
RDF-based IT Configuration
Management Database

Daniel Meier
Zurich, Switzerland

Student ID: 04-907-796

Supervisor: Guilherme Sperb Machado
Date of Submission: April 15th, 2011

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland

B
A

C
H

E
L

O
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

These days, a lot of organizations are highly dependent on their IT infrastructure. Many
organizational service provisioning processes are depending on reliable and high-quality
IT services. Therefore the area of IT Service Management (ITSM) has become a very im-
portant disciple. One of the most established ITSM approaches is the IT Infrastructure
Library (ITIL) Version 3, a set of best practices for managing IT infrastructures. ITIL V3
proposes the concept of maintaining a Configuration Management System (CMS), which
aggregates the data of multiple Configuration Management Databases (CMDB). This con-
cept supports the management of heterogeneous IT environments as well as guaranteeing
the integrity of the maintained infrastructure data.

The developed Semantic Configuration Management Database (SeConD) framework pro-
vides the common functionalities required by a CMDB for managing IT infrastructures.
In contrast to already existing open source solutions, the developed framework is based on
a standardized data model; in this case the Common Information Model (CIM). The goal
of this thesis is mapping the object-oriented CIM model to a semantic data model. This
has been leading to the development of a CMDB framework which leverages Semantic
Web technologies.

Based on the resulting CIM ontology, a semantic CMDB framework has been established.
The primary focus of the resulting CMDB lies in the area of storing IT-related Configura-
tion Items (CI) provided by Web Based Enterprise Management (WBEM) enabled hosts.
Therefore a Triplestore database provides the required storage back-end capabilities. The
SeConD framework only implements the required functionalities in the scope of a single
CMDB. Further CMS and business logic parts are not incorporated directly since they
are out of the scope of this thesis.

The SeConD framework is an enabler for further work in the area of semantic CMDB
research. This allows examining the possibilities of using predicate logic for consistency
purposes as well as business rule integration. Therefore further work would include the
practical application of this framework in a smaller testbed to collect performance in-
dicators for the reasoning process as well as the performance impact of increasing rule
complexity.

i

ii

Zusammenfassung

Heutzutage sind viele Organisationen in hohem Masse von ihrer IT-Infrastruktur abhän-
gig. Viele betriebliche Leistungserbringungsprozesse sind auf verlässliche und qualitativ
hochwertige IT-Dienstleistungen angewiesen. Aus diesem Grund wurde der IT Service
Managment (ITSM) Prozess immer wichtiger. Einer der etabliertesten ITSM Ansätze ist
die IT Infrastructure Library (ITIL) Version 3, welche eine Reihe von Erfolgsmethoden
für die Verwaltung von IT-Infrastrukturen beschreibt. ITIL V3 beinhaltet das Konzept
eines Konfigurationsmanagement Sytems (CMS), welches die Daten aus mehreren Kon-
figurationsmanagment Databanken (CMDB) aggregiert. Dieses Konzept unterstützt die
Verwaltung von herterogenen IT-Umgebungen, sowie die Gewährleistung der Integrität
von den verwalteten Infrastrukturdaten.

Das im Rahmen dieser Arbeit entwickelte Semantic Configuration Management Databa-
se (SeConD) Framework bietet die grundlegend benötigten Funktionen einer CMDB zur
Verwaltung von IT-Infrastrukturen. Im Gegensatz zu bereits existierenden Open Source
Lösungen basiert das entwickelte Framework auf einem standartisierten Datenmodell, in
diesem Fall auf dem Common Information Model (CIM). Das Ziel dieser Arbeit besteht
unter anderem darin, das objektorientierte CIM Modell auf ein semantisches Datenmodell
abzubilden. Dies führte zur Entwicklung eines CMDB Frameworks, welches die Techno-
logien des Semantischen Web nutzt.

Basierend auf der resultierenden CIM Ontologie wurde eine semantische CMDB erstellt.
Der primäre Fokus der resultierenden CMDB besteht in der Verwaltung von IT-bezogenen
Konfigurationseinträgen (CI), welche von Web Based Enterprise Management (WBEM)
fähigen Hostrechnern geliefert werden. Eine Triplestore Datenbank bietet die dafür be-
nötigten Speicherfähigkeiten. Das SeConD Framework implementiert nur die im Rahmen
einer einfachen und einzelnen CMDB benötigten Funktionalitäten. Weitere CMS Teile und
Geschäftsregeln wurden dabei nicht direkt berücksichtigt, da sie ausserhalb des Rahmens
dieser Arbeit liegen.

