
Machine Learning-Assisted
Shielding: Creating and Utilizing
AirTag RSSI Datasets for Android

Applications

Samuel Frank
Zurich, Switzerland

Student ID: 21-704-713

Supervisor: Katharina Müller, Prof. Dr. Burkhard Stiller
Date of Submission: January 04, 2025

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.csg.uzh.ch/

Declaration of Independence

I hereby declare that I have composed this work independently and without the use of any
aids other than those declared (including generative AI such as ChatGPT). I am aware
that I take full responsibility for the scientific character of the submitted text myself,
even if AI aids were used and declared (after written confirmation by the supervising
professor). All passages taken verbatim or in sense from published or unpublished writings
are identified as such. The work has not yet been submitted in the same or similar form
or in excerpts as part of another examination.

Zürich,
Signature of student

i

ii

Abstract

Bluetooth Low Energy (BLE) basierte Tracker sind schon eine Weile auf dem Markt.
Durch deren Integration in sogenannte Crowd-Sourced Offline Finding Networks (COFN)
haben sie grosse Vorteile im Bezug auf Erschwinglichkeit und Batterielaufzeit verglichen
mit alternativen Trackern. Seit dem Branchenriesen wie Apple ihre Implementierung die-
ser Technologie kommerzialisiert haben, hat dies zu einer andauernden Diskussion über
Sicherheitsaspekte und Technologiemissbrauch geführt. Diese Arbeit befasste sich mit der
Thematik ob Received Signal Strength Indication (RSSI) Daten kombiniert mit einem
Machine Learning (ML) Ansatz benutzt werden können um den Schutz von Opfern von
solchem Missbrauch zu verbessern. Spezifisch wurden AirTags benutzt, um einen beschrif-
teten Datensatz mit insgesamt 13’353 Einträgen zu sammeln. Dieser Datensatz wurde in
einem nächsten Schritt verwendet, um verschiedene Klassifikationsmodelle zu trainieren,
zu evaluieren und ein Modell in HomeScout, eine Schutzapplikation entwickelt von der
Communication Systems Group der Universität Zürich, zu integrieren. Ein Decision Tree
Klassifikator hat eine Leistungskennzahl (der die Genauigkeit, den F1-Score und eine Stra-
fe für Overfitting berücksichtigt) von 84 % erreicht, und wurde erfolgreich in HomeScout
implementiert.

iii

iv

Bluetooth Low Energy (BLE) based trackers have been on the market for a while now.
Through their integration into so-called Crowd-Sourced Offline Finding Networks (COFN),
they have great advantages in terms of affordability and battery life compared to alterna-
tive trackers. Since industry leaders such as Apple have commercialized their implemen-
tation of this technology, there has been an ongoing discussion about its security aspects
and potential misuse. This thesis addresses the issue of whether Received Signal Strength
Indication (RSSI) data combined with a Machine Learning (ML) approach can be used
to improve the protection of victims of such misuse. Specifically, AirTags were used to
collect a labeled dataset with 13’353 entries. This dataset was used in the next step
to train and evaluate different classification models and finally integrate one model into
HomeScout, a protection application developed by the Communication Systems Group
of the University of Zurich. A Decision Tree classifier achieved a promising performance
score (which incorporates the accuracy, the F1-score and an overfitting penalty) of 84%
and was successfully implemented in HomeScout.

Acknowledgments

First and foremost, I would like to thank Katharina Müller for her support over the last 6
months. Her constant availability and helpful feedback during the process of the work was
indispensable for me. I also thank my friend, Stefano Anzolut, for proofreading the thesis
and providing valuable feedback. In addition, I thank the Communication Systems Group
of the University of Zurich’s Department of Informatics for the opportunity to write my
bachelor thesis with them. I am grateful that the necessary hardware was made available
to me and that I was able to learn a lot during this time.

v

vi

Contents

Declaration of Independence i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Goals . 2

1.3 Thesis Outline . 3

2 Fundamentals 5

2.1 Background . 5

2.1.1 Bluetooth Low Energy . 5

2.1.1.1 Key Features . 5

2.1.1.2 Communication Basics . 8

2.1.1.3 BLE Protocol Stack Overview 11

2.1.2 Received Signal Strength Indicator 16

2.1.2.1 RSSI based Distance Estimation 16

2.1.3 Crowd Sourced Offline Finding Networks 17

2.1.3.1 Introduction . 18

2.2 Related Work . 19

2.2.1 RSSI Data Collection . 19

vii

viii CONTENTS

2.2.2 RSSI Data Processing Techniques 20

2.2.3 Machine Learning for Shielding and Pattern Identification 21

2.2.4 RSSI Data in Tracking Systems . 23

2.2.5 Android Integrations of the AirTag technology 23

3 Design 25

3.1 Data Collection . 25

3.1.1 Hardware . 25

3.1.1.1 nRF Board . 25

3.1.1.2 AirTags . 26

3.1.1.3 Battery Tester . 27

3.1.2 Software . 27

3.1.2.1 SEGGER Embedded Studio 27

3.1.2.2 Data Collection . 27

3.1.3 Data Pipeline . 32

3.1.4 Methodology . 32

3.1.5 Challenges . 33

3.2 Model Selection . 33

3.2.1 Decision Tree . 33

3.2.2 Random Forest . 33

3.2.3 Support Vector Machine . 33

3.2.4 K-Nearest Neighbors . 34

3.2.5 Overview . 34

3.2.6 Classification vs Regression . 34

3.3 Design of Evaluation Approach . 35

3.3.1 Performance Metrics . 35

3.3.2 Selection Criteria . 36

3.4 Shielding Design for HomeScout . 36

CONTENTS ix

3.4.1 HomeScout Architecture . 37

3.4.1.1 User Interface Layer . 37

3.4.1.2 Data Layer . 38

3.4.1.3 Service Layer . 38

3.4.2 Shielding Design . 39

3.4.2.1 User Interface Layer . 40

3.4.2.2 Data Layer . 40

3.4.2.3 Service Layer . 40

3.4.3 Considerations . 41

4 Results and Evaluation 43

4.1 Dataset . 43

4.1.1 Final Structure . 43

4.1.2 Analysis . 44

4.1.2.1 Overview . 44

4.1.2.2 Environmental Effects . 44

4.1.2.3 Battery Insights . 45

4.1.3 Data Collection Evaluation . 47

4.2 Iterative Refinements . 47

4.2.1 Class Consolidation Strategy . 47

4.2.2 Features . 49

4.2.2.1 RSSI Smoothening . 49

4.2.2.2 Feature Selection . 49

4.2.3 Final Model Outline . 51

4.3 Performance Evaluation . 51

4.3.1 Model Overview . 51

4.3.2 Best Performing Model . 52

4.3.2.1 Metrics . 52

x CONTENTS

4.3.2.2 Conclusion . 54

4.4 Porting to HomeScout . 54

4.4.1 User Interface Layer . 54

4.4.2 Data Layer . 55

4.4.3 Service Layer . 56

4.4.3.1 Initialization . 57

4.4.3.2 Classification . 57

4.4.4 Resource consumptions considerations 60

4.4.5 Conclusion . 61

5 Final Considerations 63

5.1 Conclusions . 63

5.2 Future Work . 64

Abbreviations 73

List of Figures 73

List of Tables 77

A Contents of the Repository 81

A.1 Experiments Folder . 81

A.1.1 AirTagEvaluation Folder . 81

A.1.2 Results Folder . 81

A.2 HomeScout Folder . 81

A.2.1 App Folder . 81

A.3 ML Analysis Folder . 82

A.3.1 Darios Notebook Folder . 82

A.3.2 This Work Folder . 82

A.4 ble app uart adv scan . 82

A.4.1 Main.c File . 82

Chapter 1

Introduction

The communication protocol Bluetooth Low Energy (BLE) was introduced as part of the
Bluetooth core specification 4.0 in the year 2010 [1]. Due to its significant advantages
in terms of energy consumption and ease of development during implementation, it has
since become the standard communication protocol in the field of the Internet of Things
(IoT) [2]. According to the 2021 market update released by Bluetooth SIG, Inc., it was
predicted that nearly 4 billion devices capable of BLE communication would be shipped
in 2021 [3]. The year 2021 was also the time that Apple released a new product called
AirTag. AirTags are Apple’s implementation of a BLE-based tracker that operate inside a
Crowd-Sourced Offline Finding Network (COFN) [4]. Those BLE-based trackers leverage
the advantages of the protocol by embedding the hardware inside a COFN and thus
providing global item tracking with a battery lifespan typically around one year. BLE-
based trackers were neither invented by Apple nor are they the only provider on the
market. Other manufacturers such as Samsung [5], Tile [6] and Chipolo [7] offer similar
implementations. However Apple has advantages over many other competitors in terms
of the network effect. According to Apple, hundreds of millions of Apple devices are part
of the network [8]. This work focuses specifically on the AirTag and its corresponding
COFN.

Unfortunately, due to the described capabilities and affordability, these trackers are not
only suitable for tracking important items but also individuals against their will. There
have been multiple reports of AirTags being misused for stalking [9], [10], [11], [12]. This
led to a class action lawsuit against Apple [13].

Initially, Apple developed an item safety alert (ISA) as an iOS exclusive protective mech-
anism against unwanted tracking. After criticism that Android users are not protected
enough [14], Apple developed the Tracker Detect application for the Android market.
Tracker Detect was also criticized for its inability to passively detect potential threats.
You have to actively suspect that you are being tracked in order to initialize the manual
scan [15], [16]. As part of recent developments, Apple has collaborated with Google in
the form of an Internet draft submitted to the Internet Engineering Task force [17]. As
a result of this collaboration, devices running iOS 17.5 and Android 6.0 or later will re-
ceive manufacturer-independent security notifications in the event of suspected unwanted

1

2 CHAPTER 1. INTRODUCTION

tracking [18], [19].

In the context of the work of [20] and [15], an Android application called HomeScout was
developed, which can passively search for the dangers described. Furthermore, Home-
Scout’s protection is not limited to BLE-based trackers. The protection is generalized
to BLE-based devices that are embedded in a COFN. This also includes smartphones,
laptops, and headphones.

1.1 Motivation

This work focuses on investigating whether the HomeScout application can better detect
malicious AirTags through a Machine Learning (ML) model that can predict proximity
based on Received Signal strength Indication (RSSI) data. The motivation here is that al-
though in theory the aforementioned collaboration between Apple and Google now makes
passive scanning for maliciously placed trackers possible by default in Android, there is still
a danger from other BLE-based devices, which HomeScout can scan and recognize. The
collaboration and the resulting cross-manufacturer protection feature are new and have
yet to undergo a thorough testing by external parties. Furthermore, Apple has sold over
55 million AirTags in the first 18 months [21]. This shows the spread of this technology.
Improving the general functionality of HomeScout, which includes non-tracker-exclusive
BLE protection, remains highly relevant.

1.2 Thesis Goals

The goal of this work is to gain insight into the possibility of proximity prediction based
on RSSI data emitted by AirTags considering various ML models. In the context of
this, different datasets are collected in different environments, which then serve as a
basis for the models and the evaluation process. The performance of different models are
investigated. Based on the performance insights, it will be discussed how and if integration
into HomeScout can bring an improvement.

In addition, the goals of this work can be broken down further in the form of research
questions:

(i) How does RSSI data emitted from AirTags correlate to distance and are there any
underlying patterns?

(ii) Which machine learning model with which input features is best suited for predicting
the proximity of a BLE emitting AirTag based on the RSSI values?

(iii) Can the in (ii) identified model be used to provide a reasonable shielding mechanism
which further improves the accuracy of identifying malicious trackers?

1.3. THESIS OUTLINE 3

1.3 Thesis Outline

Initially, the Fundamentals section explains important concepts such as BLE, RSSI and
COFN in detail. In addition, existing literature is analyzed. Specifically, works in the
field of RSSI data collection, preprocessing, and their applications in (ML-based) systems
are discussed.

In the Design section of the thesis, the planning and methodology of the data collection
experiments are looked at, a possible implementation in HomeScout is designed, and the
chosen models are discussed. The process of determining the best performing model is
also explained.

In the Results and Evaluation section, the performance of the models and the implemen-
tation is examined.

Ultimately, the work is summarized in the Final Considerations section together with an
outlook on possible further research.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals

2.1 Background

This section aims to provide an overview of the main concepts within this thesis.

2.1.1 Bluetooth Low Energy

Bluetooth technology has been around since the year 2000. The first version of Bluetooth
used at that time is called Bluetooth Basic Rate (BR). The initial idea was to enable
wireless communication between two devices. Bluetooth BR made it possible to achieve
a raw data rate of 1 million bits per second (1 Mb/s) on the physical layer. The initially
most promising applications of Bluetooth BR were in the field of audio. A new technology
called Bluetooth BR/Enhanced Data Rate (EDR) was then specified. This made a raw
data rate of 2 Mb/s possible, but was still focused on communication between two devices
[22].

In 2010, BLE was defined as part of the Bluetooth Core Specification 4.0 [1]. BLE was
not intended to replace the above-mentioned versions of Bluetooth, but to complement
them. For the first time in the history of Bluetooth, the technology could be used not
only in a point-to-point topology but also in a broadcasting manner. The main design
goal of BLE was to minimize the power consumption of the devices. Small devices with
coin sized batteries should function for many weeks [22].

2.1.1.1 Key Features

This subsection focuses on the main changes introduced with Low Energy (LE) as part of
the Bluetooth Core Specification 4.0. Specifically, the differences compared to BR/EDR
that aim to enable longer battery life are examined. The source [23] is used. Instead of
the terms ’master’ and ’slave’ used in the book, this thesis uses ’central’ and ’peripheral’.

5

6 CHAPTER 2. FUNDAMENTALS

Frequency Bands

Like BR/EDR, the LE radio operates in the 2.4 GHz ISM band. Since this band is shared
with several other wireless communication technologies, a mechanism called frequency
hopping is used in both versions of Bluetooth. Frequency hopping counteracts interference.
An important difference between BR/EDR and LE is that BR/EDR uses 79 channels for
frequency hopping, while LE uses only 40 channels. LE also has dedicated channels for
advertising and data transmission.

Mostly Off Technology

LE technology aims to keep devices off most of the time and send data only occasionally.
This ’mostly off’ strategy minimizes energy consumption and extends battery life, as the
device is only switched on under certain conditions. For example, a BLE-based temper-
ature sensor could be configured to transmit data only when the temperature reaches a
certain threshold and otherwise be switched off.

Faster Connections

Connections based on LE take less time than BR/EDR connections as they only use 3
advertising channels for the connections, whereas BR/EDR uses 32 channels for scanning.
This results in a BR/EDR connection taking around 20 milliseconds, while LE connections
can be established in under 3 milliseconds. Fast connections make it possible to send data
quickly and minimize energy consumption through shorter activation times of the radio
module.

Reduced Functionality

In order to achieve long battery runtime, there were restrictions in the functionality sup-
ported by LE. This trade-off between energy efficiency and functionality means that LE
complements the classic BR/EDR and does not replace it.

One of these restrictions includes the fact that devices that implement LE do not neces-
sarily have to be transmitters and receivers. It is possible but not necessary. In addition,
as LE is designed to transmit small amounts of data irregularly, it is not suitable for use
cases such as headsets. This means that LE does not need to support the voice channel
functionality. Unlike BR/EDR, LE does not allow the roles of central and peripheral to
switch after a connection has been established. This simplification helps to keep the link
layer much simpler. In contrast to BR/EDR, LE does not require continuous polling of
the link. As the connection can be established significantly faster, this functionality can
be dispensed with, further reducing energy consumption.

