
HomeScout Extension:

Investigation of Lightbulb-based

User-Profiling and

Privacy-Preservation

Delia Datsomor
Zurich, Switzerland

Student ID: 19-746-551

Supervisor: Katharina O.E. Müller, Dr. Bruno Rodrigues
Date of Submission: May 08, 2024

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.csg.uzh.ch/

Declaration of Independence

I hereby declare that I have composed this work independently and without the use of any
aids other than those declared (including generative AI such as ChatGPT). I am aware
that I take full responsibility for the scientific character of the submitted text myself,
even if AI aids were used and declared (after written confirmation by the supervising
professor). All passages taken verbatim or in sense from published or unpublished writings
are identified as such. The work has not yet been submitted in the same or similar form
or in excerpts as part of another examination.

Zürich,
Signature of student

i

08
.
05

.
2024 Bdafsomer

ii

Abstract

The number of smart homes, where devices equipped with Bluetooth Low Energy (BLE)
and Zigbee like Philips Hue are increasingly being used, is rising. These technologies
allow for advanced tracking capabilities, such as BLE devices with AirTags. People have
demonstrated Zigbee’s promising potential for user tracking in smart homes, but little
attention has been given to exploring the extent of information extractable solely from
network packets, particularly focusing on Philips Hue packets. Especially the inquiry
into whether possessing a single Philips Hue network key enables the decryption of other
Philips Hue networks remains largely unexplored. This work presents a real-time scanning
and sni�ng application designed to identify devices, classify them, and monitor events
within a Philips Hue network, facilitating an examination of vulnerabilities in Philips Hue
smart homes. This is achieved by conducting an exhaustive analysis of Zigbee communi-
cation within several Philips Hue networks and entailing an iterative process of collecting
and evaluating Zigbee packets, complemented by the design and implementation of a pro-
totype using inference rules. Results showcase the ability to successfully track di↵erent
Philips Hue networks using the sni�ng application and achieving an accuracy rate of ap-
proximately 94% in identifying devices and events within the network presenting certain
privacy issues like user profiling concerns.

iii

iv

Acknowledgments

Grateful for the opportunity to conduct my bachelor’s thesis, I wish to express my appreci-
ation to the Communication Systems Research Group (CSG) of the University of Zurich’s
Department of Informatics. I extend my sincere thanks to my supervisor, Katharina
Müller, for her continuous support, granting me the freedom to explore my interests, and
providing precise advice, constructive feedback, and generous time. Additionally, I want
to express my gratitude to my family for their relentless support and patience throughout
this journey, particularly my father, Lawrence Datsomor, whose assistance with the setup
and the review of my thesis was invaluable. Lastly, I thank Dimitri Missoh for taking the
time to review my work and providing me with valuable suggestions for improvement.

v

vi

Contents

Declaration of Independence i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Goals . 2

1.3 Thesis Outline . 3

2 Background 5

2.1 Zigbee . 5

2.2 Philips Hue . 11

2.3 Home Assistant . 12

3 Related Work 15

4 Design 17

4.1 Setup . 17

4.1.1 Hardware . 18

4.1.2 Software . 20

4.1.3 Assumption . 20

4.1.4 Sni�ng operations . 20

vii

viii CONTENTS

4.2 Data Collection . 21

4.3 Data evaluation . 21

4.3.1 Prototype design . 22

4.3.2 Home Assistant Integration . 23

5 Implementation 25

5.1 Command Extractor . 25

5.2 Packet Extractor . 26

5.3 Filter . 27

5.4 Identifier . 28

5.5 Analyzer . 29

5.6 Tracker . 30

5.7 Runner . 31

5.8 Flowcharts . 31

5.9 Implementation Discussion . 34

5.9.1 Command Extractor . 34

5.9.2 Packet Extractor . 35

5.9.3 Filter . 36

5.9.4 Identifier . 37

5.9.5 Analyzer . 38

5.9.6 Tracker . 43

5.9.7 Runner . 43

6 Results and Evaluation 45

6.1 Testing and Outcomes . 45

6.1.1 Setup . 45

6.1.2 Device Identification Results . 46

6.1.3 Event Detection Results . 47

6.2 Prototype Evaluation . 48

CONTENTS ix

6.2.1 Evaluation Metrics . 48

6.2.2 Evaluation Discussion . 49

6.2.3 Challenges . 49

6.2.4 Emerging Security and Privacy Concerns 50

6.2.5 Reflective Synthesis . 52

7 Conclusions and Future Work 55

7.1 Conclusions . 55

7.2 Future Work . 56

Abbreviations 63

List of Figures 64

List of Tables 66

List of Listings 67

A Contents of the Repository 71

A.1 README . 71

A.2 Python Scripts . 73

A.3 JSON Files . 73

A.4 Testing . 73

A.4.1 Raw Live . 73

A.4.2 Raw Passive . 73

A.4.3 Summary Tables of Devices and Events 74

x CONTENTS

Chapter 1

Introduction

In recent years, the smart home technology landscape has transformed, driven by the
emergence of various wireless communication protocols [1]. Among these, BLE has played
a crucial role, in facilitating seamless connectivity and enhancing the functionality of
smart devices. However, as the prevalence of BLE-enabled devices continues to rise, so
do concerns regarding privacy and security [2].

BLE technology has gained popularity due to its ability to e�ciently track personal items,
as exemplified by Apple AirTags [3]. This technology o↵ers users a convenient solution
for keeping track of items such as keys, wallets, and bags. However, the same tracking
capabilities that enhance convenience also raise questions about the potential for misuse,
particularly in terms of tracking individuals without their consent [4].

Furthermore, the integration of BLE into various smart home devices has expanded the
scope of tracking possibilities. Many smart home appliances and gadgets use BLE for
communication and control, contributing to a more interconnected living environment.
This integration, while o↵ering numerous benefits in terms of convenience and e�ciency,
also introduces concerns about privacy and security. The increasing popularity of smart
homes [5] also raises concerns about potential invasions of privacy through tracking of
user activities.

In parallel, another wireless communication protocol, Zigbee, has emerged as a prominent
player in the field of smart home technology. Devices such as Philips Hue smart lighting
systems rely on Zigbee for communication between the bridge and individual light devices,
o↵ering users greater control and flexibility in lighting solutions [6].

Similar to BLE, Zigbee presents opportunities for tracking within smart home environ-
ments, raising additional privacy and security considerations.

As the adoption of smart home technology continues to increase, fueled by the increasing
popularity of devices like Philips Hue devices, the potential for tracking extends beyond
individual belongings to encompass broader aspects of daily life. The ability to track smart
home activities, including lighting schedules, appliance usage, and occupancy patterns,
introduces new challenges in terms of privacy protection and security.

1

2 CHAPTER 1. INTRODUCTION

As consumers embrace the convenience and connectivity o↵ered by these technologies,
it’s important to acknowledge the non-technological dimensions, particularly concerning
user profiling, which if misused, can potentially contribute to stalking or other forms of
harassment.

1.1 Motivation

This thesis is driven by a desire to comprehend the nuances of Zigbee communication
in a Philips Hue smart home setting [7] unlocking the potential to extract meaningful
content from encrypted packets. By scrutinizing the communication protocols within a
real Philips Hue smart home, there’s an opportunity to gain insights that go beyond
technical understanding.

The development of a real-time scanning and sni�ng application represents a proactive
step towards exploring the finer details of Zigbee communication. This prototype not only
aims to decode encrypted packets but also aims to reveal patterns and behaviors encoded
within them. Such insights could potentially shed light on user habits, o↵ering a glimpse
into the intimate dynamics of smart home interactions.

Furthermore, the integration of Home Assistant into the evaluation process underscores
the pursuit of e�ciency in Zigbee network scanning.

Ultimately, the exploration of Zigbee communication vulnerabilities within Philips Hue
smart homes adds a critical layer of understanding to the larger conversation on smart
home security. It raises awareness about the tracking potential inherent within smart
home technologies, facilitating necessary discussions about privacy and data protection.
But unlike traditional security assessments, the core objective is the seamless integration
of scanning and sni�ng capabilities into a singular application while also uncovering non-
technical privacy concerns such as user profiling. Outlined below are the research questions
to be addressed in this thesis.

1. How e↵ectively can a sni↵er application capture and analyze Zigbee communication
packets in a smart home, especially those related to smart light bulbs?

2. What insights into the packet content can be gained, and how can this information
contribute to the tracking of user habits and preferences?

3. What potential security vulnerabilities in Zigbee communication can be identified
through packet sni�ng?

1.2 Thesis Goals

This thesis aims to comprehensively investigate Zigbee communication within a Philips
Hue smart home environment. The primary objectives include the analysis of a real

1.3. THESIS OUTLINE 3

Philips Hue smart home to then transition into the development of a real-time application
with scanning and sni�ng capabilities, with a focus on smart light bulbs. Additionally,
the thesis assesses how Home Assistant might be integrated for Zigbee network scanning
e�ciency. An examination of Zigbee communication vulnerabilities in smart homes is
included as well, which adds to the knowledge of potential security issues. Thus, the main
contributions of this work are:

• A comprehensive analysis of Zigbee communication in a Philips Hue smart home
setting.

• Developing a real-time scanning and sni�ng application.

• Evaluation of Home Assistant’s integration for e↵ective scanning of Zigbee networks.

• Evaluation of the real-time scanning and sni�ng application leading to an exami-
nation of vulnerabilities in Phillips Hue smart homes.

1.3 Thesis Outline

Chapter 2 provides a comprehensive background on Zigbee technology, the Philips Hue
lighting system, and Home Assistant platforms. This chapter explores the fundamental
principles, setting the stage for the subsequent chapters.

Chapter 3 delves into the related work in the field, examining existing research, projects,
and literature relevant to the integration of Zigbee, Philips Hue, and Home Assistant.
This chapter analyzes previous studies and highlights key insights.

Chapter 4 focuses on the design aspect, detailing the setup procedures, data collection
methodologies, and data evaluation techniques employed in the thesis.

Chapter 5 presents the implementation phase of the prototype. This chapter o↵ers a com-
prehensive description of the implementation process and delves into an implementation
discussion.

Chapter 6 evaluates the implemented prototype, analyzing its performance, functional-
ity, and usability. This chapter encompasses testing procedures, and outcome assess-
ment. Furthermore, it presents challenges and emerging security and privacy concerns
and presents a reflective framework.

Finally, Chapter 7 initiates a discussion on the findings of the research and outlines po-
tential avenues for future work. This chapter presents the concluding considerations,
outlines the limitations of the study, and suggests recommendations for future research
and development in the field.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Zigbee

Zigbee is a wireless communication protocol based on the IEEE 802.15.4 standard that
was designed for Wireless Personal Area Networks (WPANs) and used in low-powered em-
bedded devices, specifically radio systems. WPANs, which are essential to the landscape
of short-range networking, connect personal devices in close proximity from 10 to 100m.
Hence, its primary purpose is to enable e�cient machine-to-machine communication over
short distances. Zigbee notably focuses on low-power, low-data-rate transmission, posi-
tioning it as a key technology in the Internet of Things (IoT) [8].

This section’s technical descriptions of Zigbee are derived from the Payatu IoT Security
Handbook[9], Rudresh’s guide on Zigbee basics [8] and [10]. Additional resources are cited
accordingly.

Protocol Stack

Figure 2.1: Zigbee Protocol Stack

5

6 CHAPTER 2. BACKGROUND

From the bottom up, the Zigbee layer stack is composed of the physical (PHY) layer, the
media access control (MAC) layer, the network (NWK) layer, and the application layer.
In total, there are four layers. The PHY and MAC layers are defined in the IEEE 802.15.4
standard. The NWK and application layer are defined by the Zigbee alliance. Each layer
serves as a data and management layer for the layer above it. Figure 2.1 depicts the
layered architecture of the Zigbee network protocol [11].

Physical Layer The Zigbee PHY layer serves by providing both PHY data services and
management services, while also establishing the interface between the wireless channel
and the MAC sublayer. It functions across distinct frequency ranges, employing 16 chan-
nels in the high-frequency 2.4 GHz spectrum worldwide. In North America and Australia,
it utilizes 30 channels in the 915 MHz band, while in Europe, a single channel is allocated
in the 868 MHz band. Additionally, certain Zigbee devices operate on the 784 MHz band
in China. The main tasks encompass the control of radio operations, including the en-
abling and disabling of the radio, the delivery of essential Link Quality Indication (LQI)
for received packets, and providing valuable insights into signal quality. Furthermore, En-
ergy Detection (ED) is a central responsibility, involving the evaluation of channel energy
to determine signal presence and Clear Channel Assessment (CCA) is performed to verify
channel clarity before initiating data transmission.

Media Access Control Layer All wireless physical channel access is managed and pro-
cessed by the MAC layer, which also o↵ers MAC layer data service and administration.
Beacon generation and synchronization, support for the establishment and separation of
PAN links, and carrier sense multiple access with collision avoidance (CSMA-CA) mech-
anism implementation are among the main functions of the MAC layer. Additionally,
it is responsible for processing and maintaining the guaranteed time slot (GTS) mecha-
nism and ensuring a reliable communication link. Later on, more detail will be provided
concerning packets and their structure in the MAC Layer.

Network Layer As the protocol stack’s basic layer, the NWK layer is largely in charge
of network formation and path selection. The Zigbee coordinator’s network layer is re-
sponsible for creating the network, selecting the network topology (star, tree, or mesh),
and assigning network addresses to network devices. The router, a networking device
that forwards data packets between computer networks, also assists the coordinator in
discovering and managing network routes. More precisely, the layer establishes a service
interface connecting the 802.15.4 MAC layer and the application layer. Within this con-
text, the Network Layer Data Entity (NLDE) and the Network Layer Management Entity
(NLME), o↵er the following services; The NLDE is responsible for the generation of the
Network level PDU (NPDU) which is a data packet or frame, Topology-specific routing
and security while the NLME is occupied with configuring a new device, starting a net-
work and joining, rejoining and leaving a network. Additionally, it plays a crucial role
in addressing mechanisms, facilitating tasks such as neighbor discovery, route discovery,
reception control, and routing.

