
EvoStar: A Modular Integration
Platform for a Smart Building
Privacy Analysis Framework

Markus Senn
Zurich, Switzerland

Student ID: 18-755-447

Supervisor: Katharina O.E. Mueller, Daria Schumm, Prof. Dr.
Burkhard Stiller

Date of Submission: May 20, 2025

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.csg.uzh.ch/

Declaration of Independence

I hereby declare that I have composed this work independently and without the use of any
aids other than those declared (including generative AI such as ChatGPT). I am aware
that I take full responsibility for the scientific character of the submitted text myself,
even if AI aids were used and declared (after written confirmation by the supervising
professor). All passages taken verbatim or in sense from published or unpublished writings
are identified as such. The work has not yet been submitted in the same or similar form
or in excerpts as part of another examination.

Zürich,
Signature of student

i

ii

Abstract

Bluetooth Low Energy (BLE) hat eine Vielzahl neuer Technologien hervorgebracht. In je-
der neuen Nische wie dieser, muss geprüft werden, ob diese neue Technologie missbraucht
werden kann und, falls ja, wie dies verhindert werden kann. Gegenwärtig sind die Gegen-
massnahmen und Rahmenbedingungen, mit denen diese Bedingungen zuverlässig über-
prüft werden können, noch nicht vollständig verfügbar. In Anbetracht dessen wird in
dieser Arbeit versucht, mehrere kleinere Programme zur Sicherheitsevaluierung und -
entdeckung miteinander zu verbinden, um die Vorteile dieser Programme zu nutzen und
eine erweiterbare Plattform zur Sicherheitsevaluierung zu schaffen. Ziel ist es, eine Platt-
form zu schaffen, die von den Kombinationen der Dateneingaben aus den verschiedenen
Programmen profitiert und diese auf sinnvolle Weise nutzt. Die Plattform wird anhand
der Standards der Einzelanwendungen und einer voraussichtlichen Nichtverschlechterung
der Datenverarbeitung bei gleichzeitiger Ausführung mehrerer Anwendungen bewertet.

iii

iv

Bluetooth Low Energy (BLE) enabled a wide range of new technologies to emerge. In
any new niche like this, there exists a need to check if this new technology can be abused
and, if yes, how it can be prevented. Currently, the countermeasures and frameworks to
verify these conditions reliably, are not yet fully available. Considering this, this work
tries to interconnect multiple smaller security evaluation and discovery programs to take
advantage of them and create an extensible security evaluation platform. The goal is to
have a platform that profits off of combinations of data inputs from the different programs
and utilizes them in a meaningful way. The platform will be evaluated by the metrics of
the standalone applications and by a projected non-degradation of data handling when
running multiple applications at once.

Acknowledgments

I would like to express my gratitude to my supervisor, Katharina O. E. Mueller, for her
support and guidance throughout the development of this thesis. Her insightful feedback,
openness to discussion, and continued encouragement made this experience both enriching
and rewarding. I am also thankful for the opportunity to work within the Communication
Systems Research Group (CSG) at the Department of Informatics, University of Zurich.
Special thanks go to my study friends, who always encouraged me to keep going and were
always good for a much needed laugh.

v

vi

Contents

Declaration of Independence i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Goals . 2

1.3 Methodology . 2

1.4 Thesis Outline . 3

2 Fundamentals 5

2.1 Background . 5

2.1.1 Bluetooth Low Energy . 6

2.1.2 UWB . 7

2.1.3 TCP / UDP . 9

2.1.4 Privacy Requirements . 11

2.2 Related Work . 14

2.2.1 Privacy Evaluation Frameworks . 14

2.2.2 Specialized Tools and NLP . 16

2.2.3 Research Gap . 17

vii

viii CONTENTS

3 Design 19

3.1 Requirements Engineering . 19

3.2 Relevant Data Formats and Technologies 20

3.2.1 Privacy Requirements . 21

3.2.2 HomeScout . 21

3.2.3 ZigBee Packet Sniffer . 22

3.2.4 IoT Network Topology . 22

3.2.5 High-traffic Dataset Generation . 22

3.3 Platform Specifics Choice . 22

3.3.1 Web-based vs Desktop Application 23

3.3.2 Language Selection . 23

3.3.3 Similar existing Solutions . 24

3.4 Projected Class Diagram . 25

3.5 Test Suite . 26

4 Implementation 27

4.1 Compose . 27

4.2 Packaging . 28

4.2.1 Windows . 29

4.2.2 MacOS . 30

4.2.3 Linux . 30

4.3 Containerization . 31

4.4 Core Components . 33

4.4.1 Views . 35

4.4.2 Lifecycle Manager . 36

4.4.3 Data Integration Hub . 37

4.4.4 Container Manager . 38

4.4.5 Container . 38

CONTENTS ix

4.4.6 Plugin Manager . 39

4.4.7 PodmanService . 41

4.4.8 Adjusted Projects . 41

4.5 Testing . 43

4.5.1 UI . 43

4.5.2 Logic . 43

5 Evaluation 45

5.1 Benchmarks . 45

5.2 Comparison . 46

5.3 Analysis . 47

6 Final Considerations 51

6.1 Summary . 51

6.2 Challenges and Accomplishments . 51

6.3 Conclusions . 52

6.4 Future Work . 53

Bibliography 55

Abbreviations 61

List of Figures 62

List of Tables 63

List of Listings 65

x CONTENTS

A Contents of the Repository 69

A.1 README . 69

A.2 Source code . 69

A.3 Evaluations . 69

A.3.1 File . 69

A.3.2 Results raw . 70

A.3.3 Results evaluated . 71

A.4 Instructions . 71

Chapter 1

Introduction

Since the official integration of Bluetooth Low Energy (BLE) into the Bluetooth 4.0
standard at the end of 2009, it has been rapidly growing as a staple technology for close
proximity, low energy consumption solutions. Bluetooth is one of the fastest growing tech
markets and it is estimated that, by the end of 2028, there will be 7.5 billion devices
shipped annually[1]. BLE has had a major impact on several industries like healthcare,
where it enabled the development of remote patient monitoring systems and wearable
medical devices that continuously track vital signs with minimal power usage. In industrial
automation it facilitates asset tracking and process monitoring that allow companies to
optimize their operations on a scale that has not been seen before[2].

The low-energy demand and cost-effectiveness has been especially useful for the Internet
of Things (IoT) sphere, like smart homes and tracking devices [3]. From smart locks
and lighting to thermostats and security systems, BLE facilitates seamless communica-
tion between devices, creating interconnected ecosystems that can be managed through
smartphones alone. It is estimated that by 2029, household penetration from smart home
devices in the United States will be 99% [4].

Along with these advances came several security concerns that are tied to the wireless
nature of BLE communication. This makes it susceptible to various attacks like eaves-
dropping, man-in-the-middle attacks and unauthorized access, if proper security measures
are not implemented[5]. Bluetooth as a technology is constantly evolving and tries to re-
spond to these vulnerabilities but when one loophole is closed, another may emerge as
a result of newly added capabilities [6]. Current gaps include the need for standardized
security protocols that can be universally adopted across different manufacturers and de-
vice types. Additionally, there is an ongoing challenge in balancing the trade-off between
energy efficiency and strong encryption measures [7] [8].

1.1 Motivation

In accordance with the needs of the Communications Systems Group (CSG) to further
their research in this field, this thesis aims to consolidate 5 existing projects into one

1

2 CHAPTER 1. INTRODUCTION

usable application. The goal is to effectively utilize their respective resources and outputs
to analyze compliance with privacy requirements.

These 5 projects entail the following topics:

• BLE tracking device detection for Android [9]

• ZigBee packet sniffing and security analysis [10]

• IoT network topology detection and visualization [11]

• AirTag Privacy Concern analysis [12]

• Dataset generation for high-traffic environment personal tracker identification [13]

Given the scope of a regular bachelor’s thesis, there is not enough time to fully adapt
to all capabilities of all projects, especially real-time analysis. Thus, this work will limit
itself to offline data that was gathered beforehand first and aim for real-time analysis
functionality if there is sufficient time. There are more than the 5 mentioned projects
that have been developed at CSG, but due to the aforementioned time constraint, this
application will not be able to integrate all of them yet. Instead, the focus lies on building
a platform that is easily extensible to allow further development with this technology.

1.2 Thesis Goals

This thesis aims to build the foundation for a platform that will draw out the potential of
each project involved and enhance the products by setting their results into a predefined
context given by the privacy concern project. The underlying projects were not created
with this kind of streamlining in mind and thus need to be adapted for their new purpose.
A broader understanding of the whole field is necessary to determine the correct data
types to use and what is to be achieved with them.

Ensuring a smooth execution of the projects as a standalone on the application, but also
while running in parallel is the baseline for this thesis’ benchmark.

1.3 Methodology

The application is developed in increments. Starting with a skeleton that builds the basis
for hosting the different projects, the number of projects on the platform is gradually
increased while ensuring that the performance is stable.

1.4. THESIS OUTLINE 3

1.4 Thesis Outline

Chapter 2 provides the necessary background knowledge for the underlying projects and
the security aspect. Some context to related works will be given.

Chapter 3 will feature the requirements engineering artifacts necessary for this application
and the resulting design decisions that will have been made, according to the prevalent
standards.

Chapter 4 follows the implementation part where the development of the application
prototype is executed. It explains all the decisions and changes to the planning that were
done.

Chapter 5 presents the results of an evaluation phase, according to benchmarks that have
been set in the outline of the thesis’ declaration. Deviations from the benchmarks are
properly explained.

Chapter 6 concludes the work and expresses ways to further contribute to the application
in the future.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals

A detailed record of every project is already present with their corresponding theses, but
the overarching challenges and technologies involved are characterized in this section. It is
necessary to see the bigger picture for this work and where it wants to go to in the future.
The modern connected ecosystem relies on a variety of communication protocols that
address different needs. Among these, BLE, Ultra-Wideband (UWB), and Transmission
Control Protocol (TCP)/ User Datagram Protocol (UDP) serve distinct yet complemen-
tary roles. The protocols are explained technologically extensive enough, such that one
does not need to read the connected theses, but it will only delve as deep into the technical
aspects as is necessary for a basic understanding. A similar comparison of different proto-
cols and their metrics has been done by [14], which has been consulted as a guideline for
this section. The main parts of the protocol subsections after the technical introduction
will be dedicated to the security aspects and how the protocols position themselves in the
IoT bubble. [15] has done a comparison as well and was used as inspiration for gathering
security related knowledge.

2.1 Background

The ZigBee protocol will not be elaborated upon extensively, as it is the primary element
of [10] and is described thoroughly there. In summary, Zigbee is a wireless communi-
cation standard created for low-power, low-data-rate, and short-range uses, especially
in the IoT environment. Based on the Institute of Electrical and Electronics Engineers
(IEEE) 802.15.4 standard, Zigbee enables the development of Wireless Personal Area
Networks (WPANs) that allow for mesh networking structures [16]. This mesh feature
enables devices to transmit data via intermediate nodes, improving network reliability
and coverage without relying on centralized infrastructure. Functioning mainly in the 2.4
GHz frequency, Zigbee provides data speeds of up to 250 kbps, making it ideal for uses
such as home automation and smart lighting. Zigbee’s design incorporates specific device
roles such as coordinator, router, and end device, to effectively handle network formation
and data routing. Its uniform application profiles guarantee seamless interaction between
devices from various manufacturers, promoting a unified and scalable IoT ecosystem.

5

6 CHAPTER 2. FUNDAMENTALS

2.1.1 Bluetooth Low Energy

BLE is a WPAN protocol operating in the 2.4 GHz band, designed for low power con-
sumption and short-range communication. It was introduced as part of Bluetooth 4.0,
offering a lightweight alternative to ’classic’ Bluetooth for connecting devices like sensors,
wearables, and beacons. It supports data rates up to 1 Mbps and typically ranges between
10 - 100 meters. BLE’s efficiency and support in virtually all modern smartphones have
made it a de facto standard for IoT devices requiring intermittent data transfer and long
battery life. Notably, Bluetooth 4.2 added the Internet Protocol Support Profile (IPSP),
allowing BLE devices to directly support IPv6 for IoT connectivity, further solidifying
BLE’s role in the Internet of Things [17][18].

In IoT ecosystems, BLE often serves as the local communication link between resource-
constrained devices and gateway devices like phones or hubs. The devices typically operate
in a star topology, with a central device like a phone and multiple peripherals like sensors.
This suits IoT scenarios where a smartphone app configures or collects data from several
sensors. Another factor is Generic Attribute Profile (GATT), that provides a flexible
data model for IoT where devices can define services and characteristics that can be
discovered and accessed by others. BLE’s ubiquity and support for broadcast advertising,
a connectionless mode for beacons, allow IoT devices to periodically transmit small data
or presence announcements efficiently.

Security
BLE implements link-layer security through its Security Manager protocol. Devices pair
to establish trust and then use CCM encryption1 for link-layer confidentiality and in-
tegrity. BLE pairing can operate in several modes, the strongest of which provide mutual
authentication and protection against man-in-the-middle (MITM) interception. However,
’Just Works’ pairing, that requires no user verification, provides no MITM defense. It is
effectively an unauthenticated key exchange. In BLE 4.0/4.1 (legacy pairing), the pairing
process was vulnerable to eavesdropping if an attacker could sniff the initial key exchange,
since the temporary key in ’Just Works’ or a fixed PIN was guessable. BLE 4.2 intro-
duced LE Secure Connections, which uses Elliptic Curve Diffie-Hellman (ECDH) to derive
encryption keys, significantly improving security. This update, along with features like Re-
solvable Private Addresses (RPAs) for device anonymity, made BLE more robust against
snooping and tracking [2]. Once paired, BLE devices encrypt all attribute read/write
operations. At the GATT layer, permissions can require encryption or authentication for
specific characteristics like making a lock control characteristic only be writable if paired
with an authenticated key.

Despite these security mechanisms, vulnerabilities persist in practice. One issue is that
many IoT developers opt for ’Just Works’ pairing for usability, leaving them susceptible
to MITM attacks if an attacker is present during pairing. Interestingly, researchers have
found that some BLE implementations could be forced into the weaker legacy pairing,
even when secure connections were supported by exploiting flaws in the BLE protocol
negotiation [19]. This kind of downgrade attack could allow an attacker to intercept or
modify communications if they can act as a fake intermediary during device pairing.