Shorter Packets

Shorter data packets require less energy for transmission, as the radio has to operate

2.1. BACKGROUND 7

in high-power mode only for a short time. With longer packets, the silicon heats up,
which changes the physical properties and can lead to frequency deviations that cause
packets or connections to be lost. To prevent this, constant recalibration of the radio is
necessary, which increases energy consumption and complexity. Shorter packets prevent
such temperature changes, eliminating the need for recalibration.

Optimized Power Consumption of Peripherals

LE is designed so that there is an imbalance of energy consumption between the emitting
(peripheral) and receiving (central) nodes. This is the case because the central node usu-
ally has more power available. The AirTag can be used here as an example of a peripheral
device. The Airtag must send data to a central device, in this case a mobile phone. How-
ever, since the mobile phone can usually be charged daily, this power consumption is less
important. Therefore, LE was designed so that the peripheral device has to be active for
as little time as possible while the central device is constantly scanning for packets. This
helps to save energy at the emitting nodes. Furthermore, in wireless radio communication,
receiving is more energy-consuming than transmitting. This also closes the circle to above
that LE based devices do not have to be transmitter and receiver at the same time, and
thus further energy can be saved at the peripheral device.

Table 2.1: Summary of Key LE Features adapted from [23].

Connection Type Frequency Hopping Spread Spectrum

Spectrum 2.4 GHz ISM Band. Regulatory range: 2400 - 2483.5
MHz.

Frequency Hopping Across 40 RF channels. The channels are separated by
2 MHz.

Modulation Gaussian Frequency Shift Keying (GFSK).
Maximum Data Rate 305 kbps (4.0), 800 kbps (4.2)
Maximum Data Packet Size 27 bytes (4.0), 251 bytes (4.2)
Typical Range 30 m to 100 m.
Topology Central Peripheral architecture. The number of periph-

erals is limited only by the availability of resources on
the central.

Connection Time In the range of 2.5 milliseconds. LE supports a much
lower connection time as compared to BR/EDR. So it’s
easier to just re-establish the connection and transfer
data in case of LE instead of keeping the connection
alive.

Data Security:
Authentication Key

AES 128 bit key.

Data Security: Encryption
Key

AES-128 (Stronger than BR/EDR)

Voice Channels Not supported.
Applicability Does not require line of sight. Intended to work any-

where in the world since it uses unlicensed ISM band.

8 CHAPTER 2. FUNDAMENTALS

2.1.1.2 Communication Basics

In order to gain an overview of the basics of LE communication, a few states of the link
layer in the state machine diagram will now be discussed. The physical channel is also
divided into time units, which are called events. Advertising events and connection events
are being looked at. [23] is used as a source for this section. Any deviating sources are
cited accordingly. Instead of the terms ’master’ and ’slave’ used in the book, this thesis
uses ’central’ and ’peripheral’.

Figure 2.1: Statemachine of the Link Layer [23].

Advertising and Scanning

In the advertising state, the link layer sends advertising packets. Then it may also check
which responses are available and respond to these devices accordingly. 2.1 shows, that
this state can be reached from the standby state when the link layer decides it is time to
advertise. An example is a thermometer that constantly advertises ’I am a thermometer.’
It could possibly also advertise other data, for example, ’I have data to send’.

On the other hand, there is the scanning state. A link layer in this state listens for packets
from surrounding advertisers. The scanning state can also be reached from the standby
state when the link layer decides to scan. A scanner can ask for more information after
receiving an advertising packet.

Advertising events are transmissions on the advertising channels. As seen in 2.2, at the
beginning of each advertisement event, the advertiser sends an advertisement packet.

2.1. BACKGROUND 9

The scanner receives the packet and, depending on the type of advertising packet, sends
a request back to the advertiser. The advertiser then responds in the same event if a
request is received from the scanner. The event then closes, and the process starts all over
again with the advertiser sending a packet at the start of the advertisement event.

Figure 2.2: Advertising Events [23].

Connection

In the connection state, one device is connected to another. Two roles are defined. There
is a central role and the peripheral role. The connection state can be reached either from
the advertising state or from the initializing state. This is referred to as a peripheral or a
central, respectively.

Connection events are used to exchange data packets between the peripheral device and
the central device. As 2.3 shows, the start of a connection event is called an anchor point.
At this anchor point, the central transmits a data channel Protocol Data Unit (PDU) to
the peripheral. After this exchange, peripheral and central send packets alternately. The
peripheral device must always respond to the central device. The central device may or
may not respond to packets from the peripheral. All packets during a connection event
are transmitted at the same frequency. Channel hopping occurs at the beginning of each
connection event.

10 CHAPTER 2. FUNDAMENTALS

Figure 2.3: Connection Events [23].

2.1. BACKGROUND 11

2.1.1.3 BLE Protocol Stack Overview

This section is based on [22], and any other sources are referenced accordingly. It should
provide a brief overview of the BLE protocol stack.

The LE protocol stack is constituted of a series of discrete modules and layers, some
of which are optional and some of which are mandatory. These components are dis-
tributed across the two principal building blocks of the architecture, designated as host
and controller. Figure 2.4 provides an overview of the LE protocol stack, illustrating the
distribution of the protocol between the host and the controller. In addition, it includes
a reference to the Open Systems Interconnection (OSI) model.

The separation of the host and the controller is frequently implemented in a manner
whereby the host functions as an operating system, while the controller is a System On
a Chip (SoC). However, the LE stack does not require this approach. The crucial aspect
of the protocol separation is the division of logic into two distinct parts.

The two layers are connected by the Host Controller Interface (HCI), which serves as
the foundation for communication between the host and the controller. The HCI is a
logical construct, rather than a physical one, and can be implemented in different ways.
The key implication of the HCI specification is that hosts and controllers from different
manufacturers can work together, enabling interoperability.

Figure 2.4: LE Protocol stack together with OSI model [22].

Physical Layer

The physical layer of BLE defines the manner in which radio waves are employed to encode
and decode digital data at the transmitter and receiver, respectively.

12 CHAPTER 2. FUNDAMENTALS

BLE operates within the 2.4 GHz unlicensed band, with a frequency range of 2400 MHz
to 2483.5 MHz, which is divided into 40 channels. In order to encode digital data from
higher layers of the stack or to decode physical radio waves received from other nodes,
a procedure known as Gaussian Frequency Shift Keying (GFSK) is used. Figure 2.5
illustrates the encoding of a 0 or 1 by GFSK, whereby the signal is shifted upward or
downward above a certain threshold compared to the center of the relevant channel.

Figure 2.5: Frequency Shift Keying [22].

Link Layer

The second-longest section in the BLE part of the Bluetooth Core Specification 4.0 deals
with the link layer. Only the part about HCI is longer. It is arguable that the link layer
is the most complicated part of the entire BLE specification. The sophistication of the
link layer is also one of the major reasons why BLE is so versatile.

The link layer enables both connection-based and connection-less communication. Fur-
thermore, in addition to point-to-point communication, one-to-many communication with
an unlimited number of receiving devices is also made possible.

As mentioned earlier, BLE uses 40 different channels in a 2.4 GHz frequency band. This
is where the link layer plays a role and controls how these channels are used. Of the 40
available channels, three are designated for advertising purposes. These channels enable
the discovery of devices, the establishment of connections, and the transmission and re-
ception of initial data. The remaining 37 channels are used for data transmission from
devices that are already in the connection state. To reduce the likelihood of interference,
a technique known as adaptive frequency hopping is employed at the link layer. The 37
data channels are divided into two categories: those that are currently available for use
and those that are not. A simple modulo algorithm, utilizing a random value between
5 and 16, is used to hop over the data channels, thereby minimizing the potential for
interference [23].

2.1. BACKGROUND 13

Isochronous Adaptation Layer

The Isochronous Adaptation Layer is responsible for the transmission of time-sensitive
data between the HCI and the link layer. This is particularly important for LE audio
applications and other time-sensitive uses. As the communication of AirTags is not time
sensitive in this sense, this layer will not be discussed in more detail.

Host Controller Interface

The HCI layer of the stack provides a standardized interface for communication between
the host and the controller. This enables the host to send commands to the controller
and the controller to respond with updates. The HCI concept is not limited to LE but is
also used by BR/EDR.

In terms of functional specification, the HCI layers operate as follows. There are two
defined terms, ’commands’ and ’events’. These are instances of communication between
the host and the controller layers. A command is sent from the host to the controller
layer, whereas an event is sent in the opposite direction. An event is either an answer to a
command that is being received or a command-independent event. Illustration 2.6 shows
an example communication flow between the host and the controller, which is the main
responsibility of the HCI.

Figure 2.6: Example HCI Communication [22].

14 CHAPTER 2. FUNDAMENTALS

Logical Link Control and Adaptation Protocol

The Logical Link Control and Adaptation Protocol (L2CAP) provides protocol multiplex-
ing, flow control, segmentation, and reassembly of Service Data Units (SDU). To separate
sequences of packets that pass between layers of the stack, L2CAP uses the concept of
channels. These channels are fixed in the sense that they do not require resources to be
allocated and are also associated with higher levels of the stack. Figure 2.7 illustrates the
main responsibility of the layer.

Figure 2.7: Main responsibility L2CAP [22].

The layer takes SDUs and embeds them into a Protocol Data Unit (PDU), which is then
passed down and transmitted, where the L2CPU of the receiving node converts the PDUs
back into SDUs [23].

The Attribute Protocol

The Attribute Protocol (ATT) is used by two devices. One acts as a server, and the
other as a client. This layer thus adheres to the client-server architecture. The server
keeps track of data elements called attributes in indexed attribute tables. ATT is one of
the main mechanisms by which two devices connected via LE interact with each other.
ATT defines 31 different types of PDUs that define the type of communication between
connected devices. The 31 types are further divided into 6 broad categories. One of
these is the response/request category. In this category, a request PDU is sent to the
server device. The server device must then respond within 30 seconds. Otherwise, it is
considered a timeout. This shows that the sequential form of communication is prominent
throughout the layer. An example of a Request / Response PDU pairing is shown in Figure
2.8. ATT WRITE REQ and ATT WRITE RSP PDUs are used.

2.1. BACKGROUND 15

Figure 2.8: Example client server communication [22].

Generic Attribute Profile

The Generic Attribute Profile (GATT) takes data stored as attributes in the attribute
tables of the ATT layer described above and transforms it into data types that can be
used by the layers above GATT. These data types are called services, characteristics, and
descriptors. It also defines how these data types can be used via the ATT. 2.9 shows this
concept visualized.

Because the ATT defines a flat structure of attributes and relevant operations for those
attributes which are hard to manage, the GATT breaks it down into the more manageable
structures mentioned [23].

Figure 2.9: Visualization of the breakdown concept [23].

Services provide context for the characteristics they contain. Often, the services represent
the most important features or capabilities of the devices. Characteristics are a type of
state-based data. Characteristics consist of a type, a corresponding value, and a property

16 CHAPTER 2. FUNDAMENTALS

that indicates how the data can be used. An example might be a data chunk that is
read-only. Descriptors are a hierarchy below the characteristics and are responsible for
providing metadata and means of control for the corresponding characteristic.

Generic Access Profile

The Generic Access Profile (GAP) is used to establish connections and discover other
devices. In addition, connection less communication and the mechanism for the establish-
ment of isochronous communication channels are also part of the GAP.

Although issues such as advertising, scanning, and connection establishment are at the
core of this layer, it acts more as a coordinator. GAP sits on a high layer in the stack.
Lower layers such as the link layer and the physical layer then implement it.

2.1.2 Received Signal Strength Indicator

RSSI is a parameter used to quantify the signal strength in wireless systems. It is usually
measured in Decibel relative to Milliwatt (dBm). The higher the RSSI value, the stronger
the corresponding signal [24]. In theory, RSSI measurements can range from 0 dBm to
-100 dBm. However, the limits are rarely reached [25]. 2.10 gives a rough estimate of
what the respective values indicate about signal strength.

Figure 2.10: Overview RSSI mapping on signal strength [25].

For BLE, the RSSI value is important. RSSI measurements on periodic advertising chan-
nels are particularly important for localization, as mobile devices can scan these channels
without establishing a connection. Due to the lower transmission power of BLE compared
to classic Bluetooth, RSSI values are generally weaker at the same distance [25].

2.1.2.1 RSSI based Distance Estimation

An important part of this thesis deals with the estimation of proximity based on the
RSSI value. However, there are other methods to estimate this distance instead of the

2.1. BACKGROUND 17

ML approach chosen in this thesis. A more widely used approach in this context is the
Log-Distance Path Loss Model.

Figure 2.11: Log-Distance Path Loss Model adapted from [26].

This model leads to the equation shown in 2.11. This allows the proximity to be estimated
from the RSSI value. However, the formula is based on two constants. One is an RSSI
reference value, typically measured at a distance of one meter. The other is a propagation
constant that varies according to the environment. A lookup table can be seen in 2.2
containing the values for the propagation constant corresponding to different environments
[26].

Environment Path Loss Exponent

Free-space 2
Urban area cellular radio 2.7 – 3.5
Shadowed urban cellular radio 3 – 5
In building Line Of Sight (LOS) 1.6 – 1.8
Obstructed in building 4 – 6
Obstructed in factory 2 – 3

Table 2.2: Path loss exponent for different environments, adapted from [26].

The Log-Distance Path Loss Model is particularly useful for indoor positioning applica-
tions. This is the case because the environment is stationary, and both constants can be
set for the specific environment. However, the context of BLE-based tracker detection is
more dynamic. This leads to problems if the formula was used in HomeScout during run-
time. Finding the RSSI reference value as well as determining the propagation constant
at run-time is very difficult, as the mobile phone can move constantly, making it difficult
to adjust the formula on the run.

2.1.3 Crowd Sourced Offline Finding Networks

This subsection of the thesis explains how a COFN works. The theory is illustrated using
Apple’s specific implementation. Apple has named their implementation the Find My
Network [27]. According to Apple, the Find My Network contains hundreds of millions

18 CHAPTER 2. FUNDAMENTALS

of devices as of 2021. This includes mobile phones, laptops, AirTags and also third-party
devices [8].

2.1.3.1 Introduction

The basic idea behind COFN is that so-called finder devices can detect the presence of
lost offline devices in proximity. This is done using BLE. The finder device then reports
the exact location of itself, which is also the approximate location of the lost and offline
device, to the owner via the internet. 2.12 shows how this works from a high level [28].

Figure 2.12: COFN technology from a high level [28].

Owner Device

Owner devices are devices that share an Apple ID. These devices can use the Find My
application on iOS and macOS to access each other’s location [28].

In the example of the AirTag, the owner device would be both the iPhone that initialized
the AirTag and all other devices that share the Apple ID of this iPhone.

Lost Device

Lost devices are devices within the Find My Network that have started to broadcast
BLE advertisements containing a public key. These advertisements are intended to be
discovered by nearby devices. In the case of devices that can access the Internet, such
as an iPhone or MacBook, the device is considered to be in the lost state when it loses
its connection to the Internet. In the case of BLE-based trackers within the Find My

2.2. RELATED WORK 19

network, a tracker is considered to be in a lost state when it loses the BLE connection to
the owner’s device [28].

