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Abstract

This thesis investigates the collection of Bluetooth Low Energy (BLE) packets through
passive sni�ng to generate a large dataset for machine learning (ML) analysis. The pri-
mary objective is to collect an extensive dataset through sni�ng to identify patterns that
could pinpoint specific BLE devices, such as AirTags. This work focuses on the empirical
data collection process, emphasizing the analysis of Received Signal Strength Indicator
(RSSI) values at various distances to ascertain the feasibility of distinguishing individual
AirTags in crowded environments. The collected data is utilized to enhance the function-
ality of the HomeScout application, a modular Bluetooth sensing app designed to inform
users about trackers following them. By integrating RSSI shielding and ML approaches,
the research aims to improve personal tracker detection capabilities, particularly for An-
droid users who lack native AirTag tracking integration.
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of Informatics. The research field I delved into was both intellectually stimulating and
challenging, and I am grateful for the chance to explore it further.

v



vi



Contents

Declaration of Independence i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Radio Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Receiver Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.3 Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.4 Antenna Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.5 Path Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Bluetooth Low Energy Protocol Stack . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



viii CONTENTS

2.3 BLE Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Broadcasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Received Signal Strength Indicator . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 RSSI and Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 RSSI and Signal Quality . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 Significance of RSSI Value Levels . . . . . . . . . . . . . . . . . . . 15

2.5 O✏ine Finding Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Losing a Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.2 Finding a Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.3 Searching for a Device . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Tracking Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.1 AirTag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.2 Tile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.3 Chipolo ONE Spot . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.4 Samsung Galaxy SmartTag . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Current uses of BLE in Localization . . . . . . . . . . . . . . . . . . . . . . 19

2.7.1 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7.2 Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 HomeScout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Related Work 23

3.1 Indoor Positioning System using BLE . . . . . . . . . . . . . . . . . . . . . 23

3.2 Uses of Trilateration for localization . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Protection from stalking attacks BLE . . . . . . . . . . . . . . . . . . . . . 23



CONTENTS ix

4 Design and Methodology 25

4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Proximity Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Experiments with Environmental Variables . . . . . . . . . . . . . . 26

4.2 RSSI Shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Evaluation and Results 31

5.1 RSSI Value Comparison Across Datasets . . . . . . . . . . . . . . . . . . . 31
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Chapter 1

Introduction

In 2023, 5.4 billion Bluetooth devices were shipped globally, an increase of more than 10%
from 2022, as the number went from 4.9 billion to 5.4 billion, and is expected to reach 7.6
billion of annual shipments by the end of 2027 [1].
The data describes the increasing importance of Bluetooth technology in the past years,
as such there is an increasing number of di↵erent Bluetooth tracking devices being man-
ufactured, which will be the focus of this thesis. These devices support BLE, a network
technology that finds its application in healthcare, fitness, security, and many other fields.

BLE devices, typically called beacons, became so known because of their reasonably com-
pact size, low battery usage, and low price. A beacon transmits a globally unique identifi-
cation token that is detected by a compatible operating system or software, hence utilizing
BLE proximity sensing [2]. The approximate distance between the beacon and the client
device is calculated using RSSI values. Because beacons emit radio waves, absorption and
interference cause the RSSI value to fluctuate.

Some works already exist that analyze the reliability of RSSI for indoor localization [3, 4, 5]
and utilize RSSI values to predict the distance between a beacon and a client device at
the time of the measurement [6, 7]. However, neither approach was applicable in the
detection of stalking attacks in o✏ine finding networks. This will be the primary focus of
this thesis, along with other subpoints specified in the following section.

1.1 Motivation

The proliferation of personal tracking devices, such as Apple’s AirTag, has revolution-
ized the way individuals keep track of their personal belongings. These devices o↵er an
unprecedented level of security by allowing users to locate lost items through their smart-
phones easily. However, this convenience is significantly diminished when it comes to
distinguishing between multiple devices in crowded environments, especially for Android
users. Unlike iOS, where AirTags owned by a user can easily be tracked with Apple’s
Find My network, Android users face the challenge of distinguishing their AirTags from
others nearby. This issue is particularly pronounced in densely populated settings, such as

1



2 CHAPTER 1. INTRODUCTION

airports, where the presence of numerous AirTags can create confusion over which device
belongs to whom.

The motivation behind this thesis stems from the understanding that, in the absence
of native integration similar to that of iOS, Android users require alternative strategies
to confidently identify their belongings. The core of this investigation revolves around
leveraging AirTag’s signal strength values. Still, the methodologies and insights derived
from this study are intended to be su�ciently generic, allowing for application to a broad
spectrum of BLE tracking devices.

1.2 Thesis Goals

The goal of the thesis is to answer the following research questions:

1. Is it possible to predict the distance between a Non-Tracker Device (e.g., iPhone)
and a Tracker Device (e.g., AirTag) using RSSI values?

2. How can RSSI values be leveraged in such a way that they allow us to distinguish
between owned and unowned AirTags?

3. How do environmental conditions (e.g., indoor vs. outdoor, crowded vs. open space)
impact the reliability of RSSI values for distance estimation between a Tracker
Device and a Non-Tracker Device?

1.3 Methodology

Apple’s Find My App allows one to locate BLE devices both indoors and outdoors. For
example, if keys or wallet are attached to an AirTag and one of these gets lost, it can be
located with Apple’s Find My App, and it will tell the user the location of the AirTag [8].
A dataset will be collected to analyze the behavior of AirTag’s strength values at di↵erent
distances and in multiple environments.

1.4 Thesis Outline

The structure of the thesis is the following: background information on Bluetooth, RSSI,
and current distance computation techniques is provided in Chapter 2. Indoor positioning
systems with BLE, and the analysis conducted using the trilateration algorithm are pre-
sented in Chapter 3. Chapter 4 focuses on the design and methodology aspects, including
a detailed explanation of the experiment settings and the design of a prototype for RSSI
shielding to be integrated into the HomeScout application. Chapter 5 discusses the results
and evaluation of the collected data and the implemented prototype. Finally, Chapter 6
concludes the thesis, summarizing the findings, discussing the thesis contributions, and
suggesting future work.



Chapter 2

Background

This chapter introduces the foundational concepts and technologies essential to this thesis,
specifically focusing on Bluetooth technology, Bluetooth Low Energy and its protocol
stack, BLE communication methods, RSSI, and o✏ine finding networks.

2.1 Bluetooth

Bluetooth technology allows devices to connect via wireless communication when these
devices are close to one another. In a narrow spectrum centered on 2.4 Gigahertz (GHz),
Bluetooth has 79 distinct radio frequencies. To establish a connection, two devices ran-
domly select one of the 79 available frequencies, and then they repeatedly hop across these
frequencies numerous times per second once a link is made. If the devices move too far
apart, the connection will automatically be lost; once they are within range again, it will
reestablish [9]. The range of Bluetooth depends on a few crucial factors:

2.1.1 Radio Spectrum

The radio spectrum spans frequencies of 30 Hertz (Hz) to 300 GHz. The range increases
as the frequency decreases. Nevertheless, the maximum data rate it can handle decreases
with decreasing frequency. There are therefore trade-o↵s between range and data rate
when choosing a radio band. A fair trade-o↵ between throughput and range is made
possible by Bluetooth technology, which operates in the 2.4 GHz Industrial, Scientific
and Medical (ISM) frequency band (2400 to 2483.5 Megahertz (MHz)). The 2.4 GHz
band is also widely accessible, which makes it a real standard for low-power wireless
communication [10]. The 2.4 GHz frequency band strikes a compromise between achieving
a su�ciently long range and maintaining a high data rate. This band is designed to
support minimal interference and is engineered for low power consumption.

3



4 CHAPTER 2. BACKGROUND

Figure 2.1: Range of Radio Spectrum [11]

Figure 2.1 shows a list of the various Radio Frequency (RF) bands. RF bands are
segmented portions of the electromagnetic spectrum that are utilized for various commu-
nication technologies. Each band’s properties, such as their ground and sky wave propa-
gation, vary according to frequency and wavelength. Lower frequency bands like Very Low
Frequency (VLF), Low Frequency (LF), and Medium Frequency (MF) have longer wave-
lengths that enable communication over great distances and can spread around obstacles
[11].

On the other hand, higher frequency bands like Very High Frequency (VHF), Ultra High
Frequency (UHF), and beyond, have shorter wavelengths. They are generally used for line-
of-sight communication, frequency modulation (FM) radio, television broadcasts, cellular
networks, satellite communications, and Wi-Fi. These bands can carry more data due to
their higher frequencies, making them suitable for modern wireless communication that
requires high bandwidth [12].

2.1.2 Receiver Sensitivity

The lowest signal intensity a receiver can understand is known as receiver sensitivity.
Alternatively, it represents the lowest power level at which the receiver can continue to
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identify radio signals and establish a connection. Metaphorically, it can be considered as
the lowest volume at which a human can perceive and comprehend sound.

The sensitivity of a receiver is typically measured in decibel-milliwatts (dBm). A lower
(more negative) dBm value indicates a more sensitive receiver that can detect weaker
signals. For example, a sensitivity of -90 dBm is better than -82 dBm, because the
receiver can pick up even more delicate signals.

2.1.3 Transmit Power

A design trade-o↵ between power consumption and range is made when selecting a trans-
mit power level. The e↵ective range and likelihood of the signal being detectable at a
greater distance increase with transmit power. Nevertheless, the used gadget will use
more power if the transmit power is increased. Consider transmitting power to be simi-
lar to speech loudness. Utilizing a louder voice consumes more energy but enhances the
ability of the sound to travel farther distances and be heard by others.

The power output of a router, or any wireless transmitter, is quantifiable in two primary
metrics: milliwatts (mW) and decibels relative to a milliwatt (dBm).

• Milliwatt (mW): this is a direct measurement of power, where one milliwatt repre-
sents a thousandth of a watt. To put this into perspective, a conventional light bulb
may operate at around 40 watts. In contrast, a typical router’s power output might
be around 100mW, demonstrating a significantly lower power level of 400 times less
than the light bulb.

• Decibel-milliwatt (dBm): dBm is a logarithmic scale used to express power levels.
It o↵ers a relative measurement starting from 0 dBm, which is equivalent to one
milliwatt. As the power level increases tenfold, the dBm value increases by 10 dB.
For example, 10 milliwatts equate to 10 dBm and 100 milliwatts to 20 dBm [13].

2.1.4 Antenna Gain

For the receiver, the antenna transforms electrical energy from the transmitter into electro-
magnetic energy, also known as radio waves, and vice versa. The e�ciency of the signal’s
transmission and reception can be significantly influenced by the antenna’s position, size,
and design.