1https://en.wikipedia.org/wiki/CCM mode

2.1. BACKGROUND 7

BLE’s GATT also does not inherently enforce access control beyond the pairing bond.
It’s up to devices to mark attributes as requiring encryption or authentication. Many
IoT devices have been shown to expose sensitive data or commands over BLE without
proper restrictions. In [19] found that of 17’000+ BLE-enabled Android apps for IoT
devices, over 70% had at least one known BLE security issue in how they interacted with
devices. Common problems included characteristics that could be read or written by any
BLE scanner in range if the device didn’t enforce pairing, the use of default or well-known
Universally Unique Identifier (UUID) that made sensitive data easy to locate, and lack of
encryption on transmitted data. Furthermore, many low-cost IoT gadgets omit firmware
update mechanisms, meaning known security flaws cannot be patched, exacerbating long-
term risk.

Although BLE introduced address randomization to prevent device tracking, a protocol-
level flaw enables de-anonymization of devices’ BLE addresses under certain conditions.
For instance, if a device used a whitelist of trusted peers, an attacker listening to the
protocol could infer the real address from side-channel timing or repetition patterns [19].
This defeats the privacy goal and could allow tracking of devices across advertising ad-
dress changes. Another concern is that many BLE IoT devices continuously advertise
identifiable information, like fitness trackers broadcasting a fixed device name or service
UUIDs. Without precautions, this can be abused for fingerprinting or tracking users’
physical movements, which was proven to be possible with [20]. Modern BLE specs en-
courage using resolvable private addresses, which change periodically and can only be
resolved by bonded devices holding the private Identity Resolving Key (IRK) [2]. When
used properly, this makes it difficult for outsiders to correlate advertising packets over
time to the same device.

2.1.2 UWB

UWB is a wireless protocol characterized by signal bandwidth in the hundreds of MHz to
enable high temporal resolution communication. It typically operates in frequencies from
around 3.1 GHz to 10.6 GHz with at least 500 MHz of bandwidth per channel [21]. Unlike
narrowband radios, UWB transmits short pulses or chirps spread over a broad spectrum.
This yields advantages in high data rates of up to around 1 Gbps and extremely pre-
cise time-of-flight measurements. Modern UWB devices support data communications
and, most notably, a distance measurement method called ranging between devices with
centimeter-level accuracy [22]. UWB’s ability to measure distance by timing radio signal
propagation is a key feature driving its adoption in IoT applications like indoor localiza-
tion, asset tracking and secure access control.

UWB has recently gained traction in consumer and IoT devices. Examples include UWB
transceivers in modern smartphones and smart tags to enable precision finding of lost
items [23]. Another interesting example is secure car keys: automotive manufacturers are
adopting UWB in key fobs and cars to defeat relay attacks, because UWB can verify that
the key is physically near the car by measuring the round-trip time. This adds a layer
of security for passive keyless entry that RSSI-based methods like BLE cannot reliably
provide. UWB thus complements other IoT radios, although it is not as ubiquitous or

8 CHAPTER 2. FUNDAMENTALS

low power as BLE, but for applications needing location precision or enhanced security,
UWB fills a critical niche.

Security
UWB’s security model is centered around its ranging capability. The IEEE 802.15.4z
standard introduced Secure Ranging protocols for UWB, recognizing that if UWB is
to be used for access control or payments, it must resist sophisticated attackers who
attempt to spoof distances [24]. The core idea is to use cryptographic techniques to
make the exchange of ranging messages unpredictable to outsiders. This is achieved by
techniques such as Scrambled Timestamp Sequences (STS) where the initiator and the
responder share a secret or exchange one securely, which they use to randomize the timing
or modulation of UWB pulses. If an attacker does not know the secret, they cannot easily
manipulate the signals to fake a shorter distance. One approach is that the responder’s
reply is cryptographically dependent on the challenger’s message in such a way that only
the legitimate responder with the key can generate the correct reply quickly. An attacker
trying to relay or replay it will inevitably introduce a delay or an incorrect sequence. By
then measuring the time-of-flight (ToF) with nanosecond precision, UWB can detect if
there is any abnormal delay indicating an attack. Secure ranging is designed to thwart
both relay attacks, where an attacker simply forwards messages over a longer distance,
trying to make two far-apart devices appear nearby and distance fraud, where an attacker
device tries to pretend it is closer or farther than it really is by cheating the physics.

While UWB’s very design gives it some inherent resilience since it is hard to intercept
and modify signals in real-time without specialized hardware, [25] has demonstrated that
UWB is not foolproof. Their security analysis showed the first practical over-the-air
distance reduction attack against secure UWB ranging. In their experiment, attackers
used an inexpensive device to subtly manipulate the UWB signals between an Apple
U1 and an AirTag, successfully spoofing the distance from an actual 12m separation
down to effectively 0m, tricking the devices into thinking they were at the same location.
Notably, this was done without knowing any cryptographic keys. The attack exploited
imperfections in the radio implementation, essentially finding a way to send an early
reply that partially collides with the legitimate signal, shaving off time. The success rate
was only a few percent, but even a 4% chance of a false ’device is nearby’ reading could
be unacceptable for security-critical uses like door locks. This highlights that even with
secure ranging protocols, physical-layer attacks like signal injection or delaying can still
pose a threat.

Other challenges for UWB include jamming and interference. Because UWB spreads
energy over a wide band, it is fairly resistant to narrowband jamming, however a malicious
attacker with a UWB transmitter could emit noise across the UWB band to degrade
ranging accuracy or block communication. Regulatory limits on the UWB transmission
power to avoid interfering with other devices mean that the UWB range is limited to
often less than 50m. Attackers might use this to their advantage by getting closer than
normal usage would require. An interesting privacy aspect of UWB in IoT is that, as
devices exchange ranging signals, they potentially announce their presence, unlike BLE
which can use anonymous advertising. UWB ranging usually happens between devices
that have discovered each other via another channel, i.e. often BLE is used to find and
then UWB to range.

2.1. BACKGROUND 9

2.1.3 TCP / UDP

TCP and UDP are transport-layer protocols that underpin most internet communications,
including IoT systems that use Internet Protocol (IP) networking. Unlike BLE or UWB,
TCP/UDP are not wireless link protocols by themselves, they operate over any IP-based
network which could be Ethernet, Wireless Fidelity (Wi-Fi) or cellular. Many IoT de-
ployments rely on IP for end-to-end connectivity, especially for devices that communicate
with cloud servers or web services.

TCP is a connection-oriented, reliable protocol. It establishes a session between two end-
points with a three-way handshake to synchronize sequence numbers, then guarantees
in-order, error-checked delivery of a byte stream. It achieves reliability through mecha-
nisms like sequence numbers and acknowledgments, retransmission of lost packets, and
flow control/congestion control to prevent network overload [26]. This makes TCP heavier
weight but suitable for applications where all data must arrive correctly. In IoT, protocols
such as Hypertext Transfer Protocol (HTTP) and Message Queueing Telemetry Transport
(MQTT) ride on top of TCP.

UDP, in contrast, is connectionless and does not guarantee delivery. It simply sends in-
dividual packets, called datagrams, from one host to another with no built-in retry or
ordering. UDP has much lower overhead, using no handshake, no sequence numbers in
the protocol apart from a length and checksum. Therefore, UDP is useful for applications
that value timeliness over reliability or where the application layer will handle any needed
reliability [26]. In IoT, UDP is very common due to its lightweight nature like the Con-
strained Application Protocol (CoAP), a RESTful protocol for IoT devices that runs over
UDP and adds its own simple acknowledgment mechanism instead of using a full TCP
stack [27]. Low-power wireless networks prefer UDP because maintaining long-lived TCP
connections can be problematic in lossy networks.

The choice depends on the use case, UDP is favored in constrained environments since it
is simpler and has smaller headers (8 bytes vs 20 bytes for TCP), while TCP is used when
IoT devices need the full reliability or stream-oriented communication. It has been shown
that TCP outperforms UDP, given the same circumstances [28]. For example, a security
camera streaming video might use UDP for the video itself due to latency concerns, but
an IoT gateway reporting logs to a server might use HTTP over Transport Layer Security
(TLS) /TCP to ensure everything arrives. IoT deployments often involve gateways that
translate between local protocols like BLE or Zigbee and TCP/IP to send data over the
Internet. Thus TCP/UDP often come into play at the gateway or cloud communication
layer.

Security
By themselves, TCP and UDP provide no encryption or authentication. They were de-
signed decades ago when the internet was trusted, so any security must be provided by
layers above such as TLS/ Secure Sockets Layer (SSL) for TCP or Datagram Transport
Layer Security (DTLS) for UDP. TCP does incorporate certain controls that indirectly
affect security like sequence numbers and checksums [29]. This offers some resistance to
blind injection attacks, though an attacker who can sniff the traffic or guess them within a
window can inject malicious data or send forged control flags. UDP, having no handshake

10 CHAPTER 2. FUNDAMENTALS

or sequence, is even more vulnerable to packet injection or spoofing. Any entity can send
a UDP packet claiming to be from an arbitrary source. There is no concept of a session
in UDP that the network layer enforces.

The standard approach is to utilize application-layer security. An IoT device connecting
to a cloud Application Programming Interface (API) will use TLS over TCP, ensuring
encryption and server authentication. Similarly, when using CoAP/UDP, the device would
use DTLS to encrypt and authenticate the datagrams. These protocols (TLS/DTLS)
handle key exchange, often via certificates or pre-shared keys in constrained IoT, and
provide confidentiality and integrity. Without such measures, any data an IoT device
sends over TCP/UDP, especially over wireless networks, could be intercepted or altered
by an attacker with relative ease.

IoT deployments have to contend with numerous potential threats if higher-layer protec-
tions are not in place. [30] gives a good overview, some notable issues are:

• Denial-of-Service (DoS): TCP is susceptible to flood attacks, where an attacker
initiates many TCP handshakes but never completes them, causing the server to
allocate resources for half-open connections until it is overwhelmed. Mitigations
include cookies or rate-limiting inbound connections. [31] showed that a Universal
Plug and Play (UPnP) discovery request, which is HTTP over UDP in LAN en-
vironments, could be spoofed to amplify traffic 30x towards a target. IoT devices
running services that respond to UDP requests must implement anti-spoofing or not
be openly accessible to the internet to prevent unwilling participation in Distributed
Denial-of-Service (DDoS) attacks.

• Packet Spoofing/Hijacking: Because UDP lacks connection state, an attacker can
easily spoof UDP packets. This is especially problematic for services that trust cer-
tain IP addresses. In IoT, an attacker could spoof commands to a device if the device
accepts UDP commands from an authorized IP without additional authentication.
With TCP, spoofing is harder, since one cannot easily spoof and complete the 3-
way handshake unless the attacker is on-path. However, if an attacker can predict
TCP sequence numbers, they can hijack or reset a connection [32]. IoT devices of-
ten communicate over local Wi-Fi and if that Wi-Fi is open or compromised, TCP
sessions from IoT devices to the router could be intercepted and tampered with.
Session hijacking at the transport layer could allow an attacker to inject false sensor
readings or commands by taking over an unencrypted stream.

• Resource Constraints and Protocol Handling: Some IoT devices have very limited
processing power and may run minimal TCP/IP stacks. This can lead to vulner-
abilities like the mishandling of malformed packets. A malformed TCP packet or
sequence of out-of-order packets might crash a poorly implemented TCP/IP stack
on a tiny IoT microcontroller, causing a DoS or potentially a buffer overflow that
could be exploited. Notable past vulnerabilities, like the Ripple20 set [33], included
flaws in embedded TCP/IP libraries widely used in IoT, where an attacker send-
ing crafted packets could take control of the device. These are not flaws in the
TCP/UDP protocols per se, but in their implementations under constrained condi-
tions.

2.1. BACKGROUND 11

Secure by design for TCP/UDP means using them in conjunction with appropriate safe-
guards. Best practices include using TLS/DTLS for encryption, implementing secure
bootstrapping such that the initial key exchange is protected, and closing unnecessary
ports on devices. IoT-focused networks also use gateway/firewall devices that restrict
inbound connections from the internet. Since most IoT devices act as clients, there’s
usually no need to allow unsolicited inbound TCP connections or UDP datagrams from
arbitrary sources. By blocking those, one can mitigate spoofing and scanning threats.
Another trend is the use of alternative transports like Quick UDP Internet Connections
(QUIC), which operates over UDP but includes built-in encryption and connection se-
mantics similar to TCP. QUIC might eventually be relevant for IoT if its complexity can
be managed, as it provides confidentiality by default and better performance on unstable
networks [34].

2.1.4 Privacy Requirements

As billions of IoT devices collect and exchange data, privacy has become a paramount
concern. IoT sensors gather personal or sensitive information, from health metrics on
wearables to video footage on security cameras, raising the question of how this data is
protected and used. Privacy in IoT is not only a technical issue but also a regulatory one.
In recent years, laws around the world have been enacted to ensure organizations respect
users’ data privacy.

The General Data Protection Regulation (GDPR), implemented in the EU in 2018, is one
of the strictest and most influential privacy laws. It defines personal data broadly and
imposes various obligations on entities processing such data [35][36]. The key principles
of GDPR include data minimization (collect only what is necessary), purpose limitation
(use data only for the stated purpose), and storage limitation (do not keep data longer
than needed). For IoT this means that device manufacturers and service providers should
avoid collecting extraneous data from sensors and should transparently inform users about
what data is collected and for what purpose. GDPR also requires obtaining explicit user
consent for personal data collection in many cases, which is why IoT devices often need to
have users agree to terms or settings that control data sharing [37]. Users, data subjects,
have rights such as access to their data, the ability to request deletion (called the ’right to
be forgotten’), and to correct inaccuracies. These rights can be challenging to implement
in IoT scenarios like an environment that has hundreds of sensors continuously logging
data. Honoring a deletion request might require scrubbing that person’s data from all
logs.

One of GDPR’s requirements is ’privacy by design and by default’, meaning IoT systems
should be designed from the ground up with privacy in mind. This leads to design choices
like anonymizing data at the edge, aggregating information to avoid personal identifiers,
and providing strong access control [38]. Encryption is implicitly encouraged, since GDPR
mandates ’appropriate technical and organizational measures’ to secure personal data.
Protecting data in transit and at rest is critical since IoT devices often transmit data
over wireless links that could be intercepted. A breach of personal data can lead to
severe GDPR fines, so there is a strong incentive for IoT companies to use state-of-the-art

12 CHAPTER 2. FUNDAMENTALS

cryptography to prevent unauthorized access. GDPR also requires breach notification
within 72 hours to regulators and possibly to users, which has driven organizations to
implement better monitoring of their IoT backends for any intrusion.

Other regions have implemented similar laws. In the United States, there is no GDPR-
equivalent at the federal level, but several laws address data privacy. The California
Consumer Privacy Act (CCPA)2, in effect since 2020, gives California residents rights
over their personal data somewhat akin to GDPR, including knowing what is collected
and the right to deletion, and it applies to businesses over certain size thresholds. CCPA
has pushed IoT companies operating in California to provide privacy notices and opt-
outs for data sharing. Federally, sector-specific laws can dictate privacy requirements for
certain IoT devices like a smart health device collecting medical info. There is also the IoT
Cybersecurity Improvement Act3 in the US that, while focused on security of IoT used
by government, indirectly helps privacy by requiring things like unique device identities
and no hardcoded passwords.

