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Introduction

The Department of Informatics (IFI) of the University of Zurich, Switzerland works on
research and teaching in the area of computer networks and communication systems.
Communication systems include a wide range of topics and drive many research and
development activities. Therefore, during the spring term FS 2024 a new instance of the
Communication Systems seminar has been prepared and students as well as supervisors
worked on this topic.

The areas of communication systems include among others wired and wireless network
technologies, various network protocols, network management, Quality-of-Service (QoS)
provisioning, mobility, security aspects, peer-to-peer systems, multimedia communication,
and manifold applications, determining important parts of future networks. Therefore,
this year’s seminar addressed such areas in more depth. The understanding and clear
identification of problems in technical and organizational terms have been prepared and
challenges as well as weaknesses of existing approaches have been addressed. All talks
in this seminar provide a systematic approach to judge dedicated pieces of systems or
proposals and their suitability.

Content

This new edition of the seminar entitled “Communication Systems XVII” discusses a
number of selected topics in the area of computer networks and communication systems.
Talk 1 begins with an overview of Single Instruction, Multiple Data (SIMD) techniques
applied to networking applications, highlighting how SIMD-driven parallelism enhances
performance in networking tasks through specific algorithms and implementations. Talk
2 delves into privacy-preserving synthetic data generation, offering a taxonomy of existing
techniques and evaluating their effectiveness and challenges in maintaining data privacy.
Talk 3 reviews federated learning for large language models (LLMs), discussing the ben-
efits and challenges of this approach, focusing on data privacy, communication efficiency,
and model performance. Talk 4 explores inference attacks on machine learning, covering
types such as membership inference and model inversion attacks, their implications for
data privacy and security, and mitigation strategies. Talk 5 examines the security and pri-
vacy issues associated with the Domain Name System (DNS), analyzing common attacks
like cache poisoning and DNS spoofing, along with current mitigation strategies. Talk 6
investigates the impact of heterogeneous IoT networks on privacy in smart home envi-
ronments, discussing how diverse IoT device integration affects data privacy and security,
supported by case studies. Finally, Talk 7 explores the potential of blockchain technol-
ogy to transform financial services, addressing applications such as decentralized finance
(DeFi), smart contracts, and secure transactions, along with the benefits and challenges
of implementing blockchain solutions in the financial sector.
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Seminar Operation

Based on well-developed experiences of former seminars, held in different academic en-
vironments, all interested students worked on an initially offered set of papers and book
chapters. Those relate to the topic titles as presented in the Table of Content below.
They prepared a written essay as a clearly focused presentation, an evaluation, and a
summary of those topics. Each of these essays is included in this technical report as a
separate section and allows for an overview on important areas of concern, technology
architectures and functionality, sometimes business models in operation, and problems
encountered.
In addition, every group of students prepared a slide presentation of approximately 45

minutes to present its findings and summaries to the audience of students attending the
seminar and other interested students, research assistants, and professors. Following a
general question and answer phase, a student-lead discussion debated open issues and
critical statements with the audience.
Local IFI support for preparing talks, reports, and their preparation by students had

been granted by Christos Tsiaras, Andri Lareida, Lisa Kristiana, Radhika Garg, Daniel
Dönni, Corinna Schmitt, and Burkhard Stiller. In particular, many thanks are addressed
to Corinna Schmitt for her strong commitment on getting this technical report ready and
quickly published. A larger number of pre-presentation discussions have provided valuable
insights in the emerging and moving field of communication systems, both for all groups
of students and supervisors. Many thanks to all people contributing to the success of this
event, which has happened in a lively group of highly motivated and technically qualified
students and people.

Zürich, June 2024
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Chapter 1

An Overview and Analysis of
SIMD-driven Parallelism in Networking
Applications

Maximilian Huwyler, Tobias Frauenfelder

This paper presents an in-depth analysis of SIMD applications in the networking sector
with a focus on performance, energy use, and computational complexity. SIMD stands
for Single Instruction Multiple Data and is a parallel computing technique that allows the
processing of multiple data concurrently, which is often used to speed up repetitive tasks.
These are all important factors when it comes to networking applications, which gained
more relevance due to the rise of cloud computing. After giving an overview over the
basics, this paper covers the network-related topics of bloom filters, longest prefix matching,
deep packet inspection, random network coding as well as IoT authentication and security.
The literature review hints that SIMD can have a significant impact on the performance of
networking applications with some trade-offs with regard to flexibility, due to often required
sophisticated data layouts. This raises doubts about the extent of benefits in real-world,
practical applications.
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1.1 Introduction and Problem Statement

Parallel computing techniques play an important role in efficiently executing programs
and other computations for multiple applications. Next to well-known techniques of multi-
threading, which makes use of multiple processing cores on a computer chip, there exist
also other ways of executing programs in parallel. One of them is making use of Single
Instruction Multiple Data (SIMD) instructions, which allow programmers or compilers to
execute one instruction on multiple data instances concurrently [19]. This can be useful
if there is a necessity to perform the same operation on lots of different elements. Let us
for example take a look at two vectors v1 = (1, 2, 3) and v2 = (4, 5, 6). If we want to add
those vectors with scalar operations, we need three instructions, while with SIMD only one
is necessary. SIMD can be used in various fields, one of it is in networking applications.

Since cloud computing has become as popular as today, users all over the world rely on
various networking applications [6]. It is important to ensure that these run as efficiently
as possible to provide fast and reliable service to users. This can be achieved through
the use of parallel computing. SIMD helps to reduce the complexity of operations in
high-throughput networking environments. Additionally, it has the possibility to increase
energy efficiency through using a lower amount of energy. Network applications that
can become more efficient through SIMD computations include packet processing, data
filtering, and encryption, while this is not an exhaustive list of applications.

While SIMD is already widely used in multimedia applications, research in computer
networks is trying to discover how SIMD can be used for benefitting advantages in their
field to enhance performance, improve energy efficiency, and decrease the complexity of
programs. The aim of this paper is to provide an overview of different research projects
in the networking sector and give an overview of where SIMD parallelization can be used.
Due to the complexity of this field, we first make sure to cover the background of SIMD
to later dive into concrete research topics

This seminar paper will be structured as follows: First, we will take a look at the Back-
ground of SIMD applications in Section 5.2. We will look at Flynn’s taxonomy and the
difference between SISD and SIMD computer architectures. Following, this paper pro-
vides a common multimedia application of SIMD called chroma keying. After covering
the basics, we will dive into the field of networking applications and take a closer look at
selected research papers in Section 1.3. We will cover how SIMD benefits bloom filters
(BF), longest prefix matching (LPM), deep packet inspection (DPI), random linear net-
work coding (RLNC), IoT Authentication, and IoT Security. After covering those fields,
we will provide a summary and conclusion of this paper in Section 5.6.
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1.2 Background

1.2.1 Flynn’s Taxonomy

In 1966, Flynn [5] created a taxonomy to classify very high-speed computers into different
classes. The taxonomy distinguishes computers according to their capability to processes
single or multiple data at the same time. Additionally, it is distinguished if multiple
instructions are applied to the piece of data or not. The taxonomy results in four different
computer architectures namely, Single Instruction Single Data (SISD), Single Instruction
Multiple Data (SIMD), Multiple Instruction Single Data (MISD), and Multiple Instruction
Multiple Data (MIMD).

Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

Table 1.1: Flynn’s Taxonomy

To enhance comprehension, it is useful to examine a specific example for every classifi-
cation. A computer with a SISD architecture is a state-of-the-art processor with a von
Neumann architecture. A concrete example of a processor like this is the Intel 80486
released in 1989. A Computer with a MISD architecture is a computer that is used for
safety-critical computation. An explicit instance of a processor like this would be the
calculations in a space shuttle. Flight critical programs are executed there by four times
simultaneously to ensure redundancy [21]. A computer architecture that makes use of
SIMD instructions is useful for computers that have to do the same computation over
and over again, like computations related to multimedia. One of the first processors with
SIMD capability was the Intel Pentium MMX which was released in 1996 due to the
higher demand of multimedia computations [19]. The MIMD processor category includes
the processors that are installed in most laptops and cell phones nowadays, which are mul-
ticore processors. A particular exemplar of a MIMD processor is the Intel Core i9-14900K
released in 2024.

1.2.2 SISD vs SIMD

To grasp the distinction between SISD (see Fig. 1.1a) and SIMD (see Fig. 1.1b) computer
architectures, it is helpful to examine a specific example. Imagine that we have a simple
assembly-like program that operates on an array of integers. The program adds one to
every element and then multiplies it by two. A program like this is depicted in Figure
1.2.
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Figure 1.1: Comparison of SISD and SIMD architectures

LD R← A[i]
ADD R← R + 1
MUL R← R× 2
ST A[i]← R

Figure 1.2: Sequential operations in as-
sembly language
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Figure 1.3: Flowchart illustrating the
SISD program execution

The program first loads one element of the array into a register, adds one to the value in
the register, and multiplies it by two. Once all these steps are executed after each other,
the value from the register is stored back into the array. Since all of those operations are
independent of each other and therefore can be executed simultaneously, the program is
suited for SIMD-capable processors like an array processor depicted in Figure 1.1b.

So that the program can be executed on a processor with SIMD architecture, the Assembly
instructions have to be adjusted. As it can be seen in Figure 1.4, the program loads
four elements concurrently into a vector register and performs all operations on them
at the same time, instead of a single element at the time. This is possible due to the
SIMD architecture (depicted in Figure 1.5) which has multiple processing units. SIMD
processors can be classified into array and vector processors. They differ from each other
in how they operate. Array processors are composed of identical units, whereas vector
processors contain a variety of units, each specialized for specific operations. In array
processors, operations are performed simultaneously but in different locations, whereas,
in vector processors, operations occur sequentially in the same location [15].
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LD V R← A[3 : 0]
ADD V R← V R + 1
MUL V R← V R× 2
ST A[3 : 0]← V R

Figure 1.4: Sequential operations in as-
sembly language
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Figure 1.5: Flowchart illustrating the
SIMD program execution [15]

1.2.3 Advantages and Disadvantages of SIMD

As shown in Subsection 1.2.2, computers that have SIMD capability can speed up the
execution of a program when there are lots of independent operations that can be executed
concurrently. This results in a faster program execution compared to one on a processor
with a SISD architecture. SIMD processors are nowadays available on most processors
today. Smart compilers are also capable to make use of SIMD extensions, although the
programmer wrote their program sequentially. However, this is not always possible, as it
will be shown in this subsection.

Handling of Conditionals: If we for example consider a program that subtracts element-
wise two arrays from each other if the element of the first array is greater than 5, we can
see that this program can not be parallelized as easily as the first example presented in
this paper, since SIMD does not have a concept of branching. The simple loop described
has to be translated into another one that first calculates all subtractions from the array,
then calculates all the conditionals, and in the end filters out all the values for which the
condition is true. This creates lots of overhead for smaller calculations [26].

Loop Dependencies: If we consider a program that takes an array of integers and adds
the previous element to the current one, we can see that this program can not simply be
translated into a SIMD-suitable program. Every iteration of this program is dependent
on the previous operation. Therefore, those iterations cannot be executed concurrently
[11].

Complex Types: SIMD is capable of processing types like integers, shorts, and floats and
in some cases small classes with a few members. However, if a program makes use of more
complex types of data structures like binary trees or hash maps, SIMD extensions are not
suited [8].
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1.2.4 General Field of Application

Although SIMD is nowadays used in Networking Applications, it was first widely used
for multimedia use like the processing of images, films, or audio as well as 3D graphics.
One of the first widely used processors with SIMD extensions was the Intel Pentium with
MMX Technology, introduced in 1996. The SIMD instructions on the MMX processor
work with floating-point registers. MMX defines 8 floating point registers named from
MM0 to MM7. Every register is 64-bit wide, so it can work on 8 bits simultaneously[19].

One example the MMX can be used for is introduced by Peleg and Wiser from Intel is
chroma keying [16]. Chroma keying is used to remove the background of an image in the
color blue or green and replace it with some other image. This application is well suited
for the MMX processor since it needs to do the same task all over again.

The program starts first with creating a bitmask, masking the part of the foreground image
that should be kept or removed. To achieve this, the reference color of the background
that has to be removed is loaded into the register, as well as eight pixels of the image
with the background to remove. The PCMPEQB command compares bytes in two MMX
registers for equality and creates a bit mask of the image of the men in front of the green
screen, which we want to keep.

green green green green green green green green

MM1

X7!=green X6!=green X5=green X4=green X3!=green X2!=green X1=green X0=green

MM3

0x0000 0x0000 0xFFFF 0xFFFF 0x0000 0x0000 0xFFFF 0xFFFF

MM1

PCMPEQB MM1, MM3

(a) Creation of the Bitmask

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

MM4

0x0000 0x0000 0xFFFF 0xFFFF 0x0000 0x0000 0xFFFF 0xFFFF

MM1

0x0000 0x0000 Y5 Y4 0x0000 0x0000 Y1 Y0

MM4

PAND MM4, MM1

0x0000 0x0000 0xFFFF 0xFFFF 0x0000 0x0000 0xFFFF 0xFFFF

MM1

X7 X6 X5 X4 X3 X2 X1 X0

MM3

X7 X6 0x0000 0x0000 X3 X2 0x0000 0x0000

MM1

PANDN MM1, MM3

X7 X6 Y5 Y4 X3 X2 Y1 Y0

MM4

POR MM4, MM1

(b) Merging Image X and Y to the new image

(c) Bitmask (d) Image X

(e) Image Y (f) New Image

Upon creation of the bitmask, the commands PAND and PANDN, which perform bitwise
logical AND/AND NOT operations, select the parts of the images, that we want to keep.
In a later step with Packet wise OR operation POR merges the background and the
foreground image to a new image.
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1.3 Usage of SIMD in Networking Applications

To conduct an overview of different topics of SIMD use in networking applications, the
IEEE Xplore, as well as Google Scholar, were employed. Besides one paper, recent liter-
ature that was written in the last six years was searched for to give an overview of the
recent development of SIMD processing in computer networking. To paint a picture of
how SIMD processing is used, we discuss three applications in great detail: Bloom filters
[14] [13], longest prefix matching [22] [23], and deep packet inspection (DPI) [25]. After-
ward, SIMD use in random linear network coding (RLNC) [18] [20] is presented. In the
end, we show two SIMD applications in the field of IoT authentication and security [3]
[12].

1.3.1 Bloom Filters

A bloom filter is a data structure that supports membership checks. Bloom filters are
probabilistic, since false positives are possible. An element could not be part of a set, but
the bloom filter could identify it as a member. On the other hand, false negatives are not
possible. If an element is not part of a set then the bloom filter would never identify it as
such. This trade-off enables the bloom filter to be fast and space-efficient. A simple bloom
filter implementation consists of an array of zeros and a hash function and represents a
set. The two operations that are supported are inserting a new member and checking the
membership of an element. For each element that is inserted into the set, the element is
hashed onto the array, and corresponding bits are set to one. During a membership check,
an element is hashed into the array, and it is checked whether all the bits are already set
(see Figure 1.7) [2].

Figure 1.7: Bloom Filter [2]

Bloom filters have a wide variety of applications in high-speed computer networking. The
speed of the implementation of bloom filters can be a bottleneck in those situations,
and therefore it is beneficial to make use of the available hardware and leverage SIMD
architecture to accelerate the membership tests [14] [13].

Lu et al. [14] propose a new Bloom Filter variant called Ultra-Fast Bloom Filters (UFBF).
They introduce a basic data structure that consists of words with w bits. k of those words
make up a block and the final bit array is made up of r blocks. For now, we assume that
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k is the number of membership bits set for each element and w is the length of a general
modern CPU register (32- or 64-bit) (see Figure 1.8).

Figure 1.8: Basic Data Structure [14]

To insert an element into the UFBF a hash function is used to map the element onto
a single block. For each word in the block, another hash function is used to map the
element onto a bit and set this bit (see Figure 1.9). The checking process is analog. The
difference is that instead of setting the bits, we see if the bits are checked [14].

Figure 1.9: Insertion Process [14]

The core idea of UFBF is to parallelize the hash function computation and bit-test pro-
cess by replacing the ordinary operations with their SIMD equivalent (see Figure 1.20).
Assuming our SIMD processor can compute the result of p arithmetic operations in par-
allel, then p hash values are computed in parallel using the same hash map but different
seed values. The membership check parallelism stems from the structure of the data. As
mentioned above, we map an element into one block with k consecutive words. These
words can be loaded at the same time such that the bit test can be performed in parallel.
The mapping onto a single block also improves the cache efficiency, since one block can
be chosen to fit into a single cache line [14].

Compared to the standard bloom filter (SBF) the UFBF has a higher false positive rate
but less overhead during membership checking. Additionally, this the UFBF suffers ap-
plicability because p is fixed for a given SIMD processor and we assume that k ≤ p.
Depending on the application of the bloom filter, we would like to choose k appropriately
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large. The authors propose a generalization called c-UFBF which works with a higher
word number k but is a trade-off between the SBF and the UFBF. During an evaluation,
the authors show the trade-off between higher false probability and better membership
cache efficiency in a practical setting. They also show that the performance of the c-
UFBF lies between the SBF and UFBF. Ultimately, they state that the tradeoff of UBFB
is worthwhile in their opinion [14].

Li et al. [13] propose an alternative use of SIMD to accelerate bloom filters. They use
a vectorization algorithm where sixteen elements are loaded into a 512-bit vector. A
corresponding seed index vector provides the seed that is used to compute the hash of
the element. The hashes of the elements can then be tested against the set bits in the
bloom filter. This is done several times for each element with different hash values. If an
element fails the bit test earlier than the other, a new element is loaded in the key vector,
and the seed index vector is adjusted for the newly loaded elements (see Figure 1.10).

Figure 1.10: Vectorized Bloom Filter [13]

To further increase the performance, the authors implement multi-way loop unrolling.
Loop unrolling itself lets the processor use out-of-order execution to increase the paral-
lelization of the code. The authors use multi-way loop unrolling by partitioning the input
array into different key vectors. In each iteration of the loop, a part of those vectors
is processed in parallel until one of them is finished. The rest is processed sequentially.
Additionally, if the bloom filter exceeds the cache size, then the performance degrades
because different words of the filter have to be fetched and cache misses occur. To combat
this, they employ memory access latency hiding by prefetching parts of the bloom filter
[13].

The authors call the combination of those techniques highly vectorized bloom filter (HPBF)
and were able to show in practical evaluation that the performance of the membership
check is significant and can reach up to 162% in certain settings. Nevertheless, these
results have to be taken with a grain of salt, since naively using SIMD parallelism did not
show any improvement in performance [13]. If we compare the HPBF to the UFBF in
detail, we see that even though the authors had the same kind of approach, they employed
different strategies to be able to fully capitalize on the SIMD processor parallelism.
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1.3.2 Longest Prefix Matching

When routers route internet traffic, they typically look up the IP destination address of
the packet/datagram in their routing table to know where to forward it. The entries of
the routing table are made up of an IP address and a corresponding subnet mask. A
destination address can now match with two entries with different length subnet masks
at the same time. To break ties, the whole address of both of the entries is looked at
and the one with the longest matching prefix is chosen [4]. Ueno et al. [22] identify a
need for software middleboxes to be able to perform longest prefix matching (LPM) to
handle multiple 100 Gbit/s interfaces. They propose an LPM method called Spider, which
utilizes SIMD processing to gain a speed advantage.

To be able to benefit from SIMD processing, the authors avoid pointer referencing and bit-
wise operations during the lookup procedure. The SIMD operations are unfit to efficiently
parallelize pointer referencing. To avoid this, Ueno et al. [22] use a state-jump table (see
Figure 1.11).

Figure 1.11: State-Jump Table [22]

Using an appropriate fixed stride length and aligning the data bytewise enables to effi-
ciently use SIMD instructions for parallel processing. For the first two octets direct lookup
table replaces the first two rows of the state-jump table. This is because for two octets, the
table can provide a significant speedup while still maintaining a tolerable size. To avoid
pointer referencing of the direct lookup table to the appropriate row of the state-jump
table, they are both located next to each other in the memory (see Figure 1.12).

The IPv4 version of the algorithm (see Figure 1.21) can now do the lookup procedure
for 8 destination addresses given eight 32-bit operations are supported in parallel. The
first two octets are extracted from the destination address and the corresponding index
of their next hop index (NHI) and next row index (NRI) is calculated. At this index,
the value representing the NHI and the NRI is located and both of them are extracted.
The NHI is the current result. Now, for the rest of the rows of the state-jump table, the
next octet is extracted. Using the current NRI again, the index of the next NHI and NRI
are calculated, and they are extracted. Using the blending operation, we determine the
current NHI. After our NRI becomes zero, indicating the end of the state-jump table, it
stops and stores the result [22]. Because of the memory layout of the data structure, all
these steps can be realized using SIMD operations.
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Figure 1.12: Spider Data Structure [22]

The state-jump table Lu et al. [22] propose does not support updating operations in the
routing table. To circumvent this, an alternative representation of the routing table using
a multiway trie is used. The authors employ a batch-based update system of the routing
table where after a certain time frame the routes of the multiway trie which keeps track
of the updates are aggregated and converted into the direct lookup and state-jump table.
This allows for regular updates without performance degradation.

For simplicity, the IPv4 version of Spider was presented, but Lu et al. [22] show that
it can be augmented to serve IPv6 addresses with minor changes. Spider was compared
to state-of-the-art methods for LPM in software middleboxes (PopTrie and DXR). The
creators of Spider were able to show that for high-frequency processors the method is
1.8-3.2 times faster (see Figure 1.13) and theoretically enables to serve up to 34 Gbit/s
interfaces at the same time.

It is also the case with LPM that dull application of SIMD processing cannot yield a
better performance. Specialized data structures need to be used to enable the utilization
of parallelizable SIMD operations. Furthermore, these data structures can impose new
limitations which need to be addressed with innovative solutions. By overcoming these
challenges, the creators of Spider showed that SIMD processing for software networking
applications yields a performance improvement.
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Figure 1.13: Spider Comparison [22]

1.3.3 Deep Packet Inspectiont

Han et al. [7] identify a lack of network trafficking monitors that support in-depth analysis
at high speed and provide accurate timestamping. The authors implement a measurement
system consisting of a field programmable gateway (FPGA) and data plane development
kit (DPDK) [17] technology for fast data packet preprocessing on the host system. The
FPGA uses direct memory access (DMA) to copy data from its memory to the host
memory. SIMD processing is employed to transfer data from the DMA cache to the
memory buffer (see Figure 1.14). Compared to the conventional copy operations, the
SIMD instruction set enables a performance boost from 12 to 17 Gbit/s throughput.

Figure 1.14: Direct Memory Access [7]
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For deep packet inspection, the multi-pattern regex matcher Hyperscan [24] is used.
Within Hyperscan, Harry [25], a multi-literal pattern matching engine pre-filters the in-
puts before the actual regex matching. Most DPI applications use the standard Aho
Corasick (AC) algorithm [1], which is much slower than its SIMD processing alternatives.
Before Harry was integrated within Hyperscan FDR an engine already able to do SIMD
processing was employed but was still the bottleneck of the application. In the following,
it is explained how the standard Shift-Or Algorithm was changed to use SIMD processing
and what Xu et al. did to further enhance SIMD utilization.

FDR as well as Harry are based on the Shift-Or algorithm. Figure 1.15 shows an example
of the single-literal Shift-Or algorithm, where the literal ’rry’ is matched on the input
string ’rsyrry’. In the mask table (see Figure 1.15 (A)) the entries are set to zero if the
character of the literal on top matches the corresponding input string on the side and
one if there is no match. In the first iteration, the entries of the first two characters of
the input string are loaded into the match table. Colored diagonal entries in Figure 1.15
(B) correspond to trying to match the literal onto the input string. The green diagonal
entries for example correspond to matching ’rry’ onto the part ’rsy’ of the input string.
To parallelize this matching, the match table is shifted as seen in Figure 1.15 (C) and an
or operation is used on the entries for a matching attempt. This results in the state mask
of the first iteration (Figure 1.15 (D)). Steps (A) to (D) are repeated for the part ’yrry’
of the input string and again the or operation is used on both state masks. If in the end,
a zero can be read in the updated state mask, then a match took place at that position.
In the example, a zero can be read on index three, meaning that the literal ’rry’ matches
the input string ’rsyrry’ from index three on [25].

Figure 1.15: Single-Literal Shift-Or Matching [25]

To move from single-literal to multi-literal Shift-Or several literals are included in the mask
table. The width of the mask table now becomes the width of the longest literal and the
bits in the entries of the mask table are set to zero if the character of the corresponding
literal matches the character of the input string (see Figure 1.16) [25].

The first SIMD-enabled multi-literal Shift-Or matching that FDR employs is based on the
row-vector Shift-Or model (see Figure 1.17). The mask table has a width of n · l where
n is the number of literals and l is the maximal literal length. m rows are processed in
one iteration. These are loaded into the match table and are shifted such that we end
up with a shifted table of length n(l +m − 1) bits. If the SIMD vector length is L then
n(l+m−1) < L has to hold. FDR chooses n and l to be eight. If n has to be larger, FDR
will employ a mechanism called grouping which buckets together literals and matches the
buckets with reduced accuracy. If l is larger, FDR uses truncation of the literals which
also introduces more false positives [25].
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Figure 1.16: Multi-Literal Shift-Or Matching [25]

The problem with FDR is that even though a wider SIMD vector allows for a larger
m. FDR still needs 3m SIMD operations (LOAD, SHIFT, and OR) to deal with those
characters. So due to poor data-level parallelism FDR does not profit much from wider
SIMD vector instructions. Further, FDR has a fixed 64-bit mask and therefore a low SIMD
utilization. FDR can also not be implemented in AVX512 without major shortcomings
because of the implementation of the shift instruction [25].

Figure 1.17: Row-Vector-Based Shift-Or Model [25]

To combat these shortcomings, Harry is based on the column-vector Shift-Or model (see
Figure 1.18) and uses a shuffle instead of a shift instruction. The basics of the algorithm
are the same, except that the data layout changes. The column-vector-based model uses
the fact that with the alternate data layout, a vertical shift works as well. The upper
bound for SIMD operations needed per iteration is 3l and independent of m. Given we
choose n and l to be eight and the AVX512 instructions are used, m can be 56 without
exceeding the 512-bit vector. To be able to choose n and l to be eight, Harry uses the same
strategies, grouping and truncation. In this optimal case, only 0.41 SIMD operations per
input character are needed, and the vector utilization is 87.5% instead of 12.5% for FDR
[25].

Figure 1.18: Column-Vector-Based Shift-Or Model [25]

Since we chose n to be eight, the SIMD vector would need to have a 2048-bit width.
Naively, using this algorithm is impossible at the moment because the longest available
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SIMD instructions are still 512-bit long. To circumvent this problem, two encoding mech-
anisms are used that reduce the 2048-bit long vectors to 512-bit. A stronger encoding
model Harry6b loses more information but does not require additional SIMD operations.
Harry12b loses less information but requires additional SIMD operations. It happens that
the loss of information for a large number of literals introduces so many false positives
that the cost of correction operations overtakes the benefit. Figure 1.19 shows the results
of the evaluation for literals of the OWASP ModSecurity core rule set and HTTP as well
as non-HTTP packets [25]. The higher the number of literal rules, the smaller the perfor-
mance difference to FDR. Their evaluations show that for the Snort community rule set
and the OWASP ModSecurity core rule set the performance is similar to FDR for 3000
literals. Both rule sets have more than 3500 literal if the whole rule set is used. It is
assumed that the true strength of Harry lies in its scalability.

Figure 1.19: ModSecurity Ruleset Comparison of Harry [25]

1.3.4 Random Network Coding

Random Linear Network Coding (RLNC) is a technique that is used to reliably distribute
packages in a network. In a traditional network, packages are routed through a predefined
path. However, RLNC enables us to combine different packages at multiple intermediate
nodes into an encoded form. This allows a package to contain more information in one
package about the source data than in other methods. RLNC has therefore a high chance
to deliver the data to all the end nodes successfully and is resistant to package loss. The
use of large enough finite fields for coding is the success factor for RLNC and makes the
failure rate of delivering a package very small [10].

A concrete example of RLNC would be that we have a network of multiple nodes, and we
want to send packages from a source node S to a sink node K over multiple nodes. We can
now choose random coefficients from a Galois field and create with the random coefficients
a random linear combination of the packets we want to send. If the sink node S has a
sufficient linear independent combination of packages, the node can decode them using
Gaussian elimination. With this technique, S can restore the original packages. This also
works when intermediate nodes generate new linear combinations of the packages [9].
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Sørensen et al. [20] examined in their research paper the efficiency of RLNC regarding
energy. RLNC is an efficient coding method, however it also requires a lot of energy. This
is especially the case for battery-powered devices like mobile phones and sensor devices.
Therefore, they wanted to study the energy cost of RLNC on different platforms and
wanted to find if SIMD operations can make RLNC more energy efficient. With SIMD
they could encode packages faster since they could do 16 multiplications simultaneously.
The results of their experiment showed that making use of SIMD hardware optimizations
benefits energy usage as well as processing speed. Results show that SIMD operations
provide a speedup of 4 to 18 times. This makes mobile devices using SIMD hardware
comparably fast, as Intel i5 processors without SIMD.

A paper by Shin et al. [18] focused on using different SIMD extensions for a speedup in
RLNC. They focused on architectures with SIMD register sizes. Therefore, they studied
AVX (128-bit), AVX2 (256-bit), and AVX512 (512-bit) SIMD extensions. To use RLNC,
Galois field arithmetic is fundamental, which was the focus of this paper. Results show
that the AVX512 extension outperforms the other extensions significantly. AVX512 had a
58% higher throughput than AVX and a 26% higher throughput than AVX2. Therefore,
the paper demonstrates the efficiency gain of using SIMD operations for RLNC.

1.3.5 IoT Authentication

The number of Internet of Things (IoT) devices in use is growing, and more and more
people are making use of the new technology. However, with the growing number of
IoT devices, malware targeting those devices has also become more popular. That is
why Choi et al. [3] propose a high-speed and furthermore lightweight authentication
protocol that also runs on low-powered IoT devices. Exactly due to the limited power
of the devices, the authors tried to use technologies that compensate for this. Therefore,
they make use of SIMD extensions. Since IoT devices often use ARM processors, they
designed their system for the NEON SIMD extension. Their protocol additionally makes
use of two more technologies. For encryption, the protocol uses LEA-128-CTR, which is a
lightweight encryption algorithm and for integrity checking the protocol requires Chaskey
MAC algorithm which is especially suited for 32-bit microcontrollers.

Size of Auth Data
Processing Time (ms)

Speed ratio of SIMD (A/B)
Non-SIMD (A) SIMD (B)

1k 2.364 1.862 1.27
10k 2.403 1.914 1.26
100k 2.753 2.036 1.35
1M 6.379 4.396 1.45
2M 10.364 6.397 1.62
5M 22.391 12.764 1.75
10M 42.354 22.770 1.86

Table 1.2: Processing time data of Non-SIMD and SIMD [3]

In their evaluation, they experimented with different authentication data sizes. As it can
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be seen in Table 1.2 was the processing always faster when they made use of the SIMD
capabilities of the devices. Additionally, it can be seen that with growing authentication
data, the processing time is relatively faster. For the size of 1000, it was a speedup of
21% while for a size of 10M, it was 46%.

1.3.6 IoT Security

IoT devices often use lightweight cryptography to protect their data. However, one prob-
lem that IoT devices can be affected by is fault attacks. Fault attacks often include an
attack on the hardware of the device to introduce faults to the cryptographic processes.
Preventing those attacks is often costly and also difficult for off-the-shelf devices. To
solve this problem, Lac et al. [12] propose in their paper a method to prevent those
fault attacks by using an Internal Redundancy Countermeasure (IRC) which makes use
of SIMD instructions. The principle of IRC is that instead of making full use of the 32-bit
architecture, and computing 32-bit ciphers, the 32 bits are divided into 4 blocks of 8-bit
words, which serves as spatial redundancy. Those data blocks consist of data as well as
reference values. Data blocks are always separated with reference values blocks, which
serve as an additional control mechanism.