Das SeConD Framework ist ein “Enabler” für weitere Arbeiten im Bereich der Erfor-
schung semantischer CMDBs. Es ermöglicht weitere Überprüfungen in der Anwendung
von Prädikatenlogik für Konsistenz-Zwecke, wie auch der Integration von Geschäftsre-
geln. Daher könnten weitere Arbeiten die praktische Anwendung dieses Frameworks in
einer kleineren Testumegebung beinhalten, so dass Leistungsindikatoren bezüglich des
Reasoning-Prozesses und auch die Auswirkungen komplexer Regeln eruiert werden.

iii

iv

Acknowledgments

I would like to thank the following persons for their help in writing this bachelor thesis:

Professor Burkhard Stiller for giving me the opportunity to write this bachelor thesis at
the Communication Systems Group at the University of Zurich. My supervisor Guilherme
Sperb Machado for his time, efforts and encouragements during the thesis. And last but
not least my family and all my friends who supported me.

v

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Related Work 3

2.1 CIMTool . 3

2.2 K-Wf Grid OWLTools . 4

2.3 xCIM2OWL . 5

3 Fundamentals 7

3.1 ITIL Version 3 . 7

3.1.1 A Primer to ITIL V3 . 7

3.1.2 Service Asset and Configuration Management 9

3.1.3 Configuration Item Requirements 10

3.2 WBEM and CIM . 12

3.2.1 WBEM and CIM Integration . 12

3.2.2 The Common Information Model 13

3.3 Semantic Web Components . 18

vii

viii CONTENTS

4 Design 21

4.1 Network Management Models . 21

4.2 Incorporating Semantic Web Technologies 22

4.2.1 Information Storage and Retrieval 22

4.2.2 Business Operations . 23

4.3 Conceptual Steps . 24

4.4 Accessing a CIM Server . 24

4.4.1 Communicating with a CIMOM . 25

4.4.2 Available Java WBEM Clients . 27

4.5 Translation of CIM Data to OWL . 29

4.5.1 CIM to OWL Mapping . 29

4.5.2 Semantic Web Frameworks . 30

4.6 Storing the Translated Data . 32

5 Implementation 35

5.1 Initial Requirements and Package Structure 35

5.2 Implementing the Translation . 37

5.3 Implementing the Storage Layer . 40

6 Evaluation 43

6.1 Thesis Goals and Related Aspects . 43

6.2 Translation Performance and Network Usage 44

6.3 High-Level Qualitative Comparison . 46

7 Summary and Conclusions 49

7.1 Conclusions . 49

7.2 Further Work . 50

Bibliography 50

Abbreviations 55

CONTENTS ix

Glossary 57

List of Figures 58

List of Tables 59

List of Listings 61

A Installation Guidelines 65

B Contents of the CD 67

B.1 Files . 67

B.2 Folders . 67

x CONTENTS

Chapter 1

Introduction

Today a lot of organizations are highly dependent on their IT infrastructure. While
this fact is evident for organizations with IT-related core business, it also applies for
other non-IT organizations. Many organizational service provisioning processes depend
on reliable and high-quality IT services. With the huge growth in organizational IT
over the last decades, managing such heterogeneous IT systems has become more and
more a very complex task. Therefore the area of unified IT Service Management (ITSM)
has grown to a very important disciple. One of the most established ITSM approaches
is the IT Infrastructure Library (ITIL). The current Version 3, describes a lot of best
practices for IT Service Life Cycle management. A central key concept in ITIL V3 is
the management of all IT infrastructure specific information through a Configuration
Management System (CMS) that consists of several Configuration Management Databases
(CMDB). Those concepts support the principle of providing consistent and reliable IT
services in an organizational context.

1.1 Motivation

The current CMDB market includes well known closed source solutions like HP Universal
CMDB [1] and IBM Tivoli [2]. Those CMDBs are based on the Common Information
Model (CIM), which is an open standard developed by the Distributed Management Task
Force (DMTF). There are also several open source CMDBs, but they rely on a proprietary
and non-standard data model. Those facts lead to the motivation of implementing an open
source CMDB based on CIM.