Antenna gain reflects how well an antenna can convert input power into radio waves in
a specified direction. This gain is not about amplifying the power itself but rather fo-
cusing the transmitted energy more e↵ectively. High-gain antennas can project signals
further in particular directions, which is essential for long-distance communication. The
placement of an antenna can greatly a↵ect its performance: antennas mounted at higher
elevations can reduce obstructions and increase the line-of-sight distance, which is partic-
ularly important in environments with many physical obstructions like buildings or trees
[14].
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2.1.5 Path Loss

The weakening of a radio wave’s transmission during air propagation is known as path loss.
The environment in which a signal is conveyed can a↵ect path loss, also known as path
attenuation, which happens naturally over distance. A signal’s quality can be reduced by
obstacles between the transmitter and the receiver. Urban environments, with their high
density of buildings made of various materials like metal, can cause significant path loss
through the reflection and dispersion of radio waves. Rural areas might experience less
path loss due to fewer physical obstructions.
Moreover, atmospheric conditions such as humidity, rain, and fog can absorb and disperse
radio waves, further contributing to path loss. The frequency of the signal also influences
path loss; higher frequency signals tend to su↵er more attenuation over the same distance
compared to lower frequency signals [15].

2.2 Bluetooth Low Energy Protocol Stack

The references used for this section are [16], [17] and [18].
The protocol has the form of a stack and consists of three layers: Controller, Host, and
Application. The Host Controller Interface (HCI) allows the Host and the Controller to
communicate with each other. Figure 2.2 provides an overview of the BLE Protocol Stack
and its layers.

Figure 2.2: Architecture of BLE [17]
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2.2.1 Controller

The controller is what most people recognize as a Bluetooth chip or radio. This definition
is, however, over-simplistic, as it consists of hardware that enables packet transmission
and receiving in addition to analog and digital radio frequency components. Via an
antenna, the controller communicates with the external environment, and via the HCI, it
communicates with the host. The controller is made of two layers: the Link Layer and
the Physical Layer.

• Link Layer: the link layer (LL) is composed of a hardware part and a software
part. This layer, by controlling the link state of the radio, establishes the kinds of
communications that can be established between BLE devices. The link layer also
defines the packet formats for the advertising channel and the data channel.

Figure 2.3: Structure of BLE packets [19]

A BLE packet, as it can be seen from Figure 2.3, needs 1 byte for the preamble,
which is used by the receiver for time and frequency synchronization. The access
address occupies 4 bytes and it uses di↵erent values depending on the type of packet
[19]. The protocol data unit (PDU) can be either an advertising channel PDU or a
data channel PDU. The Cyclic Redundancy Check (CRC) is 24 bits in size and is
used for packets’ error detection.

– Advertising Channel PDU: it broadcasts the data and can be categorized into
di↵erent types of advertising PDUs depending on payload formats:

∗ Advertising PDUs: ADV IND, ADV DIRECT IND, ADV NONCONN IND,
ADV SCAN IND

∗ Scanning PDUs: SCAN REQ, SCAN RSP
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∗ Initiating PDUs: CONNECT REQ

– Data Channel PDU: facilitates data transfer and reception between BLE de-
vices after a link has been made between them.

• Physical Layer: the physical layer (PHY) in BLE technology specifies the modula-
tion strategy and other methods it employs to transmit data over a particular RF
band. This covers a wide range of factors, such as the number of channels available,
how well those channels are used, the application of error correction, the safeguards
against interference, and much more.

2.2.2 Host

The host manages the communication between the hardware and the user application,
and it includes the following layers:

• Generic Access Profile (GAP): describes the procedure for device detection, con-
nection formation, and standards-based interoperability between two BLE devices.
It is collocated at the top-most level of the stack, and it communicates directly
with the application layer and, through it, with the user, who can provide all the
network’s parameters. In addition, it acts as a conduit for user interaction with
the entire stack protocol, implementing and managing all subprotocols. Figure 2.4
depicts a State Diagram of the GAP, outlining its states and components.

Figure 2.4: GAP State Diagram [20]
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• Generic Attribute Profile (GATT): defines how the data is organized and exchanged
in a BLE link. This information is arranged in a hierarchical framework made up of
sections known as services that further subdivide information into containers known
as characteristics. Figure 2.5 shows a GATT Server having two services (public and
private), with a GATT Client executing several operations to read/write data in
those services.

Figure 2.5: GATT Example [21]

• Security Manager (SM): the security manager is a protocol that enables safe com-
munication between two BLE devices via an encrypted channel. It is therefore
responsible for pairing with another device, which consists of trusting that device
by authenticating it. The di↵erent pairing phases are illustrated in Figure 2.6.

Figure 2.6: Security Manager Pairing Phases [22]
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• Attribute Protocol (ATT): this protocol uses attributes to organize the data, where
each attribute contains a 16-bit handle, a Universal Unique Identifier (UUID), a set
of permissions, and a data value. This protocol can also define some attributes to
have permissions, which allow a client device to read or write an attribute’s value
only in situations when the client has successfully authenticated or been granted
permission by the server to view this value. Figure 2.7 illustrates the attribute’s
data structure .

Figure 2.7: ATT attribute data structure [23]

• Logical Link and Adaptation Protocol (L2CAP): the L2CAP protocol serves two
primary purposes:

(i) Fragmentation and recombination: packets received from higher layers get di-
vided into smaller packets to fit within the maximum payload size of 27 bytes.

(ii) Encapsulation: combining several upper-layer protocols into a single, conven-
tional BLE packet structure.

As indicated by its designation, it is responsible for adapting the upper and lower
layers of the stack, to do this it takes the data from the lower layers and encapsulates
it into the standard format of the BLE packet, according to the upper layers (frag-
mentation), and vice-versa (recombination). The detailed architecture is presented
in Figure 2.8.
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Figure 2.8: L2CAP Building Blocks [24]

2.2.3 Application

The application layer is the top layer of the BLE stack and is responsible for direct commu-
nication with users. It is responsible for the application logic and the user interface. The
application layer defines three di↵erent specifications: characteristic, service, and profile.
The Generic Attribute Profile serves as the foundation for each of these requirements.
The Generic Attribute Profile defines grouping attributes for characteristics and services,
and the application defines the specifications that use the attribute groups defined by the
GATT.

2.3 BLE Communication

There are two types of communications that BLE devices use:

2.3.1 Broadcasting

Broadcasting is the quickest method to transfer data to more than one device at the same
time, but its drawback is that it cannot be used for sensitive data as it lacks security
and privacy controls [18]. This is due to broadcasting lacking robust security and privacy
measures, as it transmits data openly. This means that any device within range can
receive the broadcasted data without requiring explicit permission or verification, making
it impossible to guarantee the confidentiality and integrity of the data.



12 CHAPTER 2. BACKGROUND

Broadcasting packets serve two purposes: the first one is sending advertising packets to
applications that do not require a fully active connection, and the second one is discovering
slaves available for connection when a master sends advertising packets. There are two
di↵erent roles in broadcasting:

1. Broadcaster (Advertiser): delivers advertising packets regularly to any device that
can receive them. The broadcaster must set the Advertising Interval, which repre-
sents the rate at which the advertising packets are sent.

2. Observer (Scanner): periodically checks to see whether there are any advertising
packets accessible from a broadcaster. This process is done continually. If the
advertising interval is not set by the broadcaster, the observer sets the Scan Interval,
which is the rate at which the radio scanner turns on. The observer also needs
to set the Scan Window, which is the time the radio continues scanning for each
scan interval [18]. Figure 2.9 depicts the broadcasting procedure performed by the
Scanner and the Advertiser on di↵erent channels.

Figure 2.9: Advertising and scanning in broadcasting [18]

2.3.2 Connections

A connection is a continuous and recurring packet-by-packet data exchange between two
devices. Connections are private, and in contrast to broadcasting, they promote the
exchange of sensible data as they can be protected with security measures. The two
di↵erent roles in a connection are Central (Master) and Peripheral (Slave). There is a
distinction between the types of connections: passive and active connections [16].
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Active Connections

• Central (Master): in an active connection, the master device actively scans for ad-
vertising packets from slave devices that are open for connection. The master device
initiates the connection process, and as the connection becomes active, the master
controls the timing and frequency of data exchanges, ensuring that communication
is ongoing.

• Peripheral (Slave): the slave device periodically broadcasts advertising packets that
indicate its availability to connect. When a master device initiates a connection, the
slave accepts this connection. Throughout the active connection, the slave adheres
to the parameters and timing set by the master device, participating in the data
exchange as defined by the master.

Passive Connections

• Central (Master): the master device may listen to advertising packets without ac-
tively seeking to connect. The distinction lies in the master’s role in managing
a connection only after it’s been established, through protocols that don’t involve
active scanning and initiation by the master device itself.

• Peripheral (Slave): the slave device periodically sends out advertising packets with
the intent of being discovered by master devices. These advertising packets are
broadcasted not only for devices actively scanning but also for those that might be
in a passive scanning mode. While passive scanning devices do not actively request
additional information from the advertiser (slave), they can initiate a connection
based on the information passively collected from these packets. This allows slaves
to communicate their presence and basic information with minimal energy consump-
tion, relying on master devices to decide when to establish a more active connection.

A connection between a master and a slave follows a specific timeline: the time during
which the master and the slave exchange packets with each other is called a Connection
Event, while the rest of the time when the communication is disabled, is called Radio Idle.
The anchor point is the start of a connection event, and exactly at this time, the master
starts transmitting data to the slave.
The Connection Interval is the sum of the connection event and the radio idle. Within
the interval of 7.5 ms to 4.0 s, the connection interval must be a multiple of 1.25 ms.
The Connection Supervision Timeout is the maximum amount of time that can pass
without receiving two valid packets, and if it gets exceeded, the connection is lost. The
Connection Slave Latency is the amount of connection events that can be disregarded
without risking the connection to turn o↵. Figure 2.10 illustrates the timeline of a BLE
connection with its parameters.
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Figure 2.10: BLE connection with its parameters [18]

Two modes of communication can be chosen to exchange data between the master and
the slave:

• One-way communication: the slave, in response to a poll, sends a notification to the
master.

• Round-trip communication: the first step is done by the master that asks for data
from the slave, afterwards the slave sends a response to the master.

2.4 Received Signal Strength Indicator

RSSI measures how well a device can hear a signal from an access point or router. RF
systems, such as Bluetooth devices, Wi-Fi networks, and cellular networks, are the main
applications of RSSI. Devices can evaluate the quality of the received signal thanks to its
indication of the signal’s power level. The received signal intensity is usually expressed in
dBm. Higher RSSI values indicate stronger signals, while lower values suggest weaker sig-
nals. Several variables, including ambient conditions, interference, barriers, and distance,
impact RSSI [25].