There exist two possibilities to make use of using SIMD on block ciphers, one is called
fault detection and the other is called fault correction. Fault detection uses multiple copies
of the data. If the outcome of the multiple data blocks does not lead to the same result,
the system is trapped. Fault correction however also computes multiple copies of the data
concurrently. However, after the computation, there is a majority vote. The computation
that wins the majority vote is then returned.

Since their focus was on IoT devices, the IRC was tested on ARM Cortex-M3 and Cortex-
M4 processors. To conduct the experiments, they made use of the block cipher algorithm
PRIDE and the stream cipher TRIVIUM. The results showed that IRC needs a higher
cycle count as well as more memory, however, they could show that fault attacks could
be successfully thwarted. They conclude that utilizing SIMD instructions for spatial
redundancy effectively enhances fault resistance in lightweight cryptography. The method
is a trade-off between performance and security, however, it is suitable for a wide variety
of IoT devices since it does not require any hardware modification.
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1.4 Summary and Conclusions

All presented papers show that SIMD processing requires sophisticated data layouts to
make use of parallel computation. This is because of the limited size of the SIMD registers
or vectors and the time it takes to load the data into the SIMD registers before being able
to perform operations on it. This should have become evident to the reader during the
in-depth presentation of the bloom filter [14] [13], longest prefix matching [22], and deep
packet inspection [25] applications. The register/vector size often forces the developers to
accept trade-offs where their architecture allows better performance on big registers but
in the real world they have to settle for smaller ones which curbs the performance. In
the case of the ultra-fast bloom filters to be able to use more hash functions, a drop in
performance was accepted [14]. In Harry, the pattern matching engine encoding schemes
were used to fit the data into the registers, which resulted in lower throughput [25]. When
using SIMD for the longest prefix matching the size of the registers was not a problem,
but the fact that the data structure was needed made it impossible to dynamically change
the routing table. This was used by introducing a separate management data structure
to overcome this problem [22].

In two papers, it also became apparent that using twice the register/vector size does not
guarantee twice the performance. The use of 512-bit vectors in random linear network
coding only enhanced the throughput by 58% compared to 128-bit and 26% compared
to 256-bit [18]. In the case of deep packet inspection when applying Harry (512-bit) in
real-world scenarios, the performance gain was only factors of 1.06-1.63 and 1.14-1.62
compared to FDR (128-bit). Even if Harry had a much higher character processing per
SIMD instruction [25]. This raises the question of whether it is even useful to build larger
and larger SIMD registers and vectors. It seems that algorithms like Harry can profit from
it at some point. For example, a 2048-bit register would prevent the use of encoding for
256 masks [25] but the increase in size can not be translated easily into the same increase
in performance. Maybe at some point, the cost of changing computer architecture such
that the SIMD vectors are even wider outweighs the benefits.

The results were mixed for the bloom filter applications. On one hand, the vectorized
bloom filters [13] showed promising results. On the other hand, the trade-off that has
to be made for the ultra-fast bloom filter [14] raises the question of whether the real
performance gain for real-world application is this significant. A similar problem arises
with Harry [25]. Even though Harry is integrated in Hyperscan [24] instead of FDR the
results in real-world settings seem not convincing that it was worth the effort to develop
an upgrade from FDR to Harry. It must be noted that these are opinions of the authors
of this overview and have to be taken with a grain of salt since they are not experts in the
field of SIMD application. Another trade-off had to be made in the SIMD application in
IoT security. The authors were able to thwart fault attacks, but the overall performance
of the system went down [12]. The results of IoT authentication were only up to 46%,
but no trade-off was reported. Good results yielded the SIMD processing in longest
prefix matching [22] and random linear network coding in mobile devices [20]. Since the
performance increases were good and no trade-offs were reported either. It is concluded
that the use of SIMD processing in network applications is all but trivial. Nevertheless,
network architects should consider it when a performance boost is needed.
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1.5 Appendix A: Algorithms

Figure 1.20: UFBF Parallelization [14]
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Figure 1.21: Spider Lookup Procedure [22]
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Chapter 2

Privacy Preserving Synthetic Data
Generation: A Taxonomy and Scoping
Review

Joshua Stebler, Faye Dinh

The proliferation of big data has led to rapid advancements in machine learning, but it
has also raised concerns about data privacy. Machine learning algorithms can reverse
blurred images or uncover relationships in data that may lead to the deanonymisation of
private data. In this paper, we discuss how synthetic data can be used to protect personal
data by not sharing the original data but instead sharing new data that follows the same
statistical properties as the real data. We will introduce various synthetic data generation
frameworks and explain the models typically used for each data modality. Also we will
discuss the limitations and challenges within the taxonomy of synthetic data.
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2.1 Introduction

Due to the rapid advancements in data-driven technologies, the capabilities of artificial
intelligence continue to expand. However, these advancements also raise concerns about
data privacy. Machine learning is getting better at deblurring images [31] and showing
complex relations in datasets that can lead to the association of anonymised data to
personal information. Synthetic data generation offers a solution by allowing the use of
realistic datasets while ensuring the privacy of individuals involved. This report presents
a taxonomy of methods for privacy-preserving synthetic data generation.Synthetic data
generation involves creating new datasets that are statistically indistinguishable from real
datasets but contain no actual data points from the original dataset. This preserves the
privacy of the individuals in the original dataset, allowing the synthetic data to be shared
and utilized without compromising privacy [38].
This report examines the models used to generate various data types-image, text, tabular,
time series, location, and genomics data-and discusses the specific challenges associated
with each. We explore the application of differential privacy [24] techniques to Generative
Adversarial Networks(GAN) [18], Variational Autoencoders(VAE) [31] and other machine
learning models. These methods are prominently used for synthetic data generation. The
aim of this report is to provide a comprehensive overview of synthetic data generation
models, detailing how synthetic data is generated and which models are typically used
for various data modalities. By explaining the methodologies and challenges of synthetic
data generation, this report wants to provide an understanding of this topic and spark
interest, hopefully leading to further research.

2.2 Background

In this report, we will discuss how to create privacy-preserving synthetic data. It should
be possible to share this data and work with it without compromising the privacy of the
data set used to train the model. We will then explore the models used for different data
modalities and point out difficulties.

2.2.1 Synthetic Data

Many conventional anonymisation techniques are becoming increasingly insecure, espe-
cially since the advancements in machine learning that have become very good at de-
noising a picture or detecting patterns in data that can be used to assign the data to a
person. This is where synthetic data comes into play; it tries to avoid this problem not by
better anonymising the data, but by creating new data that follows the same statistical
properties of the original data. This way, you have realistic data you can work with but
has never existed before.
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2.2.2 Gradient Descent Algorithm

Gradient Descent(SGD) [42] is a frequently used stochastic optimisation method employed
in machine learning training. It derives the Mean Squared Error (MSE) over the whole
loss function, and from which the direction of the steepest gradient is derived. Changing
the parameters in that direction then minimises the MSE the fastest. Batch Gradient
Descent is guaranteed to converge to a global minimum for a convex function and to a
local minimum for a non-convex function. Over multiple iterations, the algorithm ap-
proaches the minimum of the loss function stepwise, with a stepsize called ”learning rate”.
This is a hyperparameter in training settings. If the chosen learning rate is too large,
the algorithm might miss the global minimum, and if it’s too small, we might get stuck
in a local minimum rather than the global minimum. To make this algorithm less com-
putationally demanding, stochastic gradient descent can be used, which does not always
compute the whole gradient. This can allow it to skip a non-optimal local minima but
also makes it possible to overshoot the global minimum; however, it has been shown to be
very effective [4]. Notable for differentially private machine learning is the modification
DP-SGD, by Abadi et al [3]. This paper introduces the gradient clipping and noising
techniques and a privacy accountant called Moments accountant to track the privacy loss
incurred during training. Gradient Clipping ensures that no individual sample has too
much influence on the gradient, as that could compromise safety. The clipped gradients

gt(xi) = gt(xi)/max(1, ∥gt(x
(i))∥

C
), where gt(xi) are the gradients calculated from L sam-

ples, the lot, C is the clipping threshold and t is the current training step the algorithm is
in. L,C are supplied as hyperparameters. This ensures that the gradients where ∥g∥2 ≥ C
are scaled down, which reduced the influence of outlier samples. Further noise sampled
from a multivariate gaussian distribution N (0, σ2C2I) is sampled and added onto each
gradient to obscure which lot it was calculated from. The choice of σ is made dependent
on ε and δ (which are explicit parameters given and quantify (ε, δ)-privacy).

Figure 2.1: This visualisation shows a cost function in machine learning where θ0 and
θ1 represent parameters that can be optimized, the error of the of the machine learning
model J(θ0, θ1) is also represented as a colour.[4]
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2.2.3 GAN

We provide a summary of Generative Adversarial Networks(GAN), as proposed by Ian
Goodfellow et al. in [18]:
Generative Adversarial Networks consist of a generator neural network G and a discrim-
inator or critic neural network D. The generator G is given some input z from a prior
noise distribution pz, and represents some differentiable function with parameters θG which
maps z to a posterior distribution pG. The discriminator network receives an input x and
returns the probability that x ∼ preal rather than x ∼ pG. The training goal for D is then
to maximise the accuracy of classification, while G’s training goal is to simultaneously
minimise the probability that its output is classified as not being sampled from preal,
quantified as log (1−D(G(z))). This can be formalised as G and D playing a minimax
game with the condition

min
G

max
D

E [log (D(x)] + E [log (1−D(G(z))] ∀x ∼ preal,∀z ∼ pG

. The training is complete when pG = preal and D(x) = 1
2
The authors note that in early

training phases log(1−D(G(z))) may dominate, because generated samples are not very
close to the real distribution yet. Instead they propose that G should learn to maximise
log(D(G(z)).

2.2.4 VAE

The Stochastic Gradient Variational Bayes estimator(SGVB) proposed by Kingma and
Welling(2022)[31], when applied to auto-encoder neural networks yields the variational
auto-encoder(VAE) that is in prevalent use for a multitude of generation tasks, as we
will also demonstrate in the report. Like the autoencoder, it consists of an encoder and
a decoder, which Kingma and Welling implement as Multilayer Perceptrons. In Auto-
encoders the encoder network approximates a posterior probability distribution pϕ(z|x)
of a latent variable or code z given some observed data point x. Conversely the decoder
network approximates the posterior probability pθ(x|z), the probability distribution of
the value of x given the latent code z. The challenge however is that these posteriors
can be intractable, and therefore not differentiable. This is where the authors apply
their proposed SGVB estimator to the intractable posteriors, to derive a differentiable
lower bound, and thus make the application of a statistical optimisation algorithm to the
posteriors possible. The trick the authors apply is to reparameterise the latent code z
from a sample of an intractable distribution to a deterministic

z = gϕ(ϵ,x),where ϵ ∼ p(ϵ)

. This function gϕ is a vector-valued function, parameterised by ϕ and must map the data
point and ϵ to z. The distribution over ϵ, crucially, is independent of the posterior, and
therefore we can substitute p(ϵ) for qϕ(z|x), when considering their infinitesimals, so when
the expected value is needed for optimisation, the independent marginal distribution p
can be substituted into integral and we integrate over the known ε instead of the latent
code, making the estimator differentiable. This substitution process can be applied to
both networks, and thus the gradient optimisation algorithm of the trainer’s choice has
differentiable estimated posteriors to work with [31].
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2.2.5 Diffusion Model

A diffusion model begins with real data and, in many steps, gradually adds noise and
learns how the data changes. When the data turns to white noise, it will try to reverse
the knowledge of how the data changes when adding noise to the original data. After
many of these training steps, we can feed white noise to the model, and it will produce a
new realistic output [51].

2.2.6 Normalizing Flow

A normalizing flow transforms a known probability density with multiple invertible map-
pings to resemble the frequency of occurrence in our training dataset. With this distri-
bution, we can simulate new data points that statistically resemble the original dataset.
[40]

2.2.7 Differential Privacy

To quantify the privacy loss, this report uses Differential Privacy[24] and Approximate
Differential Privacy [17]. The privacy guarantee provided is that for some given data set
D1 and another data set D2 which are different only by one data point(i.e. one person’s
contribution to the data set), and some synthetic data output or range S of a generating
modelM

Pr[M(D1) ∈ S] ≤ exp(ϵ)× Pr[M(D2) ∈ S]

This guarantee is achieved by adding noise to the generating model. Dvorak [24] constructs
a privacy mechanism which samples this noise from a symmetric exponential distribution
and adds it to the generating model. From this privacy mechanism Dvorak [24] also derives
that ϵ is dependent onM’s behaviour on D1 and D2 and on the variance σ of the noising
distribution. One of the most useful properties of Approximate Differential Privacy [17]
is the Post-Processing Theorem [16], since it ensures that no amount of generated data
can compromise the (ϵ, δ)-differential privacy of the training data set. It states that for
any function g : S → S ′ and a (ϵ, δ)-differentially private generative model M

Pr[g ◦M(D1) ∈ S ′] ≤ exp(ϵ)× Pr[g ◦M(D2) ∈ S ′] + δ

for the two data sets D1, D2 as defined above. δ denotes the probability that the privacy
protection fails.

2.3 Image Data

Image data was the earliest data type synthesised in the more recent research we fo-
cused on [18], the introductory paper for GANs, show experimental results evaluated on
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the MNIST[2] and CIFAR10[1] data sets, and with a publication date of 2014, it pre-
dates a supermajority of other work discussed in this report. As such, most discussion
of the challenges in generating image data now focuses on creating images of greater fi-
delity/photorealism and greater scale. Two works that discuss these challenges and focus
on them specifically are Brock, Donahue and Simonyan(2019)[8] and Azizi et al.(2023)[5].
Both however generate in a non-private manner.

2.3.1 Generative Adversarial Network Based Methods

In general, we do not observe a uniform approach on where to apply gradient clipping
and noising on the discriminator or generator. The post processing theorem guarantees
that the gradients of only one of the components need to be changed, because the other
component can then treated as the subsequent process.

2.3.1.1 DPD-InfoGAN and DP-InfoGAN

The authors propose two separate but related models. Building upon the work of Chen
et al. (2016)[14], they introduce a differentially private training framework for InfoGAN,
called DP-InfoGAN and another differentially private and distributed training framework
DPD-InfoGAN. The rationale to work with InfoGAN lies in the fact that the feature
output can be controlled by additional parameters which can be learned alongside the
known training process for GANs. Differential Privacy is ensured in the training of a
single InfoGAN client, by employing gradient clipping as proposed in [3] and noising
gradients with Gaussian noise where the variance is a function of hyperparameters and the
privacy budget, as expressed by the noise scale σn, on the discriminator’s gradients. The
discriminator’s weights are updated with the Adam statistical optimisation function[30]
applied to the gradients after noising and clipping. To enable the client to interact with
the shared Q network, it is then used to estimate the posterior probability of some code
condition on the data. These codes are the parameters with which to influence the feature
space of the generated output. The associated loss function, here negative log likelihood is
also calculated. Afterwards we backpropagate the updated weights to the generator and
update the generator weights. We do not need to noise/clip the generator’s gradients,
because they fulfill DP by the post processing theorem.
In the distributed setting the clients update one shared auxiliary network’s Q values
and discriminator output in a round-robin fashion, while the next client in the sequence
receives the already partially updated Q network values, to train their own model with
them. This approach reduced the transmitted data per round and client, as the model
parameters can stay local and need not be transmitted, saving on network operations
necessary.

2.3.1.2 DP-BEGAN

The authors of this paper[43] build upon the work of Berthelot, Schumm and Metz[6]
who proposed Boundary Equilibrium GAN. The chief difference between the GAN model
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proposed by Goodfellow et al. [18] is that the discriminator is specifically an auto-encoder
neural network. The training framework DP-BEGAN[43] is not exclusive to the model and
architecture but also encompasses operations on the training set. The sensitive training
data is first clustered using the k-means++ algorithm, and from those clusters random
samples are taken. The samples generated by this procedure are used to non-privately
pre-train the model. During fine tuning, the actual data set is used.

2.3.2 DP-LFLow

Jiang and Sun(2023)[25] note that recent state of the art generative models(from 2019[45],
2018[27] and 2020[10] respectively) produce good output only at high levels of privacy
loss ε = 10 and cannot scale on small ε. Smaller generative Models (tested on VAEs)
have been shown to be more utility preserving under noise perturbation[52], which is an
integral part of DP-SGD, and have lower training costs. This observation is reversed in
non-private training setups. Latent Flow is used in this generative model to limit the
model size enough to limit training expenditures, but maintain a standard of utility. The
proposed model is composed of a normalising flow and an autoencoder. Unlike the basic
flow model, the model proposed here is trained on the latent code of the autoencoder, with
the training aim of simultaneously minimising the autoencoder loss and the normalising
flow loss. An earlier work[41] had shown that image semantics are preserved even under
heavy compression. This enables the autoencoder to be tuned ”aggressively”, reducing
the latent space dimensions and thus also overall model size. Further, the training set is
partitioned according to labels, train one instance of the proposed model on a subset of
the training data. This subset is unimodal, since it was partitioned by label. This allows
for the trained model to be smaller in size while maintaining the standard of accuracy of
the larger model trained on the entire set. This partitioning is proposed because in the
training process with labels (i.e. training a conditional model, which is state of the art
at time of publication of the paper in question) DP-SGD also perturbs the labels, which
improves no privacy-preserving properties, but makes training more cumbersome, and the
authors thus choose to avoid this. The final model is the union of all the smaller models.

2.3.3 Autoencoder Based Methods

2.3.3.1 DP-AuGM

DP-AutoencoderGenerativeModel (DP-AuGM) is one of the two models proposed in Chen
et al. [12]. The encoder network of the auto-encoder generative model[13] is trained on
private data using DP-SGD. By its nature, it learns to encode distinguishing data features
of the private data into a latent space. Simultaneously a decoder network is trained
to reconstruct the higher-dimensional private data from the latent space. Using the l2
distance between encoded sample and the latent space decoding, both neural networks
are improved. Since the decoder could potentially leak private data, it is not used further
than necessary to train the encoder network. The encoder is the part of this model that
will be made publicly available and the authors also propose that it could possibly be
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integrated into Machine-Learning as a Service (MLaaS) or federated learning settings. A
user of DP-AuGM would supply their own (potentially much smaller) data set as input to
DP-AuGM’s encoder, which then generates synthetic data samples from the user’s own
data. Those can then be used to train the user’s own machine learning model for whatever
downstream task they might be interested in. DP-AuGM is empirically shown to protect
against three types of attacks against privacy preserving generative models: Membership
Inference Attack, Model Inversion Attack and GAN-Based attacks.

2.3.3.2 DP-VaeGM

DP-variational auto-encoder based GenerativeModel (DP-VaeGM) is the other model
proposed by Chen et al. [12]. Differences between the two proposed models lie in the
differences between auto-encoders and variational auto-encoders, in that both the encoder
and decoder both incorporate a latent variable z which is directly sampled from some
external distribution d(z), in this work taken to be gaussian: N (0, 1). DP-VaeGM is
experimentally shown to be effective against membership inference attacks. The model
actually consists of n variational autoencoders, which are specialised to learn only one class
of data, learned with a differentially private training algorithm. This multitude is shown
in the paper to yield higher generation utility. The ultimate generation result is achieved
by taking the union of all the generated samples from each model Mi, i ∈ {1, . . . , n}.

2.3.4 Diffusion Models

Their key contributions the authors Dockhorn et al. [15] identify pertain to the parameter-
isation of the Diffusion Model(DM), the sampling algorithm used to select the output, and
noise multiplicity, a modification to the traditional DM training process, where ”[a] single
training data sample is reused for training at multiple perturbation levels”1. They identify
their key contribution to be that the model size can be kept quite small while maintaining
output quality, which provides many advantages for differentially private training set-
tings, chiefly that many more training epochs can be afforded while not exhausting the
privacy budget. This is hugely desirable for Diffusion Model Training. A lengthy section
is devoted to the motivation to use Diffusion models: The authors firstly remark that
the output quality of a diffusion model is on par or better than GAN output. Their loss
function is like the L2 error function in statistical regression models, and thus a lot simpler
to estimate and understand. This also results in a more robust model that scales up and
down more easily, and is crucially less vulnerable to the input perturbation of DP-SGD,
and thus less likely to suffer model collapse. Another aspect that makes DMs superior
to other generative models is the fact that the denoiser neural network takes multiple
denoising steps to generate a data point, allowing the output to gradually approximate
the statistical distribution instead of needing to accomplish the transformation in one
generation step. This affords the denoiser to have a simpler architecture, smaller size and
smoother functions. The stochastic sampling process also contributes to the improved
quality of the model output, since the score model learned in the training process will be

1Direct quote from [15]
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imperfect due to training with DP-SGD anyway, and stochastic sampling compensates.
The objective function of a non-DP DM relies on many training iterations to counteract
the noisiness of the distribution estimator. Since many training iterations mean a large
privacy cost, DPDM instead averages over a number of estimators to control the noise
inherent in the loss and added by the DP-SGD training procedure. The neural network
is 2 orders of magnitude smaller than non-DP DMs. This keeps the loss down, since that
scales linearly in the number of parameters. The authors of this paper prove in appendix
B that DPGEN[11] does not guarantee differential privacy of its synthetic data.

Ghalebikesabi et al. take a different approach to Dockhorn et al.’s model minimalism.
They instead propose to use standard diffusion models with an adjusted training method-
ology specifically for the differentially private context. The proposed and experimented
with model has 45 times as many parameters as DPDM’s model. Their methodology
consists of the following points:

• Pre-training on a proven data set. It is later experimentally shown that even large
variances in distribution between the pre-training set (which may even be public)
and the fine tuning set do not have a noticeable impact on generation quality.

• augmentation multiplicity and timestep multiplicity. De et al. (2022) proposed
using augmentation multiplicity, where each input sample of a batch is augmented
(stretched, cropped, rotated).

2.4 Text

Deep recurrent models like those we discuss in this section have become very important
for Natural Language processing and can be integrated in a wide variety of applications
but most of them can involve sensitive information like passwords names or addresses,
also a person could be identified implicitly by rare and unique phrases. Thus Natural
language processing has to focus on the underlying patterns because attacks on models
have shown how important privacy is [35].

2.4.1 Transformer Model

The transformer model, introduced by Vaswani et al [46], uses multi-headed attention
to parallel-process the input text thus improving efficiency. There are multiple attention
heads that operate independently. This helps the model to consider different aspects of the
information from multiple lower dimensionality sub-spaces at the same time. This enables
the transformer to understand complex relationships within the text by combining insights
from multiple perspectives given by the attention heads. This architecture is crucial for
improving the model’s ability to deal with long-range dependencies and complex contexts
[46].In chat GPT (Generative Pre-trained Transformer) the model in pre-trained on a
extensive dataset thus making it much faster to process a request. Also it uses Few shot
learning where in addition to the prompt examples are given on how the task can be
solved [9]
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Figure 2.2: This visualization shows the distant relationships in the encoder’s attention
heads. Many of the attention heads, represented by colors, of the word making point
to ”more” and ”difficult,” thus having ”making...more difficult” as a part of the finalized
sentence.[46]

2.4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs)[26] operate by processing sequences through loops
within their architecture; with this, they keep information from previous steps in mem-
ory. Each neuron in an RNN considers input from data in the present step and the output
from the neurons of the previous step. With this architecture, the model can consider
the right next step, considering the context of the previous output, leading to a coherent
output. The challenge, however, is when sequences get longer, RNNs become less efficient
at capturing dependencies due to problems like vanishing or exploding gradients, mean-
ing the weights either diminish or become too large to manage effectively as the model
goes through each time step during training. This is where Long Short-Term Memory
Networks (LSTMs)[22] try to solve this by implementing gates that regulate the flow of
information. There are input, output, and forget gates; these allow the model to retain
only crucial information and forget the rest, which improves the stability across long se-
quences. Therefore, the newer information retains its impact, and the older information
might get forgotten depending on its importance. This makes them highly effective for
natural language and efficiently manages the limited context window with what matters.
[22] However, this provides no privacy guarantees; therefore, a PrivateRNN[35] was intro-
duced that implements several strategies to protect user data from being compromised.
The main principle used is Federated Averaging with Noise. This uses federated learning
to update a global model with a user’s own machine learning model and not the user’s
data. Next the users’ models are averaged leading to abstraction of the data provided to
the global server. Also, differential privacy tries to limit the privacy loss.It does this by
gradient clipping and noise addition.
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2.4.3 DP-RVAE

The Differentially Private Recurrent Variational Autoencoder (DP-RVAE) is a model
proposed by Y. Wang et al [48] that aims to generate text while adhering to privacy guar-
antees defined by differential privacy. The model combines the traditional Variational
Autoencoder (VAE) with a Recurrent Neural Network (RNN) that deals with the sequen-
tial nature that VAEs are inherently incapable of addressing. The DP-RVAE encoder
transforms the text into a lower-dimensional latent space that contains the core features
using an RNN. The decoder, which is also based on an RNN, then considers the latent
space and the text that has already been generated to ensure it is coherent and is relevant
for the posed query. Differential privacy is added as a two-step process: first, the model
employs noise addition to obscure the data, and gradient clipping is used to limit the im-
pact a single data point can have on the output of the model. The model output is then
evaluated using BLEU and ROUGE that determine the quality of the text for coherence
and fluency. DP can be used to measure the privacy loss that the model comes with.

2.4.4 Additional techniques

2.4.4.1 Prompt tuning

The Robust and Private Tuning (RAPT)[33] framework tries to modify prompts for pri-
vacy preservation, allowing large language models to be customized without compromising
too much privacy. RAPT uses Privatized Token Reconstruction; this works alongside the
main LLM training task. It involves creating a privatized token, which is the real data
but with added noise or token shifting. This secondary task is then to reconstruct the
original data from the private data, in this way the model learns the underlying patterns
and does not focus on the privacy-compromising specifics. This also makes the model
more resistant to variations in data representation.

2.4.4.2 Vickrey Mechanisms

Xu et al. [50] propose a novel approach to privacy-preserving text generation by adopting
a mechanism that works similarly to the Vickrey auction system. This method introduces
switches between choosing the most probable and the second most probable text output.
Traditional differentially private (DP) mechanisms just add noise, and this can still leak
data, especially if the noise is not enough. Xu et al.’s approach mitigates this risk by
adding some additional probability into the generation and not always relying on the
strictly better solution. This mechanism increases randomness, strengthens privacy and
maintains the usability of generated text, but of course, the privacy has some cost. This
mechanism is most valuable for applications in natural language processing that deal with
private information.
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2.5 Tabular Data

There are multiple challenges in synthetic tabular data laid out by Xu et al. in [49]:

• Real-world tabular data often contains discrete and continuous data columns. In
order to generate either discrete or continuous output, the generator applies either
softmax for discrete values or tanh to map the output [−1, 1]. So to generate both
forms of data, both need to be applied to the data at some point.

• Continuous values in tabular data often do not follow a normal distribution. GANs
however model continuous variables with Gaussians, so appropriate approximations
need to be made. Further some might even follow multimodal distributions, which
GANs are known to model poorly, with a tendency to leave out some modes entirely
[44]

• High imbalance of values that can lead to the omission of minor classes in the GAN
model because to the discriminator, it only makes a minor difference if they are
included.

• Discrete data columns are encoded with one-hot encoding vectors, which may be very
sparsely populated. Generators fill the corresponding synthetic data column using
softmax. In early training epochs those synthetic columns may produce highly
populated vectors, by nature of the generator training process. The discriminator
network can then distinguish synthetic from real data by the sparseness attribute
of the vector alone and not by comparing and the synthetic and real probability
distribution. That in turn means that the discriminator does not need to learn the
real probability distribution, which is a training failure.

2.5.1 Synthetic Data Vault

The Synthetic Data Vault [38], proposed by researchers from MIT, is an early approach to
privacy-preserving synthetic tabular data. It outlines the main steps for creating synthetic
tabular data. Each table is generated independently to simplify modeling and handle dis-
tinct distributions, allowing the model to focus on one distribution at a time. After gen-
erating the individual tables, conditional parameter aggregation is used to meaningfully
link the independent values. It does this by identifying and conserving the relationship
between the different fields. For categorical data, the model maps the continuous distri-
bution to values based on the frequency of appearance of their respective categories. For
time values, the model uses a distribution of seconds since the last epoch. To preserve
privacy, noise is added to the data.

2.5.2 DP-Conditional GAN

The approach presented by in [49], is to modify an existing tabular data generator by
embedding it in a privacy preserving training framework. For this, ConditionalTabular-
GAN(CTGAN), proposed by Xu et al [49] was chosen. The authors explain that they
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chose to use CTGAN to develop their framework around, because it mitigates most of
the challenges that generating tabular data pose to GAN models[49]. The framework
employs the Moments privacy accountant[3] to enforce (ε, δ)-Differential Privacy, and the
stochastic optimisation algorithm Adam[30] to improve the gradients of the generator
and discriminator networks. The architecture of the generator and discriminator are
taken from CTGAN, with the modification that the discriminator’s gradients are clipped
and Gaussian noise is added. The authors follow the reasoning of [54], and add that
because only the discriminator has access to the sensitive data, noising only it’s gradients
is sufficient to fulfill the requirements of differential privacy. Further, the authors note,
noising only the discriminator is advantageous for model stability, convergence and privacy
loss estimation, for one, because noise is only introduced once, but also because the
discriminator’s architecture is the simpler one and is thus easier to estimate.

The authors also introduce a framework to train DP-CTGAN in a federated setting, which
they name Federated DP-CTGAN(FDP-CTGAN). The framework allows each client par-
ticipating in training to retain their data and train a copy of the DP-CTGAN model on
that locally stored data, with the procedure lined out for a centrally trained DP-CTGAN.
Every round the model is initalised with parameters given from the central server, and
every round the parameters for generator and discriminator are sampled and aggregated,
to obscure the contribution made by any individual client to preserve data privacy. Those
aggregated parameters are averaged and approximate the true data distribution in the
central server. The thusly updated parameters are then redistributed as the initial model
for a new round of training.

2.5.3 DP-HFlow

Differentially Private Heterogeneous Flow [32], or DP-HFlow, is a model for generating
synthetic tabular data. It uses four key technologies:

• Variational Dequantization: Normalizing Flow normally requires continuous data;
therefore, we add noise to convert discrete values into continuous ones and thus
allow for the Flow model to work.

• Conditional Spline Flow: This reduces the model complexity by using transforma-
tions multiple times across the model, which lowers the amount of parameters and
simplifies the model.

• Fine-Grained Gradient Clipping: Per Unit Clipping: Adjusts clipping thresholds
for individual units depending on their gradient, allowing important signals more
influence.

• Stochastic Sparsification: Randomly sets smaller gradients as zero; this lets the
model focus on significant features and reduces noise.
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2.6 Time Series Data

Time series data consists of sequences of datapoints recorded at a certain time interval,
and this is used in many industries. However, time series data also has its challenges, which
stem mostly from its sequential nature, high dimensionality, and the temporal cohesion
between datapoints that are often hard to discover. Additionally, it has datapoints that
require more anonymization than others. [28]

2.6.1 Landmark Privacy

Landmark Privacy [28] improves differential privacy for time series by categorizing the
data into landmark events and normal events. The landmark events represent very im-
portant events that are very sensitive in nature. For these landmark events, more strict
privacy measures are used. This optimizes privacy protection while still not abstracting
less important features away.