In Asia, several countries have introduced comprehensive data protection laws inspired
by GDPR. For example, Japan’s Act on Protection of Personal Information4 and South
Korea’s Personal Information Protection Act5 have stringent rules on handling personal
data with many similarities to GDPR like consent and breach notification. One of the
most significant is China’s Personal Information Protection Law (PIPL), enacted in 20216.
PIPL is often called ’China’s GDPR’, it gives Chinese users rights over their data and
places restrictions on data handling, with an emphasis on data localization and govern-
ment access. IoT manufacturers selling in China must comply with PIPL’s requirements,
which include clearly delineating the purpose of data collection and obtaining consent,
especially for sensitive personal information. Violation of PIPL can result in heavy fines
and even criminal liability. These global regulations show a clear trend: IoT systems
worldwide are expected to protect user data and privacy by default, not as an optional
add-on.

Impact on IoT and Protocol Design
Privacy regulations have both direct and indirect effects on how IoT communication pro-
tocols are used and designed. Directly, laws might dictate certain features, like the EU’s
ePrivacy directive7, an adjunct to GDPR focusing on communications, requires user con-
sent before storing or accessing information on a user’s device. Indirectly, to comply with
privacy principles, IoT designers incorporate measures such as data anonymization, en-
cryption and access control, device and user consent, as well as logging and audit. Some
protocols now explicitly incorporate privacy considerations:

• The BLE spec enhanced its privacy mode after recognizing that BLE beacons could
be used to track phones. Devices can now use a resolvable private address that
changes frequently. This was not directly due to GDPR, seeing as how it predates

2https://oag.ca.gov/privacy/ccpa
3https://www.congress.gov/bill/116th-congress/house-bill/1668
4https://www.dlapiperdataprotection.com/?t=law&c=JP
5https://www.dlapiperdataprotection.com/index.html?t=law&c=KR
6https://www.dlapiperdataprotection.com/?t=law&c=CN
7https://www.edps.europa.eu/data-protection/our-work/subjects/eprivacy-directive en

2.1. BACKGROUND 13

GDPR, but it is a privacy-by-design improvement that aligns with regulatory ex-
pectations.

• Modern Wi-Fi standards have introduced Media Access Control (MAC) address
randomization for devices when scanning for networks, to prevent tracking of de-
vices by MAC between networks. Apple and Android also randomize Wi-Fi MAC
addresses when connecting to networks, a clear privacy feature influenced by the
desire to limit long-term identifiers. Enterprises adapting to this had to change how
they do network access control, since they cannot rely on fixed MAC addresses as
an identity.

• Mobile IoT technologies like Narrowband-IoT and LTE-M8 inherit the robust se-
curity of cellular networks, but privacy laws push operators to ensure that any
user-identifying data, like Subscriber Identity Module (SIM) IDs or phone numbers
associated with IoT modules, are protected and not improperly shared. eSIM/soft
SIM technologies also incorporate more security to avoid cloning, which could lead
to impersonation and privacy breaches.

Privacy regulations affect not just the data transfer, but the entire lifecycle of IoT data.
This means wireless protocols must often integrate with broader privacy-preserving sys-
tems. An IoT device might use end-to-end encryption such that even the service provider
cannot read the data, which is going beyond what regulations explicitly require, but to
assure users of privacy. An example is Apple’s approach with AirTag in their ’Find My’
network: location data, that is collected and transmitted, is encrypted on an Apple server
such that they cannot view it, only the user can upon request by using their private key
[39]. This is a selling point for privacy and ensures compliance since even a breach at
their servers would not expose usable information.

IoT architects must choose protocols not just on technical merit, but on privacy consider-
ations. If data is extremely sensitive like medical IoT device data, designers might avoid
broad-range wireless protocols like BLE that could be sniffed from outside a home and
instead use more contained communication. They will also ensure all traffic is encrypted
at a higher layer, using TLS over BLE’s GATT via BLE IPv6 mode or similar. Some
IoT systems implement additional layers of privacy. Onion routing or mix networks for
IoT data have been proposed in research to hide metadata [40]. While not common yet,
if privacy laws become more stringent about metadata, IoT protocols might incorporate
such concepts. IoT devices often require an explicit user action to start interfacing, like
scanning a QR code or pressing a button to pair. This can be seen as aligning with privacy
requirements since it ensures the user is in control of who can connect to the device.

In conclusion, privacy requirements have elevated the importance of data protection, user
consent, and transparency in IoT communication. Regulations like GDPR have global
reach, since any IoT service handling EU residents’ data must comply, and they have
set a high bar that other jurisdictions are following. IoT manufacturers now compete
on privacy features, it’s common to see products marketed as respecting privacy. From
a technical perspective, this has driven widespread adoption of encryption in transit,

8https://en.wikipedia.org/wiki/LTE-M

14 CHAPTER 2. FUNDAMENTALS

minimization of data and features in protocols to avoid persistent identifiers. Wireless
protocols are being designed or amended with privacy by design in mind, ensuring that
the convenience of ubiquitous sensing does not come at the cost of individual privacy.

2.2 Related Work

Users are highly concerned about privacy and security. Surveys rank privacy among
the biggest concerns for IoT adoption, with consumers desiring control over the personal
data these devices collect [41]. However, evaluating the privacy of smart home devices is
challenging due to the scale and heterogeneity of device ecosystems, which may contain
dozens of diverse devices from different vendors. Academic research has begun developing
holistic frameworks to systematically assess IoT privacy and security across devices, apps,
and platforms.

2.2.1 Privacy Evaluation Frameworks

Researchers have proposed frameworks to evaluate the privacy and security of individual
IoT devices by analyzing both the device and its companion smartphone app. One ap-
proach is to leverage the companion app as a proxy for the device’s functionality. [42]
used a ’mirror’ strategy, analyzing the mobile apps associated with smart-home devices
to infer device behavior and detect vulnerabilities. This platform performed program
analysis on thousands of IoT apps and identified hundreds of devices likely affected by
known security flaws without needing physical access to each device. Such techniques,
while aimed at security, can indirectly flag privacy issues like insecure data transmissions
at scale. Similarly, [43] evaluated smart security devices, including smart locks, cameras
and alarms, by scanning their Android companion app code for vulnerabilities. They
found that every tested app contained at least one common security or privacy weakness,
regardless of the brand’s reputation. Many apps exhibited ’subtle threats’ introduced by
developers, like tracking device usage or illegitimately collecting data in ways that violate
user privacy. These studies underscore that companion apps can be rich sources of insight
into device privacy posture.

[44] focuses on automated compliance auditing for individual IoT products. They intro-
duced the Compliance-Oriented IoT Security and Privacy Evaluation (COPSEC) frame-
work. COPSEC extracts measurable privacy requirements from regulations like GDPR
and best-practice security guidelines, then runs a battery of automated tests on IoT de-
vices to check conformance. For example, it will scan a device’s network traffic, open
ports, and data transmissions while also parsing the device’s privacy policy, then compare
the device’s actual behavior against its privacy claims. The output is a ’certification’ re-
port on whether the device meets the specified privacy and security criteria. From initial
results testing popular consumer IoT products like speakers, cameras and appliances, the
authors report that devices largely fail to comply with even basic security guidelines, and
their data collection practices often introduce privacy risks for users. Prior to COPSEC,
there was effectively no general framework for auditing IoT products’ adherence to privacy

2.2. RELATED WORK 15

Figure 2.1: Comparison of how Apple HomeKit vs. Google Home handle various security
and privacy tasks across device lifecycle stages (Deploy, Operate, Decommission), source:
[45]

and security requirements. While still in the early stages, such frameworks could help reg-
ulators, consumers, and third parties to benchmark IoT devices’ privacy compliance on
an ongoing basis, rather than relying on vendor assurances alone.

Beyond individual devices, [45] have looked at entire smart home platforms and ecosystems
to identify systemic privacy and security issues. They consider the lifecycle of devices,
from deployment to operation and decommissioning, and use the classic Confidentiality-
Integrity-Availability (CIA) triad to evaluate challenges at each stage. They applied
their framework to two major ecosystems, Apple’s HomeKit9 and Google Home10, and
uncovered a range of shortcomings in how each platform supports secure and private
device management. Notably, both ecosystems were found to have issues across nearly
every lifecycle phase, starting at onboarding devices to updating and ultimately removing
them from service. Apple’s ecosystem did fare better in several respects due to its stricter
controls. Google requires manual credential management and may not encrypt some
data, while Apple restricts device variety via certification. See Figure 2.1 for an informed
comparison.

9https://en.wikipedia.org/wiki/Apple Home
10https://home.google.com/welcome/

16 CHAPTER 2. FUNDAMENTALS

2.2.2 Specialized Tools and NLP

Not all IoT privacy risks come from obvious smart home gadgets, some arise from abuse
of IoT technologies in the environment. A salient example is unwanted tracking via
Bluetooth tags. AirGuard, a tool by [46], exemplifies a focused privacy-defense solution
in this space. Apple built stalking-detection into their OS, yet billions of Android users
were left unprotected aside from a very rudimentary scanner app Apple released. In
response, they reverse-engineered Apple’s tracking protections and developed AirGuard
as a free Android app to safeguard users from covert trackers. It continuously scans for
Apple Find My devices and notifies the user if it suspects an unknown tracker is following
them. AirGuard’s detection performance was on par with or better than Apple’s solution,
and a field study in [46] with tens of thousands of users demonstrated its effectiveness in
the wild.

AirGuard’s success highlights the importance of independent privacy tools complementing
IoT ecosystems. It addresses a privacy issue that falls outside of smart home device
evaluations. Instead of evaluating a device’s compliance, it monitors the environment for
malicious devices. While such tools are not holistic frameworks, they play a practical role
in the IoT privacy ecosystem by giving users actionable protection in specific domains.

NLP
Given the vast amounts of textual and log data associated with IoT devices (privacy poli-
cies, app descriptions, user interfaces, permission lists, device logs, etc.), researchers have
explored Natural Language Processing (NLP) techniques to automate privacy analyses.
One prominent area is parsing and analyzing IoT privacy policies. [47] conducted a large-
scale study of smart home device privacy policies, using NLP to demystify their content
and coverage. They augmented an existing policy analysis tool with IoT-specific named
entity recognition, and analyzed 284 smart home privacy policies, extracting thousands
of data practice statements. They revealed major challenges like finding the policies in
the first place, since IoT privacy disclosures are fragmented across websites, apps, man-
uals. And even when obtained, the policies often lacked standardization. The authors
had to incorporate ’out-of-band’ context, mapping device model names to companies, to
correctly identify which policy text applied to which device. The outcome was a curated
dataset of labeled policy texts and an improved model for extracting data collection and
sharing statements. Simply analyzing policy text ’in a vacuum’ can be ineffective thus
future frameworks should combine policy NLP with other information sources like linking
privacy clauses with the device’s actual sensor capabilities or network behavior, to catch
inconsistencies.

Other possible scenarios include analyzing smart speaker voice assistant transcripts or skill
descriptions with NLP to identify potential eavesdropping skills or scanning IoT device
user interfaces like permission prompts or settings menus to evaluate how transparently
privacy options are presented. So far, research specifically using NLP on device logs or
UIs in the IoT context is sparse, but it is a logical extension. However, while NLP can
significantly reduce manual effort, achieving a high degree of accuracy and completeness
in automated privacy audits will likely require a hybrid approach, leveraging text analysis,
program analysis, and perhaps even computer vision for UIs in tandem.

2.2. RELATED WORK 17

2.2.3 Research Gap

Academic research on smart home privacy evaluation is gaining momentum, moving from
isolated analyses toward more comprehensive frameworks. There are now tools to scan IoT
apps for flaws, monitor device traffic, parse privacy promises, and even detect rogue devices
in our midst. A truly holistic privacy evaluation framework would allow stakeholders, be
it users, auditors, or regulators, to assess an IoT device or an entire smart home setup
against a unified set of privacy requirements. Current studies illuminate important pieces
of this puzzle. They show that many devices fall short of basic privacy protections [44],
that mainstream platforms still have systemic issues [45], and that automation is possible
but needs refinement [47]. By addressing the gaps in coverage, context, and integration,
future research can work toward a holistic solution.

18 CHAPTER 2. FUNDAMENTALS

Chapter 3

Design

As the main part of this thesis, a desktop application is being developed1. This chapter
will cover the decision-making processes for all design choices, guided by the restrictions
that are given through the existing projects and the thesis project description. Further,
architectural choices are explained and outline the structure of the application.

3.1 Requirements Engineering

Modern requirements engineering is a process to reduce the risk of delivering a system
that does not meet the desires and needs of stakeholders [48]. This means that one only
specifies as many requirements as is feasible within a given product boundary. With the
structure of a bachelor’s thesis, we are limited by a set time frame and the description
of work. For a pure software product, this would mean a full-fledged description of the
software system according to [49], which would be great, but not feasible to create.

The 2 reasonable work products that create value are the following:

Risk assessment
Here, we determine which features will have the highest impact on development when
implemented poorly. A matrix from [50] is used as a reference and modified, since we
do not determine the stakeholders and especially the distinction into importance is not
particularly fitting. The reason for this is because the requirements elicitor is also the
developer, and the pool of possible other stakeholders is not big. Therefore, we cannot
expect to have a distribution of stakeholders with different levels of importance, which in
turn leads to the loss of meaningfulness of this factor.

The 3 points in Figure 3.1 refer to the 3 requirements of the thesis’ description of work:

1. Feed the collected data stream into the requirements mapper

2. The projects need to be able to run as standalone on the application

1https://github.com/iKusii/BA-ModularIntegrationPlatform

19

20 CHAPTER 3. DESIGN

Figure 3.1: Risk assessment

3. The projects need to be able to run concurrently without significant loss in perfor-
mance

As we can see, we must pay additional attention to the selection of a framework that will
allow concurrent processes and data handling.

Context boundary
Without a clear distinction from the system and its context, there might arise confusion
as to what is still part of the system and what is not. One important separation within the
system that has not been highlighted before is the affiliation of [12] to the requirements
mapper part, which is conceptually separated from the other projects that contribute
data.

The system can then be set into context with two different kinds of environments, live and
offline. Figure 3.2 shows an abridged version of what this looks like when put together.
This thesis is built on the premise that the application will process offline data, but there
is an emphasis on building it sufficiently well such that it can be expanded to live data
later.