During the last years the area of Semantic Web has attracted multiple researchers. The
Semantic Web concepts allow a machine to process data with implicit knowledge and to
infer over the data. Those features disclose new prospects for information integration and
knowledge management. Such features are also applicable to CMDBs and could improve
the existing technologies in the mentioned areas. Leveraging Semantic Web technologies
in a CMS/CMDB could have several positive impacts on development and operation of
such systems. For example, using a rule engine could simplify the integration of complex
business rules into those systems and reduce the operational costs.

1

2 CHAPTER 1. INTRODUCTION

1.2 Description of Work

The work performed in this thesis focuses on the design and implementation of a full-
fledged CMDB which is based on Semantic Web technologies. This resulted in the Se-
mantic Configuration Management Database (SeConD) framework. The task includes to
two essential points:

• Mapping the CIM model into Semantic Web technologies like RDFS (RDF Schema).
The final mapping should respect the CIM standard by maintaining the same orga-
nization of classes, attributes and relations of the original model.

• Build an open source CMDB that follows the CIM model. The CMDB should
provide mechanisms to easily retrieve and infer information about the related IT
infrastructure.

1.3 Thesis Outline

Chapter 2 provides an overview over relevant research in the area of mapping the DMTF
CIM model to semantic models. The following Chapter 3 establishes the fundamentals
required to understand the context of this thesis. After having set the basic context,
Chapters 4 to 6 include the discussion of the taken design choices, implementation specifics
and finally the evaluation of the developed framework. This leads to the final Chapter 7
which summarizes the undergone work.

Chapter 2

Related Work

This chapter gives an overview of efforts already done regarding implementations that
perform the CIM to OWL translation activity. Besides the well-known modeling of IT
infrastructure, the CIM modeling standards of the electric power industry are also ac-
counted. The following paragraphs cover the most interesting approaches and solutions
which have relevance in the context of this thesis. After a short introduction and context
of each described solution/implementation, a discussion of their benefits and limitations
is presented.

2.1 CIMTool

During discussions about the Common Information Model (CIM), people usually refer
to the DMTF standard for modeling managed IT environments. A less common fact is,
that there is also a CIM model used in the electric power industry. This CIM standard is
used to integrate IT systems as well as a standard to exchange information about power
transmission and distribution. The International Electrotechnical Commission [3] (IEC)
has officially adopted this model as a standard. An exemplary result of the standardization
process in the electrical power industry is CIMTool [4]. This tool provides facilities to
develop, manage and altering the given CIM standard. At the moment, CIMTool is
implemented as an open source Eclipse [5] plugin. It can be used as a general purpose
tool that has the capabilities to manage CIM-derived models, profiles and schemas [6].

According to [4] the main features include:

• Read and merge CIM and local UML models in XMI format.

• Browse and validate models.

• Generate equivalent OWL ontologies.

• Design and modify profiles.

• Generate XML schemas and OWL ontologies for profiles.

3

4 CHAPTER 2. RELATED WORK

• Validation of instances according to their profiles.

The mentioned features and efforts seem very promising and interesting in the area of CIM
to OWL translation. In the DMTF CIM context, multiple sources refer to CIMTool as a
possible approach for such mapping purposes [7, 8]. The main reason for this assumption
is its ability to manage and integrate the corresponding semantic models. Therefore,
CIMTool appears to be a very interesting solution for other CIM mapping aspects. While
this approach seemed very promising back then, nowadays the situation changed. The
reason for this is the fact that CIMTool has undergone further improvement and progress
with the primary scope on power systems. The latest version (CIMTool 1.8.3) has an
explicit scope on power systems, so there is no reasonable approach of using it for DMTF
CIM. This implies that the only application area for this tool is modeling and validation
as well as designing IEC CIM schemas. Therefore this solution cannot be used for DMTF
CIM applications.

2.2 K-Wf Grid OWLTools

The most promising research in the area of CIM to OWL translation has been made
in the context of the Knowledge-based Workflow System for Grid Applications [9] (K-
Wf Grid) project. This project is a middleware solution to enable the configuration of
complex semantic-based grid execution environments. The project includes a terminated
subproject named OWL Tools [10] that provides different tools in the area of CIM to
OWL conversion. Basically three tools were developed:

OWL2OWL Enables the translation of ontology individuals from a source to destination
ontology.