2.4.1 RSSI and Distance

Due to signal attenuation and propagation losses, the RSSI value generally decreases as
the distance between the transmitter and receiver increases. Therefore, while not an exact
distance measurement, RSSI can o↵er an approximate sense of how close devices are to
one another [25].
The paper [26] proposes a formula to calculate RSSI values given the distance:

RSSI[dBm] = � (10n log10 d� Tx) (2.1)
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where d is the distance between the transmitter and the receiver, n is a signal attenuation
constant, and Tx is the strength of the signal being transmitted, measured at a distance
of one meter from the transmitter.

From Equation 2.1the variable d can be isolated; the equation reformulated looks as
follows:

d[m] = 10
RSSI�Tx

�10n (2.2)

2.4.2 RSSI and Signal Quality

RSSI is frequently used to assess the quality of a received signal. A stronger and more
stable connection is typically indicated by a higher RSSI score, which also generally signals
better signal quality. Lower RSSI levels, on the other hand, might indicate a weak signal
that is prone to attenuation or interference [25].

2.4.3 Significance of RSSI Value Levels

Signal Strength Signal Quality
-50 dBm Excellent
-60 dBm Very Good
-70 dBm Good
-80 dBm Poor
-90 dBm Very Poor
-100 dBm No Signal

Table 2.1: Table of RSSI value levels [27]

The relevance of various RSSI values for signal strength and quality is shown in Table 2.1.
A great signal strength of -50 dBm denotes a strong and functioning connection between
the devices. The signal quality declines in proportion to the RSSI value. For example, a
very good signal is represented by a value of -60 dBm, while a value of -70 dBm indicates
a good signal. However, the signal quality deteriorates and results in poor or very bad
connections (-80 dBm for poor, -90 dBm for very poor) when the RSSI value falls further
to -80 dBm and beyond. Lastly, a signal strength of -100 dBm indicates that there is no
signal and that the signal received is insu�cient to create a working connection.
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2.5 O✏ine Finding Networks

O✏ine Finding Networks (OFN) utilize Bluetooth technology through online finder de-
vices to locate misplaced gadgets or devices, transmitting their approximate location to
the owner via the Internet. Using a set of known rolling public keys of the lost device,
another owner device contacts the central server for location data when looking for a lost
device. The location can be obtained by the owner by using the matching private key to
decode the reports. O✏ine finding (OF) seeks to protect the confidentiality of location
reports, and prevent owner device tracking and finder anonymity [28].

2.5.1 Losing a Device

When an OF device is disconnected from the Internet, it begins to broadcast BLE adverts.
The public part of the advertisement key is 224 bits (28 bytes) long [29]. As shown in
Figure 2.11, a BLE advertisement packet consists of a total of 37 bytes, with 6 bytes
allocated for the advertising MAC address and up to 31 bytes available for the payload
[30]. The 4-byte header is used for manufacturer-specific data, which leaves 27 bytes. The
BLE standard requires that the first two bits of an address are 0b11.

Figure 2.11: O✏ine Finding Advertising Format [28]

During a 15-minute interval, the same key is broadcasted, and upon the conclusion of
this period, the subsequent key, designated as pi+1, is used. OF-enabled iOS and macOS
devices send one BLE advertising every two seconds when they lose connectivity.

2.5.2 Finding a Device

Every finder device periodically checks for OF adverts. An encrypted location report is
created by the finder and uploaded to Apple’s servers whenever it gets a packet in the
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OF advertising format. The public key is extracted from the advertisement by the finder.
Next, it establishes its present geolocation and generates a message including its position
and accuracy. Then, the finder generates a location report that includes timestamps, the
public key, and the encrypted message. The binary representation of a location report is
depicted in Figure 2.12.

Figure 2.12: Binary representation of a location report [28]

2.5.3 Searching for a Device

When looking for a missing device, the owner of a device can ask Apple’s servers for
the device’s reported position. The owner can obtain and decrypt the location reports
using Apple’s Find My application on any other device because the advertising keys are
synchronized across all of their devices. The detailed procedure adopted by Apple’s Find
My Network is shown in Figure 2.13.

Figure 2.13: Apple’s Find My Network [31]



18 CHAPTER 2. BACKGROUND

Figure 2.14: Advertising Features of Di↵erent OSs [32]

Figure 2.14 illustrates that Apple’s operating system has 0x004c as the company identifier.
The packet header of AirTags is 0x2560, and the length of the manufacturer-specific
advertising data packet is 30 bytes. This information is crucial to be able to isolate the
data related to AirTags from the rest of the data before conducting the analysis.

2.6 Tracking Devices

This section includes the main BLE Tracking Devices currently available on the market.

2.6.1 AirTag

AirTags are small coin-shaped tracking devices that weigh 11 grams and have a diameter
of 31.9mm [33]. As the name says, they are used to track or tag objects that people are
afraid of losing, such as keys and wallets. Thanks to Apple’s Find My App, the object
to which an AirTag is attached can be located from an iPhone at any time, and its exact
position will be provided [34]. With iOS 17, AirTags can be shared with up to 5 people,
so that shared items, such as bikes or car keys, can be tracked simultaneously by di↵erent
persons. When an item equipped with an AirTag is lost, the corresponding AirTag can
be activated into Lost Mode. This way, when it gets detected by a device in the network,
the user will automatically be notified. As security is an important aspect to consider
with tracking devices, Apple only allows the owner of an AirTag to locate it, and it does
not store any location or history data on the AirTag itself [34].

2.6.2 Tile

As with Apple AirTags, the purpose of Tile devices is to locate lost items. However,
one additional feature that Tile provides is that it enables one to locate a nearby phone
by clicking two times on a Tile device, which will make the phone ring [35]. There are
di↵erent types of Tile trackers: the Tile Pro is the most powerful one, the Tile Mate is
the most versatile, the Tile Slim is a slim Tile tracker that perfectly fits inside wallets,
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has the shape of a credit card; and lastly, the Tile Sticker, which is a small Tile device
that can be attached to any object and works like a sticker [36].

2.6.3 Chipolo ONE Spot

The Chipolo ONE Spot can be used with an Apple device inside the Apple’s Find My
App. However, they cannot be used for Android devices, but Chipolo ONE Point can
[37]. There is also an app, called Chipolo App, which can be used with the original
Chipolo trackers, but it is not compatible with Chipolo ONE Spot trackers or Chipolo
ONE Point. Chipolo One Spot trackers are the most relevant for this thesis and they are
water resistant, with a 1-year replaceable battery, have a range of up to 60 meters, and
are very easy to hear as their sound can be of up to 120 dB. Also, they come in handy
when searching for devices to attach to keys, as they have a keyring hole in them [38].

2.6.4 Samsung Galaxy SmartTag

This tracker serves the same purpose as the previously mentioned tracking devices, and it
can be located with the SmartThings mobile app. The SmartTag+ uses ultra-wideband
technology to locate the device and weighs 13 grams [39].

2.7 Current uses of BLE in Localization

In this section, two main algorithms that can be used to calculate the location of a mobile
device or a tracker device based on the distance between the two are explained. These
algorithms are Triangulation and Fingerprinting. It is important to acknowledge the
limitation of Triangulation in the setting of this thesis due to the presence of only two
data points: the AirTag and the device collecting BLE packets.

2.7.1 Triangulation

Triangulation methods work in a way that enables the location of a mobile device to be
determined by triangulating the distances between a set of reference points, which results
in an intersection point [5]. This method creates circles centered at the access points,
with each circle’s radius determined by either 1) the mobile device’s observed RSSI value
or 2) the amount of time it takes for the signal to be transmitted between the access point
and the mobile device. When three or more access points are present within a specific
range, an intersection point occurs, and the intersection point provides an approximate
location for the mobile terminal. In Figure 2.15, x is the intersection point resulting from
the triangulation algorithm performed with access points x1, x2 and x3.
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Figure 2.15: Estimation of location using triangulation. [5]

2.7.2 Fingerprinting

Fingerprinting is an algorithm for location estimation that obtains the user’s location by
comparing the derived RSSI values with a radio map. A radio map is a database that
contains RSSI readings from di↵erent transmitters, such as Wi-Fi access points, Bluetooth
beacons, or cellular towers, captured at many known locations within the region.
The radio map is created in an o✏ine phase and includes the measured RSSI values at
specific places. This avoids modeling complicated signal propagation and captures the
characteristics of signal transmission in indoor contexts [40].

Using a floor plan as a guide, the area of interest is divided into cells to begin building
the radio map. The radio map contains the RSSI values of the radio signals that access
points broadcast, which are gathered for a certain amount of time at calibration locations
inside the cells. The radio map’s ith element has the following form:

Mi = (Bi, {~aij | j 2 Ni} , ✓i| {z }
Ri2R

), i = 1, . . . ,M (2.3)

where Bi is the ith cell, ~aij denotes the vector that contains the RSSI values measured
from the access point APj and ✓i contains any other information used for the location
estimation phase. Ri represents the ith fingerprint where R is the set of all fingerprints
R = {R1, . . . , RM}. The ith element of the radio map is Mi = (Bi, Ri).

Afterward, either the deterministic or the probabilistic framework can be applied to infer
the location from the received measurements. The accuracy of the location can be adjusted
by applying either the Bayesian filter or the Kalman filter.
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2.8 HomeScout

HomeScout is an Android application developed by a Master’s student at the University
of Zürich that allows users to customize an algorithm that informs users about trackers
that are following them [41], according to the values of the parameters defined in the
settings page, which is shown in Figure 2.16. This tracking algorithm can be used not
only for BLE trackers but also for BLE devices in general, as they can also be the target
of stalking attacks. As of now, HomeScout can scan BLE devices and identify di↵erent
personal trackers with high precision using passively collected packets, but it does not
contain an RSSI shielding feature that ensures only relevant devices with strong and clear
signals are considered, while irrelevant and non-vulnerable devices are ignored.

Figure 2.16: Settings of the tracking algorithm in the HomeScout application. [41]
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Chapter 3

Related Work

This chapter reviews existing research related to this thesis. The works in this chapter
focus primarily on advancements in indoor positioning systems using BLE and techniques
for localization and protection against misuse of BLE tracking devices.

3.1 Indoor Positioning System using BLE

The works [42] and [43] use RSSI values to estimate the distance between di↵erent devices
inside a building. The papers [44], [45], [46], and [47] add in addition to the use of RSSI
values the integration of machine learning algorithms, such as Artificial Neural Networks,
for distance estimation.

3.2 Uses of Trilateration for localization

The works [48], [49], [50], and [51] propose an indoor localization method that uses the
trilateration algorithm to locate tags. The method through which trilateration operates
is to identify a sequence of circles that intersect. Using triangles formed from three points
and the observed lengths and angles, triangulation can calculate the distances between
them. They concluded that RSSI signals are of crucial importance when it comes to
determining the proximity of a certain tag to a reader antenna or device.

