a coin. Instead of relying on GPS and cellular networks, these trackers
rely on so-called tracker networks for locating.

BLE tracker networks enable device location using the following method, explained here
using Apple’s Find My network [2] as an example (Figure 2.1). Other tracker networks,
such as those from Samsung or Tile, operate similarly.

5



6 CHAPTER 2. THEORY

Figure 2.1: Apple Find My Tracker Network [2]

1. The tracker is linked to the tracker network via an owner device, typically a smart-
phone. Both a public and a private key are generated during this linking process.
The public key is stored on the tracking device, and the private key is stored on the
owner’s device.

2. After the linking process, the BLE tracker starts broadcasting the public key via
BLE advertising packets periodically.

3. Other devices registered to the same network, often smartphones, can pick up these
BLE advertisements, including the public keys. These finder devices need to have a
GPS module and an Internet connection. When a foreign public key is picked up via
Bluetooth, the finder device locates itself via GPS, encrypts the location data using
the public key, and uploads this encrypted data to the network provider’s server
using its Internet connection.

4. The owner’s device can download the encrypted location data from the network
provider’s servers and decrypt the data using the previously generated private key.
The result is an approximate location of the (lost) BLE tracker.

The above description of tracker networks and the technical implementation of BLE track-
ers lead to three important conclusions:

• Due to relying on Bluetooth Low Energy instead of GPS and cellular, BLE trackers
are tiny and have extensive battery life, thus making them a potential privacy risk.
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• The greatest strength of BLE trackers, i.e., relying on BLE, is also their most signif-
icant weak point. Because they must regularly broadcast BLE packets for locating,
they can possibly be detected by packet sniffing.

• If it was possible to reliably classify these sniffed packets as tracker or non-tracker,
for instance, with machine learning, malicious BLE trackers could easily be detected
and their privacy risk somewhat mitigated.

2.1.2 Definitions of Trackers

In this thesis, BLE trackers shall be defined as devices that are trackable via the tracking
networks described above. This includes the conventional BLE tracking devices such as
AirTags or SmartTags and, in addition, other trackable devices such as iPhones, which
are also trackable via Apple’s Find My network. Therefore, this definition is significantly
broader than the conventional definition of BLE trackers, which in most cases only extends
to devices used for tracking purposes only, such as AirTags or SmartTags, and does not
cover other devices, such as mobile phones.

This definition was chosen because, in the context of privacy invasion, it does not matter
whether a device is a phone, a conventional BLE tracker, or anything else. As long as a
device is potentially trackable via a Bluetooth-based tracking network, it is a potential
privacy concern and can be detected via Bluetooth packets.

In addition to Bluetooth trackers, there are also non-Bluetooth trackers. These are devices
that are remotely trackable only by methods other than Bluetooth, such as the cellular
network and GPS. However, for the sake of this thesis, it seems to be of little gain to
cover devices that are trackable only over non-Bluetooth-based networks. If a device is
only trackable via such a network, it is not necessarily possible to capture any Bluetooth
packets for such a device and, therefore, detect it. However, from a privacy point of view,
it would make sense to attempt to detect such devices, if somehow possible.

As of April 2024, most Android phones were examples of non-Bluetooth trackers, as they
were only trackable through Google’s Find My Device service, which relies solely on cel-
lular networks. Therefore, Android phones could be considered privacy-invading trackers,
even though it is impossible to detect them via Bluetooth, as they do not necessarily
transmit any Bluetooth packets. Bluetooth could be turned off entirely on such devices,
yet they were still trackable.

At this point, there are two things to add for clarification:

• iPhones and other Apple Devices are BLE trackers under the definition of this thesis
as they are trackable via Apple’s Find My network, which, as described above, works
over Bluetooth.

• While writing this Thesis, Google launched its Bluetooth tracking network for An-
droid devices similar to Apple’s Find My network [3]. Therefore, as of May 2024,
Android phones can principally no longer be classified as non-Bluetooth trackers
and would be considered trackers under the definition of this thesis. However, the
launch of this network was too late to be covered in this thesis.
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2.1.3 States of Trackers

Bluetooth trackers can be in various states. In this context, a state shall be defined as any
externally observable behavior of the tracker depending on its environment, configuration,
usage, time, or other factors. Typically, this behavior manifests in the structure of the BLE
packets transmitted by the device. Different states result in different packets transmitted.

At this point, it is important to differentiate between Bluetooth-only trackers (ex: AirTag)
and other non-Bluetooth-only trackers (ex: iPhone) that can also be tracked via non-
Bluetooth methods, such as the cellular network. The types of states and their exact
definitions vary depending on the kind of tracker. The states outlined in the following
paragraphs are defined in accordance with the definitions commonly found in related
literature.

Note: This differentiation between Bluetooth-only trackers and non-Bluetooth-only track-
ers differs from before when we separated between Bluetooth trackers and non-Bluetooth
trackers. An iPhone is a tracker under the definition of this thesis (as it is trackable via
Bluetooth). Still, it is not a Bluetooth-only tracker but a non-Bluetooth-only tracker (as
it is also trackable via the cellular network). An Android phone (trackable via Google’s
Find My Device network) is neither. It is not a tracker under the definition of this thesis,
as it is not trackable via Bluetooth, and it is, therefore, also neither a Bluetooth-only
tracker nor a non-Bluetooth-only tracker.

The most important states for Bluetooth-only trackers and their definitions are:

• powerless: The tracker is not connected to power, i.e., the battery is not inserted
or not sufficiently charged. In this state, the tracker is not trackable and cannot
transmit any BLE packets. Hence, the tracker is not detectable via BLE packets.
For this thesis, this state is irrelevant.

• unpaired: The tracker is not linked to a tracking network. In this state, the tracker
is not trackable but potentially detectable via BLE packets. This state typically
occurs right after the tracker is unboxed and turned on for the first time to initiate
the setup and pairing process.

• nearby: The tracker is in Bluetooth range of its owner device, and therefore, the
tracker does not have to be located via other finder devices, i.e., the public key does
not need to be transmitted. In this state, the tracker is trackable and potentially
detectable via BLE packets.

• lost: The tracker is far away from its owner device, and other finder devices in the
network are used to locate the tracker. In this state, the tracker is trackable and
potentially detectable via BLE packets.

• searching: The tracker is searching its owner-device. This state typically occurs
directly after the initiation via the press of a button on the tracker itself. In this
state, the tracker is trackable and potentially detectable via BLE packets.

After some time, the tracker will automatically leave this state and return to its
original state, which is often associated with some form of an acoustic signal.



2.1. BLUETOOTH TRACKING DEVICES 9

It is essential to add that not all Bluetooth-only trackers necessarily need to support all
of the above states. It is perfectly reasonable for some trackers not to support certain
states. For instance, not all trackers might support the searching feature. Hence, not all
trackers need to have a ”searching” state. Some trackers also have additional states, not
covered in the list above.

Most of the above states and their definitions must be slightly adapted for non-Bluetooth-
only trackers. A non-Bluetooth-only tracker does not require any pairing process to an
owner device. Therefore, it has neither an ”unpaired” nor a ”nearby” nor a ”lost” nor
a ”searching” state. Given that those trackers can also be tracked via the Internet and
their trackability is at least partially dependent on an Internet connection, such as a
cellular connection, it seems viable to differentiate between the availability/unavailability
of an Internet connection for such trackers. Therefore, the states of non-Bluetooth-only
trackers shall be defined as follows:

• powerless: The tracker is not connected to power, i.e., the battery is not inserted
or not sufficiently charged. In this state, the tracker is not trackable and cannot
transmit any BLE packets. Hence, the tracker is not detectable via BLE packets.
For the scope of this thesis, this state is irrelevant.

• unregistered: The tracker is not registered to a tracking network. In this state, the
tracker is not trackable but potentially detectable via BLE packets.

• online: The tracker is connected to the Internet. In this state, the tracker is trackable
via the Internet and Bluetooth. Therefore, the tracker is potentially detectable via
BLE packets.

• offline: The tracker is not connected to the Internet. In this state, the tracker is
trackable via Bluetooth only and potentially detectable via BLE packets.

At this point, further discussion of the ”unregistered” state might be necessary. Non-
Bluetooth-only trackers are typically automatically linked to the tracking network during
the initial setup process of the device, so unregistered trackers are a rare anomaly. Fur-
thermore, one might ask whether such trackers would be detectable in the ”unregistered”
state. The tracker is not registered to the network, so it does not have to transmit any
BLE packets. Unlike Bluetooth-only trackers such as AirTags, non-Bluetooth-only track-
ers do not need to transmit BLE packets for pairing in the unregistered state. Therefore,
non-Bluetooth-only trackers are likely not detectable in the ”unregistered” state.

Having discussed the various relevant states for Bluetooth trackers, one can apply those
to the context of privacy protection. From a privacy point of view, it is most relevant to
distinguish between potentially privacy-invading trackers and non-privacy-invading track-
ers. As discussed previously, non-detectable states, such as ”powerless” or ”unregistered”,
are out of the scope of this discussion.

The ”lost” state is most privacy-invading for the Bluetooth-only trackers as it allows for
tracking foreigners. The ”unpaired” and ”nearby” states are significantly less privacy-
invading than the ”lost” state. A tracker in the ”unpaired” state is not trackable; there is
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no privacy risk. In opposition to this, the ”nearby” tracker is theoretically trackable but
unsuitable for privacy invasion. A tracker in the ”nearby” state is - in all likelihood - the
tracker of the person it is following/close to, as it is within proximity of its owner device.
In other words, trackers do not invade privacy in the ”nearby” state as they presumably
belong to the person/owner-device they are closest to.

Therefore, it seems sensible to at least differentiate between the ”lost” state and the other
two states. If possible, it would be preferable to be able to distinguish all three states, as
the ”nearby” tracker could - at least theoretically - still be a privacy risk.

Only two relevant states are left for the non-Bluetooth-only trackers: ”offline”and ”online”.
The ”online” state is significantly more privacy-invading than the ”offline” state. In the
”online” state, the tracker can be tracked via the Internet and Bluetooth, whereas only
the latter is possible in the ”offline” state. Therefore, a differentiation between the states
would be highly preferable if possible.

In conclusion, trackers of all kinds can be in various states. It would be highly preferable to
be able to distinguish these states as the privacy risk imposed by them varies significantly.

2.2 Bluetooth Low Energy

This section discusses some aspects of Bluetooth Low Energy (BLE) that are relevant
to packet classification. However, it is outside the scope of this thesis to elaborate on
the functionality, implementation, and potential upsides and downsides of Bluetooth Low
Energy (BLE) to any meaningful extent. A detailed understanding of the underlying
technology and implementation of Bluetooth is not relevant for classification. The sources
for the content of this section are the Bluetooth Core Specification from page 2645 onwards
[4] and the Core Specification Supplement 9 [5].

It is sufficient to have a high-level understanding of how BLE packets are structured
and how this structure could potentially differ among packets and devices. Therefore,
this section aims to explain how the structure of BLE packets can be used for feature
extraction. As long as two packets differ in one feature, this is potentially already sufficient
to differentiate them and classify them correctly.

2.2.1 BLE Packet Structure

Bluetooth Low Energy packets follow a certain structure. On the link layer, packets are
structured as follows (Figure 2.2):
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Figure 2.2: Packet Structure of a BLE Advertising Packet[6]

1. Preamble: This is used for various purposes, such as synchronization between de-
vices, and is irrelevant for classifying packets.

2. Access Address: Most BLE packets share the same access address ”0x8E89BED6”,
hence this is irrelevant for classifying packets.

3. Protocol Data Unit (PDU): There are two types of PDUs, the ”Advertising Physical
Channel PDU”and the ”Data Physical Channel PDU”. For this thesis, only the first
one is relevant. There are many types of PDUs, which are explained in more detail
below.

4. Cyclic Redundancy Check (CRC): This is used for error detection and correction
and is irrelevant for classifying packets.

From the general structure of BLE packets, only the PDU can reasonably be used for
feature extraction, as the other three components are either (pseudo-)random or the same
across all relevant packets. On a higher level, there are two types of PDUs: the ”Adver-
tising Physical Channel PDU” and the ”Data Physical Channel PDU”.

The ”Data Physical Channel PDU”is only used on full connections, i.e., with a master and
slave. To my knowledge and research, BLE trackers do not use full connections. Therefore,
the ”Data Physical Channel PDU” is irrelevant to this thesis. The ”Advertising Physical
Channel PDU” is typically used when devices do not need a full connection, for instance,
in the context of master-slave detection or broadcasting; the latter is the case for any
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BLE tracker. They broadcast packets that are meant to be picked up by finder devices
to localize them.

The ”Advertising Physical Channel PDU” itself has numerous sub-types. The most rele-
vant ones are:

• ADV IND

• ADV DIRECT IND

• ADV NONCONN IND

• ADV SCAN IND

• SCAN REQ

• SCAN RSP

All these PDUs above serve various purposes. However, for packet classification, a packet’s
purpose does not matter. It is only relevant that the PDU differs among packets.

The first four PDUs on the above list belong to a group called ”Advertising PDUs”, which
are prominently used by trackers due to their most notable aspect, the payload. Like all
”Advertising Physical Channel PDUs”, they are led by a header indicating, among other
things, the exact PDU type and length. A payload of variable length then follows the
header.

This payload begins with the source address of the advertising device. Next, there can
be an arbitrary number of advertisement data types. Each advertisement data type is a
block containing some data following a predefined structure.

These blocks can be variable in length, depending on the data they contain. Some adver-
tisement data types may also appear multiple times within the same payload of a PDU.
Technically, it is also possible to have no advertisement data types within an ”Advertising”
PDU. Combined, all the advertisement data types may not exceed 37 Bytes in length.

Given that advertising data types can contain arbitrary data and that trackers frequently
use the ”Advertising” PDUs containing these advertising data types, it is relevant to
investigate these data types further for classification as they possibly contain vital features
for feature extraction.

2.2.2 Advertisement Data Types

There are many different advertising data types. Therefore, only the most relevant ones
in the context of BLE trackers will be discussed here.
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2.2.2.1 Manufacturer Specific

The manufacturer specific advertising data type consists of a company identifier from an
assigned set of numbers (company ID). These numbers can be interpreted as strings, as
every number is attached to a unique company name. For instance, 0x004c is the company
identifier assigned to Apple. The company identifier is then followed by an arbitrary data
set by the device manufacturer. The data can be of any length as long as the entire PDU
does not exceed its maximum length.

2.2.2.2 Service UUID

In the context of Bluetooth, Service UUIDs describe unique identifiers used to identify
manufacturers of devices or services provided by devices. On a higher level, the Service
UUID advertising data type comes in two variants: the bar-bones Service UUID containing
only the Service UUID and the Service Data UUID advertising data type including both
a Service UUID and Service Data of some predefined length.

The Service Data UUID then has three sub-variants, depending on its data length: 16-bit,
32-bit, and 128-bit. Furthermore, those three variants can be ”complete” or ”incomplete”.

2.2.2.3 Flags

The flags advertising data type contains four boolean flags indicating the device’s capa-
bilities and state.

2.2.2.4 TX Power Level

The TX power level advertising data type indicates the power level at which packets
are transmitted. This advertising data type contains a single 8-bit integer indicating
the power level at which the packet was transmitted. This can be useful for estimating
distances between devices.

2.3 Approaches for Machine Learning Device Classification

So far in this thesis, the term ”classification of packets” has been used loosely to describe
the process of classifying BLE packets, i.e., assigning a device label to a particular packet
based on its features. However, the ultimate goal is not to classify packets but rather
devices. From a privacy point of view, it is only relevant whether a device is a potentially
privacy-invading tracker. The packets themselves are irrelevant. Simply assigning a label
to every packet is, therefore, not sufficient.
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At this point, it becomes vital to differentiate between devices and source addresses. Every
BLE packet contains a source address of the sending device. However, a device, i.e., a
physical BLE transmitter, can simultaneously transmit BLE packets using various source
addresses. In other words, every source address belongs to precisely one device at any
point in time, but multiple source addresses might belong to one device simultaneously.
Therefore, two packets might have differing source addresses when they are coming from
the same physical device. This poses a significant challenge for this thesis, as it makes
it impossible to classify devices based on BLE packets. It is only possible to classify
Bluetooth source addresses, not Bluetooth devices. Therefore, this thesis proposes three
methods for classifying source addresses (and technically not devices).

On a higher level, the first step in training the machine learning models is to extract
features (such as the packet length) from the packets into one-dimensional feature vectors.
Additionally, the label of the sending device must be known for every packet. In the next
step, the labeled packets (i.e., vectors) are transformed into labeled training samples by
various methods (these resulting samples can be of arbitrary shape). The final step in
training is to use these labeled samples to train a supervised machine-learning model. In
other words, the source addresses are irrelevant for training.

However, the above steps need to be slightly adapted for inference, i.e., the classification
of previously unseen data, as the ultimate goal is to classify source addresses and not
packages/samples. Firstly, the packets are transformed into unlabeled samples using the
same transformation steps. Secondly, the samples are grouped by their source address.
Next, all samples are fed through the machine learning model to generate the predictions
for every sample. Given that there can be multiple samples per source address, there can
also be multiple different predictions per source address. For instance, one sample might
be predicted as a non-tracker and another sample as a tracker, even though both samples
stem from the same source address. Therefore, it is necessary to pick one of the predicted
labels from the samples to assign a label to the source address. One way of doing this is
to choose the label with the highest occurrence per source address.

In addition to explicit features as described above (such as the packet length), it is also
possible to incorporate implicit features into the training process. An example of such an
implicit feature is the packet rate, i.e., the rate at which packets are sent. Therefore, this
thesis proposes two approaches for including the packet rate as an implicit feature in the
training process in addition to the plain classification of packets.

2.3.1 Packet Classification

The most straightforward approach for classifying source addresses is to directly classify
the individual packets, i.e., the one-dimensional feature vectors. This simple method
completely ignores the aspect of the packet rate.

The main advantages of this approach are:

• A single packet is sufficient for classification. There is no need for multiple packets
to obtain a result.
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• Every source address can be assigned a label. There can never be too few packets
for classification, as a single packet is already sufficient.

• Classification, i.e., the inference is very fast for typical machine learning models as
the size of the input data is bounded by the dimensionality of the input vector, i.e.,
the number of features.

• The preprocessing of the data is relatively simple. There is no need for complex
aggregation or high-dimensional data structures (tensors).

• Many different types of machine learning models can be used with this approach.
There is no restriction to specific kinds of models, such as deep learning models.

However, this simple approach also has its limitations. The most relevant ones are:

• There can be ambiguity in the classification of source addresses. If two or more
packets were captured from a single source address, the classification of the various
packages may differ. This ambiguity could be solved by selecting the majority class
that was predicted most often for this source address.

• The package rate as an implicit feature is ignored. However, it would theoretically
be possible to incorporate the package rate to some extent by adding an additional
explicit feature, such as the time interval between the current and last packet. Those
extensions are, however, not covered in this thesis.

2.3.2 Aggregated Packet Classification

To overcome the main limitation of the simple packet classification, i.e., the ignorance of
the packet rate, one can extend this approach by adding aggregation.

First, the data preprocessing and feature extraction are executed as before, with the
difference that the packets’ timestamps and source addresses must be kept as features,
i.e., a column in the table containing the data. Second, all other ”real” features must be
strictly numerical. Categorical features must be one-hot encoded (Table 2.1).

Time Source Address Packet Length Label
0 2E-B0-D0-63-C2-26 160 AirTag
1 2E-B0-D0-63-C2-26 80 AirTag
3 2E-B0-D0-63-C2-26 200 Tile
4 2E-B0-D0-63-C2-26 80 AirTag
6 C9-2D-8B-7F-9B-A6 120 SmartTag
12 C9-2D-8B-7F-9B-A6 120 SmartTag
13 2E-B0-D0-63-C2-26 200 Tile
14 2E-B0-D0-63-C2-26 80 SmartTag

Table 2.1: Example Packets with Time (in seconds), Source Address, Packet Length (in
bits), and Label
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In the third and final step, the packets’ feature vectors are averaged over a fixed non-
overlapping time interval, e.g., 5 seconds. This means that for every source address,
the packets are aggregated into one feature vector (i.e., a sample) for each time interval
(resampled). This is done by first summing all samples for every feature, and then the
intermediate result is divided by the length of the time interval. This results in features
that represent the average value per second. For instance, the feature ”packet length”
(in bits) would be converted to the average packet length per second (in bits), which
conveniently translates to the gross data rate of the transmitting source address. In case
there are no packets within a resampling interval, a zero sample is generated indicating
the absence of packets.

As a label for the aggregated samples, the label most frequent for every source address
is picked. Afterwards, the models are trained on the aggregated samples (Table 2.2).
Finally, for inference, all the preprocessing steps from above (with the exception of the
pick of majority labels) must be executed before feeding the sample through a model.
During inference, the label of the source address can then be determined by picking the
predicted majority label across all the predicted labels of the aggregated samples.

Time Source Address Packet Length Label
0 2E-B0-D0-63-C2-26 104 AirTag
5 2E-B0-D0-63-C2-26 0 AirTag
10 2E-B0-D0-63-C2-26 56 AirTag
5 C9-2D-8B-7F-9B-A6 24 SmartTag
10 C9-2D-8B-7F-9B-A6 24 SmartTag

Table 2.2: Aggregated Example Packets with a Resampling Interval of 5 seconds

It is important to add that in a perfect world, every source address should belong to a
device with a fixed label. In other words, for a given source address, every packet should
have received the same label in the training and test dataset. There should never be
ambiguity over the correct label for any given source address.

However, mistakes can happen, and it is very much in the realm of possibility that a
packet in the training data set is incorrectly labeled; therefore, there could be ambiguity
over the correct label for a source address given a set of packets. To rectify such mistakes,
the majority label is picked during aggregation (as seen in Table 2.2). In the case of
(mostly) correctly classified packets, the pick of the majority label can not lead to an
incorrect label for the aggregated sample. However, this is possible in the case of many
incorrect labels (i.e., greater than 50 percent).

Compared to the baseline packet classification, the only tangible advantage is that the
packet rate is appropriately modeled. As this method is based on the simple packet
classification, it also inherits some of its advantages:

• The actual inference is still very fast, as the input data size is bounded by the
dimensionality of the input vector.

• The same broad range of machine learning models can be used.
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Some general disadvantages of this method are:

• For some source addresses, assigning a label might not be possible. Suppose packets
were not captured over a time period exceeding the time interval used during aggre-
gation. In that case, generating even a single sample is impossible, and therefore,
no classification can be done. The longer the time interval used during aggregation,
the larger this problem becomes, i.e., the more source addresses can potentially not
be classified.

• There is a tradeoff between incorporating the packet rate and the number of source
addresses that can be classified. If the time interval is very long, the packet rate
becomes more important, but it might not be possible to generate samples for many
source addresses (see point above). If the time interval is very short, the packet rate
is practically ignored, but most source addresses can be labeled. Therefore, picking
an appropriate time interval is crucial for the success of this method.

• A complex multi-step preprocessing pipeline is required on top of any existing pre-
processing.

2.3.3 Recurrent Neural Networks

A third and final method for classifying BLE source addresses is to use recurrent neural
networks. Recurrent neural networks come in many variants; one prominent example is
the LSTM block. The main advantage of recurrent neural networks is that the input data
can be a sequence of independent vectors, i.e., a matrix. This allows the models to learn
longer-term dependencies between individual samples, such as the packet rate, or other
patterns, such as alternating PDU types.

Before training a recurrent neural network, the data containing the feature vectors of the
individual packets must be converted into a three-dimensional tensor (with shape ”Number
of Sequences” x ”Sequence Length” x ”Number of Features”). A significant problem is
that sequences of BLE packets are unevenly spaced. I.e., the time interval between two
consecutive packets varies and is not fixed. It would be possible to train recurrent neural
networks with unevenly spaced time series data, but this is not recommended if the results
should be of any meaningful quality. Therefore, before converting to tensor, the sequence
of BLE packets must be converted into an evenly spaced time series.

This conversion can be done using the same method as described in the subsection above
about aggregated packet classification, albeit with a short time interval, such as one sec-
ond. By choosing a short time interval, most packets are aggregated only with themselves,
as there are no other packets within the same time interval. However, if no packets were
captured within a time interval, the corresponding time slot would be filled with a zero
vector. Therefore, the shorter the time interval for aggregation, the more zero vectors
there are.