Using the AirTag as an example, this would be the case if someone forgets a key paired
with an AirTag at their workplace. Due to the interrupted BLE connectivity to the owner
iPhone, the AirTag would start broadcasting BLE advertisement packets as a result of
the transition into the lost state.

Finder Device

Finder devices are the heart of COFNs. These devices are able to receive the BLE ad-
vertisements, create an end-to-end encrypted location report and upload them to Apple’s
servers [28].

To stay with the example, the key forgotten at the workplace could advertise a BLE
packet to an employee who also has an iPhone. This iPhone then uploads its location to
the Apple servers.

Apple’s Server

Apple’s servers store location reports that are transmitted by Finder devices. Owner
devices can retrieve these reports and decrypt them locally [28].

In the example, the worker who forgot the key could notice it at the front door, open the
Find My app with the iPhone, and access the location of the keys. He would then realize
that he needs to return to the office.

2.2 Related Work

2.2.1 RSSI Data Collection

Within the work of [29] a solid foundation for further research in the form of a labeled
dataset with RSSI values containing 15.000 entries was created. Thereby 150 testing
points and 15 fixed anchor nodes with a total of 11 mobile devices emitting BLE packets
were deployed in a school building. By also providing the coordinates of the anchor nodes
the set can be used for both fingerprint based and model based localization algorithms.

Similarly [30] collected a dataset of labeled RSSI data. They focused on a more harsh
industrial environment, a harbor, with high humidity and other challenging conditions.
As an underlying communication layer Low Power Wide Area Network (LPWAN) was
used.

As part of the work of [31], the researchers gathered an RSSI dataset [32]. They used
13 iBeacons and an iPhone 6s as receiver. The 13 iBeacons were attached to the ceiling

20 CHAPTER 2. FUNDAMENTALS

of the Waldo Library at Western Michigan University. They then divided the first floor
of the library into a grid of 10x10 square foot squares. From these fields, both a labeled
data set with 820 data points for training and a data set with 600 data points for testing
were created using a self-developed application.

Paper Focus Samples Wireless
technology

[29] RSSI dataset for improved
indoor localisation.

15’000 BLE

[30] RSSI dataset collected in a
harsh harbor environment.

1’500 Long Range
Wide Area Net-
work
(LoRaWAN)

[31], [32] Improving indoor localiza-
tion accuracy using RSSI
data for smart city services.

1’420
labeled,
5’191
unlabled

BLE

This thesis Collect data in different set-
tings in order to investigate
the influence of different fea-
tures on accuracy.

13’353 BLE

Table 2.3: Summarizing RSSI data collection literature.

2.2.2 RSSI Data Processing Techniques

In the article [33] published in 2023, the researchers used the data set mentioned above
[32] as the basis for their work. The focus lies on improving accuracy of RSSI-based indoor
localization. They applied the weighted least squares method to the dataset and filtered
it using a moving average filter. The use of the weighted least squares method solves the
non-linearity problem of RSSI-based indoor localization and thus improves precision.

The work of [34] also points out that filtering techniques and linearization methods should
be applied to an RSSI dataset before training machine learning models to counteract the
strong deviations in the RSSI values.

This is also in line with other research. Smoothing out RSSI data with techniques like
the Kalman filter [35, 36, 37] or the Mean and Median filter [38] is crucial before further
using the data in order to achieve high accuracy in the following steps.

2.2. RELATED WORK 21

Paper Focus RSSI Processing
Techniques

[33] Improving RSSI-based
indoor localization
using ML.

Moving average filters,
RSSI Linearization with
weighted
least-squares method.

[34] Improving RSSI-based
indoor localization
using ML.

Pseudo-Linear
solution (PSL).

[35, 36, 37] Improving indoor localiza-
tion using filtered RSSI.

Kalman filter

[38] Improving RSSI-based
indoor positioning.

Mean and Median filter.

This thesis Proximity predictions based
on RSSI values.

Investigate whether
Processing techniques like
the moving average filter
might enhance the accuracy
of the models.

Table 2.4: Summarizing RSSI processing techniques.

2.2.3 Machine Learning for Shielding and Pattern Identification

In the context of [39] it is mentioned that the use of machine learning approaches such
as K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Decision Trees, and
Neural Networks can help address the lack of accuracy in RSSI based tracking. However,
these solutions come with their own challenges, such as computational power and the
required amount of data for such models.

After the mentioned processing [33] used the adapted RSSI dataset, trained and analyzed
three machine learning models: KNN, SVM and Feed-Forward Neural Network (FFNN).
Thereby, KNN achieved the highest accuracy of 85 %.

[40] have conducted research in the field of proximity analysis of BLE devices based on
machine learning. They have chosen a random forest (RF) approach to estimate the
distance between two devices. Centimeter-accurate Ultra Wide Band (UWB) ranging
radios data, was used as ground truth for the training and test data set of the model.

Within the work of [41], the researcher analyzed proximity predictions based on BLE
RSSI values together with a Gradient Boosted Machines (GBM) learning classification
algorithm. The GBMmodel classified with a 92.85 % confidence. The context of the paper
is the comparison of technologies used to analyze social distancing during the pandemic.

As part of [42], research was carried out in the area of locating goods in warehouses. BLE
beacons and RSSI data were used to localize resources using a SVM approach.

Based on the literature review, a combination of RSSI data filtering together with a KNN,

22 CHAPTER 2. FUNDAMENTALS

RF, Decision Tree or SVM model is best suited for the problem. This approach seems to
be promising and suitable for predicting the proximity of a BLE-emitting AirTag.

Paper ML-algorithms Accuracy Application
[33] KNN, SVM, FFNN 85% (KNN),

84% (SVM),
76% (FFNN)

Improving
indoor
localization
using RSSI

[40] RF with 100 decision trees Centimeter
Level accuracy
(90th percentile)

Proximity
detection,
contact tracing,
social distancing
using BLE/UWB

[41] GBM 92.85 % Comparison of
social distancing
classification
models during the
pandemic.

[42] SVM Up to 1.4m Locating goods in-
side a warehouse.

This
thesis

RF, KNN, Decision Tree,
SVM

Aim for 90 % Estimating
the proximity of an
AirTag towards
the central device.

Table 2.5: Summarizing RSSI based ML-models literature.

2.2. RELATED WORK 23

2.2.4 RSSI Data in Tracking Systems

As discussed in [43], compared to the Global Positioning System (GPS), RSSI-based
localization systems can have advantages in terms of accuracy in indoor environments.
Furthermore, such systems effectively reduce the deployment and energy consumption
costs during the creation and maintenance phase, respectively [44].

In the work of [45], the researchers developed an indoor tracking system based on RSSI
values in a hospital corridor environment. They used two references and one moving target
node. They applied a log-distance path-loss equation to the RSSI values in combination
with several position estimation methods and an exponential weighted moving average
filter to smooth out variations caused by fluctuating RSSI values. By doing so, they were
able to accurately determine the position of the target node in the hospital corridor.

Similarly, [46] developed an indoor tracking system based on RSSI values. But they
focused on a more harsh environment. Specifically, they have developed a system to track
the position of workers in underground mines. This environment is particularly prone to
fluctuations in RSSI values, at the same time accurate localization is extremely important
for worker safety. Using a hybrid RSSI-based fingerprint algorithm that involves reference
nodes together with dead reckoning and statistical averaging, they were able to track the
nodes in the mine with an accuracy of 3.13 meters.

The paper [47] explores the use of RSSI data from multiple BLE beacons in an outdoor
localization setting. The particular aim of the research is to help blind and visually
impaired people cross complex intersections in large cities safely. The RSSI data was
smoothed using a moving averaging filter. As part of a feasibility study, a KNN model was
trained with the data and was able to achieve an accuracy of 99.8 % during classification.

2.2.5 Android Integrations of the AirTag technology

When Apple launched AirTags, BLE-based trackers, in 2021, security concerns were im-
mediately raised, in particular, the lack of protection against stalking of Android users
raised major questions [14]. In response, Apple released the ’Tracker Detect’ app for the
Android market. However, the main criticism of this app is that Android users have to
actively search for potential threats [15], [16]. To close this gap, several alternatives to
the Tracker Detect app have been developed.

One solution is the open source application AirGuard, developed as part of the work
of [48]. Apple’s iOS internal tracking protection feature was reverse engineered for the
development of the AirGuard application, which enables passive scanning and detection
of potential threats.

Another Android application, ’BLE-Doubt’, automatically scans for BLE-based tracker
beacons and can detect non-Apple trackers. This application uses a baseline of time and
distance and their hybrid combination together with an improved topological classifier to
avoid false positives [49].

24 CHAPTER 2. FUNDAMENTALS

Additionally, the HomeScout application, developed as part of the work of [15], uses pa-
rameters such as time, distance and the occurrence of BLE devices for detection. Home-
Scout is not limited to BLE-based trackers, but analyzes all BLE-based devices, including
modern cell phones, laptops and more, for misuse.

Chapter 3

Design

This chapter provides an overview of the design process and methodologies used to gen-
erate a labeled RSSI dataset with AirTags, how it was used to train different machine
learning models, and to evaluate their performance. Finally, it discusses the integration
into HomeScout.

3.1 Data Collection

This subsection explains the design decisions made to collect the data used in this thesis.
It provides information on both the hardware and software used. It also explains the data
collection pipeline and the design choices made in relation to the methodology of the data
collection process.

3.1.1 Hardware

3.1.1.1 nRF Board

The Nordic Semiconductor nRF52840 single-board Development Kit (DK) was used to
capture and analyze BLE packets in this thesis. The DK has been provided by the
Communication Systems Group (CSG). This DK is well suited for capturing packets
emitted by AirTags. It supports Bluetooth 5.3 multi-protocol radio [50].

Figure 3.1: nRF52840 DK [50].

25

26 CHAPTER 3. DESIGN

3.1.1.2 AirTags

The most important part of the hardware used in this thesis are the AirTags themselves.
A total of 11 different AirTags have been provided by the CSG and were used to collect
the data.

Figure 3.2: AirTag [4].

At the start of this work, the AirTags provided were analyzed. An overview of this analysis
can be seen in the table 3.1. The ID column contains the value of a physical tag attached
to each AirTag by the CSG. The information in the Serial Number and Owner columns
could be determined by holding the AirTags with the white side against the top of an NFC-
capable iPhone. An initial BLE packet analysis revealed that 5 of the 11 AirTags were
not actually emitting any packets. After replacing the batteries and pairing the unpaired
ones, this was resolved. All AirTags were in the lost state during the experiments, as they
would be if they were misused as a stalking device and slipped to someone else. In this
case, they would not be in proximity to the owner.

ID Serial Number Owner Emitting Packets
CSG A1 HGJGM0/UPP0/GV N/A NO
CSG A3 HGJGMSSBP0/GV N/A YES
CSG A4 HGJGMRWHP0/GV N/A NO
CSG A5 HGHH3254P0/GV * * ** *4 03 YES
CSG A6 HGHH37XQP0/GV N/A NO
CSG A7 HGHH37Y8P0/GV * * *1 28 YES
CSG A8 HGHH37RZP0/GV N/A YES
CSG A9 HGQGMFSBP0/GV * * *9 32 YES
CSG A10 HGQGMHEMP0/GV * * *9 32 YES
CSG A11 HGQGMF7MP0/GV N/A NO
CSG A12 HGQGMG3CP0/GV N/A NO

Table 3.1: Summary of initial Device Packet Emission Status.

3.1. DATA COLLECTION 27

3.1.1.3 Battery Tester

The Kraftmax XT1 [51] was used to investigate the influence of the battery on RSSI
values. This device was chosen because it can measure not only the voltage but also the
internal resistance and a general capacity metric in percent.

Figure 3.3: Kraftmax XT1 [51].

3.1.2 Software

3.1.2.1 SEGGER Embedded Studio

SEGGER Embedded Studio version 8.14a was used as the IDE for programming the DK.
This IDE facilitated the embedded development. Programs could be easily deployed onto
the nRF DK during this process.

3.1.2.2 Data Collection

This subsection describes the development and architecture of the application designed
for the DK to capture BLE packets emitted by AirTags along with the associated RSSI
values.

The project1 from this blog [52] was chosen as the baseline for the passive scanning in
this paper. The author of the blog, in turn, took the nRF5 SDK BLE Blinky Application
example [53] as a starting point. He modified the functionality by adding passive BLE
scanning to the application. This effectively allows for the scanning of BLE packets and
extracting the RSSI value along with the MAC address.

1The source code can be found here:
https://github.com/jimmywong2003/nrf5-ble-scan-filter-example

https://github.com/jimmywong2003/nrf5-ble-scan-filter-example

28 CHAPTER 3. DESIGN

This was a very good starting point. But in order to start collecting data the following
points had to be implemented:

• Having a filter so that only MAC addresses and RSSI values corresponding to AirTag
emitted packets are considered by the application.

• The ability to stop scanning to physically increase the distance between the DK
and the AirTags, together with the need for a mechanism to infer the corresponding
distance for each data point in post-processing to label the data.

AirTag filter

The theoretical basis for the AirTag filter was given by [20]. The authors in turn based
their implementation on the work of [48] and the corresponding source code.

The following explanations of the filter in use are based on [20]. Deviating sources are
cited accordingly.

Figure 3.4: Advertisement format used by Apple [20].

To identify packets from AirTags, it is important to filter for manufacturer-specific data
containing Apple’s Company ID. Figure 3.4 shows that this can be inferred from bytes 8
to 9 of the advertisement packet. A simple if statement as shown in 3.5 is used to filter
for packets that meet this requirement. Additionally, byte number 10 (Offline Finding
type) has been added as a check to the filter.

3.1. DATA COLLECTION 29

1 // ... Further scanning logic

2
3 uint16_t company_identifier = uint16_decode (& p_adv_report ->data.

p_data[data_offset]);

4
5 if (company_identifier == 0x004C)

6 {

7 if (p_adv_report ->data.p_data[data_offset + 2] == 0x12)

8 {

9 // ... Further scanning logic

10 }

11
12 }

13 // ... Further scanning logic

Figure 3.5: First layer of the filtering applied.

However, since this condition is not only fulfilled by BLE packets of AirTags, but by all
Apple devices that communicate in the Find My network (Apple’s COFN), the logic must
be extended.

To distinguish between Apple devices, the status byte at the 12th position of the adver-
tisement packet is looked at. It is being evaluated with a bit-wise AND operation using
the value 0x30 (0011 0000 in binary). From this intermediate result, only the first four
bits seen from the left are considered as the flag, which is sufficient to classify the cor-
responding device within the Find My network. Since the first 2 bits seen from left are
always 0 due to the AND operation, the 3rd and 4th bits are actually decisive enough as
a flag.

Figure 3.6: Lookup table for classification based on the computed flag bits [20].

A theoretical example calculation is shown in 3.7. The lookup table for classifying Apple
devices based on the computed flag is shown in 3.6.

30 CHAPTER 3. DESIGN

Given the following example status byte:

status byte = 0b0001 0011

Perform the AND operation:

status byte & 0x30 = 0b0001 0011 & 0b0011 0000 = 0b0001 0000

By only considering the bits number three and four seen from the left, this gives us
the flag bits:

flag bits = 0b01

According to the flag classification table, the packet corresponding to this status
byte is classified as coming from an AirTag.

Figure 3.7: Sample classification of a status byte.