2.1. ZIGBEE 7

Application Layer The Zigbee application layer architecture includes the application
support layer (APS), Zigbee device object (ZDO), and application objects defined by the
manufacturer. The application layer is responsible for keeping the binding database up
to date and transmitting messages between bound devices. The APS sub-layer provides
an interface between the NWK and application layer through a set of services used by
both the manufacturer-defined application objects and the ZDO. Two APS entities that
o↵er the following services are the APS Data Entity (APS-DE) and the APS Management
Entity (APS-ME). The APS-DE facilitates data transmission services between applica-
tion entities and the APS-ME is responsible for security services, binding of devices, and
group management. Serving as an intermediary between the application framework and
the APS, the ZDO facilitates an interface connecting application objects, the device pro-
file, and the APS. The ZDO holds responsibilities such as initializing the APS, the NWK,
and Security Services. Additionally, it gathers configuration information from end appli-
cations to determine and execute tasks related to discovery, security management, and
network management, as well as binding, node, and group management. The application
framework serves as an execution environment for hosting application objects with the ca-
pacity for up to 254 distinct objects, each identified by an endpoint address from 1 to 254.
Endpoint 0 and Endpoint 255 are designated for the ZDO address and broadcast address,
respectively, managed by the Application Support Sub-layer Data Entity - Service Access
Point (APSDE-SAP). Endpoints 241 through 254 are reserved by the Zigbee Alliance and
require approval for use. Application Profiles establish agreements on messages, their
formats, and processing actions, enabling the development of interoperable, distributed
applications with entities residing on separate devices. The Zigbee Alliance has released
public application profiles for applications like Home Automation, while device manufac-
turers have the flexibility to define custom profiles suited to their specific applications.
Clusters, representing collections of attributes and application messages, are categorized
into input and output clusters. A cluster identifier is a unique 16-bit number within the
scope of a particular application profile. A detailed depiction of the Zigbee protocol stack
can be seen in Figure 2.2.

Figure 2.2: Detailed Protocol Stack [12]

8 CHAPTER 2. BACKGROUND

Network Topologies

Zigbee devices are versatile, operating in three distinct modes or node types that define
their roles within the network architecture.

The Zigbee Coordinator (ZC) functions as a central node, a Full-Function Device (FFD)
responsible for creating, configuring, and managing the Zigbee network. It maintains a list
of associated devices and o↵ers services such as association, disassociation, orphan scan,
and rejoining. The Zigbee network relies on the constant activity of a Zigbee Coordinator,
hence this node cannot enter sleep mode.

In the role of an intermediate FFD, the Zigbee Router (ZR) e�ciently relays packets
between end devices or between an end device and the coordinator. It becomes the
parent for end devices joining the network, facilitating seamless communication.

Zigbee End Devices (ZED) can either be Full-Function Devices (FFD) or Reduced-Function
Devices (RFD). These devices, focus on monitoring, data collection, or executing actions
based on user commands. With no message routing capabilities, ZEDs communicate
solely with their parent node. Typically designed as low-powered, battery-operated de-
vices, ZEDs can enter sleep mode to conserve energy, making them suitable for scenarios
requiring minimal power consumption.

The NWK accommodates various topologies, including star, tree, and mesh structures
pictured in Figure 2.3.

Figure 2.3: Network Topology Types [13]

In a star configuration, a single Zigbee coordinator oversees the entire network, acting as
the central controller. End devices communicate directly with the coordinator or other
end devices. However, the coordinator can become a bottleneck for message routing, and
a failure in the coordinator may lead to a network shutdown.

Tree topologies involve the Zigbee coordinator initiating the network and selecting key
parameters, with the network potentially expanding through Zigbee routers. Using a
hierarchical routing approach, a router is in charge of transferring control messages and
data throughout the network. It might be a child of the coordinator or another router.
An end device can be a coordinator or a router’s child, and it can only speak with other
end devices through a coordinator or a router. If a router fails, it can result in a shutdown
of the network segment under the a↵ected router.

2.1. ZIGBEE 9

In mesh topologies, the Zigbee coordinator is responsible for creation and configuration,
and the network can extend using Zigbee routers. Mesh networks facilitate full peer-to-
peer communication and are known for their self-healing capability. Even if the coordina-
tor fails, the network persists as end devices communicate with each other and the router.
However, mesh networks are complex and introduce messaging overhead in the network.

Packets

The technical explanations of Zigbee Packets are based on the book “Zigbee wireless
networks and transceivers” [14]. Additional resources are cited accordingly.

Information is exchanged among di↵erent devices in the form of packets. Figure 2.4
illustrates the typical configuration of a packet. Reusing the 802.15.4 PHY and MAC
layers’ packet formats, the Zigbee protocol operates on top of them [15]. Packet sni�ng
in Zigbee typically occurs at the MAC and the PHY layer which is why we will only be
focusing on these two layers.

Figure 2.4: Packet Structure [14]

The PHY packet comprises three main elements: the Synchronization Header (SHR),
the PHY Header (PHR), and the PHY Payload. The SHR facilitates the receiver in
synchronizing and aligning with the incoming bitstream. Within the PHY packet, the
PHR carries details about the frame length. The PHY payload, sourced from upper
layers, encompasses either data or commands intended for the receiving device.

The MAC frame, sent to other devices as a PHY payload, is divided into three sections:
the MAC header (MHR), which contains information such as addressing and security, the
MAC payload, which has a variable length size (including zero length), and the MAC
footer (MFR), which contains a 16-bit Frame Check Sequence (FCS) for data verification.

Within the framework of IEEE 802.15.4, the standard defines four distinctive MAC frame
structures, namely the beacon, data, acknowledge, and MAC command frame depicted in
Figure 2.5.

10 CHAPTER 2. BACKGROUND

Figure 2.5: MAC Frame [16]

The Beacon Frame assumes its role in the coordination. Coordinators utilize beacon
frames to broadcast synchronization signals, aligning the clocks of all devices within the
network. For the transmission of actual data, the Data Frame comes into play. Devices
leverage data frames to convey information to one another, enabling the seamless exchange
of data within the network. Acknowledging successful data reception, the Acknowledge
Frame is deployed. When a device successfully receives a data frame, it responds with an
acknowledgment frame. This exchange ensures that the sender is informed of the data’s
secure delivery. Meanwhile, the MAC Command Frame is designated for the transmis-
sion of MAC commands. These commands play a central role in network management,
addressing, security, and other MAC-layer functions. The MAC command frame serves
as the channel through which these crucial commands are communicated, contributing to
the e↵ective governance of the network.

Zigbee Light Link

This subsection is based on the paper“Zigbee light link and its applications”[17] to explain
the basics of Zigbee Light Link (ZLL).

ZLL represents a public application profile implemented at the application layer of the
Zigbee protocol stack and developed by the Zigbee Alliance to facilitate consumer lighting
solutions utilizing the Zigbee PRO wireless network protocol. Operating globally at the
2.4 GHz ISM band, Zigbee PRO supports data rates up to 250 Kbps and incorporates
crucial networking mechanisms such as security, mesh routing, and network management.
Unlike traditional Zigbee networks, a ZLL system eliminates the need for a coordinator,
utilizing a commissioning application called Touchlink for network formation/joining. The
ZLL protocol stack is illustrated in Figure 2.6.

2.2. PHILIPS HUE 11

Figure 2.6: ZLL Protocol Stack [17]

Device classifications within ZLL are divided into two main types: light devices and
controller devices. Light devices encompass various functionalities such as on/o↵ lights,
dimmable lights, color lights, extended color lights, and color temperature lights. Con-
troller devices include a range of tools like light switches, occupancy sensors, remote
control units, smartphones, and computing devices. Controller devices can further be
categorized into types such as color controllers, color scene controllers, non-color con-
trollers, control bridges or on/o↵ sensors.

2.2 Philips Hue

In 2012, Signify [18] unveiled the Philips Hue system, a smart home lighting solution that
has gained widespread popularity. Philips Hue consists of interconnected bulbs that users
can control through a smartphone or tablet using a Zigbee bridge. This bridge connects to
the home router via ethernet. Widely recognized as a leading product in the smart home
and Internet of Things space, Philips Hue allows users to manage color-tunable lights from
smartphones, web services, or other devices within the system. Significantly, it operates
as an open system, allowing other suppliers to add components like smartphone apps,
services, light switches, and lamps through standardized or published interfaces [19]. A
comprehensive view of the Philips Hue system and its primary components is presented
in Figure 2.7.

Figure 2.7: Philips Hue Setup [20]

12 CHAPTER 2. BACKGROUND

Communication among Philips Hue lamps is facilitated by a standardized Zigbee protocol,
enabling integration with Zigbee-based devices such as sensors and light switches. The
Philips Hue bridge acting as a coordinator oversees home automation, connecting the
Zigbee network to the home IP network and the Internet. On the IP network side,
smartphones, web browsers, third-party services, and a Philips Hue portal contribute
to the system, all leveraging software and utilizing Philips Hue interfaces or Software
Development Kits (SDK) for application development [20].

Philips Hue seamlessly integrates with various other ecosystems, often leveraging standard
or open interfaces. The system provides published interfaces for third-party smartphone
or tablet apps, third-party services, and browsers to access the Philips Hue system. In
essence, services, apps, lights, sensors, and switches designated as Philips Hue or friends
of Philips Hue operate using the same mechanisms as third-party apps, third-party ser-
vices, and standard Zigbee nodes, potentially incorporating some proprietary Philips Hue
interfaces or extensions to published interfaces.

Limited details have been released regarding the topology; however, it is worth noting
that the light devices possess a Zigbee chip [21]. This notable feature transforms them
into routers allowing for a mesh network and seamless installation throughout the home
or its surroundings without any compromise in connectivity.

2.3 Home Assistant

Home Assistant [22], founded by Paulus Schoutsen, is an open-source platform designed
for controlling devices in smart homes or buildings. Maintained by a global community,
Home Assistant wants to establish a standard for managing, provisioning, and communi-
cating with a diverse range of devices. As an open-source programmable project, it en-
courages researchers to actively participate in its development. The platform continually
evolves, expanding its functionality through the integration of various dockers, plugins,
and devices. Home Assistant embraces existing and widely-used technologies instead of
reinventing the wheel, utilizing classic ethernet or local Wi-Fi networks for a functional
setup [23].

Home Assistant Core Architecture [24], depicted in Figure 2.8, o↵ers the ability to en-
hance its functionalities through integrations, each designed for specific domains within
the system. These integrations actively engage with events, trigger actions, deliver ser-
vices, and maintain states. Structured with a core component for fundamental logic and
platforms that smoothly interface with other integrations, they are all crafted in Python,
leveraging the language’s robust capabilities. Home Assistant comes pre-equipped with a
diverse array of built-in integrations.

2.3. HOME ASSISTANT 13

Figure 2.8: Home Assistant Core Architecture

An example of the Philips Hue integration is shown in Figure 2.9. The Philips Hue
integration gives the ability to manage and oversee the lights and sensors linked to the
Philips Hue bridge. Instead of relying on the Philips Hue bridge, a Zigbee coordinator
can be utilized. This enables the use of Zigbee Home Automation (ZHA), facilitating
the direct wireless connection of Zigbee-based devices, such as Philips Hue light bulbs, to
Home Assistant.[25]

Figure 2.9: Integration Architecture [26]

14 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

In the past few years, there has been a swift advancement in consumer IoT devices, driven
by the demand for smart living among consumers. Nevertheless, smart home devices fre-
quently contain substantial amounts of tangible real-world information that might also
interest outsiders and hence open a world for sni�ng. An example of a sni�ng approach
was presented by [27] where they outline a Zigbee protocol packet sni�ng recognition
method based on software-defined radio, proposing a Zigbee recognition approach using
software radio and examining the characteristics of Zigbee protocol messages. Meanwhile,
[28] introduced an open-source IoT forensic tool facilitating IoT gateways and Home Au-
tomation platforms in conducting live tra�c capture and analysis based on IEEE 802.15.4.
Another tool that recognizes in-home devices or events within encrypted Zigbee tra�c is
ZLeaks by [29] working with smart hubs such as Philips Hue. ZLeaks achieves this by
deducing a single application layer command in the event’s tra�c and exploiting the de-
vice’s periodic reporting pattern and interval. Moreover, [30] which introduces a method
to eavesdrop on user privacy by analyzing wireless context, extracting packet sequence
features detecting events, and deducing user activities, moods, lifestyle patterns, and the
presence of installed IoT devices also sheds light on the user profiling that results from
sni�ng and monitoring. Also, [31] delved into the extraction of detailed information about
users by leveraging diverse everyday devices. The study employs advanced learning tech-
niques to deduce user behaviors, specifically by identifying and locating the use of smart
home devices, capitalizing on the exceptional performance of advanced learning across
diverse domains.

Conversely, there has also been research aimed at understanding and benefiting from
people’s behavior, rather than merely observing it. Allahham and Rahman propose a
smart monitoring system for campus infrastructure, intending to regulate the opening
and closing of doors in numerous halls and potentially integrate with lighting systems
and appliances. The OPNET program results reveal variations in the performance of the
network topology used within a Zigbee network, providing designers with the flexibility
to tailor their networks and select technologies that align with their project requirements
[32].

The mere possibility of eavesdropping opens up opportunities for potential attackers.
Namely, Jansen demonstrates that an eavesdropping attacker, during the addition of a

15

16 CHAPTER 3. RELATED WORK

device to the Zigbee network, can obtain keying material, enabling them to decrypt and
manipulate network tra�c which can lead to unauthorized control of devices and the
potential for burglars to exploit network activity cues to determine a user’s presence at
home [33]. Likewise, evaluating real measurements on popular smart home IoT devices,
the results indicate that an adversary can achieve over 90% accuracy in identifying the
state and actions of targeted devices and users. This was presented by [34] when launching
a multi-stage privacy attack on user privacy in smart environments, utilizing advanced
machine learning to passively sni↵ network tra�c. A relatively bigger attack was launched
by [35] where they outlined a novel threat wherein neighboring IoT devices infect each
other with a worm, spreading rapidly over large areas, contingent on the density of com-
patible IoT devices surpassing a critical mass. The study specifically demonstrates and
verifies this infection using Philips Hue smart lamps, illustrating the worm’s propagation
through their built-in Zigbee wireless connectivity and physical proximity. Comparably,
also Wara and Yu have tried themselves on Philips Hue light bulbs where they present
a novel replay attack aimed at exposing security vulnerabilities in commercial Zigbee de-
vices, specifically targeting Philips Hue bulbs and Xbee S1 and S2C modules, with two
case studies confirming the successful transmission of captured packets despite built-in
countermeasures [36].

Transitioning to the broader examination of security vulnerabilities in Zigbee devices, a
further study from [37] involving the Philips Hue but now focusing on the security as-
pect conducts a comprehensive analysis of the ecosystem surrounding the smart bulb to
evaluate privacy risks associated with diverse control devices and smartphone applica-
tions. The findings reveal that employing varied techniques to switch the bulb ON or
OFF significantly influences the actors gathering information on the user’s home and the
volume of data transmitted to the Internet. As smart home devices frequently contain
substantial real-world information, raising concerns about potential information leakage,
[38] introduced the ZPA system for analyzing privacy that relies on Zigbee-encrypted traf-
fic mainly to address privacy and security issues in Zigbee-based smart home networks.
Furthermore, an interesting approach is the introduction of the ChatterHub system, which
addresses privacy concerns in smart-home devices, particularly those utilizing Zigbee or
Z-wave and controlled by a centralized smart-home hub within a PAN connected to the In-
ternet. ChatterHub employs passive eavesdropping on encrypted network tra�c from the
hub and utilizes machine learning techniques to classify events and states of smart-home
devices, contributing to enhanced privacy management [39].