3.3 Protection from stalking attacks BLE

BLE location trackers allow for misuse and may be used to follow individuals. In an
e↵ort to create a vertically integrated solution, location tracker manufacturers like Apple
have published suggestions for other manufacturers and included notifications within their
ecosystem. However, this solution cannot be extended for detecting potential AirTags

23
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used for stalking from Android devices, this is what the works [31], [41], [52] try to solve.
Additionally, the OpenHaystack project [53] enables users to add their own accessories to
Apple’s Find My network. However, its application is limited to Apple devices only.



Chapter 4

Design and Methodology

This chapter delineates the experimental design and methodology adopted for the em-
pirical collection of data from AirTags. The goal of the experiments is to accurately
capture and analyze the RSSI values at varying distances to determine the feasibility of
distinguishing an individual’s AirTag in crowded areas.

The following sections provide an in-depth examination of the experimental setup, data
collection procedures, and an explanation of the prototype created involving RSSI shield-
ing for the HomeScout application.

4.1 Experiments

Two types of experiments will be conducted during the data collection phase: proximity
experiments and environmental experiments, to analyze how the behavior of RSSI values
changes over distance and in di↵erent settings.

4.1.1 Proximity Experiments

The experimental setup is systematically arranged to collect data at incremental distances
from the AirTag to the detecting device. The progression is as follows:

1. Immediate Proximity (0m): The experiment begins with the detecting device in
direct contact with the AirTag, establishing a baseline for RSSI values at zero dis-
tance.

2. Short Range Proximity (0.3m, 0.5m): Subsequent measurements are taken at short-
range intervals of 0.3 meters and 0.5 meters, typical of personal space distances (e.g.,
pockets, backpacks).

25
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3. Medium Range (2m, 4m): The setup then extends to medium-range distances, first
at 2 meters, which could resemble an arm’s length distance in daily interactions,
followed by 4 meters, which is more indicative of a room’s width or the distance
within small group settings.

4. Long Range (10m): Finally, the detection is tested at a long-range distance of 10
meters, simulating scenarios where the AirTag might be across a large room or hall.

Each distance is methodically tested to capture and record the RSSI values, providing
a comprehensive dataset that reflects the varying signal strengths at di↵erent distances.
This sequence of distances was chosen to mirror common scenarios in which users might
find themselves relative to their AirTag, from holding or wearing the item to being close
to it but not in immediate proximity.

A laptop was placed on one side of the living room and any reachable Bluetooth packet was
captured by the nRF board, including the strength values emitted by AirTags placed at
the pre-defined distance. This procedure was conducted both in Zürich, in an environment
(room in a palace) that tried to simulate a real-world crowded scenario, and in Lugano,
where the same experiment was done in a controlled and isolated setting, and its goal was
to be able to read clean RSSI values and understand what is the behavior of RSSI values
without interfering signals.

4.1.2 Experiments with Environmental Variables

In addition to the distance measurements, it is crucial to account for environmental vari-
ables that can a↵ect the detection and accuracy of RSSI values. This subsection outlines
the experiments designed to simulate real-world scenarios, where variables such as physical
obstructions and the dynamic nature of human movement are introduced. The di↵erent
experiments try to simulate the following real-world scenarios:

1. Human Interaction: To mimic conditions where human bodies interfere with signal
propagation, the experiment includes scenarios where a person walks between the
AirTag and the detector. This can help in understanding how RSSI fluctuates with
moving obstacles like a crowd in a public space. The data collected at a distance of
2 meters without and then with a person walking in between will be compared.

2. Multiple AirTag Interference: Scenarios where multiple AirTags are present are
tested to observe how the presence of additional BLE devices influences the RSSI
values of the target AirTag. The data collected at a distance of 2 meters with 1
AirTag and then with 10 AirTags will be compared.

3. Environmental Obstacles: it involves assessing RSSI fluctuations when AirTags are
placed in various indoor scenarios with potential physical obstructions. This could
include behind walls and inside closets, to simulate the signal behavior in typical
everyday indoor spaces. The data collected at a distance of 2 meters inside a closet
and then outside the same closet will be compared.
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As in the previous experiments, a laptop was placed on one side of the living room and the
AirTags at a specific distance (i.e., 2m) from it. Then, RSSI values were measured when
the person was not walking in between (similar to proximity experiments). Afterward,
RSSI values were measured when a person walked in between (for the human interaction
experiment). After collecting these two datasets their RSSI values were compared. For
the multiple AirTag interference experiment a similar approach was used to first measure
the data at a pre-defined distance for just 1 AirTag, and then data was collected for 10
AirTags at that distance.
The experiment that tested how the behavior of RSSI values changes according to envi-
ronmental obstacles was conducted as follows: first, a dataset was collected with all the
AirTags placed at 2 meters from the nRF board. Then, all the AirTags were put inside
a closet at the same distance and after the data collection, the datasets were compared
with each other.

4.2 RSSI Shield

As [41] mentions, HomeScout currently lacks an implementation that uses RSSI as a
shield to filter and ignore signals from BLE devices that are owned by the user or that are
considered too far away to act as stalking ware. By setting a threshold RSSI value (e.g.,
-90 dBm), the BluetoothScanningService can ignore (or shield against) devices that
are beyond a certain distance, as it is known that a weaker signal strength correlates with
greater distance.
The implementation of this filter involves ignoring devices that are too far away and
focusing the attention only on closer devices that could realistically be attempting to
track the user.
The first step involved adding a variable to the BluetoothScanningService that
holds the value of the RSSI threshold, which is stored in a companion object.

1 class BluetoothScanningService : LifecycleService() {
2

3 companion object {
4 const val RSSI_THRESHOLD = -90
5 }
6

7 // rest of code
8

9 }

Listing 4.1: Code Snippet of the companion object for the RSSI Threshold

The onScanResult function needs to be updated to only display BLE packets that are
greater than the RSSI threshold being set.
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The following code snippet displays the updated onScanResult function.

1 override fun onScanResult(callbackType: Int, result: ScanResult) {
2

3 lastKnownLocation?.let {
4 if (result.rssi > RSSI_THRESHOLD) {
5

6 val mac = result.device.address
7

8 val rssi = result.rssi
9

10 if (!scanResults.containsKey(mac)) {
11

12 val timestampInMilliSeconds = Calendar.getInstance().timeInMillis
13 val lat = it.latitude
14 val lng = it.longitude
15 val deviceType = DeviceTypeManager.identifyDeviceType(result).

type
16

17 val bleDevice = BLEDevice(
18 mac,
19 timestampInMilliSeconds,
20 lat,
21 lng,
22 deviceType,
23 rssi)
24

25 scanResults[mac] = bleDevice
26 }
27 }
28

29

30 }
31 }

Listing 4.2: Code snippet of the updated onScanResult function.

Originally, the SettingsFragment featured filters such as ”Default,” ”Apple,” and ”Air-
Guard.” However, to better cover diverse user needs and improve detection capabilities,
these were replaced with two new filters: ”NearField” and ”Persistent.”

• NearField: it optimizes the app to detect devices with strong signals over a short
time. It is best suited for crowded areas where a user expects devices to be very
close.

• Persistent: it focuses on devices detected multiple times over a longer period. It
uses a less restrictive RSSI threshold than the NearField filter, allowing it to capture
most of the signals. This setting is best for identifying trackers that are consistently
following a user.
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Listing 4.3 displays the values used to accommodate the di↵erent filters. The feasibility
and reliability of these values in real-world scenarios are discussed in the next chapter.

1 class SettingsFragment : Fragment() {
2 private fun setupButtonsForDifferentTrackingPreferences() {
3

4 // NearField filter
5 binding.buttonNearField.setOnClickListener {
6 val distance = 50.0F
7 val timeInMin = 1.0F
8 val occurrences = 2.0F
9 val rssiThreshold = -70.0F

10

11 binding.sliderDistance.value = distance
12 binding.sliderTimeInMin.value = timeInMin
13 binding.sliderOccurrences.value = occurrences
14 binding.sliderRssiThreshold.value = rssiThreshold
15

16 settingsViewModel.updateDistance(distance)
17 settingsViewModel.updateTimeInMin(timeInMin)
18 settingsViewModel.updateOccurrences(occurrences)
19 settingsViewModel.updateRssiThreshold(rssiThreshold)
20 }
21

22 // Persistent filter
23 binding.buttonPersistent.setOnClickListener {
24 val distance = 1000.0F
25 val timeInMin = 20.0F
26 val occurrences = 2.0F
27 val rssiThreshold = -90.0F
28

29 binding.sliderDistance.value = distance
30 binding.sliderTimeInMin.value = timeInMin
31 binding.sliderOccurrences.value = occurrences
32 binding.sliderRssiThreshold.value = rssiThreshold
33

34 settingsViewModel.updateDistance(distance)
35 settingsViewModel.updateTimeInMin(timeInMin)
36 settingsViewModel.updateOccurrences(occurrences)
37 settingsViewModel.updateRssiThreshold(rssiThreshold)
38 }
39 }
40

41 }
42 }

Listing 4.3: Code snippet of the updated SettingsFragment



30 CHAPTER 4. DESIGN AND METHODOLOGY



Chapter 5

Evaluation and Results

This chapter aims to showcase the behavior of RSSI values depending on the environment
(specified in Experiments) where the di↵erent data sets were collected.
Linear and exponential regression models have been built for both the datasets from
Zürich and Lugano that predict the distance between the two devices given the RSSI
value, which is the single predictor variable of the model. Subsequently, a classification
task was performed by categorizing the continuous distance predictions into discrete bins
to assess whether this approach would increase the practical utility of the predictions. The
regression and classification analyses were performed on the Zürich and Lugano datasets.

5.1 RSSI Value Comparison Across Datasets

The following tables showcase the di↵erent RSSI value levels related to the measurement
distance between the six di↵erent complete datasets collected in Zürich with the aim to
simulate a crowded scenario and the two collected in Lugano whose goal is to be able to
read clean RSSI values, as mentioned in Experiments.

Distance (m) RSSI value (dBm)
0.0 -28.63
0.3 -44.83
0.5 -51.21
1.0 -64.61
2.0 -67.35
4.0 -77.09
10.0 -79.62

Table 5.1: RSSI Value Levels from the Zürich Dataset
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Distance (m) RSSI value (dBm)
0.0 -19.99
0.3 -58.72
0.5 -61.28
1.0 -64.85
2.0 -73.26
4.0 -76.36
10.0 -82.88

Table 5.2: RSSI Value Levels from the Lugano Dataset

Figure 5.1: Comparison of RSSI values between datasets

Figure 5.1 shows that the RSSI values collected in Lugano seem to be generally lower than
the ones collected in Zürich, except for the measurements at distances of 0 meters and
4 meters. This can be caused by having a high number of devices nearby for the Zürich
dataset, causing the RSSI values to be inflated due to overlapping signals. The smallest
di↵erence between the two datasets is 0.24 dBm (at a distance of 1 meter), whereas the
largest di↵erence is 13.89 dBm (at a distance of 0.3 meters).