After converting to an evenly spaced time series, the data must be converted to a higher-
dimensional tensor. First, a fixed sequence length is picked, i.e., how many sequence
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elements (aggregated samples) are bundled into one two-dimensional sample. Here, the
same tradeoff as discussed with aggregated packet classification applies. A high sequence
length is beneficial to the accuracy and incorporation of the packet rate but might make
it impossible to assign labels to some source addresses.

Next, the samples are grouped by the source address. For every source address, the
aggregated one-dimensional samples are converted into two-dimensional matrices with
shapes ”Sequence Length” x ”Number of Features”, and every matrix is assigned a label
based on the majority label of the aggregated samples. Depending on the number of
aggregated samples per source address and the chosen sequence length, some aggregated
samples may be left over in the end (zero padding might help here).

Finally, all the two-dimensional samples of every source address are stacked into one tensor
of the shape ”Number of Sequences” x ”Sequence Length” x ”Number of Features” (Figure
2.3). The vector with the target labels should be one-dimensional and of length ”Number
of Sequences”. The recurrent models can then be trained on these tensors. For inference,
the same complex preprocessing steps must be applied to the data before feeding it into
the network.

Figure 2.3: Structure of a 3D Tensor for recurrent Neural Networks [7]

The only positive aspect of this method that comes to mind is improved accuracy com-
pared to the other two methods discussed before. In other words, this method should
only be used if the performance obtained by the other two methods is insufficient. Some
of the numerous disadvantages of this method are:

• It can only be used with deep learning, i.e., neural networks. Other models, such as
decision trees, are not compatible.

• Very complex data preprocessing and high-dimensional data structures are required.

• As with the aggregated packet classification method, for some source addresses, it
might not be possible to assign a label depending on the chosen sequence length.

• Potentially slow inference due to the nature of recurrent neural networks (the input
data size is potentially massive, and every sequence element must be fed through
the network individually).
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2.4 Summary of Theory

The most relevant insights from this chapter are:

• Many devices can operate as BLE trackers, not only conventional trackers such as
AirTags but also other devices such as iPhones.

• There are also privacy-invading tracking methods other than BLE, such as Apple
Find My over the Internet.

• BLE trackers can be in various different states. Depending on the state, the tracker
can be more or less privacy-invading. The ”lost” state is particularly privacy invad-
ing.

• BLE packets follow a predefined structure that can be used for feature extraction.
The payload of advertising data types, such as manufacturer specific data, is espe-
cially interesting for feature extraction.

• It is impossible to classify BLE devices; therefore, source addresses are to be classi-
fied.

• For the classification of BLE source addresses, this thesis proposes three different
approaches: Simple packet classification, aggregated packet rate classification, and
recurrent neural networks with 3D tensors.

• These classification approaches vary significantly in complexity, limitations in ap-
plication, and presumably accuracy. Each method has its advantages and disadvan-
tages. Typically, there is a tradeoff between complexity (i.e., presumed accuracy)
and practical applicability.



20 CHAPTER 2. THEORY



Chapter 3

Related Works and Initial Feasibility
Experiment

3.1 Introduction

As of writing this thesis, there are only a few pieces of related scientific work. It is essential
to note that the quality and thoroughness of the vast majority of the research is insufficient
to classify BLE devices in the real world, let alone in high-density environments. The real
world is not a laboratory. Often, authors conduct experiments on a small scale and then
generalize inappropriately. This is highly problematic in real-world environments, as such
generalizations can lead to false conclusions and will lead to sub-par classification results
at best.

Therefore, this related work chapter is split into two parts. The first briefly covers other
pieces of related work and discusses their key findings (and not-findings/deficits). The
second part consists of an initial feasibility experiment I conducted. This experiment is
also run on datasets collected on my own.

3.2 Related Works

3.2.1 IoT Device Classification

There is a lot of related work concerning the general classification/fingerprinting of IoT
devices in typical Ethernet-based computer networks, such as the work in the paper
”Automatic Device Classification from Network Traffic Streams of Internet of Things” [8].
Some examples of typical IoT devices are video surveillance cameras or smart TVs. These
devices often must be connected to the Internet for full functionality, e.g., remote access
to a video surveillance camera or streaming services on a smart television. However,
compared to other online devices such as smartphones or computers, IoT devices often
do not receive regular software and security updates, if they receive them at all. This

21
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poses a significant security and privacy risk for home networks in the form of a potential
weak point for network intrusion. This is especially problematic for devices equipped
with cameras and/or microphones. Therefore, identifying IoT devices is relevant from a
privacy point of view, similar to identifying BLE trackers.

However, as those IoT devices operate mostly over Ethernet or Wi-Fi and not Bluetooth,
the results and insights are not directly transferable to the issue and research gap this
thesis is trying to address. BLE packets and Ethernet frames (or IP packets) have very
little in common. The only relevant takeaway from these works is the general methodology,
i.e., data should be collected first, then analyzed, features extracted, and finally, machine
learning models built.

The well-established CRISP-DM process model would be a more general framework for
data-driven workflows. This model emphasizes an iterative procedure. Many process
steps should and can be repeated at any point in time if necessary. Therefore, this thesis
followed a flexible workflow inspired by the CRISP-DM model and the many papers on
IoT device classification.

3.2.2 BLE Device Classification

Jie Liao’s master thesis, conducted in 2023, is the work most closely related to this thesis’s
goal [9]. His thesis is also the first result on Google when searching for BLE device
classifiers; therefore, it is presumably a highly relevant piece of literature.

In his thesis, Jie Liao collected data for various trackers and non-tracker devices. Some of
the trackers covered in his thesis are the Apple AirTag, the Tile Slim, and the HuaweiTag
from Huawei. He then trained various machine learning models (neural networks, decision
trees, and support vector machines) to distinguish between tracker and non-tracker, i.e.,
binary classification. His methodology for classification follows the packet-based classi-
fication proposed in Chapter 2. The resulting classification accuracy on the test sets of
well over 90% indicates that it is possible to distinguish trackers from non-tracker devices
with machine learning models.

However, this thesis has numerous flaws, some of which are outlined in the following:

• The data was not collected thoroughly enough. There seems to be incorrectly labeled
data.

• The process of data collection is undocumented. For instance, it is unclear how the
data for trackers in the ”nearby” state was collected and labeled.

• The conversion from the PCAP files from Wireshark to CSV files with extracted
features is not documented.

• The feature extraction process is not documented either, and there is a significant
discrepancy between the extracted features and the proposed (relevant) features
based on the theoretical underpinnings of BLE. For example, the PDU type is not
considered a feature.
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• The states of trackers are ignored. A tracker in the unproblematic ”unpaired” state
and one in the highly dangerous ”lost” state are both just classified as trackers.

Therefore, the key takeaway from this master thesis should be that it is possible to dif-
ferentiate between tracker and non-tracker with machine learning models. Whether any
further distinction, i.e., a more complex categorical classification, is possible is to be seen
and examined by this thesis. Additionally, all the findings of this master thesis should be
taken with a significant grain of salt as many highly relevant aspects of the workflow are
not adequately documented.

3.2.3 Reverse Engineering the Apple AirTag

Many authors have extensively examined the ins and outs of the functionality of BLE
trackers. One example would be the reverse engineering of the AirTag conducted by
Adam Catley [10]. He tried to understand in detail how the AirTag operates, including
a complete teardown of an AirTag. The entire work is very detailed, and the process is
documented thoroughly. For instance, he used an nRF logic board similar to the one used
in this thesis to capture the BLE packets. Some of his findings most relevant to this thesis
are:

• AirTags have many different states of operation. His description of states includes
an ”unregistered” state, a ”nearby” state, and a ”lost” state, but he also goes beyond
that by defining many more states that are very specific to the AirTag.

However, most of these additional states are irrelevant for device classification as
they are often only encountered in absolute edge case scenarios and, for the most
part, only last a few seconds at max.

• Depending on the state, the AirTag shows a broad behavior variance, even on the
physical layer. For instance, the packet rate is dependent on the device state. This
could be useful for feature extraction.

• The AirTag uses manufacturer specific advertising data in its BLE packets. The
data also changes over time and is not constant.

It is important to note that I can’t entirely agree with all of his findings. My research
in this thesis contradicts some of his conclusions. Finally, one should add that similar
research exists for other tracking devices, such as the Samsung SmartTag.

3.2.4 Apple Continuity

Apple devices such as iPhones, Macs, and AirTags support a family of features called
”Continuity”. In short, continuity features allow users to use functionality and services
across devices; an example would be the ”universal clipboard” feature that allows for
copy-paste between different devices. Many of these features use Bluetooth packets for
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communication between different Apple devices. One of these features is Apple’s Find
My network [11].

Many researchers have examined the structure of the Bluetooth packets used for continuity
in detail. A particular point of interest is the manufacturer specific data. Most, if not all,
of the BLE packets used for continuity carry manufacturer specific advertising data. The
structure Apple uses within the manufacturer specific data on a bit-level is not public
knowledge and, therefore, needs to be reverse-engineered. This is especially interesting,
as a detailed understanding of this data potentially allows for feature extraction tailored
towards the differentiation of states of AirTags.

On GitHub, there is a great collection and summarization of the findings of various re-
search papers about Apple continuity and the structure of its BLE packets [12]. However,
at this point, it is of the utmost importance to warn about the current state of research
regarding Apple continuity and reverse engineering. The exhaustive data collection con-
ducted during my thesis showed that the current state of research regarding this topic is
lackluster at best.

Much of the current research seems incomplete, misleading, entirely wrong, or outdated.
Therefore, the current state of research regarding Apple’s continuity may serve as nothing
more than inspiration rather than an actual source of knowledge. My thesis also showed
that many types of BLE packets used for continuity are entirely undocumented to this
date.

Finally, similar research exists for other tracker vendors, such as Samsung, albeit not as
exhaustive as in Apple’s case [13].

3.3 Initial Feasibility Experiment

In addition to the literature review, an initial feasibility experiment was conducted for
this thesis. This initial experiment is heavily inspired by the work of Jie Liao’s master
thesis [9] and builds upon his work. For instance, it will be assumed that a binary
classification ”tracker” vs. ”non-tracker” is principally possible, even though his results
were not especially pleasing, with a classification accuracy sometimes as low as 90%.

3.3.1 Goal and Limitations

This initial feasibility experiment aims to determine a baseline for any subsequent work.
In particular, I am interested in the following:

• Can the simple binary classification ”tracker” vs. ”non-tracker” be extended to a
more complex categorical classification that also aims to identify the model of the
tracker, i.e., Apple AirTag or Samsung SmartTag?

• What features need to be extracted to perform this categorical classification?
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• How robust is this classification in the case of unseen devices, i.e., can the problem
of open-set classification be solved effectively?

• Is machine learning necessary for this classification task, or can it also be solved
with other, less complex artificial intelligence methods?

Some relevant limitations of this initial experiment are:

• The data collection process is omitted for brevity; this will be discussed later in this
thesis. The datasets will be regarded as given and correctly labeled.

• Different states of trackers are not discussed. All data used in this experiment is of
trackers in the ”lost” state to keep complexity manageable.

• The obtained machine learning models will only be evaluated on a test set and not
used for real-world inference.

3.3.2 Datasets and Devices

The data for this experiment was collected on various tracker and non-tracker devices.
There is one separate dataset for every tracker device and exactly one dataset for all the
non-tracker devices, as the data for these devices was collected with all devices transmit-
ting simultaneously. All datasets used in this experiment will also be used later in this
thesis. The data collection process for these datasets is discussed extensively in Chapter
4.

In this experiment, three popular tracking devices were used, these are:

• The AirTag from Apple, labeled as ”AirTag”

• The SmartTag from Samsung, labeled as ”SmartTag”

• Tile Mate from Tile, labeled as ”Tile”

The following devices were used as non-tracking devices. All of them are in one dataset,
and the entire dataset is labeled as ”other Device”:

• A Lenovo Yoga Laptop

• A Lenovo Tab 12 Pro tablet, with Bluetooth pencil and keyboard

• An Ultimate Ears Boom 2 speaker

• A JBL BT 510 headphone

• A Logitech K810 keyboard and an MX Anywhere 2S mouse

• A Samsung Galaxy S23 Ultra smartphone

• An Xbox One controller
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3.3.3 Feature Extraction and Analysis

The feature extraction for this baseline experiment was kept as simple as possible. There-
fore, only one feature, which seemed very promising for classification because it is pre-
sumably unique to this exact device, was picked for every tracker device.

Upon visual inspection of the three datasets of the tracker devices, a few aspects are
noticeable:

• For every device, all the packets it transmits are very similar, if not identical, in
structure and payload. There is little, if any, difference between individual packets
of the same tracker.

• All three trackers transmit packets regularly on all three available advertising chan-
nels, typically every few seconds.

• All three trackers only transmit advertisements of the PDU type ADV IND.

• All three trackers use a very similar structure for their packages. They either use
manufacturer specific data or Service Data to transmit the public key.

• The complexity of the packet structure between the three trackers varies widely. For
instance, the number of advertising data types ranges from one (AirTag) to three
(Tile).

Based on these observations, the following two features were picked to differentiate the
three tracking devices. For the other devices, i.e., non-tracker devices, no features were
picked:

• The company ID in the manufacturer specific advertising data. The Apple AirTag
uses manufacturer specific data and advertises Apple’s company ID.

• TheUUID in the Service Data. Both the trackers from Tile and Samsung use Service
Data. However, their manufacturer’s UUIDs differ (Tile and Samsung, respectively).

Following the above feature extraction, the company ID and UUID were one-hot encoded
for modeling. However, only the company ID ”Apple”and the UUID ”Tile”and ”Samsung”
were kept as columns. The one-hot encoded columns of other company IDs and UUIDs
were dropped. Additionally, a label column was added to label all packets with their
corresponding class label. The table below visualizes the resulting rows (Table 3.1). For
each class, one representative row is shown.

Company ID Apple UUID Samsung UUID Tile Label
1 0 0 AirTag
0 1 0 SmartTag
0 0 1 Tile
0 0 0 other Device

Table 3.1: Examples of Rows after One-Hot Encoding
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It should be clear that these feature columns make the four classes separable. However, to
ensure this is the case among all packets and not just representative ones, the distribution
of these feature columns, i.e., manufacturers, can be visualized in a plot.

Figure 3.1: Distribution of Manufacturers among Tracking Devices

From the plot above, it becomes obvious that these one-hot feature columns are sufficient
to distinguish all the classes for 100% of the packets (Figure 3.1). The trackers all have
their unique company ID or UUID, and the ”other devices” never transmitted a package
containing one of the company IDs or UUIDs used by the three trackers. This is especially
interesting in the case of the Samsung SmartTag, as one of the other devices is a Samsung
Galaxy S23 smartphone, a device made by the same manufacturer that could potentially
use the same UUID (which is not the case).

In conclusion, the two extracted features (company ID and UUID) are likely sufficient
to achieve a high classification accuracy. Therefore, the next step is to pick and train a
machine learning model.

3.3.4 Modeling

The final step before the actual training of the model is the preparation of the dataset for
training. After the above-described feature extraction and one-hot encoding, the following
steps were taken:

• The dataset was balanced by under-sampling. In other words, sufficiently many
labels were picked randomly and removed for every class so that the dataset contains
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the same number of samples/rows for all classes. No samples were removed from the
class with the fewest samples. After balancing, there were roughly 32’000 samples
per class, i.e., 128’000 samples in total. This was done to ensure the model learns
equally from all classes and generalizes appropriately.

• The balanced dataset was split into a training and a test set with a 75/25 split. The
training set contains roughly 96’000 samples, and the test set roughly 32’000.

At this point, the dataset is ready for modeling. A simple model was picked for this
initial experiment: a decision tree. Decision trees have advantages in that they are easy
to understand/interpret and quick to train. As a library, sci-kit learn (i.e., sklearn) was
used. The decision tree was instantiated with default parameters, i.e., no hyper-parameter
tuning was applied to get a baseline performance. After training, the model was evaluated
on a test set using a confusion matrix. The confusion matrix was normalized across the
true label axis (Figure 3.2).

It is clear at first sight that the classification result is flawless. All classes are predicted
with 100% accuracy in all cases. This shows that it is perfectly possible to classify devices
(in this example, strictly speaking packets) based on BLE packets. Plotting this tree
using the sklearn library makes it possible to understand the model’s inner workings
better (Figure 3.3).

The decision tree’s visualization shows that the model learned as intended. The decision
tree uses the provided features appropriately to separate the classes. For each tracker
device, a unique feature column was used for classification, and if no feature was present,
the model correctly predicted ”other Device”. However, to obtain this kind of result, it
is not necessary to use a machine learning model as this can also be achieved with other
less complex methods of artificial intelligence, e.g., an if-else statement (Listing 3.1).

def predictLabel(row):

if bool(row[’UUID Tile’]):

return ’Tile’

elif bool(row[’UUID Samsung ’]):

return ’SmartTag ’

elif bool(row[’Company ID Apple ’]):

return ’AirTag ’

else:

return ’other Device ’

Listing 3.1: Manual Labeling

This if-else statement works similarly to the decision tree. It checks for the presence
of a particular feature and predicts the corresponding class, e.g., ”AirTag”, in case the
company ID Apple is present. The statement predicts ”other Device” with the else block
if all features are absent. This if-else statement can also be applied to the same test set
as before, and its performance can be evaluated with a confusion matrix (Figure 3.4).
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Figure 3.2: Confusion Matrix - Decision Tree (Introduction)

Figure 3.3: Decision Tree (Introduction)
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Figure 3.4: Confusion Matrix - manual Labeling

Unsurprisingly, the performance of the if-else statement is equal to the decision tree’s
performance. This is expected, given that the if-else statement perfectly mimics the
decision tree. Therefore, it is not necessary to use machine learning for BLE device
classification. However, given more features, it might still be convenient to use machine
learning, as manual programming of if-else statements might become challenging and
impractical.

3.3.5 Discussion of Results

So far, the scope of this experiment might have been small, but the flawless results are
nonetheless interesting and certainly exceed expectations. As discussed before, the scope
of this experiment is limited. For instance, states of trackers are ignored. However, as
outstanding as the result might be, it also has its (significant) limitations, which shall be
shown in the following subsection. What happens if new devices are added to the garbage
class, i.e., the class labeled ”other Device”?

To examine this, a second and third dataset labeled ”other Device” were added to the
existing pool of four datasets. These additional datasets contain BLE packets captured
from an iPhone and a MacBook. As an iPhone and a MacBook are neither an AirTag nor
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a SmartTag nor a Tile tracker, they were labeled as ”other Device”, even though they are
trackers under the definition of this thesis. The goal is to understand whether a decision
tree would still be able to distinguish between the three trackers and all the other devices.

All six datasets were subject to the same feature extraction and test/train split as before.
Given that the datasets are balanced, the size of the training and test set stayed the same.
Next, a new decision tree was trained on this new training set (including data on the
iPhone and MacBook labeled as ”other Device”). When the resulting model is evaluated
on the test set with a confusion matrix (Figure 3.5), the results are mostly the same as
before. However, for the majority of samples (57%), the other devices are misclassified
as ”AirTag”. In other words, the model cannot distinguish between the AirTag and the
other devices.

Figure 3.5: Confusion Matrix - mixed Classes

However, the distribution of the manufacturers (i.e., the one-hot encoded feature columns)
provides a perfectly reasonable explanation for this mediocre performance (Figure 3.6).
Many packets labeled as ”other Device” also show the company ID Apple feature, i.e., the
packets contain the Apple company ID.

This can be explained given that iPhones, MacBooks, and AirTags are all made by the
same company, Apple. Because Apple uses a very similar packet structure across all their
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Figure 3.6: Distribution of Manufacturers among mixed Classes

devices and BLE packets, their company ID is not exclusively used by the AirTag. Hence,
a decision tree cannot separate these devices.

This false positive detection of other devices, such as AirTags, is highly problematic from
a practical point of view. Let’s assume that in real-world environments, the ratio between
the number of AirTag packets and other devices is 1:100, i.e., 1 of 101 BLE packets are
coming from AirTags, and the other 100 are from other devices. This is reasonable as
there are many more other devices out there than AirTags.

If 57% of packets of these other devices are falsely classified as ”AirTag” and 100% of the
AirTag packets are correctly classified as ”AirTag,” then 57 out of 58 detections (98.3%)
of AirTags would be false positives. In other words, in 57 out of 58 cases (98.3%), a device
detected and classified as AirTag would not actually be an AirTag but an other device.
This would render the classification model useless in a practical application.

3.3.6 Conclusion

This initial feasibility experiment outlined several important flaws of current work and
how to improve upon this work to obtain a machine learning model for the real-world
detection of tracking devices. Some of the most relevant conclusions for this thesis are:

• It is not sufficient to collect data from a few devices. Data should be collected from
as many devices as possible and feasible.

• The collected data should include similar devices, i.e., devices made by the same
vendor. Similar devices are likely to share features such as the packet structure or
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payloads with identical company IDs and have a potential for false-positive classifi-
cations.

• The feature extraction should be targeted toward the uniqueness of features for
specific devices, as this worked well for some devices, such as the Tile tracker. In
other words, features that are promising for classification should be picked. Features
that are the same across many devices should be avoided, as they are not helpful
for classification.

• The extracted features should be analyzed before modeling. If, and only if, the
features allow for the unique identification of all classes, the classification will be
successful. Otherwise, there is a risk of high false-positive rates.

• Machine learning models are technically not required for this task, but given the
complexity, they are highly advisable.

3.4 Summary of Related Works and Initial Feasibility Ex-

periment

The most relevant insights from this chapter are:

• The current state of research does not cover categorical tracking device classification.
However, plenty of work exists on general IoT device classification. This is valuable
guidance for my thesis.

• Existing research is often not thorough enough to tackle the problem of real-world
classification. Data collection and general documentation, in particular, seem to be
a problem.

• There is related work on the reverse engineering of tracking devices and their imple-
mentation at a packet/protocol level. This could be useful for feature extraction.

• The initial feasibility experiment showed that categorical classification of tracking
and non-tracking devices with high accuracy is possible, albeit within a minimal
scope.

• Categorical device classification is somewhat tricky, even within a limited scope. A
lot of data and sophisticated feature extraction are required for acceptable perfor-
mance.

• The more advanced classification of device states might be more challenging due to
presumed similarities in BLE packets. The current state of research does not cover
this.

• Whether or not categorical device classification in the real world is possible, and if
so, to what extent and quality is to be seen and shall be answered by this thesis.
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Chapter 4

Dataset Generation

The first step to creating machine learning models is to collect training data. There are
two fundamentally different approaches to data collection.

1. Collect existing data from foreign sources. Examples of such sources are typically
platforms like Kaggle or GitHub.

2. Collect data yourself without relying on foreign sources.

As established in the previous chapter, the dataset for this thesis must meet the following
requirements cumulatively:

• For all the various device states, data is required. If the model should be capable of
distinguishing device states, it must have been trained on data of all relevant states.
It is not sufficient to have data from some states and none of others.

• Data for both the conventional BLE trackers, such as AirTags, and other BLE
tracking capable devices, such as iPhones, should be included. As mentioned before,
a model can only recognize devices whose data it was trained on.

• Many other relevant devices besides the trackers should be covered, as the more
devices the models can be trained on, the better the inference results will be. Here,
relevance refers to their potential to be seen in a real-world environment.

Given that Zürich central station was selected for the real-world environment, de-
vices typical for that environment should be present in the datasets. Such devices
include smartphones, tablets, headphones, or laptops (list not exhaustive). An atyp-
ical device would be, for instance, a smart fridge, a television, or a car. Such devices
are generally not seen at train stations and, therefore, only have a negligible chance
of showing up during inference.

• For each device and state, many samples, i.e., packets, should be captured. The
more samples a model is trained on, the better.

35
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This is especially true for deep neural networks. Deep neural networks have many
trainable parameters; hence, much data is required. This is even more true for
recurrent neural networks. Firstly, recurrent neural networks have more parameters
than comparable non-recurrent networks (due to the additional weight matrices for
the recurrence). Secondly, every training sample is a matrix consisting of individual
sequence elements, i.e., every packet can be a sequence element. Therefore, the
number of training samples (matrices) can be as low as the number of packets
divided by the sequence length.