First, the landmarks need to be identified within the time series and marked as landmarks.
This can be done using different metrics. Then the privacy budget is allocated; the
landmarks receive a smaller portion of this budget to ensure they are properly protected,
and the non-landmarks can benefit from a less strict abstraction, thus preserving their
important features. The privacy budget is applied uniformly over the landmarks to ensure
consistent privacy; also, dummy landmarks are inserted that aim to confuse potential
attackers. One of the main challenges of this model is the difficulty of identifying useful
landmarks, and the binary categorization of landmarks can lead to poor data quality or
security for values that lie in between.

2.7 Location and Trajectory Data

Location traces or trajectory data are time series[36], and thus share many of the chal-
lenges present in generating time series. But location data exist in a three dimensional
semantic space, the temporal component because it is a time series, a spatial component
by the nature of the type of data under consideration, and a thematic component [39].
These three components’ interrelation must be preserved through the entire process of
synthetic data generation to provide any utility at all. Wang et al [47] capture the seman-
tic space in four statistical metrics: Length distribution, diameter distribution, a measure
of distance between individual Points of Interest (POI), trajectory density, the number of
trajectories in a location/area, and the transition pattern, which Narita et al [36] capture
in a transition matrix.

2.7.1 DP-TrajGAN

The approach described consist of 4 steps. The first step is necessary data pre-processing
and creating a grid representation of trajectories across a map. In the second step the
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privacy budget is initialised. In the framework, the desired privacy budget is a prede-
fined number ε. Since the semantics of a trajectory have both a spatial and a temporal
component, both must comply with this bound. Therefore this model works with both a
spatial privacy budget εs and a temporal privacy budget εt. The utility of the generated
trajectory is directly correlated with the allocation of the available ε-privacy budget, and
thus the model needs to find an optimisation of how to distribute the available budget
between εs and εt. To that end the authors propose a sub-budget εis per map grid cell ri,
with εis being representative of the density of trajectories of all users per cell ri relative to
the trajectory densities in all other cells rj. Temporal privacy is calculated on a per-user
basis. The day is gridded into half-hour intervals. For each user u the privacy budget is
the relative frequency of u being in a grid cell c for a time range range accumulated over
all time steps and grid cells. Thus, an initial allocation of the privacy budget is decided.
In a second step, a partially observable markov decision process fine tunes the alloca-
tion of the privacy budget. States in this POMDP are characterised by a position on the
privacy-utility spectrum and actions increase/decrease εt or εs once per step. The optimal
location on that spectrum is evaluated via a reward function consisting of a measure of
privacy, Mutual Information, and a measure of utility, chosen to be the Jensen Shannon
Divergence. In every evaluation step the real data set is disturbed by a reallocated εs
and εt, and the process terminates with either the optimised budget allocations or after
a pre-determined number of iterations. These privacy budget parameters are then used
to disturb the real data set one last time, to get a training set where DP guarantees
can be given by post processing theorem. The disturbed data set is then used to train
a GAN which models trajectories. The finished generator is then capable of generating
differentially private trajectory data [53]

2.7.2 Co-Location

The approach presented in [36] offers a refinement strategy for existing generative mod-
els. Leveraging the fact that human social connections (the paper considers friendships
specifically) cause humans to spend some time of the day in the same location as an-
other (co-location). Some subset of the points in the trajectory can thus be determined
based on co-locations with friends, and can be complemented with synthetic trajectory
data, generated by some suitable process. In this work, the authors create a mechanism
to synthesize differentially private co-locations based on a differentially-private friendship
relation. These co-locations are then unified with synthetic traces generated by the mech-
anism presented in [7], by use of the Viterbi algorithm. These steps do not compromise
differential privacy by the post-processing theorem. Both differentially private co-location
Q and friendship probability p are realised via user level privacy. In the context of the p’s
graph representation, this means that some random nodes and all their associated edges
are hidden. For the Co-location matrix user-level privacy hides entire location traces.
The noise mechanism applied to Q is Laplacian, while for p the authors leverage the tree
structure that results from the categorisation and sub-categorisation of different points of
interest (POI) which the trace goes through. Privelet is a Wavelet transform that guar-
antees differential privacy, and employs the tree structure of POI categorisation to apply
its noise. The authors chose Privelet over simple Laplacian noise, since it gives the same
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ε guarantees at much lower noise levels per time instant and POI, improving synthesis
quality [36].

2.7.3 Markov Decision Process Based Model

Some of the authors collected for this work don’t propose a new model architecture di-
rectly, but rather an algorithm that may improve some aspects of the training process
and accuracy of the model where their proposal is implemented. One such work is Priv-
Trace[47].

2.7.3.1 PrivTrace

Building on previous work, AdaTrace [20] and DPT [21], the authors use markov chain
models(MCM) to learn the transition distribution in the data set. Their contribution is
constructing both a first and second order MCM, to allow the trajectory patterns to be
extracted more accurately than AdaTrace, for which the second order MCM is used, but
not introduce noise that degrades the utility of the synthetic data, as occurred with higher
order models used by DPT. After the training process, the model selection is based on the
variation of predicted future trajectories from a given state i, indicated by the number of
transitions Ni. If there are few future states, then the first order MCM is selected, since
noise impacts the second order MCM more, and with fewer trajectories the noise makes
up a larger part of the generated trace. If the variation of trajectories is large enough in
both models, then the ratio

Ni,1

Ni,2
is compared to a threshold. If Ni,1 is a lot larger, it is

said to dominate, and thus the corresponding MCM should be used, else the second order
MCM is used.

2.8 Genomics Data

As genomics is a field of rapid development, the availability of data is quickly growing;
however, the data is often not shared because it is highly compromising [37], and even
if data sharing is permissible, real data is very expensive [29] Therefore, synthetic data
would be very useful. Unfortunately, the generation of high-quality synthetic data is
very challenging. For this, the machine learning model must understand which features
of the genetic code are privacy-compromising, like skin color or height, and which parts
are functionally relevant and cannot be changed. Also the data has high dimensionality,
which further restricts the usefulness of data that are differentially private. Thus, it is very
hard to design a system that is privacy-preserving while still producing a useful output.
Furthermore due to the nature of the data, not much training data for a machine learning
model is available, further restricting development [37]. Because of the limited availability
of research, both models we explain try to create the data, and we have not yet found
a model that produces privacy-conserving synthetic data for genomics. We suspect that
this is due to the challenges of producing the data even without additional requirements.
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2.8.1 FBGAN

The Feedback GAN extends the Wasserstein GAN architecture by adding a Function
Analyzer that analyzes the generator’s output according to biological functions and inputs
the highest-scoring outputs into the discriminator as Real data and replaces the oldest
values in the discriminator. This provides a guideline for the discriminator on what is
acceptable and what is not and gradually all the real data in the discriminator is replaced
by high scoring outputs from the generator.This helps in creating data that does not just
look realistic but also fulfills desired properties and satisfies the laws of Biology and allows
to guide the generator to create for example antimicrobial properties [19].

Figure 2.3: The feedback-loop training mechanism in FBGAN feeds the predictions sam-
pled from the generator and inputs them into the analyzer. The analyzer scores each
sequence and inputs the highest scoring sequences back into the discriminator as real
data. n selected sequences from the analyzer replace the n oldest sequences in the ”real”
training dataset of the discriminator [19].

2.8.2 Deep Learning

A Deep Learning Neural Network refers to a architecture consisting of one input and
output layer and Multiple Hidden Layers.This deep network allows it to even consider
small nuances that a traditional model might consider noise and abstract away.Thus the
network is much better at abstracting Non Linear data [34]. Deep Learning has shown to
be able to learn the complex structure of DNA sequences and thus seems to be a promising
technique for future Research. The biggest issues the explored deep generative model
faced was a string motive match meaning a motive occurred more than once implying
that privacy might be compromised easily [29].

2.9 Discussion

We believe that the future of synthetic data generation needs new, more refined models
to make sure the training data stays private and secure. There is surely a need for mod-
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els that go further in the direction of understanding the underlying patterns of the data
without mimicking certain individuals. Also, the applied privacy preservation techniques
are often rudimentary, relying on noise, gradient clipping, and introducing some decoys
to confuse attackers. With sufficient effort, there could be potential to develop machine
learning models from the ground up, integrating differential privacy into the core to op-
timize performance for specific data types, particularly in genomics. This field notably
lacks models capable of generating high-quality, privacy-preserving synthetic data, thus
highlighting a important research opportunity by combining insights from various models.

2.10 Conclusion

The exploration of privacy-preserving synthetic data generation in this report shows how
synthetic data can be created used while minimising the risk for those in the learning
database. Our taxonomy of synthetic data generation methods explores the landscape of
methods, models, and frameworks that are used to create synthetic data. We also try to
explain how the models add to the privacy protection while keeping in mind the tradeoff
on data utility.
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2.11 Appendix

Paper Performance Main Takeaway Quote

[37] Enhanced genomic
data security by bal-
ancing privacy and
utility effectively.

Researched meth-
ods for Scoring and
balancing privacy
while considering data
utility.

No single approach
to generate synthetic
genomic data yields
both high utility and
strong privacy across
the board.

[29] Achieved high accu-
racy in DNA design
using deep generative
models, though com-
putationally intense.

Showed the potential
of deep learning to
advance biological
design with accurate
DNA sequence gener-
ation.

We show that our gen-
erative model can cap-
ture underlying struc-
ture in a dataset and
manifest this struc-
ture in its generated
sequences.

[19] Optimized protein
function precisely
using a feedback
mechanism despite
model complexity.

Introduced a feedback
loop in generative
models to enhance
bioengineering preci-
sion and functionality.

We have successfully
developed a GAN
model, FBGAN, to
produce novel protein-
coding sequences for
peptides under 50
amino acids in length,
properties.

[24] Integrated differential
privacy with ML, bal-
ancing privacy with
performance.

Provided strategies for
incorporating differen-
tial privacy into ma-
chine learning models,
improving data secu-
rity and user privacy.

We explore the inter-
play between machine
learning and differen-
tial privacy, namely
privacy-preserving
machine learning
algorithms and
learning-based data
release mechanisms.

[34] Achieved high predic-
tion accuracy in ge-
nomic analysis using
deep learning.

Showed the potential
of deep learning for ge-
nomic data analysis,
leading to more accu-
rate predictions.

-

[38] Developed a frame-
work for generating
synthetic data with
strong privacy guaran-
tees.

Introduced methods
for creating diverse
synthetic datasets
while preserving pri-
vacy, contributing to
safer data environ-
ments.

For 11 out of 15 com-
parisons (>70%), data
scientists using syn-
thetic data performed
the same or better
than those using the
original dataset.
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Paper Performance Main Takeaway Quote

[32] Achieved privacy-
preserving data
synthesis using nor-
malizing flows.

Showed the applica-
tion of normalizing
flows in generating
private synthetic
data, improving data
privacy techniques.

The fine-grained
gradient clipping
methods proposed to
train parameterheavy
NF models are simple
but shown to be
highly effective in
accelerating private
training.

[25] Developed meth-
ods for scalable and
privacy-preserving
image generation.

Integrated differential
privacy into latent
flow models, improv-
ing the privacy of
generated images.

propose an effective
solution, i.e. DP-
LFlow, by reducing
the flow training from
the full input space
to a lower dimensional
latent space, so that
the model is more
resilient to (larger)
noise perturbation in-
troduced by DP-SGD

[13] Achieved data privacy
through autoencoder-
based generative mod-
els.

Proposed a novel
method using au-
toencoders to ensure
differential privacy
in synthetic data
generation.

As we are the first to
propose differentially
private data genera-
tive models that can
defend against the
contemporary privacy
violation attacks

[48] Developed privacy-
preserving text gener-
ation using VAEs.

Analyzed recurrent
VAE architectures to
generate high-quality
text while preserving
privacy.

-

[15] Integrated differ-
ential privacy into
diffusion models for
high-quality data
synthesis.

Advanced the field
by adapting diffusion
models to uphold
privacy standards, en-
hancing the security
of generated data.

-

[33] Improved privacy in
user interactions with
large language models
using prompt tuning.

Developed innovative
prompt tuning strate-
gies to enhance pri-
vacy, ensuring safer
user interactions with
large language mod-
els.

we propose Privacy-
Preserving Prompt
Tuning (RAPT), a
framework for cus-
tomizing and utilizing
LLM service with pri-
vacy preservation. For
privacy protection,
RAPT applies a local
privacy setting
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Paper Performance Main Takeaway Quote

[50] Proposed models that
balance privacy and
utility in text genera-
tion.

Developed a utili-
tarian approach to
improve both privacy
and utility in generat-
ing text data, creating
a balanced solution to
privacy concerns.

A novel class of Vick-
rey mechanism is
proposed, which not
only enjoys metricDP
but also optimizes
the privacy-utility
tradeoff within the
constraint.

[23] Enhanced privacy in
time-series forecasting
of health data using
federated learning.

Analyzed methods
for secure and private
forecasting of sensitive
health data making
use of federated learn-
ing techniques.

-

[35] Achieved competitive
results with differen-
tially private RNNs.

Showed the practi-
cal feasibility and
effectiveness of train-
ing RNNs under
differential privacy
constraints to secure
language model appli-
cations.

In this work, we in-
troduced an algorithm
for user-level differen-
tially private training
of large neural net-
works, in particular
a complex sequence
model for next-word
prediction.

[28] Developed con-
figurable privacy
settings for time series
data, enabling effec-
tive protection.

Explored the signifi-
cance and flexibility
of customizable pri-
vacy settings devel-
oped specifically for
the needs of time se-
ries data.

We presented land-
mark privacy for
privacy-preserving
time series publish-
ing, which allows
for the protection
of important events
while improving the
utility of the final
result compared to
user-level differential
privacy.

[53] Developed GANs for
realistic and privacy-
preserving trajectory
data generation.

Illustrated the inte-
gration of differential
privacy into GANs to
effectively secure tra-
jectory data, while
keeping it realistic and
private.

DP-TrajGAN is used
to generate synthetic
trajectories close to
the distribution of
original trajectories,
which can retain the
statistical characteris-
tics while protecting
the user’s spatio-
temporal trajectory
privacy.
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Paper Performance Main Takeaway Quote

[36] Generated privacy-
preserving location
data with realistic
co-location patterns.

Demonstrate the ca-
pability of synthetic
data models to main-
tain both privacy and
realistic spatial rela-
tionships in generated
location data.

In this paper, we pro-
pose a novel location
synthesizer that gen-
erates synthetic traces
including co-locations
between friends.

[47] Applied adaptive
Markov models to
create private and
high-utility trajectory
data.

Explored how adap-
tive Markov models
effectively balance pri-
vacy and utility, en-
hancing the quality
and security of synthe-
sized trajectory data.

In this paper, we pro-
pose a differentially
private algorithm to
generate trajectory
data.

[3] Implemented differen-
tial privacy in deep
learning training pro-
cesses.

Established founda-
tional techniques for
incorporating differen-
tial privacy into deep
learning, securing
the training process
and protecting model
data.

-

[12] Developed
autoencoder-based
models for privacy-
preserving data
generation.

Reinforced the role of
autoencoders in syn-
thetic data generation
with strong privacy
protections, offering a
good solutions for se-
cure data handling.

-

[39] Combined LSTM and
GANs for effective pri-
vacy protection in tra-
jectory data.

Demonstrate the
interaction between
LSTM and GAN tech-
nologies in enhancing
privacy protections
for trajectory data
synthesis.

-
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Chapter 3

Federated Learning of Large Language
Models (LLM) — A Review

Nicolas Huber, Nordin Dari

In recent years, significant breakthroughs in language models have made a revolutionary
transformation possible by enabling the creation of large language models (LLMs). LLMs
can now process and generate text with clear communication and adapt to various tasks.
This breakthrough led to LLMs being used in various areas. However, their development
is met with challenges due to the limited availability of public domain data and the need to
maintain privacy concerning private domain data. This is where Federated Learning (FL)
comes into play. Federated Learning allows entities to train collaborative models without
sharing training data. This is particularly useful when multiple devices have a similar task
but cannot share their local data due to privacy concerns. This led to the recent proposal
of federated learning of large language models. In order to make FL of LLMs feasible on
clients’ devices, parameter-efficient fine-tuning (PEFT) algorithms have been developed.
FederatedScope-LLM (FS-LMM) and Federated Instruction Tuning (FedIT) are two re-
cent federated fine-tuning frameworks which implement PEFT algorithms. While PEFT
algorithms reduce computational and communication costs in a federated setting, LLMs
trained in a federated setting still lack performance compared to traditionally centralized-
trained LLMs. Further challenges, among others, include 1) Heterogeneity in data quality,
amount of data and computational resources on the client side. 2) The possibility of hostile
actors injecting malicious training data into the federated learning process. 3) The possi-
bility of reconstructing sensitive information through the broadcasted global model during
federated learning, and 4) despite PEFT algorithms, the communication and computa-
tional requirements to perform FL of LMMs are, for most clients, still unacceptable.
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3.1 Introduction

With the increasing capabilities of large language models (LLMs) in recent years, and
especially the emergence of chatbots such as ChatGPT1, it is only natural that both in the
academic and industrial world, the interest in investigating and harnessing the potential of
LLMs have been rising (Kuang et al., 2023). However, training LLMs needs huge amount
of data and the urgently needed knowledge in certain domains, such as education, law or
medicine, may not always be possible to share due to, for example, privacy concerns or
country regulations [1] [14]. Federated learning (FL), which emerged in 2016 [22] seems to
be a potential solution to this problem by enabling multiple clients to participate in the
training process of a global model while preserving the privacy of the clients. In this report,
we are first going to give a short introduction to centralized and decentralized FL, as well
as some of their advantages and drawbacks. Afterwards, we will look at LLMs and try to
foster an understanding of their workings and the advances over the years. Specifically, we
try to understand the concepts of pre-training, fine-tuning, prompt engineering and the
transformer architecture. Next, we will explore the combination of FL in LLMs, explore
some of the algorithms that can be used to make the training process more efficient on
the client side and understand some of the challenges that emerge when applying FL
in LMMs. Finally, we take a look at two existing frameworks: Federated Instruction
Tuning (FedIT) [32] and FederatedScope-LLM (FS-LLM) [14] which implement federated
fine-tuning and federated instruction tuning. We will explore how the named frameworks
work and what they consist of, as well as understand the evaluation of those frameworks
and the trade-offs and challenges they found. In the end, we finish the report with an
evaluation and discussion of the approaches discussed in this report.

3.2 Federated Learning

3.2.1 What is Federated Learning

Federated learning (FL) emerged in 2016 as a promising approach for multiple distributed
clients to learn a shared model by aggregating locally-computed updates without the data
leaving the client’s device [22]. This is particularly useful since today more data points are
stored where they are generated so there is more data available that is widely distributed
but this makes data collection in central entities, as traditionally done in Machine Learning
(ML), often impossible due to, for example, data privacy concerns or country regulations
[1].

3.2.2 Decentralization Schema

Three different approaches[1] regarding the decentralization level of the federation ar-
chitecture have been emerging, which can be seen in Figure 3.1. Namely Decentralized

1https://openai.com/blog/chatgpt
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Figure 3.1: Three different decentralization levels of FL[1].

Federated Learning (DFL), Semi-Decentralized Federated Learning (SDFL) and Central-
ized Federated Learning (CFL)[1]. In DFL, the participating clients perform local model
training, parameter exchange, local model aggregation, and parameter exchange again,
independently[1]. In CFL, a central server is in charge of parameter aggregation and dis-
tribution, while the clients receive and update their local model accordingly and in SDFL,
participating clients perform local model training and parameter exchange while an ag-
gregator participant handles local model aggregation[1]. However, compared to CFL, in
SDFL, the aggregator role rotates among the participating clients periodically by ran-
domly selecting a neighbouring node of the current aggregator or choosing based on a
client’s network, computational or power capacity[1].

3.2.3 Centralized Federated Learning

In CFL, a central server creates and distributes a global model to all the participating
clients. The clients train the model with their local data and, when they are done, send the
local model parameters back to the central server, where the parameters get aggregated
into the global model [1].

Since FL is a relatively new field, various challenges need to be solved for FL to be
effectively applied in practice. Li et al. (2020)[16], mentioned the four core challenges,
which include communication efficiency, systems heterogeneity, statistical heterogeneity
and privacy.

Li et al. (2020)[16] point out that communication is a critical bottleneck in federated
networks, given the potential scale of these networks and the need for every client to
transmit individual data while maintaining privacy. However, they also propose a promis-
ing solution: the development of communication-efficient methods that send small model
updates iteratively, rather than the model in its entirety.
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Li et al. (2020)[16] further elaborate on the challenges posed by the different storage,
computational, and communication capabilities of participating clients, as well as the
potential unreliability of clients in a federated system. These complexities significantly
complicate issues such as straggler mitigation, where some users take significantly more
time to finish their assigned calculations, and fault tolerance [16].

Furthermore, Li et al. (2020)[16] explain that statistical heterogeneity becomes a challenge
as clients generate and collect data in non-identically distributed manners, with significant
variations in the number of data points across clients. This increases the likelihood of
stragglers and adds complexity in terms of modelling, analysis, and evaluation [16].

Finally, privacy is another concern in CFL. To prevent adversaries from learning about
the original training data based on analyzing the model parameters, algorithms need to
be implemented to protect the privacy of clients. However, such algorithms come at the
cost of increased computation [23].

3.2.4 Decentralized Federated Learning

In 2018 DFL emerged, where training data is distributed over many clients and the model
parameters have to be shared and aggregated between the clients without a central coor-
dinator [9].

Compared to CFL, DFL improves the robustness of the network since no central coordi-
nator exists, therefore removing the need for the clients to put trust in the reliability of a
central server for the training process [25]. Furthermore, DFL increases the flexibility and
agility of a federated network, since regardless of clients joining or leaving the network,
no reorganization is required, and the process can continue with minimal effort [25].

Despite the benefits of DFL, it also introduces new challenges, such as communication
overhead and trust issues [1][31]. Ye et al. (2022)[31] point out that a reliable transporta-
tion layer protocol, such as transmission control protocol (TCP), is commonly used in a
decentralized, federated network to offer reliable transmission between clients. However,
this protocol may lead to communication overhead and reduce the possible number of
connected clients [31]. Additionally, trust is an essential challenge which needs to be ad-
dressed. Careful consideration is required regarding which clients to let join the network,
with which clients to share the model parameters and which clients model parameters one
wants to aggregate into one’s own model[1].

Furthermore, DFL allows for the relaxation of synchronous model updates since there is
no central server in charge of parameter aggregation[1]. Depending on the topology of
the network, issues such as fixed or dynamic topology arise[1]. The three topologies used
in DFL are fully connected networks and partially connected networks, which include
star-structured networks, ring-structured and random networks, and node clustering (see
3.2). Fully connected networks have the advantages of high reliability and robustness
but do not scale well, and communication cost is high since if a new client wants to join
the federation, it has to be connected to all the existing clients[1]. In star-structured
networks, only one link to the proxy client, in charge of communication between the
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Figure 3.2: Different topologies of DFL[1].

clients, is needed to connect a new client to the network[1]. However, the central proxy
client reduces flexibility, is a single point of failure and becomes a potential bottleneck
since it has all the communication of the federation passes through it[1]. In a ring-
strucuted network, communication costs grow linearly since each client maintains only
two links, resulting in medium flexibility[1]. However, with a growing number of clients,
transmission delay for model parameters increases[1]. An example of node clustering is
similarity-based clustering, where clusters are determined by the similarity of the local
model parameters of the clients, resulting in more individualized clusters for the clients
that compose it, which leads to a homogeneous performance between nearby clients.[1].
Due to the clients within a cluster sharing similar data distribution, individually trained
cluster models may be less generic and robust compared to models exposed to global data
distribution[2][1].

3.3 Large Language Models

3.3.1 What is Language Modeling

As Liddy (2006, para. 48, [19]) defined:

Language modeling is a statistical method for ranking documents in a col-
lection based on the probability that they might have generated the query
[...].

To understand how one can transition from unstructured data, such as text, to statistical
inference we define some terms.

Token: A word or a subword. For generative applications this can also be symbols. For
example the following sentence can be split up into tokens in such a way:

”This is not a lengthy sentence.” turns into:
[”this”, ”is”, ”not”, ”a”, ”length–”, ”–y”, ”sentence”, ”.” ] .
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We can see that ”lengthy” was split into ”length–” and ”–y”. This signifies that length
can have multiple suffixes. So the meaning for an extent of something from end to end is
encoded in ”length–” and the semantic context that can be added to that information is
encoded in ”–y”.

Document: A coherent collection of sentences. This can be a book, a tweet, an article.
Anything that logically belongs together. It is often assumed that a document is to be
assigned a meaning or that a query (meaning) should generate relevant documents that
statistically have the highest similarity to this meaning.

Corpus: A collection of documents. This can be a dataset of customer service conversa-
tions of a company where one conversation is one document.

Within this corpus one word can have a different meaning compared to other corpora.
Delivery for Amazon means the transfer of goods. In a hospital context it can mean the
application of medicine or birth of a child.

Embedding: A vector space representation of words. The representation of words is always
in relation to the context. As per the previous example, delivery will be represented quite
differently if the embedding is generated on just Amazons corpus or a combined corpus
that also contains health care information.

3.3.2 Natural Language Modeling then and now

In today’s age with Chat-GPT and other generative models that create text that is hard
to distinguish from human generated text it is hard to forget what language modeling
used to mean how it relates to today’s state of the art models. Since human generated
text is classified as unstructured data, classical statistical and ML approaches were not
directly applicable to it. Before one could apply clustering or classification tasks on it,
there needs to be preprocessing [7].

To transform words into a feature vector, first the text needs to be cleaned. Stemming is
one techinique. The goal here is to reduce words to a base form. For example ”changing”,
”changed” and ”change” can get transformed to ”chang”. This conserves the meaning of
the word while removing syntactic noise. Lemmatization does function similarly but does
not reduce the words to a common stem but to a base form. The former examples would
be transformed to ”change”. There is stop words removal where certain filler words like
”the”, ”a”, etc. get removed. One can see that those transformations were prescribed by
a human. Such features in text used to involve quite a lot of human intervention before
the wider adoption of self-supervised LLMs [7].

The resulting features were enabling frequency based algorithms like bag of words or term
frequency - inverse document frequency.

One of the next steps was to embed sentences into a vector space with word2vec [27]. The
embedding of words, sentences or documents into a vector space is also a concept that
will be further utilized by large language models.
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As one can see there are a multitude of preprocessing methods to translate the unstruc-
tured data into a form that allows for statistical analysis. This preprocessing also makes
it a lot more difficult to generate legible text through inference since one removes lex-
ical information to enhance the statistical significance. For over half a decade [11] the
statistical approach was applied to machine translation which had some success but was
qualitatively not comparable to translations by human experts. In the early 2000s there
was ongoing work to apply shallow feed forward networks to this problem. From 2013 on
Recurrent Neural Networks (RNNs) were introduced [28] and with it the field of Neural
Machine Translation (NMT). In 2015 model architecture was expanded to not only trans-
late word for word with some context but to generate whole sentences [28]. Figure 3.3
depicts the growing influence of NMT.

Figure 3.3: 2015 marked an inflection point for papers mentioning ”Neural Machine Trans-
lation” according to Google Scholar. [28]

Modern neural-network-based methods were based on model architectures such as Re-
current Neural Networks (RNN), Gated Recurrent Units (GRU) and Long Short-Term
Memory (LSTM). These methods, compared to traditional machine translation methods,
provide a stronger modeling ability and achieved better performance. One major down-
side is still the fixed size of of some parameters. This means longer sentences were difficult
to be accurately translated[12].

3.3.3 Transformers

The 2017 break through paper ”Attention is all you need” [29] introduced the transformer
architecture. This network architecture is an auto regressive encoder-decoder network that
applies a novel method coined attention. The training for this network is self supervised.
This means that many of the concepts for preprocessing, described in section 3.3.2, don’t
need to be applied. This also removes some form of human bias from the training process.

3.3.4 Transformers Architecture

The transformer, as showcased in figure 3.4, is comprised of multiple elements. Firstly,
with learned embeddings a token vector gets transformed into a representation in the
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Figure 3.4: The transformer architecture as proposed by [29]. The left block showcases
the encoder and the right block showcases the decoder.

vector space. Secondly, since this model does not convolve nor apply recurrence as other
models described in section 3.3.2 it embeds the positional relation of words to each other.

Within the transformer blocks, of which multiple can be stacked, one finds attention
blocks. These attention blocks return the relationship between encoded tokens and how
relevant they are to each other as a continuous representation.

At the top of the decoder block output probabilities for the next word are generated.
These are used to predict the next word in sequence which is then shifted and fed into
the network again thus giving this architecture its augoregressive nature.

3.3.5 Training a Transformer

As defined in the section 3.3.3, transformers are training in a self-supervised manner.
Multiple model classes and training strategies have emerged to set the weights within a
transformer model.

Notably there are multiple optimization objectives for training an LLM [24][34]. (1)
Masked language models (MLM) that need to reconstruct text that contains some masked
tokens. (2) Autoregressive language models or next sentence prediction (NSP) models that
need to correctly predict the next token or sentence in sequence. (3) Encoder-decoder or
denoising autoencoders (DAE) models that first need to reconstruct masked/corrupted
token vectors and then also predict then next token in a sequence. (4) Replaced token
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detection (RTD) that needs to determine if the current token has been replaced or not.
(5) Sentence order prediction (SOP) that utilizes neighboring samples from a document
to switch and determines the order.

Once defined how the model is trained the target is to use a large corpus to give the
foundation model (Pretrained Foundation Model, PFM) a general idea about language.
For some applications the corpus is specific for other the data sources are very general.

3.3.6 Fine-Tuning

Figure 3.5: A PFM has its weights frozen and additonal, trainable layers are injected into
the architecture. The additional layers are depicted in purple[26].

Fine-tuning a foundation model is akin to turning GPT-3 into ChatGPT. Several methods
such as regular fine-tuning, adapter tuning, prefix tuning, Low-Rank Adaption (LoRA)
[24]. The goal is to keep the generalized knowlege of language in the model but also im-
prove its performance on one or several tasks. These methods generally work on allowing
some or all parameters of the PFM to change.

Figure 3.5 showcases the difference in architecture for a regular transformer block to
those with prefix-tuning and adapter tuning. Soft prompts are trainable layers that add
an abstract vector to the input tokens while the network is instructed to train on a specific
dataset. This ensures that the knowledge to infer this specific dataset well is encoded in
the abstract vector. Adapters on the other side inject multiple trainable layers into the
attention blocks[26].

Apart from modifying the network there are also ways to fine-tune a PFM by applying
templates or context to the input text. Hard prompts can take the form of additional,
human readable text, context that is added to the users prompts. Templates can also be
used where the user is expected to ask a certain question that is then used to populate
fields in a template so the PFM is better able to interpret the query [34].

With custom datasets one can apply different strategies for a model to be able to fulfill
target tasks [13]. Few shot-learning, where a few examples of a given task are supplied
to the model. One shot-learning where there is one example in the dataset that shall
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show the model how to act and zero shot-learning where there are tasks close enough to
the target that allow the model to utilize knowledge from pre-training and context from
fine-tuning to sufficiently be able to deliver answers when prompted for them. A couple of
examples of prompts specifically crafted are shown in figure 3.10 and figure 3.11 of section
3.5.2.

3.4 Federated Learning in Large Language Models

Large Language Models have taken the world by storm. The datasets to train the ever
growing models reaches multiple terabyte scale [21]. The availability of more data as well
as the availability of data that is not available to the public can help improve language
models abilities to generate better responses to prompts. There are two overarching
reasons why this data is not available to the public or even just to entities that want to
use it to pre-train or finetune their language models [3].

Privacy: Certain entities want to keep their data private because it contains information
that is not publicly available and could give competitors and advantage or would cause
the source entity to loose an advantage.

Regulation: Certain types of information can not be shared with anyone outside of the
source entity. This can be either due to privacy guarantees like in medical data or can
also be due to restrictions that certain data can not leave a country.