When comparing Table 5.1 and 5.2 with Table 2.1 from [27], it can be seen for all the
values measured between -20dBm and -50dBm there is no category assigned indicating
the signal quality. Additionally, it is important to note that the distance at which the
measurements were taken in [27] is unknown, which further limits the direct applicabil-
ity of their categorization to the collected datasets. Consequently, any categorizations
or conclusions drawn from [27] should not be used as is but should be adapted to the
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specific environment and conditions of the conducted experiment. This adaptation is
essential because significant changes have been observed between di↵erent locations and
environments in the collected data.

5.2 Analysis of the Zürich Dataset

This section presents a comprehensive analysis of the dataset collected in Zürich. The
analysis is divided into several key steps, including data preprocessing, regression analysis,
and classification analysis.
Data preprocessing is vital to cleaning and preparing the data, addressing errors, missing
values, and inconsistencies. It ensures that the dataset is suitable for analysis and that
algorithms perform optimally. Following data preprocessing, regression analysis is con-
ducted to understand the relationships between variables. This type of analysis is crucial
for predicting continuous outcomes based on the input variables. By applying regression
techniques, trends can be identified, predictions can be made, and the strength of the
relationships between di↵erent variables in the dataset can be quantified.
The final step is classification analysis, which aims to develop a predictive model that
accurately categorizes the distance between two devices based on their RSSI values. It is
essential for understanding group di↵erences within the data.

5.2.1 Data Preprocessing

During the data preprocessing step, the dataset has been filtered only to contain rows
whose AdvPduType is ADV IND, the PacketHeader is equal to 0x2560 and the length
of the packet is 30 bytes. This filtering process was done to remove data not related
to AirTags. As the next step, the column DTAP (Distance According to Paper) was
added and calculated with Equation 2.2 by using n = 2 (path loss exponent in free space)
and the mean RSSI value of -64.61 dBm (according to Table 5.1). This calculation was
performed to verify if the formula from [26] accurately describes the distribution of the
collected data and to assess any deviation from the actual distances. The values inside the
RSSI, Distance, and DATP columns have been all transformed into Float data type for
consistency in data representation and to ensure compatibility for analysis and modeling
purposes.
To avoid biases in the analysis, as the dataset had a di↵erent number of observations
depending on the distance category (unbalances among the classes), a subset of the data
has been taken so that for each class there are exactly 13244 observations (according to the
class with the least number of observations at the beginning). This approach ensures that
distances with more observations do not disproportionately influence the results compared
to distances with fewer observations, thereby promoting balanced contributions from all
distance categories to the outcome.
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Figure 5.2: Relationship between Distance and DATP Variables

Figure 5.2 shows the di↵erence between the data collected at the di↵erent distances versus
the distance calculated with Equation 2.2 according to the RSSI values in the dataset.
The plot shows that the two variables are correlated and they both follow the exponential
distribution. The mean di↵erence between the labeled distance and the distance predicted
by Equation 2.2 is 0.04 meters. The median di↵erence is 0.07 meters, whereas the mini-
mum di↵erence is -18.87 meters, and the maximum di↵erence is 8.34 meters. This result
indicates that, with few exceptions, there is almost no di↵erence between the distance
given by the formula presented in [27] and the actual distance when using free space (air)
as the signal attenuation constant. This small di↵erence demonstrates a similar distribu-
tion between the collected data and the equation from [26], which confirms the formula’s
accuracy in estimating distances based on RSSI values.

5.2.2 Regression Analysis

The goal of this analysis is to infer from the data the type of relationship that exists be-
tween RSSI values and the distance between two devices. Understanding this relationship
is important as it enables the prediction of the physical distance between devices based on
their RSSI values, which is crucial for the detection and identification of malicious track-
ers. For example, if a user suspects that a device is nearby, he/she can use RSSI values to
determine its proximity. If the RSSI values indicate that a device is unexpectedly close,
it could be a sign of a potential malicious tracker, assuming the user does not own any
AirTags.

Regression analysis is essential for achieving accurate predictions and reliable detection
by using di↵erent models to identify the best fit for the data. The process begins with
selecting the appropriate regression approach, such as linear or exponential regression, to
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determine which best captures the relationship between RSSI values and distance. After-
ward, each model is fitted to the data, and its performance is evaluated based on metrics
such as R-squared or Mean Squared Error. The model with the highest accuracy and
lowest error rates is considered the most suitable. Additionally, it is essential to check the
assumptions of the regression models, such as linearity, homoscedasticity, independence,
and normality of residuals. Ensuring these assumptions hold true is essential for the va-
lidity of the results provided by the regression analysis. This step not only provides a
deeper understanding of how RSSI values correlate with distance but also ensures that
the predictive models are reliable for practical applications.

Linear Regression

Before making predictions with the linear model, the assumptions need to be checked.
This can be done straightforwardly with the four diagnostic plots shown in Figure 5.3.

(a) (b)

(c) (d)

Figure 5.3: Diagnostic Plots of Linear Model for the Zürich Dataset
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• Residuals vs Fitted plot: checks the assumption of linearity between the residuals.
The plot in Figure 5.2 shows that the residuals are not randomly scattered around
the horizontal line, which suggests that the linearity assumption is violated. This is
important because it indicates that the model may not be capturing all the under-
lying patterns in the data. When the linearity assumption is violated, it means that
there might be a non-linear relationship between the predictor variables and the
response variable that the current model fails to address. This can lead to biased
estimates and poor predictive performance. Checking this plot helps in diagnosing
model misspecification and guides the need for considering more complex models or
transformations to fit the data better.

• Normal Q-Q plot: checks the assumption of normally distributed residuals. The
plot shows that the residuals deviate significantly from the diagonal line, indicating
non-normality. Additionally, there is a small vertical jump with no values in be-
tween, which could be caused by the di�culty of replicating the exact setting used
in the data collection process for the proximity experiments or other device signals
interfering with the signal emitted by AirTags. The plot suggests that this assump-
tion is violated. This is important because normally distributed residuals ensure
the validity of hypothesis tests and confidence intervals. When this assumption is
violated, it implies that the linear regression model may not be appropriate for the
collected data, potentially leading to unreliable estimates and inferences.

• Scale-Location plot: checks the assumption of homoscedasticity (constant variance
between the residuals). The plot shows a pattern where the spread of the stan-
dardized residuals is not constant across the range of fitted values. This indicates
heteroscedasticity, implying that the assumption of constant variance between the
residuals is violated. This is important because homoscedasticity is a key assump-
tion in linear regression, ensuring that the model’s errors are evenly distributed
across all levels of the independent variables. Heteroscedasticity can result in bi-
ased standard errors, which a↵ect the reliability of hypothesis tests and confidence
intervals.

• Residuals vs Leverage plot: checks for influential points that might a↵ect the regres-
sion model. The plot shows high standardized residuals which are potential outliers.
This is important because influential points can disproportionately a↵ect the fit of
the regression model, leading to misleading estimates and conclusions. However,
given that the other diagnostic plots clearly show that the assumptions of normal-
ity and linearity are violated, it is evident that a linear model cannot be used for
inference purposes on this data.

Since the data does not follow a normal distribution, an attempt was made to model it us-
ing an exponential regression approach, as illustrated by Equation 2.2, which describes the
exponential relationship between RSSI values and the distance between two devices. The
purpose of employing linear regression was to assess whether the collected data conformed
to this theoretical exponential relationship or exhibited indications of linearity. Figure 5.3
confirmed the non-normal distribution of the data, and Figure 5.4 demonstrates that the
relationship between RSSI values and distance for the collected data is exponential.
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Exponential Regression

Figure 5.4: Line of Exponential Regression for Zürich Dataset

Figure 5.4 shows the exponential regression model fit on the data from Zürich with a blue
line indicating the distance predicted by equation 2.2 for the respective RSSI value. As
the equation and the plot show, the relationship between RSSI values and the distance
between two devices is exponential. This is evident from the plot, where the red curve
represents the exponential regression line fitting the data points. The curve decreases
rapidly at first and then flattens out, indicating an exponential decay pattern. The R-
squared of the model is 0.5021 (defined between 0 and 1; the higher, the better), and the
Mean Squared Error is 5.6370 (the closer to 0, the better).

5.2.3 Classification Analysis

Classification analysis aims to predict the distance category into which a given distance
falls. The chosen categories are:

• 0 - 1 meters

• 1 - 2 meters

• 2 - 4 meters
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• 4 - 10 meters

• More than 10 meters

These specific distance categories were selected based on insights derived from the expo-
nential regression model. The model revealed a pattern of drastic changes in measured
distances at the lower ranges, followed by a more gradual plateau as distances increased.
By using exponential regression, the study aimed to identify categories that capture these
variations e↵ectively, ensuring the classification model is appropriately tuned to distin-
guish between di↵erent stalking scenarios based on distance. To identify the best classifier
for this task, several algorithms were evaluated, such as Random Forest, Decision Tree,
Naive Bayes Classifier, and Multilayer Perceptron (MLP). By testing a diverse set of al-
gorithms, it becomes possible to evaluate their performance with di↵erent datasets and
compare them e↵ectively. This approach facilitates the selection of the most e↵ective
classifier, thereby ensuring optimal accuracy and reliability in prediction tasks.
A cross-validation approach was conducted to test the over/under-fitting of the di↵erent
models, as well as their accuracy on unseen data. Overfitting occurs when a model learns
not only the underlying patterns in the training data but also the noise and random fluc-
tuations. As a result, while the model may perform exceptionally well on the training
data, its performance significantly deteriorates on new, unseen data. Overfitting is prob-
lematic because it leads to poor generalization, where the model fails to predict outcomes
for data outside the training set accurately.
The cross-validation approach involves partitioning the dataset into multiple subsets and
training the model on some subsets while testing it on others. This process is repeated
several times to ensure that the model’s performance is consistent and not overly depen-
dent on a particular subset of data. By using cross-validation, models’ performance can
be assessed more rigorously and ensure that the selected model has good predictive power
and robustness.

The models performed as follows:

Table 5.3: Model Performance Comparison for Zürich Dataset

Model Training R-squared Cross-validated R-squared Di↵ Test Accuracy

Random Forest 0.7329 0.7302 0.0027 0.6593
Decision Tree 0.7330 0.7302 0.0028 0.6593
Naive Bayes 0.5575 0.5573 0.0002 0.6850
MLP 0.7238 0.7164 0.0074 0.6466
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Figure 5.5: Comparison of Training R-squared and Cross-validated R-squared by model

The best model is the Naive Bayes Classifier, it has the lowest di↵erence between training
R-squared score and cross-validated R-squared score and the highest accuracy among all
the models (0.6850). Figure 5.5 and Table 5.3 indicate that none of the models exhibit
overfitting, as evidenced by the minimal di↵erence between the Training R-squared and
Cross-validated R-squared values across all models.