Additionally, any aggregation will reduce the number of training samples. For in-
stance, if a device’s packet rate is 10 packets per second and every 15 seconds of
packets are aggregated into one sample to incorporate the packet rate (i.e., apply the
aggregated modeling approach as seen in Chapter 2), then the number of training
samples reduces from 600 samples per minute down to 4 samples per minute (one
for every 15 seconds). This is a reduction by a factor of 150.

As of writing this thesis, I am unaware of any existing dataset that would suffice its needs.
For instance, a search on the data science platform Kaggle yielded no results. Therefore,
I was forced to collect an extensive dataset. The following sections of this chapter will
go into great detail, explaining and discussing this extensive process. The entire data
collection took place roughly from February to April 2024. Approximately 30 Million
packets were captured over a time frame of more than 600 hours.

However, not all data collected is directly used in this thesis. The dataset provided
on GitHub does not contain all the data I collected. It only contains the data used to
create the written thesis, i.e., what was required in the Jupyter Notebooks found on
GitHub.

Roughly half of the collected data is not on GitHub. This can have several reasons:

• The data was not collected in a format usable for the final result, for instance, over
a too short time period.

• The data contains errors, such as a device not being in the desired state.

• The data was (no longer) needed.

• The data served a purpose other than training or analysis, such as validation of
results.

4.1 Device Overview

The devices needed for this thesis can be roughly put into three categories:

• Conventional BLE trackers, such as the AirTag, the SmartTag, or the Tile.
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• Other BLE tracking capable devices. This category includes mainly Apple devices
ranging from iPhones to MacBooks to accessories such as AirPods headphones. All
devices capable of being tracked via Bluetooth tracking networks that are not in
the category above are in this group. Often, these devices are also trackable via the
Internet, i.e., they are non-Bluetooth-only trackers.

• Other BLE devices that belong into neither of the categories above. There are
countless examples of devices in this category. From a practical point of view,
almost all Bluetooth devices are in this category. In machine learning, this category
is called a garbage category or garbage class. Sometimes, these devices are trackable
via the Internet (such as Android phones).

The following subsections detail the selection of specific devices and the reasoning behind
the respective choices.

4.1.1 BLE Trackers

The BLE trackers were selected based on popularity in the Swiss tracker market. The
more popular a BLE tracker is, the more likely it appears during inference. The popularity
was evaluated by visiting Switzerland’s most popular online marketplace, Digitec Galaxus.
All BLE trackers available on the said marketplace when writing this thesis were ordered
and are part of the dataset of this thesis. These trackers are:

• The AirTag from Apple operating on Apple’s Find My network. This tracker is
labeled with the class label ”AirTag”.

• The SkyTag from 4Smarts operating on Apple’s Find My network. This tracker is
labeled with the class label ”SkyTag”.

• The One from Chipolo operating on Apple’s Find My network. This tracker is
labeled with the class label ”Chipolo”.

• The SmartTag from Samsung operating on Samsung’s Galaxy Find network. This
tracker is labeled with the class label ”SmartTag”.

• The Mate from Tile operating on Tile’s network. This tracker is labeled with the
class label ”Tile”.

Some vendors, such as Tile, sell multiple very similar tracker models. For practical reasons,
only one of each vendor’s trackers was selected, given that they presumably use an identical
approach for tracking, i.e., the same packets or similar packet rates.

As a side note, other BLE trackers are available from popular vendors like HUAWEI.
However, not all trackers are available on the Swiss market, let alone popular. As a point
of reference, Apple and Samsung have a cumulative market share of over 70% in the local
smartphone market [14].
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4.1.2 Other BLE Tracking capable Devices

In addition to the conventional BLE trackers, some non-conventional trackers were con-
sidered. These devices are also trackable through Bluetooth tracking networks. Some
relevant examples are:

• Most Apple devices are trackable via their Find My network. This includes iPhones,
iPads, MacBooks, AirPods, and other devices. Given the widespread adoption of
Apple devices, Apple’s Find My network is Switzerland’s most relevant tracking
network.

• Some devices support tracking via Tile’s tracking network. Examples of these de-
vices are laptops from HP and Lenovo.

• As of May 2024, Google launched its own Find My Device network in Switzerland,
making many Android Phones capable of BLE tracking [3].

Given the large number of devices available in this category, a selection had to be made
to limit the scope of this thesis. It would be best to capture all devices exhaustively;
however, this is not feasible for a Bachelor thesis. Therefore, devices were chosen based
on relevance and availability.

Given that Google’s tracking network only launched at the very end of this thesis, no
devices from this tracking network are part of this thesis. No data was collected for any of
these devices. Additionally, the dataset captured at Zürich central station was captured
before the launch of Google’s Find My Device network. Therefore, this inherent training
data bias does not skew the final results.

The Tile network only supports a handful of these devices. As none of them were available
to me, I could not collect data for them except for the Tile tracker itself. The resulting
data bias is negligible, if not irrelevant, given that none of the supported devices seem
relevant to me from an adoption point of view compared to other devices, such as Apple
or Samsung products.

This leaves the Apple Find My network as the final one to consider. Given the widespread
adoption of Apple devices in Switzerland, as many devices as possible should be covered in
this thesis. It is safe to assume that any Apple device is highly relevant from an inference
point of view. Omitting a device from the dataset must result in relevant data bias.
Therefore, I collected data on all the Apple devices I could access. The Apple devices
included in the dataset are:

• An iPhone 11. This device is labeled with the class label ”iPhone”.

• A 3rd generation iPad Pro 12.9”. This device is labeled with the class label ”iPad”.

• A 2019 MacBook Pro 15”. This device is labeled with the class label ”MacBook”.

• 3rd generation AirPods. This device is labeled with the class label ”AirPod”.

Another important Apple device that should have been considered is the Apple Watch.
However, I did not have access to one for this thesis.
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4.1.3 Other BLE Devices

Data on other BLE devices, in addition to tracker devices, needed to be collected. It
would be best to collect data exhaustively from as many devices as possible. The more
devices in the training set, the smaller the data bias. However, given the availability of
devices, the following devices were chosen to be included in the dataset. All of these
devices are labeled with the class label ”other Device”:

• A Lenovo Yoga Laptop

• A Lenovo Tab 12 Pro tablet, with Bluetooth pencil and keyboard

• An Ultimate Ears Boom 2 speaker

• A JBL BT 510 headphone

• A Logitech K810 keyboard and an MX Anywhere 2S mouse

• A Samsung Galaxy S23 Ultra smartphone

• An Xbox One controller

This thesis’s single most significant limitation is that the garbage class of other devices only
contains data from these few devices. This must hurt the model’s capability to generalize
sufficiently and will impact the final results during inference (negatively). Presumably,
the only way to tackle this limitation would be to use synthetic data as an exhaustive
collection of data from all available BLE devices seems infeasible. Popular approaches for
data synthesis include rule-based approaches or the usage of deep learning in the form of
variational autoencoders (VAEs) or general adversarial networks (GANs). However, this
is outside the scope of the written thesis and was covered in the final presentation on the
15th of July instead.

4.2 BLE Capture

After selecting the devices for the training dataset, the data needed to be collected, i.e.,
BLE packets had to be captured. There are two fundamentally separate challenges to
tackle when it comes to dataset generation for categorical classification:

• The data collection process, i.e., how the BLE packets are captured.

• Labeling the collected data. Only labeled data is useful for the training of supervised
machine learning models/categorical classification.

This section will cover the first of these two challenges: physical data collection. The
following section covers the significantly more challenging labeling of the collected data.
However, it isn’t easy to separate these two aspects. Therefore, this section on capturing
BLE packets will already discuss certain aspects relevant to labeling.
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4.2.1 Process of BLE Capture

In general terms, capturing BLE packets means sniffing packets from transmitting devices
with a receiver. However, raw bit data for BLE packets is not necessarily useful. Therefore,
the packets must be dissected in the next step, i.e., interpreted on a raw bit level. These
dissected packets then need to be stored on disk and converted to a data format usable
for machine learning models, preferably in a tabular form. The following subsections will
detail the process of sniffing, dissection, and storage of BLE packets.

4.2.2 Packet Sniffing

An nRF 52840 DK logic board from Nordic Semiconductor was used for packet sniffing.
This logic board is typically used for Bluetooth device development and is capable of
Bluetooth 5.4, the latest version of Bluetooth, which includes support for Bluetooth Low
Energy.

The nRF 52840 DK can sniff all three primary advertising channels, 37, 38, and 39, quasi-
simultaneously. The manual indicates that the sniffer hops through the channels one after
another, i.e., it starts at 37, proceeds through 38 to 39, and then begins at 37 again ([15]).
Principally speaking, this is not simultaneous. However, this hopping happens at a rate
exceeding 1000 Hz based on my measurements (and it might be much higher). Therefore,
this can be considered quasi-simultaneous.

The nRF 52840 DK is connected to a computer via a USB Micro B cable. All the captured
BLE data is sent via the USB cable to the computer where any further packet dissection
takes place. For the packet sniffing, default settings were used on the nRF 52840 DK logic
board.

However, while sniffing packets from wireless devices, one will eventually encounter an
inevitable obstacle: traffic from other devices. From a dataset generation point of view,
it would be highly preferable to capture individual devices in radio isolation without
sniffing packets from other unwanted devices. If the sniffer only captures packets from
one device, it is straightforward to label them because there is only one device. If the
sniffer also captures packets of other unwanted devices, the labeling process would become
very challenging, especially if source address randomization comes into play. Therefore,
the nRF 52840 DK and the device from which BLE packets must be captured should be
isolated from any unwanted background traffic.

Because the nRF 52840 DK is capable of real-time packet filtering by RSSI values, perfect
radio isolation is unnecessary. Background devices with low RSSI values below -70 dBm
were filtered out in real-time. However, (almost) perfect radio isolation is necessary for
some devices. All trackers except for the Tile tracker can sometimes switch states very
quickly, i.e., if the owner device comes near, the tracker will almost immediately switch
from the ”lost”state to the ”nearby”state. Therefore, trackers need to be perfectly isolated
from any owner devices.
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Figure 4.1: The Faraday Cage (metal Box)

Figure 4.2: The Desk Setup used for BLE Capturing
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To achieve BLE packet sniffing in radio isolation, I crafted a metal box lined with multiple
layers of aluminum foil on the inside (Figure 4.1). The device to capture and the sniffer
were placed inside this box, and the lid was closed. Additionally, the entire setup for
capturing was placed on a workbench in my basement, where no other Bluetooth devices
were within the same room (Figure 4.2). At this point, the metal box and the basement
walls act as a Faraday cage and isolate the sniffer and the devices inside from the outside
world. A flat wire was used to connect the sniffer to the computer outside the box, and
Bluetooth was turned off on this computer.

4.2.3 Packet Dissection and Storage

Wireshark, a popular networking application, executed the packet dissection. Nordic
Semiconductor, the manufacturer of the nRF 52840 DK, provides a plugin for the auto-
matic dissection of the packets in Wireshark. The content of the packets is then presented
in a human-readable form. Finally, the captured packets are stored in PCAP files gener-
ated by Wireshark.

4.2.4 Conversion to tabular Form

The PCAP file generated by Wireshark is not directly usable for machine learning as it
lacks any tabular or tensor-like structure. Therefore, all the PCAP files were converted
to CSV files. Wireshark provides direct support for exporting from PCAP to CSV.

Every row in the exported CSV files represents one captured packet, and every column
represents one extracted feature. Therefore, the extracted features must be chosen before
conversion to CSV. Features were extracted using Wiresharks’ profile feature. Profiles
in Wireshark allow the definition of columns with custom content, such as the packet
length, the source address, a timestamp, the manufacturer specific data, and many more.
These custom columns are defined for the display of PCAP files within the Wireshark
application. When exporting a PCAP file to CSV, all columns specified in the profile are
exported as columns in the CSV file with the same column name and order.

The exported CSV files can then be imported with Python libraries such as pandas. From
this point onward, all work, including the labeling process, can be done in Python.

4.3 Labeling

Labeling describes the process of assigning a class label to a data sample. In this case, the
samples to be labeled are the BLE packets. It would principally be possible to label source
addresses instead of packets. However, this would only complicate the preprocessing, as
labeled packets are required anyway for all three machine learning approaches proposed
in Chapter 2 for training.



4.3. LABELING 43

There are three fundamentally different approaches for labeling packets depending on how
many devices were captured at a time:

• A single device was captured at a time, i.e., there was exactly one device within the
metal box (Faraday Cage) next to the BLE sniffer.

• Multiple similar devices were captured simultaneously, i.e., there were multiple de-
vices within the metal box (Faraday Cage) next to the BLE sniffer, and these devices
share the same class label.

• Multiple different devices were captured simultaneously, i.e., there were multiple
devices within the metal box (Faraday Cage) next to the BLE sniffer, and these
devices do not share the same class label.

The following subsections discuss the labeling process for these three scenarios in detail.

4.3.1 Labeling of one Device

Labeling the packets is straightforward if only one device is captured. Assuming the
capturing occurred in radio isolation from background Bluetooth traffic, all packets within
the resulting CSV file stem from this one device. All packets in the file are labeled with
the class label of the captured device.

This scenario applied to most of the data collected, i.e., most often packets of only one
device at a time were captured. Additionally, source address randomization is also irrel-
evant. Even if the source address changes, it can still be assigned to one device, as only
one device was captured.

4.3.2 Labeling of multiple Devices with same Class Label

If multiple devices are captured simultaneously and share the same class label, all packets
in the CSV file are labeled with the corresponding label. This scenario applied only to
the ”other devices”, as all other devices were captured simultaneously into one PCAP file.

4.3.3 Labeling of multiple Devices with different Class Labels

If multiple devices are captured simultaneously and do not share the same class label,
labeling packets suddenly becomes incredibly challenging. The approach described above
is no longer applicable. Labeling multiple devices with different class labels was one of
the hardest problems to solve for this thesis. Therefore, first, the scenarios in which this
is applicable are discussed, and then a solution to this problem is outlined in detail.
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4.3.3.1 Applicable Scenarios

The scenarios for this type of labeling are rather limited. In principle, there are two
scenarios for which this is applicable:

• Trackers in the ”nearby” state. A tracker in the ”nearby” state must be in close
proximity to its owner device. Therefore, the owner device and the tracker have to
be captured simultaneously, and obviously, the tracker and the owner device never
share a class label.

• The AirPod when it is connected to another device. The same logic as above applies.

4.3.3.2 Naive Approach based on Source Addresses

A naive approach to labeling multiple devices with different class labels is to use the source
address as a device identifier. In other words, if the source addresses of all the captured
devices are known, the packets can be labeled based on these known source addresses.

Due to source address randomization, this naive approach is only applicable to datasets
captured over a very short time frame (maybe a few minutes). Most devices, includ-
ing many trackers, use randomized source addresses, i.e., the address changes every few
minutes. Therefore, this approach is unsuitable for data collection on a larger scale over
hours on end. However, as discussed before, such extensive data collection is required to
train machine learning models, especially deep neural networks. Therefore, naive labeling
based on source addresses is unsuitable for this thesis.

4.3.3.3 Machine Learning Approach for Labeling multiple Devices with Different Class
Labels

Labeling multiple devices with different class labels is not easy. Therefore, this thesis
proposes a rather general machine-learning-based approach that is transferable across
various devices and scenarios as long as only two devices are involved. This approach does
not cover the case of three or more devices. The general idea proposed in this thesis is
to train a semi-supervised machine learning model that can automatically label datasets
captured on the same devices. This offers flexibility and scalability as, theoretically,
datasets of arbitrary length can be labeled with such a machine learning model.

The high-level idea is to exploit the naive approach described above to generate a small
labeled training dataset with a few thousand samples. Next, a machine learning model,
in this case, a neural network, is trained on this small labeled dataset (i.e., supervised
learning). Afterward, the already-trained base model is trained again on a much larger
unlabeled training dataset using a self-training classifier to increase the robustness of the
model. This learning is unsupervised, as the data is not labeled. Finally, the improved
model can be evaluated on a small test set labeled with the above-described naive approach
(Figure 4.3).
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Figure 4.3: Semi-Supervised learning

This improved model can then be used to label any unlabeled production data containing
the devices used during training in their respective states. I.e., a model trained on a
dataset from an AirTag in its ”nearby” state in proximity to an iPhone can label any
dataset containing packets from an AirTag in its ”nearby” state and an iPhone. This
approach will often be referred to as ”automatic labeling” in this thesis.

On a lower level, the first issue is implementing naive labeling, especially given that devices
can use more than one source address at a time and that these addresses might initially
be unknown. Naive labeling for smaller datasets with unknown source addresses and two
devices can be implemented as follows:

1. One out of the two devices is placed inside the metal box for capturing, and the
capturing process is started. The other device remains switched off. Typically, the
device put into the box first is the tracker, which commonly uses only one source
address at a time.

2. A few packets of the first device are captured. This reveals the source addresses of
the first device (Table 4.1).

3. The second device, previously switched off, is turned on, i.e., Bluetooth activated.

4. The tracker (i.e., the first device) will now switch into its ”nearby” state, and both
devices are captured simultaneously. All source addresses not belonging to the first
device must belong to the second device if packets are captured in radio isolation
from any other devices (Table 4.2).

5. Once the source addresses of the first device are no longer visible, the capturing is
stopped. At this point, address randomization has kicked in, and the addresses of
the first device are no longer known (Table 4.3).

6. The captured dataset is clipped. The first packet in the clipped dataset is the first
packet captured from the second device. The last packet in the clipped dataset is
the last packet captured by a known source address of the first device (Table 4.4).
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A dataset generated as above can be labeled using the naive labeling method. All packets
belonging to the known source addresses of the first device are labeled with the respective
class label of the first device. All other packets are labeled with the class label of the
second device. This process is repeated at least once to obtain one labeled dataset for
training and one for testing the machine learning model. This entire naive labeling process
can, of course, be automated in Python.

Packet Nr. Source Address Label
1 2E-B0-D0-63-C2-26 AirTag
2 2E-B0-D0-63-C2-26 AirTag

Table 4.1: Packets of an AirTag only

Packet Nr. Source Address Label
1 2E-B0-D0-63-C2-26 AirTag
2 2E-B0-D0-63-C2-26 AirTag
3 00-5F-67-D3-1D-35 iPhone
4 C9-2D-8B-7F-9B-A6 iPhone
5 2E-B0-D0-63-C2-26 AirTag
6 00-5F-67-D3-1D-35 iPhone

Table 4.2: Packets of an AirTag in the ”nearby” State and an iPhone

Packet Nr. Source Address Label
1 2E-B0-D0-63-C2-26 AirTag
2 2E-B0-D0-63-C2-26 AirTag
3 00-5F-67-D3-1D-35 iPhone
4 C9-2D-8B-7F-9B-A6 iPhone
5 2E-B0-D0-63-C2-26 AirTag
6 00-5F-67-D3-1D-35 iPhone
... ... ...

10272 2E-B0-D0-63-C2-26 AirTag
10273 5D-1B-44-11-3A-B7 ?

Table 4.3: Packets of an AirTag in the ”nearby”State and an iPhone with Source Address
Randomization

Packet Nr. Source Address Label
3 00-5F-67-D3-1D-35 iPhone
4 C9-2D-8B-7F-9B-A6 iPhone
5 2E-B0-D0-63-C2-26 AirTag
6 00-5F-67-D3-1D-35 iPhone
... ... ...

10272 2E-B0-D0-63-C2-26 AirTag

Table 4.4: Clipped and Labeled Dataset of an AirTag in the ”nearby”State and an iPhone
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Additionally, features must be extracted for all three datasets involved, both labeled
datasets and the unlabeled dataset, for semi-supervised learning, as the training of ma-
chine learning models requires features. In the case of the two labeled datasets, the
feature extraction can occur before or after labeling. In this thesis, feature extraction
always occurred before labeling.

However, all unlabeled production data that will later be labeled using a machine learning
model must undergo the exact same feature extraction as the datasets used for training
and evaluating the machine learning model. Therefore, it is advisable to apply the feature
extraction from the production data, i.e., the data to be labeled by the machine learning
model, to the training data of the machine learning models for labeling and not the
other way around. As unintuitive as this might be at first, it dramatically simplifies
the labeling of the production data in the end, as only one feature extraction will be
necessary; otherwise, the production data would have to undergo two separate feature
extraction processes, one feature extraction for labeling and then one feature extraction
for the training of the machine learning model used for device classification.

For this thesis, there are two different feature extractions: one for analyzing the captured
data and one for modeling. Because the feature extractions differ, the machine learning
models for labeling had to be trained twice, once for every feature extraction. Therefore,
there are two machine learning models for every combination of devices.

However, once the features are extracted and the training dataset and the evaluation
dataset are labeled using naive labeling, the machine learning model can begin training.
For this thesis, the chosen base model is the default neural network from the scikit-learn
library. The model has one hidden layer containing 100 hidden neurons and a RELU
activation function. Next, this model is trained using the labeled training dataset. Then,
the model is trained using the much larger 3-hour-long unlabeled training dataset. This
training occurs as self-training, a simple semi-supervised learning method. Again, the
corresponding implementation from scikit-learn was used for this thesis.

The purpose of the semi-supervised self-training is to improve the models’ robustness and
ability to react to unseen samples. However, the self-training does not necessarily have to
improve the model’s performance on the test set. When the performance worsens, the self-
training can be omitted, and solely the base model can be used for labeling. Principally
speaking, training the model on only a few labeled samples is not the best idea. However,
given that this binary classification task is relatively simple, few samples may be sufficient
to obtain a decent model.

In the final step, the model’s performance can be evaluated using the labeled test set. In
most cases, the models for this thesis achieved an excellent accuracy of over 99% (Figure
4.4).
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Figure 4.4: Evaluation of Machine Learning based Labeling

4.4 Overview of generated Datasets

The generated datasets vary from device to device based on their individual characteristics.
The following subsections will provide a brief overview of the datasets for the respective
devices/device categories.

Some general remarks about the process and considerations for the generated data sets:

• All individual datasets were captured non-stop continuously. In other words, every
single file stems from one continuous capture. No files of different non-continuous
captures were ever merged.

• The production datasets used for analysis and modeling are 12 hours long, if possible.
As described extensively in previous chapters, both the aggregated and the recurrent
neural network approach require vast amounts of data. If the time interval for
aggregation/sequence length is set to 10 seconds, 12 hours (43’200 seconds) of data
will result in 4’320 samples. If split into a 75% training set and a 25% test set, the
number of samples in the test set is 1’080, resulting in a granularity of plus-minus
0.1% for the evaluation accuracy.
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• The ”unpaired” state of trackers was always captured with the tracker starting up
and broadcasting for the very first time. This means that original factory-sealed
trackers were started for the very first time by removing the factory-installed seals
(i.e., they were unboxed) while the Bluetooth sniffer was ruining and capturing.

• Every precaution possible was taken to capture the devices in radio isolation from
background traffic. However, this isolation is not perfect. Therefore, there can
occasionally be unwanted packets in the datasets.

• As discussed in the chapter, not all device states are relevant to this thesis. These
states were not captured.

• All files are labeled with the captured device and state.

• The files labeled with ”labeled training” and ”labeled evaluation” can be labeled
with naive labeling and are meant for supervised training and evaluation of machine
learning models for automatic labeling. The files labeled with ”3h” are meant for
the semi-supervised training of these models.

• For every file, there is a PCAP and a CSV version. Both share the same name.

• The Wireshark profile used to export the CSV files is on GitHub.

• All files (PCAP and CSV) can be found on GitHub/Kaggle (see Appendix).

4.4.1 Find My Trackers

For each of the trackers operating on Apple’s Find My network, i.e., the Apple AirTag,
the 4Smarts SkyTag, and the Chipolo One, the following datasets are available. Here,
”Tracker” is the placeholder for the corresponding class label/device:

• Tracker (lost): A 12 hours long dataset of the tracker in its ”lost” state.

• Tracker (nearby): A 12 hours long dataset of the tracker in its ”nearby” state and
an iPhone in its ”online” state.