In spite of both of those reasons it might be interesting for a group of entities that possess
data that is similar in nature to train models that shall perform similar tasks. It is also
possible to enable one global entity to train a model while keeping the data within separate
countries.

Some challenges one faces when combining Federated Learning and Large Language Mod-
els is the sheer model size. A 2023 survey [33] found 28 publicly available and 28 closed
source models with a parameter count over 10 billion parameters. Table 3.1 shows a
selection of models that has parameters in the billions or even trillions.

Due tue the nature of of LLMs concerning their size and need for data, centralized fed-
erated learning, as discussed in section 3.2.3, is feasible whereas decentralized federated
learning, as discussed in section 3.2.4, is only feasible if all actors are able to contribute
significant compute. This would not work for smaller devices as is often the case with
DFL.

3.4.1 Federated Learning for Foundation Models

As discussed in section 3.4, pre-training a foundation model of a large language model
would involve a lot of communication overhead between participating actors. Effectively
synchronising model updates for each step is extremely expensive.
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Name Release Date Parameters in Billions Source
CPM-2 Jun-2021 198 Public
BLOOM Nov-2022 176 Public
BLOOMZ Nov-2022 176 Public

OPT May-2022 175 Public
OPT-IML Dec-2022 175 Public

GLM Oct-2022 130 Public
Galactica Nov-2022 120 Public
FLM Sep-2023 101 Public
GLaM Dec-2021 1’200 Private

PanGu-Σ Mar-2023 1’085 Private

Table 3.1: Recent public and private LLMs have a very large parameter count[33]. This
poses challenges to the infrastructure.

As utilizing a pre-trained foundation model and fine tuning it is generally the way to go
we will discuss this in section 3.4.2.

An approach like pre-training a foundation model would only be necessary if there was
a huge, fundamental change in regulations that would prevent cross-country exchange of
text data. This is unrealistic since a large part of the corpora is scraped from publicly
available web sources, available books or similar source available sources [21].

3.4.2 Federated Learning for Fine-Tuning

As discussed in section 3.3.6 there are several methods available to fine-tune a foundation
model. If we compare some of the tuneable parameters shown in figure 3.5 to the final
architecture of figure 3.6 wen can recognise that the model updates shared between enti-
ties are significantly smaller in opposition to updating the whole model as proposed for
applying federated learning for foundation models.

Additionally to adapter and soft-prompt tuning [3] many of the common LLM fine-
tuneinge techniques are applicable. Some of those are already implemented in in existing
approaches as discussed in section 3.5.

3.4.3 General Threats and Remedies Proposed

Depending on the relationship between actors there are different risks involved with col-
laborative training [3]. During training, one has to be aware that there is a risk of model
poisoning. This can be prevented or detected utilizing robustness aggregation or anomaly
detection amongst others. It is also possible that a certain actor would know about a use
case or task that is specific to another actor and tries to inject malicious examples that
degrade the performance for this task.
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Figure 3.6: Fine-tuning a large language model with federated learning can be done
utilizing a pre-trained foundation model where large parts of the network are frozen and
only some of the original parameters or some additional parameters that are not part of
the original architecture are trainable. [3]

It is possible to reconstruct data from just gradient updates [35]. Proposed remedies are
adding noise to the gradients, increasing batch sizes or pruning gradients, meaning small
gradient updates are set to zero which in turn should prevent the attacker to come to
close to the real data.

3.5 Existing Approaches

Since FL, especially in combination with LLMs, is a rather novel research area there do
not exist a lot of approaches to federated LLMs yet. Nonetheless, some frameworks have
been developed. The goal of this section is to look at and understand two of the existing
approaches, namely Federated Instruction Tuning (FedIT) and FederatedScope-LLM (FS-
LLM) [14][32].

3.5.1 Federated Instruction Tuning (FedIT)

FedIT represents the first attempt to instruction tune LLMs in a CFL setting [32]. As
demonstrated in figure 3.7, clients initially download a global LLM from a central server.
Afterwards, the server performs client selection to determine which clients will participate
in the current round of instruction tuning, then the selected clients perform instruction
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Figure 3.7: The Framework of Federated Instruction Tuning (FedIT)[32]

tuning on the global model with their local data and, when done, transmit the local
updates back to the server, where they get aggregated back into the global model [32]. This
process repeats a specifiable amount of times [32]. In order to adjust the learning process
to the usually limited computational resources of the clients, FedIT employs parameter-
efficient tuning methods, namely Low-Rank Adaptation (LoRA), which, according to Hu
et al. 2021 [10], can reduce the number of trainable parameters by 10,000 times and the
GPU memory requirements by three times [32].

According to Zhang et al., (2024)[32], FedIT illustrates a use case where statistical het-
erogeneity can be a positive factor for federated learning since the global model can be
trained on a dataset of multiple clients where the content and format of the instruc-
tions can be substantially different from client to client. However, there is a need for
further investigation of statistical heterogeneity in Federated Instruction Tuning regard-
ing language diversity, particularly regarding fairness across underrepresented languages,
domain-specific instructions, task complexity, task ambiguity, emotional tone, cultural
factors and more [32].

To evaluate FedIT, Zhang et al. (2024)[32] implemented Shepherd, a framework to imple-
ment parameter-efficient federated instruction learning, and compared it to five baseline
models. In their evaluation, Zhang et al. (2024)[32], assumed the presence of 100 clients,
conducted 20 communication rounds, where each round 5 randomly selected clients per-
formed one epoch of local training with their respective instruction dataset on a single
Nvidia Titan RTX with 24GB memory.

As the global baseline model, Zhang et al. (2024)[32] used 7B LLaMA, an open-sourced
LLM which has demonstrated performance on par with LLMs such as GPT-3. ”Local-1”,
”Local-2” and ”Local-3” have been fine-tuned on three different individual clients’ local
dataset without model aggregation and ”CentralizedModel,”has been fine-tuned on all the
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Figure 3.8: ”A summary of the baselines and their corresponding scores evaluated by
GPT-4. The scores are reported in the format of (Baseline’s score, Shepherd-7B’s score)
and the Relative Score is defined as ( Shepherd-7B’s score / Baseline’s score)” (Zhang et
al., 2024, p.10)[32]

available data, representing the ideal training scenario where a central entity has access
to the local data of the clients [32]. Zhang et al. (2024)[32] used GPT-4 to assess the
generated responses of the different models, which the average scores of can be seen in
figure 3.8.

The results demonstrate that FedIT effectively increases a model’s accuracy through fed-
erated instruction tuning, and statistical heterogeneity can be advantageous in a federated
setting. The disparity to ”CentralizedModel” can, according to Zhang et al. (2024)[32],
be partly attributed to the fact that the clients train the models locally with datasets
that have substantially different distributions when compared to all the instructions as a
whole. This might lead to the client’s local models learning different representations of
the instructions.

3.5.2 FederatedScope-LLM (FS-LLM)

FS-LLM is an open-source package built on top of FederatedScope (FS), which aims to
make federated fine-tuning of LLMs more efficient and less computationally expensive
and provide a way to benchmark various federated fine-tuning LLMs algorithms [14][30].
Additionally, FS-LLM permits clients to fine-tune a closed-source LLM where the owner
wants to keep the pre-trained LLM private from the clients [14].

FS-LLM consists of the three modules: LLM-BENCHMARK, LLM-ALGOZOO, and
LLM-TRAINER.

Figure 3.9: Coding Exercise from CodeAlpace[6]

LLM-BENCHMARK is the first module to evaluate LLM fine-tuning algorithms fairly
and covers a complete benchmarking pipeline, including the construction of fine-tuning
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datasets and corresponding evaluation tasks [14]. It includes Fed-CodeAlpaca, Fed-Dolly
and Fed-GSM8K-3. Fed-CodeAlpaca, built from CodeAlpace [6], stimulates a FL scenario
with nine clients, where each client has one local fine-tuning dataset consisting of coding
exercises with answers in one specific programming language [14]. figure 3.9 represents an
example of such a coding exercise. The Fed-CodeAlpace dataset aims to enhance LLMs’
code generation capabilities through fine-tuning [14].

Figure 3.10: Brainstorming Instruction from the Databricks-Dolly-15k Dataset [8]

Fed-Dolly represents the Databricks-dolly-15k dataset [8], partitioned into eight clients’
local datasets, where each client’s dataset only consists of one specific instruction category
like, for example, the Brainstorming example seen in figure 3.10. Fed-Dolly aims to
enhance the LLMs’ capabilities for generic language through fine-tuning [14].

Figure 3.11: Math Question from the GSM8K dataset [5]

Finally, Fed-GSM8K-3 represents the GSM8K dataset [5], which consists of grade school
math questions (e.g. figure 3.11), randomly partitioned into three subsets. Fed-GSM8K-3
tries to increase the capability of LLMs for chain of thoughts [14].

LLM-BENCHMARK also provides different splitters to partition the above-mentioned
datasets into federated versions based on different meta-information or with different
degrees of heterogeneity among clients [14]. Users can use these splitters to construct
fine-tuning datasets, mirroring the usually inherent heterogeneity in FL settings [14].

In order to evaluate the potential improved capabilities of an LLM after a federated learn-
ing process, LLM-BENCHMARK provides three evaluation datasets, where each evalua-
tion dataset can be used to evaluate the performance of federated fine-tuning through one
of the provided fine-tuning datasets [14]. Specifically, HumanEval [4] is used to evaluate
the improvements of LLMs in their capability of code generation, HELM [18] is used to
evaluate the improvements of LLMs in their generic language capabilities and GSM8K-test
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[5] is used to evaluate the improvements of LLMs in their chain of thoughts capabilities
[14].

LLM-BENCHMARK also provides a set of cost-related metrics to measure the computa-
tion costs and communication costs of a federated fine-tuning process [14].

LLM-ALGZOO, the second out of three modules which make up the FS-LLM framework,
provides a set of popular fine-tuning algorithms [14]. On the one hand, these fine-tuning
algorithms consist of four parameter-efficient fine-tuning (PEFT) algorithms, which aim
to reduce the communication and computation costs in federated fine-tuning in cases
where all clients have access to the entire model. These four PEFT algorithms consist of
LoRA [10], prefix-tuning [17], P-tuning[20] and prompt tuning [15]. On the other hand,
for the cases where clients do not have access to the entire model but want to customize
the model to their own liking, Kuang et al. (2023)[14] provide the algorithm FedOT.
FedOT sends a lossy compressed model with untrainable parameters to the clients at the
beginning of FL [14]. Clients are able to fine-tune adapters with their domain-specific
data, while FedOT safeguards the intelligent property of the model providers as well as
the data privacy of the clients [14].

To further optimize the federated fine-tuning process in terms of CPU/GPU memory con-
sumption, multi-GPU parallel, and communication cost, Kuang et al. (2023)[14] provide
LLM-TRAINER as the last building block of FS-LLM. LLM-TRAINER implements a
set of accelerating and resource-efficient operators to reduce computation costs on the
client side since, even with PEFT algorithms, fine-tuning LLMs in FL is computationally
expensive for clients [14].

To evaluate the effectiveness of FS-LLM, Kuang et al. (2023)[14] conducted a set of
experiments to evaluate how effective and efficient it is to federated fine-tune LLMs with
PEFT algorithms and how effective it is to federated fine-tune LMMs without accessing
the full model.

To benchmark the effectiveness and efficiency of different PEFT algorithms, Kuang et
al. (2023)[14] conducted experiments with the three fine-tuning datasets, as well as the
corresponding evaluation datasets provided by LLM-BENCHMARK on the LLaMA-7B
model. All the experiments were conducted with a Nvidia A100 GPU (80GB) with Intel
Xeon Platinum 8369B CPU and 512GB of RAM. Kuang et al. (2023)[14] repeated the
experiments three times in all scenarios and reported the average evaluation score with
its standard deviation, as can be seen in figure 3.12.

The global scenario represents one single client, who holds the entire fine-tuning dataset
and performs fine-tuning on the LLM. The fed scenario represents federated fine-tuning
where each client holds its own unique local fine-tuning dataset. And the local scenario
represents a scenario where each client fine-tunes the LLM independently, with its own
fine-tuning dataset. As shown in figure 3.12, all PEFT algorithms, when used in the
federated setting, outperform the PEFT algorithms in the local scenario. So, it can be
assumed that it is realistic and practical to use PEFT algorithms for fine-tuning LLMs in
a federated setting [14]. Secondly, LoRA seems to be the most effective PEFT algorithm
among the three listed.
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Figure 3.12: Comparing the effectiveness of different PEFT algorithms when fine-tuning
LLaMA-7B: Evaluation Scores(%) ± standard deviation(%)[14].

Figure 3.13: Comparing the efficiency of different PEFT algorithms when fine-tuning
LLaMA-7B in FL. Using Nvidia A100 GPU (80GB) and Nvidia V100 GPU (32GB):
Evaluation Scores(%) ± standard deviation(%)[14].

When comparing the different PEFT algorithms regarding their efficiency, the results can
be seen in figure 3.13 Kuang et al. (2023)[14] note that the significant difference in message
sizes leads to large variations in transmission time. Furthermore, the computation time
when the Nvidia V100 GPU (32GB) is used is roughly double the time then when the
Nvidia A100 GPU (80GB) is used. From this, Kuang et al. (2023)[14] conclude that
federated fine-tuning LLMs may suffer from more idle time due to the heterogeneity of
computing resources among different clients. Therefore, Kuang et al. (2023)[14] highlight
the need for two research directions emerging from this issue: (1) How is it possible to
leverage the idle time of clients which possess superior computation-resources compared
to other clients in the federated setting, and (2) how can clients with limited computation-
resources efficiency utilizing available bandwidth during computation.

Finally, Kuang et al. (2023)[14] evaluate the performance of federated fine-tuning closed-
source LLMs using FedOT. They used the first and last two layers of LLaMA-7B as the
adapter and then compressed the model by dropping 20% and 50% of the remaining layers
uniformly [14].
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Figure 3.14: Comparing the performance when fine-tuning compressed LLaMA-7B with-
out accessing the full model under federated and local scenario: Evaluation Scores(%) ±
standard deviation(%)[14].

Figure 3.14 demonstrates that through FedOT, multiple clients can benefit from federated
learning when they cannot access the full model [14]. While FedOT achieves similar
performance compared to some of the PEFT algorithms, Kuang et al. (2023)[14] note
that this is due to the fact that FedOT sacrifices communication efficiency for model
performance since the number of parameters of the adapter of FedOT is significantly
larger than the number of parameters in the PEFT algorithms. However, when dropping
50% of the remaining layers, a chain of thoughts and code-generation capabilities acquire
a minimal amount of new knowledge. So overall, FedOT appears to be a suitable choice
when clients want to perform fine-tuning on closed-source models. However there is a
trade-off between increasing the privacy of LLMs and degrading their performance [14].

3.6 Evaluation and Summary

The position paper [3] proposed pre-training, fine-tuning and prompt-tuning for the com-
bination of federated learning and large language models. We propose that pre-training,
in opposition to fine-tuning and prompt-tuning, is not feasible if one tries to utilize a
competitively large model.

When evaluating the current approaches in section 3.5 we could not conclusively determine
one method to be significantly better than others. As this field is still evolving a lot there
will be improvements that have to be watched.

Due to the relatively recent nature of FL, especially in combination with LLM, studies
and approaches regarding federated learning of large language models are still in their
infancy. In this report, we have looked at two existing approaches to fine-tuning [32] and
instruction tuning [14] LLMs in a federated setting. The laid-out approaches seem to
be novel and heading in promising directions. Especially, the use of parameter-efficient
fine-tuning (PEFT) algorithms seems to be a promising approach in order to reduce the
computation resources needed for clients to participate in FL [14][32]. However, Kuang
et al. (2023)[14] state that even with the use of PEFT algorithms, computation cost is
still too high for most clients with limited resources. Additionally, FL for LLM suffers
significant communication overhead with the amount of data transfer needed to rival
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centralized training performance [32]. In this sense, PEFT algorithms are a step in the
right direction, but there is a need for computation-efficient algorithms that further tackle
this issue.

FL enables clients to participate in model training without sharing their sensitive data,
which is a significant breakthrough, particularly as unused public data becomes scarcer.
Nonetheless, FL also introduces new challenges regarding privacy, which need to be ad-
dressed in further research. Specifically, preventing adversaries from joining an FL process
with the intention of polluting the model by injecting crafter instructions [32], making
it entirely impossible to reconstruct or recover sensitive client information through the
broadcasted global model [32] as well as addressing the trade-off between model com-
pression rate and model performance during federated fine-tuning of closed-source LLMs
[14].

Finally, Zhang et al. (2024)[32] have shown that statistical heterogeneity can be advanta-
geous in FL for LLMs. However, heterogeneity remains a complex challenge that requires
attention, particularly when considering factors such as language diversity, domain-specific
instructions, task complexity, emotional tone and cultural factors[32]. Moreover, the het-
erogeneity in computing resources among clients can lead to idle time for clients with
computing-rich resources, raising the question of how to leverage such idle time in a
federated setting [14].

3.7 Conclusion

The domain of combining federated learning and large language models is gaining traction,
even tough there are still obstacles, like the explosive growth of model sizes, in the way.
As the discussion after our seminar presentation has shown, interest in privacy preserving
LLM training is definitely there. Also, different people have different ideas and boundaries
that determine how much data they would provide for such a training and how they would
like to be compensated. Unfortunately, in the current state people still would need to hand
over their data to a trusted third-party that joins training efforts in their name as it is
currently not feasibly for each user themselves to join the training efforts.
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4.1 Introduction

Machine-learning is becoming an increasingly important tool in many aspects of our lives.
While the rise of Large Language Models such as OpenAI’s GPT models or Google’s
Gemini has brought machine-learning to public attention, it’s domain extends beyond
tasks of natural language processing. Machine-learning is being applied in a broad range of
contexts; from Large Language Models such as ChatGPT and Gemini to guiding medical
treatments. [2]

Machine learning profits greatly from the abundance of data available in today’s digi-
tal landscape, popular training methods such as deep learning rely on vast amounts of
training data to develop optimally accurate weight-distributions using methods of back-
propagation and gradient descent [8]. Stemming from this prevalent use of vast data-sets
arises, as with any use of data, an issue of confidentiality and privacy. Public discourse
on machine learning is largely focused on resulting models and the utilities they provide.
To the public eye it might then seem as though the data a model is trained on is inacces-
sible, seeing as only the models themselves are made directly publicly available. However,
recent research shows that granting public access to a trained ML model might entail
unintentionally publicizing the data it was trained on or other details about it’s training
environment [3, 16, 13]. With ML models being applied in contexts where training data is
potentially very sensitive, such as in diagnostics tools in medicine, the ability to prevent
leaking the training data while still allowing public access to the model is imperative.
One of the primary threats in this regard is a class of attacks on ML models known as
inference attacks. Inference attacks work by trying to extract some information about a
model or its training environment by means of querying a model systematically, running
its output against or comparing it with other models. Inference attacks are aimed at
inferring information from model behavior.

In the following sections of this report we will cover different types of inference attack,
categorizing these attacks by the kind of information they are aimed at extracting. We
start with a short introduction of relevant information on machine learning and neural
networks and some basic terminology for inference attacks. From there we move on to
section 1.2 on inference attacks, beginning with a brief overview of different types of
inference attacks before addressing them individually. Having introduced different kinds
of inference attack, we then turn to countermeasures against these attacks.

This report is intended to serve as an overview, thus we will not delve into detailed
implementations of the discussed attacks. Instead, we will provide broad descriptions
focusing on key characteristics of these attack types.

4.1.1 Machine Learning & Neural Networks

In the present section, we provide a short preliminary introduction to the keywords neural
networks, machine learning, and deep learning. We rely on a paper by LeCunetal [8] as
the source for this section.
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Figure 4.1: FCNN with input-, hidden- and output-layer

Firstly, let us touch on the concept of a neural network (NN). A NN is essentially a network
of nodes or neurons as shown by figure 1.1. The figure shows a so called fully connected
neural network (FCNN) where each node of every layer is connected to each node of the
previous layer. There are other architectures where not all nodes are connected, but this
is the fundamental concept. The NN in figure 1.1 includes three layers. The green nodes
make up the input-layer, the blue nodes are a hidden-layer, and the red node is in the
output-layer. Any layer between the input- and output-layers is called a hidden layer.
NNs in real-world applications include several hidden layers and thousands of nodes in
each of them.

The connections between nodes are weighted connections. To arrive at the value for a
node n in the hidden-layer, all input nodes are multiplied by the weight of their respective
connection to n and summed up. This repeats until the output-layer is reached, which
might output e.g. a probability that the input image includes a rabbit.

Because this process of multiplication and addition would make the NN a linear function
from input to output, so-called activation functions are used. Activation functions are
simple non-linear functions that are applied to each node’s value deciding whether the
respective node is activated, i.e. taken into account in the calculation of the next layer.
This allows NNs to model functions that are non-linear and thus more complex. A widely
used example of an activation function is ReLU: max(x, 0). To control the overall acti-
vation behavior of the NN, a bias can be added to nodes’ values before the activation
function is applied.

The different layers of a NN often correspond to different levels of representation: A first
hidden-layer might detect edges present in an image, a second one might then detect
shapes based on the inputs of the edges-layer etc. This process of abstracting raw data
into a different representation is called representation learning [8, p. 436]. Deep learning,
as defined by [8] is representation learning with multiple levels of representation, where
the different levels of representation do not have to be manually engineered.

Deep learning uses an automated process of weight-adjusting to train NNs. Briefly sum-
marized; a point of training data is ran through the network, from the NN’s output an
objective function is calculated, that measures the disparity between the actual and the
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expected output. To minimize this disparity, a gradient vector is calculated, that indicates
how changing a specific weight would impact the objective function’s output. The weights
are then adjusted accordingly, and the process is repeated.

In contrast to how input is processed by the network, that is, in a feed-forward fashion,
where the first layer passes data to the second and so on, deep learning uses a method
called backpropagation. Weights are thus adjusted ”from the back” i.e., from the output- to
the input-layer. The gradient vector of a function at a certain point shows the direction
of steepest ascent, i.e. how the parameters would need to be adjusted to increase the
functions value the quickest. Gradient descent then, goes into the opposite direction of
this vector, to minimize the functions output. By calculating the gradient of the objective
function, we can determine what the output would need to look like to minimize it. The
idea of backpropagation is that this can applied backwards. Having determined what the
output layer would have needed to look like, one can then calculate what the output of
the previous layer would have needed to look like to minimize the objective function and
so on. Having calculated what all the layers’ values would have needed to look like, it
then becomes trivial to adjust the weights accordingly. One such adjustment is called
an epoch, determining how many epochs a model should be trained for is a complicated
question and outside the scope of this report.

Finally, an important aspect of machine learning with regards to inference attacks are
hyperparameters. The term hyperparameters denotes all parameters that go into opti-
mizing and training a model. This might include e.g., the bias applied to nodes before
passing them to an activation function, the activation function itself, in which step size
the weights are adjusted and so on.

4.1.2 Inference attacks - basics

Inference attacks are a specific type of attack directed specifically at machine learning
(ML) models. Very generally, they aim at extracting some type of information from
interacting with ML-models. The ML model that is under attack is often called the target
model. As outlined, inference attacks are aimed at inferring some sort of information,
this can broadly be split into two categories. Inference attacks can (a), be aimed at
information about the training data of a ML model. Say a given model developed in the
medical sector is trained on patient records and made publicly available via an API. An
attacker might try to use inference attacks to extract data points from the training data
i.e., in this case, to extract singular patient records indirectly by means of interacting
with the ML model. The second category (b) is information about the architecture and
hyperparameters of the ML model itself. As the industry of machine learning as a service
(MLaaS) is continuously growing, ML models themselves are becoming more and more
important business assets. Training a model capable of competing at market standard
requires substantial investments into both gathering training datasets and fine-tuning
model performance during training. The case where an attacker intends to steal the
result of such investment, i.e. the resulting ML model, are thus becoming more critical.

A useful taxonomy to further categorize inference attacks was introduced by [10]. Using
this taxonomy, even inference attacks of the same type can be sorted into different cases
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and analysed as such. The taxonomy considers inference attacks with regards to the type
of access the attacker has to the target model itself, and the type of access the attacker
has to the training data of the target model.

First, we turn our attention to the two types of access an attacker might have to the
target model itself. An attacker either has white-box or black-box access to the model.
White-box access implies that the attacker can not only query the target model, but also
has access to it’s architecture and the hyperparameters. Black-box access on the other
hand, means that the attacker has access to neither of the two, i.e. they can only interact
with the model through some predefined API and have no information about either the
architecture or the parameters of the target model.

Now, let’s turn to the second point of interest for the taxonomy introduced by [10], namely,
the type of access the attacker has to the training data of the target model. Here, three
distinctions are proposed by the paper. An attacker might thus have (1) no dataset, (2)
a shadow dataset, or even (3) a partial training dataset. (1) means that the attacker has
no access to the training data, (3) means they have a part of the actual training data
available to them. A shadow dataset (2) is a dataset that mimics the distribution of the
training data; an attacker would thus need to know the distribution of the data points
the target model was trained on, to create such a shadow dataset. The important thing
to understand here, is that the shadow dataset is usually made up of synthetic data.
Thinking back to the example from a model in the medical sector: If an attacker had a
shadow dataset of the training data, they would have a set of fake patient records that
mimics the distribution of the actual patient records used to train the target model.

With the two points of interest mentioned, the taxonomy ends up with six combinations
of white-box/black-box access and some type of dataset. The paper introducing the
taxonomy does not regard cases where attackers have black-box access and no dataset, as
it deems the success-rate of such attacks to be negligible [10, p. 2].

4.1.3 Relevance of the issue

In this section we try to emphasize the relevance of inference attacks as a possible threat
to the fast growing field of MLaaS. We discuss the threats posed by inference attacks to
machine learning, specifically that data-confidentiality is endangered which, if no effective
countermeasures are found, could lead to far reaching restrictions on public access to
machine learning models if they require confidential data to be trained.

4.1.3.1 Federated Learning

In federated learning a central model is trained across decentralized devices or servers.
Instead of pooling all data at a central location, each participant in federated learning
system can train a local model with their own data, and then share the resulting hyperpa-
rameters to the central model. The central model, which is accessible to all participants,
is basically a combination of all the hyperparameters each participant arrived at. This has
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sevaral advantages; first and foremost, it allows the cooperative training of a ML model,
without having to share the required data to all participants. For example, a single hos-
pital might not have enough patient data to train their own model, but it can also not
pool all patient data with 10 other hospitals for privacy reasons. In addition, federated
learning overcomes infrastructure limitations that might be encountered by centralized
machine learning. Federated learning is thus an important approach to enable machine
learning in privacy sensitive domains (which are manifold).

Inference attacks pose a serious risk to the applicability of federated learning. In the case
of membership inference attacks, exchanged gradients during FL training can be used
to infer membership of data points in participant(s), e.g. when using a natural-language
model a non-zero gradient of the embedding layer reveals the presence of words in training
batches allowing adversaries to infer if certain text appeared in the training dataset of
participants [11].

4.2 Inference Attacks

This section provides an overview of types of inference attacks, it categorizes them de-
pending on whether they are aimed more at the data a model is trained with or at the
model itself. Further, this section provides a description of each of the covered attacks
and discusses the key considerations with respects to each type of attack as found in the
relevant reviewed literature.

4.2.1 Attacks aimed at training Data

4.2.1.1 Membership Inference Attack [4]

Membership Inference Attacks (MIAs) focus on extracting sensitive information from the
training data of the target models, e.g., age, personal preferences, health status. The
inherent risks of such MIA are identity theft, reputation damage and loss of trust in ML-
based systems.
MIAs exploit two primary forms of knowledge:

Knowledge of Training Data: Attackers exploit information about the distribution.
Often assuming access to a shadow data set that is known or data distributions. This
knowledge enables the execution of non-trivial MIAs, assuming no overlap between the
shadow and training data sets.

Knowledge of the Target Model: Understanding the training of the target model, includ-
ing details of the learning algorithm, architecture, and learned parameters, will ensure
attackers gain valuable insight into potential vulnerabilities.
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4.2.1.2 Approaches to Membership Inference Attacks

MIAs employ various methodologies based on adversarial knowledge levels, with binary
classifier-based and metric-based approaches being prominent.

Binary Classifier-based Attacks: These attacks aim to train a binary classifier to dis-
tinguish between a target model’s behavior on its training members and non-members.
They exploit overfitting in machine learning models, making them susceptible to inference
attacks.

Training the Shadow Models: Multiple shadow models are created to mimic the target
model’s behavior. Leveraging the target model’s structure and learning algorithm, shadow
models are trained using disjoint shadow training datasets. This process captures the tar-
get model’s behavior on similar data records.

Constructing the Attack Model: Prediction vectors obtained from shadow models are used
to label data records as ”member” or ”non-member.” Subsequently, ”member” and ”non-
member” datasets are constructed for training the attack model. This enables the attack
model to distinguish between data records that were part of the training dataset and those
that were not.

Metric-based Attacks: Metric-based Membership Inference Attacks (MIAs) employ vari-
ous metrics derived from prediction vectors to infer the membership status of data records.
These attacks mostly analyze the behavior of the target model by comparing metric values
against predefined thresholds. There are four primary types of metric-based MIAs:

Prediction Correctness-based MIA inferring the membership based on whether the pre-
dicted membership status matches the actual membership status according to the base
model.

Prediction Loss-based MIA inferring membership based on whether the prediction loss
for a data record is lower than the average training member loss. Lower prediction loss
suggests that the target model’s prediction for the data record closely resembles its train-
ing behavior on member instances.

Prediction Confidence-based MIA inferring membership using the maximum prediction
confidence obtained from the prediction vector. If the maximum prediction confidence
exceeds a predefined threshold, the data record is classified as a member. Higher confi-
dence indicates a stronger belief in the prediction made by the model.

Prediction Entropy-based MIA: This approach relies on prediction entropy, which mea-
sures the uncertainty or randomness associated with the model’s predictions. If the pre-
diction entropy falls below a preset threshold, indicating low uncertainty, the data record
is classified as a member.
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4.2.1.3 Factors Contributing to MIAs

Membership Inference Attacks (MIAs) succeed for several reasons.
Firstly, they exploit overfitting in machine learning models. Overfitting occurs when a
model performs much better on its training data than on unseen test data, often due to
its high complexity and limited training dataset size. Deep learning models like Deep
Neural Networks (DNNs) are particularly prone to overfitting because they are overpa-
rameterized, allowing them to learn effectively from large datasets but also causing them
to memorize noise or dataset specifics.
Additionally, ML models are trained repeatedly on the same instances, making them likely
to memorize training data, and the finite size of the training dataset fails to represent the
entire data distribution, hindering the model’s ability to generalize to unseen data.
Secondly, the type of target model influences MIA success. The less sucebtible a models
decision boundary is to a particular record the more resillent it is to MIAs. Lets look at
decision tree models and a model that classifies emails as spam if the model is sensitive
to certain keywords their presence could create new branches for certain keywords, if now
an attacker has an email with such keyword the classification process can indicate the
membership.

4.2.1.4 Property Inference Attack [18]

As is in the name, Property Inference attacks aim to extract general properties of the
target ML model’s training dataset that were not explicitly encoded as features or not
correlated to the learning task [14]. An example of a property inference attack is the
extraction of the ratio of women and men in a patient dataset. Such property inference
attacks allow adversaries to gain insight on training data and could violate intellectual
property of model owners, privacy and be the building block for more advanced attacks
e.g. membership inference attacks [18]
Property Inference attacks can target either generative or discriminative models. Former
try to learn underlying training data distribution and generate new data based on it later
are mainly designed to solve classification problems [18]. One type of generative models are
Generative Adversial Netowrks (GANs). We will focus on those in our further evaluations.