5.3 Analysis of the Lugano Dataset

This section provides an in-depth analysis of the dataset collected in Lugano. The struc-
ture of the analysis is similar to the one applied to the Zürich dataset, focusing on data
preprocessing, regression analysis, and classification analysis.

5.3.1 Data Preprocessing

The data preprocessing step has been done in a similar way to the Zürich dataset.
The subset of the data contained 3134 observations for each class (according to the class
with the least number of observations at the beginning). This is lower than the number
of observations per class for the Zürich dataset (as defined in Data Preprocessing).
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Figure 5.6: Relationship between Distance and DATP Variables

Figure 5.6 shows a similar pattern to Figure 5.2. The mean di↵erence between the labeled
distance and the distance predicted by Equation 2.2 is -1.4 meters. The median di↵er-
ence is 0.82 meters, whereas the minimum di↵erence is -25.48 meters, and the maximum
di↵erence is 9.96 meters. This result indicates that, compared to the Zürich dataset, the
distance given by the formula presented in [26] di↵ers remarkably from the actual distance
when using free space (air) as the signal attenuation constant for the Lugano dataset. The
significance of this result should be investigated further to assess whether this is due to
having a controlled environment with zero interfering signals or if this is caused by having
a small data set.

5.3.2 Regression Analysis

This section aims to analyze the regression analysis for the Lugano dataset and compare
the exponential regression model with the one from the Zürich dataset.

Linear Regression

Since the data does not conform to a normal distribution but instead follows an expo-
nential distribution (similar in diagnostic plots and distribution to the Zürich data), it is
directly modeled using exponential regression.
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Exponential Regression

Figure 5.7: Line of Exponential Regression for Lugano Dataset

As the equation and the plot in Figure 5.7 show, the relationship between RSSI values and
the distance between two devices is exponential. The R-squared of the model is 0.2429,
and the Mean Squared Error is 8.5067. The model performs worse on this dataset than
on the dataset from Zürich.

5.3.3 Classification Analysis

The models performed as follows:

Table 5.4: Model Performance Comparison for Lugano Dataset

Model Training R-squared Cross-validated R-squared Di↵ Test Accuracy

Random Forest 0.5715 0.5733 -0.0018 0.4289
Decision Tree 0.5717 0.5734 -0.0017 0.4218
Naive Bayes -0.0752 -0.0709 -0.0043 0.5444
MLP 0.4672 0.4890 -0.0218 0.4861
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Figure 5.8: Comparison of Training R-squared and Cross-validated R-squared by model

The best model in terms of accuracy is the Naive Bayes Classifier model. However, Figure
5.8 and Table 5.8 illustrate that this model has negative R-squared values, which could
be a sign of overfitting. Therefore, the preferred model is the Random Forest, as it has
a medium-high accuracy and does not overfit (the di↵erence between the Training R-
squared and the Cross-validated square is close to 0). Although the MLP achieves higher
accuracy compared to the Random Forest, the significantly larger di↵erence in R-squared
values suggests potential overfitting in the MLP model.

5.4 Analysis and Comparisons of the two Datasets

For this analysis, the two datasets have been combined. This section o↵ers a detailed
examination of the combined dataset, following a structure akin to the individual analyses
conducted for the Lugano and Zürich datasets.

5.4.1 Data Preprocessing

The data preprocessing step has been done in a similar way to the other two datasets.
The subset of the data contained 51294 observations for each class (according to the class
with the least number of observations at the beginning).
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Figure 5.9: Relationship between Distance and DATP Variables

Figure 5.9 shows a similar pattern to Figure 5.2 and Figure 5.6.

5.4.2 Regression Analysis

Similar to the analyses conducted for the individual datasets, this section explores the
combined dataset using linear and exponential regression models to assess the accuracy
of predicting distance from RSSI values.

Linear Regression

As Figures 5.3, 5.4 and 5.7 show, the data follows an exponential distribution. Therefore,
exponential regression is employed directly.
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Exponential Regression

Figure 5.10: Line of Exponential Regression for the Combined Dataset

As the equation and Figure 5.10 show, the relationship between RSSI values and the
distance between two devices is exponential. The R-squared of the model is 0.5394, and
the Mean Squared Error is 5.2458. The model performs better on this dataset than
on the other two datasets because the information from data collected in two di↵erent
environments (specified in Experiments) enhances the model’s ability to generalize and
make accurate predictions.
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5.4.3 Classification Analysis

The models performed as follows:

Table 5.5: Model Performance Comparison for Combined Dataset

Model Training R-squared Cross-validated R-squared Di↵ Test Accuracy

Random Forest 0.7219 0.7210 0.0009 0.6432
Decision Tree 0.7219 0.7211 0.0008 0.6432
Naive Bayes 0.5644 0.5657 -0.0013 0.7030
MLP 0.7077 0.7086 -0.0009 0.6322

Figure 5.11: Comparison of Training R-squared and Cross-validated R-squared by model

The best model is the Naive Bayes Classifier, it has the lowest di↵erence between training
R-squared score and cross-validated R-squared score and the highest accuracy among all
the models (0.7030). It has the highest accuracy out of three Naive Bayes Classifiers
built for the three analyses. Figure 5.11 and Table 5.5 illustrate that none of the models
exhibit overfitting, as evidenced by the close similarity between the Training R-squared
and Cross-validated R-squared values across all models
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5.5 Analysis of Environmental Experiments

This section has the goal of studying the data collected for the various environment
experiments (specified in Experiments) to better understand the behavior of RSSI values.

• 1 AirTag vs 10 AirTags experiment:

– RSSI value for 1 AirTag: -61.03 dBm

– Mean RSSI value for 10 AirTags at the same distance: -56.25 dBm

Figure 5.12: RSSI values measured with 1 AirTag

Figure 5.13: Comparison of RSSI values measured with 10 AirTags
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From the data and Figures 5.12 and 5.13, it can be deduced that an increase in the
number of AirTags results in a higher average RSSI. This is due to the overlapping
signals reinforcing each other.

• No person vs person walking between transmitter and receiver:

– Mean RSSI value when no person is walking in between: -56.25 dBm

– Mean RSSI value when a person is walking in between: -59.63 dBm

Figure 5.14: Comparison of RSSI values measured with and without a person walking in
between

Based on the data and Figure 5.14, it is evident that the average RSSI is lower
when a person is walking between the transmitter and receiver. This reduction in
signal strength occurs because human bodies, which are largely composed of water,
e↵ectively absorb RF signals.

• AirTags inside closet vs outside closet (same distance):

– Mean RSSI value for AirTags outside closet: -50.8 dBm

– Mean RSSI value for AirTags inside closet: -57.09 dBm
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Figure 5.15: Comparison of RSSI values measured inside and outside of a closet

Figure 5.15 demonstrates that the average RSSI value is lower when AirTags are
placed inside a closet. This is because materials and physical barriers attenuate RF
signals, resulting in a weaker signal.

5.6 Limitations

While [54] determined that the optimal distance parameter for the HomeScout tracking
algorithm is 200 meters, the measurements obtained in this study di↵er significantly. The
experiments from [54] aimed to identify parameter values that would most reliably de-
tect signals and thereby optimize the algorithm’s performance. The definition of distance
varies significantly between the two contexts: HomeScout’s distance parameter is deter-
mined by a person walking along a route and detecting signals from nearby devices, where
the distance from the tracking devices to the scanning device is unknown. This distance
parameter is selected based on maximizing signal capture and optimizing algorithmic per-
formance. In contrast, this thesis directly measures the distance between AirTags and
the scanning device up to 10 meters. To address this di↵erence in distance applicabil-
ity, an option would be to conduct HomeScout experiments again, placing AirTags at
known distances. This approach would provide a clear understanding of how distance,
mapped with occurrences and time parameters, relates to detection reliability. Conduct-
ing controlled experiments with AirTags labeled according to their distance would provide
comprehensive insights into these relationships. Moreover, labeling AirTags by their state
can provide valuable insights. An AirTag in a connected state suggests that the device it
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is paired with is within 30 meters of the AirTag [41]. This information is crucial for users
who may want to filter out AirTags in a connected state if they suspect potential tracking
from a greater distance. Conversely, if a user wants to focus on detecting nearby threats,
they may include AirTags in a connected state while excluding those in a lost state. How-
ever, in crowded environments, this approach presents challenges as many AirTags may
be in a connected state, making it di�cult to distinguish between benign and potentially
malicious tracking scenarios.

Additionally, a limitation of the current study is that it does not account for vertical
distance. For example, if a stalker places an AirTag at the top of a backpack of a person
while his/her phone is in a pocket, the vertical distance (approximately 0.5 meters) needs
to be measured to understand if and how the behavior of RSSI values changes. The
orientation of antennas should be taken into account as it plays a critical role in RSSI
measurements, as highlighted by [55]. This study found that RSSI values vary depending
on the angle of the receiver antenna relative to the transmitter antenna. Specifically, the
strongest RSSI values were measured when the receiver antenna was vertically oriented
towards the transmitter antenna, whereas the weakest values occurred when the antenna
was vertically oriented away from the transmitter. The current experiments only tested
horizontal distances, leaving a gap in understanding the full three-dimensional spatial
relationships in tracking scenarios.

It is essential to validate Equation 2.2 in environmental experiments using di↵erent at-
tenuation constants, depending on the material through which the signal passes. This is
helpful to assess whether the formula from [26] accurately matches the actual distance
between two devices when using a signal attenuation constant that is not free space.

Moreover, it’s notable that the di↵erence between the actual distance and the distance
predicted by [26] is higher for the Lugano dataset than that observed for the Zürich
dataset. Therefore, further data collection in controlled settings is essential to determine
whether this discrepancy stems from the di↵erences in nature from the formula derived
by [26] or simply due to the few collected data.

While RSSI values were measured between AirTags and the receiving device in both
controlled (Lugano) and semi-controlled (Zürich) environments, the latter setting doesn’t
entirely reflect highly crowded environments such as airports or train stations, where
numerous Bluetooth devices and signals are present simultaneously. Although the data
collected in Zürich provides insights into real-world scenarios to some extent, it may not
fully encapsulate the complexities of such crowded environments. Future data collection
e↵orts should prioritize methods that better replicate these conditions to enhance the
model’s real-world accuracy.