• Tracker (nearby) 3h: A 3 hours long dataset of the tracker in its ”nearby” state
and an iPhone in its ”online” state.

• Tracker (nearby) labeled training: A ca. 10 minutes long dataset of the tracker in
its ”nearby” state and an iPhone in its ”online” state. This dataset can be labeled
using the naive labeling approach for multiple devices.

• Tracker (nearby) labeled evaluation: A ca. 10 minutes long dataset of the tracker
in its ”nearby” state and an iPhone in its ”online” state. This dataset can be labeled
using the naive labeling approach for multiple devices.

• Tracker (unpaired): A dataset of the tracker in its ”unpaired”state. For the AirTag,
the length is 12 hours; for the Chipolo One, the length is 60 seconds; and for the
SkyTag, the length is roughly 4 minutes.
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4.4.2 Samsung SmartTag

For the Samsung SmartTag, the following datasets are available:

• SmartTag (lost): A 12 hours long dataset of the SmartTag in its ”lost” state.

• SmartTag (nearby): A 12 hours long dataset of the SmartTag in its ”nearby” state
and an other Device (Samsung Galaxy S23 Ultra).

• SmartTag (nearby) 3h: A 3 hours long dataset of the SmartTag in its ”nearby”
state and an other device (Samsung Galaxy S23 Ultra).

• SmartTag (nearby) labeled training: A short dataset of the SmartTag in its ”nearby”
state and an other Device (Samsung Galaxy S23 Ultra). This dataset can be labeled
using the naive labeling approach for multiple devices.

• SmartTag (nearby) labeled evaluation: A short dataset of the SmartTag in its
”nearby” state and an other device (Samsung Galaxy S23 Ultra). This dataset can
be labeled using the naive labeling approach for multiple devices.

• SmartTag (unpaired): A 5 minutes long dataset of the SmartTag in its ”unpaired”
state.

• SmartTag (searching): A 12 seconds long dataset of the SmartTag in its ”searching”
state.

Note: Due to the relatively quick source address randomization interval of the Samsung
SmartTag, there are multiple labeled datasets of each type for the tracker in its ”nearby”
state in an additional subfolder.

4.4.3 Tile Mate

For the Tile Mate, the following datasets are available:

• Tile (lost): A 12 hours long dataset of the Tile in its ”lost” state.

• Tile (nearby): A 12 hours long dataset of the Tile in its ”nearby” state and an
iPhone in its ”online” state.

• Tile (nearby) 3h: A 3 hours long dataset of the Tile in its ”nearby” state and an
iPhone in its ”online” state.

• Tile (nearby) labeled training: A ca. 13 minutes long dataset of the Tile in its
”nearby” state and an iPhone in its ”online” state. This dataset can be labeled using
the naive labeling approach for multiple devices.
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• Tile (nearby) labeled evaluation: A ca. 23 minutes long dataset of the Tile in its
”nearby” state and an iPhone in its ”online” state. This dataset can be labeled using
the naive labeling approach for multiple devices.

• Tile (unpaired): A 60 seconds long dataset of the Tile in its ”unpaired” state.

• Tile (searching): A 10 seconds long dataset of the Tile in its ”searching” state.

4.4.4 AirPod

For the Apple AirPod, the following datasets are available:

• AirPod (lost): A 12 hours long dataset of the AirPod in its ”lost” state.

• AirPod (nearby): A 12 hours long dataset of the AirPod in its ”nearby” state and
an iPhone in its ”online” state.

• AirPod (nearby) 3h: A 3 hours long dataset of the AirPod in its ”nearby” state and
an iPhone in its ”online” state.

• AirPod (nearby) labeled training: A ca. 5 minutes long dataset of the AirPod in
its ”nearby” state and an iPhone in its ”online” state. This dataset can be labeled
using the naive labeling approach for multiple devices

• AirPod (nearby) labeled evaluation: A ca. 5 minutes long dataset of the AirPod
in its ”nearby” state and an iPhone in its ”online” state. This dataset can be labeled
using the naive labeling approach for multiple devices

Note:

• The BLE packets were always captured for one single AirPod. The other AirPod
and the battery charging case were out of range for the Bluetooth sniffer.

• The AirPod is not a conventional BLE tracker and should, therefore, in principle,
not have a ”nearby”or ”lost” state but rather an ”online”and ”offline”state similar to
the iPhone or all other Apple devices (iDevices). However, as this thesis will reveal,
the AirPod is, in fact, a conventional BLE tracker similar to the AirTag in terms of
its implementation. Therefore, it also shares the states of these conventional BLE
trackers.

4.4.5 Other Apple Devices (iDevices)

For each of the other Apple devices, i.e., the iPhone, the MacBook, and the iPad, the
following datasets are available. Here, ”iDevice” is a placeholder for the class label of the
corresponding device:

• iDevice (online): A 12 hours long dataset of the iDevice in its ”online” state.

• iDevice (offline): A 12 hours long dataset of the iDevice in its ”offline” state.
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4.4.6 Other Devices

All the other devices forming the garbage class were captured simultaneously. Therefore,
there is one 2.5 hours long dataset for all of these devices named ”other Device”.

4.4.7 Inference

For inference, there are two datasets. Both were captured at Zürich central station on
the 25th of April 2024 during the afternoon rush hour in a high-density environment.
One dataset is 10 minutes long (”Bahnhof V1”), and the other is 35 minutes long (”Bahn-
hof V2”). Both datasets were captured at the exact same location under the same condi-
tions.

4.5 Summary of Dataset Generation

The most relevant insights from this chapter are:

• As of writing this thesis, no suitable dataset is available for categorical classification
of BLE devices with machine learning.

• Over 30 Million packets over 600 hours were captured for this thesis to generate a
large dataset.

• The generated dataset covers many devices, including conventional BLE trackers,
various Apple devices, and other non-tracking devices.

• For every device, all relevant states were captured.

• The BLE packets were captured with an nRF 52840 DK Bluetooth sniffer and
dissected (i.e., interpreted) by Wireshark. The devices and the sniffer were put into
a Faraday cage for capturing to isolate them from unwanted background traffic.

• Labeling of packets is simple in the case of one device and much more difficult for
multiple devices not sharing the same class label.

• Machine learning can be used to label datasets from multiple devices with different
class labels. This is especially relevant for the trackers in the ”nearby” state where
two devices (the tracker and the owner device) must be captured simultaneously.

• The entire generated dataset is available on GitHub. There are files, both PCAP
and CSV, available for every device and state captured.



Chapter 5

Task-Group-Framework

The following chapter covers the Task-Group-Framework, a custom-designed framework
for implementing data pipelines. All data processing in this thesis is performed exclu-
sively with the Task-Group-Framework. Additionally, the plotting in this thesis is also
powered by the Task-Group-Framework. The entire implementation of the Task-Group-
Framework, including many unit and integration tests, can be found on GitHub.

The following sections describe the motivation and goal of the framework, introduce the
most important components, and explain the application in this thesis.

5.1 Motivation and Goal

So far in this thesis, the data processing was only discussed on a higher level. On the
lower level, the preprocessing can be split into individual steps (or groups of steps). The
image shows a high-level visualization of this pipeline (Figure 5.1):

1. Feature Extraction: In the first step, features must be extracted from the input
CSV files. For instance, the categorical features must be one-hot encoded, or NULL
values might have to be filled.

2. Labeling: Next, each row (i.e., packet) must be labeled with a device label. This
can happen either by giving every row the same label or via automatic machine-
learning-based labeling in the case of ”nearby” trackers.

3. States: Finally, the class labels must be extended with a state, if necessary. For
example, the class label ”AirTag” might become ”AirTag (lost)” in the case of an
AirTag in the ”lost” state.

Based on this lower-level description of the pipeline, it becomes clear that some pipeline
steps, such as feature extraction, can be shared across datasets, and other parts, such as
labeling and state assignment, cannot. From a practical point of view, it would be highly

53
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convenient to share the common steps across pipelines. This would significantly reduce
code duplication.

Figure 5.1: High-level Depiction of Data Pipeline

There are two ways to approach this. The first would be to build separate pipelines for
each dataset where the common steps are shared and only implemented once. However,
this would still result in one pipeline for every combination of device and state, presumably
unmanageable and certainly not scalable. This approach would have resulted in roughly
100 data pipelines for this thesis.

The second approach would be to design one pipeline and use parameters to change its
behavior at runtime. In other words, a pipeline would be designed where individual steps
can be activated or deactivated for every execution of the pipeline.

Current popular implementations of data pipelines only support the first approach, which
I considered infeasible for this thesis. The number of pipelines required would exceed
practical limits. Therefore, I designed the Task-Group-Framework, which follows the
second approach of designing one pipeline only and changing its behavior at runtime via
parameters.

5.2 Structural Elements

The following subsections will detail the most relevant components of the Task-Group-
Framework, beginning with the lowest-level component and following a bottom-up ap-
proach to the highest-level component. This is, by no intents and purposes, a documen-
tation of the framework and shall only give a superficial grasp of the implementation of
data processing in this thesis.

This introduction of the most high-level components follows the example of applying
linear-affine functions to pandas DataFrames. Specifically, the goal is to apply the function
f(x) = 3x + 1 elementwise to 2D arrays of numbers in the form of pandas DataFrames.
Additionally, the implementation should allow for flexibility at runtime; it should be
possible to apply only parts of the function if necessary.
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The function f(x) = 3x+ 1 can also be understood as the concatenation of the functions
g(x) = x + 1 and h(x) = 3x because g ◦ h = g(h(x)) = 3x + 1. The concatenation of
functions is conceptually equivalent to the concatenation of processing steps in a data
pipeline. The ultimate goal of this example is to be able to apply either only h(x) or only
g(x) or f(x), the concatenation of both, elementwise to a pandas DataFrame.

The first step is to define a DataFrame. The 3x3 identity matrix will serve as mock data
for this example (Listing 5.1).

matrix = pd.DataFrame(np.identity(3, dtype=int), columns =[0, 1, 2])

Listing 5.1: Definition of a 3x3 Identity Matrix

When the function f(x) = 3x + 1 is applied elementwise to this identity matrix, the
expected result is as follows:

1 0 0
0 1 0
0 0 1

 f(x)
−−−→

3 1 1
1 3 1
1 1 3


When only g(x) = x+ 1 is applied, the expected result is as follows:

1 0 0
0 1 0
0 0 1

 g(x)
−−−→

2 1 1
1 2 1
1 1 2


And when only h(x) = 3x is applied, the expected result is as follows:1 0 0

0 1 0
0 0 1

 h(x)
−−−−→

3 0 0
0 3 0
0 0 3


Finally, it is very important to note that the order of execution of the functions g(x) and
h(x) matters. The concatenation of these functions is not commutative. The same applies
to general data processing steps, there, the order of execution also matters.

1 0 0
0 1 0
0 0 1

 h(g(x))
−−−−−−→

6 3 3
3 6 3
3 3 6



5.2.1 Executors

The most low-level component of the Task-Group-Framework is the executor. An execu-
tor is essentially one step in the pipeline that performs data processing of some kind. Such
a processing step can be of arbitrary complexity, ranging from the simplest executor pos-
sible, the one that returns the data as is and does nothing to it, to the most sophisticated
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data manipulation steps that can be hundreds of lines of code long (an example of this
would be the executors used for plotting in this thesis).

On a programmatic level, an executor is simply a class implementing the ExecutorInter-
face. The ExecutorInterface has exactly one method: the execute() method, which has
one parameter, a pandas DataFrame, and one return value, also a pandas DataFrame.
Additionally, it is possible to customize executors further, for instance, by overriding the
constructor.

For the running example of implementing the linear-affine function f(x) = 3x + 1, two
executors are required, one executor that implements the slope of the function, i.e. the
function h(x) = 3x, and one that defines the constant, i.e. g(x) = x+1 (Listing 5.2). The
executor defining the constant has its constructor overridden to allow for customization
of the constant. If desired, this would allow for changing the constant without defining a
new executor class.

class Slope(ExecutorInterface):

def execute(self , dataToProcess: pd.DataFrame) -> pd.DataFrame:

return 3 * dataToProcess

class Constant(ExecutorInterface):

def __init__(self , constant: int):

self.constant = constant

def execute(self , dataToProcess: pd.DataFrame) -> pd.DataFrame:

return self.constant + dataToProcess

Listing 5.2: Definition of Executors

It is possible to use these executors as is by passing the initial matrix to one executor and
then passing the intermediate result to the next executor (Listing 5.3). This will produce
the correct output matrix.

result = Slope().execute(matrix)

result = Constant (1).execute(result)

Listing 5.3: Execution of Executors

However, this is not very scalable and needs to be expanded to be useful. Additionally,
so far, any flexibility at runtime is absent. Therefore, additional framework components
are needed.

5.2.2 Tasks

The Task component serves as a wrapper for the executors and provides additional func-
tionality on top of an executor. The conceptual idea is to use the executor for dependency
injection to change the behavior of a Task, i.e., implement the command design pattern
where the Task is the command wrapper and the executor the command. This implemen-
tation makes Tasks open for modification and expansion without any changes to existing
executors, i.e., modification.



5.2. STRUCTURAL ELEMENTS 57

A Task implements the ExecutorInterface and the abstract base class AbstractTask. The
AbstractTask class provides base functionality to both Tasks and TaskGroups. The Ex-
ecutorInterface ensures that Tasks can be used just like any executor if necessary.

A Task can be instantiated with the following arguments:

• name: Defines the name of the Task and does not have a default value.

• priority: The execution order priority of the Task as an integer value. This is only
relevant in the context of TaskGroups. The default value is None.

• flags: A list of Flags or a single Flag. The default value is the BaseFlag. For more
information on Flags, see the section on the Flag component.

• inplace: A bool indicating whether the underlying executor is executed on the data
passed to its execute() method or on a deep copy. If inplace is set to false, the
original data passed to the executor is not mutated and returned as is. If inplace is
set to false, the executor is executed on the original data, and the data is mutated.
The default value is true. Setting to false can be useful for plot pipelines where
executors are used for plotting.

• executor: An executor implementing ExecutorInterface that determines the behav-
ior of the Task when execute() or process() are called. The default value is the
SimpleExecutor, which returns the data without mutating it. Passing a custom ex-
ecutor as an argument to the constructor is sensible in most cases. Otherwise, the
Task does not do anything useful.

Instantiating two Tasks for the linear-affine function is done as follows. All optional
constructor arguments are set to their default values, except for the executors, to add
useful behavior to the Tasks. The constant executor has a 1 passed as an argument to its
constructor to set the constant to the desired value of 1 (Listing 5.4).

task_slope = Task(name = "Slope", executor=Slope())

task_constant = Task(name = "Constant", executor=Constant (1))

Listing 5.4: Definition of Tasks with default Arguments

Tasks have several different class methods, some of which are outlined in the following:

• execute(): The execute() method inherited from the ExecutorInterface. Calling
execute() on a Task with a DataFrame as an argument will result in a call of the
execute() method on the dependency-injected executor of the Task. The call of this
method is equivalent to calling execute() directly on the underlying executor.

• process(): The process() method inherited from the TaskInterface. Calling process()
on a Task with a DataFrame and a Flag as an argument will result in a call of the
execute() method on the dependency-injected executor of the Task if and only if
the Flag passed an argument is a child of at least one of the Flags passed to the
constructor method of the Task. If the Flag passed as an argument is not a child of
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any of the Flags of the Task, execute() is not called, and the DataFrame is returned
as is. For more information on Flags, see the section on the Flag component.
Important: Every Flag is a child of itself.

• print(): The print() method prints the name of the Task to the console. If requested
by the arguments passed to the print() method, it is also possible to print the priority
and Flags of the Task.

As done previously with executors, execute() can be called on the first Task, and the
intermediate result is passed to the second Task to obtain the desired final result. This is
the most simple application of Tasks (Listing 5.5).

result = task_slope.execute(matrix)

result = task_constant.execute(result)

Listing 5.5: Execution of Tasks

However, this is still not a helpful data pipeline, as it is not scalable. In other words,
Tasks are not necessarily useful on their own. So far, adding a Task wrapper around an
executor has little to no benefit. This will change with the introduction of TaskGroups
and Flags.

5.2.3 TaskGroups

The TaskGroup component is very similar to the Task component as it also implements
the abstract base class AbstractTask. TaskGroups are essentially a set of Tasks that are
aggregated together into a group, and the TaskGroup is the owner of the Tasks. The Tasks
are stored in a custom implementation of a priority queue. The order in the priority queue
is determined by the priority set during construction of the Tasks. The lower the priority
of a Task, the further upfront it is in the queue. Tasks with default priority None are
always at the very back of the queue. In the case of the same priority, the tie-breaker is
the order of addition to the TaskGroup. The earlier a Task was added to the TaskGroup,
the further up front it is in the queue.

Since Tasks and TaskGroups both implement AbstractTask, the constructor method also
uses the same argument with the same default values. TaskGroups have one additional
argument: idempotency. The idempotency argument is a bool with the default value set
to false. Setting idempotency to true will result in an idempotent behavior when adding
Tasks to the TaskGroup. In other words, if the same Tasks is added again and again to
a TaskGroup, it is only added once and exchanged every time it is added again. This is
mainly useful in Jupyter Notebooks, where the same cell might be accidentally executed
multiple times.

The TaskGroups implement a variety of methods that are different in functionality and
behavior from the implementation for Tasks.

• add(): Adds one object of type AbstractTask to the TaskGroup. This object can
be either a Task or a TaskGroup. The insertion happens priority-based.
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• addAll(): Adds a list of objects of type AbstractTask to the TaskGroup. These
objects can be either a Task or a TaskGroup. The insertion happens priority-based.

• getitem (): Returns the object in the priority queue corresponding to the pro-
vided subscript. The subscript can be either a slice or the string name of the
AbstractTask object. The slicing is performed based on the position of objects in
the TaskGroup (and not based on the priority), which is equivalent to slicing a list.

• delitem (): Deletes the object in the priority queue corresponding to the pro-
vided subscript. The subscript can be either a slice or the string name of the
AbstractTask object. The slicing is performed based on the position of objects in
the TaskGroup (and not based on the priority), which is equivalent to slicing a list.

• copy(): Returns a deep copy of the TaskGroup.

• execute(): Calls the execute() methods on all the objects in the priority queue.
This method is inherited from the ExecutorInterface. The output of the execute()
method of one object in the queue is the input argument for the call of the execute()
method of the next object in the queue. After the call of execute() on the final object
in the queue, the processed DataFrame is returned.

• process(): Calls the process() methods on all the objects in the priority queue with
the Flag that was passed as an argument if and only if the Flag is a child of one of
the Flags set for the TaskGroup. If so, the output of the process() method of one
object in the queue is the input argument for the call of the process() method of
the next object in the queue. After the call of process() on the final object in the
queue, the processed DataFrame is returned. If the Flag passed as an argument is
not a child of any of the Flags of the TaskGroup, the DataFrame is immediately
returned as is. Important: Every Flag is a child of itself.

• print(): The print() method prints the name of the TaskGroup to the console.
Afterward, the print() method is called on all objects in the priority queue. If
requested by the arguments passed to the print() method, it is also possible to print
the priority and Flags of the TaskGroup and all its objects in the queue to the
console.

The construction of a TaskGroup for the running example of the function f(x) = 3x+ 1
can be done as follows (Listing 5.6). Note that the Tasks also need to be redefined because
of the Task priority to ensure the correct execution order. As explained above, the order
of the functions g(x) and h(x), here represented by the two Tasks, matters.

task_slope = Task(name = "Slope", executor=Slope(), priority =1)

task_constant = Task(name = "Constant", executor=Constant (1), priority

=2)

task_group = TaskGroup("Linear Function")

task_group.addAll ([ task_constant , task_slope ])

Listing 5.6: Definition of TaskGroup
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At this point, it is important to emphasize that TaskGroups support nesting. One can
add not only Tasks to a TaskGroup but also any object implementing the abstract class
AbstractTask, most notably TaskGroups. This means that TaskGroups can be added
to other TaskGroups, i.e., nested within other TaskGroups. This is especially useful for
defining complex data pipelines such as the ones used in this thesis.

Next, it is possible to call the execute() method on the entire TaskGroup (Listing 5.7).
This will result in a sequential execution of the slope Task and then the constant Task.
The output is the elementwise application of the function f(x) to the defined matrix.

result = task_group.execute(matrix)

Listing 5.7: Execution of TaskGroup

At this point, the TaskGroup behaves like an actual data pipeline that executes Tasks
sequentially in a predefined order. The ultimate step is to add flexibility at runtime via
the implementation of Flags. Flags ultimately allow the user to activate and deactivate
Tasks and TaskGroups at runtime.

5.2.4 Flags

The Flag component allows for flexibility at runtime. So far, it has only been possible to
execute all tasks within a TaskGroup at once. But what if only parts of the TaskGroup
shall be executed? In the running example of the linear-affine function, this would be
equivalent to calling only g(x) or h(x). Flags enable the partial execution of processing
steps in a data pipeline.

First, the constructor of the Flag takes the following two arguments:

• name: The name of the Flag as a string value.

• parents: A list of Flags or a single Flag. The constructed Flag is a child of all its
parent Flags (and their parents, respectively) and ”inherits” its properties for the ex-
ecution of AbstractTasks from all parents (including parents of parents). Important:
A Flag is also always automatically a child of itself.

Additionally, Flags have multiple methods, some of which are:

• getParents(): A getter method that returns all the parent Flags in a list. If the
verbose argument is set to true, the list contains the string names of the Flags rather
than the objects.

• getAllParents(): A getter method that returns all the parent Flags, including all
the parent Flags of the parents in a list. If the verbose argument is set to true, the
list contains the string names of the Flags rather than the objects.
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• contains(): The contains() method takes another Flag as an argument and returns
whether this Flag is a parent (or parent of a parent) of the Flag the method was
called on. If so, it returns true; otherwise false. Note: Every Flag is also always a
parent/child of itself.

When Flags are instantiated, the Task-Group-Framework builds a Flag tree in the back-
ground. The root of this tree is the so-called BaseFlag. The BaseFlag component is a
singleton object that is automatically instantiated in the background. For a user, it is
never necessary to instantiate a BaseFlag. Whenever another Flag is instantiated, it is
always a child node of this BaseFlag in the Flag tree. Additionally, the newly instantiated
Flag is also a child node of all Flags that were set as parents during construction. It is,
therefore, possible, unlike in a binary tree, for a child node, i.e., a Flag, to have multiple
parent nodes, i.e., parent Flags. Even if BaseFlag is not explicitly passed as a parent
Flag, the newly created flag will always be an (in)direct child of BaseFlag, and BaseFlag
will be an (in)direct parent. BaseFlag is the direct/indirect parent of all Flags. Finally, a
Flag is also always a child/parent of itself.

First, three Flags are created to visualize the Flag tree, ”Flag Linear Function” has the
two other Flags as direct parents (Listing 5.8).

flag_slope = Flag(name = "Flag_Slope")

flag_constant = Flag(name = "Flag_Constant")

flag_linear_function = Flag(name="Flag_Linear_Function", parents =[

flag_slope , flag_constant ])

Listing 5.8: Definition of Flags

The resulting Flag tree looks like the following (Figure 5.2). As seen in the visualization,
the bottom Flag ”Flag Linear Function” is a child of the two other Flags and indirectly
inherits from the BaseFlag because it is the indirect parent.

Figure 5.2: Flag Tree
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In the next step, Flags can be placed on Tasks and TaskGroups. For this purpose, the
above Tasks and TaskGroups are again redefined. As seen in the code snippet (Listing
5.9), the TaskGroup itself does not receive a Flag as an argument. In this case, the Flag
for the TaskGroup is set automatically to its default value, BaseFlag.

task_slope = Task(name = "Slope", executor=Slope(), priority=1, flags=

flag_slope)

task_constant = Task(name = "Constant", executor=Constant (1), priority

=2, flags=flag_constant)

task_group = TaskGroup(name = "Linear Function")

task_group.addAll ([ task_constant , task_slope ])

Listing 5.9: Definition of Tasks and TaskGroup with Flags

Finally, a Flag can be passed as an argument to the process() method of an AbastractTask
object (i.e., a Task or a TaskGroup). The behavior of this process() method varies between
Tasks and TaskGorups.