Threat Models

The goal of the adversary is to infer whether the target model’s training dataset Dtarget

has a certain property P.

Assumption 1: The adversary has a auxiliary dataset Dauxiliary with the same distribu-
tion as Dtarget. The adversary leverages it to build local GANs and classifiers for the
attack.

Assumption 2: The adversary has only access to the generator of the target model Gtarget.
As seen before we differentiate Full black-box, adversary can just get generated samples
blindly from the target black-box generator and partial black-box settings, adversary has
no knowledge about the parameters of the target GAN but can construct the latent code
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z to generate the corresponding sample from Gtarget. In a partial black box setting the
adversary also has information about the architecture of the target GAN and the training
algorithm.[18]

Attack Workflow

The attack can be divided in three phases. In a first phase the adversary queries Gtarget to
produce synthetic samples. Next the adversary constructs a property classifier fP tailored
for classifying the previously generated samples with respect to the property that should
be extracted e.g. if it’s gender distribution of the samples in the training dataset, the
property classifier predicts the gender of each sample. The classifier is trained with part
of the auxiliary dataset disjoint from the underlying training dataset. In a last step the
adversary predicts the property Pinfer based on the output of the property classifier using
a function over the prediction of the property classifier. Following graphic displays the 3
steps[18] :

Figure 4.2: Workflow of property inference attack strategy
[18]

4.2.2 Attacks aimed at the Model

4.2.2.1 Model Inversion attack [10]

Model Inversion attacks aim to reconstruct data samples from a target ML model i.e.
they allow adversary to directly learn information about the training dataset.
For instance, in a facial recognition system, a Model Inversion adversary tries to learn the
facial data of a victim whose data is used to train the model. Let’s define Model Inversion
attacks as follows:

MW,Daux → {training samples}

where Daux ∈ {DN
aux, D

S
aux} MW : White-Box Model access DN

aux: No auxiliary Dataset
DS

aux: Shadow auxiliary Dataset
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MW states that the adversary has white-box access of the target model, and Daux is the
auxiliary dataset, which is either empty or a shadow dataset. Following, we will look at
two types of model inversion attacks:

• White-Box/No Auxiliary Model Inversion Attacks, which aim to reconstruct a rep-
resentative sample for each class of the target model.

• White-Box/Auxiliary Model Inversion Attacks, which aim to synthesize the training
dataset.

In White-Box no auxiliary Model Inversion Attack the adversary: first creates noise sam-
ples for each class of the target model e.g. for each identity create a facial image. Then the
adversary feeds the samples to the model to get the probabilities of a class given a facial
images. Then the adversary uses backpropagation over the available model parameters
to optimize the input sample until the correseponding probability for a class exceeds a
pre-set threshold. This optimized samples is then the attack output in our case the facial
image the attacker connects to a given identity.

Now let’s look at a second Model Inversion Attack type, here White-Box access and
Shadow dataset are assumed. The shadow dataset is used to enhance the quality of
the reconstructed samples by training a generative adversial network. First the GAN is
trained with the shadow dataset Then the GAN generator is optimized meaning the noise;
so that it generates samples that achiever higher posteriors on the target model Therefore
here the GAN’s input is optimized and enables the attacker to create high quality samples.
As GAN can generate multiple samples from an input the attacker can create multiple
e.g. facial images from a identity therefore raising the attacks chances of success.

4.2.2.2 Model extraction / stealing

We now turn to a type of inference attack called model stealing or model extraction attack.
Fundamentally, this sort of attack is aimed at exactly what it’s name implies, extracting a
target model. However, some model extraction attack do not end there, they first extract
the model and then use it to create what are called transferable adversarial examples. We
touch on both of these cases below. As a final preliminary remark, only model extraction
attacks where attackers have black-box access to a target model are sensible. If they had
white-box access, there would be no point in mounting such an attack.

In any case, a model extraction attack needs to extract a model. More specifically, this
means that an attacker tries to create their own substitute model which should accurately
mimic the target model’s outputs. For this they are interested in finding the hyperpa-
rameters the target model uses. An example of how this is achieved is provided by [7].
The algorithm they propose is roughly divided into two phases, a setup and a refinement
phase. The setup is ran once, then multiple iterations of the refinement phase are run.
Because these attacks rely on querying the target model, and because such queries are
hardly ever free, Juuti et al. introduce a query budget, that an attacker does not want
to exceed, to limit the costs for the attack. With target model t, substitute model s and
query budget q, the algorithm as found at [7, p. 3] can be summed up as follows:
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Setup - run once

1. Label initial training data by querying
t.

2. Select architecture and hyperparame-
ters for s.

3. Train s on labeled data.

Refinement - run until q is used up

1. Create synthetic samples from training
data.

2. Label synthetic samples by querying t.

3. Add synthetic samples to labeled data.

4. Train s on labeled data.

What is used as initial data can vary, as implied by the taxonomy mentioned above, an
attacker might have a partial dataset or a shadow dataset at their disposal, or have no
dataset, which requires them to come up with their own initial training data. The setup is
fairly straightforward, regarding the refinement phase; how the attacker creates synthetic
data from the initial training data can vary, they might use another ML model or rely on
different methods altogether.

If an attacker’s goal is simply to steal a model to compete with the target model, this
algorithm is all there is to the attack. As suggested in [10], the success of such an attack
can be measured in how precisely the substitute model copies the target model’s outputs.

There is however another motivation to perform model extraction, that adds another step
to the attack. An attacker might use the substitute model they obtain, to find so-called
transferable adversarial examples, which are discussed in [9]. An adversarial example is
an input sample for which a model produces a wrong prediction. An adversarial example
is transferable, if it can be transferred from one model to another, that is, if a model
a produces a wrong output for an example input, we query a model b with that same
example and it also produces a wrong output, then we have a transferable adversarial
example. The idea of this avenue of model extraction is to extract a substitute model
from the target model, as explained above, and then use the substitute model to find
transferable adversarial examples, that will also lead to a wrong output if the target model
is queried with them. Essentially this allows attackers to deceive ML models, which is
significant as these models are tasked with financial transaction, facial recognition and
automated driving among other things. A sign with a printed adversarial example that
causes models used in automated driving to make wrong predictions could have potentially
fatal consequences.

There is one distinction to be made with regards to transferable adversarial examples
(TAE), which is also ofund in [9]; they can be targeted and untargeted. A targeted TAE
has a specified wrong output it produces, to stick with the experiment found in [9], an
targeted TAE for an image recognition model would cause the target model to output a
specific, wrong, image description. Untargeted TAEs on the other hand do not specify
anything beyond the output needing to be wrong. Liu et al. [9] specifically try to find
TAEs that are minimally different from actual, correctly processed samples. In the case
of images, this means that humans can still make out what is in the image, while the
target model fails at the same task.
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4.3 Countermeasures [6]

4.3.1 Against Membership inference

Two common defense mechanisms agianst Membership Inference Attacks are confindece
score masking and regularization.

Confidence Score Masking: Confidence score masking aims to mitigate black-box MIAs
on classification models by concealing true confidence scores returned by the target clas-
sifier. Three methods are employed: restricting the prediction vector to top-k confidence
scores, providing only the prediction label, and adding noise to the prediction vector.

Regularization: Regularization techniques aim to reduce overfitting in ML models to
mitigate MIAs. Methods such as L2-norm regularization, dropout, and adversarial reg-
ularization help models generalize better to test data and align their behaviors between
training and test sets by the addition of a penalty term to the loss function, leading to
an increase of bias (average difference between predicted and true value) and decrease of
variance. However, while effective, these methods may struggle to balance membership
privacy and model utility.

4.3.2 Against property inference [17]

One defense against property inference attacks was proposed by Stock et al. coined
Property Unlearning. Following a graphic decpiting the property unlearning process

Figure 4.3: Property Unlearning Figure
[17]

A prerequisite of the counter measure is the creation of an adversarial classifier. For it
first for each property one auxiliary data set is created, then shadow models are trained
for each property with the corresponding auxiliary data set. The auxiliary sets can be
subsets of the training data set, thereby increasing the adversarial accuracy compared
to outside adversaries. A second prerequisite is the full training of the target model.
Backpropagation is then used to unlearn the property from the target model, hereby the
parameters of the target model are modified by calculating and applying gradients with
the goal to disable the adversary from extracting the property. The adversarial classifier
output is in practice a vector whose components are the predicted probabilities for the
present properties which sum up to 1. The algorithm stops when the adversarial classifier
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isn’t anymore significantly more confident for one of the properties. Following the property
unlearning algorithm.[17]

Figure 4.4: Property Unlearning Algorithm
[17]

4.3.3 Against model inversion [15]

In this section we will discuss two common countermeasures for model inversion attacks
namely Homomorphic encryption and differential privacy (DP).

Homomorphic encryption: is one of several cryptographic techniques that can be uti-
lized to perform ML training and testing. It enables computations to be carried out on
ciphertext without ciphertext decryption or knowledge of any information of the plain-
text. RSA and Elgamal are examples of multiplicatively homomorphic techniques. There
the product of two ciphers is the encrypted product of two plaintexts. [15] The Faster
CryptoNets framework, encrypted classification technique using neural networks by Chou
et al. preserves the data privacy by using Hhmomorphic encryption, hereby revealing the
output prediction only to the decryption key owner. [15]

Differential privacy (DP): is a perturbation approach, hereby random noise is added
to the input data, model parameters during iteration of the trainig algorithm or the
algorithm output to preserve data and model privacy [15]. Differential privacy was intro-
duced by Dwork [1], and described in the context of privacy-preserving data mining where
a trusted curator hold a private database. The curator responses to query issues by data
analysts. Differential privacy guarantees that the query results are indistinguishable for
two databases that differ only in one entry. Differential Privacy can be achieved by adding
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random noise to the dataset the common Gaussian mechanism computes a function on
the dataset that adds random noise. The magnitude of the noise depends thereby from
the change of the function output when a single individual data pointis added or removed,
the so called global sensitivity.

4.3.4 Against model extraction / stealing

We discuss two proposed countermeasures against model extraction attacks, prediction
poisoning [12], which aims to perturb attackers in training a substitute model, and
PRADA [7] which relies on detecting model extraction attacks.

4.3.4.1 PRADA

Our discussion starts with PRADA (Protecting Against DNN Model Stealing Attacks),
as proposed by Juuti et al. [7]. PRADA’s central mechanism is stated as follows:

”[...] PRADA’s detection method is based on detecting deviations from a nor-
mal distribution in the distance between samples queried by a given client.” [7,
p. 11]

As we have seen before, model extraction attacks rely on creating synthetic examples
which are created during the refinement phase, based on the samples queried beforehand.
PRADA’s approach to detecting model extraction attacks rests on the intuition, that
attackers artificially control the distance between these new synthetic samples, and the
samples already queried, to maximize the amount of information gained by sending such
queries. This means, that the distances between the queries such an attack involves,
significantly deviate from a normal distribution.

The detection algorithm proposed by [7] is executed whenever a new query is received.
It calculates the minimum distance of the incoming query, to any of the previous queries
of that same client. That is, the distance between the incoming query, and the previous
query which is closest to the incoming query is stored in a set. A so called normality
test is then ran on the set of minimal distances, and checked against a threshold value,
to determine whether an attack is taking place or not. Any defender would is required to
provide this threshold value and a distance metric to indicate how far apart two samples
are. This distance metric varies based on the sort of data at hand; it is domain-specific.
The algorithm is outlined in detail at [7, p. 11].

Juuti et al. [7] test their defense against four proposed extraction attacks, two from ex-
ternal papers and two of their own. The results shows that picking too high of a threshold
value results increases the false positive rate of the detection mechanism dramatically.
Which is intuitive, since benign queries often have a close to normal distribution, rather
than an exact normal distribution. The speed and accuracy of attack detection varies with
the threshold value the defender chooses. There is one attack mentioned in the paper,
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which is not detected unless the threshold is set to a fairly high value, which resulted
in a 0.1% false positive rate for PRADA. The reason the attack is not detected with a
lower threshold, is that it uses a large step size in creating synthetic samples, which leads
to bigger distances between these samples. The paper also mentions that setting such a
high threshold is not always a viable strategy, since it may lead to an unacceptable false
positive rate in certain domains.[7, pp. 12-14].

Overall, PRADA is a useful tool to detect many model extraction attacks. Having such
detection mechanisms in place severely limits attackers’ freedom in generating the samples
they need for their attack, forcing them to ensure that the distance between their queries
fits an inconspicuous distribution. There is a trade-off between setting the threshold to a
high value, and keeping the false positive rate as low as possible, where a high threshold
value ensures detection, but also increases the false positive rate at a certain point. A high
false positive rate would pose a serious issue for the usability of any MLaaS application.

4.3.4.2 Prediction Poisoning

We now turn to prediction poisoning, a defense proposed by Orekondy et al.[12]. In
contrast to PRADA, [12] does not rely on attack detection as they aim to avoid the
assumptions regarding query distance distribution this entails. Instead, the proposed
method of prediction poisoning works by altering the target models outputs with con-
trolled perturbations, it is a perturbation-based defense. The trade-off in this approach is
that a model’s outputs should disrupt attacks as much as possible while remaining useful
to benign users. Prediction poisoning relies on the insight, that an attacker does more
with target model predictions than a benign user does; namely, attackers try to train a
substitute model with these predictions. Orekondy et al. [12] find that earlier methods of
perturbation-based defenses rely on hiding away uncertain, or overly precise predictions
from the user, while giving them access to high confidence or sufficiently accurate pre-
dictions. For example, users might only get the first few decimals of a probability that
there is a rabbit in a picture, which is alright for every-day use but is meant to inhibit
training substitute models on such outputs. However, [12] claims that the impact this has
on attacker success is often trivially small.

The approach of [12] is to target the optimization phase of the attacker’s substitute
model training. As discussed in the introduction, training a model involves optimizing it
through backpropagation. This, in turn, relies on computing the gradient of an objective
function. The proposed method of prediction poisoning aims to maximize the angular
deviation of this gradient. That is, it aims to make sure that if an attacker tries to
calculate this gradient based on the outputs of his substitute model, which is trained
on the target models predictions, that this gradient deviates maximally from the actual
gradient calculated for the target model.

Orekondy et al. find their method of defense to reduce attacker’s performance by up to
53% on certain datasets, while reducing the defender’s test accuracy only marginally.[12,
p. 2]. They are able to hinder the accuracy of many of the tested attacks significantly,
while retaining reasonable accuracy for the target model.
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We discussed two kinds of defenses, a detection based and a perturbation based approach.
The former relies on strong assumptions about the distribution of the distances between
attackers queries. As we have touched upon in chapter 1.3.4, PRADA’s detection based
approach starts running into issues as attackers deviate from this assumption. An example
is the attack not reliably detected because the distances between it’s synthetic samples
are bigger. PRADA was able to detect the attack with a very high threshold value
i.e., by requiring queries to very closely fit a normal distribution in order to pass as
benign. However, this high threshold value entails an increase in false positives, which
can be unacceptable in many cases. The advantage of PRADA over perturbation based
approaches, is that benign users receive the full, unaltered output of the model if they are
not suspected of mounting an attack.

It seems to us, that prediction poisoning is a more promising approach to defending against
model extraction. Firstly, perturbation-based defenses rely only on a very fundamental
assumption, that attackers of model extraction attacks will train a model on the outputs of
the target model. This seems a more secure assumption than the one enabling PRADA.
Further, prediction poisoning as proposed by [12] seems to have a minimal impact on
model usability. However, as users might use model outputs in different manners, it is
imaginable that some use-cases require non-perturbed outputs.

It seems to us that detection and perturbation based approaches could conceivably be
combined, where perturbation is only applied if queries are suspected to be adversarial.
This might have the advantage of allowing some users access to the unaltered output of
the model, while alleviating the problem of false positives for PRADA, as users deemed
attackers would simply get slightly different outputs rather than being blocked from using
the service altogether.

4.4 Conclusion

We have discussed several kinds of inference attack and some countermeasures proposed
to deal with such attacks. In this section we touch upon each type briefly and weigh
attacks against their countermeasures.

For Membership Inference Attacks we discussed confidence score masking, the concealing
of true confidence scores, regularization techniques as L2-norm regularization increasing
trading bias for variance, they both struggle to balance membership privacy with model
utility.

The by Stock et al. coined Property Unlearning counter measure for property inference
attacks makes use on an adversarial classifier to ensure that parameters of the target
model are such that the output of the adversary is close to 1/k for all k entries of the
output vector.

For Model Inversion Attacks we looked at one cryptographic technique called homomor-
phic encryption concealing the output prediction to the decryption key owner while al-
lowing computations on the model, drawbacks can be high cost of encryption and at
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differential privacy a method adding random noise to input data so that the output of
two by one element differing datasets is indistinguishable.

Regarding the feasibility of model extraction, it seems robust countermeasures exist which
yield substantial results in hindering attackers from extracting the full functionality of a
target model. The advantage a defender has is that any attackers need to mount a
highly successful attack to be able to use their substitute model to compete with the
target model. The substitute model would need to very accurately mimic the target
model for such applications; the reviewed literature seems to suggest that while it might
be possible to extract a substitute model with reasonable accuracy, the mentioned can
defenses reliably prevent the extraction of critically accurate substitute model.

4.4.1 Compact Literature Overview

This subsection is intended to ease further research, it lists the reviewed literature as
clearly and simply as possible and provides an at-a-glance comprehensive mapping from
subject to literature.

• Deep Learning & Neural Networks: [8]

• Model extraction / stealing: [7, 12, 9]

• Membership Inference: [4]

• Model Inversion: [10]

• Property Inference: [18]

• Countermeasures

– Model extraction / stealing

∗ PRADA - attack detection [7]

∗ Prediction poisoning [12]

– Membership Inference

∗ Confidence Score Masking [5]

∗ Regularization [5]

– Model Inversion

∗ Homomorphic encryption [15]

∗ Differential privacy [1, 10]

– Property Inference

∗ Property Unlearning [17]
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Chapter 5

DNS Security and Privacy: The
Landscape of Attacks and Mitigations

Andy Aidoo

Internet censors, opportunistic hackers, and security researchers have long engaged in a
game of wits; this paper focuses on critical aspects of DNS seucrity and privacy in the
domain name resolution process. Through the analysis of DNS protocols and Internet
censorship methods, we develop crucial threat models that jeopardize the freedom of in-
formation on the Internet and its secure usage. We aim to provide guidance for domain
name owners about secure DNS protocols to enhance integrity of DNS data. Our analysis
includes protocols that cryptographically sign DNS data through public key cryptography.
Furthermore, we aim to stress the significance of DNS transaction confidentiality for end-
users. Our findings highlight the importance of wide-spread adoption of enhanced DNS
protocols to not only improve individual security and privacy but also the Internet as a
whole through herd security.
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5.1 Introduction

The Domain Name System (DNS) represents a cornerstone of the Internet; its main
purpose is translating human-readable domain names to Internet Protocol (IP) conforming
addresses used in machine-to-machine communication. It precedes virtually every user-
initiated network request and was crucial for the adoption of the Internet. Because of its
critical role, it represents a significant target for cyberattacks, especially since DNS traffic
is sent in clear text by default [23]. Attacks that manipulate DNS responses are numerous;
opportunistic hackers target the domain name resolution process to hijack domain names
from i. a., government agencies and telecommunication companies [29]. Furthermore,
state-sponsored Advanced Persistent Threats (APTs) frequently monitor DNS queries
and prevent access to domains which are deemed to contain undesirable content [41, 25,
42]. Aforementioned DNS attacks can lead to severe consequences that result in service
disruption, financial loss and data breaches. Over the years, numerous protocols such as
the DNS Security Extension (DNSSEC) [1], DNS over TLS (DoT) [20], DNS over HTTPS
(DoH) [17] and Oblivious DNS over HTTPS (ODoH) [28] have been proposed to enhance
online security and privacy. DNSSEC aims to protect the authenticity and integrity
of DNS responses, while the remaining protocols primarily prevent monitoring of users’
Internet activities. Nonetheless, the adoption of these protocols remains inconsistent;
many DNS queries remain unprotected. The fact that censors may employ protocol-based
policy enforcement to hinder their adoption aggravates risks for users [43].

This paper seeks to provide a comprehensive overview of the DNS resolution process
and dissects attack vectors through the introduction of two critical threat models. Fur-
thermore, we evaluate mitigation strategies and their effectiveness in relation to Internet
censorship. We aim to contribute to strengthening and potentially restoring freedom of
information on the Internet by elucidating the proposed methods to assure the confi-
dentiality and integrity DNS data. Moreover, we describe why aforementioned protocols
should be used for benign DNS queries and not solely to circumvent censorship.

The remainder of the paper is structured as follows: Section 5.2 describes core con-
cepts required to grasp the intricacies of improved DNS protocols. Section 5.3 focuses
on securing DNS through means of security by means of obfuscation and cryptographic
signatures. Subsequently, Section 5.4 concentrates on protocols that encrypt DNS queries
and avoid potential cluster risks. Section 5.5 discusses the barriers to the adoption of
integrity-focused and confidential domain name resolution before we finally conclude with
a summary in Section 5.6.

5.2 Background

This Section provides essential background information about the Domain Name System
(DNS) and introduces motivations for Internet censorship.
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5.2.1 Domain Name System

Fundamentally, the domain name system is a decentralized database that maps memo-
rable and human-readable domain names to machine-interpretable IP-addresses to i. a.,
facilitate browsing the web through HTTP(S). It comprises of three major components:

5.2.1.1 Domain Name Space

The name space of a domain is represented in a tree-like structure and refers to the entire
hierarchy of domain names under a specif top-level domain; its nodes and leaves contain
a specified set of records that describe digital resources. Through queries said resources
can be retrieved. Figure 5.1 presents a domain name space with .com as root of the tree;
it is often referred to as Top-Level-Domain (TLD). The domain names of the nodes and
leaves are the paths from the tree root to the respective nodes and leaves; they are also
referred to as zones.

com

acme

blog

www

www

example

. . .

. . .

Figure 5.1: Illustration of a domain name space

There are various types of DNS records; Figure 5.2 illustrates two A type records that each
encompass the associated host address for the domain names acme.com and www.acme.com.
The third column indicates the records class, which in the example is the ARPA Internet
system; lastly, the fourth column contains, in the case of A-records, the IP-address of the
resources.

acme.com A IN 192.168.0.1
www.acme.com A IN 192.168.0.1

Figure 5.2: Example DNS Resource Record Set specifying a Domain’s Host Addresses

5.2.1.2 Name Servers

Servers hosting a (subset of a) domain name space are dubbed Name Servers ; their
responsibilities include storing the hierarchy of domain trees and maintaining the values
of DNS records. They typically denote the name servers of their subdomains in NS -
Records and the IP address of the domain names they are responsible for in A-Records.
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5.2.1.3 Resolvers

Finally, Resolvers are programs capable of extracting the DNS records from name servers
in response to user requests. Whenever a user queries a domain name e.g., www.acme.com,
the (recursive) resolver proceeds to resolve it [12, 26].

5.2.2 DNS Resolution

Originally, DNS was designed without privacy in mind. Since its inception in the 1980s,
DNS traffic has been transmitted in plain text. Despite the development of encrypted
DNS protocols such as DoT and DoH, the majority of DNS queries are still sent in plain
text [23]; Table 5.1 illustrates a simplified DNS query as observed on the wire.

DNS
Query: Name: www.acme.com

Type: A
Class: IN

UDP

Source
Port:

3141

Destination
Port:

53

IP

Source
IP:

192.168.0.1

Destination
IP:

9.9.9.9

Table 5.1: Example DNS Query to resolve the Domain Name www.acme.com

Before users can access a web resource, they require the IP thereof. Usually, they only
know the domain name, e.g., www.acme.com and pass a query to a recursive resolver, as
denoted by step 1⃝ in Figure 5.3; the recursive resolver may or may not be located within
the network of the users. Provided the IP address of the domain is not available in its
cache, the recursive resolver inquires the Name Server of the TLD by sending a query to
one of the root Name Servers in step 2⃝ and expects a reply with the IP address of the
TLD Name Server, as depicted in step 3⃝. Subsequently, in step 4⃝ the recursive resolver
sends a Name Server request for the domain, in our example acme.com to the TLD Name
Server which is responsible for domain name lookups of the .com domain name space.
By processing the response in step 5⃝, it can consult the Name Server responsible for
subdomains of acme.com. These steps are recursively repeated ( 6⃝ - 7⃝) until a response
includes the authoritative Name Server for the fully qualified domain name (FQDN). The
recursive resolver can finally consult the authoritative Name Server for the IP in step 8⃝
and receives the target IP address in step 9⃝ which it then relays back to the users. This
step 10⃝ ends the DNS query for the recursive resolver. Users, on the other hand, are now
capable of accessing the web resource via HTTP(s) or any other protocol built on top of
the Internet Protocol (IP), as denoted in step 11⃝.
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Figure 5.3: DNS Resolution Process

5.2.3 Internet Censorship

There are various forms and types of Internet censorship and the motivational sources
are diverse; they include i. a., political repression by targeting dissidents and human
rights activists or critics of the state. Furthermore, Internet censorship may originate
from religious authorities seeking to suppress the rise of ideas that are deemed heretical
or sacrilegious [42]. Many of the Internet censorship techniques resemble man-in-the-
middle (MITM) attacks where an threat actors monitor and alter network traffic. Censors
can inspect DNS requests and may subsequently forge responses with error responses
whenever the domain name of a forbidden domain is queried. Through so called deep
packet inspection (DPI) censors are capable of inspecting the data of IP packets and
perform censorship based on the packets’ contents [32].
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5.3 DNS Security

Since the domain name is sent in clear text, it allows adversaries to tamper with DNS
lookup requests of their victims. This Section addresses security implications resulting
from aforementioned DNS resolution process by developing a threat model and presenting
mitigations to improve the security while looking up domain names.

5.3.1 Threat Model

We assume a threat model containing two parties: Alice who looks up domain names to
retrieve IP addresses of web resources that she wants to access. Her adversary, Eve, aims
to provoke access to fraudulent web resources. Eve is an off-path adversary; she possesses
the capability of sending spoofed UDP packets to Alice.

Recursive
Resolver

1

Alice

Real
Website

2

1

3

Eve's
Website

Eve

Local Network Internet

Figure 5.4: Rudimentary Example of DNS Poisoning

5.3.2 DNS Poisoning

In the first scenario, Eve is located within the same network as Alice with the fewest
restrictions imposed by standard security measures. This scenario occurs when Alice
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connects to a public WIFI network that uses an obsolete WLAN security standard. Eve’s
aim is to serve a fraudulent web page whenever Alice visits the e-banking services of
her bank to gather her account credentials. Figure 5.4 illustrates this simplified scenario
that targets the victim machine, directly. Eve monitors traffic that is sent wirelessly
and whenever she observes a DNS query from Alice (as shown in step 1⃝), she notes the
domain name in the query and if it corresponds to Alice’s bank, she answers the request
with a UDP packet containing the IP address of a server she controls and spoofs the IP
address of the recursive resolver used by Alice as denoted in step 2⃝. Subsequently, Alice
unknowingly accesses Eve’s website in step 3⃝ instead of her bank’s official website.

In a more realistic scenario (cf., Figure 5.5), Eve is located outside of Alice’s network
but they share the same recursive resolver alongside other users. The interaction, again,
starts with a DNS query to the recursive resolver from Alice, as shown in step 1⃝. Before
the recursive resolver receives an answer from an authoritative Name Server, Eve injects
a fraudulent query response, step 3⃝, such that the IP of her rogue server is returned in
step 4⃝ whenever Alice queries e.g., the IP address her bank’s e-banking service denoted
by step 5⃝. According to Radu and Hausding [34], around 50% of DNS queries are either
resolved by Google’s or Cloudflare’s resolvers. To boost performance for the potentially
millions of users that public resolvers serve IP addresses for, domain names are cached.
According to Dagon et al. [11] a DNS query takes anywhere between 100 and 400 mil-
liseconds, on average. This is the time frame in which Eve can send spoofed UDP packets
to the publicly available recursive resolver. As illustrated by Daniel Kaminsky in 2008,
the fact that DNS queries are sent via UDP, the lack of response verification and usage of
caching can result in resolvers serving potentially millions of unsuspecting users rogue IP
addresses in response to genuine domain name lookups. His attack features a specifically
crafted payload in the query responses that next to the IP address of the domain name
includes a self-declared authoritative name server for the parent domain; this would allow
malicious actors to poison the cache for the IP addresses of TLD name servers [14]. To
validate the authenticity of a query response most resolvers rely on non-cryptographic
checks by using unpredictable values which are set by the resolvers themselves, e.g., a
16-bit transaction ID and a randomly selected 16-bit source port in UDP requests that
must be matched in the query response [21]. Dagon et al. [11] propose to further in-
crease the entropy, i.e., they introduce additional non-cryptographic verifiers to validate
the authenticity of a query response by randomly capitalizing letters of the domain name.

Herzberg and Shulman [16], however, argue that the so-called 0x20 encoding does not
sufficiently protect from DNS poisoning attacks, since the number of random case tog-
gles is limited by the amount of characters in the domain name. The incompatibility of
many resolvers further dampens the effectiveness of 0x20 encoding [7]. Moreover, using
Kaminsky-style attacks on recursive resolvers means that an adversary only needs to beat
the slightly harder guessing game once in order to poison a TLD and subsequently millions
of domain names. Furthermore, Herzberg et al. [16] exploit the fact that resolvers often
connect to the Internet using a network address translation (NAT) device. Essentially,
source port randomisation from resolvers can completely be circumvented when poisoning
the cache through UDP packets sent to the NAT device provided the source port ran-
domisation of the NAT device can be circumvented. Finally, Man et al. [31] describe a
novel approach to DNS poisoning by exploiting side-channels that target the operating
systems of the servers hosting the resolvers. At the core, they exploit rate limits of the In-
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ternet Control Message Protocol (ICMP) which are set between 200 and 1’000 per second
depending on the operating system. Whenever a server receives an ICMP message on a
closed port, i.e., the port is not used by a resolver to lookup a domain name, it responds
with a message indicated that the port is unreachable and thus allowing for port scanning
of a server. By provoking delayed query responses, they increase the time available to
identify the port used in a domain name lookup.

5.3.3 DNS Security Extension

With the aim of mitigating aforementioned vulnerabilities during the domain name res-
olution, the Internet Engineering Task Force (IETF) introduced DNSSEC almost three
decades ago [1] and refined it in 2005 [36, 38, 37]. DNSSEC utilizes public key cryptogra-
phy to provide integrity assurances for DNS data by augmenting the Name Servers with
additional resource records.
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5.3.3.1 Zone-Signing Keys

Before being able to validate the authenticity of a DNS response, the resource record sets
(RRset), cf., Figure 5.2, must be digitally signed by the zone-signing keys (ZSK) and
the resulting digest stored as a RRset Signature (RRSIG) record in the Name Server.
Furthermore, the public part of the ZSK pair must be added as a DNSKEY record in
the Name Server to allow security-aware resolvers to validate the signature. A valid
RRSIG guarantees that the correct DNSKEY has been provided in the DNS lookup
response, i.e., the response is cryptographically sound. Nonetheless, it does not necessarily
prove authenticity of the response, as malicious actors can still provide all the required
information themselves. Thus, further steps are required to ensure the authenticity of the
received RRset.

5.3.3.2 Key-Signing Keys

As a second layer of security, the so-called Key-Signing keys (KSK) are introduced. Their
responsibility encompasses providing means to authenticate the ZSK used in generating
the RRSIG record. Analogously to the relationship between the RRset and the ZSK,
the KSK produces a digest which is also returned during a DNS lookup. Security-aware
resolvers are now able to validate the RRSIG alongside the authenticity of the ZSK that
was used in its generation. Additionally, the ZSK is isolated and can be replaced straight-
forwardly in case it has been compromised. Figure 5.6 provides the architecture of a Name
Server secured by DNSSEC.