3.2 Relevant Data Formats and Technologies

What follows is an overview of the technical stacks of the five projects that build the
foundation of the application and what the resulting requirements are.

3.2. RELEVANT DATA FORMATS AND TECHNOLOGIES 21

Figure 3.2: Abridged overview, original from Katharina O.E. Mueller

3.2.1 Privacy Requirements

The culmination of [12] is a Python2 command-line interface (CLI) script that runs a user
through a privacy use case and informs them about the possible vulnerabilities of their
situation. The user can keep a history of their requests in the console, but no files are
generated.

This program cannot be used as-is and needs to be changed to output something tangible,
since this project is supposed to be the privacy requirements mapper / starting point
creator.

3.2.2 HomeScout

The name-giving app of [9] was developed for Android-based mobile phones and written
in Kotlin3. The app keeps a database of encountered devices and flagged devices. Since
the whole reason for that work is to study the behavior of tracking devices, it would not
make sense to emulate this application on a desktop device which is stationary. However,
there exist solutions to mirror a phone screen onto a desktop PC. These solutions will be
discussed in 3.3.

2https://www.python.org/
3https://kotlinlang.org/docs/home.html

22 CHAPTER 3. DESIGN

Baseline
Work Language Has Live Mode? Input Output

Privacy Requirements Python No Manual Selection Overview
HomeScout Kotlin Yes Events Database

ZigBee Packet Sniffer Python Yes Packets Event Logs
IoT Network Topology Python Yes Packets Graph
High-traffic Dataset Python No Dataset Statistics

Table 3.1: Hard Requirements

3.2.3 ZigBee Packet Sniffer

The work of [10] has 2 environments to consider for an implementation. One is bound to
the live collection of packets with an nRF board, the other one analyzes existing .pcap
files using Python scripts and Wireshark4, which can be installed on any OS.

3.2.4 IoT Network Topology

In the same manner as the previous entry, [11] has 2 environment setups. The active
sniffing of a network requires a hardware component called Ubertooth One5, which builds
on libraries that can be installed on any OS (even though Linux is recommended), all in
combination with the already seen Wireshark software. The evaluation of the data can
be done with already generated data and uses a Python script.

3.2.5 High-traffic Dataset Generation

Finally, [13] uses Python scripts to process data from pre-generated datasets to identify
BLE devices in high-traffic environments. The dataset is extensive with a size of 3.7 GB,
which needs to be kept in mind when choosing the application environment.

3.3 Platform Specifics Choice

Consolidating the knowledge from the previous section into a conclusive table with Table
3.1, we can see that there is a common language that is used for all of them, which is
Python. This is not surprising since it is one of the friendliest languages to create custom
programs, with popular libraries in numerous areas of application [51].

The only outlier here is HomeScout, which is built in Kotlin6, another popular cross-
platform language that is based on Java. As mentioned before in 3.2.2, a database is

4https://www.wireshark.org
5https://ubertooth.readthedocs.io/en/latest/ubertooth one.html
6https://kotlinlang.org/docs/home.html

3.3. PLATFORM SPECIFICS CHOICE 23

cultivated during the execution of the app, which can be simulated for the offline version
by creating a dataset for an evaluation. The live version though will need to connect to a
mobile device to get periodic updates to the database. One method to do this is through
virtual network computing (VNC), this allows for a direct connection from a computer
to a mobile device through Wi-Fi [52]. There exist 3rd party solutions for this but it is
possible to set this up without them, even though security is a concern due to the nature
of the connection [53].

3.3.1 Web-based vs Desktop Application

Starting the comparison with a web-based application, the architecture would consist of
4 dedicated servers with a standardized interface for the respective programs and a load
balancer to distribute incoming requests efficiently. This allows for parallel processing and
good resource isolation and management, while being easily horizontally scalable through
the addition of new servers. The challenges here are the initial cost of acquiring and
setting up the servers, potential latency issues due to the number of requests that will
occur and the existence of a single point of failure in the load balancer. The complexity
of the system is another concern when considering authentication and server monitoring.

On the other hand, a desktop application would execute the programs asynchronously.
This is very CPU-intensive when all programs should run concurrently at the same time
but needs less coordination since each program runs with their own input. The disadvan-
tage here is the lacking ability to scale when the number of programs increases, save for
the option to upgrade the hardware, and the single point of failure in the host machine’s
lifecycle.

The application needs to run on any OS, thus implementing it as a web application is a
simple but effective solution. However, since 3 of the projects have live modes that deal
with high volumes of data and consistency is a core aspect of any respectable application,
the risk of a bottleneck through a possible bad connection is too high. Also, a constant
required internet connection is another minor downside, when considering the application’s
specified ability to process offline data. This, combined with the cost of setting up multiple
servers for a project of this scope, leads to a clear decision towards the desktop application.

3.3.2 Language Selection

The next step involves deciding on a language that is suitable for the task at hand. Python
seems to be the obvious choice but there are limitations with this language that concern
multiprocessing. Python has a so-called Global Interpreter Lock (GIL)7 that prevents
multiple threads to execute bytecode at the same time. This prevents race conditions and
ensures thread safety but it is diagonally opposed to the goal of the application to run
multiple programs concurrently. At the time of this thesis, Python 3.13 has introduced
the ability to turn off the GIL optionally in CPython [54], the reference implementation of

7https://wiki.python.org/moin/GlobalInterpreterLock

24 CHAPTER 3. DESIGN

the Python programming language8. However, this comes with additional overhead and
difficulty implementing this correctly. Finally, the most popular Graphical User Interface
(GUI) creator for Python is QtPy9, which has a steep learning curve but has good cross-
platform support.

Another contender is Electron 10, an option to run web-based code in a dedicated Chromium
browser instance, while Node.JS11 handles system-level operations. The main advantage
is the low entry barrier, since it uses web technologies that are fast to pick up, and the
ability to run seamlessly on all OS. It is important to note though that it is not very
efficient, and it has no mobile platform support. It also has a CPU usage that is usually
higher than that of native applications due to running multiple instances of JavaScript
and a larger file size [55]. Despite the cross-platform support, due to the performance
reason it will not be considered as an option.

Kotlin has already been mentioned before and is a suitable candidate for the role. One of
the GUI frameworks is TornadoFX, a wrapper for JavaFX, a prevalent GUI framework
for Java, but it is no longer being developed as of September 202412. Another popular
GUI framework is Compose13 which is developed by JetBrains and prides itself for its
ability be used to create cross-platform applications. Given that the application needs to
be flexible enough to accommodate future additions of programs that might be written
in other languages than Python, it makes for a compelling argument to decide upon this
language.

3.3.3 Similar existing Solutions

It is important to look at similar solutions implemented by existing companies that have a
presence in the Smart Home market to gain insight into suitable architecture approaches.
The first one is Samsung’s SmartThings [56], it collects data from end nodes in a hub device
that is connected to a so-called swarm service in the cloud to evaluate the collected data
and return fitting commands for the end nodes. There is a clear separation of concerns
that allows for a smooth operation of the whole system while preserving reliability.

The second interesting solution is Home Assistant, an open-source project managed by
the Open Home Foundation [57]. This flexible application can be installed at any level of
convenience, and it focuses on local data collection with optional cloud connectivity. It
achieves this by running the end nodes in containers, which allows users to add any node
to their network, given that there exists an integration library for that specific node type.
The project has a large community that cultivates those libraries.

The main take-aways for this project are the containerization approach, which seems to be
a good fit to run programs independently and collect their outputs for further processing
down the line in a hub-like component.

8https://en.wikipedia.org/wiki/CPython
9https://wiki.python.org/moin/PyQt

10https://www.electronjs.org/
11https://nodejs.org/en
12https://github.com/edvin/tornadofx
13https://www.jetbrains.com/compose-multiplatform/

3.4. PROJECTED CLASS DIAGRAM 25

Figure 3.3: High-level system view

3.4 Projected Class Diagram

With all the important decisions finalized, a refined class diagram has been created, as
illustrated in Figure 3.3. This diagram presents a slightly more detailed and expanded
version of Figure 3.2, offering a clearer perspective on the system’s architecture. It also
highlights which parts are new additions from this thesis and which ones are from pre-
vious works. The application supports 2 distinct execution paths: one by following the
’Single Application View’ route that yields a specific program in isolation, and another by
choosing the ’Evaluation View’ route, choosing a privacy requirements setting and having
the application take care of managing the appropriate next steps.

In the ’Core Application Layer’ there exist 2 managers. The ’Plugin Manager’ is a col-
lection of configurations that are necessary to start any additional software for the live
modes of the programs. The ’Container Manager’ is responsible for running and terminat-
ing the containers with their respective programs. Any data that is output by a program
is streamlined into the ’Data Integration Hub’ and relayed to the next part.

The final step varies depending on the execution path chosen. In the ’Evaluation View’,
the Data Mapper acts as a placeholder for the last stage of the evaluation process, whereas
in the ’Single Application View’, the process simply concludes with the program’s standard
output.

26 CHAPTER 3. DESIGN

3.5 Test Suite

The knowledge and considerations for approaching and applying testing is derived from
[58]. Apart from the core management logic that will be implemented with object-oriented
programming, this system relies heavily on configurations related to the containerization
of individual programs and plugins. Since these configurations are not easily testable,
adopting a test-driven development (TDD) approach would be impractical. As a result,
the feedback loop for identifying design flaws and managing complexity may be longer
than in a typical TDD workflow.

To balance this, tests will be written after the integration of each individual program,
marking the completion of incremental development milestones. This approach ensures
that testing remains manageable and prevents an overwhelming backlog of untested func-
tionality as the application nears completion, when major changes become more challeng-
ing. While this method introduces the risk of delayed issue detection, it allows for greater
flexibility in adapting to unforeseen design considerations during development.

To mitigate these risks, a structured testing strategy will be followed, ensuring that
unit tests verify the correctness of individual components while integration tests confirm
smooth interactions between containerized elements. Ultimately, broader testing phases,
including system tests and evaluation structures, will be incorporated to validate the
overall integrity and performance of the application. By structuring testing in this way,
the application maintains a strong balance between development agility and long-term
reliability.

Chapter 4

Implementation

This chapter is dedicated to the actual implementation of the design plans and any nec-
essary changes that were made along the way. After introducing the environment for the
application, all core components will be explained sufficiently well enough, such that one
can start working on this project.

4.1 Compose

Kotlin Compose Multiplatform, henceforth only called ’Compose’ for brevity, is a modern
declarative User Interface (UI) framework that enables a single Kotlin codebase for user
interfaces across multiple platforms like Android, iOS, web, and desktop for all OS. It is
based on Android’s UI toolkit Jetpack Compose and developed by JetBrains, leveraging
Kotlin Multiplatform (KMP) technology. On desktop, Compose targets the Java Virtual
Machine (JVM) and provides high-performance rendering on all major desktop OS via
the Skia graphics library [59].

Compose provides desktop-specific UI components and extensions to integrate with the
windowing system and OS features. This means desktop apps can behave like native
apps. One can structure an application with common code for data handling, domain
logic, and even UI structure, and have minimal platform-specific code, like app entry
points or specific integrations. JetBrains provides tooling support for Compose in IntelliJ
IDEA1 and it is highly recommended to use it for development. For desktop specifically,
the development cycle is quite straightforward. The desktop app runs directly on the
development machine, since it is a JVM app, and one can get fast build times and hot
reload-style experiences.

Compose apps leverage Graphics Processing Unit (GPU) acceleration for UI, making
them performant for rich graphics. Start-up times may be a bit higher than a pure native
app due to the JVM startup and Skia library loading, but the runtime performance is
generally smooth. Since everything is compiled to JVM bytecode, and possibly native

1https://www.jetbrains.com/idea/

27

28 CHAPTER 4. IMPLEMENTATION

code on other targets, heavy computations can be as fast as any JVM program. Using
truly native UI components within Compose beyond what the framework offers is not
straightforward. For example, there is no built-in support to embed a native macOS
control directly in Compose, short of using a third-party bridge or writing a custom
interface. Another consideration is application size, a Compose desktop app must bundle
the Kotlin runtime and the Skia native libraries, and often a stripped-down Java Runtime
Environment (JRE). This means even a simple ’Hello World’ app can be tens of megabytes
in size. However, this is usually acceptable given modern distribution methods and disk
sizes.

4.2 Packaging

Since this application is developed with future additions in mind, packaging and distri-
bution may not be an immediate concern. Developers can, as mentioned above, run the
application from the IDE and benefit from this intermediate use. However, it is important
to look at how a finished product can be shipped in the end.

Packaging a Compose app for desktop involves creating a self-contained, installable binary
for each target OS. The goal is to provide end-users with a familiar installation process,
such as an .exe or .msi installer on Windows, a .dmg or .pkg on macOS, or a .deb/.rpm on
Linux, that includes everything needed to run the app. This can be a bit more involved
than packaging a traditional native app because a Compose Desktop app runs on the
JVM and thus needs a Java runtime. Fortunately, the process is streamlined by official
tools.

The Gradle plugin, which greatly simplifies packaging, wraps the functionality of the
Java Development Kit (JDK)’s jpackage tool and automates many steps of creating a
distributable package2. One can create self-contained installations that bundle the appli-
cation’s code, resources, and a tailored runtime, such that the user does not need to have
Java installed separately. To make the app truly self-contained, the packaging process will
bundle a JRE that the application uses. To avoid shipping a full JVM, which could be
300+ MB, the plugin leverages jlink3, to include only the necessary Java modules needed
to run the app. By default, a minimal set of modules is included.

The plugin defines tasks such as package<Format> to create an installer, and a convenient
createDistributable to assemble the raw distributable application image with the embed-
ded JDK. There are also corresponding runDistributable tasks that let you test-run the
packaged app on your machine, which is handy to verify it works with the bundled JRE.
In the Gradle build file, inside the compose.desktop.application block, you can configure
various settings:

• Main class is the entry point of your app (-> mainClass = ’MainKt’)

• App metadata is the name of the package, version and description

2https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-native-distribution.html
3https://dev.java/learn/jlink/

4.2. PACKAGING 29

Figure 4.1: Basic settings with icon packaging options

• Icons provide icons for each platform (.ICO for Windows, .ICNS for Mac, .PNG for
Linux) so that your packaged app has a proper icon

• In extra files bundle additional files or resources if needed, via the resources folder
or by adding to the distribution

• JVM options, if your app needs specific JVM arguments or system properties, which
can be set in the launcher

• Signing/Notarization for macOS, to configure signing identities and notarization
steps if distributing to users online, see 4.2.2

Building installers for a given OS typically requires that OS. The jpackage tool is part of
the JDK and technically can target other OS if their packaging tools are available, but in
practice it is easiest to build Windows installers on Windows, Mac installers on macOS,
etc. The Compose Gradle plugin currently follows this pattern. The generated installers
cover installation of the app and placement of shortcuts, but beyond that, some ’expected’
features might need custom implementation. For example, auto-update is not provided
out of the box. to update itself, one would have to implement a solution, perhaps the
app checks a server for updates and then downloads a new installer or uses a third-party
updater library.