This led to the implementation used in this thesis and shown in 3.8.

1 // Computing flag bits

2 uint8_t status_byte = p_adv_report ->data.p_data[data_offset + 4];

3 uint8_t flag_bits = status_byte & 0x30;

4
5 if (flag_bits == 0x10)

6 {

7 // ... AirTag identified

8 // ... Further scanning logic

9 }

Figure 3.8: Second layer of the filtering applied.

Distance Feature

In order to have the ability to stop scanning during the time used to increase the physical
distance between the DK and the AirTags, the following idea was implemented. Two
different global variables called m logging is running and current distance index were in-
troduced. Then the top left button of the DK was programmed to toggle the boolean
variable m logging is running to true and the top right button to false, which switches
the scanning on and off and also gradually increases the variable current distance index in
order to be able to re-create the distance for each measurement point in post-processing.

3.1. DATA COLLECTION 31

Conclusion

The described development process led to an application2 that can passively scan adver-
tisement packets emitted by AirTags and log both the MAC address and RSSI value. It
is also possible to start and stop the scanning while keeping track of a distance index
that will be used later to derive the distance for each measurement. Thus, forming the
basis for collecting the dataset. The application was also used for the insights shown in
Section 3.1.1.2. By approaching the AirTags one by one while keeping the others away
from the DK, it was possible to determine whether each AirTag was transmitting adver-
tising packets. In this way, the application’s filtering mechanism was both confirmed and
used to evaluate which AirTags were ready to be used in the data collection process at
the beginning of the work.

2https://github.com/samuelfrnk/BA_Samuel/blob/main/ble_app_uart_adv_scan/main.c

https://github.com/samuelfrnk/BA_Samuel/blob/main/ble_app_uart_adv_scan/main.c

32 CHAPTER 3. DESIGN

3.1.3 Data Pipeline

Figure 3.9: Data Pipeline illustrated.

The pipeline shown in Figure 3.9 illustrates the process of extracting structured data from
the scanning application. The first step is the sensor data collection, which was discussed
in detail in Section 3.1.2.2. This process results in raw log text files3. A Python script 4

was developed and used to reconstruct the timestamp and distance information for each
data point, and to produce structured data in CSV format leading to the final structure
shown in the table 3.2.

RSSI-Value MAC-Address Timestamp Distance

-24 D1:8A:6B:17:30:48 2024-10-30 14:14:16 0.0
-19 CA:2B:3D:A7:0C:C9 2024-10-30 14:14:16 0.0
-24 ED:7C:A0:C9:37:39 2024-10-30 14:14:16 0.0

Table 3.2: Sample structure of the CSV files returned by the script.

3.1.4 Methodology

The context of the data collection process used in this work was controlled and experi-
mental. During all measurements the AirTags were placed at a fixed distance from the
DK to ensure precise labelling. As the RSSI data decays rapidly with increasing distance,
the distance primarily focused within the context of this work is 0 to 2 meters, using a
granularity of 10 cm. In order to provide a controlled setting, the previously described
battery tester was used. The goal here lies in ensuring consistency by evaluating the in-
fluence of battery drain on the RSSI values. Insights will further be drawn in the Results
and Evaluation section.

3Raw log file examples can be found here: https://github.com/samuelfrnk/BA_Samuel/tree/main/
Experiments/Results/Raw_Data

4The source code can be found here: https://github.com/samuelfrnk/BA_Samuel/blob/main/

Experiments/Evaluation/Conversion_Skripts/CSV_Conversion_and_overview.py

https://github.com/samuelfrnk/BA_Samuel/tree/main/Experiments/Results/Raw_Data
https://github.com/samuelfrnk/BA_Samuel/tree/main/Experiments/Results/Raw_Data
https://github.com/samuelfrnk/BA_Samuel/blob/main/Experiments/Evaluation/Conversion_Skripts/CSV_Conversion_and_overview.py
https://github.com/samuelfrnk/BA_Samuel/blob/main/Experiments/Evaluation/Conversion_Skripts/CSV_Conversion_and_overview.py

3.2. MODEL SELECTION 33

In addition, all indoor data measurements were performed at the same location within
the university building in Oerlikon. This consistency in location was intended to reduce
environmental variations.

3.1.5 Challenges

When designing the data collection process, several steps were taken to ensure repro-
ducibility and control of the experimental environment. One of the key challenges in
working with RSSI data is its inherent sensitivity to interference and fluctuation. These
issues were addressed through the use of controlled distances, the battery meter, consis-
tent location and consideration of data smoothing techniques that can minimize noise and
improve accuracy.

3.2 Model Selection

This section provides an overview over the design decisions taken while choosing models
which are to be considered.

3.2.1 Decision Tree

A decision tree model was trained and evaluated within this thesis. Whilst there was
no literature from the review that used this model, it is still interesting to consider. In
particular to compare the performance to RF where several Decision Trees are used.

3.2.2 Random Forest

RF was chosen as the second model in this thesis. [40] was able to achieve centimeter-level
accuracy in proximity prediction using RSSI data and RF with 100 decision trees.

In addition, RF is less prone to over-fitting compared with a single decision tree. Thus,
using RF to perform proximity prediction is promising.

3.2.3 Support Vector Machine

A third model considered in this work is SVM. [33] achieved a quite high accuracy of 84
% using SVM paired with RSSI data.

34 CHAPTER 3. DESIGN

3.2.4 K-Nearest Neighbors

KNN is the final model considered in this thesis. The reason for this decision is that within
the work of [33] KNN achieved the highest accuracy of 85% and is therefore promising.

3.2.5 Overview

3.3 shows an overview table of the performance of the models from the existing liter-
ature measured in accuracy. These values are subsequently compared with the custom
performance score in chapter 4.

Model Reference Reported Performance
Decision Tree (DT) N/A N/A
Random Forest (RF) [40] Centimeter-level accuracy
Support Vector Machine (SVM) [33] 84% accuracy
K-Nearest Neighbors (KNN) [33] 85% accuracy

Table 3.3: Overview of considered models, references, and their performance based on
literature.

3.2.6 Classification vs Regression

Predicting a distance intuitively appears as a regression problem due to the continuous
nature of distance. However, in the context of predicting the proximity of AirTags in this
work, the problem is considered as a classification problem. The underlying assumption is
that in order to develop a shielding mechanism against malicious AirTags, a classification
into discrete distance buckets will simplify the problem. Thus, enhancing the performance
of the models. The size of the buckets will be further elaborated in the Results and
Evaluation section.

3.3. DESIGN OF EVALUATION APPROACH 35

3.3 Design of Evaluation Approach

This section captures design decisions related to the evaluation of the ML models con-
sidered. It discusses approaches and metrics that help to decide which concrete model is
best suited for the implementation phase. The theoretical basis for this section is [54],
any derivative sources are cited accordingly.

3.3.1 Performance Metrics

Cross-Validated Accuracy

A first indication of how well a particular model has performed is the cross-validated
accuracy score, which involves splitting the data into K folds, in this case 4. The average
across all folds gives insight into how many predictions overall were correct. There are
certain limitations of this metric, especially if the classes are not well balanced. However,
since extensive balancing methods are applied to the dataset, this metric still gives an
important insight into the performance.

Precision, Recall & F1-Score

Precision in our context gives an indication of how likely a classification is to be true, given
that an RSSI record has been classified by the model as coming from a close proximity
AirTag, and thus potentially malicious. Recall, on the other hand, gives an indication
on how many of the entries that come from nearby AirTags are successfully identified as
such.

An important third metric in this context is the F1-score. Since there is usually a trade-
off between recall and precision, the F1-score combines both with a harmonic mean. As
both false positive and false negative classifications are bad in the context of malicious
AirTags identification, the F1-score can successfully capture this aspect of performance
with respect to the mentioned trade-off.

Confusion Matrix

To get a performance overview of each model, confusion matrices are used. A confusion
matrix compares the model classification with the actual classes. The columns are usually
the predicted classifications, while the rows are the actual classes. In this way, the number
of true negatives and positives as well as false negatives and false positives can be visualized
appealingly.

36 CHAPTER 3. DESIGN

Overfitting Evaluation

To determine how well the model generalizes to unseen data, the difference between train-
ing accuracy and testing accuracy is considered. This provides insight into whether a
model is performing overfitting.

3.3.2 Selection Criteria

To find the best performing model, a custom performance metric is introduced. It com-
bines the above metrics into a single score that is used to compare all models. The
calculation can be seen in 3.10. The difference between training and test accuracy has to
be normalized. The F1-scores and the cross-validated accuracies already range from 0 to
1.

The Performance Score is calculated as follows:

Performance Score = w1 · F + w2 · A− w3 · P

where:

F is the F1-score

A is the cross-validated accuracy

P is the normalized overfitting penalty

w1, w2, w3 are weights assigned based on the importance of each metric.

Figure 3.10: Custom Performance Score.

The selected weighting approach assigns 0.5 to cross-validated accuracy and F1-score and
1.0 to the overfitting penalty. This ensures that accuracy and F1-score are regarded
equally, focusing on both general correctness while also counteracting accuracy flaws.
The overfitting penalty is weighted with one in order to discourage models that memorize
patterns from the training set and cannot generalize the classification. As a result, the
overall strategy promotes the development of robust and generalizable models.

3.4 Shielding Design for HomeScout

As part of the work of [20], HomeScout, an Android application written in Kotlin that can
passively scan and identify possible maliciously deployed BLE devices, was developed. The
architecture of HomeScout as well as the underlying classification logic and the integration
of the evaluated ML model is discussed in this section. [20] is used as the source in this
section, and all deviating sources are cited accordingly.

3.4. SHIELDING DESIGN FOR HOMESCOUT 37

3.4.1 HomeScout Architecture

As illustrated in 3.11, the architecture of the HomeScout application consists of three
high-level layers: the User Interface (UI), the service layer, and the data layer.

Figure 3.11: Overview of the HomeScout architecture including the three layers and the
corresponding components.

3.4.1.1 User Interface Layer

The UI layer of HomeScout is responsible for interacting with the user. There are various
fragments. The WelcomeFragment greets the user and clarifies the required permissions,
including location access. The ScanFragment allows for real-time scanning for nearby BLE
devices and performs their type classification. In the NotificationFragment, HomeScout
gives the user an overview of all devices that have been classified as malicious, including
their MAC address and type classification. In the SettingFragment, the user can manually
set the desired thresholds for time, occurrences and distance.

38 CHAPTER 3. DESIGN

3.4.1.2 Data Layer

Important data storages in the architecture of the application are the BLEDevice table
and the MaliciousTracker table. The first contains all scan results, and the second contains
all devices recognized as malicious by HomeScout. The schemes corresponding to these
tables are shown in figure 3.12.

Figure 3.12: Schemes of the RoomDatabase from [20].

3.4.1.3 Service Layer

There are three different services within the HomeScout application. The TrackerClassi-
ficationService is the most important one for this work. Its main task is to classify entries
from the BLEDevice data table into the MaliciousTracker data table, thereby identifying
threats and alerting the user.

The classification logic runs every 30 seconds and iterates over all entries in the BLEDevice
data table. All data points are grouped by MAC address and sorted by timestamps. Three
different thresholds are used: time, occurrences, and distance. If the entries of a device
corresponding to the MAC address in the data exceed all three thresholds, the device is
classified as malicious and the user is being notified.

The distance threshold is worth discussing here. HomeScout initially focuses on the
distance that the phone itself traveled while receiving BLE packets from a particular
BLE device. This is done by monitoring the coordinates of the phone at the points where
the BLE packets were scanned. However, this work shifts the focus to the proximity
between the mobile phone and the tracking device. The underlying assumption is that if
this proximity is consistently low, it indicates a malicious tracker.

3.4. SHIELDING DESIGN FOR HOMESCOUT 39

3.4.2 Shielding Design

Figure 3.13: High level adjustments in the data and service layer, adapted from [20].

Overall, the implementation requires adjustments in all three layers of the application as
indicated in red in 3.14. This includes the UI layer, the data layer and the service layer.
The changes required for each of these layers will now be discussed as part of the design.

Figure 3.14: The HomeScout architecture including an overview of areas that need to be
modified highlighted in red.

40 CHAPTER 3. DESIGN

3.4.2.1 User Interface Layer

The required changes in the UI layer of HomeScout are rather simple. As 3.14 shows, they
only affect the SettingFragment. Here a toggle must be introduced, which can activate
and deactivate the RSSI shielding.

3.4.2.2 Data Layer

There are two different adjustments that must be made to integrate the shielding mech-
anism into the existing HomeScout logic. The first of which is that during the scanning
phase, features needed by the model must be extracted in addition to existing attributes.
Figure 3.13 shows with the highlighted number one, that the most important additional
feature is the RSSI value. However, also features that are investigated and found to be
useful for the performance of the models need to be extracted during the real-life scanning
process.

The BluetoothScanningService class of the application is responsible for receiving BLE
packets and extracting the relevant information for the entries in the BLEDevice data
table. The application uses the BluetoothLeScanner class 5 during the scanning process.
This class will then return objects of the ScanResult class 6 when it passively captures a
BLE packet. As the method .getRssi() which returns an integer is part of the interface
of the ScanResult class, adding the RSSI as an additional attribute for the entries within
BLEDevice table is a straightforward step.

A more complicated step is to extract the additional features that are evaluated in this
work. In particular, LOS / Non Line Of Sight (NLOS) and Indoor/Outdoor are challeng-
ing. Possible solutions are discussed in the Final Considerations chapter.

3.4.2.3 Service Layer

The next important point to modify is the TrackerClassificationService class. This change
is displayed in 3.13 with the number two. This is the heart of the application. Adjustments
here are more technical compared to the first step containing data level adjustments. The
machine learning model will serve here as an addition to the existing three thresholds.

As the red arrow in 3.14 implies, an approach needs to be established that allows the
model to be used within HomeScout at runtime. The models have been trained and
evaluated using corresponding scikit-learn libraries 7.

A key step in integrating the evaluated model into HomeScout is Open Neural Network
Exchange (ONNX). ONNX is an open-source project developed by a collaboration of Mi-
crosoft, Amazon and Meta. It simplifies the conversion of ML models from one framework

5https://developer.android.com/reference/android/bluetooth/le/BluetoothLeScanner
6https://developer.android.com/reference/android/bluetooth/le/ScanResult
7https://scikit-learn.org/stable/api/index.html

3.4. SHIELDING DESIGN FOR HOMESCOUT 41

to another. The high-level process involves the conversion of the model into ONNX format
using the Python library skl2onnx 8. This converted file can be copied into the reposi-
tory. As a next step the onnxruntime Maven dependency 9 can be used within Kotlin to
perform predictions using the model at runtime [55].

3.4.3 Considerations

As explained by [39], on the one hand using RSSI data together within a machine learning
approach can help counteract RSSI’s inherent sensitivity to fluctuation and interference by
capturing deeper patterns and thus counteracting the noise. On the other hand, machine
learning itself comes with its set of challenges, such as the amount of resources and data
required.

Therefore, it needs to be discussed whether the integration can provide a real benefit
despite the challenges. A concrete alternative would be to use a similar threshold approach
for RSSI as it is currently implemented with distance, occurrences and time in HomeScout.
How this threshold could perform compared to the evaluated model and how the inherited
problems with RSSI could be faced with the concrete implementation of such a fourth
threshold needs to be investigated.