Chapter 4

Design

This chapter details the design of the thesis, which centers around an experimental process
comprising three main phases: setup, data collection, and data evaluation. These phases,
presented in Figure 4.1, form a loop where evaluation informs and improves data collec-
tion, essentially making it an experimental process. Additionally, the evaluation involves
creating a prototype for a live and passive sni↵er program analyzing Zigbee tra�c.

Figure 4.1: Design Phases

The design and implementation are influenced by two key papers. Firstly, the ZPA system
[38], which analyzes privacy using Zigbee-encrypted tra�c. It highlights how easy it is to
obtain network keys, enabling the decryption of entire Philips Hue networks and providing
insights into user behavior. Secondly, the Zleaks tool [29], which identifies devices and
events from encrypted Zigbee tra�c. This is achieved by analyzing the commands given
at the application layer and utilizing device reporting patterns. This demonstrates the
usefulness of inference rules in decrypting networks and understanding user behavior.

4.1 Setup

The setup comprises both hardware and software components, along with an exploration
of the Philips Hue network through packet analysis and an assumption.

17

18 CHAPTER 4. DESIGN

4.1.1 Hardware

The hardware setup involves utilizing the Nordic Semiconductor nRF52840 Development
Kit with its sni↵er software flashed onto it, alongside three Philips Hue bridges, and a
variety of routers and end devices. Specifically, three distinct setups were utilized for
data collection and testing purposes. Each setup operates on di↵erent Zigbee channels to
minimize interference and simplify management.

Setup 1 encompasses a wide-ranging arrangement including one bridge, about sixteen light
devices, and several sensors and switches which are not considered in testing. It mirrors
a real-world smart home configuration, covering areas such as the ground floor compris-
ing the living and dining room, kitchen, and corridors and the first floor comprising all
bedrooms. Setup 1 operates on the default channel 11, making it the most unpredictable
and potentially challenging to work with. A diagram of the setup’s topology is shown in
Figure 4.2.

Figure 4.2: Setup 1 Topology

Conversely, Setup 2 seen in Figure 4.3, represents another genuine smart home setup,
covering spaces like the basement and laundry room on the same floor. It comprises one
bridge, six light devices, and assorted sensors and switches which were also disregarded
in testing. Setup 2 operates on channel 20.

4.1. SETUP 19

Figure 4.3: Setup 2 Topology

On the other hand, Setup 3, depicted in Figure 4.4 is established as a testing setup,
featuring one bridge and two light devices. This arrangement is characterized by its
clarity, predictability, and ease of manipulation. Setup 3 utilizes channel 15, chosen for
its relative isolation to facilitate easier experimentation.

Figure 4.4: Setup 3 Topology

20 CHAPTER 4. DESIGN

4.1.2 Software

The software setup involves the utilization of Wireshark, including Tshark for packet
capture and analysis, installed on a MacBook Pro. Additionally, the o�cial Philips Hue
app on an iPhone 15 Pro was employed as part of the software infrastructure.

4.1.3 Assumption

The setup also featured first-time sni�ng to learn about the packets, their structures, and,
most crucially, how the Philips Hue network operates in packets. To gain an understand-
ing of their behavior and material in general, sni�ng was performed across the several
networks and channels to identify commonalities and generalizations. This is also where
the assumption originated. Specifically, possessing a single network key might possibly al-
low the decryption of other Zigbee Philips Hue networks, regardless of their network keys.
This is what was investigated in the subsequent stages of this thesis.

To examine all of this, the setups’ network keys were required to decrypt the networks.
This was achieved by using the explanation of the di↵erent types of keys, how they work,
and instructions in ZPA, demonstrating how simple it is to obtain a network key. One
merely needs to add a new light device to the Philips Hue network while sni�ng to obtain
the packet with the transport key and the packet with the network key seen in Figure 4.5,
which in Wireshark decrypts every packet when added to the keys.

Figure 4.5: Transport Key Packet to gain Network Key

4.1.4 Sni�ng operations

Another decision made during the setup was which commands to use and where the
prototype should be fitted. The final commands chosen were the on/o↵ command as

4.2. DATA COLLECTION 21

broadcast messages and the level/color control in unicast message format. The on and
o↵ commands were chosen because they are the most commonly used command to turn
on and o↵ light devices. The examination and subsequent decision to focus on broadcast
messages was a time-consuming process which will be discussed extensively in subsequent
chapters. The level and color control commands were selected because it is believed they
are the fundamental commands that define Philips Hue and make it so popular. Following
various considerations, a schedule for later testing the prototype was devised, deciding to
test the commands on two lamps in the same room with a three-minute rest period between
the commands start program, room on, dim light device 1, dim light device 2, color light
device 1, color light device 2, room o↵ and stop program.

The testing of the prototype occurred in all three networks. Twice passively, where
Wireshark was used to capture packets and generate a PCAP/PCAPNG file, and twice
live, where the identification of devices and their type was tested more rigorously, as
explained in the following section.

4.2 Data Collection

Data collection began with sni�ng while executing various commands in Setup 3 and
progressed to Setup 1 over a 15-45-minutes period to determine how much information
one could gather in a relatively short period of time. Although it was initially discussed to
sni↵ for 24 hours, it was discovered that Wireshark finds it di�cult to sni↵ for that long.
In less than 30 minutes, thousands of packets had already arrived, and many of them
contained commands that were not interesting because they are “only” read attributes
packets and their responses. An alternative to Wireshark’s long-term sni�ng problem
could be its integrated Tshark, which is a command-line tool where it is slightly more
di�cult to analyze content directly but can be used for live tracking because it does not
require an interface and can run longer. Sni�ng first started in Setup 3 to get a clear
picture of the Philips Hue network and to test the Python scripts, which are discussed in
detail later. It also helped navigate the entire network, which can be overwhelming. Then
sni�ng in Setup 1 began to produce a more realistic smart home setting, which can be
confusing, chaotic, and unpredictable due to the presence of numerous devices, sensors,
and switches and also packets from di↵erent networks. After several iterations of the data
collection and evaluation loop and several feedbacks from the data evaluation, Setup 2
was brought into activity, which is another realistic smart home setup to finally test the
assumption and prototype.

4.3 Data evaluation

Data evaluation primarily consisted of analyzing packets and constructing scripts based
on the assumption to provide input for a next round of data collection. The first and
most important step was to evaluate the packets with Wireshark. Initially, it was simply
analyzing what information they held and playing around with the commands until the

22 CHAPTER 4. DESIGN

first aim was reached: compare de- and encrypted packets and assess what information
is displayed when the network is encrypted and which may be used to decrypt it. After
analyzing thousands of packets along with Zleaks, it was discovered that the frame and
data length of packets remain constant for each packet type. For example, the frame and
data length of a unicast on command packet remained the same no matter the network
or Zigbee channel. Transitioning the analysis to focus on packet frame and data length.
As certain packet types have the same combination of frame and data length as others,
other ways to distinguish them when encrypted were necessary. The idea of inference
rules with the inspiration of Zleaks came alive. The unicast o↵ command has the same
frame and data length as a read attribute packet where the direction, the source, and the
destination, are also the same which is why they are di�cult to distinguish. Hence the
sequencing of packets becomes crucial in this context. A key observation is that a read
attributes response packet, originating from the end device and destined for the bridge,
consistently follows its counterpart, a read attributes packet with opposite directional flow.
This establishes an inference rule. Consequently, the packet arrival sequence was carefully
examined to establish such rules. However, a significant challenge arises from occasional
packet skips which can lead to misidentification during command analysis.

In summary, the components involved in packet analysis comprised packet and data
length, packet direction, and packet sequences along with their interconnections. The
second part of the data collection included writing scripts and finding ways to decrypt the
network. This involved using several packet types and packet directions to identify devices
and their types as well as events such as the on/o↵ and level/color control commands. As
a result, a live and passive Zigbee sni↵er prototype that can monitor a decrypted Philips
Hue network was designed, which is discussed in more detail in further sections.

4.3.1 Prototype design

The initial prototype targeted passive decryption of a Philips Hue network by identify-
ing device types and capturing on/o↵ and level/color control commands. The program
comprises various Python scripts, each assigned specific tasks. Python was chosen for its
popularity and integrated tools for working with Zigbee packet captures, such as pcap
files. Moreover, the fact that platforms like Wireshark, Home Assistant, and Zleaks uti-
lize Python further a�rmed its suitability. The core scripts that constituted the first
approach were the packet extractor, the command extractor, the filter, the identifier, and
the analyzer.

As packets from multiple networks can get mixed up during capture, the packet extractor
is in charge of extracting the required data from the packets and writing them in a CSV
file per PAN ID. Using the comparison of two JSON files from the same network, one
encrypted with the network key and the other not, the command extractor may extract
and map the frame and data length of particular packet types or commands collectively.
After that, the filter removes any Zigbee Home Automation commands, improving the
analysis’ e�ciency. As implied by the name, the identifier ’s job is to identify devices and
their classification. The analyzer is in charge of examining the events taking place in the
Philips Hue network.

4.3. DATA EVALUATION 23

Eventually, however, the prototype changed to serve two purposes: a tracker script was
built to enable the prototype to track the Philips Hue network in real-time, rather than
only passively. Last but not least, the script that keeps everything together and specifies
what needs to run when is the runner. The upcoming chapter will delve further into the
implementation and choices made for each script.

4.3.2 Home Assistant Integration

One objective of the thesis was to assess the integration of Home Assistant into the
prototype and determine the most e↵ective approach. However, upon scrutinizing the
data accessibility through Home Assistant, it became evident that it was not a suitable
choice. Home Assistant primarily functions as a home automation tool, emphasizing
convenience rather than providing the necessary depth into the protocol layers wished for
the prototype’s functionalities. Consequently, the decision was made to forego integration,
favoring alternative methods such as solely utilizing the nRF board and Wireshark for
delving into the packet layer and extracting raw data, which proved more e↵ective in
achieving the desired depth.

Although possessing the GitHub repository of Home Assistant, significant changes would
have been necessary to align its functionality with the prototype’s purpose. Ultimately,
the prototype achieved similar functionalities, specifically in tracking Zigbee devices, ren-
dering the integration of Home Assistant unnecessary. Nevertheless, Home Assistant was
employed as a control gadget during the testing phase to verify the prototype’s device
identification accuracy. Given the abundance of Zigbee devices in the household, includ-
ing those beyond Philips Hue devices and integrated within Home Assistant, it seemed
logical to utilize it for verification purposes. However, this posed challenges as well as
the prototype operated with network addresses, while Home Assistant concealed them for
Philips Hue devices, utilizing MAC addresses instead, highlighting the disparity in depth
between the two systems.

24 CHAPTER 4. DESIGN

Chapter 5

Implementation

This chapter will present the implementation choices made for each script, which together
represent a comprehensive approach to developing a sni↵er application prototype. It
will follow the chronological order of implementation, reflecting the iterative nature of the
decision-making process, which was informed by the data evaluation outlined in the design
phase. The chapter also introduces an implementation discussion, wherein each script is
revisited to explain and discuss the process of their implementation. This discussion is
kept separate in its own section to prevent any interruptions in understanding the final
prototype’s implementation flow as it also includes approaches that are no longer present.

5.1 Command Extractor

The provided Python script operates under the premise that possessing a Philips Hue
network key can potentially decrypt any other Philips Hue network. Its core objective is
to extract crucial data from two JSON files originating from the same network capture.
One JSON file is decrypted using the network key, while the other remains encrypted.
The aim is to correlate commands and frame lengths with their respective data lengths,
which are only accessible when encrypted. The script generates three CSV files: data.csv,
containing packet frame numbers, lengths, and data lengths, command.csv, storing frame
numbers, lengths, and commands and command data.csv, which combines both by frame
number.

The script comprises two main functions. Firstly, extract command from packets han-
dles the extraction of commands and their frame lengths, facilitating easier access and
reusability through CSV files. These commands encompass various Philips Hue network
operations, including on/o↵, color/level control, read attributes, and route record/request,
each identified by a specific Philips Hue network identifier. The list below demonstrates
the commands with their Philips Hue network identifier representing the command.

• on o↵ = ”zbee zcl general.ono↵.cmd.srv rx.id”

• color control = ”zbee zcl lighting.color control.cmd.srv rx.id”

25

26 CHAPTER 5. IMPLEMENTATION

• level control = ”zbee zcl general.level control.cmd.srv rx.id”

• read attributes = ”zbee zcl.cmd.id”

• route record = ”Command Frame: Route Record”

• route request = ”Command Frame: Route Request”

The first four commands were chosen as previously explained in the section sni�ng
operations 4.1.4. The other 3 commands were extracted for the purpose of identify-
ing device types which will be discussed more in the identifier section 5.4. The ex-
tract data from packets function focuses on retrieving data lengths from the encrypted
JSON file and appending them to the data CSV file. By merging the command and
data CSV files based on frame numbers, the script e↵ectively maps command and frame
lengths to their corresponding data lengths, yielding the final data command CSV file.
This preparatory step lays the groundwork for subsequent processes in identifying and
analyzing devices, device types, and network events.

5.2 Packet Extractor

The packet extractor serves to streamline the analysis of PCAP or PCAPNG files by
condensing the captured data into a CSV format, making it easier to analyze. Its primary
objective is to extract essential information from network packets, reducing clutter and
facilitating analysis.

The function extract packet data plays a crucial role in this procedure by identifying the
relevant data that has to be extracted, such as:

• Frame time

• Frame length

• Source

• Destination

• Destination PAN

• Frame type

• Radius

• Data length

• Sequence number

• Frame number

5.3. FILTER 27

These extracted attributes serve various analytical purposes. For instance, the frame time
provides temporal context, indicating when events occurred. Meanwhile, frame length,
source, destination, and data length aid in device identification and event categorization.
The destination PAN plays a crucial role within the packet extractor by facilitating the
organization of packets based on their network PAN ID. This segmentation ensures that
packets are grouped logically according to their respective PANs, enhancing the clarity
and manageability of the data. Furthermore, within the identifier, both the frame type
and radius parameters are utilized. These attributes serve as additional criteria for packet
classification and identification purposes. By incorporating these parameters, the iden-
tifier can more accurately categorize packets, thereby refining the analysis process and
providing deeper insights into network activity. The frame number is used for analysis
purposes, while the sequence number is used to eliminate duplicates.