4.2.1 Windows

Code signing an installer, and possibly the .exe, is important to avoid SmartScreen warn-
ings like ’Unknown publisher’. The Compose plugin currently does not have built-in code
signing steps for Windows. This means after generateing the .exe or .msi, one would need

30 CHAPTER 4. IMPLEMENTATION

to sign it using signtool4 or a similar tool for a code signing certificate. The upgradeUuid
is particularly important, it should remain consistent between versions of the application.

1 windows {

2 menuGroup = "Application Group"

3 shortcut = true

4 upgradeUuid = "uuid -for -updates"

5 iconFile.set(project.file("path/to/icon.ico"))

6 }

Listing 4.1: Windows bundling specifics

4.2.2 MacOS

When distributing an unsigned app, users will be blocked by Gatekeeper5 with a message
that the app ’cannot be opened because it is from an unidentified developer’. To avoid
this, signing the application with an Apple Developer certificate and notarizing it with
Apple’s notary service is crucial. The Compose plugin can offer some support, since it can
invoke codesign and notarization for .pkg or .dmg if the Developer ID credentials in the
Gradle properties are configured. For Mac App Store distribution, one would also need
to set the app category and other metadata, which is supported by the plugin. Another
small thing, is the familiar prompt ’Drag the app to Applications folder’ when opening a
DMG. By default, jpackage’s DMG doesn’t show that fancy UI, since it is a plain volume.
The customization of the DMG background image and script is needed for that behavior,
which again, is possible with the plugin.

1 macOS {

2 bundleID = "com.domain.app"

3 signing {

4 sign.set(true)

5 identity.set("Developer ID Application: Name (TEAM_ID)")

6 }

7 notarization {

8 appleID.set("email@example.com")

9 password.set("@keychain:NOTARIZATION_PASSWORD")

10 teamID.set("TEAM_ID")

11 }

12 iconFile.set(project.file("path/to/icon.icns"))

13 }

Listing 4.2: macOS bundling specifics

4.2.3 Linux

Linux typically does not enforce signing of binaries, except perhaps some package repos-
itories, so .deb and .rpm from jpackage are usually fine as-is. However, there may be
a need to specify maintainer emails or other fields for the package. The plugin has set

4https://learn.microsoft.com/en-us/dotnet/framework/tools/signtool-exe
5https://en.wikipedia.org/wiki/Gatekeeper (macOS)

4.3. CONTAINERIZATION 31

Linux-specific fields like maintainer name/email, package license, etc., to satisfy distro
package conventions.

1 linux {

2 packageName = "app -name"

3 debMaintainer = "name@example.com"

4 menuGroup = "Development"

5 iconFile.set(project.file("path/to/icon.png"))

6 }

Listing 4.3: Linux bundling specifics

4.3 Containerization

Containerizing desktop GUI applications is an unusual but useful approach. One might
consider running an app in a container to encapsulate its environment and avoiding in-
stalling dependencies on the host or to deploy the app in a controlled sandbox. Two pop-
ular containerization tools are Docker6 and Podman7. Both are Open Container Initiative
(OCI)-compliant8 container engines that can run an app in an isolated environment, but
they have different architectures and trade-offs.

Docker is the classic container platform that introduced widespread container use. It uses
a client-server model with a background daemon, called the Docker daemon, running as
root on the host, which manages images and containers. The user interacts via the Docker
CLI, which talks to the daemon to start or stop containers. Podman, on the other hand,
is a newer container engine by Red Hat that is daemonless, meaning it runs containers
as child processes directly, without a persistent root-privileged service. Podman’s CLI
is largely compatible with Docker’s, but it emphasizes running containers ’rootless’, as a
normal user, for better security.

Table 4.1 compares key aspects of Docker and Podman as they relate to running a Com-
pose Desktop app. [60] and [61] for comparisons.

Aspect Docker Podman
Architecture Daemon-based, a central dockerd

service manages containers. Con-
tainers run as sub-processes of the
daemon, giving namespace isola-
tion

Daemonless, no always-running
service. Containers are launched
as separate processes directly via
fork/exec. Each container is su-
pervised by a helper process (con-
mon), not a monolithic daemon

6https://www.docker.com
7https://podman.io/
8https://opencontainers.org/

32 CHAPTER 4. IMPLEMENTATION

Aspect Docker Podman
Rootless Sup-
port

By default, Docker daemon re-
quires root privileges. A root-
less mode is available since Docker
20.x, but not the default and re-
quires a setup

Designed for rootless operation
from the ground up. A regu-
lar user can run podman without
root, and Podman will use user
namespaces to emulate the root
inside the container. This im-
proves security by containing the
app with no root daemon on the
host

Compatibility Universal support, Docker is
available on Linux, and via
Docker Desktop on macOS/Win-
dows, which provides a VM.
Docker CLI and Docker Compose
are standard tools widely sup-
ported by development workflows

Linux-native, runs on Linux with-
out extra layers. On macOS/Win-
dows, Podman can be used via a
VM or Podman Desktop, which is
similar to Docker Desktop. Pod-
man supports the Docker OCI im-
age format, so it can run im-
ages from Docker Hub directly.
Most Docker CLI commands work
the same, though some Docker-
specific features are not present

Ecosystem &
Tools

Very rich ecosystem with Docker
Hub registry, extensive documen-
tation, and tools like Docker Com-
pose for multi-container orchestra-
tion. Many third-party tools and
libraries assume Docker’s pres-
ence. Docker has features like vol-
umes, networks, and plugins

Podman can use Docker images
and has its own Compose equiv-
alent. Podman integrates with
systemd, managing containers as
systemd services easily. Gener-
ally, Podman aims for parity with
Docker’s functionality in most ar-
eas

Performance Near-native performance for most
workloads. Docker’s overhead is
very low, it uses Linux kernel fea-
tures. CPU and memory usage
under Docker are also very close
to bare metal. The Docker dae-
mon itself uses some memory, but
for a single container running an
app, this is negligible. Docker’s
network stack tends to be fast,
though in rootless mode it may
use slirp9, which is slower

Also near-native performance.
Podman’s daemonless approach
removes the idle overhead of a
daemon, potentially using a bit
less memory when no containers
are running. In practice, for
running one or a few containers,
performance differences with
Docker are tiny. Podman’s
rootless mode uses user-space
networking which can be a bit
slower for high throughput net-
working compared to Docker’s
rootful networking

9https://en.wikipedia.org/wiki/Slirp

4.4. CORE COMPONENTS 33

Aspect Docker Podman
Concurrency
& Scale

Docker’s daemon can handle mul-
tiple containers simultaneously
and is well-tested under heavy
loads. The centralized manage-
ment might introduce a bottleneck
in theory, but it also optimizes re-
source sharing. Docker has long
been used in large-scale environ-
ments, so its stability with concur-
rent containers is proven

Podman can run many containers
as well, but since each invocation
spawns processes, very high con-
currency could hit process limits
or contention. Podman’s advan-
tage is that each container is in-
dependent, there is no single point
of failure daemon. One stuck con-
tainer does not impact control of
others, whereas if Docker’s dae-
mon hangs, all containers become
inaccessible via CLI

Table 4.1: Docker vs Podman Comparison

As shown above, Docker and Podman offer very similar capabilities in terms of running a
containerized application, with differences primarily in the ecosystem. Meaning, it comes
down to environment and preference rather than technical necessity. Both can achieve
the goal of containerizing the app with almost equal performance, with differences on
the order of a few percent as per [61]. Docker shines in convenience if it is already used
and benefits from the vast documentation available. Podman shines in security and not
needing a root daemon, making it possible to give a container image to a less privileged
environment and running it without worrying about installing Docker. Podman works
on all major OS through Windows-Subsystem for Linux (WSL) on Windows, has native
support on Linux and macOS support through virtual machines. This more consistent
behavior across platforms is the deciding factor in favor of Podman. The instantiation
details are in 4.4.7.

4.4 Core Components

Figure 4.2 shows a well-structured system with clear separation of concerns between con-
tainer management, data integration, and lifecycle management. Notably, there is a
change to the planned role of the PluginManager compared to 3.3.

Core Components:

• LifecycleManager: The main orchestrator that manages app level access to contain-
ers and data integration

• ContainerManager: Handles container creation and management

• Container: Represents a single container instance with its own lifecycle

• DataIntegrationHub: Manages data communication between containers and the ap-
plication

34 CHAPTER 4. IMPLEMENTATION

Figure 4.2: Implementation Class Diagram

Supporting Components:

• ContainerResources: Project-specific information data

• ContainerPlugins: Project-specific plugin data

Key Relationships:

• LifecycleManager manages both ContainerManager and DataIntegrationHub

• ContainerManager creates and manages Container instances

• Container uses DataIntegrationHub for data communication

• Container creates a ContainerConfig for the image configuration, tailored to a use
case

Data Flow:

• Data flows through the DataIntegrationHub using the observer pattern

• Containers communicate through the DataIntegrationHub interface

• Container lifecycle is managed through the LifecycleManager

4.4. CORE COMPONENTS 35

Figure 4.3: User Interaction Flow Diagram

4.4.1 Views

Compose’s UIs are constructed using composable functions, which are annotated with
@Composable. These functions serve as the fundamental units for declaring UI elements
in a declarative programming model. Rather than manually updating the UI, developers
define what the interface should look like for a given application state, and the Compose
runtime automatically manages updates when that state changes. Common compos-
ables include Text, Button, and layout containers such as Column, Row, and Box, which
facilitate structured UI composition. State management is typically handled through con-
structs such as remember and mutableStateOf, enabling reactive behavior within the UI.
A Compose application is launched using a ’Window’ container inside the application
function, which hosts the root composable, thus establishing the application’s visual in-
terface. This model emphasizes simplicity, readability, and responsiveness, aligning with
modern functional UI paradigms.

The term ’View’ is used in Android development for the equivalent of Composables in
Compose for Desktop. The execution flow of the UI components allow for 2 distinct paths,
shown in Figure 4.3. The 2 paths are called ’SingleApplicationRun’ and ’EvaluationRun’,
corresponding to the 2 required modes of execution stated in 1.2. Both paths can be
traversed back at any time, removing the necessity to restart the program once a mode is
selected.

36 CHAPTER 4. IMPLEMENTATION

Figure 4.4: Privacy Requirements Mapping UI

In EvaluationRun, the project of [12] has been adapted into a user-friendly UI that maps
the privacy requirements decisions to be evaluated onto a set of required programs to do
the actual evaluation. As mentioned before, the actual mapping from the requirements
onto the relevant data to be evaluated will be a subject for future work, but both the UI
and the ability to run multiple containers at once, as well as the ability to navigate to the
correct proceeding View, is already implemented.

In SingleApplicationRun, the user may choose one of the 4 other projects to be executed in
either live or offline mode. During both modes, the currently processed data is displayed
in a logging feature. This also notifies the user when the program inside the container has
completed. Afterwards, the user can find the processed data inside a folder for personal
use.

4.4.2 Lifecycle Manager

The LifecycleManager serves as the central orchestrator for the application’s lifecycle,
managing the creation and operation of containers through the ContainerManager and
facilitating data flow via the DataIntegrationHub. It provides essential methods to start

4.4. CORE COMPONENTS 37

Figure 4.5: Left: single application container, right: multiple applications container

and stop containers, ensuring seamless interaction with container functionalities. As the
entry point for application components, it is responsible for initializing containers, utilizing
the ContainerManager to create and manage these containers. The LifecycleManager also
ensures that all containers are properly terminated, handling any exceptions that may
arise during the shutdown process to maintain system integrity.

4.4.3 Data Integration Hub

In the initial design phase, this component was thought to collect any processed data in
itself for further analysis. However, the actual application building process has shown
that it is unnecessary to do this, since the programs mount themselves into temporary
directories where the data is accessible for use. This shifted the intended usage of this
component to what it is now, a feedback piece. It implements the Observer pattern10 for
data communication, meaning that components can register and unregister as data lis-
teners. This way it can distribute container output to registered listeners which provides
a clean separation between containers and UI components. This also work for multiple
containers at the same time.

1 DisposableEffect(containerName) {

2 container = lifecycleManager.containerManager.getContainers ().find {

it.name == containerName }

3 val listener: (String , Any) -> Unit = { receivedContainerName , data

->

4 if (receivedContainerName == container ?.name) {

5 processContainerOutput(data.toString ())

10https://refactoring.guru/design-patterns/observer

38 CHAPTER 4. IMPLEMENTATION

6 }

7 }

8 lifecycleManager.dataIntegrationHub.registerDataListener(listener)

9 onDispose {

10 lifecycleManager.dataIntegrationHub.unregisterDataListener(

listener)

11 }

12 }

Listing 4.4: Registering a data listener (+ automatic clean-up on dispose)

4.4.4 Container Manager

This component manages container instances in a thread-safe ConcurrentHashMap. It ini-
tializes the container creation and deletion by acting as a middleware between the lifecycle
manager and the containers themselves. This is also where the PodmanService implemen-
tation resides, since there is an important distinction between creating a container and
starting one. 4.4.7 will explore this in-depth.

4.4.5 Container

The Container component is responsible for preparing and interfacing a container, not
running it! The actual instance of a Podman container will be with the PodmanService.
This component handles the configuration of the container image according to predefined
specifications that can be found inside the ContainerResources and ContainerPlugins Sin-
gleton objects. The configuration starts with an ApplicationResource object, that defines
what parts of the directory that holds the project code, will be mounted into the tempo-
rary directory in which the container will be run. It does this recursively for subfolders
and files, so bundling scripts or data necessary for the execution is not unnecessarily
extensive. See Listing 4.4.5

1 private fun getAvailableApplications (): List <ApplicationResource > {

2 return listOf(

3 ApplicationResource(

4 name = "ZigBee Packet Sniffer",

5 configPath = "$RESOURCE_BASE_PATH/applications/ZigBee Packet

Sniffer/config.json",

6 scriptPath = "$RESOURCE_BASE_PATH/applications/ZigBee Packet

Sniffer/main.py",

7 extraResources = listOf("data", "scripts", "csv", "configs",

"pcap")

8),

9 ApplicationResource(

10 name = "IoT Network Topology",

11 configPath = "$RESOURCE_BASE_PATH/applications/IoT Network

Topology/config.json",

12 scriptPath = "$RESOURCE_BASE_PATH/applications/IoT Network

Topology/main.py",

13 extraResources = listOf("data", "scripts")

14),

4.4. CORE COMPONENTS 39

15 ...