CIM2OWL Conversion from DMTF CIM Schema to OWL.

OWL2TEX Automatic production of OWL documentation.

The most interesting component is the CIM2OWL converter. This component provides
access to a WBEM Services [11] CIM Object Manager (CIMOM) reference implementation
to enumerate and extract the loaded CIM classes. As last step, the CIM2OWL tool
converts the extracted CIM Schema to an ontology. While most other approaches try to
translate the complete CIM data model from a given format to OWL, the CIM2OWL
converter translates the CIM classes that are actually loaded into the CIMOM. The clear
advantage of this approach is based on the fact that only the directly affected CIM Core
Model, Common Model and Extension Schema classes are translated to OWL. This avoids
the huge schema overhead that results in a translation of all existing DMTF CIM classes.
Therefore the CIM2OWL converter produces a minimal ontology, but still includes all
CIMOM specific Extension Schemas.

An important aspect to mention is, that the CIM to OWL mapping cannot be done in
a one-to-one fashion, because some constructs used in CIM are not available in OWL.

2.3. XCIM2OWL 5

To achieve a more accurate mapping, CIM2OWL uses a further meta ontology. After
importing the meta ontology, some missing constructs which exist in the CIM vocabulary
[7] are made available for OWL. The mentioned meta ontology adds for example Value
Maps and default values to OWL.

The features mentioned above made CIM2OWL an interesting approach even if the project
is terminated. The tool provides valuable foundations, but the distribution includes unre-
solved problems. For example the last as source code available version (CIM2OWL-1.0.0)
uses outdated libraries that include obsolete interfaces. Furthermore the last code base of
WBEM Services dates back to November 2004 and was tested against CIM version 2.9.
Another problem affects the employed WBEM API based on the Java Specification Re-
quest 48 (JSR-48), which has not been finally approved by the Java Community Process.
Since CIM2OWL relies heavily on that library, it can be assessed as generic drawback.
Additionally, there is no approved WBEM reference implementation for Java available.
In fact the CIM2OWL implementation provides a usable CIM Schema mapping, but the
code still has implementation flaws in the CIM Instance conversion. There is the possi-
bility that some instance translation issues have been solved in a newer version [12] dated
back to November 2008, but it this remains unclear. The newer version is delivered in
binary form and the source code is not publicly accessible.

The available CIM2OWL distribution provides useful results for CIM Schema conversion
and is until now the most accurate solution for this purpose. Further CIM Instance trans-
lations are not possible since the code produces errors and results in an empty translation
file. Another problem is the compatibly of the included WBEM Services library, which
generates sometimes irreproducible errors for other CIMOM implementations.

2.3 xCIM2OWL

Source Forge lists a project named xCIM2OWL [13] that is programmed in Java. The
basic functionality of the “CIM-OWL Conversor” tool is an easy application to obtain the
OWL representation of the DMTF CIM model. The converter takes CIM in XML format
as input and translates it to a valid ontology. The translation incorporates CIM constructs
like aggregation, array and association. Compared to the CIM2OWL tool mentioned in
Section 2.2, it lacks of including further CIM specific constructs that are initially missing
in OWL. For example the Value Maps used in CIM as well as the read/write qualifiers are
not incorporated. This leads to a less exact mapping compared to CIM2OWL. It is vaguer
to an one-to-one mapping than CIM2OWL. Furthermore the project neither includes any
kind of documentation nor any further information about the context and approaches.
The tool can be used in circumstances where only a schema translation is required and
the resulting mapping inaccuracies are acceptable.

6 CHAPTER 2. RELATED WORK

Chapter 3

Fundamentals

The primary focus of this section is to provide a short introduction to the concepts and
models that are necessary to comprehend the assumptions and goals of this thesis. It
begins with a short outline of the IT Infrastructure Library Version 3 to derive the prin-
ciples behind a Configuration Management Database and shows the scope of the affected
processes. The following sections introduce the DMTF Common Information Model and
provide also an high-level introduction to the Semantic Web technologies and how the
components are coupled together.