5.3.3.3 Delegation Signer

Since the DNS is a hierarchical structure, individual domains depend on their parent
domains. As a consequence, trust of a parent domain must be transferred to its child
domains. Delegation Signer (DS) records serve this purpose; to configure a domain to use
DNSSEC, operators must register a hash of their KSK with the parent domain which in
turn adds it to the RRset and specifies it as a DS record. Security-aware resolvers retrieve
the DS record of domains whose names they want to resolve and validate the KSK before
authenticating the ZSK used to produce the RRSIG records. Provided that this chain of
trust, as illustrated in Figure 5.7 resolves correctly, i.e., each KSK’s hash is present in the
parents’ DS records, the RRset provided by the authoritative Name Server of the domain
can be trusted. Notably, changing a KSK requires an update in the parent’s Name Server
which depending on the configuration can take several hours to propagate [19].

5.4 DNS Privacy

Since the domain name is sent in clear text, it allows adversaries to monitor DNS lookup
requests of their victims. This Section addresses privacy implications resulting from the
DNS resolution process depicted in Section 5.2.2; we develop a threat model and present
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mitigation techniques to preserve privacy and potentially evade censorship while looking
up domain names.

5.4.1 Threat Model

To highlight the importance of privacy preserving domain name lookups, this threat
model, again, contains two parties: Alice utilizes the Domain Name System to trans-
late human-readable domain names to IP addresses which programs on her client device
uses to communicate with web resources via communication protocols built on top of
IP. This time, however, Eve is an on-path adversary with the aim of monitoring Alice’s
domain name queries to learn about her Internet activity and potentially censor access
to, according to Eve, forbidden web resources. As an on-path adversary, she is capable of
dropping packets originating from Alice’s IP address and reply with spoofed IP addresses.
Figure 5.8 depicts a visual representation of the threat model.

5.4.2 Traffic Monitoring

As previously discussed in Subsection 5.2.2, DNS queries are sent in clear text such that
any requests made by Alice are visible to Eve. Since virtually every visit of a website
is preceded by a domain name lookup, surveiling Alice through DNS requests becomes
a simple yet effective way of monitoring her online activities. A rich body of literature
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suggests various (non-) governmental organizations employ this approach when tracking
and censoring Internet users [41, 27, 25, 44]; in some cases censorship which intended for a
government’s citizens results in collateral damages, i.e., censorship spills over to Internet
users of other countries [2, 22]. Restricting Internet usage based on domain names is
especially attractive for censors, as domain names change less frequently than e.g., IP
addresses of the forbidden resources. To prevent access to such a resource, censors can
drop the packet in step 1⃝ or 2⃝ and respond with the IP address of a block page as shown
in Figure 5.8.

5.4.3 Privacy Preserving DNS

In this Subsection we delve into the realm of privacy-preserving DNS and examine proto-
cols to encrypt DNS queries as well as further methods to anonymize DNS queries.

5.4.3.1 Encrypted DNS

Like any other traffic, packets may travel on various paths through the network; thus,
adversaries are best served by monitoring the connection between the client and the
recursive resolver instead of the path between the recursive resolver and an authoritative
Name Server [5], as noted in 1⃝ and 2⃝ of Figure 5.8. As a mitigation to this threat, i.



Andy Aidoo 113

Authoritative
Name Server

Recursive
Resolver

1

Alice

Censored
Website

1

Eve

Local Network Internet

2

Figure 5.8: DNS Privacy Threat Model with an On-Path Adversary



114 DNS Security and Privacy: The Landscape of Attacks and Mitigations

a., DoT [20] and DoH [17] have been developed. To utilize DoT, a privacy-conscientious
client must establish a TCP connection on port 853 of the DoT-resolver. Once the TCP
handshake has concluded, the client can send encrypted DNS queries to the DoT-resolver.
The payload of the DNS query does not differ from the regular DNS query [20].

DoH, on the other hand, deviates from the default DNS query as the client can sends DNS
queries through HTTP-GET or HTTP-POST requests to the well-known port 443 and
therefore making DNS queries practically indistinguishable from regular HTTPS traffic.
Within the HTTP request header the content type should specify application/dns-message
to maximize cache friendliness. HTTP-GET requests must include the domain name in
a query parameter called dns, whereas the body of an HTTP-POST request includes the
domain name which the client is interested in [17].

The change from UDP to TCP introduces additional latency when the session is initiated
and results in an increase of required resources caused by the request encryption and
decryption. Nevertheless, Böttger et al. [6] and Hounsel et al. [18] both conclude that
the computational overhead required in resolving DNS queries through DoT and DoH,
respectively, are negligible. The benefits of better privacy guarantees do not result in
perceivable increased page loading times.

Querying DNS names through DoH or DoT has the beneficial side-effect that censors can-
not as easily block access to censored domains; Jin et al. [25] discovered that switching
to DoH or DoT resulted in the circumvention of most state-imposed censorship. Despite
these promising results, Siby et al. [40] demonstrate how ciphertext analysis permits
highly accurate identification of domains through DNS fingerprinting. Initially, they col-
lect network traces that are associated with a visit of a website, e.g., accessing the website
of the British Broadcasting Corporation results not only in the domain name lookup of
bbc.com, but also 51 further requests to various subdomains and third-party domains.
The amount, timings and sizes of DNS queries and responses are highly indicative of the
website which is visited and would allow a censorship adversary to identify access to un-
desired websites. As a countermeasure they suggest adding padding to the DNS responses
in order to eliminate packet size information, analogously to the repacketization strategy
employed in Tor [30].

5.4.3.2 Anonymous DNS

As highlighted by Radu et al. [34] the majority of DNS queries world-wide are resolved by
only a small number of large service providers. Furthermore, the fact that authoritative
government frequently mandate ISPs to censor undesirable content on the Internet [22]
emphasizes the need for further advances in anonymization in DNS queries. A rudimentary
approach employs so-called range queries where apart from the desired domain, further
domain names are added to the query to introduce noise which hides user activity [45].
Next to significantly increased bandwidth consumption, this approach is accompanied
with serious implementation challenges while not providing sufficient privacy guarantees,
as the users’ queries are still deducible [8]. Contrarily, the experimental protocol ODoH
has been developed to allow DNS queries where no single server is aware of the client
IP address and DNS query at once while preserving the confidentiality and integrity of
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the query contents. The ODoH protocol differs from DoH by introducing a proxy that
functions akin to a NAT device; i.e., the proxy maintains a list of IP addresses it has
forwarded queries for and relays the corresponding response to the right IP address. To
satisfy performance and integrity constraints, a hybrid public key encryption (HPKE)
scheme is used. As a first step, clients retrieve the public key of a ODoH resolver to
encrypt a freshly generated shared secret. The shared secret is then used to encrypt the
payload which in this case is the DNS query. This approach guarantees that the only
party capable of deciphering the shared secret is the owner of the key pair used in the
encryption [3]. Clients can query an ODoH server by sending HTTP-POST requests to a
DNS proxy. In the request the client must specify the target host and path in the query
parameters; the encrypted DNS query resides in the body of the request. Target host
refers to the host name of the ODoH server, while target path describes the endpoint at
which the DNS query can be resolved. As response the ODoH server sends the encrypted
DNS query answer to the proxy, which in turn forwards it to the DNS client resulting in
an anonymous DNS lookup [28]. Figure 5.9 illustrates the DNS query flow.

5.5 Discussion

For the threat models, we assumes rational adversaries; i.e., the costs associated with DNS
poisoning or censorship must be lower than the financial or political gains. For instance,
the importance and economic added value of GitHub presents a dilemma for authori-
tarian governments. Without the availability of this global code repository, technology
companies are severely handicapped in producing state-of-the-art technology products.
As a consequence, GitHub is still available in authoritarian regimes despite being used as
a place to host anti-government newsletters and to collectively organize protests against
such governments as illustrated by the popular repository 996.ICU 1 [13]. This Section
will discuss the viability of DNSSEC and encrypted DNS against aforementioned threat
models in the Subsections 5.4.1 and 5.4.1.

1https://github.com/996icu/996.ICU

https://github.com/996icu/996.ICU
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5.5.1 DNSSEC

DNSSEC was introduced in 2005 and mainly addresses the integrity of DNS query re-
sponses [36]; i.e., it prevents adversaries from injecting fraudulent DNS responses. Despite
its primary focus on security and not on privacy (DNS request are still sent in clear text),
it increases the barrier for censorship. In this context, DNSSEC provides apt mitigation
where censorship is based on the exploitation of race conditions in the DNS protocol.
Rather than accepting the first DNS response, which in authoritarian regimes typically
corresponds to a Domain Not Found -error or the IP address of a server hosting a block
page [33], the recursive resolver that is queried by the users awaits a legitimate response.
Consequently, censors can no longer rely on aforementioned straightforward censorship ap-
proach. To successfully restrict access to blacklisted domains, censors would either have
to possess the capability of dropping UDP packets containing DNS queries for blocked
domains or employ IP address-based censorship. The prevalent usage of content delivery
networks (CDNs) to decrease latency when accessing websites often results in numerous
domains being hosted from the same server [10]; i.e., an IP based-blocking approach may
lack sufficient granularity and censors cannot rely on it, lest they incur collateral damage.

The adoption rate of DNSSEC varies considerably and requires a nuanced examination;
Table 5.2 lists the most popular TLDs alongside the number of second level domains,
the number of domains employing DNSSEC and finally, the resulting adoption rate. The
TLD com shows an adoption rate of 5% and all other but the ch and se TLD disclose an
adoption rate roughly 70%. However, signing DNS records only corresponds to half of the
activities involved in using DNSSEC. Clients must validate the signatures in order to reap
the benefits of DNSSEC. Consequently, a meaningful adoption rate must also take client
validation and the long tailed distribution of the queries themselves into consideration;
i.e., the majority of DNS queries contain the names of a small minority of domain names.
According to Huston’s analysis of DNSSEC usage by Cloudflare’s DNS resolver, only 1%
of DNS traffic actually utilizes DNSSEC; additional operational costs and risks that are
associated with employing DNSSEC further function as barriers slowing down its adop-
tion [24]. One such risk is the increased query response that might exceed the maximum
transmission unit due to the incorporation of digital signature. van Rijswijk-Deij dis-
covered that a considerable amount of DNS resolvers cannot cope with fragmented DNS
responses [35]. Finally, DNSSEC typically incorporates a mechanism for authenticated
denial of existence for domains; this mechanism essentially presents proof to a resolver
that a given domain name does not exists, which in a cryptographically verifiable way.
Withing the RRSet of a domain, e.g., acme.com, the record type NSEC links to a further
domain, e.g., a.acme.com, typically in alphabetical order. In this example, the NSEC
record points to the subdomain c.acme.com; this allows a resolver to conclude that the
subdomain b.acme.com does not exists [15]. As a consequence, all domain names can be
discovered through repeated querying of the NSEC records, which can be in direct conflict
with policies, e.g., when a ”confidential” subdomain is used as a employee login page.

Based on the low adoption rate, aforementioned barriers for adoption and the increased
complexity resulting from key management for digital signatures, the primitive approach
of injecting false DNS responses will likely remain a resourceful approach to Internet
censorship. Furthermore, such a low adoption rate allows censors to prohibit and block
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TLD Domains (mio.) DNSSEC (mio.) Adoption Rate
com 156 7.1 5%
net 12 0.7 5%
org 10 0.6 6%
info 3.6 0.1 4%
ch 2.5 1.9 73%
se 1.4 1.0 72%

other 5.0 0.4 7%

Total 192 11.8 6%

Table 5.2: DNSSEC Adoption Rate by TLD
*Derived from https://www.statdns.com/ Report of May 2024

queries aimed at retrieving DS resource records without incurring significant collateral
damages.

5.5.2 Privacy Preserving DNS

Censorship of DNS queries occurs in democracies and authoritarian governments, alike.
Since DNS queries precede virtually any Internet traffic and are usually transmitted in
plaintext, DNS manipulation is often employed as means for censorship. To combat traf-
fic monitoring and ultimately Internet censorship, methods for privacy preserving DNS
querying can be leveraged. Rather than blocking individual IP addresses, the more mem-
orable and consistent domain names are censored. Provided a DNS server is outside the
control of the censors and supports the protocols DoT, DoT or ODoH, censorship can of-
ten be evaded. Jin et al. [25] discovered that a large portion of censored domains become
reachable through DoT or DoH in China Denmark and Portugal. Since DoT targets port
853 of the DNS resolver, such traffic is easily identifiable and therefore subject to inter-
ference, as observed in Iran. Basso et al. [43] report that the majority of DoT resolvers
are blocked by Iranian ISPs, however, hardly any DNS requests over HTTPS have been
blocked during their experiments. Nonetheless, website identifiers, such as domain names
not only leak information during DNS queries, but also when traffic is sent using HTTPS;
the Host header in HTTP requests usually includes the domain name in cleartext and can
thus easily be censored even if encrypted DNS is used. As mitigation, TLS 1.3 introduced
the encryption of aforementioned website identifier, which prevents censorship based on
domain names entirely, provided that an encrypted DNS protocol is used in conjunction.
However, the success of this protocol depends on its popularity; i.e., the protocol should
be used predominately on the Internet for benign traffic and not only to circumvent Inter-
net restrictions lest censors can block this protocol without incurring substantial collateral
damage [9]. Initial signs of resistance from censors has been observed in 2020, where users
reported censorship of connections using TLS 1.3 in China [4]; furthermore, the Russian
government has published an amendment to its technology laws in order to ban Internet
protocols that hinder its effectiveness in surveillance and censorship due to encrypted
website identifiers [39].

https://www.statdns.com/
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5.6 Summary

The interplay between adversaries and defenders in the resolution of domain names is
characterized by a cat-and-mouse game; the former role is assumed by Internet users, while
the counterparties consist of state-sponsored advanced persistent threats (APT), web
tracking giants and opportunistic hackers. When the domain name system was designed,
security and privacy were not perceived as a priority. As the usage of the Internet relies on
resolving domain names to IP addresses, it presents a convenient attack vector to exploit.
Security researcher Daniel J. Bernstein warned of DNS hijacking vulnerabilities in the
early 2000s. Since then, the reliance on the Internet has gradually increase and entire
business models and economies depend on correct domain name resolution. Furthermore,
APTs utilize the optimistic approach of DNS to censors the Internet usage of a countries
citizens, whereas opportunistic hackers hijack domain names with the goal of gathering
intelligence and user credentials. While numerous protocols like DNSSEC and end-to-end
encrypted DNS have been developed to address and mitigate risks, their adoption has been
low for years. Defenders are at an inherent disadvantage, because they utilize a potentially
compromised and adversary-controlled network; as a consequence adversaries can refuse
to process requests using secure and privacy-preserving protocols. Nonetheless, provided
that the world-wide adoption of protocols like DNSSEC and ODoH increases, the abilities
of adversaries to eavesdrop and restrict Internet usage disappears. Thus, unrestricted and
secure Internet usage relies on herd security where the majority of network participants
should§ utilize secure and privacy-preserving protocols, as blocking thereof would result
in substantial collateral damage.
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Chapter 6

Impact of Heterogeneous IoT Networks
in Case of Smart Homes on Privacy

Emanuel Frank, Matthias Mylaeus

Abstract

Many Internet of Things (IoT) technologies are engrained within smart homes, creating a
complicated interplay of convenience, efficiency, and security. This chapter examines the
multiple implications of diverse IoT networks on privacy within the smart home ecosys-
tem. In this context, present-day technologies are presented with their progressions and
accompanying difficulties, especially regarding smart lock systems, environmental sus-
tainability, health, and access management solutions. Furthermore, light is shed on the
conflict between strengthening security and maintaining one’s privacy.

The vulnerability exposed by less recognized IoT device manufacturers, alongside risks
arising from commonly used security gadgets, are discussed. Moreover, this chapter dis-
cusses energy consumption, the sustainability implications of smart home technologies,
and the probable health consequences of over-reliance on digital assistants.

Apart from that, the legal frameworks are analyzed, such as the General Data Protection
Regulation (GDPR), which aims to protect customers against privacy breaches, including
the recently updated new Federal Act on Data Protection (nFADP) from Switzerland.
Since new regulations are in power, this is currently an important topic. It is crucial
that all participants involved in smart homes, as well as customers and manufacturers,
understand the current legal landscape. This chapter has identified some critical areas for
potential future research, emphasizing their significance.
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6.1 Introduction

With the help of the IoT, electronic devices and sensors can communicate with each
other over the internet [20]. This interconnectivity aims to enhance automation in smart
homes, improve efficiency, and provide real-time data and insights, ultimately leading
to smarter decision-making and enhanced convenience in various aspects of life. With
the development of new possibilities for integrating and extending customizable features,
the number of such devices is increasing daily. Meanwhile, IoT is interleaved in a lot
of different domains [21], spanning from industry [45] over entertainment all the way to
healthcare [17]. However, as much as the IoT provides support, this growth and increased
use also bring several challenges. Not only does the communication load become greater,
but concerns about privacy and security arise more evidently [20].

In particular, Smart Home Systems (SHS), including efficient, effective, and reliable au-
tomation systems, are considered a remarkable transformation in daily life routines [47],
and therefore present the main focus of this chapter. Due to their affordability and ease
of use, smart devices are increasingly more popular [24]. This chapter discusses various
protocols such as Ultra-Wideband (UWB) [1, 48], Multi-Access Edge Computing (MEC)
[23, 31] and the 128-Bit AES-CCM Algorithm [10]. The importance of these protocols
lies in their ability to enhance the security of IoT systems, which directly influences the
protection of personal privacy.

Achieving sustainability in SHS is an additional challenge. Sustainable technology prac-
tices aim to reduce energy consumption and environmental footprints. Heterogeneous sys-
tems involving diverse and distributed computing resources (e.g., IoT devices and cloud
services) can increase energy use. Ensuring that these systems are energy-efficient while
maintaining robust privacy protections is difficult. Advancements for reducing energy use
and enhancing efficiency across not only homes but also cities are significant [19]. Possible
integrations for using renewable energy are essential for a smaller environmental footprint
and, at the same time, enable it to shape the future positively, evidently leading to an
improved health state [9]. In addition, [7] argue that pervasively observed and monitored
individuals will find themselves pressured to alter behaviors in line with particular con-
ceptions of health. The inhibition threshold is significantly lower when health is part of
the decision-making. Solutions for a faster or better healing process are often considered
necessities among patients or people with chronic diseases. Solutions connected to sus-
tainable IoT are frequently implemented with fewer concerns as soon as they propose a
faster healing process.

SHS increasingly support passive interaction mechanisms not visible to the naked eye,
where users are led and supported during everyday tasks. This, in combination with
previously active interactions where user input leads to output, results in a more intuitive
living experience [44].

This chapter also addresses the interaction between security and privacy in IoT. Both are
very significant regarding smart homes. The importance of robust encryption and strict
safety protocols are highlighted, and there is a need for ongoing education about privacy
and security risks. Additionally, adherence to data protection regulations like GDPR [42]



126 Impact of Heterogeneous IoT Networks in Case of Smart Homes on Privacy

enhances industry standards. At the same time, incorporating Privacy-Enhancing Tech-
nologies (PET) pushes toward a balanced approach for safer smart home environments
[28].

Potential improvements to deal with the rapid growth of smart devices are described,
including low-power IoT devices on 5G networks [12] and the advancements in Artificial
Intelligence (AI) [3]. Future research is required to enhance low-power IoT solutions that
can provide secure encryption methods and increasingly include AI’s role, which presents
another vast field of opportunities in fully yielding the potential offered by these new
technologies.

This chapter is structured in the following way. A quick background overview is provided
in section 6.3, where the IoT and the current state of technology are described. Section
6.4 describes various smart home features and protocols in place to guarantee successful
and secure communication between devices, emphasizing the role of these protocols in
addressing privacy concerns. Furthermore, SHS’s environmental and health impacts are
discussed in sections 6.4.7 and 6.4.6, respectively. Finally, an analysis of SHS is provided
in section 6.5 before limitations and future work are presented in sections 6.6 and 6.7.

6.2 Motivation

The modern way of life has been transformed by the introduction of IoT technology, es-
pecially in terms of smart homes [38]. When such technologies knit together a complex
network of devices, they bring unprecedented convenience and efficiency [47]. However,
this accelerated integration also raises substantial concerns about personal data security
and individual privacy [22]. These concerns primarily include the risk of unauthorized
access to personal data and the potential for data breaches. The nature of IoT-enabled
improvements, marked by both potential benefits and risks, requires carefully examining
their effects on privacy. Despite its wide adoption, public concern is raised about protect-
ing personal information, specifically in the smart home surroundings. Many users are
worried about how their data is being used, who has access to it, and the lack of trans-
parency from companies regarding data handling practices. This concern is amplified by
frequent reports of data breaches and the misuse of personal information by third parties.

Many existing studies tend to focus on various aspects of smart homes [27, 8, 4]. This
chapter captures it as a whole, presenting its extensiveness. Also, rapid technological
development makes it hard to catch up, almost lagging behind, leaving room for poor
evidence-based regulatory and technical responses. Therefore, it is essential to keep writ-
ing about and probing the subject.

Filling this gap requires a study that will not only comprehensively analyze the techno-
logical developments but also provide a critical review of the privacy issues surrounding
these systems. Due to changes in privacy laws and new IoT devices being invented every
other day, it becomes crucial to undertake a current and exhaustive review that would
aid in assessing risks associated with these devices and recommending solutions that can
be implemented.
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This chapter aims to contribute to the existing knowledge on IoT and privacy by providing
an in-depth understanding of how diverse IoT networks within smart homes affect privacy.
It looks at different subsystems, such as smart lock systems and health monitoring devices,
to comprehend their individual and cumulative effects on user privacy. Additionally, the
chapter will evaluate the viability of prevailing legal frameworks like GDPR [42] meant
to reduce privacy risks, which may provide helpful suggestions for future amendments or
even formulation of new policies. Lastly, various aspects are discussed, including which
future work could lead to considerable advancements in SHS.

6.3 Background

The following section provides a short overview and introduction to the IoT, pointing
out various domains in which it is ingrained. Furthermore, the current state of known
technology is described before delving into specific SHS features and their impacts.

6.3.1 Internet of Things (IoT)

Nowadays, a world without IoT devices is close to unimaginable. Figure 6.1 shows how
big of an impact the IoT has and how many different domains it is involved in. In every
aspect of daily life, IoT has its presence. It is helpful to highlight that it is divided into two
sectors: the industrial and private sectors. Control and monitoring of machines, devices
like traffic lights and rail switches, as well as replacements of treadmill work and support in
factories plus healthcare, is considered the main impact on the industrial side. Referring
to the consumer side, the management of smart devices such as phones, watches, and
TVs, as well as smart homes, including sensors for tasks like energy regulation, presents
the core of the IoT [28]. The latter is the core of this chapter.

6.3.2 Known Technology & Current Status

Smart homes can be understood as a connected and combined system of the many smart
appliances that have communication access locally or via the internet [20]. Meanwhile,
most of the devices used in a home can be bought as smart devices with additional
integrated context awareness, communication capabilities, and autonomous computing
[39]. This spans from larger systems such as air-conditioning & heating, audio & video
streaming, and security all the way to simple devices like TVs, kettles, and toothbrushes.

Such a smart home aims to provide the best possible comfort to the end-user. This can
be achieved in many ways by offering options such as preheating the oven over the phone
while riding the bus home, lowering the blinds whenever the room temperature increases
due to incoming sunlight, or adjusting the brightness of the lights depending on the time
of day - all while optimizing energy consumption [28]. However, with these conveniences
comes the need to address privacy concerns, as integrating these smart features involves
collecting and processing personal data. It is crucial to ensure that data, such as user
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Figure 6.1: This figure presents various domains of the IoT [28].

habits, preferences, and schedules, is managed securely. Implementing robust privacy
measures alongside these smart functionalities can help protect user information from
unauthorized access and misuse, thereby maintaining the trust and security essential for
widespread adoption.

However, since different factories with different hardware parts manufacture all these de-
vices, it follows that not only are there high variations in IoT devices but also in the data
collected, generated, and communicated [35]. In addition, these devices use various avail-
able protocols (such as Ultra-Wideband [1, 48], Bluetooth Low Energy [41, 37], or ZigBee
[49, 13]), which are all implemented in different ways. This heterogeneity of IoT offers
consumers a wide selection of choices and numerous possibilities for customization. How-
ever, it also introduces several challenges and open issues, such as interoperability, data
security, and privacy concerns when using these systems [22, 35, 14, 4]. One significant
challenge is ensuring user data privacy across this diverse ecosystem. With the varying
standards and protocols, consistent and robust privacy measures must be implemented to
protect sensitive information from unauthorized access and misuse. This diversity neces-
sitates a comprehensive approach to security and privacy to maintain consumers’ trust
while leveraging the benefits of IoT technology.

6.4 Smart Home Technologies & Their Impacts

The following sections discuss various aspects of Smart Home Systems (SHS). Namely,
their lock systems, Ultra-Wideband technology, environmental impact, impact on con-
sumer health, and access management methods are highlighted. These topics were chosen
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due to their relevance and current priorities in enhancing security, efficiency, sustainability,
and overall well-being in smart home environments.

6.4.1 Lock Systems

Smart devices designed to prevent unauthorized access into a physical space or as a digital
barrier to sensitive data are increasingly in demand. Their growing acceptance is due to
their ease of use and lower prices [2]. On the other hand, while these systems are attractive
due to their affordability, the low cost often means that they have compromised hardware
and software quality, ironically raising the risk of breaches despite being primarily meant
to enhance the security [36]. As more unknown brands with more robust pricing strate-
gies enter the market for these smart security solutions, concerns arise about the resilience
of these security systems to well-organized attacks by more established firms. One key
reliability aspect concerning such smart lock systems is compliance with recognized secu-
rity standards. For example, the BS3621 standard requires a device to undergo a clear
set of pre-defined tests before it can be rated secure. In contrast, the TS621 standard
is not so strict since it only requires the product in question to outperform its testers.
This disparity between standards highlights the importance of consumer awareness about
safety specifications and certifications for devices used at home. Consumers must un-
derstand that standards with ”similar sounding names” can have fundamentally different
expectations regarding requirements for the product in question [2]. Indeed, this rapid
transformation of smart security devices necessitates better-informed customers. These
tools need clear-cut guidelines and easily accessible information concerning their capabili-
ties and weaknesses. The items from relatively obscure manufacturers that employ RFID
and Bluetooth technologies are the most problematic. They could be breached through
relatively simple hacking tools like Baofeng UV 5R radio or HackRF RFID NFC Card
Copier [2].

Measures should be taken to mitigate these risks. There is a need for an increase in
industry-wide promotion of improved security standards along with regular updates that
would accommodate new technological threats. Regulatory bodies should ensure that
all market actors adhere to these rules, thereby creating a level playing field irrespective
of the brand. Knowledge gaps must be bridged through various educational initiatives.
Consequently, this can be achieved by enlightening consumers about why security fea-
tures matter, how they work, and which certifications are relevant when buying smart
lock systems. There is a need to continue researching and developing more secure and
resilient technologies. Innovations that enhance encryption methods, improve authentica-
tion processes, and integrate anomaly detection systems can significantly strengthen the
security of smart lock systems. The manufacturers should regularly publish their secu-
rity audits and updates as part of their commitment to transparency. Hence, simple yet
straightforward communications would not only build trust but also enable customers to
make informed choices regarding their security solutions. Indeed, smart lock systems have
enormous potential for home safety. Nonetheless, navigating intricacies as well as vulner-
abilities inherent in these systems is essential in ensuring that they serve their intended
purpose without jeopardizing user safety or compromising privacy. By enhancing stan-
dards, educating consumers, and fostering innovation, the industry can safeguard against
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the risks while maximizing the benefits of smart security technologies.

6.4.2 Central-Access Management

Managing all the different devices in a smart home can be overwhelming, often leading
to forgotten devices, which pose a security risk. Therefore, having a central management
system for all IoT devices in a smart home is crucial. As IoT devices become more preva-
lent in homes, managing increasingly complex and diverse technologies becomes critical.
Traditional mechanisms, such as remote controls attached to a wall (e.g., Philips Hue
remotes), are no longer necessary since more advanced and integrated alternatives have
taken over. It is now common practice to find a central control system for smart home de-
vices, which comes from software applications installed on smartphones or smartwatches.
These have eased the lives of people who can control their multiple appliances through
Wi-Fi, whether within their buildings or away [44].

Ultra-Wideband (UWB) technology is one of the significant technological breakthroughs
in this field, and its implications will be discussed more closely in the next section. Initially
designed for military purposes, UWB has found extensive applications in domestic envi-
ronments, particularly in smart homes. Secure Fine Ranging differentiates it from other
technologies by allowing high accuracy tracing and elaborated security features such as
Presence Detection, Follow-Me, and Point and Trigger Control, which are discussed by
[44]. This feature resolves many practical problems SHS face, including how interactions
between devices should be facilitated seamlessly. Additionally, UWB integration into
conventional SHS has resulted in more robust and dependable house management ecosys-
tems. Wireless routers at home facilitate interaction between remote control tools such
as application servers, client computers, tablets, and iPads, making the IoT environment
monitored, controlled, and managed 24 hours per day [48].

6.4.3 Ultra-Wideband (UWB) Technology

The Ultra-Wideband (UWB) technology has been fundamentally overhauled from its ini-
tial purpose of military communications. UWB was licensed for commercial use by the
Federal Communications Commission (FCC) in 2002 and has since become a household
name in daily technological lives [48]. It was initially meant to operate in the unlicensed
range from 3.1 GHz to 10.6 GHz as an alternative to Wi-Fi. Still, it switched focus
from data transfer, making secure ranging and localization its specialty due to power lim-
its, which kept it from realizing its earlier promise of high bandwidth data transmission.
The transition of UWB into a technology known for providing accurate, secure distance
and location measurements came with significant improvements implemented in IEEE
802.15.4a and later IEEE 802.15.4z standards, respectively. Consequently, there has been
a massive uptake of UWB in high-accuracy indoor Real-Time Locating Systems (RTLS),
particularly after enhancing security provisions introduced via IEEE 802.15.4z [48].

Presently, UWB is distinguished not only by being another option for connectivity but
also by focusing on secure fine-ranging capabilities that it optimizes uniquely, thus com-
plementing existing solutions such as Wi-Fi, Bluetooth Low Energy (BLE) [41, 37], and
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Near Field Communication (NFC); hence enabling easy integration with numerous other
devices thereby expanding the technology’s domain across multiple consumer and IoT
platforms. Figure 6.2 shows how UWB is used on top of BLE to guarantee a successful
access control mechanism, making use of the low-power signals used for authentication
before enabling UWB for secure range processing [48].

Figure 6.2: This figure taken from [48] shows how UWB manages to make use of BLE,
which is already built into many smart devices to enable a secure access control mecha-
nism.

This integration marked a significant milestone in developing UWB-supported devices,
positioning UWB to break out as a mainstream solution for fine-ranging precision posi-
tioning. With its ability to provide centimeter-level distance and location measurement
accuracy, UWB is set to revolutionize several secure ranging and positioning applications,
making it a vital building block for tomorrow’s IoT connectivity [48]. Moreover, the en-
hanced precision and security of UWB technology contribute to better privacy protection
by ensuring that only authorized devices and users can access sensitive location data,
thereby mitigating potential privacy risks in smart home environments.