The values in the SettingsFragment for the NearField and Persistent filter in the
HomeScout application are currently hardcoded and not chosen based on the collected
data. This is due to the di↵erence in contexts for the distance parameter, which would
require data labeled according to the distance to be collected in a setting similar to Home-
Scout’s. This data would provide insights into how the occurrences and time parameters
correlate with labeled distances, allowing consequently for the integration of measured
RSSI values for better shielding. Therefore, the current values may not be very e↵ective
when used for the prototype under real-world conditions.
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The categories chosen for the classification task are not highly flexible and are tailored
to the specific type of data collected. For instance, the models might classify a distance
of 20 meters and a distance of 50 meters into the same category, such as ”10+ meters.”
In practical scenarios, however, more precise distance categories would be desirable. Fu-
ture research should explore more adaptable classification methodologies to enhance the
model’s accuracy and applicability in real-world settings.

Based on the analysis conducted in this chapter, it is evident that RSSI values exhibit
significant variability based on environmental conditions and experimental setups. The
datasets from Zürich and Lugano provided valuable insights into how RSSI values corre-
late with distance, showcasing the challenges posed by factors such as signal interference
and environmental obstacles. Regression and classification analyses underscored the util-
ity of predictive models in estimating distances and categorizing them into meaningful
bins. Moreover, experiments examining di↵erent scenarios, including multiple AirTags
and human interference, highlighted the dynamic nature of RSSI measurements. These
findings underscore the importance of context-specific calibration and careful considera-
tion of environmental variables when utilizing RSSI for proximity detection and distance
estimation applications.
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Conclusions and Future Work

This chapter concludes this work by providing a summary of the key discoveries and
contributions. Furthermore, it o↵ers guidance for researchers interested in delving deeper
into this field.

6.1 Conclusions

The primary objective of this thesis was to collect a comprehensive dataset to analyze the
behavior of RSSI values emitted by tracking devices such as AirTags. Subsequently, the
study aimed to develop an RSSI shielding prototype for the existing HomeScout appli-
cation to prevent notifications about potential stalking attacks from owned or irrelevant
trackers.

The first research question explored the feasibility of predicting the distance between a
Non-Tracker Device (e.g., iPhone) and a Tracker Device (e.g., AirTag) using RSSI values.
Equations 2.1 and 2.2 confirm that this prediction is possible, although the precision
varies based on the dataset. Overall, the Zürich dataset produced more promising results
compared to the Lugano dataset, indicating that the accuracy of distance estimation is
influenced by the quality and characteristics of the collected data.

The second research question aimed to understand how RSSI values could be utilized to
distinguish between owned and unowned devices. Based on the research in this thesis,
it became apparent that a labeled dataset is required for more precise predictions. This
dataset should include the state of the AirTag, such as whether it is connected, unpaired,
nearby, or lost. Further data collection and analysis of RSSI values in combination with
AirTag states are necessary to expand on this research question.

The third research question investigated how environmental conditions a↵ect the accuracy
and reliability of RSSI values for distance estimation. The data showed that controlled
environments with minimal interference (i.e., the Lugano dataset) tend to produce higher
average RSSI values per distance measurement. Additionally, RSSI values decrease when
obstacles, such as people or objects, obstruct the signal. This is because human bodies,
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composed largely of water, e↵ectively absorb RF signals, weakening the RSSI values. To
quantify the influence of these environmental factors on RSSI accuracy, further data col-
lection is required. This data should be labeled according to distance, and the predicted
distances should be compared to actual distances, accounting for the varying signal at-
tenuation constants of di↵erent obstacles. Additionally, the collected data with di↵erent
attenuation constants can be compared to the data with free space (air) as the attenua-
tion constant to assess the extent of the di↵erence in RSSI values when the signal travels
through di↵erent materials.

In conclusion, while the study demonstrated the potential for using RSSI values in distance
estimation and highlighted the impact of environmental conditions, further research with
more comprehensive and labeled datasets is essential to enhance the reliability of the
current shielding prototype.
Additionally, it should be noted that the decision was made not to delve deeply into
time and frequency dispersion, as it was determined that knowing the specific type of
distortion was beyond the scope of this work. Nevertheless, this thesis identified whether
any distortion or interference on the signals occurred in the first place.

6.2 Future Work

The research conducted has provided valuable insights, particularly in understanding the
feasibility of using RSSI values for distance estimation with tracking devices like AirTags.
Key takeaways include the variability of RSSI values based on environmental conditions,
including situations where human bodies or objects can introduce signal distortion. An-
other crucial takeaway is the need for a labeled dataset to e↵ectively distinguish between
owned and unowned devices in di↵erent environmental contexts. This refinement is es-
sential for accurately implementing the RSSI shielding prototype within the HomeScout
application.

To advance this research, the validation of Equation 2.2 for distance estimation demands
further investigation through additional experiments. It is essential to verify the for-
mula’s accuracy across diverse environmental conditions and materials, considering dif-
ferent attenuation constants. It should also be explored whether the di↵erences between
the formula’s predicted distance and the actual distances decrease in controlled settings.

Secondly, future experiments should incorporate the consideration of vertical distance in
conjunction with horizontal distance. It should be studied whether vertical distance can
significantly influence RSSI values, and if this is the case, in which way RSSI values are
influenced by it. By accounting for both horizontal and vertical dimensions, the tracking
accuracy can be improved, leading to more precise detection of malicious trackers.

Additionally, it is essential to accommodate more flexible distance categorization. Cur-
rent classification approaches are specific to the collected data, leading to less precise
estimation, especially with increasing distances.

Furthermore, conducting experiments with AirTags labeled according to their distance
and state in a setting similar to that of HomeScout is essential. This allows the es-
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tablishment of a mapping between labeled distances and HomeScout’s distance, thereby
allowing the incorporation of RSSI as a shield into the tracking algorithm. By integrating
RSSI shielding while also considering the occurrences and time parameters, the Home-
Scout functionality is maintained and the algorithm’s reliability in real-world scenarios is
enhanced.

Lastly, collecting a larger dataset is crucial to enhance the ability to make the analysis
more robust. It is ideal to include measurements across a wider range of distances, ex-
tending up to the maximum distance where AirTags can e↵ectively be used for stalking
purposes. This approach ensures comprehensive coverage of all feasible distances within
the operational range of AirTags.

By addressing these aspects, future research can build on the findings of this thesis to
develop more e↵ective solutions for tracking device detection and shielding, laying the
groundwork for enhanced privacy and security measures.



54 CHAPTER 6. CONCLUSIONS AND FUTURE WORK



Bibliography

[1] Bluetooth SIG,“2023 bluetooth market update,”https://img.anfulai.cn/bbs/118741/
2023%20Market%20Update%20 %20Bluetooth%20Technology%20Website.pdf,
2023, visited: 20.02.2024.

[2] Wikipedia, “Bluetooth low energy beacon,” https://en.wikipedia.org/wiki/
Bluetooth Low Energy beacon, visited: 21.02.2024.

[3] Q. Dong and W. Dargie, “Evaluation of the reliability of rssi for indoor localization,”
2012 International Conference on Wireless Communications in Underground and
Confined Areas, pp. 1–6, 2012.

[4] A. Mussina and S. Aubakirov, “Rssi based bluetooth low energy indoor positioning,”
2018 International Conference on Advances in ICT for Emerging Regions (ICTer),
October 2018.

[5] Y. Wang, X. Yang, Y. Zhao, and Y. Liu, “Bluetooth positioning using rssi and trian-
gulation methods,”Consumer Communications and Networking Conference (CCNC),
2013 IEEE. Las Vegas, NV, USA, IEEE, Jan. 2013.

[6] J. Du, C. Yuan, M. Yue, and T. Ma, “A novel localization algorithm based on rssi
and multilateration for indoor environments,” Sensors, Vol. 17, No. 9, 2017.

[7] M. N. Amr, H. M. ELAttar, M. H. A. E. Azeem, and H. E. Badawy, “An enhanced
indoor positioning technique based on a novel received signal strength indicator dis-
tance prediction and correction model,” Sensors, Vol. 21, No. 3, p. 719, 2021.

[8] Apple, “Find your lost apple device or airtag with find my,” https://support.apple.
com/en-us/104978, visited: 21.02.2024.

[9] Britannica, “How does bluetooth work,” https://www.britannica.com/story/
how-does-bluetooth-work, visited: 21.02.2024.

[10] Bluetooth, “What determines bluetooth range?” https://www.bluetooth.com/
learn-about-bluetooth/key-attributes/range/#:˜:text=Bluetooth%C2%AE%
20technology%20uses%20the,balance%20between%20range%20and%20throughput,
visited: 21.02.2024.

[11] Rajiv, “What are radio frequency bands and its uses?” https://www.rfpage.com/
what-are-radio-frequency-bands-and-its-uses/, Nov 2023, visited: 07.04.2024.

55

https://img.anfulai.cn/bbs/118741/2023%20Market%20Update%20_%20Bluetooth%20Technology%20Website.pdf
https://img.anfulai.cn/bbs/118741/2023%20Market%20Update%20_%20Bluetooth%20Technology%20Website.pdf
https://en.wikipedia.org/wiki/Bluetooth_Low_Energy_beacon
https://en.wikipedia.org/wiki/Bluetooth_Low_Energy_beacon
https://support.apple.com/en-us/104978
https://support.apple.com/en-us/104978
https://www.britannica.com/story/how-does-bluetooth-work
https://www.britannica.com/story/how-does-bluetooth-work
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/range/#:~:text=Bluetooth%C2%AE%20technology%20uses%20the,balance%20between%20range%20and%20throughput
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/range/#:~:text=Bluetooth%C2%AE%20technology%20uses%20the,balance%20between%20range%20and%20throughput
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/range/#:~:text=Bluetooth%C2%AE%20technology%20uses%20the,balance%20between%20range%20and%20throughput
https://www.rfpage.com/what-are-radio-frequency-bands-and-its-uses/
https://www.rfpage.com/what-are-radio-frequency-bands-and-its-uses/


56 BIBLIOGRAPHY

[12] Wikipedia, “Radio frequency — Wikipedia, the free encyclopedia,” https://en.
wikipedia.org/wiki/Radio frequency, 2024, visited: 07.04.2024.

[13] Saylor Academy, “More wireless basics: Power and receiver sensitivity,” https:
//learn.saylor.org/mod/book/view.php?id=29826&chapterid=5500, 2024, visited:
07.04.2024.

[14] “Gain (antenna),” https://en.wikipedia.org/wiki/Gain (antenna), visited:
07.04.2024.

[15] P. T. Z. Tun, “Path loss prediction by using rssi values,” 2018.

[16] R. Heydon, Bluetooth Low Energy: The Developer 's Handbook. Pearson Always
Learning. Prentice Hall, 2012.

[17] S. Zeadally, F. Siddiqui, and Z. Baig, “25 years of bluetooth technology,” Future
Internet, Vol. 11, p. 194, 2019.