The pcap to csv function initiates by applying a display filter 5.1, focusing on relevant
packets while excluding others like Zigbee Device Profile packets. Subsequently, the func-
tion traverses each packet, ensuring uniqueness by comparing attributes such as source,
destination, length, data length, and sequence number with the subsequent 254 packets to
eliminate duplicates. This approach prevents unnecessary duplication removal that could
occur if each packet were compared against all others.

cap = pyshark.FileCapture(input_pcap , display_filter=’zbee_nwk && !(_ws.

col.protocol == "Zigbee ZDP")’)

Listing 5.1: Pyshark Display Filter

Once duplicates are mitigated, the script employs extract packet data to retrieve relevant
packet information. The extracted data is then organized into multiple CSV files, each
corresponding to a unique PAN address found in the captured data. Following extraction,
the tracking function determines the file for analysis, functioning as both a live and passive
tracker by checking

In summary, the packet extractor streamlines data analysis by condensing captured pack-
ets into a structured CSV format, enabling e�cient manipulation and analysis.

5.3 Filter

The filtering script has a relatively minor role compared to other scripts in the program.
Its primary task is to process a CSV file containing extracted data per PAN originating
from the packet extractor script. The output of this script is a filtered CSV file containing
only ZHA packets.

The purpose of this filtering process is to exclude any other packets than ZHA commands
related to basic functionalities such as on/o↵, color/level control, and read attributes with
response commands. By removing other packet types, the analysis of the data becomes
smoother, as the inference rules rely on examining consecutive packets, and the presence
of other packet types could potentially disrupt the sequence. The filtering script plays
an important role in optimizing the data for further analysis, ensuring that only relevant
ZHA packets are retained, thus facilitating a more accurate and e�cient analysis process.

28 CHAPTER 5. IMPLEMENTATION

5.4 Identifier

The identifier, as the name implies, is responsible for recognizing devices and categoriz-
ing them. It operates by taking a selected PAN CSV file as input and generates device
identifications as output. The process csv function initially compiles lists containing var-
ious combinations of commands, frames, and data lengths. These combinations serve as
reference points for identifying packets during the subsequent comparison process.

The packets under consideration include route record, route request, and read attribute
response. Through analysis conducted during the design phase, it was established that
route record and request packets predominantly originate from the Zigbee coordinator.
Consequently, these packets serve as key indicators for identifying the coordinator within
the network. On the other hand, the read attribute response command is commonly
associated with Zigbee end devices. This is due to the inherent behavior of such devices,
which continuously report their attributes to the coordinator.

The primary function of the identifier is to match the frames and data lengths of each
packet against the pre-defined combinations. When a match is found, the source of the
packet is stored in a list corresponding to a potential device type. This process enables
the identification of devices based on their transmitted packets. An example of a code
snippet can be seen in Listing 5.2.

with open(packet_file , ’r’) as pcktfile:

reader = csv.DictReader(pcktfile)

for row in reader:

if row[’Source ’] != row[’Destination ’]:

if row[’Length ’]. isdigit () and row[’Data length ’]. isdigit ():

frame_length = int(row[’Length ’])

data_length = int(row[’Data length ’])

if (frame_length , data_length) in

command_data_route_record:

if row[’Destination ’] not in broadcast_addresses:

p1_zc_devices.append(row[’Destination ’])

if row[’Source ’] not in p1_zed_devices and row[’

Source ’] not in broadcast_addresses:

p1_zed_devices.append(row[’Source ’])

else:

print(’Make sure you removed the network key from

Wireshark.’)

break

Listing 5.2: Identifier Primary Function

Several improvements have been implemented to enhance the program’s reliability. There
are two distinct lists for potential coordinators and end devices. These lists are cross-
referenced at the end to ensure accurate identification and prevent misidentification.
Additionally, the potential coordinators’ list undergoes further scrutiny by evaluating
which source has generated the most route records and route requests, as sometimes non-
coordinators transmit these packets as well.

Identification of routers does not necessitate comparison with the commands list. Instead,
the function directly examines whether the packet is a link status packet, a characteristic

5.5. ANALYZER 29

of routers, and stores its source. This determination is based on specific conditions:
the destination address of the packet being a broadcast address, the frame type being
“0x0001”, and the radius being “1”.

Lastly, the function store zc records the coordinator’s network address in a text file,
which is subsequently utilized in the analyzer. The script organizes the devices into lists
according to their respective device types, providing a streamlined approach for further
analysis and processing.

5.5 Analyzer

The analyzer ’s unique responsibility is to recognize the on, o↵, color, and level control
Philips Hue events inside the network. As well as the identifier it carefully records the
distinct frame and data lengths linked to the particular commands in a list called events.
These combinations also serve as reference points for comparison against incoming packets,
enabling the analyzer to discern whether a packet corresponds to an event. An illustration
in Listing 5.3: a broadcast packet signaling an on command typically exhibits frame and
data lengths of “47” and “11” respectively, against which incoming packets are compared
to.

if event [0] == ’on broadcast ’ and dst in broadcast_addresses: # 47, 11

print(’User turned light on at ’ + row[’Time’] + dst)

Listing 5.3: Check On Packet

Color control packets share identical frame and data length combinations with other
packet types, such as read attribute packets, within an encrypted network. This simi-
larity underscores the necessity for inference rules, as previously discussed where packet
sequencing plays a pivotal role. For example, read attribute packets always generate a
response, which requires certain frame and data length sequences that follow it, as seen
in Figure 5.1 below.

Figure 5.1: Read Attribute Packet Sequence

In essence, when identifying a potential color control packet, the application of inference
rules becomes imperative. These rules ascertain whether a subsequent read attribute
response packet follows. If not, it allows for the distinction of the packet as a color control
packet. The example in Listing 5.4 demonstrates the code used to examine the subsequent
packets following a potential color control packet.

elif event [0] == ’color control ’ and src == zc:

for j in range(1, 11):

next_row = df.iloc[i + j] if i + j < len(df) else None

30 CHAPTER 5. IMPLEMENTATION

if next_row is not None and next_row[’Length ’] == 60 and

next_row[’Data length ’] == 25 and next_row[’Source ’] == dst

and next_row[’Destination ’] == src:

break

elif next_row is not None and next_row[’Length ’] == 70 and

next_row[’Data length ’] == 35 and next_row[’Source ’] == dst

and next_row[’Destination ’] == src:

break

elif next_row is not None and next_row[’Length ’] == 69 and

next_row[’Data length ’] == 34 and next_row[’Source ’] == dst

and next_row[’Destination ’] == src:

break

elif next_row is not None and next_row[’Length ’] == 68 and

next_row[’Data length ’] == 33 and next_row[’Source ’] == dst

and next_row[’Destination ’] == src:

break

elif next_row is not None and next_row[’Length ’] == 67 and

next_row[’Data length ’] == 32 and next_row[’Source ’] == dst

and next_row[’Destination ’] == src:

break

elif next_row is not None and next_row[’Length ’] == 99 and

next_row[’Data length ’] == 64 and next_row[’Source ’] == dst

and next_row[’Destination ’] == src:

break

else:

print(’User controlled color of light at ’ + row[’Time’] + dst)

Listing 5.4: Inference Rule for Color Control Packet

Furthermore, it’s important to consider the direction of packet flow. Specifically, event
commands consistently originate from the coordinator, underscoring the significance of
storing its network address in the identifier for subsequent use. This is again exemplified
by the color control packet, which may inadvertently be misconstrued as a ZCL Groups:
Get Group Membership response packet. To discern a color packet from the latter, its
source must align with the coordinator, while the source of the ZCL Groups: Get Group
Membership response packet typically stems from an end device. Upon recognizing an
event, the program promptly logs the event, its timestamp, and the associated network
address.

5.6 Tracker

The tracker plays a critical role in ensuring the timely execution of appropriate scripts
during live network tracking. It operates autonomously, without input or output, relying
on the subprocess module to manage tracking and analysis concurrently. By initiating
the process with Tshark, it captures an initial set of 255 packets, subsequently analyzing
them while continuously capturing more. This 255-packet capture strategy serves several
purposes. Firstly, it addresses the time delay incurred by background packet analysis,
which could worsen with an increasing number of packets. Secondly, it mitigates the risk
of packet duplication, akin to the window setting in packet extraction. Moreover, limiting
the number of packets enhances the clarity of analysis, streamlining the analytical process.

5.7. RUNNER 31

5.7 Runner

The run script serves as the backbone of the prototype, orchestrating the execution of all
the scripts seamlessly. It operates independently, neither requiring input nor producing
output directly. Upon initiation, it prompts the user to specify the desired mode of
operation, live or passive tracking. In live mode, the script starts with a 90-second network
sni�ng session to capture enough packets for device identification. Subsequently, the user
is prompted to select the network for analysis. The script then proceeds to identify
devices using the appropriate commands and packet extraction techniques, providing the
user with a comprehensive list of devices detected. Following network selection, the filter
is applied, and live tracking commences as described in the tracker. Conversely, in passive
mode, the initial 90-second sni�ng phase is omitted. Instead, the script analyzes the
PCAP/PCAPNG file provided by the user. It follows a sequence of command execution,
packet extraction, filtering, device identification, and analysis.

Finally, the run script concludes by clearing all generated CSV and text files or their
contents, ensuring a clean slate for subsequent analyses. The following diagrams below
illustrate the entire process in short.

5.8 Flowcharts

The execution of the live mode, shown in Figure 5.2 begins with the initiation of run.py.
In the initial step, the user opts for live mode, providing the interface number of the
sni↵er as input through tshark command.txt to facilitate the 90-second capturing. Fol-
lowing this, the command extractor processes the two JSON files, yielding three distinct
CSV outputs: command.csv, data.csv, and command data.csv. Subsequently, the packet
extractor module operates on capture.pcap from the 90-second capture, extracting packet
data into a formatted CSV file named pan ID.csv. The identifier then analyzes the packet
data, producing zc.txt and storing the coordinator as output. Then the filter is employed
on the pan.csv selected by the user which yields filtered pan.csv as the output. Then the
tracker commences also taking the interface number as input through tshark command.txt.
The packet extractor and filter are run again but with the input from each live capture.
The analyzer then finally, utilizes command data.csv and filtered pan.csv as input and
analyzes them printing out the events when finished.

32 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Flowchart Live Mode

5.8. FLOWCHARTS 33

The execution in passive mode is depicted in Figure 5.3 and begins with the initiation
of run.py where the user now opts for passive mode. Following this, the command ex-
tractor processes the two JSON files, also yielding three distinct CSV outputs. Then,
the packet extractor operates on the PCAP file .pcap from the PCAP folder extracting
the packet data into CSV files per PAN. The identifier module then analyzes the packet
data, producing the zc.txt and storing the coordinator. Then the filter takes the pan.csv
selected by the user which gives filtered pan.csv as the output. Finally, the analyzer uti-
lizes command data.csv and filtered pan.csv as input and analyzes them printing out the
events.

Figure 5.3: Flowchart Passive Mode

34 CHAPTER 5. IMPLEMENTATION

5.9 Implementation Discussion

In this section, the strategies employed during the implementation phase will be discussed
and evaluated. To maintain a smooth narrative flow, each script will be reviewed in the
same order as they were described in the sections above. This will allow the thought
process and the reasoning behind each decision to be delved into and its e↵ectiveness
assessed.

5.9.1 Command Extractor

Utilizing two JSON files facilitates a comparative analysis between decrypted and en-
crypted networks, o↵ering valuable insights into the information still accessible post-
decryption. This first step stemmed from the fundamental assumption that possessing
a single network key opens up the potential to decrypt any other network. Opting for
JSON files provides ease of handling, particularly in exporting a network capture from
Wireshark and mapping, given the potential variability in packet attributes such as frame
and data length within the network. The code allows for flexibility, ensuring accurate
attribute mapping even if packet attributes like frame or data length would fluctuate.
However, it’s essential to acknowledge the limitation that the evaluation is constrained
to only the packet types captured in the JSON files, potentially omitting certain packet
types and compromising identification accuracy in the subsequent scripts.

To verify precision in attribute extraction, the script relies on Philips Hue identifiers, en-
suring the extraction of data and frame length from the correct packet type. Mapping
them by frame number guarantees an accurate association between data lengths and corre-
sponding frame lengths. The Zigbee NWK and Zigbee Cluster Library (ZCL) layers serve
as primary sources of decrypted information, facilitating the extraction of relevant data to
generate a CSV file containing frame numbers, frame lengths, and command names. The
ZCL is a cluster located in the application layer as described in the background 2.1. Im-
portantly, the code remains adaptable and capable of extracting data from various JSON
files independently if the user ever wishes to exchange them. However, if the JSON files
don’t contain all the necessary packet types that serve as reference points for identifica-
tion, the prototype could malfunction. It is also worth noting that any changes in Philips
Hue-specific information would necessitate updating the code, even while such instances
are uncommon.

In encrypted networks, only the Zigbee NWK layer is accessible. The process remains
the same as when extracting the commands, involving the extraction of frame and data
length. Notably, there are no limitations imposed by Philips Hue-specific information,
enhancing the versatility of this function.

The output consists of three CSV files, enabling direct inspection which was helpful during
the data evaluation process. This transparency is particularly beneficial for new users of
the prototype, providing insight into intermediate steps and therefore making it valuable,
both in ongoing project development and for future reference. Comparisons with the
system of the Zleaks paper, which lacked intermediary results when the program did

5.9. IMPLEMENTATION DISCUSSION 35

not work, underscore the value of this approach. Additionally, examining the commands
captured in the command data.csv file o↵ers insights into the functionality of the scripts,
highlighting any missed critical commands, for example, an o↵ command, and guiding
further refinement.

The objective of locating event commands was fulfilled as they were present in the CSV
file. It’s plausible that there may be other combinations of frame and data lengths of
the four chosen events not captured, but this is highly improbable given the extensive
analysis of millions of packets and prototype testing. Utilizing CSV files and data frames
streamlines data manipulation, enhancing e�ciency throughout the analysis.

5.9.2 Packet Extractor

At first, the script presented itself di↵erently, requiring significant iterative improvement.
Numerous iterations were conducted regarding the extraction of data. Initially, time,
frame length, data length, source, and destination were clearly defined as the primary
focus was on identifying key data to discern devices and events along with their times-
tamps. It was noted earlier that sni�ng commenced during Setup 3, isolated on channel
15, capturing packets solely from one network. However, upon transitioning to other se-
tups, it became evident that capturing packets from various networks necessitated the
inclusion of destination PAN. Additionally, frame type and radius were utilized for device
identification. Frame numbers were incorporated to facilitate data evaluation, aiding in
the comparison and analysis of packets within Wireshark.