In the case of a Task, the execute() method of the executor is called if the Flag passed
as an argument to the process() method is a child (directly or indirectly of itself) of the
Flag from the Task. Remember: A Flag is also always a child of itself. If the Flag is not
a child of any kind, the DataFrame is returned as is.

In the case of a TaskGroup, the behavior of the process() method is more complex. First,
if the Flag passed as an argument to the process() method is not a child of any of the
Flags from the TaskGroup (directly or indirectly or of itself), the entire TaskGroup is
skipped, and the DataFrame is returned as is. None of the Tasks within the TaskGroup
are executed in this case, even if there were Tasks within the TaskGroup that would be
executable based on the Flag passed as an argument to the process() method.

However, if the Flag passed as an argument to the process() method is a child of at least
on of the Flags from the TaskGroup, the process() method of each AbastractTask object
within the TaskGroup is called sequentially in order of priority. In each of these calls of
the process() method, the Flags are rechecked, and if, and only if, the passed Flag is a
child of one of the Flags from the Task the method is called on, an execution takes place.

This mechanism of Flag inheritance allows for the desired flexibility at runtime. With
Flags, any Tasks can be activated or deactivated at will at any time. With the inheritance
mechanism (i.e., the parent-child relation) between Flags, it is possible to create complex
variants for the execution of data pipelines. This can be illustrated with the example of
the linear-affine function.

First, the process() method of the TaskGroup is called with the identity matrix and the
”Flag Slope” as an argument (Listing 5.10).

result = task_group.process(matrix , flag_slope)

Listing 5.10: Call of process() method with Slope Flag
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The resulting output matrix is the identity matrix multiplied by 3, similar to applying
only h(x) = 3x to the matrix: 3 0 0

0 3 0
0 0 3


Note that the Task that adds the constant 1 to the matrix is skipped, and only the Task
for the slope is executed. What happens in the background is relatively straightforward.
First, the TaskGroup is entered because its Flag is BaseFlag, and the ”Flag Slope” is
a child of BaseFlag. Next, the Task for the slope is executed because the ”Flag Slope”
is a child of itself. Finally, the Task for the constant is not executed because the Flag
associated with this Task is not a parent of the ”Flag Slope”, as seen in the Flag tree.

A more complex example would be passing the ”Flag Linear Function” as an argument
to process() alongside the identity matrix (Listing 5.11).

result = task_group.process(matrix , flag_linear_function)

Listing 5.11: Call of process() method with Linear Function Flag

The resulting output matrix is equivalent to applying f(x) = 3x+ 1 to the matrix:3 1 1
1 3 1
1 1 3


Because the ”Flag Linear Function” is a child of both ”Flag Slope” and ”Flag Constant”,
both Tasks in the TaskGroup are executed. In this case calling process() with this Flag
is equivalent to calling execute() on the TaskGroup.

5.3 Application in this Thesis

The Task-Group-Framework is used throughout this thesis for various purposes. All
data processing is powered by the Task-Group-Framework. Additionally, plotting is also
facilitated by this framework. All plots are individual executors that create the various
plots. All plots are concatenated into a TaskGroup to form a plot pipeline.

All data processing for modeling and analysis is performed with this framework. The
following image shows the console output of calling print() on the pipeline for dataset
analysis (Figure 5.3). Every row in the console print represents one Task or TaskGroup.
On the highest level, the ”Analysis Pipeline” consists of five nested TaskGroups: ”Pre
Processing”, ”Dummy Processing”, ”Labeling”, ”States” and ”Modeling”. Each of these
TaskGroups contains further Tasks or TaskGroups. Every tab indentation symbolizes a
layer of nesting, and the numbers represent the execution priorities within each (nested)
TaskGroup. The general execution order of the pipeline is top-down. Sometimes, there
is a ”:” after a Task or TaskGroup. The string after the ”:” is the name of the Flag
associated with the corresponding Task or TaskGroup (in most cases, the name of the
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Flag and the Task/TaskGroup are identical). No ”:” after a Task or TaskGroup indicates
that the associated Flag is BaseFlag.

And finally, the framework was designed around the requirements for this thesis. There-
fore, many features could still be added, such as parallelization, where applicable, to speed
up computing. It is by no means complete at this point.

5.4 Summary of Task-Group-Framework

The most relevant insights from this chapter are:

• A custom implementation for data processing was necessary, as existing implemen-
tations of data pipelines did not cut it.

• The Task-Group-Framework allows for implementing data pipelines with flexibility
at runtime. Any pipeline step can be activated or deactivated for every execution
of the pipeline at runtime.

• The Task-Group-Framework has four important structural elements: Executors,
Tasks, TaskGroups, and Flags. The Flag component allows for flexibility at runtime.

• The data processing pipelines in this thesis are implemented exclusively with the
Task-Group-Framework.
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Figure 5.3: Analysis Pipeline
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Chapter 6

Analysis

Before modeling, it is crucial to gain a deep understanding of the training data. This
is important to extract the right features and form appropriate classes for categorical
classification. The following sections will detail the entire process, from the datasets’
preprocessing through their analysis to the insights gained for modeling.

6.1 Data Preprocessing

The data preprocessing describes the entire workflow from the export to CSV in Wireshark
to the final processed dataset ready for analysis. The data preprocessing is implemented
with a data pipeline using the Task-Group-Framework (Figure 5.3). This data pipeline
has four relevant sections:

1. General Data Preprocessing: This includes many simpler preprocessing steps, such
as filling NULL values, and advanced feature extraction, such as the continuity type.

2. Conversion to Dummy Variables:. For some datasets, automatic machine-learning-
based labeling is used. Therefore, all non-numerical features, e.g., categorical fea-
tures, must be converted to some form of one-hot encoding. This step is irrelevant
to the analysis, i.e., the creation of the plots.

3. Labeling: All packets need to be labeled. This can happen either manually, where
every packet is assigned the same label, or automatically using the machine learning
approach.

4. States and Continuity Type:: The class labels must be extended to class state labels.
For instance, in the case of an AirTag in its ”lost” state, the previously assigned class
label ”AirTag” should be extended to ”AirTag (lost)”.

The following subsections detail the individual processing steps in this pipeline. The
feature selection, i.e., the reasoning behind the detected features, is also briefly touched
on.

67
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6.1.1 Feature Selection, Extraction, and General Data Preprocessing

In the first step, features were selected in Wireshark as columns for the CSV files before
export. The selected features are the same across all datasets. Next, the raw, unedited
CSV files passed through the first section of the preprocessing pipeline. For every feature
selected in Wireshark, the individual preprocessing steps are explained.

This explanation is split into two parts. The first section covers simple feature extraction
for the features selected in Wireshark (i.e., the columns of the CSV file) and their prepro-
cessing steps. The second section covers more advanced feature extraction, i.e., features
that can be extracted from the simpler features with advanced knowledge.

6.1.1.1 Simple Feature Extraction

6.1.1.1.1 Time The time column contains the UTC time in milliseconds from when it
was captured in Wireshark. This column is unusable as a feature. However, it is crucial
for modeling packet rates. For the more advanced machine learning approaches outlined
in Chapter 2, the time column is used to aggregate the packets within time intervals.

6.1.1.1.2 Source The source column contains the source address of the transmitting
Bluetooth device. This column is unusable as a feature. However, it is also crucial for
modeling the packet rate, as the packet rate is calculated per source address. Finally, the
ultimate goal during inference will be to assign labels to the source addresses. Therefore,
this is a highly relevant column, albeit not as a feature.

6.1.1.1.3 Destination The destination column contains the device’s address to which
the packet was sent. This can be used indirectly as a feature, based on whether the packet
is broadcasted, i.e., sent to the broadcasting address FF:FF:FF:FF:FF:FF. Therefore, this
column was converted to a one-hot encoded column where 1 denotes broadcast and 0 any
other destination address. This is presumably a highly relevant feature, as BLE trackers
use broadcasted advertisements.

6.1.1.1.4 Protocol Type The protocol type column indicates the protocol used for
transmission. This column requires no further preprocessing.

6.1.1.1.5 Channel The channel column indicates the advertising channel used for trans-
mission. This column does not require any further preprocessing.
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6.1.1.1.6 Packet Length The packet length column indicates the packet length in bytes
on the layer used by the nRF 58420 DK for transmission to the host device, i.e., the
computer running Wireshark. The packet length on this layer has nothing to do with
the packet length on the Bluetooth Low Energy link layer. The packet length is always
exactly 26 bytes longer than the header length . This is the terminology used by Nordic
Semiconductor, the maker of the nRF 58420 DK, and not mine. Finally, this column does
not require any further preprocessing.

6.1.1.1.7 Header Length The header length column indicates the packet length in bytes
on the Bluetooth Low Energy link layer. As described above, this value is always 26 bytes
shorter than the packet length on the nRF 58420 DK layer. This column does not require
any further preprocessing.

6.1.1.1.8 Advertisement Data Type The AD type column contains the advertising
data types used in the packet, separated by commas. This column requires no further
preprocessing.

6.1.1.1.9 Company ID The company ID column contains the company ID found in the
manufacturer specific data. This field is Null if no manufacturer specific data is present
in the packet. All Null values were filled with the string ”None”. Additionally, the most
frequent and relevant company IDs were replaced with simpler versions. For example, the
company ID ”Apple, Inc.” was replaced with ”Apple”.

6.1.1.1.10 Manufacturer Specific Data The MS Data column contains the raw data
payload from the manufacturer specific data as a string, if present. Otherwise, this field
is Null. The Null values were filled with an empty string. From this column, the length
of the raw data in bits was extracted as a feature.

6.1.1.1.11 UUID The UUID column contains all UUIDs present in the packet, sepa-
rated by commas. Multiple UUIDs can be in one packet. Null values were filled with
”None”. Additionally, the most frequent and relevant UUIDs were replaced with simpler
versions. For example, the UUID ”Tile, Inc.” was replaced with ”Tile”. This will become
relevant when creating the one-hot encoding for this column.

6.1.1.1.12 Service Data The Service Data column contains the raw data payload from
the Service Data as a string, if present. Otherwise, this field is Null. The Null values were
filled with an empty string. From this column, the length of the raw Service Data in bits
was extracted as a feature.

6.1.1.1.13 PDU The PDU column indicates the package’s PDU type. This column
does not require any further preprocessing.
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6.1.1.2 Advanced Feature Extraction

6.1.1.2.1 Continuity Type As already discussed in the related works chapter, the struc-
ture of packets used by Apple’s continuity services, such as the Find My network, is well-
researched. Essentially, Apple uses the raw data within the manufacturer specific data
to encode information following a well-defined structure (Figure 6.1). There are many
different encodings depending on the type of packet, i.e., the type of continuity service
the packet is used for. The encoding used for the Find My network packets is noticeably
different from the package used for any other service. However, all continuity packets, no
matter what service they are used for, indicate their type with the first leading byte of
the raw manufacturer specific data.

Typically, this leading byte is provided as a hexadecimal number. I.e., the leading byte
00010010 becomes 0x12. This leading byte is also referred to as the continuity type. The
continuity type 0x12 indicates a Find My network packet [12].

This leading byte can be extracted as a feature. This feature should be extracted for
packages where the company ID stems from Apple. In all other cases, this feature cannot
be extracted, and the corresponding feature column must be filled with a filling value, in
this case, ”None”.

Figure 6.1: The Encoding of the manufacturer specific data of a Find My Packet [12]

6.1.1.2.2 SmartTag Type Like Apple, Samsung also uses a well-researched encoding
of its Service Data [13]. Some bits indicate the state of the tracker (Figure 6.2). In this
thesis, this shall be called the SmartTag type. Concretely, bits 5 to 7 of the Service Data
indicate the state of the SmartTag. This is highly relevant for the categorical classification
of states and, therefore, must be extracted as a feature.

This feature should be extracted for packages where the UUID of the corresponding Ser-
vice Data comes from Samsung. In all other cases, it cannot be extracted, and the
corresponding feature column must be filled with a filling value, in this case, ”None”.
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Figure 6.2: The Structure of the Service Data used by the Samsung SmartTag [13]

6.1.1.2.3 Malformed Packet Sometimes, a packet is malformed, i.e., the packet cap-
tured does not adhere to the Bluetooth specification, such as a failing cyclic redundancy
check. Wireshark can detect this, indicating a malformed packet by extending the PDU.
For instance, an ADV IND PDU would become ADV IND[Malformed Packet] if mal-
formed. This can be extracted as a feature similar to the broadcast feature. This mal-
formed packet feature is 1 if the packet is malformed and 0 otherwise.

6.1.2 Conversion to Dummy Variables

The conversion to dummy variables in the analysis section is only relevant for automatic
machine-learning-based labeling. The machine learning models require numeric input
data, so the categorical features have to be converted to dummy variables, i.e., one-hot
encoded.

For this thesis, the one-hot encoding of the categorical features must meet certain require-
ments. These are:

• The dummy viable columns must be deterministic. In other words, for any given
input data, the generated dummy variable columns and their order must be the
same, i.e., independent of the occurrences of categorical values in the input data.
This is relevant as the machine learning models for automatic labeling require a
deterministic input.

• Categorical features can have multiple values at once, separated by commas. Every
value should be one-hot encoded individually.
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• Categorical features can have multiple occurrences of the same value. For example,
the same UUID can be contained multiple times in one packet. In such cases, the
one-hot encoded value should represent the number of occurrences in the packet.

• Every categorical feature can be absent, i.e., NULL. This is especially likely in the
context of malformed packets that do not adhere to the Bluetooth specification.
This absence should be represented with zeros, i.e., all dummy variable columns
should be set to zero.

To tackle the above-described requirements, a solution was implemented using the Task-
Group-Framework, i.e., a custom executor for one-hot encoding was built. Some of the
strategies implemented are:

• Deterministic selection of dummy variable columns: The dummy variable columns
are selected prior to the actual one-hot encoding. The order of columns can be
specified, too. These selected columns cannot include the absence of a value, i.e.,
NULL or NONE.

• In addition to conventional dummy variable columns, there are two optional ad-
ditional columns, one for other values and one for NULL values. The column for
other values is used as a garbage category in case a value falls into none of the
selected columns and is also not absent, i.e., NULL or NONE. The optional column
for NULL values is used only for the NULL and NONE values. These values can
be customized, i.e., the string ”None” (as used above in the data cleaning) can be
defined as a NULL value.

• In case of multiple values separated by commas, the one-hot encoding is done indi-
vidually for each value. For this purpose, the comma-separated values are first split
by commas and then one-hot encoded.

• Multiple occurrences of the same value can be one-hot encoded by counting. If a
categorical value occurs multiple times in one sample, the one-hot encoded value
reflects the number of occurrences, i.e., the count. The count is always a non-
negative integer.

The strategies described above were implemented individually for all categorical features.
The implementation varies from feature to feature. Some general remarks about the
implementation that apply to all categorical features are the following:

• An empty packet (or absence of categorical features) results in all dummy variables
set to zero. This is important, as the packet-rate approaches for machine learning
can generate zero rows in the absence of packets. When the time-series data is
resampled, and no sample is found within one sampling interval, a zero sample is
generated. This zero sample must reflect the absence of a packet.

• All dummy variable columns were selected after visual inspection of the packets in
Wireshark. Only dummy variable columns of seemingly relevant values were picked.
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• The optional column for NULL values is never used. Otherwise, a zero row would
not represent the absence of a packet.

• All categorical features have the ”other column”except for the channel feature (there
are precisely three channels, 37, 38, and 39, and no other channels). Given that the
selected list of dummy variable columns is, in most cases, not exhaustive, this is
necessary for proper one-hot encoding.

• For company IDs and UUIDs, the splitting of the comma-separated values is prob-
lematic. In case the UUID contains a comma, such as ”Tile, Inc.”, the splitting
would separate ”Tile” and ”Inc.”, resulting in two distinct values. Therefore, for all
UUIDs and company IDs for which dummy variable columns were created, the com-
plex variants were replaced with simpler versions without a comma. For example,
”Tile, Inc.” was replaced with ”Tile”.

This ensures that the one-hot encoding results in a 1 in the respective column. This
process of data cleaning was already described in the previous section. In all other
cases, the incorrect splitting for values containing a comma will simply result in a 2
instead of a 1 for the one-hot encoded value in the column for other values, which
is not a relevant issue.

The table below (Table 6.1) depicts the one-hot encoding for the fictional feature ”Man-
ufacturer”. The values in this fictional column are separated by commas. The selected
dummy variable columns are ”Apple” and ”Tile”. Furthermore, there is an ”Other” col-
umn for other values but no ”NULL” column. The NULL value is the string ”None”. This
fictional example is representative of the one-hot encoding of the ”real” features.

Packet Nr. Manufacturer Dummy Apple Dummy Tile Dummy Other
1 Apple 1 0 0
2 Tile,Tile 0 2 0
3 Samsung 0 0 1
4 None 0 0 0
5 Apple, Inc. 1 0 1

Table 6.1: Example of One-Hot Encoding for the fictional Feature ”Manufacturer”

6.1.3 Labeling

The packets’ labeling varies depending on the type of labeling required. If the labeling can
be done manually, i.e., no automatic machine-learning-based labeling is needed, all packets
are assigned the same label. This was done using the Task-Group-Framework and Flags.
In the other case, namely, in the case of ”nearby”trackers, machine-learning-based labeling
had to be used. This labeling was also implemented with the Task-Group-Framework and
Flags. At this point, it is of utmost importance to note that machine-learning-based
labeling is not perfect. However, in all cases, the test accuracy exceeded 99%. Therefore,
the results are perfectly usable.

For the analysis part, all devices received a label. These labels are:
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• Apple AirTag: AirTag

• 4Smarts SkyTag: SkyTag

• Chipolo One: Chipolo

• Samsung SmartTag: SmartTag

• Tile Mate: Tile

• Apple iPhone: iPhone

• Apple iPad: iPad

• Apple MacBook: MacBook

• Apple AirPod: AirPod

• other Devices: other Device

6.1.4 States and Continuity Type

In the final step, the class labels assigned to the packets were extended with a state.
This means the state was added to the back of the class label using string concatenation.
Every combination of devices and states forms its own respective category for analysis.
The goal is to analyze each device in each of its states separately to gain as many insights
as possible for modeling. The states were appended to the class labels using the Task-
Group-Framework and Flags. The states are always in brackets after the class label
separated by a space, i.e., the class label ”AirTag” in its ”lost” state becomes ”AirTag
(lost)”.

The states to be analyzed vary from device to device and not all trackers can be in all
states. For the trackers, the states are the following:

• All trackers: ”lost”

• All trackers: ”nearby”

• All trackers: ”unpaired”

• SmartTag and Tile: ”searching”

For the iDevices, i.e., iPhone, iPad, MacBook, the states are ”online” and ”offline”. For
the AirPod, the states are ”nearby” and ”lost”. All the other devices do not have states.

However, there is one more thing to consider for the other Apple devices other than
AirTags: the continuity packet types. First and foremost, it is reasonable to assume,
after visual inspection, that continuity packets of the same type (i.e., packets used for the
same service) are the same across devices. In other words, it is perfectly reasonable to
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assume that a packet of continuity type 0x12 used for Find My is structured the same
across all Apple devices. The same applies to other continuity packets of other types,
such as 0x10 or 0x16. Second, later on, during inference, it will be highly relevant to
distinguish between ”trackable” packets, i.e., packets of continuity type 0x12 (Find My
packets), and any other continuity packets. Therefore, there is no point in aggregating
packets of varying continuity types into one class label. The insights gained during the
analysis must be minimal.

Subsequently, it is necessary to separate the varying continuity packets with different
class labels and analyze each type for each device individually. Therefore, similarly to
the device states, the Task-Group-Framework was used to append the continuity type of
a packet to the class label. The continuity type was added with a space and the prefix
”CT” to the existing class label proceeding the state. For example, ”iPhone (offline)”
would become ”iPhone CT 10 (offline)”. The continuity types are always in hexadecimal
writing. No addition of a continuity type to a packet indicates that the packet is not part
of the continuity protocol stack.

In the case of a packet of continuity type 0x12 (Find My), ”CT 12” was replaced with
”FindMy (online)” or ”FindMy (offline)” depending on the type of packet. The continuity
type 0x12 packets vary in the length of the manufacturer specific data based on the type of
packet used. The longer variant contains the full public key, whereas the shorter variant
does not. The longer one indicates the device is offline and can only be tracked via
Bluetooth (hence the public key). The shorter one indicates that the device is online and
trackable via the internet, hence online. At this point, one might ask why it is necessary
to encode the device state twice, once in the continuity type packet and once in the device
state with brackets in the end, i.e., why is it necessary to label a 0x12 continuity type
packet of an iPhone in its ”online” state as ”iPhone FindMy online (online)”?

The answer is scientific integrity. It is reasonable to assume that an Apple device will use
the 0x12 packets correctly, i.e., online packets in its online state and offline packets in its
offline state. But just because it is reasonable does not mean that this must be the case.
It is, in fact, possible to induce an ”iPhone FindMy online (offline)” packet. This is not
common, but possible. If the internet connection via WiFi and cellular is not correctly
switched off, Apple devices will turn both back on after some grace period. At this point,
the iPhone switches from transmitting ”Find My offline” packets to transmitting ”Find
My online packets”. However, because the iPhone was initially switched off, the state
label for the captured file is ”offline”; hence, an ”iPhone FindMy online (offline)” packet
is created.

6.2 Analysis

This section covers the analysis of the captured data of all the devices. The analysis
is performed using the same plots for every device. The first subsection provides details
about these plots, and the following subsections analyze the captured data for every device
and discuss the findings. For simplicity, some devices were grouped into one plot/analysis,
and not all available plots are shown for every device. The goal was to show the most
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interesting plots and not bombard the reader with visualization over visualization. All
plots can be found on GitHub.

The analysis aims to identify features that potentially allow for the categorical classifica-
tion of devices and to identify potential categories of devices, i.e., find devices that should
be put into the same class for categorization.

6.2.1 Plots

For this analysis, plots relevant to the extracted features (and subsequent modeling)
were created using Matplotlib and the Task-Group-Framework. Essentially, a pipeline of
executors for plotting was created to streamline the plotting process. The following plots
were created for analysis:

• Number of Packets: A bar chart of the number of packets for each class label.
For the training of machine learning models, the amount of available data is highly
relevant.

• BoxPlot of BLE Address Interval: A box plot of the time interval in minutes
between source address changes. This is especially relevant for calculating the packet
rate. The time interval over which the packet rate is calculated must be significantly
below the source address change interval.

• Average BLE Address Interval: A bar chart of the average time interval in minutes
between source address changes.

• Percentage of Broadcast Packets: A bar chart of the relative share of broadcast
packets.

• Protocol: A stacked bar chart of the relative share of the transmission protocols.

• Channel: A stacked bar chart of the relative share of the advertising channels.

• BoxPlot of Length of Header: A box plot of the length of the packet header in
bytes (i.e., the length of the packet on the BLE link layer).

• Average Length of Header: A bar chart of the average length of the packet header
in bytes (i.e., the length of the packet on the BLE link layer).

• BoxPlot of Length of Packet: A box plot of the length of the packet in bytes (i.e.,
the length of the packet on the nRF 58240 DK layer).

• Average Length of Packet: A bar chart of the average length of the packet in bytes
(i.e., the length of the packet on the nRF 58240 DK layer).

• BoxPlot Length of Manufacturer specific Data: A box plot of the length of the
manufacturer specific data in bits.
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• Average of Length of Manufacturer specific Data: A bar chart of the average length
of the manufacturer specific data in bits. This average is only calculated over the
packets where the length is greater than zero.

• BoxPlot of Length of Service Data: A box plot of the length of the Service Data
in bits.

• Average Length of Service Data: A bar chart of the average length of the Service
Data in bits. This average is only calculated over the packets where the length is
greater than zero.

• Company ID: A stacked bar chart of the relative share of company IDs.

• UUIDs: A multiple bar chart showing the average count of a UUID per packet.

• Continuity Type: A stacked bar chart of the relative share of continuity types of
packets.

• SmartTag Type: A stacked bar chart of the relative share of SmartTag types of
packets (i.e., the status bits used by the Samsung SmartTag tracker).