6.4.4 Multi-Access Edge Computing (MEC)

MEC is the approach to managing data traffic and processing loads of data from IoT
devices in smart homes. To address the challenge in terms of latency, bandwidth use,
and privacy associated with traditional cloud-centric models, MEC locates its data pro-
cessing closer to where it comes from at the edge of a network [46]. By processing data
locally, MEC enhances privacy by reducing the need to transmit sensitive information
over long distances, thus minimizing exposure to potential breaches. Latency and band-
width remain a considerable concern when referring to smart homes that require real-time
decision-making and data processing for them to be responsive or automated. Sometimes,
these traditional cloud-computing models may take longer to process this information, re-
sulting in unacceptable delays and high bandwidth consumption. Network congestion
leads to slowed response times with increasingly interconnected IoT devices [31]. In such
situations, MEC processes the data at or near its source of origin, which can occur within
localized data centers or at radio tower stations [23]. Such proximity requires shorter dis-
tances for data transmission, thus reducing latency and leading to faster decision-making,
which is especially crucial in safety systems, energy management, and emergency responses
within smart homes. Additionally, this local processing enhances privacy by minimizing
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the exposure of sensitive data to potential breaches during transmission, ensuring that
personal information remains secure and compliant with privacy regulations. Another
side effect of MEC is enhanced privacy and security, bridging the gap to smart homes.
By keeping all private information local, MEC reduces exposure to breaches and cyber-
attacks. Storing data locally allows personal information to be stored more securely by
conforming strictly to regional laws like GDPR [42] or nFADP [40]. This impacts privacy
by significantly reducing the risk of unauthorized access and data breaches, as sensitive
information remains within a controlled and regulated environment. Additionally, local
data storage ensures that personal data is handled according to specific legal and ethi-
cal standards, thereby enhancing trust and compliance with privacy expectations. This
approach not only protects individual privacy but also strengthens the overall security
framework of smart home systems.

Overall, a reduction in network load can be achieved through implementing MEC. Keeping
data processing within the localities where it is created will require only a few communi-
cations to be sent back to central data centers or clouds. This reduction in data traffic
over the network increases the bandwidth for other uses and generally improves network
resource utilization. Furthermore, by processing and storing data locally, MEC enhances
privacy by minimizing the exposure of sensitive information to potential breaches during
transmission and ensuring compliance with regional data protection regulations, such as
GDPR in the European Union [26].

MEC can reduce complexity and costs related to cross-border data transfers by ensur-
ing that data is processed and stored within the region it was generated. This regional
approach not only enhances data privacy but also ensures that host countries’ data protec-
tion regulations are strictly followed. A distributed computing architecture is developed
by adopting MEC for smart homes, whereby multiple small computing centers process
the data. This makes networks more reliable because they do not depend on single nodes,
and scalability becomes possible, allowing new nodes to be easily incorporated as IoT
devices increase in number [23]. By keeping data local, MEC supports a robust privacy
framework, protecting user information and enhancing the overall security of smart home
systems.

In conclusion, Multi-Access Edge Computing (MEC) enhances the capabilities of smart
home IoT networks by improving data privacy and security. By processing data locally,
MEC reduces the need to transmit sensitive information over long distances, thereby mini-
mizing exposure to potential breaches and cyberattacks. This local processing also ensures
compliance with local data protection regulations, such as GDPR, further safeguarding
user privacy. Additionally, MEC reduces latency and bandwidth usage, leading to more
responsive and efficient smart home systems. By creating a highly efficient, secure, and
robust IoT ecosystem, MEC represents an essential milestone towards sustainable smart
homes that can meet emerging needs while maintaining high standards of privacy and
security [31].
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6.4.5 128-Bit AES-CCM Algorithm

When smart home technologies increasingly become part of daily lives, there is a need
to transmit data within these systems. The 128-bit AES-CCM (Advanced Encryption
Standard - Counter with Cipher Block Chaining Message Authentication Code) algo-
rithm is a robust cryptographic protocol for encryption and authentication. This gives it
an advantage over many other protocols when securing network communication for IoT
devices, such as those in smart homes [10]. This is a symmetric block cipher that the
U.S. government adopted as an encryption standard. It has been widely used worldwide
because of its hardware and software efficiency, as well as high security. This symmetrical
key algorithm uses one key for both the encrypting and decrypting processes. It func-
tions on fixed block sizes of 128 bits with keys being 128, 192, or even 256 bits long [5].
CCM stands for ”Counter with Cipher Block Chaining Message Authentication Code”.
This mode combines counter mode (CTR) with CBC-MAC for authentication purposes.
While mixing these two methods might acknowledge the scrambled message, this encryp-
tion mechanism mainly ensures the safety criteria. The initial block configuration sets
up a nonce (a number that can be used only once per session) and a counter to start
things off for AES-CCM. For instance, in the plain text data, the CTR method depends
on this configuration [10]. If bytes are arranged on the grid, AES uses another table to
substitute each byte in the grid with another one. The cycles of these rows shift according
to different number counts per row, giving more complexity. Diffusion across columns is
enhanced by mixing each column of bytes using an invertible linear transformation. The
block receives a subkey derived from the primary key using the XOR operation. This step
continues through several rounds: ten for 128-bit keys, 12 for 192-bit keys, and 14 for
256-bit keys [5]. Post-encryption CBC-MAC mode helps generate a message authentica-
tion code (MAC) that can be used to check integrity and authenticity when decrypting
the message. Using AES-CCM in smart home devices accommodates the need for privacy
and reliability. Sensitive information, such as details on security in homes or personal
data, should remain confidential by encrypting information sent between devices by AES-
CCM. Also, AES-CCM checks that messages have not been changed, thus maintaining
data integrity [10]. Understanding the detailed encryption and authentication processes of
AES-CCM is essential because it underscores the algorithm’s role in safeguarding privacy
in smart home systems. By ensuring that data remains secure and unaltered, AES-CCM
supports a reliable and private smart home environment, addressing privacy concerns and
enhancing overall system security.

To sum up, the 128-bit AES-CCM algorithm is a perfect solution for securing IoT devices
in smart homes by balancing solid security requirements with the limitations posed by
IoT devices. Its deployment serves a dual purpose: protecting against potential cyber
threats and forming an integral part of overall smart home security strategies. More-
over, AES-CCM enhances privacy by ensuring that sensitive data remains encrypted and
authenticated, preventing unauthorized access and tampering. This robust encryption
mechanism safeguards personal information, creating a secure and private smart home
environment [33].
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6.4.6 Environmental Impact & Sustainability

Achieving sustainability marks a significant milestone in the evolution of environmentally
friendly IoT smart home devices, demonstrating how technological advancements can re-
duce energy use and increase efficiency. Integrating these technologies into homes, cities,
and vehicles reshapes the energy landscape toward a more sustainable future. There-
fore, the impact of smart technologies extends beyond individual homes, contributing
to broader environmental initiatives. Consequently, smart cities, which include smart
homes, integrate similar IoT technologies to manage everything from traffic flows to pub-
lic utilities, thereby reducing carbon footprints and improving the efficiency of urban
infrastructures. This holistic approach makes the entire living ecosystem more efficient
and optimized regarding energy consumption, ultimately maximizing the use of natural
resources [19].

However, as smart homes and cities become increasingly interconnected, the importance
of data privacy cannot be overstated. The extensive use of IoT devices results in collecting
and processing vast amounts of personal data. Protecting this data is crucial to main-
taining user trust and safeguarding privacy. As we build more integrated and sustainable
environments, robust privacy measures must be implemented to protect the sensitive in-
formation collected and used. This includes ensuring that data is encrypted, access is
controlled, and compliance with data protection regulations is maintained. Figure 6.3
shows how smart homes are a fundamental building block for future smart cities. There-
fore, interoperability, flexibility, decentralization, and robust privacy protections are of
utmost importance to ensure both the security and privacy of the data collected within
this interconnected ecosystem. By addressing these privacy concerns, we can ensure that
the benefits of smart technologies are fully realized while maintaining the trust and con-
fidence of the users.

In the residential sector, the eco-friendly transition heavily relies on technological advance-
ments such as smart homes. These households have sophisticated energy management
systems that monitor real-time consumption patterns while adjusting usage based on fore-
cast models or other data sets. The result is optimal energy usage without compromising
comfort or convenience. For instance, automated thermostats, low-energy lighting sys-
tems, and power-saving appliances collectively reduce overall power requirements within
households.

The fundamental components needed for this transformation are innovative technological
applications resident at the heart of a smart home, like real-time monitoring of energy con-
sumption using diagnostic tools such as sensors, which can offer detailed insights about
homeowners’ electricity behaviors so that they can utilize their electricity judiciously.
However, these technologies also collect a vast amount of data, raising essential privacy
concerns. Ensuring this data is protected from unauthorized access is crucial to maintain-
ing user trust.

Moreover, integrating renewable sources like solar panels linked with geothermal sys-
tems will facilitate homes generating their green power while significantly decreasing de-
pendence on fossil fuels [19]. As these systems become more advanced, robust privacy
safeguards must be implemented to protect the sensitive data generated by these smart
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Figure 6.3: This figure taken from [19] shows the importance of integrating sustainable
technologies into smart homes, eventually leading to sustainable smart cities.

technologies. Balancing technological innovation with privacy protection is essential to
ensure eco-friendly smart homes’ widespread adoption and success.

However, this perspective is changing because they are becoming part of the solution
rather than just being energy consumers as it has been traditionally thought. Smart
homes have a dual role through energy optimization and waste reduction; they minimize
their environmental footprint and supply excess power from renewables to the grid. Thus,
the next task will be to improve the scalability of smart home technologies and make them
compatible with larger smart grids. Consequently, future trends should ensure increased
compatibility amongst devices and systems to achieve more significant energy savings and
sustainability gains. Additionally, data privacy and security will remain of prime concern
as technology evolves in an increasingly interconnected world [15].

IoT plays an increasingly central role in pushing forward environmental sustainability
through the use of smart home technologies. Therefore, during this advancement period,
it is imperative to stress open standards and sustainability in these technologies to make
them effective contributors to global efforts against climate change. By adopting IoT for
more intelligent energy management, residential spaces from simple users are revolution-
ized into active actors fighting for a sustainable planet by adopting IoT for more intelligent
energy management [19, 15].

The environmental well-being of smart homes, smart cities, and the planet significantly
contributes to every individual’s health. The following section will further explore this
crucial connection.
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6.4.7 Health Impacts

By 2040, the rate of older people over 60 will be around 21% globally [25], enhancing
the need for IoT devices that ensure their safety and independence. Nonetheless, these
technologies are not only beneficial to the aged but also helpful for those dealing with
temporary illnesses, chronic diseases, and disabilities. These smart devices are crucial for
helping these groups live independently, assisting them with complex tasks, and providing
essential reminders, ultimately enhancing their quality of life [25].

With improvements in information and communication technology, smart home technolo-
gies substantially improve health care within supportive living environments by integrating
into users’ daily routines. Devices that sense and monitor their environment have rapidly
evolved with various social needs. For example, Z-Wave and ZigBee [49, 13] technolo-
gies enable smart homes to automatically adjust their functions based on usage patterns,
thereby optimizing energy consumption and minimizing utility costs [25]. Additionally,
such devices can alert healthcare facilities during emergencies, contributing to enhanced
safety and response time.

Health monitoring technologies involve collecting and analyzing data from human body
conditions such as blood pressure, glucose levels, respiration rates, body temperature,
and other vital signs [16]. Wristbands or even smartwatches can keep track of everyday
activities, making them ideal for monitoring emotional states and providing fall preven-
tion mechanisms, like emergency detection capabilities [11]. Safety monitoring devices are
designed to detect environmental hazards, including gas leakages or fires, which trigger
emergency protocols to guarantee residents’ safety. The overall security of the living en-
vironment is improved by security monitoring systems that help identify potential human
threats or suspicious activities [25].

However, the integration of such technologies raises significant privacy concerns. As these
devices continuously collect and transmit sensitive health and personal data, ensuring
that this information is adequately protected against unauthorized access and breaches is
crucial. Ensuring compliance with data protection regulations, such as GDPR, can help
safeguard user privacy.

Technology has also supported increased social interaction, allowing virtual engagements
with friends and family. For instance, seniors can make video calls to stay connected with
grandchildren and other family members, thus enhancing feelings of inclusion, especially
during difficult times like the recent pandemic. Cognitive and sensory assistance tech-
nology enabled by machine learning provides practical assistance in daily activities. The
technology can remind users about their medication timetable or guide them to where
they want to go within and outside the house [34]. While these features offer significant
benefits, they also require robust privacy measures to ensure the data collected is used
responsibly and securely.

The integration of IoT in healthcare holds the promise of more innovative developments
that could redefine traditional care models. How health monitoring will be done in smart
homes is expected to change significantly over time as it becomes more proactive. Devel-
oping advanced technologies that predict health events before they materialize through
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analyzing health trends using sophisticated algorithms can provide timely warnings to
both users and healthcare providers. This proactive approach could significantly shift
how health is managed at home, offering a more predictive, personalized healthcare ex-
perience that keeps individuals safe, healthy, and well-informed about their health [17].
Ensuring the privacy and security of the data involved in these processes is paramount to
maintaining user trust and protecting sensitive health information.

6.5 Analysis of Smart Home Systems

The following section discusses the two modes of interaction with SHS. In addition, the
security of keeping sensitive data protected is compared to privacy when collecting relevant
data. Lastly, various possible improvements for the discussed topics are presented.

6.5.1 Active vs. Passive Interaction

The IoT has paved the way for smart homes. Previously, such dwellings were fitted with
intelligent control systems that require little or no human intervention. These devices have
enhanced the interaction between users and their living spaces by evolving from passive
to more active and ever-present input methods in these places. This transition is not
only what makes them better but also enables a mix of active and passive interactions,
making room for different preferences [34]. Usually, homeowners give direct instructions or
perform specific actions to manipulate gadgets in the house. People can command using
voice commands, touchscreen interfaces, and keyboards, enabling dynamic interaction
with the system. Users can check their schedule, ask about weather conditions, or instruct
a home theater system on what content they want to play. Pre-defined processes or routine
reactions occur when certain environmental factors are met without direct intervention.
Motion sensors could turn on lights automatically if someone enters a room. At the
same time, smart thermostats can adjust temperatures depending on the time of day
or presence of people, even more accessible today with an omnipresent fine-range Ultra-
Wideband Net on the horizon [48]. Passive systems function in the background mode
for improved comfort levels that enhance convenience and optimize energy usage without
disturbing user routines.

Joining active and passive systems inside a smart home ensures an intuitive living ex-
perience. Sometimes, according to previous choices made by occupants, lighting may be
adjusted passively to comfortable levels, while some manual commands given via voice
recognition or apps can still change it. In return, this results in higher level accom-
modation with personalization, allowing it to adapt over time based on the habits and
preferences of the residents [44].

In the foreseeable future, smart homes will have more passive components since they will
be driven by artificial intelligence that is far more advanced. Such systems would antic-
ipate user needs and make adjustments even before they are explicitly commanded, for
example, preheating an oven at a particular time or adjusting lighting according to sun-
light and user schedule. Additionally, machine learning advancements combined with user
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identification technologies can help smart homes differentiate between users, leading to
personalized environments that self-adjust according to each person’s preferences without
requiring them to actively participate in setting up their conditions [18, 3]. Figure 6.4
describes an AI framework that can eventually provide a personalized system.

Figure 6.4: This figure taken from [3] shows a framework of AI application concerning
smart homes.

As the number of passive devices in smart homes increases, they are often harder to
observe and less present in daily minds, making it even more critical to ensure solid and
reliable security within these systems. The increased invisibility of such devices heightens
the need for robust privacy measures to protect sensitive data and prevent unauthorized
access. Consequently, the next section will focus on Privacy and Security in Smart Homes,
addressing the essential protocols and strategies required to safeguard users’ functionality
and personal information in an increasingly interconnected environment.

6.5.2 Security vs. Privacy Concerns

The interaction between security and privacy in IoT, especially regarding smart homes,
is an elaborate space that needs continuous rethinking and a lot of consideration be-
cause the landscape of threats and vulnerabilities is constantly evolving. As more devices
become interconnected and collect vast amounts of personal data, the potential for se-
curity breaches and privacy invasions increases. This section summarizes the existing
security issues, explores possible solutions, and discusses ways to make these concepts
more straightforward for end-users. By addressing both the technological and human fac-
tors, we can develop more resilient systems that protect user data while maintaining the
convenience and efficiency that smart homes promise.
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The first priority should be security in SHS due to the risk of hacking and intrusion on de-
vices or collecting data. Many IoT devices still have inadequate security measures, which
makes them vulnerable to cyber-attacks. These vulnerabilities harm people’s privacy by
exposing their private data and compromising general safety when things like smart locks
are breached [12, 14]. Therefore, robust encryption methods must be developed alongside
strict safety protocols. All manufacturers must ensure that their devices follow the most
stringent security requirements from design up to end-of-life of such products. Regular
firmware updates should be made so that new threats can always be addressed. Managing
these risks requires educating consumers about privacy and security issues related to IoT
devices. Users need access to educational materials free from complex jargon explaining
how others collect, store, or use their information. Workshops, online tutorials, or inter-
active guides may assist, making it easy for ordinary people to comprehend. Also, public
awareness campaigns and manufacturers’ transparency reports can build consumer trust.
It must be essential to show, in general, how much effort can be put into safeguarding
user privacy and protecting it from unwanted leaks [14].

Regulations such as the General Data Protection Regulation (GDPR) [42] and the new
Federal Act on Data Protection (nFADP) [40] play a significant role in shaping industry
standards and practices, particularly in the realm of IoT and smart homes. These laws
mandate strict data protection and privacy guidelines, holding companies accountable for
security breaches and privacy violations. Adhering to these regulations not only safeguards
consumers against harm but also fosters trustworthiness and reliability in IoT technologies
[6].

In the context of smart homes, these regulations ensure that personal data collected by
IoT devices, such as security cameras and smart thermostats, is handled securely and
used responsibly, thereby protecting user privacy and enhancing consumer confidence in
smart home technologies.

In the future, incorporating Privacy-Enhancing Technologies (PETs) like homomorphic
encryption or zero-knowledge proofs in IoT devices promises to be an exciting area. This
means such technologies allow data processing and analysis while keeping it confiden-
tial, thus solving the privacy-security dichotomy. Therefore, achieving a balance between
security and privacy in smart home IoTs is always a matter of concern which requires
multiple approaches. Combining technological solutions, consumer education, and robust
regulatory frameworks can protect users while encouraging innovation and convenience in
developing smart homes [28].

6.5.3 Potential for Improvement in Various Fields

The fast expansion of IoT technology has been chiefly driven by its incorporation into
consumer items that automatically collect and relay data. In addition to making personal
IoT devices more readily available, this growth has also empowered people to know more
about their health, become more efficient at what they do daily, and automate their
everyday operations, thereby improving life’s quality. Figure 6.5 shows how the number
of connected IoT devices has drastically increased over time.
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Figure 6.5: This figure shows how the number of connected IoT devices has grown over
the past 20 years [12].

While the adoption of IoT steadily rises, several areas require further improvement, par-
ticularly in terms of security and privacy. For instance, low-power IoT devices on 5G
networks represent a significant opportunity for enhancement. These networks can im-
prove device functionality and efficiency through faster data speeds and more reliable
connections [12]. However, they also raise new data security and privacy issues due to
their extensive coverage and numerous access points.

Integrating advanced language models, such as hypothetical newer GPT versions, into
smart homes presents considerable potential. These models could significantly enhance
natural language understanding between humans and devices, allowing for more intuitive
interactions. Additionally, their ability to handle massive quantities of data could play a
crucial role in predictive maintenance and personalized user experiences. However, this
also introduces privacy concerns, as the vast amount of data processed must be securely
managed to protect user information.

Thanks to technological advancements, hardware components are continually reducing in
size, enabling the realization of smaller, smarter homes with concealed features. Advanc-
ing nanotechnology innovations and materials is critical, as they may lead to smaller yet
energy-efficient devices without compromising performance. This development highlights
the need for stringent privacy measures to ensure that the data collected and processed
by these advanced technologies is protected.

Another significant area of progress is Ultra-Wideband (UWB) technology, which has
made substantial leaps in accuracy tracking and sensing surrounding areas for IoT devices.
Emerging wireless communication technologies, such as Light Fidelity (Li-Fi) [30] and the
new 5G NR (New Radio) [43] positioning techniques, also show promise by offering greater
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accuracy, lower power consumption, and improved security features. These advancements
necessitate robust privacy safeguards to protect the vast amounts of data generated and
transmitted.

Several future directions are available to explore as the boundaries of what is possible with
IoT continue to be pushed. These include developing alternative encryption methods and
data privacy safeguards to meet changing needs, establishing uniform standards to guar-
antee compatibility and seamless interaction between various IoT devices and ecosystems,
and encouraging greener, more sustainable IoT solutions that reduce environmental im-
pact while maximizing efficiency. IoT’s full potential can be realized by addressing these
aspects transforming everyday activities while ensuring user privacy and sustainability.

6.6 Limitations

Future computing, especially in the field of IoT and smart home devices, will require
significant energy management and security innovations. These limitations have made it
challenging to develop these technologies further and increase their adoption on a broader
scale. Running multiple IoT devices continuously in a smart home is still a significant
obstacle, regardless of advances in IoT technology [20]. This concern is particularly acute
in the context of global environmental issues and the increasing need for sustainability.
The machines must either migrate into working efficiently with renewable energy or reduce
their power consumption levels immensely [19].

As smart home devices become more integrated into daily lives, there are increased chances
for privacy breaches and security vulnerabilities. The challenge lies in robust security pro-
tocols adapting to changing threats while safeguarding user privacy [32, 22]. Additionally,
increased integration between IoT devices with advanced language models could eventu-
ally provide new vector points for potential attacks; therefore, it is necessary to have
higher safety standards coupled with constant care [3].

A dominant limitation within the current ecosystem around smart homes is the lack of
interoperability between different manufacturers’ devices [29]. The fragmentation limits
seamless functioning within smart homes while complicating user experience. Overcoming
these challenges means developing universal communication and compatibility standards,
enabling an interconnected environment to emerge.

It is challenging for regulations to keep up with the rapid advancements made by IoT. This
lag creates a complex landscape for manufacturers and consumers, who must navigate an
often unclear regulatory environment. In many jurisdictions, ethical dilemmas such as
data ownership, the right to privacy, and informed consent are not adequately addressed,
making it harder for people to adopt or embrace this smart home concept. Even if it
got better with the current updates of nFADP [40] and GDPR [42], keeping up with the
current evolution is constantly challenging.

The existing technology constraints also hinder the current IoT devices in terms of pro-
cessing power, battery life, and data storage. Their pace must be accelerated as these
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technologies evolve to meet the future demand for more complex applications. Techno-
logical breakthroughs will be essential in addressing these technological barriers through
the development of components that are more powerful, efficient, and of a smaller scale
[35].

Lastly, there is still a challenge regarding consumer acceptance and awareness of smart
homes. Many potential users remain skeptical of smart home technology, often due to
complexity, reliability, and cost concerns [36]. Widening adoption involves challenging
such perceptions through improved marketing practices like transparent communications
and showing how IoT integration brings real benefits.

In conclusion, although the future looks bright for smart home technology, its maximum
potential can only be realized if these limitations are overcome. The future evolution of
IoT devices depends not only on technological innovation but also on how their ethical,
environmental, and security aspects are handled.

6.7 Future Work

Many future research and development possibilities are available because of the intro-
duction of IoT technologies into smart homes. The current efforts have put a strong
foundation. However, many areas still need to be explored further for these systems to
improve their functionality, security, and user acceptance.

Further research on low-power IoT devices is crucial. Since the number of devices in
an average smart home has increased, energy efficiency is becoming more critical than
ever before. Energy harvesting techniques, which transform environmental energy (for
example, solar, thermal, or kinetic energy) into usable electrical power, could significantly
prolong the battery life of IoT devices. Besides, combining smart homes with renewable
energy sources not only conforms to global sustainability goals but also reduces the overall
energy footprint of these technologies.

Regarding security, developing new encryption methods and secure data storage solutions
is vital to protect users’ data from possible breaches [22]. Because IoT devices typically
collect sensitive personal information, it should be a top priority to ensure the security
of this information. Preserving privacy in technology, especially one that can be applied
without interfering with the existing tools, will play a significant role in maintaining user
trust and complying with regulatory standards.

The role played by AI in smart homes is expected to increase, which may result in more
customized, adaptive, and intuitive surroundings in the future [3]. Research should seek
better AI models that understand and predict human preferences and behavior to make
interactions with smart home appliances more natural. This means improving natural
language processing capacities behind voice-interface controls as well as devising more
sophisticated predictive algorithms for home automation.

Besides technical aspects, prospective works must consider social, ethical, and psycho-
logical dimensions associated with living within fully connected automated environments.
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This covers the effects of smart homes on social interactions, mental health, and daily rou-
tines. Ethical aspects such as data privacy, consent, and surveillance must be critically
examined to ensure that smart home technology development conforms to societal norms
and values. With technological advancement comes the need for advancing regulatory
frameworks governing their use. Future research should engage policymakers in develop-
ing standards and regulations to ensure safe and reliable smart home technologies. These
will include clear guidelines on data usage, device interoperability, and security standards.

The adoption of smart home technologies by many people will require joint efforts to
educate consumers effectively. Future undertakings should aim at demystifying the tech-
nologies involved and explaining what is beneficial or risky about them by providing
accessible, clear information that allows a consumer to make reasoned choices. Moreover,
investigating market trends and consumer behaviors could provide insights into how best
products can be customized to users’ changing needs and expectations.

In conclusion, it may be observed that although numerous technical breakthroughs have
occurred, allowing smart homes to enhance lives each day, fully utilizing these oppor-
tunities means tackling several technical challenges alongside complex social and ethical
issues. The heterogeneity of IoT devices presents a unique challenge in ensuring com-
patibility and security across different manufacturers and platforms, directly impacting
user privacy and data protection. Addressing these privacy concerns is critical as smart
homes increasingly rely on interconnected devices that collect and process vast amounts
of personal information.

Through cross-cutting research and collaborations among various industry actors, it is
possible to develop robust solutions that address both the technical and privacy chal-
lenges posed by heterogeneous IoT environments. This collaborative approach can lead
to the next generation of smart home technology that balances innovation, user-centricity,
sustainability, and privacy protection. By prioritizing security and privacy, we can foster
trust and confidence in smart home technologies, ensuring they continue to enhance lives
while safeguarding personal data.

6.8 Conclusion

The summary of the existing literature has dealt exhaustively with the multifaceted re-
lations between heterogeneous IoT networks and privacy in the smart home context. As
IoT becomes part of daily lives, it brings improved convenience and efficiency but also
significant challenges and risks, particularly regarding privacy and security.

From a vulnerability approach, it becomes clear that while IoT technologies significantly
benefit automation and energy efficiency, they also present substantial risks by potentially
exposing sensitive personal information. These gaps particularly concern less-known IoT
device manufacturers and commonly used security devices, underscoring the need for
tighter security approaches and strong privacy safeguards. This chapter also highlights
that advanced regulatory frameworks, such as GDPR or nFADP, can help consumers by
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providing high standards for data protection, thereby addressing the privacy implications
of heterogeneous IoT networks.

Further analysis indicates that consumers need education on how IoT technologies impact
their privacy. Individuals should be aware of the dangers related to devices being hacked or
infected with malware. Given the dynamic nature of IoT technology, continuous monitor-
ing of developments, coupled with regular updates to security protocols, is indispensable
to maintain privacy in an environment with diverse devices and manufacturers.

Future research must ensure more secure IoT architectures, especially those integrating
privacy-enhancing technologies. New encryption methods, dependable access control sys-
tems, and intuitive interfaces for viewing and monitoring personal information will be
essential. Lastly, within smart homes where IoT devices increasingly communicate with
each other, research must explore the implications of these interactions on user privacy
and data safety.

All in all, while there are undeniable advantages associated with expanding IoT devices
in smart homes, a balanced approach is necessary to address the corresponding privacy
and security issues. Therefore, the chapter seeks collective action among researchers, pro-
ducers, policymakers, and end-users to achieve sophisticated levels of security and privacy
within smart homes. By fostering transparency, continuously innovating, and respecting
privacy, the opportunities presented by IoT within smart homes can be maximized while
minimizing vulnerabilities associated with their heterogeneity.
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Chapter 7

Leveraging Blockchain Technology for
Enhanced Financial Services

Cyrill Meier

Blockchain technology, a decentralized digital ledger system, is rapidly transforming the
landscape of digital transactions and data management across various industries. This
paper explores the fundamental aspects of blockchain technology, including its operational
mechanisms, foundational concepts such as immutability, decentralization, and consensus
algorithms, and the significant impact it has had on the financial sector. We delve into
how blockchain underpins cryptocurrencies like Bitcoin, facilitating secure and transpar-
ent transactions without the need for central authority. Further, the paper discusses the
broader applications of blockchain beyond financial transactions, such as in legal contracts
and healthcare records, emphasizing its potential to enhance transparency, efficiency, and
security across different sectors. The introduction of Bitcoin ETFs and the implications
of blockchain technology on traditional financial systems, particularly in addressing chal-
lenges related to scalability, security, and regulatory compliance, are also examined. By
analyzing these elements, this study highlights the revolutionary potential of blockchain to
redefine global transaction mechanisms and suggests future directions for its development
and integration into mainstream economic systems.
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7.1 Introduction to Blockchain Technology

Blockchain technology, fundamentally a decentralized digital ledger, records transactions
across numerous computers in a way that the registered transactions cannot be altered
retroactively. This technology underpins cryptocurrencies like Bitcoin, providing a robust
architecture that maintains a secure and transparent transaction record. Each ’block’ in
the chain comprises a number of transactions, and every time a new transaction occurs
on the blockchain, a record of that transaction is added to every participant’s ledger.
The decentralization aspect of blockchain is crucial, as it ensures that no single entity
has control over the entire chain, thereby enhancing security and integrity. The addition
of blocks to the blockchain involves a process known as mining, which requires solving
complex cryptographic puzzles. Once solved, the block is added to the chain, a move that
is immediately visible to all participants and is secured by the collective agreement of all
nodes in the network, thus providing trust and security in a decentralized manner. [23]

Blockchain technology extends far beyond just the financial sector, despite its significant
impact there. Originally, a blockchain comprised linked blocks of cryptocurrency trans-
actions, a novel concept that quickly garnered substantial interest, particularly within
the FinTech community. Conceptualized by Satoshi Nakamoto in 2008, blockchain tech-
nology was first applied in a practical way to timestamp digital documents without the
need for a central authority. Each block in the chain securely contains transaction data,
a timestamp, and a cryptographic hash of the previous block, linking them securely. This
design employs a method similar to Hashcash, allowing blocks to be added sequentially
and securely without requiring a trusted intermediary. [34] [26]

The use of blockchain as the foundational technology for Bitcoin and other cryptocur-
rencies has drawn widespread attention. It is increasingly regarded as a revolutionary
framework for conducting and recording transactions globally. This rapid evolution of
blockchain has prompted a shift in how businesses operate, driving innovations that
promise to transform various industry sectors.