8https://github.com/onnx/sklearn-onnx
9https://mvnrepository.com/artifact/com.microsoft.onnxruntime/onnxruntime

42 CHAPTER 3. DESIGN

Chapter 4

Results and Evaluation

This section of the thesis looks at the results of the dataset generation and the evaluation
of the performance of the different models. An overview of the data is given and the
performance of all models is discussed in detail. The best performing model is identified
and further characterized.

4.1 Dataset

This section focuses on the dataset. First there is an overview of the dataset, then there
is an analysis of the effect of the environments and the battery voltage on the RSSI values
and finally a packet capture rate is calculated.

4.1.1 Final Structure

The datasets final structure that was used to train the models can be seen in 4.1.

Index RSSI-Value MAC-Address Timestamp LOS Indoor Distance

0 -19 F0:79:C0:40:FB:93 2024-09-12 09:45:00 1 1 0.0
1 -18 EA:25:00:4F:3C:4D 2024-09-12 09:45:00 1 1 0.0
2 -21 EF:0D:1E:F2:0C:B2 2024-09-12 09:45:01 1 1 0.0
3 -19 CB:08:AA:AA:C9:C6 2024-09-12 09:45:01 1 1 0.0
4 -19 ED:4F:A6:06:39:7A 2024-09-12 09:45:01 1 1 0.0
...

...
...

...
...

...
...

13352 -82 E8:9B:11:7B:D7:0F 2024-11-30 15:56:26 0 0 2.0

Table 4.1: Final Dataset structure.

43

44 CHAPTER 4. RESULTS AND EVALUATION

4.1.2 Analysis

4.1.2.1 Overview

The final dataset1, which was collected and later used to train and evaluate several models,
consists of 13’353 individual data points. The distance column provides the label for the
data. Data was collected in both indoor and outdoor environments, as well as LOS and
NLOS and all four combinations of these.

The figure 4.1 illustrates the distribution of RSSI values and highlights the observed
decrease in RSSI with increasing distance. What can be seen from the graphs is that in
general there are a lot of RSSI measurements around -60 dBm. In addition, the RSSI
values appear to decrease rapidly as the distance increases. At a certain point they level
off. The error bars appear to increase with distance, which is an indication that the noise
increases with distance as well.

Figure 4.1: Overview Dataset; RSSI Distribution and Decay.

4.1.2.2 Environmental Effects

In order to compare the environmental influence the data points are grouped by indoor and
outdoor measured and compared against each other. As Figure 4.2 shows, it is clear that
RSSI data collected in the indoor environment is consistently higher than that collected
in the outdoor environment. It clearly shows a direct relation between indoor and outdoor
and higher and lower RSSI values.

1The combined and final dataset can be found here: https://github.com/samuelfrnk/BA_Samuel/
blob/main/Experiments/Results/Data_CSV/Combined_Data/combined_data.csv

https://github.com/samuelfrnk/BA_Samuel/blob/main/Experiments/Results/Data_CSV/Combined_Data/combined_data.csv
https://github.com/samuelfrnk/BA_Samuel/blob/main/Experiments/Results/Data_CSV/Combined_Data/combined_data.csv

4.1. DATASET 45

Figure 4.2: RSSI Decay grouped by Indoor (blue) and Outdoor (orange) data.

The influence of NLOS and LOS on the RSSI values is less clear. As the plots in 4.3 show,
there seems to be no clear correlation between this feature and the RSSI values.

Figure 4.3: RSSI Decay grouped by LOS (blue) and NLOS (orange) data.

4.1.2.3 Battery Insights

In 4.2 the results of the measurements with the battery tester can be seen. The mea-
surements were carried out on 16 October 2024. Of particular interest are the AirTags
labeled CSG A8 and CSG A7. The battery in A8 has the lowest voltage, making it the
least powerful battery. In contrast, the battery in A7 achieves the full 3 volts and is thus
considered one of the most powerful batteries.

46 CHAPTER 4. RESULTS AND EVALUATION

ID Battery percentage Battery Internal Resistance Battery Voltage
CSG A1 95% 30 Ohm 2.99
CSG A3 95% 50 Ohm 3.00
CSG A4 95% 24 Ohm 3.00
CSG A5 95% 47 Ohm 2.98
CSG A6 95% 53 Ohm 3.00
CSG A7 95% 39 Ohm 3.00
CSG A8 40% 9 Ohm 2.69
CSG A9 80% 14 Ohm 2.82
CSG A10 80% 15 Ohm 2.84
CSG A11 95% 23 Ohm 2.93
CSG A12 90% 22 Ohm 2.92

Table 4.2: Battery Measurements with Kraftmax XT1.

Based on this, it was expected that AirTag A7 would exhibit a higher RSSI trend than
AirTag A8. To test this hypothesis, both AirTags were moved close to the DK and the
corresponding MAC addresses were recorded. The distance between the AirTags and the
DK was then gradually increased, and in a subsequent post-processing step, the data was
compared to the baseline, as shown in Figure 4.4 . Contrary to expectations, AirTag A7
consistently displayed lower RSSI values than AirTag A8. This result suggests that the
power level does not influence the RSSI values, which is also an assumption within this
work.

Figure 4.4: Comparison between AirTag with most powerful battery (green) and AirTag
with least powerful battery (red).

4.2. ITERATIVE REFINEMENTS 47

4.1.3 Data Collection Evaluation

The following calculation is intended to evaluate the effectiveness of the application 2

presented in section 3.1.2.2, which was used to scan for BLE advertisement packets and
collect corresponding RSSI data.

During Experiment 3, the emitted packets can be calculated as follows:

Total Emitted Packets = 11 · 30 · 37 = 12′210 packets.

The scanning application captured:

Captured Packets = 5′869 packets.

The capture rate is calculated as:

Capture Rate =
Captured Packets · 100
Total Emitted Packets

=
5′869 · 100
12′210

≈ 48%.

Figure 4.5: Packet Capture Statistics inferred from Experiment 3.

According to [20], devices in Apple’s Find My network emit a BLE advertisement packet
every 2 seconds as soon as they are in the lost state. This information paired with the
metadata from experiment 33 in which 11 AirTags were scanned for 37 minutes, the
capture rate can be calculated. The capture rate of the application was found to be
around 50%. Additional tweaking of the scan interval and scan window could improve
this rate. However, in the context of this work and the relevant models being considered,
this rate was sufficient. If the performance of deep learning models were to be analyzed,
it would make sense to perform this tweaking and use more than 11 AirTags, as such
models require more data.

4.2 Iterative Refinements

4.2.1 Class Consolidation Strategy

The model evaluation of [56] was used as a starting point for training and evaluating initial
models. Within this work, an RSSI data set was collected and models were trained to
predict distances based on RSSI values. The associated Jupyter notebook files were taken

2The application’s source code can be found here: https://github.com/samuelfrnk/BA_Samuel/

blob/main/ble_app_uart_adv_scan/main.c
3The metadata of Experiment 3 can be found: https://github.com/samuelfrnk/BA_Samuel/blob/

main/Experiments/Results/Overview_Data/Experiment_3.csv

https://github.com/samuelfrnk/BA_Samuel/blob/main/ble_app_uart_adv_scan/main.c
https://github.com/samuelfrnk/BA_Samuel/blob/main/ble_app_uart_adv_scan/main.c
https://github.com/samuelfrnk/BA_Samuel/blob/main/Experiments/Results/Overview_Data/Experiment_3.csv
https://github.com/samuelfrnk/BA_Samuel/blob/main/Experiments/Results/Overview_Data/Experiment_3.csv

48 CHAPTER 4. RESULTS AND EVALUATION

over and a first evaluation of the performance of the models with the newly collected data
set was carried out.

[56] initially categorized the data into multiple discrete classes using the following binning
strategy:

[0,1), [1,2), [2,4), [4,10) and [10,∞)

This multi-class approach, however, yielded poor predictive accuracy when applied to the
newly collected dataset (see Figure 4.6). To address this issue, the classification problem
was simplified to a binary classification. Specifically, the classes were merged into two
categories using bins:

[0,0.5) and [0.5,∞)

Adopting this binary classification modeling substantially improved both the overall ac-
curacy and the weighted F1 score across all evaluated models (see Figure 4.6).

Figure 4.6: Comparison of multi- and binary-level classification performance using models
from [56] combined with the collected dataset.

This initial evaluation 4 has shown that breaking down the classes and turning the problem
into a binary classification problem can significantly improve both accuracy and F1 score.
As a consequence, all further training and evaluation was carried out using this binary

4The complete results using multi-level buckets can be found here: https://github.com/

samuelfrnk/BA_Samuel/blob/main/ML_Analysis/Darios_Notebook/Experiment_3/ML_Analysis_

Experiment3.ipynb The complete results using binary buckets can be found here: https:

//github.com/samuelfrnk/BA_Samuel/blob/main/ML_Analysis/Darios_Notebook/Experiment_

3/Binary_Bins/ML_Analysis_Experiment3_BinaryBins_Smoothend.ipynb

https://github.com/samuelfrnk/BA_Samuel/blob/main/ML_Analysis/Darios_Notebook/Experiment_3/ML_Analysis_Experiment3.ipynb
https://github.com/samuelfrnk/BA_Samuel/blob/main/ML_Analysis/Darios_Notebook/Experiment_3/ML_Analysis_Experiment3.ipynb
https://github.com/samuelfrnk/BA_Samuel/blob/main/ML_Analysis/Darios_Notebook/Experiment_3/ML_Analysis_Experiment3.ipynb
https://github.com/samuelfrnk/BA_Samuel/blob/main/ML_Analysis/Darios_Notebook/Experiment_3/Binary_Bins/ML_Analysis_Experiment3_BinaryBins_Smoothend.ipynb
https://github.com/samuelfrnk/BA_Samuel/blob/main/ML_Analysis/Darios_Notebook/Experiment_3/Binary_Bins/ML_Analysis_Experiment3_BinaryBins_Smoothend.ipynb
https://github.com/samuelfrnk/BA_Samuel/blob/main/ML_Analysis/Darios_Notebook/Experiment_3/Binary_Bins/ML_Analysis_Experiment3_BinaryBins_Smoothend.ipynb

4.2. ITERATIVE REFINEMENTS 49

classification approach. The underlying assumption is that if a tracker is closer than 0.5
meters to the central mobile phone, it is more likely to be malicious. In order to counteract
imbalanced classes and their implications on the model Synthetic Minority Oversampling
Technique (SMOTE) is being applied.

4.2.2 Features

4.2.2.1 RSSI Smoothening

Since several sources [33, 34, 35, 36, 37] suggest applying smoothing techniques to RSSI
data as a post processing step, smoothed RSSI value is considered as a possible input
feature. The smoothening process should thus counteract the noise inherent in the RSSI
data. A moving average filter with a window size of 5 was used and the result is visualized
in the figure 4.7. The smoothed RSSI values have been added to each data point so that
in a next step the importance of the features can be analyzed and it can be decided which
features to use for the models.

Figure 4.7: Visualized results of the moving average filter.

4.2.2.2 Feature Selection

As seen in 4.1, there are several possible features for the classification input. Indoor and
outdoor as well as LOS and NLOS were extracted together with the RSSI value during the
collection experiments. Smoothed RSSI has been added with a post processing calculation.
To get an idea of how beneficial these features are to the performance of the models, a
feature importance analysis was performed for both the decision tree classifier and the

50 CHAPTER 4. RESULTS AND EVALUATION

random forest classifier. In addition, a permutation importance analysis was performed
for KNN and SVM.

Figure 4.8: Feature Importance Analysis of RF and Decision Tree Classifier.

According to the analysis of feature importance 4.8, the Smoothed RSSI appears to be
essential for reducing impurity and therefore has the highest feature importance score.
This is also consistent with the permutation importance analysis 4.9 where again the
smoothed RSSI has the highest score for both models.

Figure 4.9: Permutation Importance Analysis of RF and Decision Tree Classifier.

As the smoothed RSSI outperformed all other features in all initial models, it is added
as an input feature to the classifier. The indoor and LOS features do not appear to be
as important in all models. They are both added because they are still helpful for the
performance of KNN.

4.3. PERFORMANCE EVALUATION 51

4.2.3 Final Model Outline

The iterative refinements presented above culminate in the final model structure shown
in 4.10. In the following section, all models are evaluated based on this structure.

Figure 4.10: Final Model Structure.

4.3 Performance Evaluation

This section provides insight into how the selected models performed 5 in the context of
the outlined structure. The initial step is to conduct an overview of all models. Subse-
quently, the model that has been identified as the most promising in terms of the defined
performance score will be the subject of closer examination.

4.3.1 Model Overview

Figure 4.11: Performance Scores Across Models.

5The complete Evaluation notebook can be found here: https://github.com/samuelfrnk/BA_

Samuel/blob/main/ML_Analysis/This_Work/Final_Evaluation/ML_Analysis_BA.ipynb

https://github.com/samuelfrnk/BA_Samuel/blob/main/ML_Analysis/This_Work/Final_Evaluation/ML_Analysis_BA.ipynb
https://github.com/samuelfrnk/BA_Samuel/blob/main/ML_Analysis/This_Work/Final_Evaluation/ML_Analysis_BA.ipynb

52 CHAPTER 4. RESULTS AND EVALUATION

The definition of the performance score defined by this thesis can be found in section
3.3.2. As figure 4.11 illustrates, the decision tree classifier demonstrated the highest overall
performance, with a score of 0.8412. This was closely followed by the RF classifier, which
exhibited a marginally lower performance, with a score of 0.8409. The SVM classifier
achieved a performance score of 0.8070, while the KNN classifier, the worst performing
classifier, achieved a score of 0.7755.

A summary of the values leading to the associated performance scores can be found in
4.3. It is noteworthy that the KNN classifier demonstrated satisfactory accuracy and
remarkable performance in terms of the weighted F1 score. However, due to the defined
weights of the components of the score and the relatively high discrepancy between the
test and training accuracy of KNN, as well as the inherent risk of overfitting, the classifier
did not exhibit a good overall performance.

Classifier Cross-Validated Accuracy Weighted F1 Score Normalized Overfitting Penalty Performance Score

Decision Tree 0.8535 0.8882 0.0297 0.8412
Random Forest 0.8531 0.8882 0.0297 0.8409
Support Vector Machine 0.8411 0.8980 0.0626 0.8070
K-Nearest Neighbors 0.8187 0.9064 0.0870 0.7755

Table 4.3: Comparison of classifier performance metrics.

To build a bridge to the design section and the literature review, 4.4 compares the achieved
performance of the models in the literature with the performance scores of the individual
models that were achieved in the context of the thesis.

Model Reference Reported Performance Performance Score (This Work)
Decision Tree N/A N/A 84.12%
RF [40] Centimeter-level accuracy 84.09%
SVM [33] 84% accuracy 80.70%
KNN [33] 85% accuracy 77.55%

Table 4.4: Comparison of models, references, and their performance results from literature
versus our findings.

4.3.2 Best Performing Model

As mentioned above, the decision tree classifier performed best. In this section, the
classifier is now analyzed in more detail.

4.3.2.1 Metrics

Its confusion matrix, shown in 4.12, reflects the class distribution present in the test
data, which was not altered by SMOTE. Since SMOTE was applied only to the training
data to prevent data leakage, the original class imbalance remains visible in the confusion
matrix of the test set. Within the classification, label 0 corresponds to class proximity

4.3. PERFORMANCE EVALUATION 53

greater than 0.5 meters, while 1 corresponds to class proximity less than 0.5 meters, and
is therefore classified as malicious.