16)

17 }

Listing 4.5: ApplicationResource data

It continues with selecting an appropriate image for the container base. This will hold
any dependencies like Python versions, external libraries or programs that should be in-
cluded in the installation of the container. These images are built on the first ever run
of the application and are then cached in the Podman instance for further runs. A single
Containerfile and requirements.txt are all that is necessary for this.

1 FROM python :3.12 - slim

2
3 WORKDIR /app

4
5 # Install required Python packages

6 COPY requirements.txt .

7 RUN pip install --no-cache -dir -r requirements.txt

8
9 # Create necessary directories

10 RUN mkdir -p /app/data

11
12 # Set environment variables

13 ENV PYTHONUNBUFFERED =1

14 ENV DATA_PATH =/app/data

15 ENV CONFIG_PATH =/app/config.json

16
17 # Default command (will be overridden)

18 CMD ["python", "main.py"]

Listing 4.6: Containerfile for a basic image that uses Python

This is also where it will look for any additional dependencies that may be introduced
through plugins, but the offline modes all do not need those. Afterward, it sets the
environment variables like the entry point script name, the selected mode of operation
(live or offline) and returns this to the PodmanService for instantiation. The remaining
functionality is related to handling container lifecycle operations and sending data to the
DataIntegrationHub for logging. Once a container has been stopped and removed, there
is no functionality in place to regain access to it inside the application.

4.4.6 Plugin Manager

Initially this was supposed to be its own component that handles the augmentation of
container images with additional software and hardware requirement based on a use case.
During the implementation it became clear that this will not be more than a Singleton
object that stores the configuration for live mode that might become necessary in the
future. There is a great deal of detail that can be prepared beforehand like network
access configurations, hardware requirements and permissions. See Listing 4.4.6 for a
detailed depiction of a nRF52840 development kit configuration.

40 CHAPTER 4. IMPLEMENTATION

1 return PluginConfiguration(

2 name = "nrf -sniffer",

3 version = "1.0.0",

4 requirements = PluginRequirements(

5 software = listOf(

6 SoftwareRequirement("tshark", "3.0.0", verifyCommand = "

tshark --version", type = SoftwareType.SYSTEM_PACKAGE),

7 SoftwareRequirement(

8 name = "nrf802154_sniffer_extcap",

9 minVersion = "1.0.0",

10 verifyCommand = "tshark -G extcaps | grep -q

$tsharkCaptureInterface",

11 type = SoftwareType.PYTHON_PACKAGE

12)

13),

14 hardware = listOf(

15 HardwareRequirement(

16 type = HardwareType.SERIAL_PORT ,

17 identifier = hostDevicePath ,

18 permissions = listOf("rwm")

19)

20),

21 permissions = emptyList (),

22 networkAccess = null ,

23 extcapOptions = emptyList ()

24),

25 containerConfig = ContainerPluginConfig(

26 volumes = listOf(

27 VolumeMount(

28 // Ensure user.home is appropriate for all OS, or make

configurable

29 hostPath = System.getProperty("user.home") + "/

Evostar_Captures/ZigBee",

30 containerPath = "/app/captures"

31)

32),

33 devices = listOf(

34 DeviceMount(

35 hostDevice = hostDevicePath ,

36 containerDevice = containerSideSerialPort ,

37 permissions = "rwm"

38)

39),

40 capabilities = emptyList (),

41 environmentVariables = mapOf(

42 "TSHARK_CAPTURE_INTERFACE" to tsharkCaptureInterface ,

43 "NRF_SERIAL_PORT_INTERNAL" to containerSideSerialPort

44),

45 inheritHostGroups = true

46)

47)

Listing 4.7: Setup data for an external nRF board configuration

4.4. CORE COMPONENTS 41

Figure 4.6: Folder structure for adapted projects

4.4.7 PodmanService

The PodmanService abstracts away all the low-level details of container operations, pro-
viding a clean interface for the rest of the application. It handles platform-specific con-
cerns, error conditions, and provides the building blocks for container lifecycle manage-
ment. There are a lot of Podman-specific error cases that need handling, since the Pod-
man virtual machine instance will usually continue to exist even after the application has
ended. This means that potential errors can span multiple sessions or even days. The
implementation uses coroutines with the Input/Output (IO) dispatcher for non-blocking
execution of potentially long-running operations inside the application. This service is
a crucial part of the architecture, serving as the bridge between the high-level container
management logic and the low-level Podman container runtime.

4.4.8 Adjusted Projects

The privacy requirements project adaption was already explained in 4.4.1. The other
projects exist in different formats, ranging from Python scripts, over Jupyter notebooks11

to Kotlin mobile apps. The goal of the adaptation of these projects was to streamline
the workflow with little to no user interaction, since this is connected to overhead for
possible multiple container execution. This meant rewriting the projects to simple scripts
and changing parts where needed while keeping the original outputs. A sample project
folder structure for this application can be seen in Figure 4.6. The entrance point is
called ’main.py’, and any project related specifications have been abstracted away into a
’config.json’ file. Alternatively, one could include parameters into environment variables
during the container configuration phase, but this approach makes it easier to change
variables on the go in one place.

11https://jupyter.org/

42 CHAPTER 4. IMPLEMENTATION

Additionally, functionality to process user input has been created, since not everything
could be properly solved with the config.json settings. However, it is advised to not rely
on this if possible. Especially when using multiple containers at once this can lead to
race conditions from the input pop-ups. As summarized in Table 4.2, the projects have
different levels of support features that relate to their general workflow.

Project Interactivity? Images Input Output

HomeScout No Base / VNC Database files
in /data

Same as input

ZigBee
Packet Sniffer

Supported Base / nRF-
capture

pcap files in /p-
cap

Event log re-
port

IoT Network
Topology

No Base / nRF-
capture

.csv files in
/data

summaries in
/output

High-traffic
Dataset

Currently not
supported.
Would need
rewrite, but
does make
sense

Base / nRF-
capture

.csv files in
/data/raw

tables, plots
and reports in
/outputs

Table 4.2: Project Usages

The image column relates to a predefined set of system level dependencies that will be
available in the Podman container environment. The ’Base’ image contains a Python
version 3.12 environment with all needed external libraries and the Wireshark CLI tool
tshark, since this is needed for most of the projects to process .pcap files. There was no
need to make multiple variants of the base image that are tailored to each project, since
these images are only built once when first launching the application and then used from
Podman’s cache. The second image name in that column relates to the image used for live
mode. The ’Wireshark’ image is proposed to be equipped with more functionality than
what is needed for pcap processing like port discovery and external hardware harmoniza-
tion relative to the container environment. The ’VNC’ image will be used to connect and
emulate a smartphone for the HomeScout application.

[9] currently only exists in offline mode, where the program dumps a database in a dedi-
cated folder for further processing.
[10] is the only project so far to support interactivity. The .pcap files are processed and
there is a step in the workflow where the user can choose a .PAN file that was extracted
earlier. The interactivity is toggleable and if not active it will simply choose the first
.PAN file in the folder.
[11] is pretty well streamlined. It processes .csv files through its own pipeline and puts
the graphs, timelines and metrics into a folder called /output.

[13] is currently not supporting interactivity, even though the project it is based on relies
heavily on it. Basically, after each substep in the initial project, the user was able to
choose to continue with the intermediate result or to run another iteration with new data.

4.5. TESTING 43

There are 4 main ’pipelines’ that have been identified from this and used as processing
steps. After each step, there is a checkpoint created, such that the program could resume
from that checkpoint with the corresponding generated data. Currently, the main.py
orchestrator executes all 4 pipelines in succession and stores the results in /outputs/logs.
This project might present itself to add another exclusive mode that mirrors the initial
fully interactive suite.

4.5 Testing

Compose provides sufficient tools to test both the UI layer and the underlying logic of an
application. The testing frameworks used for the test suite are JUnit4 and Mockito.

4.5.1 UI

The Compose testing API allows to write tests that interact with a Composable via
semantics such as finding nodes by tags or text and performing clicks. Under the hood,
the Compose test framework takes care of launching a headless version of the UI, such that
there is no need for a visible window for tests, meaning it can render the UI in memory
and interact with it this way.

For the UI part the was no emphasis on getting the branch coverage up to 100% since
this would mean testing UI settings that are not reachable. Changing the code to allow
for more branch testing would mean opening up the code to modes that it currently does
not support and may actually introduce more problems that it would solve.

4.5.2 Logic

The logic part testing has been put off for the most part, since the application is not a
finished product as of the writing of this thesis. There will be additions to the structure
and interoperability that result from the proposed live modes. Thus any tests that try to
encapsulate the behavior of the logic components will most definitely need to be changed
again. This is further amplified by the workflow of the core components that necessitate
integration tests and they do not present themselves for simple unit testing.

44 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

With the development and integration of the application complete, it is essential to eval-
uate its effectiveness in relation to the original standalone projects. This comparative
assessment provides insight into the performance implications and potential trade-offs in-
troduced by the integration process. To facilitate a fair and consistent evaluation, a set
of measuring standards has been defined. These metrics serve as the foundation for ana-
lyzing the application’s behavior under controlled conditions and are critical for drawing
meaningful conclusions about its efficiency, scalability, and overall impact. The follow-
ing sections introduce these measurement criteria in detail and subsequently apply them
across a range of test scenarios to assess the application’s relative performance.

5.1 Benchmarks

Benchmarking is essential to objectively evaluate the performance and behavior of different
systems under comparable conditions. The aim is to assess and compare the performance
characteristics of CLI projects and a graphical application, when executed independently
and for the application combined in three specific pairings. The objective is to assess
system efficiency, overhead behavior under multitasking conditions, and container-induced
performance penalties.

The most useful performance metric for this use case is runtime, measured from initiation
to completion. The projects will be used in their adapted form, since they have been
outfitted with a logging feature that includes starting, ending and total time spent exe-
cuting. Only one of the initial projects could have been used as is, with a time measuring
wrapper utility, while the others would have used too many user interactions that would
have made measurements inaccurate and difficult.

To ensure that results are robust and comparable, the following testing scenarios have
been chosen:

• Standalone CLI Run: The projects are executed independently in the CLI, with a
predefined input set and runtime configuration.

45

46 CHAPTER 5. EVALUATION

• Standalone App Run: The App is running a single container with no interactivity,
using the same input set.

• Pairing 1: ZigBee Packet Sniffer and IoT Network Topology are run in 2 containers
at the same time.

• Pairing 2: ZigBee Packet Sniffer and High-traffic Dataset are run in 2 containers at
the same time.

• Pairing 3: IoT Network Topology and High-traffic Dataset are run in 2 containers
at the same time.

• Pairing 4: All 3 projects are run at the same time.

The HomeScout project was excluded since it is currently a simple data dump and thus
would not contribute meaningfully. Each scenario is executed multiple times under con-
trolled conditions to minimize noise and capture consistent performance data. The tests
are run on 3 different machines to give a good perspective on the system usage, see Table
5.1 for the specifications. Executing multiple projects at the same time in the CLI was
not feasible to do.

OS Brand & Name CPU RAM

Windows 11 ROG Strix GL10 AMD Ryzen 5 3400G 16GB
macOS MacBook Pro 2021 Apple M1 Pro 16GB
Windows 11 Legion T5 28IMB05 Intel i7-10700 32GB

Table 5.1: Evaluation system specifications

5.2 Comparison

The input data for each project used in the comparison corresponds to the datasets and
configurations made available in the project’s repository1 at the time of submission. To
ensure consistency and reproducibility, all input files were sourced directly from this repos-
itory without modification. Runtime measurements were recorded in seconds, leveraging
Python’s built-in time library, which offers sufficient granularity for performance analysis
at this level. To minimize variability and isolate system performance, no additional pro-
grams or background processes were allowed to run during the evaluation phase, thereby
harmonizing the system environment across all tests. Each scenario, defined as a specific
project executed under a particular configuration, was executed ten times consecutively.
This repetition enabled the computation of average runtimes and standard deviations,
contributing to a more stable and statistically relevant performance baseline. For trans-
parency and further analysis, the complete set of raw captured values is presented in
Figure A.1 and as a file in repository.

1https://github.com/iKusii/BA-ModularIntegrationPlatform

5.3. ANALYSIS 47

5.3 Analysis

What follows are explanations of statistical measures that are computed onto the raw
data. The actual values can be checked in A.2.
To establish a foundational understanding of the system behavior, descriptive statistics
on the raw runtime data have been calculated. For each workload and combination:

• Mean runtime offers an overall indicator of expected performance

• Standard deviation measures variability and indicates consistency

• Minimum and maximum runtimes reveal the bounds of performance

• Median runtime helps identify skewed data and is more robust to outliers

This first analysis helps characterize the baseline performance of each configuration in
isolation and under parallelization load.

Performance Overhead is one of the key evaluation objectives, which aims to quantify
the performance overhead introduced when the projects are executed in the application
vs the CLI. This overhead is computed as:

Overhead (%) = (
App Mean Runtime− CLI Mean Runtime

CLI Mean Runtime
)× 100

System ZigBee IoT Dataset Zig +
IoT

Zig +
Data

IoT +
Data

All 3

PC 1 -21.5 -1.67 7.77 -16.92 /
14.98

-15.06 /
10.65

19.42 /
10.93

-1.32 /
58.88 /
29.62

macOS 9.59 20.16 7.3 12.63 /
18.13

13.92 /
11.48

22.55 /
8.69

17.72 /
25.52 /
17.03

PC 2 -2.61 -8.7 -0.96 -1.18 / -
4.45

0.93 /
1.94

-3.87 /
0.96

3.69 /
2.04 /
5.23

Table 5.2: Overhead % compared to CLI baseline

By applying this metric to each combination, the identification of how significantly appli-
cation tasks stress the system, compared to their CLI execution, is possible.
When only considering this chart, it seems as if macOS handles containerization worse
than Windows-based systems, but it is also important to notice that the actual runtimes
on macOS are consistently faster in both CLI and single run scenarios.

To understand how runtime behavior evolves under concurrent load, the examination of
overhead patterns using slope charts and direct overhead calculations is used. See Figure
5.1.

48 CHAPTER 5. EVALUATION

Figure 5.1: Slope graphs

System stability under load is another critical factor. The evaluation for this uses the
Coefficient of Variation (CV), calculated as:

CV =
Standard Deviation

Mean

System ZigBee IoT Dataset Zig + IoT Zig + Data IoT + Data All 3

PC 1 0.023 0.060 0.086 0.044 0.005 0.057 0.102
macOS 0.021 0.050 0.036 0.028 0.030 0.050 0.067
PC 2 0.006 0.030 0.010 0.055 0.012 0.041 0.020

Table 5.3: CV values per system and scenario

The values are rounded to 3 digits and for combinations the higher value was picked. A
high CV indicates erratic performance, while a low CV suggests predictable and stable
execution. This is particularly important for real-time or latency-sensitive operations,
which might be an issue in future additions to the application.