• Advertisement Data Type: A multiple bar chart of the usage of advertisement data
types among packets.

• PDU Type: A stacked bar chart of the relative share of PDU types.

• Malformed Packet: A bar chart of the relative share of malformed packets.

• BoxPlot of Packet Rate: A box plot of the packet rate per channel and class label.
The packet rate is calculated over a 15-second non-overlapping window.

• Average Packet Rate: A multiple bar chart of the average packet rate per channel
and class label. The packet rate is calculated over a 15-second non-overlapping
window.

• Graph of Packet Rate: A line plot showing the packet rate per channel and class
label over time for every file. The packet rate is calculated over a 15-second non-
overlapping window.

At this point, it is important to note that these plots do not depict the raw captured
data in the most truthful way possible. The plots should provide a representative picture
of the devices and not represent the data exactly as captured. For instance, some class
labels were omitted for brevity if only a handful of packets were captured for said label.
Another example would be the plot of the graph of the packet rate. The packet rate is
not shown for the first and last interval. These two intervals must not necessarily be 15
seconds long. Hence, the packet rate can vary widely for these two intervals.
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6.2.2 Find My Trackers

The following subsection contains almost all of the available plots for the three Find My
trackers from Apple, Chipolo, and Tile; some of the less interesting packet rate plots were
omitted for brevity.

Figure 6.3: Number of Packets - FindMy Tracker

The number of packets captured is almost the same for all three trackers in the ”nearby”
and ”lost” states, indicating the same packet rate too. The number of packets captured
in the ”unpaired” states varies widely, given the time frames over which the packets were
captured (see Chapter 4 on the captured files). It is questionable whether the Chipolo
tracker and the SkyTag in their ”unpaired” state can be used for modeling, given the few
packets captured.
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Figure 6.4: Boxplot of BLE Address Interval - FindMy Tracker

The address of the Find My trackers in the ”lost” state changes exactly once per day at
04:00 a.m., hence the strange-looking box plot. However, this is not visible in the case of
the Chipolo, as the file was not captured overnight. The variation of the address intervals
is otherwise negligible in all states other than the ”lost” state.
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Figure 6.5: Average BLE Address Interval - FindMy Tracker

The average address interval in the ”nearby”state is relatively short, with about 15 minutes
on average, but still large enough for packet rate modeling. In the ”unpaired” state of the
AirTag, the address is fixed and never changes. The address interval of the Chipolo and
the SkyTag in their ”lost” state is equal to the time length of the captured data because
the capture time was very short. For this state and these two trackers, the BLE address
interval is probably too short for modeling the packet rate. All other combinations of
trackers and states are suitable for modeling the packet rate.
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Figure 6.6: Percentage of Broadcast Packets - FindMy Tracker

The percentage of broadcast packets is about 100% for all trackers and states. These
trackers never use non-broadcast packets.
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Figure 6.7: Protocol - FindMy Tracker

The protocol does not vary. All combinations of trackers and states always use the same
protocol.
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Figure 6.8: Channel - FindMy Tracker

All trackers in every state use each channel equally, i.e., every channel is used for roughly
one-third of packets.
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Figure 6.9: Boxplot of Length of Header - FindMy Tracker

The length of the header shows little to no variance, except for some outliers. Interestingly,
in the case of the AirTag and the SkyTag in their ”nearby” state, the outlier value is equal
to the median value of the header length in the ”lost” state. Additionally, the SkyTag
in the ”lost” state shows outliers to values uncorrelated with other states, potentially a
capture of unrelated background traffic.
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Figure 6.10: Average Length of Header - FindMy Tracker

The average values for the header length reveal that the packet length on the link layer
differs between the ”unpaired” state of the Chiplo/SkyTag and the AirTag. This indicates
a different implementation of the ”unpaired” state between Find My trackers from Apple
and Find My trackers from other companies. The significant difference between the length
in the ”lost” and ”nearby” states indicates a very different packet structure. This is most
likely the case because of the inclusion/exclusion of the public key, which depends on the
device state.
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Figure 6.11: Boxplot of Length of Packet - FindMy Tracker

Given that the packet length, i.e., the length of the packets sent by the nRF 58240 DK
to Wireshark, is dependent on the length of the header, the box plot should be similar
to the box plot for the header length. As can be seen above, this is very much the case.
The variance is equally small, and the outliers indicate that sometimes the packets in the
”nearby” state are similar to those in the ”lost” state.
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Figure 6.12: Average Length of Packet - FindMy Tracker

The average length of the packets again indicates that the implementation of the ”un-
paired” state is different for Find My trackers from Apple and other companies. This kind
of result allows for the verification of assumptions.
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Figure 6.13: Boxplot of Length of Manufacturer specific Data - FindMy Tracker

There are a number of interesting aspects of the box plot of the manufacturer specific
data:

• The length differs between the ”nearby” state and the ”lost” state due to the inclu-
sion/exclusion of the public key.

• The difference in length aligns with the difference in header and packet length.

• The Chipolo and SkyTag do not use manufacturer specific data for their ”unpaired”
state. This aligns with the difference in header length and implies a technical im-
plementation that is very different from that of the Airtag.

• Some of the outliers in the ”nearby” state are particularly interesting. Some of the
outliers can be attributed to errors during automatic labeling. However, it appears
as if the trackers in the ”nearby” state would sometimes switch to the ”lost” state.
Sometimes, the outlier is precisely equal to the median length in the ”lost” state.

Visual inspection of the packets in Wireshark revealed that, in fact, the trackers
sometimes leave the ”nearby” state for a brief period of time and enter the ”lost”
state. I do not have any explanation for this behavior. However, it is abundantly
clear that it is not a fluke but a reproducible behavior that was captured many
times.
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Figure 6.14: Average Length of Manufacturer specific Data - FindMy Tracker

The plot of the average length of the manufacturer specific data aligns with the previous
box plot. Most interesting is, that the lengths in the ”nearby” state are slightly above the
expected value found by visual inspection (32 bits). This is due to the switching from
the ”nearby” state to the ”lost” state. The length in the ”lost” state is longer than in the
”nearby” state, hence a higher overall average.



90 CHAPTER 6. ANALYSIS

Figure 6.15: Boxplot of Length of Service Data - FindMy Tracker

The box plot for the Service Data reveals that the Chipolo and the SkyTag use Service
Data in their ”unpaired” state. This aligns with previous findings indicating a very differ-
ent technical implementation. The variation is again minimal, and there are no outliers.
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Figure 6.16: Average Length of Service Data - FindMy Tracker

As expected, the average length of the Service Data is zero except for the Chipolo and
SkyTag in their ”unpaired” state. However, in both cases, the average length is identical,
indicating a very similar technical implementation.
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Figure 6.17: Company ID - FindMy Tracker

The distribution of the company IDs reveals that the ID is always from Apple except when
devices do not use manufacturer specific data (Chipolo and SkyTag in their ”unpaired”
state).
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Figure 6.18: UUIDs - FindMy Tracker

Conversely, to the previous plot, only the Chipolo and SkyTag in their ”unpaired”state use
UUIDs. Both use, on average, precisely two UUIDs, both from Apple. In any other case,
no UUIDs are used. This further emphasizes these two trackers’ very different technical
implementations of the ”unpaired” state.
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Figure 6.19: Continuity Type - FindMy Tracker

Unsurprisingly, the continuity type is mostly 0x12, except for the ”unpaired” states. The
Chiplo and the SkyTag do not use manufacturer specific data; hence, the continuity type
is always none. For the AirTag in its ”lost” state, the continuity type 0x07 indicates a
packet used for ”proximity paring” [12]. That is a reasonable finding, as an AirTag in its
”unpaired” state needs to be paired to a device in close proximity.
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Figure 6.20: SmartTag Type - FindMy Tracker

The SmartTag type, i.e., the leading bits used by the SmartTag tracker, is none in all
cases. Anything else would have been very surprising for Find My trackers.
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Figure 6.21: Advertisement Data Type - FindMy Tracker

Correlating with previous findings, almost all trackers and states use manufacturer specific
data as their only PDU payload. Only the Chiplo and the SkyTag in their ”unpaired”
state use Service Data and Service Class UUIDs. This also explains why the average
number of UUIDs is 2 and not 1 per packet.



6.2. ANALYSIS 97

Figure 6.22: Malformed Packet - FindMy Tracker

Find My trackers never transmit malformed packets (at least not in laboratory-like con-
ditions).
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Figure 6.23: PDU Type - FindMy Tracker

The PDU type used by Find My trackers is always ADV IND. These trackers also do not
use SCAN REQ or SCAN RSP PDUs, but that is most likely only due to the laboratory-
like conditions. This might look very different in real-world environments.
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Figure 6.24: Boxplot of Packet Rate - FindMy Tracker

The box plot of the packet rate reveals three notable things. First, there is little variation
in the packet rate, except for the Chipolo and the SkyTag in their ”unpaired” state. This
is due to the short capture time for these two cases. Second, there are quite a few outliers
for the AirTag in its ”unpaired” state. These outliers are about an order of magnitude
above the median value. Finally, there are no significant differences between the three
channels.
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Figure 6.25: Average Packet Rate - FindMy Tracker

The average packet rate plot aligns with the corresponding box plot. Most interesting is
the average for the AirTag in its ”unpaired” state. The average is roughly at the median
value, which indicates that there are only a few of these extreme outliers.



6.2. ANALYSIS 101

Figure 6.26: Graph of Packet Rate - AirTag (lost)

The graph of the packet rate for the AirTag in its ”lost” state perfectly aligns with the
previous plots. There are no significant deviations from the mean, little variance over
time, and no differences between channels.
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Figure 6.27: Graph of Packet Rate - AirTag (nearby)

The packet rate in the ”nearby” state of the AirTag shows much more variance than in
the ”lost” state and also peaks beyond the scale of the plot. This most likely comes from
inaccuracies during the automatic labeling process.
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Figure 6.28: Graph of Packet Rate - AirTag (unpaired)

This is undoubtedly by far the most interesting plot of this thesis. As shown before, the
AirTag, in its ”unpaired” state, has significant outliers in its packet rate. These occur all
at the very beginning of the life cycle of an AirTag. When the security latch of the AirTag
is pulled, and the AirTag is started for the first time, it enters a unique state where the
packet rate is significantly higher than at any other point in time. The AirTag leaves this
state of high packet rate after precisely 600 seconds. This higher packet rate most likely
facilitates a faster pairing process.

So far, this state of AirTags is undocumented in the literature. Therefore, I will name
this state ”unboxed”, as it occurs directly after unboxing an AirTag.
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6.2.3 SmartTag

The following subsection contains some interesting plots for Samsung’s SmartTag tracker.
Not all plots are included; some are omitted for brevity.

Figure 6.29: Number of Packets - SmartTag

It is evident that both the ”searching” state and the ”unpaired” state suffer from few
packets. This is due to the very short capture time for both states.
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Figure 6.30: Average BLE Address Interval - SmartTag

The BLE address interval in the ”nearby”and ”unpaired” states is relatively short but still
sufficient for packet rate modeling. Due to the very short capture time for the ”searching”
state, the BLE address interval is equal to the total capture time. This state is not suitable
for packet rate modeling.
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Figure 6.31: Channel - SmartTag

The SmartTag shows peculiar channel usage in the ”nearby” state. The lower the chan-
nel number, the higher the relative usage. This also hints at a higher packet rate for
lower channels. In all other states, the distribution of packets among channels is roughly
uniform.
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Figure 6.32: Advertisement Data Type - SmartTag

The SmartTag uses Service Data, Service Class UUIDs, and flags as advertisement data
types. Therefore, it also carries UUIDs (two from Samsung per packet) and a Service
Data payload. The general packet structure is the same across all states. The packets of
the SmartTag are, therefore, hard to distinguish.
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Figure 6.33: Average Length of Service Data - SmartTag

A look at the length of the Service Data further shows how hard the states are to dis-
tinguish from each other; unlike the Find My trackers, the SmartTag uses an identical
length of 160 bits for its data across all states, making them hard to separate.
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Figure 6.34: SmartTag Type - SmartTag

The only noticeable difference between the SmartTag’s states are the status bits in the
Service Data. The values differ for all states; only the ”unpaired” and ”searching” states
share the same status bits. The small percentage of None type in the ”nearby” state stems
from inaccuracies during automatic labeling.
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Figure 6.35: PDU Type - SmartTag

The PDU type is the same across all states and also the same as for the Find My trackers.
So far, the PDU type is not a particularly interesting feature. The small percentage of
SCAN REQ packets in the ”nearby” state stem from incorrect automatic labeling and
should be ignored.
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Figure 6.36: Average Packet Rate - SmartTag

Other than the SmartTag type, the packet rate is, in fact, the only distinguishing factor
between the various SmartTag states. The packet rate differs significantly between all
states. In the ”nearby” state, the packet rate even differs between channels. In all other
states, the packet rate is the same across all channels. Due to the short capture time,
the packet rate for the ”searching” and ”unpaired” states should be considered with some
skepticism.
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Figure 6.37: Graph of Packet Rate - SmartTag (nearby)

The graph of the packet rate for the ”nearby” state reveals that the packet rate differs
between each channel over the entire captured time. This also correlates with the distri-
bution of packets among the channels. The higher the packet rate, the higher the relative
share of packets. However, as of writing this thesis, I am unaware of an explanation for
this behavior. Based on my understanding of the BLE specification, however, this is a
valid behavior, as devices can advertise on up to three channels and are not required to
advertise on all three channels [16].
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6.2.4 Tile

The following subsection contains some interesting plots for Tile’s Mate tracker. Not all
plots are included; some are omitted for brevity.

Figure 6.38: Number of Packets - Tile

Due to the short capture time, the number of packets in the ”searching” state and the
”unpaired” state is very small. Those two states are certainly not usable for modeling, let
alone modeling of any packet rate.
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Figure 6.39: Average BLE Address Interval - Tile

The average BLE address interval in the ”lost” and ”nearby” state is equivalent to the
capture time of 12 hours. In other words, the source address never changes; it is static.
A closer visual inspection of all captured files reveals that the Tile tracker never changes
its address. Therefore, the Tile tracker in its ”lost” and ”nearby” states is highly suitable
for packet rate modeling.
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Figure 6.40: Advertisement Data Type - Tile

The usage of advertisement data types indicates two things. First, the structure of the
packets in the ”lost” and ”nearby” state is identical. Both use Service Data, flags, and
Service Class UUIDs (and therefore have two UUIDs from Tile per packet). Any further
inspection of these two states will reveal that the packets are perfectly identical. It seems
as if the Tile tracker does not have separate ”lost” and ”nearby” states.

In the ”unpaired” state, the Service Data is omitted. In the ”searching” state, the Tile
uses two different types of packets. One carries flags and manufacturer specific data, and
the other carries flags, Service Data, and Service Class UUIDs. At this point, it might be
interesting to explore the searching state a little further.
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Figure 6.41: Continuity Type - Tile

In the ”searching” state, some of the packets contain manufacturer specific data with a
company ID from Apple. Hence, the packets are part of Apple’s continuity protocol. In
this case, these packets carry the prefix 0x02. This continuity type seems to be undocu-
mented at the point of writing this thesis [12]. Additionally, as seen before, in all other
states, manufacturer specific data is not used. Hence, the continuity type is always none.



6.2. ANALYSIS 117

Figure 6.42: Average Length of Service Data - Tile

A look at the average length of the Service Data shows two things. First, in the ”unpaired”
state, the length is zero, as expected, because Service Data is not used. Second, the length
of the Service Data is 80 bits in the ”lost” and ”nearby” state. This shows, again, that
these two states are identical. However, the 80 bits are also different in length from the
SmartTag, making this a potentially interesting feature for classification.
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Figure 6.43: PDU Type - Tile

The PDU type for the Tile is again ADV IND in all states, as with all previous trackers.
Generally speaking, the PDU type is not a relevant feature for distinguishing conventional
BLE trackers.
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6.2.5 iDevices

The following subsections will cover the analysis of the various Apple devices. The
iPhone’s analysis is a little more extensive. The analysis for the other iDevices is kept as
short as possible, as the packets transmitted by these devices are mostly identical.

6.2.5.1 iPhone

Figure 6.44: Number of Packets - iPhone

The number of packets varies greatly from packet type to packet type. However, it is
not state-dependent. Consequently, the same thing applies to the overall packet rate.
Interestingly, there is also no difference in the types of packets sent by state. In both
states, the same packets are transmitted. Given the vast amount of packets captured, all
packet types in all states are highly suitable for modeling.
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Figure 6.45: Average BLE Address Interval - iPhone

Interestingly, the source address interval varies based on the device state and the packet
type. For all packet types and states, the interval is long enough for modeling the packet
rate.



6.2. ANALYSIS 121

Figure 6.46: Advertisement Data Type - iPhone

The usage of advertisement data types varies greatly from packet type to packet type.
However, it is state-independent. Unsurprisingly, all packets use manufacturer specific
data as they are part of the Apple continuity protocol stack. The continuity type 0x10
packets additionally use flags and a TX power level, while the 0x16 packets use only flags
in addition. Overall, the packet structure is very different among the various continuity
packet types.
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Figure 6.47: Average Length of manufacturer specific Data - iPhone

Interestingly, the length of the manufacturer specific data varies from packet type to
packet type. In the case of the 0x10 and 0x16 packets, it is state-independent. In the case
of the 0x12 Find My packets, the length is state-dependent. This behavior is identical to
the behavior shown by the AirTag. In the case of the Find My online packet, the public
key does not have to be transmitted; hence, the manufacturer specific data is shorter.
The overall lengths, however, are identical to those of the AirTag.
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Figure 6.48: Continuity Type - iPhone

Obviously, the packets’ continuity types align with their labels. Therefore, the continuity
type is suitable for separating all continuity-type packets independent of any other fea-
tures. However, it is not possible to differentiate the device states ”online” and ”offline”
with the continuity type.

An important note here is that this plot verifies that the packets of continuity type 0x16
actually have type 0x16. As of the writing of this thesis, this continuity type is entirely
unknown. Furthermore, testing with various iPhones sometimes resulted in the complete
lack of this packet type. Based on my testing, this continuity type was introduced with
the software update iOS 17 in 2023. The iPhones tested all transmitted this continuity
type only after updating to iOS 17.
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Figure 6.49: PDU Type - iPhone

The PDU type is a very interesting feature in the case of the iPhone (and Apple devices in
general). The PDU type varies among the different continuity-type packets. Most impor-
tantly, the PDU type of both Find My packets is ADV NONCONN IND and, therefore,
different from the PDU type ADV IND used by the Find My trackers. This is the only
feature that allows for differentiation between the Find My packets from a Find My tracker
and the Find My packets of other Apple devices (iDevices).



6.2. ANALYSIS 125

Figure 6.50: Average Packet Rate - iPhone

The average packet rate is again state-independent. However, it varies between packet
types, as implied by the different number of packets captured. It is certainly possible to
attempt to use the packet rate as a differentiating factor among continuity-type packets.
However, the marginal success might be underwhelming, given that other features can
already separate these packets.
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6.2.5.2 iPad

The iPad is a device very similar to the iPhone. Therefore, there is little point in discussing
the iPad to any extent. All packets used by the iPad are identical to the ones used by the
iPhone. The only interesting plot is the one covering the number of packets captured.

Figure 6.51: Number of Packets - iPad

The overall plot looks very similar to the iPhone in terms of the number of packets
captured. All packet types have extensive data and are suitable for modeling. What
is not visible in the plot is much more interesting. The iPad does not use packets of
continuity type 0x16, even when updated to iOS 17. The reason for this is unknown to
me.
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6.2.5.3 MacBook

As for the iPad, the MacBook is not different from the iPhone in any meaningful way.
Therefore, only two plots are discussed.

Figure 6.52: Number of Packets - MacBook

What becomes apparent at first sight is that the number of packets transmitted for all
packets other than the Find My packets is significantly higher than in the case of the
iPhone. Overall, the MacBook transmits many more packets; hence, the packet rate
must be higher. Additionally, it should be apparent that the types of packets sent are
state-dependent.

The 0x09 packets are only used when online, and the 0x16 packets are only used when
offline. In the case of the 0x09 packets, this is explainable. These are packets used
for Airplay, which is used for WiFi-based streaming of music and video [12]. When the
MacBook is connected to WiFi, it is also online. Hence, these packets only appear in the
”online” state.
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Figure 6.53: Average Packet Rate - MacBook

As implied by the previous plot, the packet rate differs greatly between the continuity
types and is significantly higher than that of the iPhone or iPad. This would make it
possible to distinguish between packets from MacBooks and packets from other iDevices.
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6.2.5.4 AirPod

The AirPod is a particularly interesting device as it is a hybrid between an AirTag and
other Apple devices such as iPhones, as the analysis of its packets will reveal.

Figure 6.54: Number of Packets - AirPod

First and foremost, the number of packets for all packet types is sufficient for modeling.
However, much more interesting is the fact that the AirPod uses both Find My packets
and packets of another continuity type, in this case 0x07 (proximity pairing). This makes
the AirPod relatively similar to the other Apple devices (iDevices). On the other hand,
the 0x07 continuity type itself makes the AirPod similar to an AirTag, as only the AirTag
makes use of continuity type 0x07 (in its ”unpaired” state). Other Apple devices never
use the continuity type 0x07.
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Figure 6.55: PDU Type - AirPod

When looking at the PDU types used by the AirPod, it becomes clear that it is, in fact,
a hybrid between an AirTag and an iDevice. For the Find My packets, the AirPod uses
the ADV IND PDU type, like the AirTag but unlike an iDevice. For the continuity type
0x07 packets, the AirTag uses the ADV SCAN IND PDU type, unlike the AirTag, which
uses the ADV IND PDU type for its 0x07 packet, making it more similar to other Apple
devices.

On the one hand, the AirPod can, therefore, be considered a Find My tracker, and on the
other hand, it is obviously not a traditional tracker and can, therefore, also be considered
an iDevice. This distinction will become necessary during modeling. It is not possible to
put the AirPod strictly into one of these two categories. Its Find My packets are identical
to the ones of an AirTag, but the fact that the AirPod simultaneously also transmits
packets of another continuity type makes it more similar to other Apple devices, such as
the iPhone.
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6.2.6 Other Devices

For the other devices, i.e., the garbage class, the analysis is very brief as there is not
much to see. The important aspect is that the packets, on average, are very different from
anything seen so far.

With around 1.8 million packets captured and an average BLE address interval of 3
minutes, the other Device file is perfectly suitable for modeling, including the packet rate.
The plots are omitted for brevity, as they are not especially pleasing to look at.

Figure 6.56: Advertisement Data Type - other Device

When looking at the advertisement data types used by the other devices, the large varia-
tion becomes apparent. Some of the advertisement data types previously seen are present.
However, there are also many new ones. Solely based on the distribution of these advertise-
ment data types, the other devices are very much distinguishable from all the previously
analyzed tracking devices.
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Figure 6.57: UUIDs - other Device

A very similar picture is painted by the plots for the UUIDs. There is a lot of variation,
and the UUIDs used are noticeably different from the ones used by the tracking devices.
There is little point in looking at many more plots; based on these two plots, it should
already be relatively apparent that the other devices are, on average, very distinguishable
from the tracking devices.
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6.3 Insights for Modeling

The core insights gained during the analysis of the captured data for the modeling are
the following:

• Some features are irrelevant for modeling, as they hardly differ between devices and
states. These features include the percentage of malformed packets, the percentage
of broadcast packets, and the protocol type. These features should not be considered
for modeling.

• The three Find My trackers are very hard to distinguish. Their technical imple-
mentation is principally identical, except for the ”unpaired” state, where the imple-
mentation differs between the AirTag and the other two trackers. In conclusion,
these three trackers should be put into the same class for modeling. However, a
distinction between the states is perfectly possible.

• The datasets of the Chipolo and SkyTag in their ”unpaired” state are too short for
more modeling. These two states should be discarded entirely for these two trackers.

• The Samsung SmartTag uses a very similar implementation for all its states, except
for the status bits in the Service Data, i.e., the SmartTag type. A distinction between
the ”lost” and ”nearby” state should therefore be possible. However, the datasets for
the ”unpaired” and ”searching” states are too short for modeling. These two states
should be discarded entirely for this tracker.