Figure 4.12: Confusion Matrix of the Decision Tree classifier.

As seen in 4.5, the decision tree achieves a high test accuracy of about 88.6 % and a strong
weighted F1 score of about 0.89, which indicates a balanced performance across all classes.
The accuracy difference of 0.0297 is relatively small, indicating that the model does not
exhibit drastic overfitting. Overall, the model’s performance score of 0.8412 emphasizes
its robust effectiveness in this classification task.

Metric Value

Training Accuracy 0.8595
Test Accuracy 0.8858
F1 Score (Test) 0.8882
Mean Cross-Validation Accuracy 0.8535 (± 0.0103)
Normalized Accuracy Difference 0.0297
Performance Score 0.8412

Table 4.5: Summary of key metrics for the Decision Tree classifier.

The high and consistent accuracy score across different folds, as seen in 4.13, further
underlines the robustness of the classifier and its ability to generalize to unseen data.

54 CHAPTER 4. RESULTS AND EVALUATION

Figure 4.13: Cross-validation Accuracy Scores for Decision Tree.

4.3.2.2 Conclusion

It was not necessarily expected that the Decision Tree classifier would perform best. The
fact that the classification problem was simplified with binary classes probably plays a role.
In addition, the number of input features is manageable, which reduces the complexity
of the feature space. This means that even simpler models can make good predictions.
Another big advantage of this result is that a simpler model leads to a more lightweight
integration in HomeScout.

4.4 Porting to HomeScout

This section explains the implementation 6 of the shielding feature in HomeScout on the
three layers UI, service, and data.

4.4.1 User Interface Layer

From a UI perspective, the user needs a way to switch the shielding feature off and on.
This also leads to an adjustment that is needed in the UI layer, which affects the setting
fragment. The shielding feature in HomeScout should be a binary decision. Either the user
wants to activate the shield or not. This means that a toggle is needed in the settings for
this choice. Additionally, two more toggles have been implemented for the input features

6The complete source code of HomeScout, including the additional RSSI AirTag shielding feature, is
available at: https://github.com/samuelfrnk/BA_Samuel/tree/main/HomeScout

https://github.com/samuelfrnk/BA_Samuel/tree/main/HomeScout

4.4. PORTING TO HOMESCOUT 55

alongside RSSI; indoor and LOS. Figure 4.14 shows these implemented changes 7 in the
UI layer.

Figure 4.14: UI adjustments within the setting fragment including toggles for the shield-
ing, and the input features.

4.4.2 Data Layer

As discussed in the design section, the changes in the data layer affect mainly the BLEDe-
vice database. An additional feature RSSI has been added here, which is saved for each
entry during scanning within the BluetoothScanningService class. Both of these changes
are visible in 4.15, they are rather small and were directly realized according to the design
of the implementation. In the design section, it was further mentioned that additional in-
put features also have to be extracted at runtime, which turns out to be a challenge. This
is why these environmental features were implemented using a manual toggle. Whether
these two features, LOS and indoor, could also be extracted at runtime is outside the
scope of this work and will be considered for future work.

7The complete change log of adjustments related to the UI is available in the following commit : https:
//github.com/samuelfrnk/BA_Samuel/commit/f71c37c95453a3b40974e2e68257f89c1e5df403

https://github.com/samuelfrnk/BA_Samuel/commit/f71c37c95453a3b40974e2e68257f89c1e5df403
https://github.com/samuelfrnk/BA_Samuel/commit/f71c37c95453a3b40974e2e68257f89c1e5df403

56 CHAPTER 4. RESULTS AND EVALUATION

1
2 data class BLEDevice(

3 var macAddress: String? = null ,

4 var timestampInMilliSeconds: Long = 0L,

5 var lat: Double ,

6 var lng: Double ,

7 var type: String ,

8 // RSSI value added:

9 var RSSI: Int

10){

11 // ... further BLEDevice logic

12 }

13
14 class BluetoothScanningService : LifecycleService () {

15
16 // ... further scanning logic

17
18 val timestampInMilliSeconds = Calendar.getInstance ().

timeInMillis

19 val lat = it.latitude

20 val lng = it.longitude

21 val deviceType = DeviceTypeManager.identifyDeviceType(result).

type

22 // extraction of the RSSI value:

23 val rssi = result.rssi

24
25 val bleDevice = BLEDevice(

26 mac ,

27 timestampInMilliSeconds ,

28 lat ,

29 lng ,

30 deviceType ,

31 // insertion of the RSSI value:

32 rssi)

33
34 scanResults[mac] = bleDevice

35
36 // ... further scanning logic

37
38 }

Figure 4.15: Data level adjustments including the addition of RSSI data and its extraction
within the BLEDevice.kt and BluetoothScanningService.kt class respectively.

4.4.3 Service Layer

The most important change for the integration into the existing tracker detection logic of
HomeScout is within the service layer of the application. The existing thresholds regarding
distance, occurrences and time have been extended with a further component which is
explained in this section.

4.4. PORTING TO HOMESCOUT 57

4.4.3.1 Initialization

First, the evaluated decision tree classifier was extracted with ONNX and made accessible
in the HomeScout framework in the form of an ort file within the assets of the application.
As shown in 4.16, the onCreate method of the TrackerClassificationService class then ref-
erences the exported Classifier.ort file. This file is used to initialize an OrtEnvironment
and an OrtSession object, which are subsequently utilized for performing the ML clas-
sifications. In addition, the user’s desired settings, including both the newly introduced
boolean values as well as the existing thresholds, are also available as fields.

1
2 class TrackerClassificationService : LifecycleService () {

3
4 // ... further classification logic

5
6 private var distance : Float? = null

7 private var timeinMin : Float? = null

8 private var occurrences : Float? = null

9 private var isRssiShield: Boolean ?= null

10 private var isIndoor: Boolean ?= null

11 private var isLos: Boolean ?= null

12
13 private lateinit var ortEnvironment: OrtEnvironment

14 private lateinit var ortSession: OrtSession

15
16 // ... further classification logic

17
18 override fun onCreate () {

19
20 val modelPath = "Classifier.ort"

21 val assetManager = assets

22 val modelInputStream = assetManager.open(modelPath)

23 val modelBytes = modelInputStream.readBytes ()

24 ortSession = ortEnvironment.createSession(modelBytes)

25
26 }

27
28 // ... further classification logic

29
30 }

Figure 4.16: Lifecycle method to initialize OrtEnvironment and OrtSession for classifica-
tion using the exported Classifier.ort model file.

4.4.3.2 Classification

The classification logic is implemented in the startTrackerClassification function located
in the TrackerClassificationService class, as shown in 4.17. It begins by iterating over all
recognized devices, including their corresponding individual scans. The three thresholds,
occurances time and distance are then checked with the existing logic step by step in this

58 CHAPTER 4. RESULTS AND EVALUATION

order. If a threshold is not exceeded, the iteration of the for loop is continued and the
associated device is not considered malicious.

1 class TrackerClassificationService : LifecycleService () {

2
3 // ... further classification logic

4
5 private fun startTrackerClassification () {

6
7 // ... further classification logic

8
9 val scansOfThisDevice = hashMapBleDevicesSortedByTime[key]!!

10
11 // ... further classification logic

12
13 if (scansOfThisDevice.size == 1 || scansOfThisDevice.size <

occurrences !!) {continue}

14
15 // ... further classification logic

16
17 if (diffBetweenYoungestAndOldestScan < timeThresholdInMillis

) { continue }

18
19 // ... further classification logic

20
21 if (distanceFollowed < distance !!) { continue }

22
23 //RSSI Shield:

24 if (scansOfThisDevice [0]. type == AirTag ().type &&

isRssiShield == true) {

25 var closeTrackerCount = 0

26 for ((index , scan) in scansOfThisDevice.withIndex ()) {

27 val inputData = floatArrayOf(

28 scan.RSSI.toFloat (),

29 if (isIndoor == true) 1f else 0f,

30 if (isLos == true) 1f else 0f

31)

32 val inputTensor = OnnxTensor.createTensor(

ortEnvironment , arrayOf(inputData))

33 val results = ortSession.run(Collections.

singletonMap("input", inputTensor))

34 val outputTensor = results [0]. value as LongArray

35 if (prediction == 1L) {

36 closeTrackerCount ++

37 }

38 }

39 if (closeTrackerCount < occurrences !!) {

40 continue

41 }

42 }

43 }

44 }

Figure 4.17: The implemented shielding logic within the TrackerClassificationService class.

4.4. PORTING TO HOMESCOUT 59

The ML shielding logic, seen in 4.17 and starting at line 24, is activated only under
specific conditions. Specifically, if the RSSI shield is enabled in the settings and the
device currently being analyzed is an AirTag, as the model was specifically designed for
this classification. If both conditions are met, the code iterates over all scans that are
assigned to this device and performs a classification for each entry. This process takes
place between lines 27 and 34. The input data consists of the RSSI values from the
database and the LOS and indoor features from the settings. The model classifies each
scan as either a 1 if the device is regarded closer than 0.5 meters or a 0 if it is regarded
as further away. Each time the model classifies a 1, the closeTrackerCounter initialized
in line 25 is incremented by one. After all entries have been classified, the counter is
compared with the threshold value for the number of occurrences. If the value is lower,
the loop is continued and the device is classified as unsuspicious. However, if the counter
exceeds the threshold, the loop is terminated, the device is classified as malicious and the
user is informed via a notification.

This integration enhances the threshold occurrence so that not all occurrences are taken
into account and compared with the threshold, but only those occurrences that are clas-
sified as close by the model.

60 CHAPTER 4. RESULTS AND EVALUATION

4.4.4 Resource consumptions considerations

4.18 shows the logs corresponding to a classification of an AirTag with seven BLE scans
and related sub classifications. Only four of the seven entries are classified as near, which
is not enough for the threshold value of 7, which is why the AirTag as a whole is not
considered malicious.

Figure 4.18: Logs with timestamps of a classification for an AirTag with seven corre-
sponding scans.

It is also interesting to look at the timestamps. The classification starts with the first log
at 10:22:51.621 and ends with the last log at 10:22:51.647. There are only 26 milliseconds
in between, indicating that it works well in terms of time to classify each individual scan
of a device.

Furthermore, the RSSI shield only takes effect when the existing three thresholds consider
a device to be malicious, which limits the number of classifications required. The logic
that initiates classification and scanning has also not been changed, which was initially
designed to be as resource-efficient as possible.

A test was carried out to get an idea of how much battery the application consumes. To do
this, the mobile phone on which HomeScout was running was first charged to 100 %. Then
the RSSI shielding was activated together with the default settings, and the mobile phone
was carried around together with several AirTags. 4.19 shows that the phone activated
tracking protection for a total of about 40 minutes from 12:25 to 13:02 and was moving
around. It drained one percentage battery in the entire time.

4.4. PORTING TO HOMESCOUT 61

Figure 4.19: Battery test during 40 minutes of movement and tracking protection activated
with the RSSI shielding. Including the battery loss of one percentage.

4.4.5 Conclusion

This subsection provides an overview of the porting of the classifier in HomeScout. The
integration has worked. The final implementation strengthens the existing occurrence
threshold parameter. If the shield is activated, not all scan entries count towards the
occurrence counter, but only those that have been classified as close by the model. Ac-
cording to the mentioned initial evaluations of the resource consumption of the feature,
the new shielding seems to be lightweight enough to work in the mobile environment of
HomeScout. The extraction of the additional features besides the RSSI value turned out
to be a challenge as anticipated in the design section of the thesis. In the current solution,
these are manually set by the user in the settings. How this situation could be tackled is
discussed in the Future Work section.

62 CHAPTER 4. RESULTS AND EVALUATION

Chapter 5

Final Considerations

The thesis is concluded in the final chapter. In addition, an overview is given of possible
areas where the results of this work could be used as a basis for further research in this
field.

5.1 Conclusions

The following points were defined as the thesis objectives at the beginning of this work.
These will now be examined in the context of the conclusion of the thesis.

(i) How does RSSI data emitted from AirTags correlate to distance and are there any
underlying patterns?

(ii) Which machine learning model with which input features is best suited for predicting
the proximity of a BLE emitting AirTag based on the RSSI values?

(iii) Can the in ii) identified model be used to provide a reasonable shielding mechanism
which further improves the accuracy of identifying malicious trackers?

Research question (i) was investigated by collecting data sets and subsequently analyzing
them. The decay of the RSSI values with increasing distance was observed. The values
were high at short distances. However, as soon as the distance became greater, they
fell rapidly. This was observed in data corresponding to all environments, indoor and
outdoor, as well as in LOS and NLOS measurements. In addition, a high degree of fluctu-
ation and variance was observed throughout the entire data. This was to be expected and
serves as a motivation for looking at a ML approach that might counteract precisely these
RSSI inherent fluctuations. In addition, interesting findings were made in the comparison
between indoor and outdoor measurements. The RSSI measurements indoors were con-
sistently higher than the outdoor measurements. This was not necessarily to be expected
and would be interesting to investigate further.

63

64 CHAPTER 5. FINAL CONSIDERATIONS

In a further step, the collected data could be used as a basis to answer research question
(ii). Through initial experiments and evaluations of classifications, the problem was mod-
eled as a binary classification problem with three input features. A custom performance
score was defined that takes into account various aspects of the evaluation of classification
models. This includes the accuracy of the model as well as the ability to correctly classify
unseen data and thus the ability to generalize in the context of the problem. For this
reason, the F1-score, which takes precision and recall into account, was also included in
the performance score. In addition, a penalty consisting of the difference between training
accuracy and testing accuracy was introduced to identify a model that exhibits as little
overfitting as possible. In the context of this evaluation, the decision tree performed best
with a promising score of 84%. That simpler models like decision tree or RF have done
so well is probably a consequence of the design decision to model the classification binary
and thus simpler. A simple model is also better suited for a mobile environment, such as
the HomeScout application.

In a final step, the evaluated decision tree model was integrated into HomeScout as a
shielding mechanism. This was done as part of the research question (iii). Using ONNX,
the model was successfully transferred from the evaluation framework to the HomeScout
framework, which is an Android application developed in Kotlin. For the application, this
results in a new shielding feature that can be either switched on or off. There were several
challenges. One of these was the extraction of the other binary input features along with
the observed RSSI values. Specifically, indoor and LOS, which in the implementation are
not automatically extracted by the application itself at runtime, but have to be manually
set by the user in the settings. In addition, the question of the advantages of the cho-
sen approach compared to a simpler threshold approach, as was originally the case with
the existing components of the HomeScout classification, occurrences, time and distance
values, could not be fully clarified.

5.2 Future Work

Based on the findings from the data collection and data analysis in this thesis, there are
several areas that would be interesting to explore further. One of these would be the
correlation between lower RSSI values and an outdoor experiment setting. This could be
reproduced with different hardware and the correlation could be confirmed in a different
setting. In addition, the collected labeled data set is also suitable for other research in
connection with RSSI data and ML. It would also be interesting to compare it to RSSI
values from devices other than BLE trackers.

In the context of the identified ML models and their training, there are also exciting
areas that could be further investigated. On the one hand, this would be the possibility
of systematic hyper-parameter tuning and investigating its influence on the performance
scores achieved by the optimized models. One could also look at more complex models
than those considered in the thesis. In particular gradient boost and neural networks.
These more complex models could be used to investigate which performance scores are
possible when the problem is modeled in a more complex way compared to a binary

5.2. FUTURE WORK 65

classification.