One of the most significant developments in this realm is the introduction of Bitcoin
Exchange-Traded Funds (ETFs). An ETF is a type of security that tracks an index,
commodity, bonds, or a basket of assets like an index fund but trades like a stock on an
exchange. Bitcoin ETFs represent a breakthrough, offering investors a more traditional
way to gain exposure to Bitcoin without the complexities of managing actual cryptocur-
rency holdings. [8]

Blockchain technology is distinguished by several foundational concepts that ensure its
robustness, security, and efficiency. These key concepts are pivotal to its function and
widespread application across various industries. Here, we explore these critical elements
in detail: [34]

Immutability: One of the cornerstone features of blockchain technology is its immutability.
Each block within the blockchain is linked to the previous one via a hash pointer, which
contains the hash of the data in the previous block. This structure inherently makes it
tamper-proof. Hash functions are designed to be one-way and collision-resistant, meaning
that once data has been entered into the blockchain, it cannot be altered without redoing
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all subsequent blocks. This immutable record-keeping is crucial for applications where
the integrity of the data is paramount, such as financial transactions, legal contracts, and
medical records. [15]

No Single Point of Failure: Unlike traditional centralized databases, blockchain operates
on a peer-to-peer (P2P) network architecture. Each node or participant in the network
maintains a copy of the entire blockchain, which ensures that there is no single point
of failure. Even if one or more nodes experience a malfunction or are attacked, the
overall system continues to function effectively without any data loss. This decentralized
nature not only enhances the robustness of the system but also distributes trust among
all participants. [32]

Consensus Algorithms: Trust among decentralized nodes is achieved through consensus
algorithms, which are the rules by which the nodes agree on the state of the blockchain.
Since nodes do not necessarily trust each other, they rely on a consensus mechanism to
agree on ledger updates. The most widely adopted consensus algorithm in blockchain is
Proof of Work (PoW), utilized by networks like Bitcoin. Other popular algorithms include
Proof of Stake (PoS) and Practical Byzantine Fault Tolerance (PBFT). Each algorithm
has its own mechanism to ensure that all transactions are agreed upon fairly, without the
need for a central authority, thereby maintaining the integrity and security of the network.
[3], [21], [11]

Data Transparency: Blockchain provides an unprecedented level of transparency. Every
transaction on the blockchain is visible to all participants and cannot be changed once
confirmed. This transparency ensures that all transactions are verifiable and traceable.
In financial contexts, this means that money flows can be tracked and audited in real-
time. In supply chains, this visibility helps verify the authenticity of the claimed goods at
every point in their journey. Together, these key concepts not only define the operation
of blockchain technology but also contribute to its strength as a disruptive technological
force in various sectors. By leveraging immutability, decentralization, consensus mecha-
nisms, and transparency, blockchain provides a secure, efficient, and transparent way for
information exchange and value transfer in a digital world. [18]

7.2 Understanding the Basics of Financial Services

The financial services industry plays a critical role in the global economy, facilitating
transactions, investments, and the management of financial risk. This sector includes a
diverse range of services, such as banking, insurance, investments, and real estate, each
essential to the economic infrastructure. [1]

Traditional financial systems are centralized, where crucial operations like clearance, set-
tlements, and record-keeping are managed by central entities such as banks and clearing-
houses. This centralized structure introduces inefficiencies, making financial transactions
slower and more costly, particularly evident in international money transfers governed
by the traditional ”SWIFT” system. Centralization also raises significant risks, includ-
ing fraud, errors, and operational risks due to the extensive human involvement and the
intricate nature of global financial regulations.
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Moreover, these systems often struggle with accessibility issues, failing to adequately
serve underbanked populations, especially in less developed regions. The dependency on
physical infrastructure and centralized operations limits service availability and drives up
costs for consumers. Additionally, traditional financial systems typically suffer from a lack
of transparency, which can lead to corruption and mismanagement, undermining trust in
financial institutions. [28]

7.3 The Role of Blockchain in Financial Services

Blockchain technology introduces several transformative advantages for the financial ser-
vices industry. First, its decentralized nature significantly reduces the reliance on central
authorities or intermediaries, leading to lower transaction costs and faster processing
times. The inherent design of blockchain also enhances security and trust, as each trans-
action is encrypted and linked to the previous transaction, making it nearly impossible to
alter historical data without detection across the entire network. Furthermore, blockchain
technology increases transparency, allowing all parties in the network to view transaction
histories, thus reducing the potential for fraud and increasing accountability in financial
operations. [23]

Identity Verification

Blockchain technology significantly enhances the Know Your Customer (KYC) process
for financial institutions. It streamlines operations by providing a secure, immutable, and
transparent framework that enhances the accuracy of identity verification while protecting
sensitive personal data. This leads to improved compliance with regulatory requirements
and reduced risk of data breaches. [13]

Fraud Reduction

The inherent transparency and immutability of blockchain are instrumental in reducing
the incidence of financial fraud. By making every transaction traceable and unalterable
once recorded on the blockchain, it becomes significantly more challenging for fraudulent
activities to occur unnoticed. [13]

Smart Contracts

Blockchain facilitates the use of smart contracts, which are self-executing contracts with
the terms of the agreement directly written into lines of code. These contracts automati-
cally enforce and execute contractual obligations without the need for human intervention,
thereby saving time, reducing disputes, and increasing efficiency. [13]
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Peer-to-Peer (P2P) Lending

In the realm of syndicated loans, where multiple lenders share a single loan, blockchain
can simplify and enhance the efficiency of the agreement and settlement processes. The
technology provides a transparent platform that allows all parties to monitor and verify
terms and transactions, streamlining the overall process. [13]

Payments

Blockchain enables significantly faster and more cost-effective payment processing com-
pared to traditional systems. By facilitating peer-to-peer transactions without the need
for intermediaries, blockchain reduces transaction fees and minimizes processing delays,
particularly in cross-border transactions. This technology supports a seamless transfer
of value across borders, bypassing the complexities and costs associated with multiple
intermediary banks and currency exchanges [25].

Clearing and Settlement

Traditional clearing and settlement processes can be cumbersome, requiring several days
to complete due to the need for manual reconciliation among various parties. Blockchain
technology streamlines this process by providing a single, immutable ledger that is acces-
sible to all transaction parties. This feature allows for almost instantaneous settlements,
reducing counterparty risks and significantly freeing up capital that would otherwise be
tied up during the settlement period [17].

Trade Finance

Trade finance is another area where blockchain brings considerable improvements. The
traditional reliance on paper-based systems and manual handling in trade finance intro-
duces delays and potential for errors and fraud. Blockchain offers a digitized, secure,
and transparent network where all parties-banks, traders, and other intermediaries-can
interact with the assurance that the data is accurate and immutable. This technology
facilitates faster validations, and the automated execution of agreements through smart
contracts ensures compliance and swift processing of trade documentation [4].

Regulatory Compliance

Blockchain substantially aids in meeting regulatory compliance requirements, particularly
in sectors such as anti-money laundering (AML) and know your customer (KYC). The
transparency of blockchain ensures that all transactions are traceable and immutable,
allowing financial institutions to monitor and report suspicious activities more efficiently.
Moreover, the shared ledger in a blockchain can be accessed by regulators in real-time,
facilitating better monitoring and enforcement of regulatory compliance [10].
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7.4 Regulatory Landscape and Challenges

Privacy and Security Concerns

With transparency being one of the primary purposes of blockchains, privacy emerges
as a critical concern, especially in the FinTech sector. Implementing blockchain technol-
ogy must comply with stringent data protection regulations such as the General Data
Protection Regulation (GDPR) [19], the Personal Information Protection and Electronic
Documents Act (PIPEDA) [9], and the California Consumer Privacy Act (CCPA) [29].

These data protection laws significantly impact the adoption of blockchain within FinTech.
For instance, the immutability of blockchain, which is one of its core strengths, conflicts
with GDPR’s right to be forgotten. This right allows users to withdraw and delete their
transactions and personal information, including any encrypted data [19].

One possible solution to address these privacy concerns is utilizing off-chain storage for
personal data. In this approach, personal data is stored and maintained off the blockchain,
and only a hash of the data is recorded on the ledger. While this method helps comply
with privacy regulations, it also reduces the transparency benefit, which is a fundamental
attribute of blockchain technology.

Current Regulations and Compliance Issues

With the increasing adoption of blockchain technology globally, countries such as Aus-
tralia, the US, South Korea, Switzerland, China, the UK, Japan, Singapore, Hong Kong,
and Canada are intensifying efforts to regulate blockchain to prevent fraud and other
illegal activities that could harm consumer interests and market stability [36]. Regula-
tory uncertainties pose several challenges as described by Interviewee A: “The technical
challenge of Blockchain is that no matter how perfect the Blockchain technology is, it can-
not guarantee the authenticity of offline data. The data in question will be permanently
recorded on the Blockchain if there is a problem with the data source. Since Blockchain is
decentralized, without the supervision of laws and personnel, and it is difficult to change
records on the chain, all of these will cause some problems.”

Furthermore, some governments view cryptocurrencies as illegal, with Bitcoin being unre-
stricted in only about 110 countries [33]. This regulatory gap is due to the novelty of the
asset class, which has led to a lack of adapted policies by governments and banks. This
situation becomes problematic in instances of fraud, bankruptcy, and other failures, espe-
cially for companies operating across multiple jurisdictions [22]. The uncertain taxation
status and trading rules of cryptocurrencies like Bitcoin could change abruptly, posing
significant risks.

Additionally, the absence of robust regulation can lead to market manipulation by a small
group of crypto owners. Nguyen (2016) highlighted that the lack of legal and regulatory
frameworks on Bitcoin and cryptocurrency significantly hinders the full application of
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blockchain technology. Nguyen stated, “We are supposed to pay attention to the legiti-
macy of Blockchain. Although there are no specific regulations on Blockchain until now,
relevant laws might be introduced once some new products of Blockchain appear. The
award method is one of the intrinsic properties of Blockchain, so how to define the nature
of these rewards, whether these conducts violate the law, all of these are needed to be
discussed” [27].

Regulatory Challenges in Adopting Blockchain

One of the primary regulatory challenges in adopting blockchain within financial services
is the technology’s decentralized nature, which does not fit neatly into traditional reg-
ulatory frameworks designed for centralized financial systems. Regulatory bodies face
difficulties in applying old rules to new paradigms, such as dealing with the anonymity
of cryptocurrency transactions, which poses challenges for anti-money laundering (AML)
and combating the financing of terrorism (CFT). Moreover, the cross-jurisdictional nature
of blockchain can complicate the enforcement of regulations when multiple countries with
differing laws are involved [22] [27] .

7.5 Implementing Blockchain in Financial Institutions

This section explores the Blockchain Fit Assessment Framework as applied within the
banking sector, focusing on identifying processes where blockchain technology can pro-
vide significant enhancements. The framework evaluates potential blockchain integration
across various banking functions by assessing critical factors such as intermediaries, trans-
parency needs, information storage, manual processing, trust, documentation, and time
sensitivity. This systematic approach aims to determine the appropriateness of blockchain
solutions for specific banking processes, ensuring that the technology’s deployment aligns
with strategic operational improvements and addresses existing pain points effectively.
The second part of this section, will be focusing on a concrete Case Study in the Indian
Banking Sector.

Blockchain Fit Assessment Framework

In an era where efficiency and security are paramount in banking, blockchain technol-
ogy presents a transformative approach to redesign traditional banking systems. The
Blockchain Fit Assessment Framework serves as a critical tool for banks, helping them
evaluate and select optimal processes for blockchain implementation. It identifies areas
where blockchain can reduce costs, enhance speed, improve transparency, and bolster
security. [35]
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The Framework’s Components

The Blockchain Fit Assessment Framework consists of several components that collectively
determine the suitability of blockchain for a banking process:

• Intermediary Needs: Examines whether the process involves intermediaries who
add complexity and cost.

• Transparency Requirements: Considers whether increased transparency could en-
hance process integrity and stakeholder trust.

• Information Storage: Assesses the efficiency gains from decentralized storage.

• Manual Processing: Identifies processes that are labor-intensive and prone to errors,
making them ideal candidates for automation through blockchain.

• Trust Factors: Evaluates the level of trust among participants and the potential for
blockchain to enhance it.

• Documentation: Looks at whether the process involves extensive paperwork that
blockchain could digitize and streamline.

• Time Sensitivity: Considers if the timeliness of the process is critical, which blockchain
could improve through real-time updates. [35]

Application of the Framework

Applying the Blockchain Fit Assessment Framework involves a detailed analysis of each
component within a banking process. For example, in cross-border payments, the frame-
work would analyze the high costs associated with intermediaries, the benefits of in-
creased transaction transparency, and the impact of real-time settlements on transaction
efficiency. Each component is scored based on its alignment with blockchain capabilities,
guiding decision-makers in pinpointing processes that would benefit most from blockchain
integration. [35]

Benefits and Impacts

The implementation of blockchain, as suggested by the framework, offers numerous ben-
efits:

• Reduced Costs: By eliminating intermediaries and reducing manual processing.

• Enhanced Security: Through immutable and transparent record-keeping.

• Increased Efficiency: Via automated processes and faster settlements.

• Improved Compliance: With enhanced data integrity and audit trails. [35]
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Case Study in the Indian Banking Sector

Steps to Implement Blockchain Solutions

The Indian banking sector is progressively adopting blockchain technology to enhance
efficiency and security. The implementation process involves a sequence of strategic steps:

1. Formation of internal specialized teams tasked with researching blockchain technol-
ogy and its potential impact on banking operations.

2. Making informed strategic investment decisions by studying the implementation of
blockchain in banks across the globe.

3. Selecting an appropriate blockchain ecosystem that aligns with the bank’s scalability
needs and service offerings.

4. Ensuring that the integration of blockchain with existing banking infrastructure
does not compromise data security.

5. Initiating pilot projects to explore the tangible benefits of blockchain and developing
strategies for data privacy and security.

These steps constitute a framework that Indian banks are using to navigate the transition
towards blockchain-enabled banking services, balancing innovation with prudence.

Considerations for Blockchain Integration in the Indian Banking Sector

As the Indian banking sector integrates blockchain technology, several key considerations
emerge:

1. The interoperability and standardization of blockchain systems are crucial for seam-
less integration and are hindered by the lack of common international standards.

2. The legal and regulatory framework must be clearly defined, especially for transac-
tions that span multiple jurisdictions.

3. Operational feasibility is vital, requiring the capability to assimilate blockchain
within the existing systems and practices among various stakeholders.

4. Ensuring multi-level security is paramount in protecting the blockchain infrastruc-
ture against cyber threats.

5. Regulatory bodies must be fully cooperative and involved to enable the adoption of
blockchain technology within the banking ecosystem.

6. Cost distribution strategies should be devised in collaboration with partners to en-
sure long-term sustainability.
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7. Data privacy considerations dictate that only pertinent and secure transaction infor-
mation is shared on the blockchain, respecting customer privacy and data protection
regulations.

These considerations play a pivotal role in the successful integration of blockchain technol-
ogy, dictating the operational effectiveness and adoption rate within the banking sector.
[30], [37]

7.6 Future Trends and Opportunities

CBDCs are issued as legal tender by a country’s central bank, incorporating features
designed to facilitate efficient and secure financial operations:

• Centralized Issuance: Governed by the central bank, CBDCs carry intrinsic value
derived from national economic policies.

• Transferability: They function as a medium of exchange for economic activities,
maintaining a zero-sum game to ensure one entity’s gain is another’s loss.

• Storability: CBDC transactions are securely recorded in digital formats, accessible
via electronic devices for effective payment management.

• Offline Transactions: CBDCs support offline functionalities, catering to individuals
without constant internet access or sophisticated devices, similar to traditional credit
and debit systems.

• Exchangeability: Facilitates easy conversion between CBDCs and other digital or
fiat currencies, enhancing liquidity and reducing exchange times. [20]

Various models have been proposed to address the unique requirements of CBDCs:

• Permissioned Blockchain Models: Sun et al. suggested using permissioned blockchain
managed by central and commercial banks, enhancing security and mitigating risks
like double-spending.

• Hybrid Digital Currency Schemes: Zhang et al. introduced a model combining
Unspent Transaction Output (UTXO) and Account schemes to optimize transaction
efficiency and data storage. [38]

Challenges in Implementing CBDCs

Implementing CBDCs involves several challenges that need to be meticulously addressed:

• Security Concerns: Ensuring the safety of private keys and preventing unauthorized
transactions is paramount.
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• Scalability Issues: The public key infrastructure (PKI) and other technologies must
handle vast numbers of transactions without performance degradation.

• Regulatory Compliance: CBDCs must comply with KYC and anti-money launder-
ing laws, posing challenges for transaction auditing and data privacy.

• Technological Overheads: Advanced schemes like Zero-Knowledge Proofs (ZKPs)
are required to audit transactions while preserving privacy, adding complexity to
the CBDC systems. [7], [12]

Current Status of CBDCs

As the financial landscape evolves, several countries have made significant strides in CBDC
development. This section details the progress in various regions.

Switzerland

The Swiss National Bank (SNB) has been conducting research and pilot projects to un-
derstand and evaluate the implications of introducing a CBDC.

One notable initiative is the ”Project Helvetia,” a collaboration between the SNB, the
Bank for International Settlements (BIS), and the Swiss financial services company SIX.
This project explores the integration of digital central bank money into a distributed
ledger technology (DLT) platform. The project aims to examine the legal, technical, and
policy aspects of processing tokenized assets with both wholesale and potentially retail
CBDCs.

Project Helvetia has successfully demonstrated the feasibility of integrating digital cen-
tral bank money into existing banking systems and the DLT platform operated by SIX.
The experiments conducted under this project have focused on wholesale CBDC applica-
tions, meaning the digital currency is used for large-scale transactions between financial
institutions rather than for everyday consumer use.

Switzerland’s approach has been somewhat cautious and focused on thorough research
before making any decisions about wide-scale implementation. The SNB has emphasized
that its exploration of CBDCs does not necessarily mean that a Swiss CBDC will be
issued imminently but is part of its ongoing efforts to stay at the forefront of technological
developments in the financial sector. [14] [2]

7.7 Risks and Mitigation Strategies

Scalability Issues

The scalability of blockchain technology becomes increasingly challenging as transaction
volumes grow. Zheng et al. [39] note that the blockchain can become unwieldy with the
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addition of numerous transactions. Marr [24] elaborates that the complexity, encrypted
nature, and distributed architecture of blockchain transactions contribute to delays in
their processing times.

Ethereum, an open-source, public, blockchain-based computing platform, also generates
a cryptocurrency known as Ether. According to Chen et al. [16], the platform supports
over one million smart contracts and has become a hub for numerous developers and
entrepreneurs to launch new projects and startups.

In terms of transaction processing speed, it significant dispares when compared to tra-
ditional payment systems: Visa processes approximately 24,000 transactions per second,
PayPal manages 193, whereas Ethereum and Bitcoin can handle only about 20 transac-
tions per second. This limitation is critical, as it impedes the blockchain’s capacity to
process large volumes of transactions swiftly. The primary constraint lies in the limited
capacity of blockchain blocks, which leads to delays in processing smaller transactions, as
miners often prioritize transactions that include higher fees [5].

Solana’s innovation in blockchain scalability is evidenced by its adoption of the Proof of
History (PoH) consensus, which enables high throughput without sacrificing security. In
a study that collected and analyzed data over a two-month period, the Solana blockchain
demonstrated an average transactions’ throughput of approximately 2812 transactions per
second (TPS). This significantly surpasses the capabilities of more established blockchains
like Bitcoin and Ethereum. Furthermore, the study observed that transaction fees on
Solana are substantially lower than those on comparable blockchains, making it an eco-
nomically attractive option for users and developers alike. [31]

7.8 Public Perception and Trust

Public perception of blockchain technology is tinged with significant concerns that could
hinder its broader adoption. Notably, apprehensions regarding the legality and regulatory
environment surrounding blockchain and cryptocurrencies play a pivotal role in shaping
public sentiment. These concerns are critical as they influence trust and acceptance
among potential users and investors, affecting the overall market stability and growth
potential of blockchain applications. Furthermore, the public’s worry about the volatility
of cryptocurrencies and the security of blockchain transactions underscores the need for
robust, clear regulatory frameworks and advanced security solutions to foster a safe, stable
environment for blockchain operations.

The results from the sentiment analysis reveal a nuanced landscape of public opinion
across different regions. From the bar graph presented in Figure 1.1, it is evident that
Sweden leads with the highest positive public sentiment towards cryptocurrency, which
could be attributed to its supportive regulatory environment and a high degree of tech-
nological integration in society. In contrast, the UK exhibits more cautious and less
positive attitudes, likely influenced by ongoing debates about cryptocurrency regulations
and economic implications. These regional variations in public sentiment underscore the
importance of localized approaches to policy-making and community engagement to pro-
mote the adoption of blockchain technology. [6]
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Figure 7.1: Public perception (positive, negative and neutral) in top identified locations

7.9 Conclusion

This paper has critically examined the transformative potential of blockchain technology
in redefining the mechanisms of transactions and data management across various sec-
tors. Through an in-depth analysis of blockchain’s foundational concepts-immutability,
decentralization, consensus algorithms, and transparency-we have demonstrated how it
establishes a robust framework for secure and efficient digital transactions. Notably,
blockchain’s significant impact on the financial sector has been highlighted, illustrating
its role in enhancing the transparency, efficiency, and security of financial transactions.
This includes its application in innovative financial instruments such as Bitcoin ETFs,
which bridge the gap between traditional investment mechanisms and the digital cur-
rency space.

The exploration of blockchain’s applications has extended beyond financial transactions
to include critical areas such as legal documentation, healthcare records, and identity
verification, showcasing its versatility and wide-ranging implications. Furthermore, the
discussion on the challenges of scalability and regulatory compliance underscores the on-
going need for development and adaptation in blockchain technology.

As blockchain technology continues to evolve, it holds the promise to radically alter not
just financial systems but also the way in which transparent and secure data management
is conducted globally. Future research should focus on addressing the scalability chal-
lenges, enhancing the interoperability among diverse blockchain systems, and developing
more inclusive regulatory frameworks that can keep pace with the rapid advancements in
blockchain applications.

In conclusion, blockchain technology not only offers a powerful tool for managing trans-
actions and data but also serves as a catalyst for innovation across numerous fields. By
continuing to harness its potential responsibly, blockchain can provide a foundational
technology that supports a more efficient, transparent, and secure global information ex-
change.



Bibliography

[1] O. Ali, Clutterbuck M. Ally, and Y. Dwivedi. “The state of play of blockchain
technology in the financial services sector: A systematic literature review”. In: In-
ternational Journal of Information Management 54.102199 (2020), pp. 1–13. url:
https://komodoplatform.com/en/academy/blockchain-technology-types/.

[2] SIX Group Bank for International Settlements and Swiss National Bank. Project
Helvetia Phase II: Settling tokenised assets in wholesale CBDC. Jan. 2022. url:
https://www.bis.org/publ/othp45.htm.

[3] S. Bano et al. “Consensus in the age of blockchains”. 2017.
[4] J. K. Bartholomew. “Application of Blockchain Technology in the Manufacturing

Industry”. In: Journal of Industrial Technology 34.3 (2018), pp. 22–27.
[5] B. Biais et al. “The Blockchain folk theorem”. In: Rev. Financ. Stud. 32.5 (2019),

pp. 1662–1715.
[6] S. Bibi, S. Hussain, and M. I. Faisal. “Public Perception Based Recommendation

System for Cryptocurrency”. In: Proceedings of the 2019 16th International Bhurban
Conference on Applied Sciences & Technology (IBCAST). Pakistan: Islamabad, Jan.
2019, pp. 661–665.

[7] W. Bolt, V. Lubbersen, and P. Wierts. Getting the balance right: Crypto, stablecoin
and CBDC. Working Paper 736. De Nederlandsche Bank, Jan. 2022. doi: 10.2139/
ssrn.4014319.

[8] Alessio Brini and Jimmie Lenz. Bitcoin ETFs: Measuring the Performance of This
New Market Niche. July 2022. url: https://papers.ssrn.com/sol3/papers.
cfm?abstract_id=4157711.

[9] The Privacy Commissioner of Canada. The Personal Information Protection and
Electronic Documents Act (PIPEDA). Aug. 1, 2022. 2022. url: https://www.
priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-

information-protection-and-electronic-documents-act-pipeda/.
[10] M. Casey and P. Vigna.“The Age of Cryptocurrency: How Bitcoin and the Blockchain

Are Challenging the Global Economic Order”. In: Digital Currency Initiative, MIT
Media Lab (2015).

[11] A. Castor. “A (short) guide to blockchain consensus protocols (2017)”. In: (2017).
[12] D. Chang, H. Wang, and Z. Wu. “Maximum principle for non-zero sum differential

games of BSDEs involving impulse controls”. In: Proc. 32nd Chin. Control Conf.
2013, 2013, pp. 1564–1569.

[13] V. Chang et al. How Blockchain can impact financial services, The overview, chal-
lenges and recommendations from expert interviewees. School of Computing, Engi-
neering and Digital Technologies, Teesside University, 2022.

163

https://komodoplatform.com/en/academy/blockchain-technology-types/
https://www.bis.org/publ/othp45.htm
https://doi.org/10.2139/ssrn.4014319
https://doi.org/10.2139/ssrn.4014319
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4157711
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4157711
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/


164 Leveraging Blockchain Technology for Enhanced Financial Services

[14] D. Chaum, C. Grothoff, and T. Moser. How to issue a central bank digital currency.
Working Paper 3/2021. Zurich, Switzerland. Swiss National Bank, Mar. 2021.

[15] F. Chen et al.“Secure scheme against compromised hash in proof-of-work blockchain”.
In: Proc. Int. Conf. Netw. Syst. Secur., 2018, 2018, pp. 1–15.

[16] W. Chen et al. “Detecting ponzi schemes on ethereum: towards healthier blockchain
technology”. In: Proceedings of the World Wide Web Conference on World Wide
Web. 2018, pp. 1409–1418. doi: 10.1145/3178876.3186046.

[17] K. Croman et al. “On Scaling Decentralized Blockchains”. In: Proc. 3rd Workshop
on Bitcoin and Blockchain Research. 2016.

[18] Four types of blockchain technology. 2022.
[19] Eu Gdpr. What is GDPR, the EU’s New Data Protection Law? Aug. 1, 2022. 2022.

url: https://gdpr.eu/what-is-gdpr/.
[20] X. Han, Y. Yuan, and F.-Y. Wang. “A blockchain-based framework for central bank

digital currency”. In: Proc. IEEE Int. Conf. Serv. Operations Logistics, Inform.
2019, 2019, pp. 263–268.

[21] A. Juels and J. Brainard. “Cryptographic countermeasures against connection de-
pletion attacks”. In: U. S. Patent 7197639, 27 (Mar. 2007).

[22] R. Lewis, J. W. McPartland, and R. Ranjan. “Blockchain and financial market
innovation”. In: Economic Perspectives 41 (2017), pp. 1–17.

[23] Markets and markets report. Mar. 2023. url: https://www.marketsandmarkets.
com/Market-Reports/blockchain-technology-market-90100890.html.

[24] B. Marr. The 5 Big Problems with Blockchain Everyone Should Be Aware Of. Avail-
able: Forbes, Feb. 19. 2018. url: https://www.forbes.com/sites/bernardmarr/
2018/02/19/the-5-big-problems-with-blockchain-everyone-should-be-

aware-of/?sh=4f01c45d1670.
[25] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.
[26] Arvind Narayanan et al. Bitcoin and Cryptocurrency Technologies: A Comprehen-

sive Introduction. Bitcoin and Cryptocurrency Technologies: A Comprehensive In-
troduction. Princeton Univsersity Press, 2016. url: https://www.marketsandmarkets.
com/Market-Reports/blockchain-technology-market-90100890.html.

[27] Q. K. Nguyen.“Blockchain - A Financial Technology for Future Sustainable Develop-
ment”. In: Proceedings of the 3rd International Conference on Green Technology and
Sustainable Development (GTSD). 2016, pp. 51–54. doi: 10.1109/GTSD.2016.22.

[28] A. Norta, B. Leiding, and A. Lane. “Lowering financial inclusion barriers with a
blockchain-based capital transfer system”. In: Proceedings of the IEEE INFOCOM
2019—IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). Paris, Apr. 2019, pp. 319–324.

[29] State of. California Consumer Privacy Act (CCPA). Aug. 1, 2022. 2022. url:
https://oag.ca.gov/privacy/ccpa.

[30] A. Patki and V. Sople. “Indian banking sector: blockchain implementation, chal-
lenges and way forward”. In: Journal of Banking and Financial Technology 4 (2020),
pp. 42786–020. doi: 10.1007/s42786-020-00019-w.

[31] G. A. Pierro and R. Tonelli. “Can Solana be the Solution to the Blockchain Scalabil-
ity Problem?”In: Proc. IEEE International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER). 2022, pp. 1219–1226. doi: 10.1109/SANER53432.
2022.00144.

https://doi.org/10.1145/3178876.3186046
https://gdpr.eu/what-is-gdpr/
https://www.marketsandmarkets.com/Market-Reports/blockchain-technology-market-90100890.html
https://www.marketsandmarkets.com/Market-Reports/blockchain-technology-market-90100890.html
F
https://www.forbes.com/sites/bernardmarr/2018/02/19/the-5-big-problems-with-blockchain-everyone-should-be-aware-of/?sh=4f01c45d1670
https://www.forbes.com/sites/bernardmarr/2018/02/19/the-5-big-problems-with-blockchain-everyone-should-be-aware-of/?sh=4f01c45d1670
https://www.forbes.com/sites/bernardmarr/2018/02/19/the-5-big-problems-with-blockchain-everyone-should-be-aware-of/?sh=4f01c45d1670
https://www.marketsandmarkets.com/Market-Reports/blockchain-technology-market-90100890.html
https://www.marketsandmarkets.com/Market-Reports/blockchain-technology-market-90100890.html
https://doi.org/10.1109/GTSD.2016.22
https://oag.ca.gov/privacy/ccpa
https://doi.org/10.1007/s42786-020-00019-w
https://doi.org/10.1109/SANER53432.2022.00144
https://doi.org/10.1109/SANER53432.2022.00144


Cyrill Meier 165

[32] B. Pillai et al. “Crossblockchain technology: Integration framework and security
assumptions”. In: IEEE Access 10 (2022), pp. 41239–41259.

[33] D. Price. 5 Big Blockchain Issues: Security, Privacy, Legal, Regulatory, and Ethical.
Oct. 3, 2018. 2018. url: https://blocksdecoded.com/Blockchain- issues-
security-privacy-legal-regulatory-ethical/.

[34] Report on Survey of Blockchain Technology: Potential to Disrupt All Industries.
2016. url: https://www.chainnode.com/doc/415.

[35] T. Shah and S. Jani. Applications of Blockchain Technology in Banking & Finance.
Technical Report. Parul University, Vadodara, India, Feb. 2018. doi: 10.13140/
RG.2.2.35237.96489.

[36] B. M. Till et al. “From Blockchain technology to global health equity: can cryp-
tocurrencies finance universal health coverage?” In: BMJ Global Health 2.4 (2017),
e000570. doi: 10.1136/bmjgh-2017-000570.

[37] S. Yoo. “Blockchain based financial case analysis and its implications”. In: Asia
Pacific Journal of Innovation and Entrepreneurship 11.3 (2017), pp. 312–321. doi:
10.1108/APJIE-12-2017-036.

[38] J. Zhang et al.“A hybrid model for central bank digital currency based on blockchain”.
In: IEEE Access 9 (2021), pp. 53589–53601.

[39] Z. Zheng et al. “Blockchain challenges and opportunities: a survey”. In: Int. J. Web
Grid Serv. 14.4 (2018), pp. 352–375. doi: 10.1504/IJWGS.2018.095647.

https://blocksdecoded.com/Blockchain-issues-security-privacy-legal-regulatory-ethical/
https://blocksdecoded.com/Blockchain-issues-security-privacy-legal-regulatory-ethical/
https://www.chainnode.com/doc/415
https://doi.org/10.13140/RG.2.2.35237.96489
https://doi.org/10.13140/RG.2.2.35237.96489
https://doi.org/10.1136/bmjgh-2017-000570
https://doi.org/10.1108/APJIE-12-2017-036
https://doi.org/10.1504/IJWGS.2018.095647


166 Leveraging Blockchain Technology for Enhanced Financial Services



Cyrill Meier 167


	An Overview and Analysis of SIMD-driven Parallelism in Networking Applications
	Privacy Preserving Synthetic Data Generation: A Taxonomy and Scoping Review
	Federated Learning of Large Language Models (LLM) — A Review
	Inference Attacks on Machine Learning
	DNS Security and Privacy: The Landscape of Attacks and Mitigations
	Impact of Heterogeneous IoT Networks in Case of Smart Homes on Privacy
	Leveraging Blockchain Technology for Enhanced Financial Services 