Initially, the pcap to csv function solely extracted data from packets and organized it
into CSV files per PAN ID. However, numerous extraneous packets, including those not
classified as Zigbee packets, were extracted. To streamline analysis, the pyshark filter 5.1
was applied to eliminate duplicates. Attempts were made to employ sequence numbers
for duplicate removal but encountered complications due to the presence of two di↵erent
sequence numbers, one from the Zigbee NWK layer and the other from the ZCL layer.
While the ZCL layer sequence number was only present in decrypted network packets,
the Zigbee NWK layer sequence number was employed for duplicate removal when the
network was encrypted. Additional key data, including source, destination, frame length,
and data length, were included to ensure accurate identification of duplicate packets.
However, merely relying on this key data proved insu�cient due to the sequence number
cycling from 0 to 255 before restarting. To address this, a window size of 254 packets
was implemented, wherein each packet was compared only to the preceding 254 packets,
minimizing duplication. While this approach significantly reduced duplication, the script
still exhibits a limitation wherein packets with sequence number shifts, possibly due to
millisecond delays, may not be identified as duplicates. The potential impact of this issue
on inference rules will be addressed in subsequent discussions.

The tracking function was implemented following the decision to incorporate live tracking
functionality, necessitating a function to determine whether to utilize live tracking capture
or passive capture. However, this function isn’t entirely reliable, as it relies on checking for
file existence to determine which tracking mode to use. If capture.pcap exists (generated
from live tracking mode), the script extracts packets from it until the process completes

36 CHAPTER 5. IMPLEMENTATION

or is stopped. If the file doesn’t exist, the script searches for a .pcap file in the PCAP
folder and uses the first one it finds. One limitation arises if the corresponding file for
the selected tracking mode doesn’t exist, or if the user deviates from the instructions in
the README.md, such as placing multiple files in the PCAP folder, which doesn’t a↵ect
the program but may cause confusion if expecting an analysis of a di↵erent file. The
prioritization is given to checking for capture.pcap because there might be a tendency
for users to forget to remove the PCAP file from the folder for passive tracking, which
could result in the unintended utilization of the PCAP file for live tracking. Although the
automatic deletion of the PCAP file after each run was considered, it was ultimately opted
against, as users may wish to analyze the specific PCAP file multiple times, and di�culties
were encountered in locating the deleted file on the MacBook for reintegration into the
folder. Alternative methods for selecting the file were experimented with, such as direct
user input or global variables, but challenges arose, particularly due to the subprocess
module interruptions when importing from di↵erent scripts. The utilization of CSV files
persisted, primarily due to the significant facilitation of iterative analysis and evaluation
during the design stage, especially with frame numbers.

5.9.3 Filter

The code of the filter was initially hosted within the packet extractor with the aim of
manipulating all packets in a single script. The concept of the filter script emerged
during the analysis of ZHA packets, where there was a necessity for a clear overview of
these packets to analyze their sequencing patterns.

One notable pattern observed, which has been displayed in Figure 5.1, was the read at-
tribute response packet consistently following a read attributes packet, wherein the source
and destination are exchanged. However, these packets were not always perfectly consec-
utive due to interruptions by other packet types what can be seen in Figure 5.4.

Figure 5.4: Interrupted Read Attribute Sequence

Therefore, the filter was developed to specifically extract and filter out these packets, re-
sulting in a CSV file containing only filtered ZHA commands. This decision was informed
by the observation that packets with a data length under 10 were consistently unrelated,
following thorough packet analysis.

The filtered CSV file serves the purpose of event detection but not device identification,
as other packet types are also utilized for the latter. Consequently, the packet extractor

5.9. IMPLEMENTATION DISCUSSION 37

is responsible for preparing the CSV file for device identification, while the filter is tasked
with refining the file for event analysis. This separation of tasks led to the creation of
the filter as a standalone script. Additionally, the filter script requires access to the CSV
file generated from the packet extractor. Embedding the filter function within the packet
extractor script would potentially hinder its ability to access the necessary CSV files,
especially when processing multiple PANs simultaneously.

Once again, the output is a CSV file, aiding in the analytical process by facilitating
comparison with packet data in Wireshark.

5.9.4 Identifier

The initial concept behind the identifier was to establish reference points by combining
frame and data lengths for specific packet types, enabling the identification of device
types. Consequently, the program first generates lists of these reference points, pairing
frame and data lengths with their corresponding commands.

The first step involved identifying packet types presenting distinctive characteristics of
various device types. Attempts were made to identify the bridge using read attribute
packets, typically sent from the bridge to end devices. However, this approach proved
ine↵ective as all other devices besides the bridge also send a lot of these packets as
forwarding router devices. After further analysis, route packets, particularly route requests
mainly sent by bridges, were considered. Despite this, it wasn’t adequate enough to
distinguish the bridge. Therefore, multiple conditions were employed to narrow down the
options, with one idea being to check if the source of a route request packet matches the
destination of a read attributes response, demonstrated in Figure 5.5.

Figure 5.5: Coordinator Detection Condition

An alternative approach could have been to use read attributes packets for bridge iden-
tification but the decision was made not to utilize them. This decision stemmed from
the fact, as previously explained, that when encrypted, it appears identical to a unicast
o↵ packet. This similarity would have potentially disrupted the event analysis process,
prompting it to exclude it from consideration.

Unfortunately, the read attribute response packet also shares similar packet types, partic-
ularly the color control packet. However, distinguishing between these packets is aided
by their message types: unicast and broadcast. This easier distinction was the reason for
choosing for the read attribute response packet over read attribute packets. However, even
with these refinements, it wasn’t su�cient to determine the bridge once and for all. Hence,
the concept of multiple possible device type lists and additional packet types for reference
points was introduced. This involved creating two lists for potential coordinators and
two for potential end devices, along with the inclusion of the packet-type route record.
Consequently, the program iterates through packets, identifying route record packets and

38 CHAPTER 5. IMPLEMENTATION

adding their destinations to the first potential coordinator list and sources to the first
potential end device list. Similarly, for route requests, only the source is added to the
second potential coordinator list, and the same applies to read attribute responses, where
the source is added to the second potential end device list.

This approach proved e↵ective, as the intersection of these lists largely facilitated accu-
rate device identification. However, during implementation, it was discovered that other
devices besides the bridge also send route record and request packets. To address this,
the script was modified to identify the device that sends most of these packets, which
consistently led to the correct identification of the coordinator, as confirmed through
testing.

The routers were easier to identify, as the program directly checks a link status packet
sent by routers. The only issue arises if the capture fails to recognize a link status packet
for every router device, in which case it will not identify the device as a router. However,
as explained in the background chapter 2, every Philips Hue light device has an integrated
chip allowing them to act as routers as well. Therefore, even if the identifier does not
recognize all routers, one can deduce that any device in the ZED list is also a router if
the identification of ZEDs is accurate.

Since the Philips Hue bridge also functions as a router, it might be mistakenly identified
as an end device because it forwards read attribute packets. Thus, it needs to be removed
from the list of end devices at the end of the process.

Due to the subprocess module interrupting the order of the scripts, the coordinator was
not stored in a global variable and imported into any necessary script. Instead, it is
stored in the zc.txt file. Although this approach requires a few more lines of code, it
proved helpful for consistently verifying if the correct device was identified as the bridge.
Additionally, it can provide useful insights for new users. The outcomes of testing the
identifier will be delved into at a later time.

5.9.5 Analyzer

As outlined in the implementation 5, the analyzer operates similarly to the identifier,
focusing on events involving commands such as on, o↵, color, and level control. Rather
than solely depicting the code’s functionality, the comprehensive evolution of the script
and the decision-making process at this important juncture of the project is delved into.
First, the script starts with a list of reference points comprising command, frame, and data
length tuples. The original plan was to detect additional events, including on/o↵ in both
unicast and broadcast, color and level control in uni- and broadcast, and potentially the
recall scene event. Subsequently, the reasoning behind limiting the testing to on/o↵ in
broadcast messages, and color and level control in unicast messages is explained. Opting
for broadcast packets for on/o↵ commands is accompanied by the Figure 5.6 below. Any
newly added light must be associated with a room within the network. During the initial
phase of sni�ng, the predominance of broadcast commands directed towards lights, mixed
with occasional instances of unicast commands, was observed.

5.9. IMPLEMENTATION DISCUSSION 39

Figure 5.6: Adding New Lights

It wasn’t until later that the pattern was
grasped, with the understanding that the
choice between broadcast and unicast of-
ten depended on whether the command
was made by activating an entire room
or specifically targeting an individual light
device. Commands were routinely verified
by isolating individual lamp activation, en-
suring that the corresponding unicast com-
mand was categorically applied to the tar-
geted light. As data analysis progressed
and the analyzer script development com-
menced, it became clear that a unicast o↵
command shared identical frame and data
lengths with a read attributes command,
and similarly matched in direction, mak-
ing a decrypted unicast o↵ packet indis-
tinguishable from a read attributes packet. Consequently, upon scrutinizing the order of
events, it became apparent that a read attributes response must follow the read attributes
packet, which does not occur with the o↵ packet. Therefore, an inference rule was devised
based on these findings to eliminate false event identifications. Given the abundance of
packets, a small code to identify packets with identical frame and data lengths was de-
signed, attempting to di↵erentiate them by analyzing what sets them apart. A small
extract of the result from the code is shown in Table 5.1.

Frame
Length

Info Data Length Command

48 ZCL: Read Attributes 13 O↵
48 ZCL Scenes: Get Scene

Membership
13 O↵

51 ZCL: Read Attributes
Response

16 Level Control Broadcast

51 ZCL Scenes: Get Scene
Membership Response

16 Read Attributes
Response

67 ZCL Scenes: Get Scene
Membership Response

32 Read Attributes
Response

63 ZCL Scenes: Get Scene
Membership Response

28 Read Attributes
Response

52 ZCL: Read Attributes 17 Read Attributes
Response

52 ZCL Groups: Get Group
Membership Response

17 Read Attributes
Response

47 ZCL Groups: Get Group
Membership

12 On Broadcast

47 ZCL OnO↵: On 12 On Broadcast

Table 5.1: Packets with identical Frame and Data Lengths Comparison

40 CHAPTER 5. IMPLEMENTATION

New rules and patterns were attempted to be identified to distinguish between the o↵
packet and the read attributes packet. This involved examining the sequence of packet
types that typically precede or follow each type and their directional flow.

elif event [0] == ’off’: # row[’Length ’] == 48 and row[’Data length ’] =

13

src = row[’Source ’]

dst = row[’Destination ’]

seqno = row[’Sequence number ’]

prev_row = df.iloc[i - 1] if i > 0 else None

next_row = df.iloc[i + 1] if i < len(df) - 1 else None

next_row2 = df.iloc[i + 2] if i < len(df) - 2 else None

if prev_row is not None and prev_row[’Length ’] == 50 and prev_row[’

Data length ’] == 15 and prev_row[’Source ’] == dst and prev_row[’

Destination ’] == src and prev_row[’Sequence number ’] != seqno:

break

elif prev_row is not None and prev_row[’Length ’] == 51 and prev_row[

’Data length ’] == 16 and prev_row[’Source ’] == dst and prev_row[’

Destination ’] == src:

break

elif next_row is not None and (next_row[’Length ’] == 48 and next_row

[’Data length ’] == 13 and next_row[’Source ’] == src and next_row[

’Destination ’] == dst) and (next_row2[’Length ’] == 51 and

next_row2[’Data length ’] == 16 and next_row2[’Source ’] == dst and

next_row2[’Destination ’] == src):

break

elif next_row is not None and next_row[’Length ’] == 51 and next_row[

’Data length ’] == 16 and next_row[’Source ’] == dst and next_row[’

Destination ’] == src:

break

elif next_row is not None and next_row[’Length ’] == 60 and next_row[

’Data length ’] == 25 and next_row[’Source ’] == src and next_row[’

Destination ’] == dst:

break

elif next_row is not None and next_row[’Length ’] == 60 and next_row[

’Data length ’] == 25 and next_row[’Source ’] == dst and next_row[’

Destination ’] == src:

break

elif next_row is not None and next_row[’Length ’] == 66 and next_row[

’Data length ’] == 31 and next_row[’Source ’] == dst and next_row[’

Destination ’] == src:

break

elif next_row is not None and next_row[’Length ’] == 67 and next_row[

’Data length ’] == 32 and next_row[’Source ’] == src and next_row[’

Destination ’] == dst:

break

else:

print(’User turned light off at ’ + row[’Time’] + dst)

Listing 5.5: Attempted Inference Rule for O↵ Packets

The approach, displayed in Listing 5.5, was refined until encountering packets like the
ZCL Scenes: Get Scene Membership packet, which posed a challenge as they appeared
indistinguishable. At this juncture, a pause was made to reassess the frequency of unicast
o↵ packets. Recalling the initial confusion about unicast message transmission when
sni�ng began, it was realized that from a user’s standpoint, it’s often more e�cient to

5.9. IMPLEMENTATION DISCUSSION 41

control an entire room’s lighting, be it through a switch, sensor, or app, rather than
individually operating each lamp. Given that these actions are broadcast commands, the
focus of the analysis was set on those events. In Setup 1, an actual home environment,
one could observe a significantly higher frequency of these broadcast commands compared
to unicast on/o↵ packets.

Figures 5.7 and 5.8, are illustrations in the app of the preference for turning on the entire
room rather than targeting specific lamps within it. Also sensors and switches are linked
to a room which makes them transmitt broadcast messages when used.

Figure 5.7: Room ON Figure 5.8: Light ON

The decision on level and color control in unicast form is also related to the process in
the Philips Hue app. Color or saturation adjustment is needed to be accessed through the
specific light device. No other method has been discovered during the thesis for issuing
these commands in broadcast form, which is why they were decided against. The recall
scene was not selected because the aim was to concentrate on the four core commands
that define the essence of Philips Hue and contribute to its popularity. However, explor-
ing recall scenes could be considered a subsequent step in this project’s evolution. Upon
determining the events for analysis, after reviewing the overlay CSV, it was noticed that
other packets shared similar identification features. Most were distinguishable by analyz-
ing their direction, origin (coordinator or broadcast), or packet type. Only the unicast
color control packet revealed a similar conflict as the unicast o↵ packet; other packet types
appeared identical upon decryption. To address this, an inference rule was devised lever-
aging packet order, sequence patterns, and direction, eliminating most misidentifications
by cross-referencing the source with the Philips Hue bridge’s network address identified
in the identifier.

42 CHAPTER 5. IMPLEMENTATION

However, one type of misidentification remained unresolved: instances where the packet
sequence was disrupted by skipped packets. As mentioned earlier, skipped packets lack a
response, creating the illusion of an event occurrence. Coding the inference rules posed a
challenge as Wireshark displays sequence numbers from the ZCL layer 5.9 and matches
responses to originating packets, providing a logical basis to identify non-events.