In relation to the integration in HomeScout, there are also exciting additional areas and
questions that have opened up. In particular, the possibility of extracting all input features
at runtime instead of leaving this to the user manually. Exciting approaches consist of
the combination of the coordinates that are already in the BLEDevice database for each
scan and geolocation APIs, which together could make it possible to extract the input
feature indoor at runtime. A starting point here could be the Google Places API [57].
This API makes it possible to analyze surrounding locations based on coordinates, such
as those in the scan results. The Nearby Search endpoint could be used. In the request,
the parameter includedPrimaryTypes could be filled with environments that suggest an
indoor position. Such places could be libraries, restaurants, grocery stores, and other
similar locations. The API then returns the distances to the surrounding places in a
selectable radius. These distances could be compared to a small threshold value. If
one of the distances falls below this threshold, HomeScout could label the corresponding
scan as indoor. This solution raises important questions about the privacy of sensitive
data, the effectiveness of the approach, and the performance implications for HomeScout,
which could be fully clarified and evaluated. The extraction of the input feature LOS
is a greater challenge. It is not necessarily possible to derive this information from the
existing data in HomeScout. A technically sophisticated idea could possibly be found. An
alternative would be to make an assumption that when a victim is stalked by an AirTag,
it is usually hidden in a handbag, backpack, or under the car, which is usually not in LOS
to the victim’s mobile phone. Based on this assumption, the input feature LOS could be
hardcoded as false.

It would also be very interesting to compare experiments between tracker classifications
with and without the implemented shield. Field experiments leading to confusion matrices
could be carried out for both cases to further explore the feature and potential benefits.
Another point is the comparison of the ML shielding developed in this thesis and a simpler
threshold approach. Again, field experiments with confusion matrices would give very
exciting insights into how much value the model in HomeScout really gives and how
effectively ML can be used in this problem context to counteract RSSI inherent challenges.

66 CHAPTER 5. FINAL CONSIDERATIONS

Bibliography

[1] Bluetooth SIG,“Core Specification 4.0,” [Online]. Available: https://www.bluetooth.
com/specifications/specs/core-specification-4-0/, Last visit October 11, 2024.

[2] A. Barua, M. A. Al Alamin, M. S. Hossain, and E. Hossain, “Security and Privacy
Threats for Bluetooth Low Energy in IoT and Wearable Devices: A Comprehensive
Survey,” IEEE Open Journal of the Communications Society, Vol. 3, pp. 251–281,
2022.

[3] Bluetooth SIG, “202 Market Update,” [Online]. Available: https://www.bluetooth.
com/wp-content/uploads/2021/01/2021-Bluetooth Market Update.pdf, Last visit
October 11, 2024.

[4] Apple Inc., “Apple introduces AirTag,” [Online]. Available: https://www.apple.com/
newsroom/2021/04/apple-introduces-airtag/, Last visit October 11, 2024.

[5] Samsung Electronics, “Galaxy SmartTag,” [Online]. Available: https://www.
samsung.com/ch/mobile-accessories/galaxy-smarttag-black-ei-t5300bbegeu/, 2024,
Last visit October 13, 2024.

[6] Tile Inc., “How Tile works,” [Online]. Available: https://www.tile.com/how-it-works,
2024, Last visit October 13, 2024.

[7] Chipolo Inc., “Find your everything,” [Online]. Available: https://chipolo.net/de,
2024, Last visit October 13, 2024.

[8] Apple Inc., “Apple’s Find My network now offers new third-party finding ex-
periences,” [Online]. Available: https://www.apple.com/pt/newsroom/2021/04/
apples-find-my-network-now-offers-new-third-party-finding-experiences/, 2021, Last
visit October 13, 2024.

[9] K. Langley, “State police arrest suspect in AirTag stalking case,”
[Online]. Available: https://www.nbcconnecticut.com/news/local/
state-police-arrest-suspect-in-airtag-stalking-case/3214713/, 2024, Last visit
October 13, 2024.

[10] L. Zobel, M. Muldofsky, N. Mastrangelo, D. Kim, A. Ball, R. Wen-
zlaff, and I. Pereira, “Apple AirTags causing major security concerns
over reports of stalking,” [Online]. Available: https://abcnews.go.com/US/
apple-airtags-causing-major-security-concerns-reports-stalking/story?id=96531871,
2023, Last visit October 13, 2024.

67

https://www.bluetooth.com/specifications/specs/core-specification-4-0/
https://www.bluetooth.com/specifications/specs/core-specification-4-0/
https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf
https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf
https://www.apple.com/newsroom/2021/04/apple-introduces-airtag/
https://www.apple.com/newsroom/2021/04/apple-introduces-airtag/
https://www.samsung.com/ch/mobile-accessories/galaxy-smarttag-black-ei-t5300bbegeu/
https://www.samsung.com/ch/mobile-accessories/galaxy-smarttag-black-ei-t5300bbegeu/
https://www.tile.com/how-it-works
https://chipolo.net/de
https://www.apple.com/pt/newsroom/2021/04/apples-find-my-network-now-offers-new-third-party-finding-experiences/
https://www.apple.com/pt/newsroom/2021/04/apples-find-my-network-now-offers-new-third-party-finding-experiences/
https://www.nbcconnecticut.com/news/local/state-police-arrest-suspect-in-airtag-stalking-case/3214713/
https://www.nbcconnecticut.com/news/local/state-police-arrest-suspect-in-airtag-stalking-case/3214713/
https://abcnews.go.com/US/apple-airtags-causing-major-security-concerns-reports-stalking/story?id=96531871
https://abcnews.go.com/US/apple-airtags-causing-major-security-concerns-reports-stalking/story?id=96531871

68 BIBLIOGRAPHY

[11] E. Mooney, “’It was ruining my life’, Irish actress reveals month
of terror after psycho’s sick tracker ploy dashed Hollywood
dream,” [Online]. Available: https://www.thesun.ie/news/12724844/
aine-oneill-actress-stalker-terror-apple-airtag-tracker-hollywood/, 2024, Last
visit October 13, 2024.

[12] B. McLaren, “Apple AirTags: Love Island star says device used to stalk her,” [Online].
Available: https://www.bbc.com/news/newsbeat-65030359, 2023, Last visit Decem-
ber 26, 2024.

[13] C. Miller, “Apple must face class action lawsuit over AirTag stalk-
ing, judge rules,” [Online]. Available: https://9to5mac.com/2024/03/16/
airtag-stalking-lawsuit-judge/, 2024, Last visit October 13, 2024.

[14] T. Mayberry, E. Fenske, D. Brown, J. Martin, C. Fossaceca, E. C. Rye, S. Teplov,
and L. Foppe, “Who Tracks the Trackers?: Circumventing Apple’s Anti-Tracking
Alerts in the Find My Network,”Proceedings of the 20th Workshop on Privacy in the
Electronic Society (WPES). New York, NY, USA, ACM, 2021, pp. 181–186.

[15] K. O. E. Müller, L. Bienz, B. Rodrigues, C. Feng, and B. Stiller, “HomeScout: Anti-
Stalking Mobile App for Bluetooth Low Energy Devices,”2023 IEEE 48th Conference
on Local Computer Networks (LCN). IEEE, 2023, pp. 1–9.

[16] B. Roston, “Apple’s New Tracker Detect App Helps Android Users
Find Hidden AirTags,” [Online]. Available: https://www.slashgear.com/
apples-new-tracker-detect-app-helps-android-users-find-hidden-airtags-14702343/,
2021, Last visit July 23, 2024.

[17] B. Ledvina, Z. Eddinger, B. Detwiler, and S. P. Polatkan, “Detecting Un-
wanted Location Trackers,” [Online]. Available: https://datatracker.ietf.org/doc/
draft-detecting-unwanted-location-trackers/, 2024, Last visit October 13, 2024.

[18] Apple Inc., “Apple and Google deliver support for unwanted tracking alerts in iOS
and Android,” [Online]. Available: https://www.apple.com/mg/newsroom/2024/05/
apple-and-google-deliver-support-for-unwanted-tracking-alerts-in-ios-and-android/,
2024, Last visit October 13, 2024.

[19] E. Kay, “3 ways unknown tracker alerts on Android help keep
you safe,” [Online]. Available: https://blog.google/products/android/
unknown-tracker-alert-google-android/, 2023, Last visit October 13, 2024.

[20] L. Bienz, “HomeScout: A Modular Bluetooth Low Energy Sensing Android App,”
Master’s Thesis, Communication System Group CSG, Department of Informatics
IfI, Universität Zürich, January 2023, supervisor: Katharina Müller.

[21] C. Naysmith, “Apple AirTags and Bluetooth Trackers Are Officially a
Billion-Dollar Industry â Here’s What To Know, Trends, and the Best
Ways To Invest,” [Online]. Available: https://finance.yahoo.com/news/
apple-airtags-bluetooth-trackers-officially-175911565.html, 2022, Last visit Oc-
tober 13, 2024.

https://www.thesun.ie/news/12724844/aine-oneill-actress-stalker-terror-apple-airtag-tracker-hollywood/
https://www.thesun.ie/news/12724844/aine-oneill-actress-stalker-terror-apple-airtag-tracker-hollywood/
https://www.bbc.com/news/newsbeat-65030359
https://9to5mac.com/2024/03/16/airtag-stalking-lawsuit-judge/
https://9to5mac.com/2024/03/16/airtag-stalking-lawsuit-judge/
https://www.slashgear.com/apples-new-tracker-detect-app-helps-android-users-find-hidden-airtags-14702343/
https://www.slashgear.com/apples-new-tracker-detect-app-helps-android-users-find-hidden-airtags-14702343/
https://datatracker.ietf.org/doc/draft-detecting-unwanted-location-trackers/
https://datatracker.ietf.org/doc/draft-detecting-unwanted-location-trackers/
https://www.apple.com/mg/newsroom/2024/05/apple-and-google-deliver-support-for-unwanted-tracking-alerts-in-ios-and-android/
https://www.apple.com/mg/newsroom/2024/05/apple-and-google-deliver-support-for-unwanted-tracking-alerts-in-ios-and-android/
https://blog.google/products/android/unknown-tracker-alert-google-android/
https://blog.google/products/android/unknown-tracker-alert-google-android/
https://finance.yahoo.com/news/apple-airtags-bluetooth-trackers-officially-175911565.html
https://finance.yahoo.com/news/apple-airtags-bluetooth-trackers-officially-175911565.html

BIBLIOGRAPHY 69

[22] Bluetooth SIG, “The Bluetooth® Low Energy Primer,” [Online]. Available: https:
//www.bluetooth.com/bluetooth-resources/the-bluetooth-low-energy-primer/, Last
visit December 26, 2024.

[23] N. Gupta, Inside Bluetooth Low Energy, second edition Edt. Artech House, June
2016.

[24] C. Udekwe, “Understanding RSSI in Wireless Signals,” [Online]. Available: https:
//www.baeldung.com/cs/rssi-wireless-signal, 2024, Last visit November 29, 2024.

[25] Y. Huang, “Die Rolle von Bluetooth RSSI bei der Indoor-
Positionierung,” [Online]. Available: https://www.mokosmart.com/
the-role-of-bluetooth-rssi-in-indoor-positioning/, 2024, Last visit November 29,
2024.

[26] M. Phunthawornwong, E. Pengwang, and R. Silapunt, “Indoor Location Estimation
of Wireless Devices Using the Log-Distance Path Loss Model,”TENCON 2018 - 2018
IEEE Region 10 Conference. Jeju, Korea (South), IEEE, 2018, pp. 0499–0502.

[27] Apple Inc., “Find My: One app to find it all,” [Online]. Available: https://www.
apple.com/icloud/find-my/, 2024, Last visit October 13, 2024.

[28] A. Heinrich, M. Stute, T. Kornhuber, and M. Hollick, “Who Can Find My Devices?
Security and Privacy of Apple’s Crowd-Sourced Bluetooth Location Tracking Sys-
tem,” arXiv preprint arXiv:2103.02282, 2021.

[29] Y. Assayag, H. Oliveira, M. Lima, J. Junior, M. Preste, L. Guimaraes, and E. Souto,
“Indoor Environment Dataset Based on RSSI Collected with Bluetooth Devices,”
Data in Brief, Vol. 55, p. 110692, 2024.

[30] A. Moradbeikie, M. Zare, A. Keshavarz, and S. I. Lopes, “RSSI-Based LoRaWAN
Dataset Collected in a Dynamic and Harsh Industrial Environment with High Hu-
midity,”Data in Brief, Vol. 53, p. 110120, 2024.

[31] M. Mohammadi, A. Al-Fuqaha, M. Guizani, and J.-S. Oh, “Semisupervised Deep
Reinforcement Learning in Support of IoT and Smart City Services,” IEEE Internet
of Things Journal, Vol. 5, No. 2, pp. 624–635, 2018.

[32] M. Mohammadi and A. Al-Fuqaha, “BLE RSSI Dataset for Indoor localization
and Navigation,” [Online]. Available: https://www.kaggle.com/datasets/mehdimka/
ble-rssi-dataset/, 2018, Last visit December 26, 2024.

[33] M. W. P. Maduranga, V. Tilwari, and R. Abeysekera, “Improved RSSI Indoor Local-
ization in IoT Systems with Machine Learning Algorithms,” Signals, Vol. 4, No. 4,
pp. 651–668, 2023.

[34] M. W. P. Maduranga, R. Abeysekera, and V. Tilwari, “Improved-RSSI-Based Indoor
Localization by Using Pseudo-Linear Solution with Machine Learning Algorithms,”
Journal of Electrical Systems and Information Technology, Vol. 11, No. 1, pp. 10–20,
2024.

https://www.bluetooth.com/bluetooth-resources/the-bluetooth-low-energy-primer/
https://www.bluetooth.com/bluetooth-resources/the-bluetooth-low-energy-primer/
https://www.baeldung.com/cs/rssi-wireless-signal
https://www.baeldung.com/cs/rssi-wireless-signal
https://www.mokosmart.com/the-role-of-bluetooth-rssi-in-indoor-positioning/
https://www.mokosmart.com/the-role-of-bluetooth-rssi-in-indoor-positioning/
https://www.apple.com/icloud/find-my/
https://www.apple.com/icloud/find-my/
https://www.kaggle.com/datasets/mehdimka/ble-rssi-dataset/
https://www.kaggle.com/datasets/mehdimka/ble-rssi-dataset/

70 BIBLIOGRAPHY

[35] L. Alsmadi, X. Kong, K. Sandrasegaran, and G. Fang, “An Improved Indoor Posi-
tioning Accuracy Using Filtered RSSI and Beacon Weight,” IEEE Sensors Journal,
Vol. 21, No. 16, pp. 18 205–18 213, 2021.

[36] D. R. D. Ainul, S. Wibowo and M. Siswanto, “An Improved Indoor RSSI Based Posi-
tioning System Using Kalman Filter and MultiQuad Algorithm,” 2021 International
Electronics Symposium (IES). IEEE, 2021, pp. 558–564.

[37] M. H. Dwiputranto, D. J. Suroso, and N. A. Siddiq, “Kalman filter for RSSI-based
indoor positioning system with min-max technique,” AIP Conference Proceedings,
Vol. 2968, No. 1, 2023.