• The Tile tracker does not have a separate ”nearby” state. The ”lost” and ”nearby”
states are identical and should be put into the same class for modeling. Due to the
shortness of the datasets for the ”searching” and ”unpaired” states, these two states
should be discarded entirely for this tracker.

• The packets transmitted by the iDevices (iPhone, iPad, and MacBook) are all part
of the continuity protocol stack. Principally speaking, it does not seem possible
to distinguish between different devices. A packet of a certain continuity type will
generally look the same across all devices. Therefore, the classes for these devices
should be formed based on the continuity type and not the device.

• For the Find My packets of type 0x12, a separation between the AirTag and other
Apple devices based on the PDU type is possible. Additionally, a distinction between
”online” and ”offline” is possible based on the length of the manufacturer specific
data. Therefore, FindMy online and FindMy offline packets can be divided into
two separate classes for modeling in the case of the iDevices. This is especially
interesting, as these packets indicate that the transmitting device is trackable via
Bluetooth, and the device is, therefore, a tracker under the definition of this thesis.

• The AirPod is a hybrid between the AirTag and the iDevices. Its Find My packets
should be in the same class as the AirTag’s, and all the other packets should be in the
corresponding class of the iDevices based on the continuity type. For example, the
0x07 packets of the AirTag should be in a class labeled as ”iDevice” with continuity
type 0x07.
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• All the other devices form a separable garbage class, which is perfectly usable for
modeling.

6.4 Summary of Analysis

The most relevant insights from this chapter are:

• Complex data preprocessing is required prior to the analysis of the data. This
preprocessing is enabled by a data pipeline built with the Task-Group-Framework.

• The feature extraction process differs from feature to feature. There are classic BLE
features such as packet length or PDU type but also more advanced features such
as the continuity type or the SmartTag type.

• Categorical variables are converted to dummy variables to enable automatic labeling
for trackers in the ”nearby” state.

• In addition to the device labels, device states and the continuity type of packets
were considered for the analysis. The goal of the analysis was to generate separable
classes, hence the distinction.

• All devices were extensively analyzed using a wide range of plots, at least one for
every extracted feature. These plots highlight key differences between the various
devices and states.

• Not all devices are distinguishable from each other. For successful modeling, it is of
utmost importance to form separable classes based on the analyzed features. Similar
devices, such as Find My trackers, are especially hard to distinguish and should be
put into the same classes for modeling.

• Some features, such as the Bluetooth protocol type, are irrelevant for modeling, as
they never differ between devices and states.



Chapter 7

Modeling

The modeling chapter covers the creation of the actual machine learning models. The
chapter after covers the inference, i.e., the application of the models to real-world data.
This chapter is split into the following sections:

• The first section covers the classes formed for the classification, i.e., how the devices
in each state were labeled.

• The data preprocessing section covers the data preprocessing for the modeling,
i.e., the feature extraction. This data preprocessing makes use of the Task-Group-
Framework.

• The analysis section covers the analysis of the previously formed modeling classes.
The goal is to verify that the classes are separable based on the extracted features.

• The packet modeling section covers various machine learning models using the simple
packet modeling approach.

• The packet rate modeling section covers various machine learning models using more
advanced packet rate modeling approaches.

• The comparison section compares the various models with each other, discusses
their advantages and disadvantages, and discusses potential improvements such as
hyperparameter optimization. Ultimately, one of the many machine learning models
is picked for the inference in Chapter 8.

This chapter’s ultimate goal is to create a machine learning model that best suits the task
of classifying BLE devices in high-traffic environments.

7.1 Modeling Classes

As a first step, it is important to define the classes for modeling. The classes were set as
follows based on the insights gained during analysis:

135
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• FindMy Tracker (lost): This class includes the three Find My trackers AirTag,
Chipolo, and SkyTag in their ”lost” state.

• FindMy Tracker (nearby): This class includes the three Find My trackers AirTag,
Chipolo, and SkyTag in their ”nearby” state.

• FindMy Tracker (unpaired): This class includes only the AirTag in its ”unpaired”
state. For the other two Find My trackers, there is not enough data for this state.

• SmartTag (lost): This class includes the SmartTag in its ”lost” state.

• SmartTag (nearby): This class includes the SmartTag in its ”nearby” state.

• Tile (lost): This class includes the Tile in its ”lost” state. As the Tile tracker does
not have a distinctive ”nearby” state, all packets captured in the ”nearby” state were
labeled with the ”lost” state and put into this class.

• iDevice: This class includes all packets from the iPhone, iPad, and MacBook that
are not Find My packets. Additionally, it includes packets from the AirPod in its
”lost” state that are not Find My packets.

• iDevice FindMy offline: This class includes all Find My packets from the iPhone,
iPad, and MacBook that do not include the public key, i.e., were transmitted by an
offline iDevice.

• iDevice FindMy online: This class includes all Find My packets from the iPhone,
iPad, and MacBook that include the public key, i.e., were transmitted by an online
iDevice.

• other Device: This class includes all data from the other devices.

One might add that forming even more granular modeling classes would be possible.
For instance, separating all packets from the iDevices would be possible based on their
continuity type. Additionally, as shown in the analysis, it would be possible to distinguish
between the iOS devices (iPhone and iPad) and the MacBook based on the packet rate.
However, the goal was to have at maximum 10 different classes for modeling, hence this
generalization.

Additionally, some devices and states are not included in the list above. The captured
data of these devices and states was not used for modeling:

• The Chipolo and SkyTag tracker in the ”unpaired” state due to a lack of data.

• The SmartTag and the Tile tracker in the ”searching” and ”unpaired” state due to
a lack of data.

• The AirPod in its ”nearby” state and all the Find My packets from the ”lost” state.
The Find My packets are no different from the ones transmitted by the AirTag;
hence, they are not interesting to model. And because the other non-Find My
packets do not differ between the ”lost” and ”nearby” state, the dataset from the
latter was dropped entirely.
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7.2 Data Preprocessing

The data preprocessing for the modeling chapter is analogous to the preprocessing in the
analysis chapter. The implemented data pipeline uses the Task-Group-Framework. How-
ever, this pipeline is longer as it involves specific processing steps for modeling purposes.
The steps in the processing pipeline are the following:

1. General data preprocessing: This includes feature extraction and simple processing
steps such as filling NULL values.

2. Conversion to dummy variables: All non-numerical features, e.g., categorical fea-
tures, must be converted to numerical values, i.e., one-hot encoded.

3. Labeling: All packets need to be labeled. This can happen manually, where ev-
ery packet is assigned the same label, or automatically using the machine learning
approach.

4. States and Continuity Type: The class labels must be extended to class state labels.
For instance, in the case of an AirTag in its ”lost” state, the previously assigned class
label ”AirTag” is extended to ”AirTag (lost)”.

5. Drop Labels:: Some labels for some datasets need to be dropped. For example, in
the case of a tracker in the ”nearby” state, the packets of the owner device should
not be part of the final dataset for modeling.

6. Modeling:: For the packet rate modeling approaches, the datasets need to be re-
sampled and aggregated to make them suitable for the packet rate modeling, as
described in Chapter 2.

The following subsections will detail some of the most relevant aspects of these individual
pipeline steps.

7.2.1 General Data Preprocessing

The general data preprocessing and feature extraction are very similar to how this was
done for the analysis in Chapter 6. For every feature, the individual processing steps are
the same. However, some features were excluded as they are irrelevant for classification,
as shown and seen in the analysis section. The resulting features for the modeling are:

• Channel

• Length of packet

• Length of header

• Advertisement data type
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• Company ID

• Length of manufacturer specific data

• UUIDs

• Length of Service Data

• PDU type

• Continuity type

• SmartTag type

The features broadcast, malformed packet, and protocol type were removed as the analysis
showed that they are irrelevant, given that they are the same across virtually all packets.

7.2.2 Conversion to Dummy Variables

As in the analysis pipeline, the categorical variables must be converted to dummy vari-
ables. The approach taken is also exactly the same. The custom executor for dummy
variable creation based on the Task-Group-Framework was used. This ensures a deter-
ministic selection and order of the dummy variables.

The specific dummy variables, i.e., which categorical values would receive their own
dummy variable columns and which would be aggregated into an other column, were
selected based on the insights gained in the analysis. The dummy variables that seemed
most promising based on the analysis were selected. In other words, dummy variables
that might allow for device distinction were selected. The goal was to limit the number of
columns, i.e., features, to speed up training and inference on the machine learning models.

All categorical features except one have a dummy variable column for other values to
indicate values other than the selected dummy variable columns. The channel does not
use such a column as there are exactly three channels: 37, 38, and 39. It is important
to note that absent values (or NULL) values will result in zeros in all dummy variable
columns. This is important, as the packet rate modeling can create zero rows, which
should be equivalent to the complete absence of any packets.

7.2.3 Labeling

The labeling section of the pipeline labels all packets. This can happen either with simple
labeling, where all packets receive the same label, or with the machine learning-based ap-
proach. It is important to note that the machine learning models for automatic labeling
had to be trained again from scratch for the modeling pipeline. Reusing these models
across pipelines is impossible as the feature extraction differs between pipelines. The re-
sulting feature vector of the modeling pipeline has a different number and order of features.
Therefore, the machine learning models from the analysis pipeline are incompatible.
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The class labels for the modeling section differ from those used in the analysis, so the
labeling section of the pipeline had to be slightly adapted. However, the underlying
implementation is very much the same as in the analysis pipeline.

7.2.4 States and Continuity Type

As within the analysis pipeline, states must be added to the class label for some devices.
The required states differ from the ones needed during analysis. The analysis showed that
modeling might not be useful for some states, such as the ”searching” states. Therefore,
those states can be omitted.

Additionally, the defined modeling classes do not require packet labeling of the continuity
type except for the Find My packets. This tremendously simplifies the process of state
labeling. In the end, the state is again appended with brackets to the class label, i.e., a
SmartTag in the ”lost” state would become ”SmartTag (lost)”.

7.2.5 Drop Labels

Some class labels needed to be dropped from the training data set as they were not needed
for modeling. First and foremost, this affects all owner devices for trackers in the ”nearby”
state. The packets from these devices are not needed for modeling and can be removed.
In other words, all packets with the label from the owner device can be dropped from a
labeled dataset of trackers in the ”nearby” state.

This applies similarly to the AirPod, where all the Find My packets were removed from
the dataset. The Find My packets are indistinguishable from the ones used by the Find
My trackers (such as the AirTag) and would, therefore, cause havoc during modeling.

At this point, it is very important to remember that the automatic labeling for trackers in
the ”nearby” state is not perfect. It can and does happen that packets are falsely labeled,
even with test set accuracies approaching 100%. Therefore, when the class label of the
owner device is dropped, it is perfectly possible that there are still some packets from
the owner device left in the dataset, as these were falsely labeled with the label from the
tracker and, therefore, not dropped. This will become highly important during the packet
rate modeling.

7.2.6 Modeling

In the modeling section of the pipeline, the datasets are finally prepared for modeling.
This means that unnecessary columns, such as the time column, are removed, and if
requested by setting an appropriate Flag, the datasets are resampled and aggregated for
packet rate modeling.

Picking the resampling interval for packet rate modeling is difficult. As discussed in
previous chapters, there is a trade-off between the model’s applicability and the presumed
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accuracy. The longer the interval, the more accurate the model is; the shorter the model,
the higher the practical applicability. If a device is not seen by the BLE sniffer for at least
the resampling interval, packet rate modeling is not applicable. Therefore, the resampling
interval had to be set at the shorter end of the spectrum.

During analysis, this value was 15 seconds; for modeling, the resampling interval is 10
seconds. From a practical point of view, it might be preferable to go even lower, even
though this must hurt accuracy. But based on some analysis of datasets captured at
Zürich central station, an interval of 10 seconds will already cause most devices (ca. 60%)
not to be classifiable as they are not seen long enough by the packet sniffer.
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7.3 Analysis of Modeling Classes

After defining the modeling classes and creating the pipeline, it might be worth it to take
a brief look at the plots to ensure and validate that the classes are, in fact, separable. The
plots shown are the same ones used for analysis. However, only a selection of relevant
plots are shown, and the rest is omitted for brevity. All plots can be found on GitHub.
Additionally, the ”other Device” class is not shown on the plots for additionally clarity. It
is already known from analysis that the other devices are distinctively different from all
tracking devices.

Figure 7.1: Number of Packets - Modeling Classes

The number of packets is sufficient for modeling all classes. From a practical point of
view, the smallest and largest numbers of packets are particularly interesting. There are
two techniques for balancing the dataset for modeling: undersampling and oversampling.
In the case of undersampling, the class with the lowest number of samples is decisive.
This number of samples is picked at random from every class, and in the final dataset,
every class has exactly the same number of samples, i.e., the number of samples from the
class with the fewest samples.

In this case, the class with the fewest samples is the ”SmartTag (nearby)” class, with
roughly 24’000 samples. Therefore, the size of the entire dataset, balanced with under-
sampling, would be roughly 240’000 samples large, which is more than enough for training
any kind of machine learning model.

With oversampling, the entire process is reversed, and the class with the most samples is
decisive. In this case, the class with the most samples is the ”other Device” class, with
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roughly 1.8 million samples (not shown on the plot). This would result in a balanced
dataset with roughly 18 million samples (10 classes with 1.8 million samples each). Such
a large training dataset would certainly be infeasible given the sheer amount of computing
performance and memory required for training.
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Figure 7.2: Average BLE Address Interval - Modeling Classes

The average source address interval is sufficiently large for all classes to do packet rate
modeling. Even the roughly 7 minutes from the SmartTag in its ”nearby” state should
not pose any problem.
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Figure 7.3: Average Length of Header - Modeling Classes

When looking at the header length, i.e., the packet length on the BLE link layer, it becomes
clear that the ”lost” state and ”nearby” state for the Find My trackers are separable. The
same applies to the ”online” and ”offline”Find My packets for the iDevices. This behavior
is expected and stems from the fact that only ”offline” and ”lost” Find My packets carry
the long private key. However, the header length alone is not sufficient to separate the
other classes.
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Figure 7.4: UUIDs - Modeling Classes

At first glance, the SmartTag and Tile tracker are unique in their respective UUIDs. No
other device carries either of these two UUIDs. However, it is not possible to distinguish
the SmartTag’s two states with just the UUID. The UUID is only good for identifying
the SmartTag as a device.
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Figure 7.5: Continuity Type - Modeling Classes

The continuity type is one of the most important features. All variants of Find My packets
share the continuity type 0x12. The ”iDevice” class shows a wide variety of continuity
types. This is expected, as the iDevice class serves as a kind of garbage class for all Apple
device packets that are not Find My packets. Devices that are not related to Apple, such
as the SmartTag, do not carry a continuity type, as expected. Potentially problematic is
the ”FindMy Tracker unpaired” class that shares its continuity type 0x07 with some of
the packets from the ”iDevice” class. However, we already know that these packets in the
”iDevice” class stem from the AirPod and have a distinct PDU type.
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Figure 7.6: SmartTag Type - Modeling Classes

The SmartTag type is a highly relevant feature, albeit for the SmartTag only. This is the
only feature that allows for distinction between the two states of the SmartTag. All other
classes never carry a SmartTag type.
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Figure 7.7: PDU Type - Modeling Classes

The PDU type is a feature especially relevant for the Find My packets. It is the only
feature that allows for distinction between Find My packets from an iDevice and the Find
My trackers. Other than that, his feature is presumably not very relevant.
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Figure 7.8: Average Packet Rate - Modeling Classes

The packet rate is the essential feature for packet rate modeling. However, the variance
in the packet rate among the classes is not particularly large for most of them. Therefore,
the marginal benefit of packet rate modeling could be negligible.
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7.4 Packet Modeling

The following section covers three machine learning models that were applied to simple
packet modeling, i.e., the classification of packets. The data preprocessing for these models
was done using the previously described modeling pipeline. On a high level, the procedure
for packet modeling followed the following steps:

1. Import, process, and label the datasets using the Task-Group-Framework and the
purpose-built modeling pipeline.

2. Concatenate all datasets into one large dataset.

3. Balance this large dataset with undersampling. This results in a dataset with ca.
240’000 samples. As described in the analysis section of this chapter, oversampling
is not feasible as it would result in roughly 18 million samples.

4. Split the balanced dataset into both a training and a test set with a 75/25 split. In
other words, the test set consists of 25% of samples, roughly 60’000 samples, and
the training set of the other 75%, roughly 180’000 samples. Both the training and
test sets are also balanced datasets. For every class, there are about 18’000 samples
in the training set and 6’000 samples in the test.

5. Scale the training set with a min-max scaler. The scaler is trained on the training set
and then applied to both the training and the test set. This prevents data leakage
between the test and training set. The scaler is then saved to a pickle file for later
use, i.e., inference.

6. The scaled training data is used to train the machine learning model. The resulting
model is saved in a pickle file for later use.

7. The machine learning model is evaluated on the test set with a confusion matrix
and a classification report.

For packet modeling, three machine learning models were trained: a neural network, a
semi-supervised self-training classifier based on a neural network, and a decision tree.
The sci-kit-learn library was used to implement all three models. The above-described
procedure applies to all three of these models. The following subsections will discuss the
results obtained from the various models.
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7.4.1 Neural Network

The neural network trained is the base implementation of the MLP classifier from the
sci-kit learn library. This neural network has one hidden layer with 100 neurons and a
RELU activation function. The second fully connected layer uses softmax to obtain the
probabilities for the classes.

The resulting network should have roughly 4’000 parameters: 3’000 for the first fully con-
nected layer (30 features * 100 hidden neurons) plus 1’000 for the second fully connected
layer (100 hidden neurons * 10 classes). The bias neurons were ignored for this back-of-
the-envelope calculation. Only the order magnitude is relevant, and 4’000 parameters are
perfectly acceptable in the case of 180’000 training samples. Even though the training was
done on the CPU only, the training time did not exceed a few seconds, as early stopping
was used to prevent overfitting.

Figure 7.9: Confusion Matrix - Neural Network

The resulting confusion matrix (Figure 7.9) provides a clear view of the model’s perfor-
mance. For most classes, the accuracy is at a perfect 100%. The two major exceptions
are the Find My trackers in their ”nearby” state and the SmartTag in its ”nearby” state.
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The explanation for the Find My trackers is relatively straightforward. Sometimes, the
Find My trackers in their ”nearby” state switch into their ”lost” state, as discussed in the
analysis chapter. This produces confusion between the two states.

In the case of the SmartTag, the confusion stems most likely from incorrectly labeled
packets, as automatic labeling is not perfect. Possibly, some of the owner device packets
were confused with those of an ”other Device”, as the owner device for the SmartTag, a
Samsung Galaxy S23 Ultra, is also part of the dataset for the other devices.
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7.4.2 Self Training Classifier

The previously created neural network can be extended with semi-supervised learning to
improve the robustness in real-world inference. The semi-supervised method used in this
thesis is a self-training classifier built upon a neural network, i.e., the network created in
the previous subsection. The implementation stems again from the sci-kit learn library.

Semi-supervised learning aims to improve the model’s capability to generalize and, there-
fore, improve its performance during real-world inference. However, the performance on
the fixed test set does not necessarily have to improve. The idea is solely to improve the
robustness. This works best when the additional unlabeled training data is similar to the
data seen during inference. For this purpose, there are two datasets captured at Zürich
central station. The shorter one is for semi-supervised learning, and the longer one is
for inference. Both were captured under identical conditions shortly after each other, as
described in the chapter about dataset generation.

Figure 7.10: Confusion Matrix - SelfTrainer

As seen in the confusion matrix (Figure 7.10), the model’s performance is more or less
identical to that of the base neural network. Therefore, this model is preferred over the



154 CHAPTER 7. MODELING

base neural network as it presumably performs better on real-world data and verifiably
not worse on the test data.
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7.4.3 Decision Tree

The final model for simple packet modeling is a simple decision tree. The insights gained
during the analysis of the data suggest that it should not be all that difficult for a decision
tree to separate the classes as most of them have a unique feature attached to them.
Additionally, decision trees are quick to train and highly interpretable.

Figure 7.11: Confusion Matrix - Decision Tree

The decision tree used is the base implementation from the sci-kit learn library, and no
hyperparameters are changed. The decision tree’s training terminates after a few seconds.
The obtained confusion matrix (Figure 7.11) confirms that the decision tree, as simple
as it might be, is perfectly suitable for BLE device classification. The overall accuracy is
comparable to that of the neural network.

However, it is also possible to further exploit a decision tree’s two main advantages:
its quick training and interpretability. The latter can be examined using a plot of the
relative feature importance. In theory, the most important features should be roughly the
ones that were identified during the analysis as highly relevant for the classification. In
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other words, the SmartTag type (ST), which is absolutely necessary to separate the two
SmartTag states, should be much more important than, for instance, the channel number.

Figure 7.12: Feature Importance - Decision Tree

Plotting the importance of features (Figure 7.12) reveals that the findings during the
analysis were, in fact, correct. All of the presumably relevant features are also features
that are relevant to the decision tree classification. This indicates that the decision tree
learned to classify devices based on their unique features.

One other interesting question to ask is whether the amount of training data has an
influence on accuracy. For this purpose, one can train a model multiple times on training
sets of various sizes and compare the results by evaluating each model on a fixed test
set. For this purpose, a total of seven decision trees were trained on training datasets
ranging from 1/64 of the training data to the full dataset. All decision trees were then
evaluated on a fixed test set. The resulting accuracy plot (Figure 7.13) clearly reveals
that the amount of training data has little to no influence on the overall model’s accuracy.
Therefore, it is highly likely that capturing over 30 million packets would not have been
necessary for accurate BLE device classification.

Finally, it is also possible to plot the decision tree as a tree. Therefore, there is a highly
detailed plot of over 300 megapixels on GitHub showing the entire decision tree. Due to
the sheer size of this plot, it was not possible to show it in this thesis.
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Figure 7.13: Accuracy vs. Size of Training Data
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7.5 Packet Rate Modeling

The following section covers the packet rate modeling as described in Chapter 2. The
data preprocessing was done using the previously described modeling pipeline. On a high
level, the procedure for packet rate modeling followed the following steps:

1. Import, process, and label the datasets using the Task-Group-Framework and the
purpose-built modeling pipeline. Additionally, in the final step of the pipeline, the
packets are resampled and aggregated to generate the packet rate samples. Every 12-
hour dataset will result in 4’320 samples (43’200 seconds divided by the resampling
period of 10 seconds).

2. Concatenate all datasets into one large dataset.

3. Balance this large dataset with undersampling. This results in a dataset with 43’200
samples.

4. Split the balanced dataset into a balanced training and test set with a 75/25 split.
The resulting training set has 32’400 samples, and the test set has 10’800.

5. Scale the training set with a min-max scaler. The scaler is trained on the training set
and then applied to both the training and the test set. This prevents data leakage
between the test and training set. The scaler is then saved to a pickle file for later
use, i.e., inference.

6. The scaled training data is used to train the machine learning model. The resulting
model is saved in a pickle file for later use.

7. The machine learning model is evaluated on the test set with a confusion matrix
and a classification report.

The machine learning model picked for the packet rate modeling is again a decision tree.
The evaluation of the trained decision tree on the test set reveals a rather mediocre
accuracy (Figure 7.14). For most classes, the model is highly accurate. However, the
SmartTag and Find My tracker in their ”nearby” state and the ”iDevice” class cause
problems and are sometimes confused with the garbage class, i.e., the ”other Device”
class. Principally speaking, one would expect the exact opposite. The added information
in the form of the packet rate should increase the model’s accuracy and not decrease it.
On top of that, the packets from the SmartTag and the iDevices are not similar in any
shape or form, so confusion should not take place.

However, after a close inspection of the model’s classifications and the underlying test set,
there seems to be a rather logical explanation for this. Remember, automatic machine
learning-based labeling for trackers in the nearby state is not perfect. Sometimes, a packet
from the owner’s device can be falsely labeled as the tracker. These packets are also not
removed in the preprocessing pipeline, as they are falsely labeled. During the final pipeline
step, where the packet rate modeling takes place, the data is then grouped by the source
address to perform the packet rate modeling per source address.
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Figure 7.14: Confusion Matrix - Rate Model

Even if only a few of the owner device’s packets were falsely labeled, there are potentially
large gaps between the individual falsely labeled packets. Packet rate modeling will fill
these gaps with zero rows, indicating the absence of packets. The same thing happens
when a source address is ”dormant” for a while and then suddenly restarts transmitting
packets. This will also result in zero rows, i.e., the absence of packets, for the entire time
the source address was dormant. This is presumably what happened in the case of the
”iDevice” class and the ”other Device” class. And because zero rows from one device are
identical to the zero rows from any other device, it is not possible to separate them.