Cross-Platform Performance Comparison
As expected, all projects generally take longer to run when they are part of a combo
compared to when they run alone. This is due to resource contention for CPU, memory
and I/O. The slowdown percentage for each project is highest when it is part of the
3-project combo. This is logical as there is more competition for resources.

To holistically assess each system’s ability to handle containerized workloads, a compos-
ite performance score is introduced. The score penalizes high runtime, large container
overhead, and unstable performance, measured via CV:

Scoresystem =
∑

project

[α ∗NR + β ∗Overhead% + γ ∗ CV]

NR is the normalized runtime, calculated as the median container runtime over the median
CLI runtime. The weights were empirically set to α=0.5, β=0.3, γ=0.2 to prioritize
relative speed and overheads. Lower scores indicate better overall performance in the
context of container usage.

5.3. ANALYSIS 49

System Score

PC 2 3.88
PC 1 35.27
Mac 62.9

Table 5.4: Performance scores

This ranking aligns with earlier observations and underscores PC 2’s efficiency in handling
multi-container workloads. This also reaffirms that macOS has a good base performance
with CLI runs and that it handles containers worse than its Windows-based counterparts.
The runtimes are still faster on macOS but the scaling is in favor of Windows.

These findings highlight the importance of considering not just raw runtime performance,
but also efficiency under concurrent workloads and runtime stability when evaluating sys-
tems for deployment in containerized environments. The weighted scoring model, which
incorporates normalized runtime, overhead during concurrent execution, and runtime vari-
ability, reveals that systems with modest single-run performance may underperform under
load due to higher overhead or instability. This suggests that future development and
system selection should prioritize balanced performance characteristics rather than peak
speed alone. Hardware definitely has an impact on not only the startup time, but also
the runtime in total. These finding also need to be appended and correlated with network
data, as soon as the application expands into this territory.

50 CHAPTER 5. EVALUATION

Chapter 6

Final Considerations

6.1 Summary

The thesis goals outlined in 1.2 have been fully met. Starting with a thorough theoretical
background knowledge presentation in chapter 2, a design for a prototype had been de-
veloped according to the needs of the underlying projects. In general, this outline had the
right idea when it came to the execution workflow of the desired application. However,
major components of the logic implementation were not placed where they have ended up
now. Mainly, the plugin manager and the data integration hub have undergone changes
that shifted the intended contribution to a more appropriate place.

The implementation phase was shaped by iterative cycles of attempts of getting the con-
tainers to run and rewriting the projects in a streamlined manner. Not all projects were
the same amount of effort when it came to rewriting them, since some had already been
in an advantageous format while others needed to be built up from scratch. The harmo-
nizing of data into a pipeline was achieved rather quickly and the simultaneous execution
of containers happened faster than anticipated.

The evaluation phase proved to be quite enlightening, since the results showed metrics
that are going to be useful for further development. Especially the OS-specific scaling
abilities are good to know at this point of the application life cycle.

6.2 Challenges and Accomplishments

The main goal of implementing the offline modes was successfully achieved. The rewriting
of the programs was accompanied by a logging feature that was later used for the evalua-
tion phase. The privacy requirements project has been nicely adapted into a user-friendly
selection page.

The container environment itself was a major concern due to the differences that may be
impeding the execution on different OS. The research showed that Podman would be the

51

52 CHAPTER 6. FINAL CONSIDERATIONS

better fit for this use case, but with no prior knowledge of containers, this was effectively
a gamble. However, apart from one minor bug that occurred once due to insufficient
memory allocation, the OS-specific functionality was sufficiently well abstracted and the
implementation process has shown that it was indeed the correct choice.

One step that has not been taken is the packaging of the application into an executable
file. This is not necessary yet, since the application will still evolve and a direct usage
from an IDE is currently the superior way of using it. All the steps involved to undergo
this endeavor have been documented though.

An additional goal was to implement a live mode that uses a nRF developer kit for
packet capturing. [10] has this functionality in the base project already. This has been
attempted but was abandoned due to time restrictions. The source code contains an
artifact that tries to establish a connection with the external hardware. It is located in
the ’PluginConfigurations’ file.
The main challenge here is connected to the discovery of the external device port from
inside the container environment. This differs for each OS and needs a proper setup
to guarantee an error-free execution across platforms. For Windows this might include
mounting ports into WSL through an admin shell. More technical details about this can
be found in A.4.
This functionality can also be used for [11] with close to no additional overhead. [13]
would be able to process the .pcap files but it currently does not fit into the pipeline
structure, thus more work would be necessary to integrate this fully.

Yet another live mode that was touched upon is the connection to a smartphone for the
’HomeScout’ project. Research was done, as to how this could be achieved using a VNC,
but nothing specific has been attempted yet.

One last unofficial goal was to implement a mode that supports multiple containers at
once, which was also achieved. This was beneficial for the evaluation, as well as processing
different data sources at the same time.

6.3 Conclusions

This project marked a significant personal and academic milestone, not only due to the
technical complexity involved, but also because it encompassed and applied a wide range of
skills that have been developed throughout the studies. From setting up isolated container
environments and analyzing system performance to designing a comprehensive and fair
evaluation framework, the work demanded a deep engagement with both theory and
practice. Despite beginning with no prior knowledge of containerization, benchmarking,
or the underlying systems, a gradually strong understanding, and even a genuine interest,
in the topic was developed. The challenges were many, but each one contributed to a
clearer picture of how real-world system evaluation is done, making this project a fitting
culmination for an academic journey.

6.4. FUTURE WORK 53

6.4 Future Work

The application is functional in its current state and can host the chosen projects in their
simple form. The implementation is sufficiently well done such that other developers can
easily add to its scope. This is a strong base to extend the functionality with either more
projects, live mode for the existing ones or new modes altogether. The following list of
possible additions has been cultivated over the development of this application:

• Most importantly: Implementing the privacy requirements mapping and subsequent
data analysis.

• Finishing live mode capture using the nRF PluginConfiguration.

• Improving the testability of the core logic components.

• Abstracting away OS-specific functionality into a utility package.

• Possibly rewriting or adding another mode for [13] with the initial user interactivity
from the notebooks.

54 CHAPTER 6. FINAL CONSIDERATIONS

Bibliography

[1] Bluetooth, “2024 bluetooth market update,” 2024, last accessed 01 April 2025.
[Online]: https://www.bluetooth.com/2024-market-update/

[2] G. Koulouras, S. Katsoulis, and F. Zantalis, “Evolution of bluetooth technology:
Ble in the iot ecosystem,” Sensors, Vol. 25, No. 4, 2025. [Online]: https:
//www.mdpi.com/1424-8220/25/4/996

[3] K. E. Jeon, J. She, P. Soonsawad, and P. C. Ng,“Ble beacons for internet of things ap-
plications: Survey, challenges, and opportunities,” IEEE Internet of Things Journal,
Vol. 5, No. 2, pp. 811–828, 2018.

[4] Statistica, “Smart home - united states | statista market forecast,” 2024,
last accessed 12 April 2025. [Online]: https://www.statista.com/outlook/cmo/
smart-home/united-states#product-types

[5] Y. Zhang, J. Weng, R. Dey, and X. Fu, Bluetooth Low Energy (BLE) Security and
Privacy. Cham, Springer International Publishing, 2020, pp. 123–134. [Online]:
https://doi.org/10.1007/978-3-319-78262-1 298

[6] M. Caesar, T. Pawelke, J. Steffan, and G. Terhorst, “A survey on bluetooth
low energy security and privacy,” Computer Networks, Vol. 205, p. 108712, 2022.
[Online]: https://www.sciencedirect.com/science/article/pii/S1389128621005697

[7] J. Yang, C. Poellabauer, P. Mitra, and C. Neubecker, “Beyond beaconing: Emerging
applications and challenges of ble,” Ad Hoc Networks, Vol. 97, p. 102015, 2020.
[Online]: https://www.sciencedirect.com/science/article/pii/S1570870518307170

[8] S. Singh, P. K. Sharma, S. Y. Moon, and J. H. Park, “Advanced lightweight encryp-
tion algorithms for iot devices: survey, challenges and solutions,” Journal of Ambient
Intelligence and Humanized Computing, Vol. 15, pp. 1625–1642, 2024.

[9] L. Bienz, “Homescout: a modular bluetooth low energy sensing android app,” Mas-
ter’s thesis, University of Zurich, 2023.

[10] D. Datsomor, “Homescout extension: Investigation of lightbulb-based user-profiling
and privacy-preservation,” 2024, bachelor’s Thesis.

[11] A. Vincenz, “Design and evaluation of a generic iot network topology detection and
visualization approach,” Master’s thesis, University of Zurich, 2023.

55

https://www.bluetooth.com/2024-market-update/
https://www.mdpi.com/1424-8220/25/4/996
https://www.mdpi.com/1424-8220/25/4/996
https://www.statista.com/outlook/cmo/smart-home/united-states#product-types
https://www.statista.com/outlook/cmo/smart-home/united-states#product-types
https://doi.org/10.1007/978-3-319-78262-1_298
https://www.sciencedirect.com/science/article/pii/S1389128621005697
https://www.sciencedirect.com/science/article/pii/S1570870518307170

56 BIBLIOGRAPHY

[12] D. Vogel,“Mapping boundaries: An analytical dive into airtags and respective privacy
concerns,” 2024, bachelor’s Thesis.

[13] S. R. Saxer, “Dataset generation and feature extraction for high-traffic environment
personal tracker identification,” 2024, bachelor’s Thesis.

[14] S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi, “Internet of things (iot) com-
munication protocols: Review,” 2017 8th International Conference on Information
Technology (ICIT), 2017, pp. 685–690.

[15] I. Coston, E. Plotnizky, and M. Nojoumian, “Comprehensive study of iot
vulnerabilities and countermeasures,” Applied Sciences, Vol. 15, No. 6, 2025.
[Online]: https://www.mdpi.com/2076-3417/15/6/3036

[16] C. M. Ramya, M. Shanmugaraj, and R. Prabakaran, “Study on zigbee technology,”
2011 3rd International Conference on Electronics Computer Technology, Vol. 6, 2011,
pp. 297–301.

[17] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of bluetooth low
energy: An emerging low-power wireless technology,” Sensors, Vol. 12, No. 9, pp.
11 734–11 753, 2012.

[18] M. Al-Shareeda, M. Ali, S. Manickam, and S. Karuppayah, “Bluetooth low energy
for internet of things: review, challenges, and open issues,” Indonesian Journal of
Electrical Engineering and Computer Science, Vol. 31, pp. 1182–1189, 08 2023.

[19] Q. Zhao, C. Zuo, J. Blasco, and Z. Lin, “Periscope: Comprehensive vulnerability
analysis of mobile app-defined bluetooth peripherals,” Proceedings of the 2022 ACM
on Asia Conference on Computer and Communications Security, ser. ASIA CCS
’22. New York, NY, USA, Association for Computing Machinery, 2022, p. 521â533.
[Online]: https://doi.org/10.1145/3488932.3517410

[20] P. Locatelli, M. Perri, D. M. Jimenez Gutierrez, A. Lacava, and F. Cuomo,
“Device discovery and tracing in the bluetooth low energy domain,” Computer
Communications, Vol. 202, pp. 42–56, 2023. [Online]: https://www.sciencedirect.
com/science/article/pii/S0140366423000452

[21] G. Aiello and G. Rogerson, “Ultra-wideband wireless systems,” IEEE Microwave
Magazine, Vol. 4, No. 2, pp. 36–47, 2003.

[22] W. Hirt, “Ultra-wideband radio technology: overview and future research,”
Computer Communications, Vol. 26, No. 1, pp. 46–52, 2003. [Online]:
https://www.sciencedirect.com/science/article/pii/S0140366402001196

[23] M. M. Khan, “Precision finding and ultra-wideband technology,” July 2021.

[24] X. Luo, C. Kalkanli, H. Zhou, P. Zhan, and M. Cohen, “Secure ranging with ieee
802.15.4z hrp uwb,” 2024 IEEE Symposium on Security and Privacy (SP), 2024, pp.
2794–2811.

https://www.mdpi.com/2076-3417/15/6/3036
https://doi.org/10.1145/3488932.3517410
https://www.sciencedirect.com/science/article/pii/S0140366423000452
https://www.sciencedirect.com/science/article/pii/S0140366423000452
https://www.sciencedirect.com/science/article/pii/S0140366402001196

BIBLIOGRAPHY 57

[25] P. Leu, G. Camurati, A. Heinrich, M. Roeschlin, C. Anliker, M. Hollick,
S. Capkun, and J. Classen, “Ghost peak: Practical distance reduction attacks
against HRP UWB ranging,” 31st USENIX Security Symposium (USENIX
Security 22). Boston, MA, USENIX Association, 2022, pp. 1343–1359. [Online]:
https://www.usenix.org/conference/usenixsecurity22/presentation/leu

[26] K. R. Fall and W. R. Stevens, Tcp/ip illustrated. Addison-Wesley Professional,
2012, Vol. 1.

[27] D. Singh, M. K. Mishra, A. Lamba, and S. Swagatika, “Security issues in different
layers of iot and their possible mitigation,” International Journal of Scientific &
Technology Research, Vol. 9, No. 04, pp. 2762–2771, 2020.

[28] F. T. AL-Dhief, N. Sabri, N. A. Latiff, N. Malik, M. Abbas, A. Albader, M. A. Mo-
hammed, R. N. AL-Haddad, Y. D. Salman, M. Khanapi et al., “Performance compar-
ison between tcp and udp protocols in different simulation scenarios,” International
Journal of Engineering & Technology, Vol. 7, No. 4.36, pp. 172–176, 2018.

[29] O. O. Felix, “Tcp/ip stack transport layer performance, privacy, and security issues,”
World Journal of Advanced Engineering Technology and Sciences, Vol. 11, No. 2, pp.
175–200, 2024.

[30] A. M. Alotaibi, B. F. Alrashidi, S. Naz, and Z. Parveen, “Security issues in protocols
of tcp/ip model at layers level,” International Journal of Computer Networks and
Communications Security, Vol. 5, No. 5, p. 96, 2017.

[31] G. Kayas, M. Hossain, J. Payton, and S. R. Islam, “An overview of upnp-based
iot security: threats, vulnerabilities, and prospective solutions,” 2020 11th IEEE
Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON). IEEE, 2020, pp. 0452–0460.