[38] V. R, V. Mittal, and H. Tammana, “Indoor Localization in BLE using Mean and
Median Filtered RSSI Values,” 2021 5th International Conference on Trends in Elec-
tronics and Informatics (ICOEI). IEEE, 2021, pp. 227–234.

[39] R. M. M. R. Rathnayake, M. W. P. Maduranga, V. Tilwari, and M. B. Dissanayake,
“RSSI and Machine Learning-Based Indoor Localization Systems for Smart Cities,”
Eng, Vol. 4, No. 2, pp. 1468–1494, 2023.

[40] S. Debnath and K. O’Keefe, “Proximity Estimation with BLE RSSI and UWB Range
Using Machine Learning Algorithm,” 2023 13th International Conference on Indoor
Positioning and Indoor Navigation (IPIN). Nuremberg, Germany, IEEE, 2023, pp.
1–6.

[41] Z. Su, K. Pahlavan, E. Agu, and H. Wei, “Proximity Detection During Epidemics:
Direct UWB TOA Versus Machine Learning Based RSSI,” International Journal of
Wireless Information Networks, Vol. 29, No. 4, pp. 480–490, 2022.

[42] H. Zadgaonkar and M. Chandak, “Locating objects in warehouses using BLE beacons
& Machine Learning,” IEEE Access, Vol. 9, pp. 1–1, 2021.

[43] K. Filus, S. Nowak, J. DomaÅska, and J. Duda, “Cost-effective Filtering of Unre-
liable Proximity Detection Results Based on BLE RSSI and IMU Readings Using
Smartphones,” Scientific Reports, Vol. 12, No. 1, p. 3263, 2022.

[44] D. Biswas, S. Barai, and B. Sau, “New RSSI-fingerprinting-based Smartphone Lo-
calization System for Indoor Environments,”Wireless Networks, Vol. 29, No. 3, pp.
1281–1297, 2023.

[45] A. Booranawong, P. Thammachote, Y. Sasiwat, J. Auysakul, K. Sengchuai, D. Bu-
ranapanichkit, S. Tanthanuch, N. Jindapetch, and H. Saito, “Real-time Tracking of a
Moving Target in an Indoor Corridor of the Hospital Building Using RSSI Signals Re-
ceived from Two Reference Nodes,”Medical & Biological Engineering & Computing,
Vol. 60, No. 2, pp. 439–458, 2022.

[46] M. Cavur and E. Demir, “RSSI-based hybrid algorithm for real-time tracking in
underground mining by using RFID technology,” Physical Communication, Vol. 55,
p. 101863, 2022.

BIBLIOGRAPHY 71

[47] K. Shin, R. McConville, O. Metatla, M. Chang, C. Han, J. Lee, and A. Roudaut,
“Outdoor Localization Using BLE RSSI and Accessible Pedestrian Signals for the
Visually Impaired at Intersections,” Sensors, Vol. 22, No. 1, p. 371, 2022.

[48] A. Heinrich, N. Bittner, and M. Hollick, “AirGuard - Protecting Android Users from
Stalking Attacks by Apple Find My Devices,” Proceedings of the 15th ACM Confer-
ence on Security and Privacy in Wireless and Mobile Networks (WiSec). New York,
NY, USA, ACM, 2022, pp. 26–38.

[49] J. Briggs and C. Geeng, “BLE-Doubt: Smartphone-Based Detection of Malicious
Bluetooth Trackers,” 2022 IEEE Security and Privacy Workshops (SPW). IEEE,
2022, pp. 208–214.

[50] Nordic Semiconductor, “nRF52840 DK,” [Online]. Available: https:
//www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/
nRF52840-DK-product-brief.pdf, Last visit November 14, 2024.

[51] Kraftmax, “Kraftmax XT1 Revolution Profi Batterietester inkl. Innenwider-
standsmessung,” [Online]. Available: https://kraftmax.eu/batterien/zubehoer/2010/
kraftmax-xt1-revolution-profi-batterietester-inkl.-innenwiderstandsmessung, 2024,
Last visit November 14, 2024.

[52] J. Wong, “BLE Scanner with RSSI and MAC Address,” [Online]. Available: hhttps://
jimmywongiot.com/2021/05/31/ble-scanner-with-rssi-and-mac-address/, 2021, Last
visit November 14, 2024.

[53] Nordic Semiconductor, “BLE Blinky Application - nRF5 SDK v17.1.0,” [On-
line]. Available: https://docs.nordicsemi.com/bundle/sdk nrf5 v17.1.0/page/ble
sdk app blinky.html, 2024, Last visit November 14, 2024.

[54] A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems, first edition Edt. Sebastopol,
CA, USA, O’Reilly Media, Inc., 2017.

[55] S. Panchal, “Deploying Scikit-Learn Models In Android Apps
With ONNX,” [Online]. Available: https://towardsdatascience.com/
deploying-scikit-learn-models-in-android-apps-with-onnx-b3adabe16bab, 2022,
Last visit November 27, 2024.

[56] D. A. Monopoli, “Dataset Generation for ML Personal Tracker Detection with a
Focus on RSSI Shielding Approaches,” Beachelor’s Thesis, Communication System
Group CSG, Department of Informatics IfI, Universität Zürich, July 2024, supervisor:
Katharina Müller.

[57] Google, “Google Maps Platform: Places API Documentation,” [Online]. Available:
https://developers.google.com/maps/documentation/places/, 2024, Last visit De-
cember 30, 2024.

https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52840-DK-product-brief.pdf
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52840-DK-product-brief.pdf
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52840-DK-product-brief.pdf
https://kraftmax.eu/batterien/zubehoer/2010/kraftmax-xt1-revolution-profi-batterietester-inkl.-innenwiderstandsmessung
https://kraftmax.eu/batterien/zubehoer/2010/kraftmax-xt1-revolution-profi-batterietester-inkl.-innenwiderstandsmessung
hhttps://jimmywongiot.com/2021/05/31/ble-scanner-with-rssi-and-mac-address/
hhttps://jimmywongiot.com/2021/05/31/ble-scanner-with-rssi-and-mac-address/
https://docs.nordicsemi.com/bundle/sdk_nrf5_v17.1.0/page/ble_sdk_app_blinky.html
https://docs.nordicsemi.com/bundle/sdk_nrf5_v17.1.0/page/ble_sdk_app_blinky.html
https://towardsdatascience.com/deploying-scikit-learn-models-in-android-apps-with-onnx-b3adabe16bab
https://towardsdatascience.com/deploying-scikit-learn-models-in-android-apps-with-onnx-b3adabe16bab
https://developers.google.com/maps/documentation/places/

72 BIBLIOGRAPHY

Abbreviations

API Application Programming Interface
ATT Attribute Protocol
BR Basic Rate
CSG Communicating Systems Group
dBm Decibels relative to Milliwatt
DK Development Kit
EDR Enhanced Data Rate
FFNN Feed-Forward Neural Network
GFSK Gaussian Frequency Shift Keying
GAP Generic Access Profile
GPS Global Positioning System
GBM Gradient Boost Machines
HCI Host Controller Interface
KNN K-Nearest Neighbours
LOS Line Of Sight
L2CAP Logical Link Control and Adaption Protocol
LE Low Energy
LPWAN Low Power Wide Area Network
NLOS Non Line Of Sight
ONNX Open Neural Network Exchange
OSI Protocol Data Unit
PDA Open System Interconnection
SDU Service Data Units
SVM Support Vector Machine
SMOTE Synthetic Minority Oversampling
SOC System On a Chip
UWB Ultra Wide Band
UI User Interface

73

74 ABBREVIATONS

List of Figures

2.1 Statemachine of the Link Layer [23]. 8

2.2 Advertising Events [23]. 9

2.3 Connection Events [23]. 10

2.4 LE Protocol stack together with OSI model [22]. 11

2.5 Frequency Shift Keying [22]. 12

2.6 Example HCI Communication [22]. 13

2.7 Main responsibility L2CAP [22]. 14

2.8 Example client server communication [22]. 15

2.9 Visualization of the breakdown concept [23]. 15

2.10 Overview RSSI mapping on signal strength [25]. 16

2.11 Log-Distance Path Loss Model adapted from [26]. 17

2.12 COFN technology from a high level [28]. 18

3.1 nRF52840 DK [50]. 25

3.2 AirTag [4]. 26

3.3 Kraftmax XT1 [51]. 27

3.4 Advertisement format used by Apple [20]. 28

3.5 First layer of the filtering applied. 29

3.6 Lookup table for classification based on the computed flag bits [20]. 29

3.7 Sample classification of a status byte. 30

75

76 LIST OF FIGURES

3.8 Second layer of the filtering applied. 30

3.9 Data Pipeline illustrated. 32

3.10 Custom Performance Score. 36

3.11 Overview of the HomeScout architecture including the three layers and the
corresponding components. 37

3.12 Schemes of the RoomDatabase from [20]. 38

3.13 High level adjustments in the data and service layer, adapted from [20]. . . 39

3.14 The HomeScout architecture including an overview of areas that need to
be modified highlighted in red. 39

4.1 Overview Dataset; RSSI Distribution and Decay. 44

4.2 RSSI Decay grouped by Indoor (blue) and Outdoor (orange) data. 45

4.3 RSSI Decay grouped by LOS (blue) and NLOS (orange) data. 45

4.4 Comparison between AirTag with most powerful battery (green) and AirTag
with least powerful battery (red). 46

4.5 Packet Capture Statistics inferred from Experiment 3. 47

4.6 Comparison of multi- and binary-level classification performance using mod-
els from [56] combined with the collected dataset. 48

4.7 Visualized results of the moving average filter. 49

4.8 Feature Importance Analysis of RF and Decision Tree Classifier. 50

4.9 Permutation Importance Analysis of RF and Decision Tree Classifier. . . . 50

4.10 Final Model Structure. 51

4.11 Performance Scores Across Models. 51

4.12 Confusion Matrix of the Decision Tree classifier. 53

4.13 Cross-validation Accuracy Scores for Decision Tree. 54

4.14 UI adjustments within the setting fragment including toggles for the shield-
ing, and the input features. 55

4.15 Data level adjustments including the addition of RSSI data and its ex-
traction within the BLEDevice.kt and BluetoothScanningService.kt class
respectively. 56

LIST OF FIGURES 77

4.16 Lifecycle method to initialize OrtEnvironment and OrtSession for classifi-
cation using the exported Classifier.ort model file. 57

4.17 The implemented shielding logic within the TrackerClassificationService class. 58

4.18 Logs with timestamps of a classification for an AirTag with seven corre-
sponding scans. 60

4.19 Battery test during 40 minutes of movement and tracking protection acti-
vated with the RSSI shielding. Including the battery loss of one percentage.
. 61

78 LIST OF FIGURES

List of Tables

2.1 Summary of Key LE Features adapted from [23]. 7

2.2 Path loss exponent for different environments, adapted from [26]. 17

2.3 Summarizing RSSI data collection literature. 20

2.4 Summarizing RSSI processing techniques. 21

2.5 Summarizing RSSI based ML-models literature. 22

3.1 Summary of initial Device Packet Emission Status. 26

3.2 Sample structure of the CSV files returned by the script. 32

3.3 Overview of considered models, references, and their performance based on
literature. 34

4.1 Final Dataset structure. 43

4.2 Battery Measurements with Kraftmax XT1. 46

4.3 Comparison of classifier performance metrics. 52

4.4 Comparison of models, references, and their performance results from lit-
erature versus our findings. 52

4.5 Summary of key metrics for the Decision Tree classifier. 53

79

80 LIST OF TABLES

Appendix A

Contents of the Repository

The repository 1 of this thesis contains 4 different sub folders: Experiments, HomeScout,
ML Analysis and ble app uart adv scan. These are explained individually.

A.1 Experiments Folder

A.1.1 AirTagEvaluation Folder

This sub folder contains all the results of the measurements and experiments relating to
the AirTags. This includes the battery measurements as well as the results of the serial
number analysis and BLE packet advertisement emitting tests.

A.1.2 Results Folder

This sub folder contains the results of the data collection. It contains the combined data
set, a hash of the combined dataset, the individual data sets, plots and metadata.

A.2 HomeScout Folder

A.2.1 App Folder

This folder contains the source code of the new version of HomeScout, which has integrated
the ML-based RSSI shielding feature developed as part of this thesis in addition to the
existing features.

1https://github.com/samuelfrnk/BA_Samuel

81

https://github.com/samuelfrnk/BA_Samuel

82 APPENDIX A. CONTENTS OF THE REPOSITORY

A.3 ML Analysis Folder

A.3.1 Darios Notebook Folder

This folder contains Jupyter notebooks which have been taken from the work of Dario 2

and fed with the data of the experiment 3 of this thesis. This is the initial analysis has
led to the problem being modeled as a binary classification problem.

A.3.2 This Work Folder

This subfolder contains the ML analysis that selected the Decision Tree Classifier through
the performance analysis in the form of a Jupyter notebook. It also contains the exported
export classifier, which has been implemented in HomeScout as a .ort file.

A.4 ble app uart adv scan

A.4.1 Main.c File

This subfolder contains the source code for the application developed and used on the
nRF board to filter for BLE ADV packets and log the respective MAC address and RSSI
values.

2https://github.com/dariomonopoli-dev/Bachelor_thesis_code

https://github.com/dariomonopoli-dev/Bachelor_thesis_code

	Declaration of Independence
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Thesis Outline

	Fundamentals
	Background
	Bluetooth Low Energy
	Key Features
	Communication Basics
	BLE Protocol Stack Overview

	Received Signal Strength Indicator
	RSSI based Distance Estimation

	Crowd Sourced Offline Finding Networks
	Introduction

	Related Work
	RSSI Data Collection
	RSSI Data Processing Techniques
	Machine Learning for Shielding and Pattern Identification
	RSSI Data in Tracking Systems
	Android Integrations of the AirTag technology

	Design
	Data Collection
	Hardware
	nRF Board
	AirTags
	Battery Tester

	Software
	SEGGER Embedded Studio
	Data Collection

	Data Pipeline
	Methodology
	Challenges

	Model Selection
	Decision Tree
	Random Forest
	Support Vector Machine
	K-Nearest Neighbors
	Overview
	Classification vs Regression

	Design of Evaluation Approach
	Performance Metrics
	Selection Criteria

	Shielding Design for HomeScout
	HomeScout Architecture
	User Interface Layer
	Data Layer
	Service Layer

	Shielding Design
	User Interface Layer
	Data Layer
	Service Layer

	Considerations

	Results and Evaluation
	Dataset
	Final Structure
	Analysis
	Overview
	Environmental Effects
	Battery Insights

	Data Collection Evaluation

	Iterative Refinements
	Class Consolidation Strategy
	Features
	RSSI Smoothening
	Feature Selection

	Final Model Outline

	Performance Evaluation
	Model Overview
	Best Performing Model
	Metrics
	Conclusion

	Porting to HomeScout
	User Interface Layer
	Data Layer
	Service Layer
	Initialization
	Classification

	Resource consumptions considerations
	Conclusion

	Final Considerations
	Conclusions
	Future Work

	Abbreviations
	List of Figures
	List of Tables
	Contents of the Repository
	Experiments Folder
	AirTagEvaluation Folder
	Results Folder

	HomeScout Folder
	App Folder

	ML_Analysis Folder
	Darios_Notebook Folder
	This_Work Folder

	ble_app_uart_adv_scan
	Main.c File