Therefore, filtering the zero rows prior to training the model should result in much higher
overall accuracy. When looking at the second confusion matrix (Figure 7.15), it is apparent
that the zero rows were indeed the issue and that removing them increases the accuracy
almost across all classes.

However, the resulting accuracy is still underwhelming at best. It is slightly worse overall
than the accuracies obtained by simple packet modeling. As of writing this thesis, I do
not exactly know why this is the case. What should be clear is that packet rate modeling
is most likely not the most fabulous idea. Given the relatively high resampling interval
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of 10 seconds, most devices in a real-world environment cannot be labeled. Therefore,
the applicability is much worse than that of simple packet modeling. Additionally, the
accuracy is only just as good, if not slightly worse. Increasing the resampling interval
might increase accuracy, but it would further limit the applicability. Therefore, packet
rate modeling is great from a theoretical point of view but not very applicable in practice.

Figure 7.15: Confusion Matrix - Rate Model (filtered)
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7.6 Comparison of Models and Improvements

Overall, all models show comparable accuracies on the test set. From an accuracy point
of view, there is no reason to choose one model over the other for inference. The limiting
factors are practical applicability and presumed performance during inference.

When it comes to practical applicability, the packet rate model should be discarded. Due
to its inherent limitations, it can only classify a fraction of devices. On the other hand, the
three simple packet models can classify 100% of devices as they are not subject to these
limitations. Therefore, the tie-braking criteria is the presumed accuracy during inference.

Here, the two neural networks have an intrinsic advantage over the decision tree. The
softmax activation produces a confidence output for every class, i.e., the model predicts the
likelihood of a sample belonging to the respective classes. This allows for something called
softmax thresholding. If the confidence is similar across all classes, the model is uncertain
about which class the sample belongs to. This can be exploited to detect potentially
misclassified samples. In other words, if the neural network indicates uncertainty with
equal confidence across all classes, it is possible to discard such samples as the classification
is most likely incorrect. This discarding can happen based on a confidence threshold, hence
the name thresholding. If the maximum confidence is below a certain threshold (typically
90% or higher), the model is uncertain, and the sample can be discarded.

Decision trees can’t do this as they are unable to predict probabilities for classes. Hence,
neural networks are much better suited for real-world inference. Finally, between the
plain neural network and the semi-supervised trained neural network, i.e., the self-raining
classifier, the latter is presumably more robust in real-world inference. Hence, the self-
training classifier is the ideal choice for inference.
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7.7 Summary of Modeling

The most relevant insights from this chapter are:

• The Task-Group-Framework was used again to build a robust and flexible data
pipeline.

• The valuable insights from the analysis chapter allowed for the construction of sep-
arable classes for modeling.

• The analysis of these modeling classes showed that they are indeed separable based
on the features extracted.

• All machine learning models were trained on a balanced training set and evaluated
on a smaller balanced test set.

• The simple packet modeling leads to high accuracies across various machine learning
models. It is, in fact, possible to classify BLE devices based on their packets.

• The dataset is unnecessarily large. It would not have been needed to capture so
many packets. Even with a training data set 1/64 the size of the original training
data set, the accuracy is still largely the same.

• The packet rate modeling is much more difficult and can lead to inferior results
compared to simple packet modeling. To increase the accuracy to an acceptable
level, generated zero rows must be removed.

• From a practical point of view, the model to pick for the inference is the self-
training classifier as it offers the best of two worlds: high practical applicability and
presumably high accuracy due to semi-supervised training and the potential usage
of softmax confidence thresholding.



Chapter 8

Inference

The final content chapter covers the inference, i.e., applying the previously generated
machine learning models to a dataset collected in a real-world high-traffic environment,
Zürich central station. As discussed in the previous chapter, the model picked for inference
is the self-training classifier, as it is highly applicable and presumably offers best-in-class
accuracy with advanced techniques such as softmax confidence thresholding.

The chapter is split into three major sections. First, the preprocessing, the actual infer-
ence, and the softmax confidence thresholding, i.e., the selection of devices, are discussed.
Next, the inference result is evaluated using the plots known from the analysis chapter
to get an idea of the success of the inference. Finally, some limitations and potential
improvements are discussed.

8.1 Preprocessing and Device Selection

The data preprocessing for inference is equivalent to the preprocessing for modeling, except
that the data is not labeled. The preprocessing pipeline is the same as for modeling. The
Task-Group-Framework allows for the flexibility of omnitting the labeling step.

Next, the data is scaled with the pre-trained scaler and finally fed through the selected
model. The result is a matrix with the softmax probabilities for each packet. However,
this result can still be improved.

At this point, it is possible to exploit a property of BLE packets. Every BLE packet
comes from a source address. For each source address, the label should be the same
across all packets. Therefore, different packets from the same source address should not
have differing labels. Additionally, the softmax probabilities can be exploited to detect
uncertain classifications. The goal is to keep only classifications that are correct with a
high degree of certainty and discard potentially wrong classifications.

Therefore, in the first step, the source addresses of the packets are joined onto the output
matrix with the softmax probabilities and the predicted class label (Table 8.1). Next, the
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Source Address Softmax Confidence Predicted Label
2E-B0-D0-63-C2-26 80% other Device
2E-B0-D0-63-C2-26 60% iDevice
2E-B0-D0-63-C2-26 100% other Device
C9-2D-8B-7F-9B-A6 30% SmartTag
C9-2D-8B-7F-9B-A6 100% FindMy Tracker
C9-2D-8B-7F-9B-A6 40% Tile
C9-2D-8B-7F-9B-A6 30% SmartTag

Table 8.1: Simplified Prediction Table after joining the Source Addresses

Source Address Predicted Label Average Softmax Confidence Score
2E-B0-D0-63-C2-26 other Device 90% 75%
2E-B0-D0-63-C2-26 iDevice 60% 25%
C9-2D-8B-7F-9B-A6 FindMy Tracker 100% 50%
C9-2D-8B-7F-9B-A6 SmartTag 30% 30%
C9-2D-8B-7F-9B-A6 Tile 40% 20%

Table 8.2: Prediction Table with average Softmax Confidence and Score per Class Label
and Source Address

average softmax confidence is computed for every source address and class label. Addi-
tionally, for every source address and class label, the relative weighted softmax confidence
is calculated. This value shall be called score and is represented by the ”Score” column in
the tables (Table 8.2). The idea is that the most likely class label for a source address is
a class label that is relatively frequent and has a high average softmax confidence.

Next, for every source address, the class label with the maximum score is picked. The
intuition behind this is that the label most likely correct is the label with a high score,
i.e., a relatively frequent occurrence and high average softmax confidence. After this step,
the score column can be discarded (Table 8.3).

Source Address Predicted Label Average Softmax Confidence
2E-B0-D0-63-C2-26 other Device 90%
C9-2D-8B-7F-9B-A6 FindMy Tracker 100%

Table 8.3: Device Table with predicted Labels and average Softmax Confidence per Source
Address

Finally, the softmax confidence thresholding is applied. All source addresses where the
average softmax confidence of the highest score label was below the threshold of 98% were
removed. The intuition is to keep only source addresses where the label was predicted
with high certainty, i.e., the label is likely correct. At this point, the softmax confidence
can be discarded. The resulting device table contains all the source addresses and labels
for which a prediction with high certainty is possible (Table 8.4).

In practice, this softmax confidence thresholding led to 20% of source addresses being
discarded. In other words, the final device table contained 80% of all source addresses



8.1. PREPROCESSING AND DEVICE SELECTION 165

Source Address Predicted Label
C9-2D-8B-7F-9B-A6 FindMy Tracker

Table 8.4: Device Table with predicted Labels per Source Address

of the initial dataset. Most of the discarded source addresses were assigned the ”other
Device” class label. For the evaluation of the inference, the original dataset was fed again
through the first step of the modeling pipeline. Finally, the device table was joined onto
the dataset with an inner join. In other words, the dataset was filtered for the source
addresses in the device table, and the labels were assigned based on the labels in the
device table.
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8.2 Evaluation

The evaluation of the inference is not trivial, as there are no target labels against which
to compare the predicted labels, so generating a confusion matrix or something similar is
impossible. Therefore, a more qualitative approach was chosen by plotting and analyzing
the results with the plots from the analysis chapter. The intuition is that the plots
should look relatively similar to those seen during analysis. For instance, a packet labeled
”SmartTag” should contain UUIDs from Samsung and not UUIDs from other vendors.

This section is split into two parts. The first contains the qualitative analysis of the
inference results, and the second contains a discussion of the results, where the quality of
the classification is discussed for each class.

8.2.1 Qualitative Analysis

Some of the more relevant plots are shown for the evaluation of the inference. Most are
omitted for brevity.

Figure 8.1: Device Count - Inference

This plot shows the number of source addresses/devices found per class label. The most
interesting aspect of this plot is the relative size of the individual bars. The by far
most frequent device type is ”other Device”. Well over half of the devices found are
other devices. This is plausible simply given the fact that there are many, many more
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non-tracking devices out there than tracking devices (even considering the fact that the
iDevices are counted as tracking devices). Next in line is the ”iDevice” class. As seen
during analysis, the iDevices transmit many packets, most of which are continuity types
other than 0x12, i.e., Find My packets. Therefore, it is perfectly plausible why the bars
for the Find My packets are so much smaller.

The ”FindMy online” bar is substantially higher than the ”FindMy offline” bar. This
can be explained by the environment of the BLE capture. At a train station, there are
presumably more iDevices online than offline. Every iPhone is connected to the cellular
network and, therefore, online. The remaining iDevices are iPads, MacBooks, and so
on, which, for the most part, are not cellular-capable and, therefore, offline at the train
station. And because there are presumably many more iPhones than MacBooks and iPads
carried around at train stations, it is perfectly sensible that there are more online than
offline Find My packets.

All the BLE trackers (excluding iDevices) are detected significantly less frequently. The
SmartTag and Tile only have single-digit and low two-digit device counts, which is a
little unexpected, to be honest. Given their high ranking in online stores, I would have
expected more of these devices to be found, especially when comparing the numbers to
the detections of the Find My trackers.

Find My trackers are found much more often, albeit less frequently, than iDevices. This
is reasonable, as there are many, many more iDevices out there than Find My trackers.
It is also reasonable that there are more Find My trackers in the ”nearby” state than in
the ”lost” state, as most people presumably carry their iPhones with them, making the
trackers ”nearby”. And finally, there are few Find My trackers in the ”unpaired” state,
presumably because most people register their trackers as soon as they take them out of
the packaging box.
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Figure 8.2: Number of Packets - Inference

The previous plot about the device count and this plot about the number of packets are
both connected via the packet rate. In other words, similar relative packet rates result
in similar relative heights of the bars. The higher the relative packet rate of a class, the
higher the relative height of the bar in this plot.

Principally, the relative heights of the bars did not change significantly compared to the
previous plot. But probably the most notable exception to this is the bar from the
”iDevice” class. In the previous plots, the ratio between ”iDevice” and ”other Device” was
about 1:2 and is now roughly 3:1. In other words, the relative height of the ”iDevice”
bar changed by a factor of 6. This is explainable by the simple fact that iDevices have a
relatively high average packet rate compared to many other Bluetooth devices.
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Figure 8.3: Advertisement Data Type - Inference

In the case of almost all the Find My packets (both from Find My trackers and iDevices),
the distribution of the advertisement data types is as expected, with almost 100% of
packets containing only manufacturer specific data. In the ”unpaired” state, however, the
distribution is nowhere where it should be. The high relative presence of flags indicates
that the vast majority of packets in this class are, in fact, not packets coming from a Find
My tracker (in any state).

For both SamrtTag states and the Tile, the distribution of advertising data types is
relatively close but not perfect. The correct advertisement data types are present in most
packets, but not all. Sometimes, as in the case of the SmartTag in the ”nearby” state,
incorrect advertising data types are present, such as the Device Name type.

Most interesting is the ”iDevice” class, where the distribution is surprisingly close to the
distribution found in the analysis of the modeling classes. This indicates that the selection
of Apple devices for modeling was not too far-fetched from what’s found in real-world
environments.
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Figure 8.4: Average Length of Manufacturer specific Data - Inference

The length of the manufacturer specific data is especially interesting for Find My trackers
and iDevices. For the Find My tracker in their ”lost”state and the Find My offline packets,
the average length is only one bit off from where it should be. In the case of the Find My
trackers in their ”nearby” state and the Find My online packets, the average value is even
spot on. In the case of the Find My tracker in the ”unpaired” state, the value is nowhere
where it should be. This further indicates that the detection of Find My trackers in the
”unpaired” state does not work very well.

However, the values for the SmartTag ”nearby” are most concerning. Here, the average
should be zero, as this device and state never use manufacturer specific data. Remember:
The average length of the manufacturer specific data is only computed over the packets
where manufacturer specific data is present. However, as seen in the prior plot about
advertising data types, manufacturer specific data is a rare occurrence for the SmartTag.
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Figure 8.5: Average Length of Service Data - Inference

For both states of the SmartTag and the Tile, the average length of the Service Data is
spot on, indicating that the detection of these packets works well when Service Data is
present. In other words, the model learned that these devices and states are attributed
to a very specific Service Data length.
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Figure 8.6: Company ID - Inference

The distribution of the company ID is mostly relevant for Find My trackers and iDevices.
For these devices and states, the presence of the company ID ”Apple” should be very
close to 100%. However, this is not entirely correct. In the preprocessing step, soft
max confidences and source addresses were used to improve the model’s accuracy. This
included assigning the same class label to all packets of a source address. Sometimes,
devices in the real world transmit packets other than the ones captured in laboratory-like
conditions, such as SCAN REQ or SCAN RSP packets. Both of these cannot contain
advertising data. However, these packets were also assigned one of the class labels based
on the source address.

This drags down the share of packets containing the correct company ID. Hence, the
percentage cannot be expected to hit the full 100%. Therefore, the observed presence of
company IDs is as good as it will get. Especially in the case of the SmartTag and the
Tile, the model learned that these do not contain manufacturer specific data, and hence,
company IDs are not present.
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Figure 8.7: UUIDs - Inference

The presence of UUIDs is as expected in the case of the SmartTag in its ”lost” state,
with an average count of 2. In the ”nearby” state, however, the bar does not quite reach
an average of 2, hence the detection is not perfect. The same thing applies to the Tile
tracker, even though the bar is ever so slightly closer to 2. For the Find My trackers and
iDevces, the model correctly learned that these do not contain UUIDs and hardly ever
assigned a packet with UUIDs to one of those classes.
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Figure 8.8: Continuity Type - Inference

The distribution of the continuity types is presumably the most interesting plot. First,
the model learned that only Find My trackers and iDevices have a continuity type. In all
other cases, the continuity type is always none.

Second, for all Find My packets, the continuity type is almost always 0x12. The small
percentage of none type mostly stems from SCAN REQ or SCAN RSP packets coming
from a source address transmitting Find My packets.

Third, for the Find My tracker in the ”unpaired” state, the continuity type 0x07 is present
in most packets, which indicates a correct classification. However, this is misleading, as
previous plots have shown that most of the packets in this class are probably incorrectly
classified.

Finally, the ”other Device” class always has a continuity type of none, which is a strong
indicator that the classification of this class works rather well.
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Figure 8.9: SmartTag Type - Inference

The distribution of the SmartTag types is most interesting for the SmartTag. For all
other classes, the SmartTag state is always none, as it should be. In the SmartTag’s ”lost”
state, the type is always correct: 3. In the ”nearby” state, however, there are a multitude
of types that should not be in there. The SmartTag type should be 5 for all packets
in the ”nearby” state. This issue presumably stems from insufficient training data. The
SmartTag type 1, for instance, is attributed with the ”unpaired” state of the SmartTag
and not the ”nearby” state. The data from the ”unpaired” state was not used to train the
model. Hence, the model could not learn that the SmartTag type 1 is not associated with
the ”nearby” state.



176 CHAPTER 8. INFERENCE

Figure 8.10: PDU Type - Inference

The distribution of PDU types reveals two things. First, in most cases, the PDU type is
correct. For all states of all conventional BLE trackers, most packets are of PDU type
ADV IND as they should be. The same applies to the Find My packets from iDevices,
where the PDU type is correct for almost all packets.

However, the most interesting is the presence of the SCAN RSP PDU type in some of
the classes. These packets are mostly assigned based on the softmax confidences and the
source addresses in the preprocessing and are not ”detected” by the model, as there are
hardly any such packets in the training data set. This is a great example of the difference
between data collected in the laboratory and data collected in real-world environments.
These SCAN RSP packets are also the reason why, for instance, the distribution of com-
pany IDs does not look as expected.
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8.2.2 Discussion of Results

In summary, the classification of BLE packets in the real world works in most cases. On
a per-class basis, the result can be interpreted as follows:

• FindMy Tracker (lost): The classification is correct for almost all packets. This is
especially clear when looking at the PDU type, the continuity type, and the length
of the manufacturer specific data.

• FindMy Tracker (nearby): The classification is correct for almost all packets. This
is especially clear when looking at the PDU type, the continuity type, and the length
of the manufacturer specific data.

• FindMy Tracker (unpaired): The classification is almost never correct, as shown
evidently by the high presence of the advertising data type flag. Most of these
packets should be in the garbage class ”iDevice”, as indicated by the continuity type
0x07.

• SmartTag (lost): The classification is correct for all packets. This is especially
evident when looking at the SmartTag type, which is always correct. However,
given the low number of 3 classified packets, this result should be taken with a grain
of salt.

• SmartTag (nearby): The classification is correct for about half of the packets. This
is most evidently seen by the distribution of the SmartTag type. In many cases, the
packet belongs to a SmartTag but in the ”unpaired” rather than the ”nearby” state.
The model should better have been trained on data from this state, too.

• Tile (lost): The classification is correct for most of the packets. This is clear when
looking at the average count of the UUIDs and the presence of the advertising data
types, the most notable features of the Tile.

• iDevice: The classification is correct for most of the packets. Garbage classes are
always difficult to evaluate by nature. However, the strong presence of continuity
types other than 0x12 and the absence of these types in other classes indicate a
somewhat successful classification. The exception is the Find My tracker in its
”unpaired” state, where confusion took place.

• iDevice FindMy online: The classification is correct for almost all packets. This is
evident when looking at the PDU type, the continuity type, and the length of the
manufacturer specific data.

• iDevice FindMy offline: The classification is correct for almost all packets. This is
evident when looking at the PDU type, the continuity type, and the length of the
manufacturer specific data.

• other Device: The classification is correct for almost all packets. As with the
”iDevice” class, the evaluation is challenging for a garbage class. However, none
of the prominent features of the other classes, such as continuity types, SmartTag
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types, certain UUIDs, or company IDs, are ever present in packets of this class. This
indicates a relatively successful classification.

In conclusion, the classification of BLE devices/source addresses/packets works very well
in practice with few obvious misclassifications.

8.3 Limitations and Improvements

The main limitation of the inference is the necessity of applying the softmax thresholding
in the preprocessing. The model is only able to make accurate classifications for 80% of
packets. For the other 20%, the classification is to be improved upon. However, as the
evaluation showed, for these 80% of packets, where the classification is confident, it is also
correct in the vast majority of cases. This inevitably leads to the question of how the
classification of the remaining 20% could be brought up to this level. Principally speaking,
there are many ways to achieve this, some of which are discussed below.

• More training data: Collecting more training data would certainly increase the
model’s accuracy. However, given the practical constraints of resources such as time
or finances, this doesn’t seem too viable, to be honest. A potential approach could
be the generation of synthetic data in addition to the collection of real data.

• Improved feature extraction: Any improvements to the feature extraction are al-
most certainly not going to improve the result. As the analysis of the inference
showed, the relevant features were extracted. The misclassifications are not related
to insufficiencies on the features side. The incorrectly classified packets were clearly
misclassified based on the extracted features. The model could have been able to
correctly classify these packets if trained properly.

The same logic applies to feature selection, too. The problem of misclassifications
is not feature-related. In the case of categorical features, simple feature selection
algorithms such as principal component analysis wouldn’t work anyway. Much more
advanced techniques would be necessary, such as wrapper methods. However, these
would probably be very slow given the size of the feature space (ca. 30 features lead
to over a billion possible feature selections).

• More advanced models: Improving the complexity of the models, such as hyper-
parameter optimization, will not help. The performance on the test set is already
outstanding, with accuracies exceeding 99%. The fundamental limitation is that
there is no more to learn for the models from the training data available. Hence,
more training data is necessary, and optimizing any existing models is not helpful
at this point. The improvements achievable with better models are negligible in the
greater scheme of things and would only increase the performance on the test set
and not in real-world environments.
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8.4 Summary of Inference

The most relevant insights from this chapter are:

• The softmax confidences and distribution of class labels among source addresses
can be used effectively to identify the correct class label for a source address. Fur-
thermore, softmax confidence thresholding can be used to eliminate source addresses
where the assigned class labels are likely incorrect, which primarily affects the ”other
Device” class.

• A quantitative evaluation of the inference with a confusion matrix is not possible due
to the lack of target labels, so a more qualitative approach with plots was chosen.

• The qualitative evaluation showed that for the vast majority of packets/source ad-
dresses, the assigned class label is correct. The classes most affected by the incorrect
classification are ”FindMy (unpaired)” and ”SmartTag (nearby).”

• The result could be most improved by training the models on more diverse training
data, i.e., training data of more different devices. However, this could be difficult
due to time and financial constraints. A potential solution could be synthetic data.
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Chapter 9

Conclusion

To conclude this thesis, one can evaluate how the goals set in the introductory chapter
were met.

• Collect Bluetooth packet data from Bluetooth devices, both trackers and non-
trackers.

BLE packets were captured extensively for various tracking and non-tracking de-
vices. The dataset provided on GitHub is over 3.7 GB large and contains both
PCAP and CSV files of the BLE capture.

• Train a machine learning model on the collected data.

Numerous machine learning models following different approaches were trained on
the generated dataset. The high classification accuracy of over 99% on the test sets
across all models is a testament to the success of the training of the machine learning
models.

• Use the machine learning model to identify Bluetooth trackers in real-world high-
traffic environments and evaluate the result.

The qualitative evaluation showed conclusively that identifying BLE trackers in real-
world high-traffic environments with machine learning models is possible with a high
degree of accuracy.

Overall, all of the goals set for this thesis have been met with overwhelming success.
In my opinion, the next step for personal tracker identification in high-traffic real-world
environments would be to enrich the training dataset with vast amounts of synthetic
data to improve the models’ ability to generalize across an even larger number of devices
and, therefore, enable the model to correctly classify even more devices in real-world
environments.
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Appendix A

Repository on GitHub

The GitHub repository can be found under the following URL: www.github.com/stsaxe/
Bachelor-Thesis-Stefan-Richard-Saxer

The GitHub repositories’ directories contain the following files:

• notebooks: The Jupyter Notebooks that are covered in the written thesis.

• notebooks final presentation: The Jupyter Notebooks for the final presentation on
15th July 2024 (these notebooks are not covered in the written thesis).

• plots: All plots generated by the Jupyter Notebooks (from the notebooks folder).

• slides: Slides and images used in the presentations.

• src: Various Python functions and classes used in the Jupyter Notebooks, such as
the Task-Group-Framework.

• tables: The classification reports for the evaluation of the machine learning models.

• wireshark profile: The Wireshark profile used to export from PCAP to CSV.

The folder containing the data (including both PCAP and CSV files) can be found un-
der the following URL on Kaggle, as it is too large for GitHub. Link to data: www.

kaggle.com/datasets/stefansaxer/ble-packets-from-tracking-devices. Include
the ”data” folder as is on the top level directory to execute the Jupyter Notebooks lo-
cally.

Note: Local execution requires Python Version 3.12 or later.
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