Figure 5.9: ZCL Sequence Number

Unfortunately, this approach is not feasible since the decrypted network only displays the
sequence number of the NWK layer and no corresponding responses, as depicted in Figure
5.10. The sequence number of the NWK layer was attempted to be utilized. Nevertheless,
it was discovered that these numbers are set individually by each device’s packet sequence,
rather than across all packets.

Figure 5.10: NWK Sequence Number

The task of identifying packets belonging together is significantly complicated by this
observation. In an e↵ort to resolve this, experiments were conducted to calculate the
di↵erences between each device and the bridge to determine which response packet corre-
sponds to which device. However, even in this approach, sequence numbers were found to
be skipped intermittently or switched in packet order. Again also the cyclic identity would
make the calculation process a lot harder. Figures 5.11 and 5.12 illustrate the di↵erent
ways of how the sequence numbers are setup in the di↵erent layers.

Thus, the script sequentially examines subsequent packets and compares them to specific
frame and data lengths that are expected. Utilizing ZCL sequence numbers would have
provided a more dependable method, as the current approach relies on analyzing millions
of packets, potentially overlooking certain patterns.

Identified events are then promptly printed as output along with the respective network
address to ensure they pertain to the correct devices.

Testing outcomes of the analyzer, will be elaborated in the subsequent chapter.

5.9. IMPLEMENTATION DISCUSSION 43

Figure 5.11: Packet with NWK Sequence Number 79 and ZCL 247

Figure 5.12: Packet with NWK Sequence Number 83 and ZCL 247

5.9.6 Tracker

The tracker seamlessly manages multiple threads with the subprocess module: one for
sni�ng and capturing packets, and another for analyzing them in the background. How-
ever, a limitation arises when importing between files: the subprocess module disrupts
the flow by running imported scripts. For instance, importing the coordinator ’s network
address from the identifier into the analyzer script causes interruptions, leading to the
identifier running in a loop despite it having been processed earlier.

5.9.7 Runner

Before deciding to utilize the script as both a live and passive tracker, it was only employed
for organizing scripts and executing commands to determine which script should be active.

44 CHAPTER 5. IMPLEMENTATION

Following this decision, modifications were necessary to ask the user for the desired mode
of operation and execute scripts accordingly. Opting for live mode initiates a 90-second
sni�ng process before tracking, as packet captures may encompass multiple networks.
Given the challenge of identifying the correct network’s PAN ID and corresponding CSV
file for analysis, a brief sni�ng and device identification process was introduced to present
the user with network details, allowing for estimation and confirmation of their network.
If incorrect, the user can stop the program and retry. Alternatively, running the identifier
for each PAN CSV file was considered, but this approach proved overly complex and could
a↵ect program functionality. A 90-second duration was chosen to balance user wait time
and the e�ciency of packet capture for identification, as shorter durations sometimes
yielded insu�cient data. Although a 90-second wait carries some risk, exceeding this
timeframe could be regarded as troublesome for some. Passive mode operates similarly
but skips the 90-second sni�ng period. Subsequently, the script executes the appropriate
subprocess commands before concluding by clearing all utilized files or their contents.

Chapter 6

Results and Evaluation

In the next chapter, testing outcomes will be discussed before an overall evaluation of
the prototype is given. The chapter also explores the challenges that came up and the
vulnerabilities of the Philips Hue network. Lastly, it provides a small reflective framework.

6.1 Testing and Outcomes

This section will delve into the testing phase, examining the outcomes and evaluating the
results obtained. This evaluation clarify the strategies employed, highlighting successes
and areas for improvement.

6.1.1 Setup

Testing was conducted across the 3 setups 4.1.1 to evaluate the assumption of decrypting
di↵erent networks with one specific network key. These setups varied in size, Zigbee
channel, and network configuration as explained in the design chapter 4. The testing
schedule 6.1 included the specific actions below with 3-minute intervals:

Minute 0 Start
Minute 3 Room on
Minute 6 Dim light device 1
Minute 9 Dim light device 2
Minute 12 Color light device 1
Minute 15 Color light device 2
Minute 18 Room o↵
Minute 21 Stop

Table 6.1: Testing Schedule

45

46 CHAPTER 6. RESULTS AND EVALUATION

During analysis, commands were issued to two devices per setup. Events from devices
outside this scope were deemed undefined outcomes due to the challenge of tracking devices
across di↵erent floors and rooms, as well as potential interference from family members.

The identifier was tested with a total of 27 devices, with varying numbers from each
Setup. 3 from Setup 3, 7 from Setup 2, and 17 from Setup 1. Any other devices that were
detected in the house, like sensors and switches, were excluded from consideration.

Each setup was tested live twice and passively twice hence 2 rounds of testing per setup.
Round 1 involved executing commands, while round 2 testing involved only monitoring
the network without issuing commands to see if the prototype would identify commands
that were not given.

Additionally, the identifier was tested live three times more per setup due to its higher
fragility; sni�ng for 90 seconds yields a smaller packet amount compared to the 21-minute
testing session hence less data to identify the devices from.

Testing was conducted under optimal conditions. Meaning if a command failed to produce
a physical response, the test was restarted to maintain the integrity of the schedule. E↵orts
were made to ensure all lights were reachable, though occasional disruptions could occur
during sni�ng.

6.1.2 Device Identification Results

Round Live/Passive Coordinators End Devices Routers
1 Live 3 23 26
2 Live 3 22 25
3 Live 3 21 21
4 Live 3 23 25
5 Live 3 22 26
1 Passive 3 24 25
2 Passive 3 24 26

Table 6.2: Device Detection Outcomes

The detection in the ideal case of all coordinators indicates that the approach of identifying
coordinators is very reliable, achieving a 100% success rate. Additionally, the detection
of 159 out of 168 ZED devices, approximately 95%, showcases a robust performance.
However, it’s important to note that this success rate may be a↵ected by the occasional
unreachability of light devices during testing, which could result in the non-transmission
of packets. Thus, while the prototype appears promising, definitive conclusions cannot be
drawn about how reliable the code is.

Similarly, the detection of 174 out of 189 ZR devices, around 92%, demonstrates good
results. However, there are still questions about whether the discrepancies are caused by
potential flaws in the prototype or sporadic unreachability of light devices during testing,
similar to the challenges faced with the ZED devices. This question is challenging to

6.1. TESTING AND OUTCOMES 47

investigate as the unreachability of devices was not investigated because of the di�culty
in influencing them.

The weakest results were observed in the detection of routers. This is likely attributed
to the requirement in the approach for every device to send a link status packet during
testing for successful detection. Factors such as intermittent internet connection loss, or
device range limitations may render routers temporarily unreachable, impacting detection
rates. Although routers had the most straightforward conditions to identify them, they
got the weakest results. But again as the coordinator and ZEDs are also routers, they
could be deduced from their lists.

In comparing live and passive detection methods, the live mode achieved a detection rate
of 249 out of 270, approximately 92%, while the passive mode detected 105 out of 108
devices, around 97%. Although the di↵erence is minimal, passive detection outperformed
live detection, possibly due to the longer duration of sni�ng, allowing for a larger number
of packets to be captured and more data to be analyzed. Consequently, it’s advisable
to conduct more extensive testing in live mode to further refine device identification. A
short overview of the device detection outcomes is presented in Table 6.2.

6.1.3 Event Detection Results

Live/Passive Round Correct detected events / non-events
Live 1 17
Live 2 18

Passive 1 18
Passive 2 18

Table 6.3: Event Detection Outcomes

The event detection results show promise, with a detection rate of 97% in round 1, where
35 out of 36 events were detected, and a perfect non-detection rate in round 2, with 36 out
of 36 non-events not detected. This leads to an overall accuracy of 98% for both detection
and non-detection. There were a few undefined occurrences observed, particularly in
Setup 1, which is the largest setup and likely to have more complex interactions. It’s
uncertain whether these undefined occurrences are false identifications or were induced
by household activities.

Regarding the comparison between live and passive modes, there was minimal di↵erence
observed. One event in live mode was not detected, while all events were detected in
passive mode. The occurrence of this missed event may be attributed to the brief pause
that occurs after capturing 255 packets in live mode, during which the system writes the
file and resumes capturing. Commands issued during these milliseconds could potentially
be overlooked also presenting a quite big limitation.

Passive mode detected more events that shouldn’t have been detected, particularly color
control events. This may be linked to the identification of packets with similar frames,
data lengths, and directions, originating from the bridge. Despite e↵orts to di↵erentiate

48 CHAPTER 6. RESULTS AND EVALUATION

these packets as explained in a section above, no definitive rules were found to entirely
distinguish color control packets from all other packet types with the same frame and data
length combination, likely due to skipped packets. Nevertheless, since the results were not
overwhelmed with skipped packets, it’s deemed acceptable to tolerate these discrepancies.
These factors may also contribute to the occurrence of undefined events. A short summary
of the event detection outcomes is displayed in Table 6.3.

6.2 Prototype Evaluation

This section aims to give an overall conclusive evaluation of the prototype as a whole
based on the evaluation metrics of precision, recall, and accuracy. The testing resulted
in 389 True Positives (TP), 3 False Positives (FP), 25 False Negatives (FN) and 36 True
Negatives.

6.2.1 Evaluation Metrics

The evaluation metrics for the prototype’s performance are as follows:

Recall focuses on the prototype’s ability to find the proportion of true positive predictions
among all actual positive instances. The calculated recall value is about 94%, indicating
a high proportion of relevant cases being identified.

TP

TP + FN
=

389

389 + 25
⇡ 0.940

Precision focuses on the prototype’s ability to not label a negative sample as positive.
The precision value is around 99%, suggesting that the prototype has a high precision in
correctly identifying positive samples.

TP

TP + FP
=

389

389 + 3
⇡ 0.992

Accuracy provides an overall assessment of the prototype’s correctness, considering both
true positive and true negative predictions. The accuracy value is rounded 94%, indicating
a high level of correctness in the prototype’s predictions.

TP + TN

TP + FP + FN + TN
=

389 + 36

389 + 3 + 25 + 36
⇡ 0.938

6.2. PROTOTYPE EVALUATION 49

6.2.2 Evaluation Discussion

Overall, the metrics demonstrate good performance of the prototype for live as well as
passive tracking. However, its reliability is contingent upon certain conditions being met.
These conditions include lights being mostly reachable, proper functioning of Philips Hue
commands, and su�cient packets being captured. While the prototype was designed to
employ a holistic and iterative approach based on packet analysis and inference rules,
it still has limitations. For instance, its e↵ectiveness heavily relies on these conditions
being fulfilled. It’s worth noting that alternative approaches, such as a machine learning
approach, would face similar challenges if these conditions are not met.

Additionally, human analysis and trial-and-error methods are incorporated into the pro-
totype’s approach, which introduces the possibility of errors or overlooking patterns. Fur-
thermore, errors may also arise from issues with Python and its modules or the nRF
board’s setup.

Another limitation arises from the interdependence among scripts and their sequential
interactions. An illustrative scenario is the identifier script, responsible for storing the
coordinator in a text file, a prerequisite for the proper functioning of the analyzer. If
this crucial step is omitted, the analyzer ’s performance will be compromised. However,
this interdependence can also be viewed as a benefit. Despite relying on each other, the
scripts are designed to be executable individually as long as all required input files are
present. This flexibility is advantageous for the iterative process and further exploration.
For instance, having access to the filtered PAN packets CSV file, the command data.csv,
and the zc.txt file from a previous run enables running the analyzer independently. This
capability streamlines the iterative improvement of individual scripts, facilitating more
e�cient development and experimentation.

Even as a prototype, it not only fulfills its primary objectives admirably but also shows
significant promise. Its iterative methodology and script structure contribute to its trans-
parency, making it particularly inviting for newcomers and individuals who want to con-
tribute to the project’s advancement.

Overall, the prototype demonstrates good performance during testing when all conditions
are met. However, it is highly dependent on several factors and requires multiple de-
pendencies to function optimally. Therefore, ongoing attention to these conditions and
potential sources of error is important for maintaining the prototype’s e↵ectiveness.

6.2.3 Challenges

The main challenges encountered during the thesis included initially setting up the nRF
board, where the wrong port was used for attempting to sni↵. As elaborated in previous
chapters, deciding which events should be considered and analyzed was another di�culty.
Obtaining the network key for the network on Setup 1 proved challenging due to the large
increase in packet communication resulted in missing them in the flood. The di�culty of
finding an inference rule for unicast o↵ packets, as explained in the evaluation chapter 6,
was initially pursued but later discarded. Similarly, identifying an exclusive rule to ignore

50 CHAPTER 6. RESULTS AND EVALUATION

misidentified color control packets was a challenge that was eventually accepted. Testing
the prototype proved problematic as experiments were based on optimal conditions that
weren’t always achievable. For instance, scheduling the light to turn on after 3 minutes
sometimes failed, disrupting the timeline. Additionally, the lights’ unreachability in Setup
3, due to channel changes, necessitated multiple attempts and patience to overcome. Mi-
nor challenges were also issues with Wireshark and Python where unexpectedly, frame and
data length were being stored as floats instead of integers. Despite Wireshark exporting
them as integers and the use of the int() function as a precaution, the problem persisted,
but thus indicating that the program wasn’t compatible with floats. Furthermore, issues
were encountered with Apple saving PCAP files as .DS Store files, which resulted in the
prototype being unable to recognize them as capture-type files and rendered them unan-
alyzable. Another challenge arose when errors were thrown because the network key was
still stored in Wireshark. In such cases, the packets will lack a data length parameter,
causing the program to throw an error in the identifier. This problem is addressed using
an if-else loop, as shown in Listing 5.2. An if-else loop is chosen over a try-catch clause to
inform the user about the specific error and to prompt them to remove the network key.

6.2.4 Emerging Security and Privacy Concerns

The development and testing of the prototype have demonstrated the feasibility and po-
tential implications of both live and passive tracking within a Philips Hue smart home.
The successful implementation of tracking functionalities underscores the importance of
understanding the nuanced relationship between network architecture and data transmis-
sion particularly in the context of IoT devices.

Through the prototype, it became evident that live and passive tracking of Philips Hue
smart lighting systems can indeed be achieved. This capability was elaborated and realized
through the relatively straightforward approach, the analysis of network packets related
to Philips Hue communication, and the formulation of rules based on their sequences.
While the development and testing of the prototype show promising results, they also
entail additional consequences. The approach demonstrated that by utilizing an nRF
board, Wireshark, and the network key, a substantial data breach could be orchestrated,
exposing several security and privacy vulnerabilities inherent in the Philips Hue ecosystem.
The implications of live and passive tracking of Philips Hue smart lighting systems extend
beyond technical feasibility, delving into profound ethical and privacy concerns within the
realm of IoT devices.