[18] J. Tosi, F. Ta↵oni, M. Santacatterina, R. Sannino, and D. Formica, “Performance
evaluation of bluetooth low energy: A systematic review,” Sensors, Vol. 17, No. 12,
2017.

[19] RF Wireless World, “Ble advertising packet format | ble data
packet format,” https://www.rfwireless-world.com/Terminology/
BLE-Advertising-and-Data-Packet-Format.html, 2024, visited: 27.02.2024.

[20] Texas Instruments, Generic Access Profile (GAP), https://software-dl.ti.com/lprf/
simplelink cc2640r2 sdk/1.35.00.33/exports/docs/ble5stack/ble user guide/html/
ble-stack/gap.html, visited: 16.03.2024.

[21] Microchip Technology Inc. (2023) Generic attribute profile (gatt)
overview. https://developerhelp.microchip.com/xwiki/bin/view/
applications/ble/introduction/bluetooth-architecture/bluetooth-host-layer/
bluetooth-generic-attribute-profile-gatt/Overview/. Visited: 16.03.2024.

[22] J. Wong. (2019, June) Security manager (sm) in bluetooth low energy. https:
//jimmywongiot.com/2019/06/12/security-manager-sm-in-bluetooth-low-energy/.
Visited: 05.04.2024.

[23] Nordic Semiconductor, “Services and characteristics,” https://academy.
nordicsemi.com/courses/bluetooth-low-energy-fundamentals/lessons/
lesson-4-bluetooth-le-data-exchange/topic/services-and-characteristics/, 2023,
visited: 05.04.2024.

[24] Texas Instruments, “Logical link control and adaptation layer protocol (l2cap) -
ble-stack user’s guide for bluetooth 4.2,” https://software-dl.ti.com/lprf/sdg-latest/
html/ble-stack-3.x/l2cap.html, 2016, visited: 05.04.2024.

[25] Telecom Trainer, “RSSI (Receive Signal Strength Indicator),” https://www.
telecomtrainer.com/rssi-receive-signal-strength-indicator/, visited: 21.02.2024.

https://learn.saylor.org/mod/book/view.php?id=29826&chapterid=5500
https://learn.saylor.org/mod/book/view.php?id=29826&chapterid=5500
https://en.wikipedia.org/wiki/Gain_(antenna)
https://www.rfwireless-world.com/Terminology/BLE-Advertising-and-Data-Packet-Format.html
https://www.rfwireless-world.com/Terminology/BLE-Advertising-and-Data-Packet-Format.html
https://software-dl.ti.com/lprf/simplelink_cc2640r2_sdk/1.35.00.33/exports/docs/ble5stack/ble_user_guide/html/ble-stack/gap.html
https://software-dl.ti.com/lprf/simplelink_cc2640r2_sdk/1.35.00.33/exports/docs/ble5stack/ble_user_guide/html/ble-stack/gap.html
https://software-dl.ti.com/lprf/simplelink_cc2640r2_sdk/1.35.00.33/exports/docs/ble5stack/ble_user_guide/html/ble-stack/gap.html
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-host-layer/bluetooth-generic-attribute-profile-gatt/Overview/
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-host-layer/bluetooth-generic-attribute-profile-gatt/Overview/
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-host-layer/bluetooth-generic-attribute-profile-gatt/Overview/
https://jimmywongiot.com/2019/06/12/security-manager-sm-in-bluetooth-low-energy/
https://jimmywongiot.com/2019/06/12/security-manager-sm-in-bluetooth-low-energy/
https://academy.nordicsemi.com/courses/bluetooth-low-energy-fundamentals/lessons/lesson-4-bluetooth-le-data-exchange/topic/services-and-characteristics/
https://academy.nordicsemi.com/courses/bluetooth-low-energy-fundamentals/lessons/lesson-4-bluetooth-le-data-exchange/topic/services-and-characteristics/
https://academy.nordicsemi.com/courses/bluetooth-low-energy-fundamentals/lessons/lesson-4-bluetooth-le-data-exchange/topic/services-and-characteristics/
https://software-dl.ti.com/lprf/sdg-latest/html/ble-stack-3.x/l2cap.html
https://software-dl.ti.com/lprf/sdg-latest/html/ble-stack-3.x/l2cap.html
https://www.telecomtrainer.com/rssi-receive-signal-strength-indicator/
https://www.telecomtrainer.com/rssi-receive-signal-strength-indicator/


BIBLIOGRAPHY 57

[26] J.-H. Huh and K. Seo, “An indoor location-based control system using bluetooth
beacons for iot systems,” Sensors, Vol. 17, No. 12, p. 2917, 2017.

[27] NetSpot, “What is rssi and its relation to a wi-fi network,” https://www.netspotapp.
com/wifi-signal-strength/what-is-rssi-level.html, visited: 21.02.2024.

[28] A. Heinrich, M. Stute, T. Kornhuber, and M. Hollick, “Who can find my devices?
security and privacy of apple’s crowd-sourced bluetooth location tracking system,”
Proceedings on Privacy Enhancing Technologies, Vol. 2021, pp. 227–245, 2021.

[29] M. Woolley, “Bluetooth core specification version 5.2 feature overview,”https://www.
bluetooth.com/wp-content/uploads/2020/01/Bluetooth 5.2 Feature Overview.pdf,
Bluetooth SIG, Tech. Rep., 2020, visited: 05.04.2024.

[30] Apple Inc., Accessory Design Guidelines for Apple Devices, https://developer.apple.
com/accessories/Accessory-Design-Guidelines.pdf, 2023, visited: 05.04.2024.

[31] A. Heinrich, N. Bittner, and M. Hollick, “AirGuard - Protecting Android Users From
Stalking Attacks By Apple Find My Devices,” 2022.

[32] J. K. Becker, D. Li, and D. Starobinski, “Tracking anonymized bluetooth devices,”
Proceedings on Privacy Enhancing Technologies, Vol. 2019, No. 3, pp. 50–65, 2019.

[33] Apple Inc., “Airtag - technical specifications,” https://support.apple.com/kb/SP840?
locale=en US, 2022, visited: 26.02.2024.

[34] ——, “Airtag,” https://www.apple.com/airtag/, 2024, visited: 26.02.2024.

[35] Tile, Inc., “How it works,” https://ch.tile.com/en/how-it-works, 2024, visited:
26.02.2024.

[36] ——, “Tile - find lost keys phone,” https://ch.tile.com/en, 2024, visited: 26.02.2024.

[37] Chipolo d.o.o., “Finde deine schlüssel, portemonnaie und telefon - chipolo,” https:
//chipolo.net/de/, 2024, visited: 26.02.2024.

[38] ——, “Chipolo one spot - the key finder that works with the apple find my app,”
https://chipolo.net/en/products/chipolo-one-spot, 2024, visited: 26.02.2024.

[39] Samsung Electronics Co., Ltd., “Galaxy smarttag black | bluetooth tracker,” https://
www.samsung.com/ch/mobile-accessories/galaxy-smarttag-black-ei-t5300bbegeu/,
2024, visited: 26.02.2024.
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Appendix A

Contents of the Repository

The code repository is divided into two main parts: the HomeScout application and the
Data Analysis folder.

HomeScout Application

The HomeScout project is organized as follows:

• app/src/main/kt/android/example/homescout/

– database

∗ BLEDevice.kt - Represents a Bluetooth Low Energy (BLE) device.

∗ BLEDeviceDao.kt - Data Access Object for BLE devices, providing meth-
ods to interact with the database.

∗ HomeScoutDatabase.kt - Database class for the HomeScout application.

∗ MaliciousTracker.kt - Represents a malicious BLE tracker.

∗ MaliciousTrackerDao.kt - Data Access Object for malicious trackers, pro-
viding methods to interact with the database.

– di

∗ AppModule.kt - module for application-level dependencies.

∗ ServiceModule.kt - module for service-level dependencies.

– models

∗ AirTag.kt - Model class representing an AirTag device.

Additional model classes for other devices (Chipolo, Tile, ...).

– repositories

∗ MainRepository.kt - Handles main data operations, including BLE data
interactions and local database management.
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∗ TrackingPreferencesRepository.kt - Manages user preferences related to
BLE tracking and stores configuration settings.

– services

∗ BluetoothScanningService.kt - Service responsible for scanning Bluetooth
devices.

∗ LocationTrackingService.kt - Service responsible for tracking the location
of the user.

∗ TrackerClassificationService.kt - Service responsible for classifying BLE
trackers as malicious or benign.

– ui

∗ Contains activities and fragments for the user interface, managing user
interactions and UI updates.

– utils

∗ BluetoothAPILogger.kt - Utility class for logging Bluetooth-related activ-
ities.

∗ Constants.kt - Class containing constant values used throughout the ap-
plication.

∗ RingBu↵er.kt - Implementation of a ring bu↵er data structure.

• app/src/main/res/

– layout - XML layout files that define the visual structure of the screens in the
app.

– values - Resource files containing strings, colors, and other static values used
in the app.

– drawable - Resource files for images and graphics used in the app.
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Data Analysis Folder

The Data Analysis folder contains scripts and tools used for analyzing the collected BLE
data. The organization is as follows:

• Jupyter Notebooks

– Analysis 0m.ipynb - Analysis at 0 meters distance.

– Analysis 0comma3m.ipynb - Analysis at 0.3 meters distance.

– Analysis 0comma5m.ipynb - Analysis at 0.5 meters distance.

– Analysis 1m.ipynb - Analysis at a 1-meter distance.

– Analysis 2m.ipynb - Analysis at 2 meters distance.

– Analysis 4m.ipynb - Analysis at 4 meters distance.

– Analysis 10m.ipynb - Analysis at 10 meters distance.

– Analysis 1vsAll.ipynb - Analysis comparing RSSI values emitted by 1 AirTag
and 10 AirTags.

– Analysis in out closet.ipynb - Analysis comparing RSSI values of 10 AirTags
inside and outside a closet.

– Analysis noperson vs person.ipynb - Analysis comparing RSSI values with
and without a person walking between the two devices.

– Analysis average rssi Zuerich.ipynb - Analysis of average RSSI values for each
distance measurement in Zürich.

– Analysis average rssi Lugano.ipynb - Analysis of average RSSI values for each
distance measurement in Lugano.

– rssi comparison.ipynb - RSSI comparison analysis between the two datasets.

– ml analysis Zuerich.ipynb - Machine learning analysis for data collected in
Zürich.

– ml analysis Lugano.ipynb - Machine learning analysis for data collected in
Lugano.

– ml analysis Combined.ipynb - Machine learning analysis for combined Lugano
and Zürich datasets.

• Plots

– rssi comparison plot.png - Plot comparing RSSI values across di↵erent dis-
tances for the two datasets.
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