[32] K. Hemanth, T. Ravikiran, M. V. Naveen, and T. Ravi, “Security problems and their
defenses in tcp/ip protocol suite,” International Journal of Scientific and Research
Publications, Vol. 2, No. 12, 2012.

[33] D. dos Santos, “Identifying and protecting devices vulnerable to ripple20,”
2020, last accessed 16. April 2025. [Online]: https://www.forescout.com/blog/
identifying-and-protecting-devices-vulnerable-to-ripple20/

[34] K. Nepomuceno, I. N. d. Oliveira, R. R. Aschoff, D. Bezerra,
M. S. Ito, W. Melo, D. Sadok, and G. SzabÃ3, “Quicandtcp :
Aperformanceevaluation,′′ 2018 IEEE Symposium on Computers and Communications (ISCC), 2018, pp.00 045−
−00 051.

[35] P. Voigt and A. Von dem Bussche, The eu general data protection regulation (gdpr).
Springer, 2017, Vol. 10, No. 3152676.

[36] H. Mildebrath, “Understanding eu data protection policy,” 2025, last accessed
19. April 2025. [Online]: https://www.europarl.europa.eu/RegData/etudes/BRIE/
2022/698898/EPRS BRI(2022)698898 EN.pdf

https://www.usenix.org/conference/usenixsecurity22/presentation/leu
https://www.forescout.com/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://www.forescout.com/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/698898/EPRS_BRI(2022)698898_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/698898/EPRS_BRI(2022)698898_EN.pdf

58 BIBLIOGRAPHY

[37] V. Morel, M. Cunche, and D. Le MÃ©tayer, “A generic information and consent
framework for the iot,” 2019 18th IEEE International Conference On Trust, Se-
curity And Privacy In Computing And Communications/13th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE), 2019,
pp. 366–373.

[38] S. Wachter, “The gdpr and the internet of things: a three-step transparency model,”
Law, Innovation and Technology, Vol. 10, No. 2, pp. 266–294, 2018.

[39] Apple, “Find my,” last accessed 19. April 2025. [Online]: https://www.apple.com/
icloud/find-my/

[40] N. P. Hoang and D. PISHVA, “A tor-based anonymous communication approach to
secure smart home appliances,” ICACT Transactions on Advanced Communications
Technology, Vol. 3, pp. 517–525, 09 2014.

[41] P. Emami-Naeini, H. Dixon, Y. Agarwal, and L. F. Cranor, “Exploring how privacy
and security factor into iot device purchase behavior,” Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, ser. CHI ’19. New
York, NY, USA, Association for Computing Machinery, 2019, p. 1â12. [Online]:
https://doi.org/10.1145/3290605.3300764

[42] X. Wang, Y. Sun, S. Nanda, and X. Wang, “Looking from the mirror: Evaluating IoT
device security through mobile companion apps,” 28th USENIX Security Symposium
(USENIX Security 19). Santa Clara, CA, USENIX Association, 2019, pp. 1151–
1167. [Online]: https://www.usenix.org/conference/usenixsecurity19/presentation/
wang-xueqiang

[43] A. Allen, A. Mylonas, S. Vidalis, and D. Gritzalis, “Security evaluation of companion
android applications in iot: The case of smart security devices,” Sensors, Vol. 24,
No. 17, 2024. [Online]: https://www.mdpi.com/1424-8220/24/17/5465

[44] G. Anselmi, A. M. Mandalari, S. Lazzaro, and V. De Angelis, “Copsec:
Compliance-oriented iot security and privacy evaluation framework,” Proceedings of
the 29th Annual International Conference on Mobile Computing and Networking, ser.
ACM MobiCom ’23. New York, NY, USA, Association for Computing Machinery,
2023. [Online]: https://doi.org/10.1145/3570361.3615747

[45] R. Mangar, T. J. Pierson, and D. Kotz, “A framework for evaluating the security
and privacy of smart-home devices, and its application to common platforms,” IEEE
Pervasive Computing, Vol. 23, No. 3, pp. 7–19, 2024.

[46] A. Heinrich, N. Bittner, and M. Hollick, “Airguard - protecting android users from
stalking attacks by apple find my devices,”Proceedings of the 15th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, ser. WiSec ’22. New
York, NY, USA, Association for Computing Machinery, 2022, p. 26â38. [Online]:
https://doi.org/10.1145/3507657.3528546

[47] S. Manandhar, K. Kafle, B. Andow, K. Singh, and A. Nadkarni, “Smart home
privacy policies demystified: A study of availability, content, and coverage,” 31st

https://www.apple.com/icloud/find-my/
https://www.apple.com/icloud/find-my/
https://doi.org/10.1145/3290605.3300764
https://www.usenix.org/conference/usenixsecurity19/presentation/wang-xueqiang
https://www.usenix.org/conference/usenixsecurity19/presentation/wang-xueqiang
https://www.mdpi.com/1424-8220/24/17/5465
https://doi.org/10.1145/3570361.3615747
https://doi.org/10.1145/3507657.3528546

BIBLIOGRAPHY 59

USENIX Security Symposium (USENIX Security 22). Boston, MA, USENIX
Association, 2022, pp. 3521–3538. [Online]: https://www.usenix.org/conference/
usenixsecurity22/presentation/manandhar

[48] M. Glinz, “A glossary of requirements engineering terminology,”Standard Glossary of
the Certified Professional for Requirements Engineering (CPRE) Studies and Exam,
Version, Vol. 1, p. 18, 2011.

[49] “Iso/iec/ieee international standard - systems and software engineering – life cycle
processes – requirements engineering,” ISO/IEC/IEEE 29148:2018(E), pp. 1–104,
2018.

[50] M. Glinz, “A risk-based, value-oriented approach to quality requirements,” IEEE
Software, Vol. 25, No. 2, pp. 34–41, 2008.

[51] K. Srinath, “Python–the fastest growing programming language,” International Re-
search Journal of Engineering and Technology, Vol. 4, No. 12, pp. 354–357, 2017.

[52] A. Jadhav, V. Oswal, S. Madane, H. Zope, and V. Hatmode, “Vnc architecture
based remote desktop access through android mobile phones,” International Journal
of Advanced Research in Computer and Communication Engineering, Vol. 1, No. 2,
pp. 98–103, 2012.

[53] T. Reidt, “Android screen mirroring to pc: Options with and without root,”
2024, last accessed 28 February 2025. [Online]: https://emteria.com/blog/
android-screen-mirroring

[54] A. Turner and T. Wouters, “Whatâs new in python 3.13,” 2024, last accessed 05
March 2025. [Online]: https://docs.python.org/3/whatsnew/3.13.html

[55] P. Mugunthan, “Electron software framework: The best way to build desktop
apps?” 2024, last accessed 05 March 2025. [Online]: https://pangea.
ai/resources/electron-software-framework-the-best-way-to-build-desktop-apps#
disadvantages-of-electron

[56] SmartThings, “The architecture of smartthings,” 2025, last accessed 05
March 2025. [Online]: https://developer.smartthings.com/docs/getting-started/
architecture-of-smartthings

[57] H. Assistant, “Architecture overview,” 2024, last accessed 05 March 2025. [Online]:
https://developers.home-assistant.io/docs/architecture index/

[58] M. Aniche, Effective Software Testing: A developer’s guide. Manning, 2022.
[Online]: https://books.google.ch/books?id=U4BlEAAAQBAJ

[59] K. B. Berko, “Exploring the viability of cross-platform
ui development with compose multiplatform,” last accessed
26. April 2025. [Online]: https://www.droidcon.com/2024/07/05/
exploring-the-viability-of-cross-platform-ui-development-with-compose-multiplatform

https://www.usenix.org/conference/usenixsecurity22/presentation/manandhar
https://www.usenix.org/conference/usenixsecurity22/presentation/manandhar
https://emteria.com/blog/android-screen-mirroring
https://emteria.com/blog/android-screen-mirroring
https://docs.python.org/3/whatsnew/3.13.html
https://pangea.ai/resources/electron-software-framework-the-best-way-to-build-desktop-apps#disadvantages-of-electron
https://pangea.ai/resources/electron-software-framework-the-best-way-to-build-desktop-apps#disadvantages-of-electron
https://pangea.ai/resources/electron-software-framework-the-best-way-to-build-desktop-apps#disadvantages-of-electron
https://developer.smartthings.com/docs/getting-started/architecture-of-smartthings
https://developer.smartthings.com/docs/getting-started/architecture-of-smartthings
https://developers.home-assistant.io/docs/architecture_index/
https://books.google.ch/books?id=U4BlEAAAQBAJ
https://www.droidcon.com/2024/07/05/exploring-the-viability-of-cross-platform-ui-development-with-compose-multiplatform
https://www.droidcon.com/2024/07/05/exploring-the-viability-of-cross-platform-ui-development-with-compose-multiplatform

60 BIBLIOGRAPHY

[60] Uptrace, “The complete podman vs docker analysis: Features, performance
security,” last accessed 28. April 2025. [Online]: https://uptrace.medium.com/
the-complete-podman-vs-docker-analysis-features-performance-security-eb40fa6046c3

[61] Solid-Future, “Podman vs docker: Which is better?” last accessed 28. April 2025.
[Online]: https://solid-future.com/podman-vs-docker-vs-kubernetes

https://uptrace.medium.com/the-complete-podman-vs-docker-analysis-features-performance-security-eb40fa6046c3
https://uptrace.medium.com/the-complete-podman-vs-docker-analysis-features-performance-security-eb40fa6046c3
https://solid-future.com/podman-vs-docker-vs-kubernetes

Abbreviations

API Application Programming Interface
BLE Bluetooth Low Energy
CIA Confidentiality-Integrity-Availability
CLI Command-line interface
CV Coefficient of Variation
CoAP Constrained Application Protocol
COPSEC Compliance-Oriented IoT Security and Privacy Evaluation
CCPA California Consumer Privacy Act
CSG Communications Systems Group
DDos Distributed Denial-of-Service
DoS Denial-of-Service
DTLS Datagram Transport Layer Security
ECDH Elliptic Curve Diffie-Hellman
GATT Generic Attribute Profile
GDPR General Data Protection Regulation
GIL Global Interpreter Lock
GPU Graphics Processing Unit
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
IO Input/Output
IoT Internet of Things
IP Internet Protocol
IPSP Internet Protocol Support Profile
IRK Identity Resolving Key
JDK Java Development Kit
JRE Java Runtime Environment
JVM Java Virtual Machine
KMP Kotlin Multiplatform
MAC Media Access Control
MITM Man-in-the-middle
MQTT Message Queueing Telemetry Transport
NLP Natural Language Processing
OCI Open Container Initiative
OS Operating System
PIPL Personal Information Protection Law

61

62 ABBREVIATIONS

QUIC Quick UDP Internet Connections
RPA Resolvable Private Address
SIM Subscriber Identity Module
SSL Secure Sockets Layer
STS Scrambled Timestamp Sequences
TCP Transmission Control Protocol
TDD Test-driven Development
TLS Transport Layer Security
ToF Time-of-flight
UDP User Datagram Protocol
UI User Interface
UPnP Universal Plug and Play
UUID Universally Unique Identifier
UWB Ultra-Wideband
VNC Virtual Network Computing
Wi-Fi Wireless Fidelity
WPAN Wireless Personal Area Network
WSL Windows-Subsystem for Linux

List of Figures

2.1 Comparison of how Apple HomeKit vs. Google Home handle various se-
curity and privacy tasks across device lifecycle stages (Deploy, Operate,
Decommission), source: [45] . 15

3.1 Risk assessment . 20

3.2 Abridged overview, original from Katharina O.E. Mueller 21

3.3 High-level system view . 25

4.1 Basic settings with icon packaging options 29

4.2 Implementation Class Diagram . 34

4.3 User Interaction Flow Diagram . 35

4.4 Privacy Requirements Mapping UI . 36

4.5 Left: single application container, right: multiple applications container . . 37

4.6 Folder structure for adapted projects . 41

5.1 Slope graphs . 48

A.1 Evaluation results . 70

A.2 Evaluation stats . 71

63

64 LIST OF FIGURES

List of Tables

3.1 Hard Requirements . 22

4.1 Docker vs Podman Comparison . 33

4.2 Project Usages . 42

5.1 Evaluation system specifications . 46

5.2 Overhead % compared to CLI baseline . 47

5.3 CV values per system and scenario . 48

5.4 Performance scores . 49

65

66 LIST OF TABLES

Listings

4.1 Windows bundling specifics . 30
4.2 macOS bundling specifics . 30
4.3 Linux bundling specifics . 31
4.4 Registering a data listener (+ automatic clean-up on dispose) 37
4.5 ApplicationResource data . 38
4.6 Containerfile for a basic image that uses Python 39
4.7 Setup data for an external nRF board configuration 40

67

68 LISTINGS

Appendix A

Contents of the Repository

The code repository contains the following content:

A.1 README

This holds all the information that is needed for the installation and operation of the
application. For further help, there are additional READMEs in the /Instructions folder.

A.2 Source code

https://github.com/iKusii/BA-ModularIntegrationPlatform/tree/main/composeApp

A.3 Evaluations

A.3.1 File

https://github.com/iKusii/BA-ModularIntegrationPlatform/blob/main/evaluations.xlsx

69

70 APPENDIX A. CONTENTS OF THE REPOSITORY

A.3.2 Results raw

Figure A.1: Evaluation results

A.4. INSTRUCTIONS 71

A.3.3 Results evaluated

Figure A.2: Evaluation stats

A.4 Instructions

https://github.com/iKusii/BA-ModularIntegrationPlatform/tree/main/Instructions

	Declaration of Independence
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Methodology
	Thesis Outline

	Fundamentals
	Background
	Bluetooth Low Energy
	UWB
	TCP / UDP
	Privacy Requirements

	Related Work
	Privacy Evaluation Frameworks
	Specialized Tools and NLP
	Research Gap

	Design
	Requirements Engineering
	Relevant Data Formats and Technologies
	Privacy Requirements
	HomeScout
	ZigBee Packet Sniffer
	IoT Network Topology
	High-traffic Dataset Generation

	Platform Specifics Choice
	Web-based vs Desktop Application
	Language Selection
	Similar existing Solutions

	Projected Class Diagram
	Test Suite

	Implementation
	Compose
	Packaging
	Windows
	MacOS
	Linux

	Containerization
	Core Components
	Views
	Lifecycle Manager
	Data Integration Hub
	Container Manager
	Container
	Plugin Manager
	PodmanService
	Adjusted Projects

	Testing
	UI
	Logic

	Evaluation
	Benchmarks
	Comparison
	Analysis

	Final Considerations
	Summary
	Challenges and Accomplishments
	Conclusions
	Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Contents of the Repository
	README
	Source code
	Evaluations
	File
	Results raw
	Results evaluated

	Instructions