One of the main network and security concerns that emerge from this whole project is
the confirmed assumption that possessing a single network key might possibly allow the
decryption of other Zigbee Philips Hue networks, regardless of their network keys. This
arises from the consistent frame and data lengths designated for various packet types,
regardless of the network or Zigbee channel. This presents the risk that any Philips Hue
user could potentially decrypt another user’s network with the necessary setup.

The prototype’s analysis also brings attention to other potential network vulnerabilities
within the smart home environment. For instance, during the prototype analysis, gaining
access to the Philips Hue network key demonstrated how easily anyone could penetrate

6.2. PROTOTYPE EVALUATION 51

the network and decrypt its communications. Furthermore, the prototype’s ability to
analyze Zigbee packets introduces the risk of data interception, potentially compromising
sensitive information transmitted between the smart lighting devices and the bridge. This
intercepted data includes device network addresses and even user commands, posing a
threat to the confidentiality and integrity of the Philips Hue smart lighting system’s
communications. The sensitive information and transmitted data could then be shared
with third parties without their explicit consent which could lead to unauthorized access
or misuse of users’ personal information by third-party entities, raising concerns about
data privacy and security.

Moreover, exploiting vulnerabilities in the smart lightning’s security could grant malicious
actors control over the smart lighting system. Examining the decrypted network’s JSON
file can yield extensive packet details, facilitating the creation of replay attacks and unau-
thorized network access, as tested out by [36], which opens the door for security threats
if lights are manipulated.

The prototype also introduces the possibility of greater malicious activity. In the wrong
hands, it could be used to orchestrate harmful actions, such as denial-of-service attacks
by flooding the network with commands, worms [35] or disrupting the functionality of
other devices on the network. Such malicious activities could compromise the stability
and security of the entire smart home ecosystem not only the Philips Hue network.

It is clear that by analyzing events like on/o↵, color changes, and brightness adjustments,
the prototype inadvertently tracks users’ activities within their homes. This data can re-
veal sensitive information about users’ habits, routines, and occupancy patterns, violating
their privacy and autonomy within their living spaces. This analysis of users’ interactions
with their smart lighting system enables the potential for behavioral profiling.[40] By ob-
serving patterns in users’ preferences, habits, and routines, detailed profiles of individual
users can be constructed from the information. This information could be exploited for
targeted advertising or other purposes without users’ consent. Patterns in users’ lighting
usage inferred by the capture of the prototype may inadvertently reveal sensitive informa-
tion about users’ daily lives, such as their presence at home, sleep patterns, or even moods
or activities based on the colors and brightness levels of their lights. The inferred patterns
of users’ behavior and occupancy within their homes could pose physical risks, such as
burglary. If malicious actors gain access to detailed information about users’ routines
and when they are typically away from home based on their lighting usage patterns, this
could facilitate targeted break-ins or unauthorized entries, compromising users’ physical
security and safety.

While the positive outcomes of prototype testing are evident, there is also a notable
downside concerning security and privacy vulnerabilities. Beyond technical security risks,
the implementation of the prototype revealed additional risks associated with using the
Philips Hue network and the extent of information that could be extracted solely from
packet tra�c in a smart home environment.

52 CHAPTER 6. RESULTS AND EVALUATION

6.2.5 Reflective Synthesis

As elaborated in the design chapter 4, inspiration was drawn from two papers. The
objective of this section is to establish a reflective framework taking a step back and
highlighting small di↵erences that also underscore the research gap, which was investigated
in this work. A compact overview displaying the most significant di↵erences is presented
in Table 6.4.

The di↵erence to ZPA is quite significant. This paper was actually used as inspiration to
understand how the network keys work and to explore how easily Philips Hue network
keys can be gained, aiding in the analysis of the network in the iterative process. A
machine learning approach is employed by them to decrypt the network, thus accounting
for the big di↵erence from this approach.

With Zleaks, one might perceive big similarities between their work and this thesis, as
both employ inference rules to decrypt Zigbee networks. However, the primary and most
significant distinction lies in Zleaks ’ broader focus on Zigbee devices overall, including
Philips Hue but not exclusively, unlike the sole emphasis on Philips Hue within this
thesis. Another notable di↵erence lies in their decryption methodology, which relies on
hard-coded data and frame lengths in their code. Conversely, this approach utilizes JSON
files to extract these lengths dynamically, ensuring adaptability in case of changes. This
decision stemmed from encountering issues when analyzing their hard-coded lengths and
their program being ine↵ective when trying it out. Although it’s uncertain whether this
was the sole cause of failure, the JSON-based method provides flexibility. One could argue
that employing two JSON files introduces a potential drawback, as not all packet types
may be included, a↵ecting identification accuracy since they serve as reference points.
However, the adaptable approach was deemed preferable despite this, as the issue arises
only when JSON files lacking certain packet types are substituted. Moreover, employing
an intermediate step of saving packet type combinations alongside frame and data lengths
in a CSV file could reduce this concern by highlighting missing packet types, if necessary.

ZPA System [38] Zleaks [29] Thesis Prototype
Machine Learning X ⇥ ⇥
Inference Rules ⇥ X X
Periodic Reporting Patterns ⇥ X ⇥
Dynamic System X ⇥ X
Philips Hue ⇥ X X
Other Manufacturers X X ⇥
In-Depth Analysis ⇥ ⇥ X
Broad Analysis X X ⇥
Network Key Extraction X ⇥ X
Privacy Risks X X X
Live Tracking ⇥ ⇥ X

Table 6.4: Short Comparison of the Three Works

The distinction between this work to these two and other related works is the lack of
exploration into decrypting multiple networks with a single network key. Typically, the

6.2. PROTOTYPE EVALUATION 53

focus lies on demonstrating the decryption of an encrypted network and highlighting
privacy concerns. However, the potential of using a single network key to decrypt any
other network remains largely unexplored which could indicate that any Philips Hue user
may already have easier access to decrypting other networks. This also underscores the
research gap.

54 CHAPTER 6. RESULTS AND EVALUATION

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Most objectives of the thesis were successfully accomplished. The foundation for a com-
prehensive analysis of the Philips Hue network was laid through an extensive background
chapter 2, providing essential theoretical insights into the network setup. Furthermore,
obtaining the network key facilitated easier packet analysis, enabling multiple iterations of
data collection and evaluation as outlined in the design chapter 4. This approach enabled
the successful development of a real-time scanning and sni�ng application, leveraging in-
sights obtained from Philips Hue network packets. Through iterative refinement detailed
in the design chapter 4, the application’s scripts, and inference rules were systematically
improved. An assessment was conducted regarding the integration of Home Assistant,
but the integration was not possible due to insu�cient depth of network information re-
garding the network layers and packets, which were not obtained as desired. Furthermore,
the prototype underwent successful evaluation during the testing phase, yielding positive
results from the evaluation process.

Key findings of the thesis include the development of an e↵ective real-time scanning and
sni↵er prototype capable of capturing and analyzing Zigbee communication packets within
a smart home environment, particularly those associated with smart light bulbs. The ap-
plication successfully intercepted and analyzed packets from the Philips Hue smart home
system, extracting valuable insights and information. Additionally, a significant discovery
is the validation of the assumption that having a network key enables the decryption of
any other Philips Hue network. Moreover, it demonstrated the ability to discern device
types and identify various events occurring within a Philips Hue Zigbee network. The
thesis also uncovered potential security and privacy risks, for example regarding user pro-
filing, inherent in Zigbee communication within the Philips Hue network. These findings
not only align with the goals of the thesis but also address the research questions posed.

In relation to research question 1 the thesis explored the e�ciency of a sni↵er application
in capturing and analyzing Zigbee communication packets within a smart home, particu-
larly focusing on interactions with smart light bulbs. Packet capture proved quite e↵ec-
tive, facilitated by the prototype’s integration with tools like Wireshark, Tshark, and the

55

56 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

nRF board. Additionally, specifying capture parameters enhanced the process’s e�ciency.
However, analyzing the data presented challenges, including latency issues, perhaps sub-
optimal speed, and occasional packet loss during live monitoring, potentially impacting
e↵ectiveness. Insights gained from packet content included critical information such as
frame and data length, source and destination addresses, and pan ID, contributing to
tracking user habits and preferences. Although more information could be gained, these
insights su�ce for constructing user-profiles and identifying device events. This shows
what insights into the packet content could be gained contributing to the tracking of user
habits and preferences and answering research question 2. Regarding research question 3
about security vulnerabilities, the prototype showed that significant risks such as network
vulnerabilities for example data interception which can potentially expose sensitive infor-
mation could exist. Additionally, the thesis underscored the potential for malicious actors
to exploit captured data, not only to gain unauthorized access to lighting systems but
also to infer user habits, raising concerns about privacy and physical security, including
burglary risks.

There were small modifications during the execution of the thesis. The initial focus on
real-time tracking of BLE devices within a smart home gradually shifted towards a more
specific target: Philips Hue smart lighting systems as a real smart home presented as the
perfect experimental setup for this. This narrowed scope allowed for deeper exploration,
particularly highlighting the advantages of Zigbee communication over BLE within the
Philips Hue ecosystem. Despite the shift, the core objective remained centered around
real-time tracking within smart homes, though with clearer boundaries and a more refined
approach.

As for timeline modifications during execution, there were minimal changes. The process
integrated the implementation of the prototype seamlessly within a continuous loop of
data collection and evaluation instead of its own process. This iterative approach ensured
that the design and implementation phases were closely connected, facilitating a dynamic
flow where each stage informed the other. Consequently, the overall structure and goals
of the project remained largely unchanged, with emphasis on adaptability and refinement
throughout the execution process.

7.2 Future Work

Looking into the future, the next phase of development could evolve the existing proto-
type into a fully functional application equipped with both a user-friendly interface (UI)
and a robust backend infrastructure. Central to this could also be the optimization of
performance to ensure seamless operation without interruptions, such as the minor pause
observed after capturing 255 packets and improved analysis speed.

Expanding the scope of command recognition may enhance tracking functionalities. This
includes identifying additional commands, such as scene recall, and extending the proto-
type to encompass all unicast and broadcast commands. Furthermore, advanced function-
alities like new event detections, such as Philips Hue automation, and incorporating habit
tracking mechanisms to recognize usage patterns could enrich the prototype’s capabilities

7.2. FUTURE WORK 57

and give more insight into how much information can be extracted from packet tra�c.
Comparing the amount of data obtainable through BLE packets versus Zigbee packets
could also o↵er valuable insights. Examining whether simply switching communication
protocols could serve as a security measure or potentially decrease security and increase
privacy concerns would be particularly intriguing.

Recognizing the dynamic nature of smart home ecosystems, e↵orts could be directed
towards integrating devices from diverse brands beyond Philips Hue devices or Zigbee
compatibility which may lead to monitoring of the entire smart home environment similar
to Zleaks or Home Assistant. Incorporating support for additional messaging protocols,
such as BLE, alongside Zigbee, may further enhance interoperability and device compati-
bility. Mapping BLE data to Zigbee standards might enable seamless integration of BLE
devices into the ecosystem, unlocking new possibilities for device interaction and data
inference.

However, if there may be a next development process, ethical considerations should remain
paramount.

58 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] A. A. Zaidan, B. B. Zaidan, M. Y. Qahtan, O. S. Albahri, A. S. Albahri,
M. Alaa, F. M. Jumaah, M. Talal, K. L. Tan, W. L. Shir, and C. K. Lim,
“A survey on communication components for IoT-based technologies in smart
homes,” Telecommunication Systems, Vol. 69, No. 1, pp. 1–25, Sep. 2018. [Online]:
https://doi.org/10.1007/s11235-018-0430-8

[2] A. K. Ray and A. Bagwari, “Study of smart home communication protocol’s and
security & privacy aspects,” 2017 7th International Conference on Communication
Systems and Network Technologies (CSNT). Nagpur, IEEE, Nov. 2017, pp.
240–245. [Online]: https://ieeexplore.ieee.org/document/8418545/

[3] “AirTag - Apple,” [Accessed: 2024-04-07]. [Online]: https://www.apple.com/airtag/

[4] N. Shafqat, N. Gerzon, M. V. Nortwick, V. Sun, A. Mislove, and A. Ranganathan,
“Track You: A Deep Dive into Safety Alerts for Apple AirTags,” Proceedings on
Privacy Enhancing Technologies, 2023. [Online]: https://petsymposium.org/popets/
2023/popets-2023-0102.php

[5] O. Ayan and B. Turkay, “IoT-Based Energy E�ciency in Smart Homes by
Smart Lighting Solutions,” 2020 21st International Symposium on Electrical
Apparatus & Technologies (SIELA), Jun. 2020, pp. 1–5. [Online]: https:
//ieeexplore.ieee.org/abstract/document/9167065

[6] “Zigbee 3.0 support in Hue ecosystem,” [Accessed: 2024-04-07]. [Online]:
https://developers.meethue.com/zigbee-3-0-support-in-hue-ecosystem/

[7] “Smart Lighting - Philips Hue,” [Accessed: 2023-12-04]. [Online]: https:
//www.philips-hue.com/en-us

[8] V. Rudresh, “ZigBee Security: Basics (Part 1),” Nov. 2017, [Ac-
cessed: 2023-11-22]. [Online]: https://research.kudelskisecurity.com/2017/11/
01/zigbee-security-basics-part-1/

[9] Dattatray, “IoT Security - Part 5 (ZigBee Protocol - 101),” Jun. 2020, [Accessed:
2023-11-19]. [Online]: https://payatu.com/wp-content/uploads/2022/12/c5.pdf

[10] T. Zhou, C. Yang, H. Chen, Y. Han, W. Bao, and Q. Cheng, “Performance
research on ZigBee wireless sensor network self-organizing network for 220
kV four-circuit transmission lines on the same tower,” Sustainable Energy

59

60 BIBLIOGRAPHY

Technologies and Assessments, Vol. 53, p. 102302, Oct. 2022. [Online]:
https://linkinghub.elsevier.com/retrieve/pii/S221313882200354X

[11] S. Long and F. Miao, “Research on ZigBee wireless communication technology and
its application,” 2019 IEEE 4th Advanced Information Technology, Electronic and
Automation Control Conference (IAEAC). Chengdu, China, IEEE, Dec. 2019, pp.
1830–1834. [Online]: https://ieeexplore.ieee.org/document/8997928/

[12] “ZigBee Specification,”2017, [Accessed: 2023-12-04]. [Online]: https://zigbeealliance.
org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf

[13] A. Li, J. Li, D. Han, Y. Zhang, T. Li, T. Zhu, and Y. Zhang, “PhyAuth:
Physical-Layer message authentication for ZigBee networks,” 32nd USENIX Security
Symposium (USENIX Security 23). Anaheim, CA, USENIX Association, Aug.
2023, pp. 1–18. [Online]: https://www.usenix.org/conference/usenixsecurity23/
presentation/li-ang

[14] S. Farahani, ZigBee Wireless Networks and Transceivers, ser. Addison-Wesley
Wireless Communications Series. Newnes/Elsevier, 2008. [Online]: https:
//books.google.ch/books?id=0m6zlAEACAAJ

[15] “Zigbee addressing and packet structure,” [Accessed: 2023-11-23]. [On-
line]: https://learning.oreilly.com/library/view/internet-of-things/9781788470599/
4b61c16d-3cf6-4d5e-a4f2-8688779f5d76.xhtml

[16] Mario Neugebauer, “ZigBee IEEE 802.15.4 - Message Structure,” May 2021,
[Accessed: 2023-11-23]. [Online]: https://www.youtube.com/watch?v=3-PRH-a2bjs

[17] Jianfeng Wang, “Zigbee light link and its applicationss,” IEEE Wireless
Communications, Vol. 20, No. 4, pp. 6–7, Aug. 2013. [Online]: http:
//ieeexplore.ieee.org/document/6590043/

[18] “Signify,” [Accessed: 2023-12-03]. [Online]: https://www.signify.com/global

[19] P. Samadi Khah, “Eventing in the hue system,” EngD Thesis, Oct. 2018, PDEng
thesis.

[20] S. Hilbolling, H. Berends, F. Deken, and P. Tuertscher, “Sustaining Complement
Quality for Digital Product Platforms: A Case Study of the Philips Hue
Ecosystem,” Journal of Product Innovation Management, Vol. 38, No. 1, pp.
21–48, 2021, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/jpim.12555.
[Online]: https://onlinelibrary.wiley.com/doi/abs/10.1111/jpim.12555

[21] “So einfach funktioniert Philips Hue,” [Accessed: 2023-12-04]. [Online]: https:
//www.philips-hue.com/de-ch/explore-hue/how-it-works

[22] “Home Assistant,” [Accessed: 2023-12-04]. [Online]: https://www.home-assistant.io/

[23] B. K. Akhmetzhanov, O. A. Gazizuly, Z. Nurlan, and N. Zhakiyev, “Integration
of a Video Surveillance System Into a Smart Home Using the Home Assistant
Platform,” 2022 International Conference on Smart Information Systems and

BIBLIOGRAPHY 61

Technologies (SIST). Nur-Sultan, Kazakhstan, IEEE, Apr. 2022, pp. 1–5. [Online]:
https://ieeexplore.ieee.org/document/9945718/

[24] “Core Architecture Home Assistant Developer Docs,” May 2021, [Accessed:
2023-11-23]. [Online]: https://developers.home-assistant.io/docs/architecture/core

[25] “Zigbee Home Automation,” [Accessed: 2023-11-29]. [Online]: https://www.
home-assistant.io/integrations/zha/

[26] “Home Assistant Philips Hue Integration,” [Accessed: 2023-11-29]. [Online]:
https://www.home-assistant.io/integrations/hue/

[27] K. Cheng, Y. Deng, L. Zhang, X. Cui, J. Chen, and W. Luo, “Research on
ZigBee Device Recognition Based on Software Defined Radio,” Journal of Physics:
Conference Series, Vol. 2290, No. 1, p. 012040, Jun. 2022, publisher: IOP
Publishing. [Online]: https://dx.doi.org/10.1088/1742-6596/2290/1/012040

[28] A. Boiano, A. E. C. Redondi, and M. Cesana, “IoTScent: Enhancing Forensic
Capabilities in Internet of Things Gateways,” Oct. 2023, arXiv:2310.03401 [cs].
[Online]: http://arxiv.org/abs/2310.03401

[29] N. Shafqat, D. J. Dubois, D. Cho↵nes, A. Schulman, D. Bharadia, and A. Ran-
ganathan, “ZLeaks: Passive Inference Attacks on Zigbee Based Smart Homes,” Ap-
plied Cryptography and Network Security, ser. Lecture Notes in Computer Science,
G. Ateniese and D. Venturi, Eds. Cham, Springer International Publishing, 2022,
pp. 105–125.

[30] T. Gu, Z. Fang, A. Abhishek, and P. Mohapatra, “IoTSpy: Uncovering Human Pri-
vacy Leakage in IoT Networks via Mining Wireless Context,” 2020 IEEE 31st Annual
International Symposium on Personal, Indoor and Mobile Radio Communica-
tions, Aug. 2020, pp. 1–7, iSSN: 2166-9589. [Online]: https://ieeexplore.
ieee.org/abstract/document/9217236?casa token=rw7A7UO35LUAAAAA:
kOsfxeqo0sGje-We8nCITdPyVY26wFStPN3xnlTXh16WbWPJEB6iSusGVhYswMcz6fqo0894kA

[31] X. Guo, J. Quan, J. Hou, H. Zhou, X. He, and T. He, “Accurately Identify
and Localize Commodity Devices from Encrypted Smart Home Tra�c,” 2022 18th
International Conference on Mobility, Sensing and Networking (MSN), Dec. 2022,
pp. 663–670. [Online]: https://ieeexplore.ieee.org/abstract/document/10076752

[32] A. A. Allahham and M. A. Rahman, “A smart monitoring system for
campus using ZigBee wireless sensor networks,” International Journal of Software
Engineering and Computer Systems, Vol. 4, pp. 1–14, 02 2018. [Online]:
https://core.ac.uk/reader/159195000

[33] L. J. A. Jansen, “Assessing smart home security : a Zigbee case study,” Jan. 2022,
publisher: University of Twente. [Online]: https://essay.utwente.nl/89274/

[34] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and S. Uluagac, “Peek-a-boo: i see your smart home
activities, even encrypted!” Proceedings of the 13th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, ser. WiSec ’20. New York, NY,

62 BIBLIOGRAPHY

USA, Association for Computing Machinery, Jul. 2020, pp. 207–218. [Online]:
https://dl.acm.org/doi/10.1145/3395351.3399421

[35] E. Ronen, A. Shamir, A.-O. Weingarten, and C. OFlynn, “IoT Goes Nuclear:
Creating a ZigBee Chain Reaction,” 2017 IEEE Symposium on Security and
Privacy (SP). San Jose, CA, USA, IEEE, May 2017, pp. 195–212. [Online]:
http://ieeexplore.ieee.org/document/7958578/

[36] M. S. Wara and Q. Yu, “New Replay Attacks on ZigBee Devices for Internet-
of-Things (IoT) Applications,” 2020 IEEE International Conference on Embedded
Software and Systems (ICESS). Shanghai, China, IEEE, Dec. 2020, pp. 1–6.
[Online]: https://ieeexplore.ieee.org/document/9301593/

[37] M. Thiery, V. Roca, and A. Legout, “Privacy implications of switching ON a light
bulb in the IoT world.” [Online]: https://inria.hal.science/hal-02196544

[38] R. Li, W. Zhang, L. Wu, Y. Tang, and X. Xie, “ZPA: A Smart Home Privacy
Analysis System Based on ZigBee Encrypted Tra�c,”Wireless Communications and
Mobile Computing, Vol. 2023, p. e6731783, Jan. 2023, publisher: Hindawi. [Online]:
https://www.hindawi.com/journals/wcmc/2023/6731783/

[39] O. Setayeshfar, K. Subramani, X. Yuan, R. Dey, D. Hong, I. K. Kim, and
K. H. Lee, “Privacy invasion via smart-home hub in personal area networks,”
Pervasive and Mobile Computing, Vol. 85, p. 101675, Sep. 2022. [Online]:
https://www.sciencedirect.com/science/article/pii/S1574119222000955

[40] Y. Wan, K. Xu, F. Wang, and G. Xue, “IoTMosaic: Inferring User Activities from
IoT Network Tra�c in Smart Homes,” IEEE INFOCOM 2022 - IEEE Conference
on Computer Communications. London, United Kingdom, IEEE, May 2022, pp.
370–379. [Online]: https://ieeexplore.ieee.org/document/9796908/

Abbreviations

APS Application Support Layer
APS-DE Application Support Layer Data Entity
APS-ME Application Support Layer Management Entity
APSDE-SAPApplication Support Sub Data Entity - Service Access Point
BLE Bluetooth Low Energy
CCA Clear Channel Assessment
CSMA-CA Carrier Sense Multiple Access with Collision Avoidance
ED Energy Detection
FCS Frame Check Sequence
FFD Full-Functioning Device
FN False Negative
FP False Positive
GTS Guaranteed Time Slot
IoT Internet of Things
LR-WPAN Low Rate Wireless Personal Area Networks
LQI Link Quality Indication
MAC Media Access Control
MFR MAC Footer
MHR MAC header
NLDE Network Layer Data Entity
NLME Network Layer Management Entity
NPDU Network Power Distribution Unit
NWK Network Layer
PAN Personal Area Network
PHY Physical Layer
PHR PHY Header
PDU Power Distribution Unit
RFD Reduced-Function Device
SDK Software Development Kit
SHR Synchronization Header
TN True Negative
TP True Positive
UI User Interface
WPAN Wireless Personal Area Network
ZC Zigbee Coordinator
ZCL Zigbee Cluster Library

63

64 ABBREVIATONS

ZDP Zigbee Device Profile
ZDO Zigbee Device Object
ZED Zigbee End Device
ZHA Zigbee Home Automation
ZLL Zigbee Light Link
ZR Zigbee Router

List of Figures

2.1 Zigbee Protocol Stack . 5

2.2 Detailed Protocol Stack [12] . 7

2.3 Network Topology Types [13] . 8

2.4 Packet Structure [14] . 9

2.5 MAC Frame [16] . 10

2.6 ZLL Protocol Stack [17] . 11

2.7 Philips Hue Setup [20] . 11

2.8 Home Assistant Core Architecture . 13

2.9 Integration Architecture [26] . 13

4.1 Design Phases . 17

4.2 Setup 1 Topology . 18

4.3 Setup 2 Topology . 19

4.4 Setup 3 Topology . 19

4.5 Transport Key Packet to gain Network Key 20

5.1 Read Attribute Packet Sequence . 29

5.2 Flowchart Live Mode . 32

5.3 Flowchart Passive Mode . 33

5.4 Interrupted Read Attribute Sequence . 36

5.5 Coordinator Detection Condition . 37

5.6 Adding New Lights . 39

65

66 LIST OF FIGURES

5.7 Room ON . 41

5.8 Light ON . 41

5.9 ZCL Sequence Number . 42

5.10 NWK Sequence Number . 42

5.11 Packet with NWK Sequence Number 79 and ZCL 247 43

5.12 Packet with NWK Sequence Number 83 and ZCL 247 43

A.1 Device Detection Summary . 74

A.2 Event Detection Round 1 Summary . 75

A.3 Event Detection Round 2 Summary . 76

List of Tables

5.1 Packets with identical Frame and Data Lengths Comparison 39

6.1 Testing Schedule . 45

6.2 Device Detection Outcomes . 46

6.3 Event Detection Outcomes . 47

6.4 Short Comparison of the Three Works . 52

67

68 LIST OF TABLES

Listings

5.1 Pyshark Display Filter . 27
5.2 Identifier Primary Function . 28
5.3 Check On Packet . 29
5.4 Inference Rule for Color Control Packet 29
5.5 Attempted Inference Rule for O↵ Packets 40

69

70 LISTINGS

Appendix A

Contents of the Repository

The code repository contains the following content:

A.1 README

Philips Hue Zigbee Network Sni↵er This project aims to analyze Philips Hue Zigbee
networks. It explores the assumption that obtaining one network key can potentially
decrypt any other Hue network. The sni↵er identifies devices, their types, and events.
These events include on/o↵ and level/color control commands. The identifier leverages
di↵erent packet types and their directions, considering source and destination information.
The analyzer relies on designated frame and data length, as well as packet sequences, to
analyze events.

Prerequisites

1. Python 3.x : Ensure Python is installed on your system. Otherwise download and
install Python from the o�cial website: Python.org.

2. Wireshark : Install Wireshark from Wireshark.org, which includes Tshark. If you
use a package manager, Tshark will be installed automatically along with Wireshark.

3. IDE of your choice. It is beneficial to use an IDE to run the program as it is easier
to set up, manipulate and run the scripts all in one.

Getting Started

1. Configure nRF Board: Configure your nRF board for Zigbee communication. This
project used the Nordic Semiconductor nRF52840 Development Kit. All documen-
tation can be found on Nordic Semiconductor Infocenter.

• Flash firmware on the nRF board.

71

72 APPENDIX A. CONTENTS OF THE REPOSITORY

• Set up Wireshark for Zigbee. Download and follow the User Guide PDF.

2. Check Interface Number:

• Connect the nRF board to your device where Wireshark/Tshark is running on.

• Determine the interface number associated by using the command
{path_to_tshark} -D in a command line interface.

3. Configure Tshark Command File:

• Add the path to Tshark to the first line of the tshark_command.txt text file.

• Add the interface number to the second line in tshark_command.txt.

Example:

1 /Applications/Wireshark.app/Contents/MacOS/tshark

2 20

4. Add directory path: Add your path to the project in the tracker.py
os.chdir(’{path_to_project}’)

5. Create the CSV folder When first time using the program, create a CSV folder in
the root directory so that the CSV files can be stored there.

6. (Change zigbee channel):

• If your hue bridge is on another Zigbee channel than the default (11), change
the channel on Wireshark’s UI.

• Go to capture then options and change to the preferred channel through the
settings icon next to your sni↵er interface.

Usage

Execute the run script to start capturing and analyzing Zigbee network tra�c. Make sure
no network key is saved in Wireshark. The program only works for encrypted networks.

1. Live: Choose live mode when asked.

2. Passive:

• Create a PCAP folder and import the pcap/pcapng file that you want to analyze
into that folder. (Note: Only keep one file in the folder as the program will
only analyze one.)

• Choose passive mode when asked.

Disclaimer

This project is for educational and research purposes only. Ensure you have proper au-
thorization before analyzing any Zigbee networks.

A.2. PYTHON SCRIPTS 73

A.2 Python Scripts

https://github.com/nyc6/BA-Homescout/tree/main

A.3 JSON Files

https://github.com/nyc6/BA-Homescout/tree/main/data

A.4 Testing

A.4.1 Raw Live

https://github.com/nyc6/BA-Homescout/blob/main/raw

A.4.2 Raw Passive

https://github.com/nyc6/BA-Homescout/tree/main/raw

https://github.com/nyc6/BA-Homescout/blob/main/raw

74 APPENDIX A. CONTENTS OF THE REPOSITORY

A.4.3 Summary Tables of Devices and Events

Figure A.1: Device Detection Summary

A.4. TESTING 75

Figure A.2: Event Detection Round 1 Summary

76 APPENDIX A. CONTENTS OF THE REPOSITORY

Figure A.3: Event Detection Round 2 Summary