3.1 ITIL Version 3

One of the most known IT Service Management approaches is the IT Infrastructure Li-
brary (ITIL) Version 3. The following subsections provide a brief overview of ITIL V3
in the context of a Configuration Management Database (CMDB). A lot of information
about the different Core Disciples has been left out intentionally, since they are not needed
to understand the concept of a CMDB.

3.1.1 A Primer to ITIL V3

Organizations require consistent and high-quality IT services. This applies for IT Service
organizations in specific as well as for those which need IT only as business support
technology. As consequence, the necessity to cover all aspects of IT Service Management
(ITSM) in a unified and comprehensive way emerges. Such a fact involves the controlling
methods as well as the strategies required to manage any IT service provided by or in
the organization, allowing to provide an adequate service quality. To ensure the expected
and desired service quality, the Office of Government Commerce [14] (OGC), which is an
independent office of the British Treasury, began to develop a generic framework in the
late 1980s. Since then, ITIL has become one of the leading frameworks for ITSM. The
intend of ITIL is to support organizations in optimizing and managing their IT services

7

8 CHAPTER 3. FUNDAMENTALS

and practices by focusing on people, processes and resources involved in delivering the IT
services.

The actual ITIL version proposes a set of guidelines and best practices that describe
how ITSM can be implemented and maintained in an organization. ITIL provides the
documentation in form of five books [15], each one covering a different aspect of ITSM.
The ITIL Service Life Cycle is structured into five Core Disciples which describe the
life cycle of any IT service within the organization. Figure 3.1 shows the ITIL Service
Life Cycle. Based on the five Core Disciples, the books provide recommendations and

Figure 3.1: ITIL V3 Service Life Cycle [16]

guidance that has to be followed to conduct an integrated approach for ITSM. Adopting
those recommendations is required to comply the ISO/IEC 20000 standard specification.
The five Core Disciples are:

Service Strategy: This disciple determines the underlying principles for developing poli-
cies, objectives, guidelines and processes that are required in the whole Service Life
Cycle.

Service Design: Assistance for developing and designing the strategic objectives includ-
ing an assessment of costs and risks.

3.1. ITIL VERSION 3 9

Service Transition: Creating a framework which ensures that the designed service is
effectively and efficiently implemented in the live environment.

Service Operation: This phase performs all the activities and processes required to run
the services effectively.

Continual Service Improvement: This disciple is an overarching phase to improve the
effectiveness and efficiency of all the processes involved in all phases of the Service
Life Cycle.

The Core Disciple Service Transition includes various principles to support this process.
An example is the creation of a standardized framework that supports implementing
service and infrastructure changes in a consistent manner. Following basic principles and
activities are the key processes of the Service Transition phase [15]:

• Transition Planning and Support

• Change Management

• Service Asset and Configuration Management

• Release and Deployment Management

• Service Validation and Testing

• Evaluation

• Knowledge Management

Those key processes ensure a smooth implementation and transition of IT services. All
those processes are partially interconnected and provide further inputs for other Service
Life Cycle stages and therefore need to be controlled and closely monitored during the
whole life cycle.

3.1.2 Service Asset and Configuration Management

If an organization operates fine and without bigger problems, the business-critical assets
are solidly maintained in the normal case. Therefore an important aspect of running an
organization is to maintain and protect the business-critical assets as well as maintain-
ing further information about their current status. In ITIL V3 the Service Asset and
Configuration Management (SACM) process is an essential part to support that goal.
Summarizing it can be stated, that the main purposes of SACM are [15]:

• Identify, control, record, report, audit and verify the Service Assets and Configura-
tion Items in an organization.

• Keep a record of the list of assets and Configuration Items in an organization.

10 CHAPTER 3. FUNDAMENTALS

• Report, audit and verify the Service Assets and Configuration Items.

• Account for the Service Assets.

• Protect the integrity of the Configuration Items.

The scope of SACM is not only restricted to IT-related assets; moreover it also includes
non-IT assets. This results often in very huge datasets for large and complex IT services
and infrastructures. As consequence, the complexity for managing and maintaining the
infrastructure raises. ITIL solves this issue by proposing a support system for SACM
which is called Configuration Management System (CMS). A CMS holds all the infor-
mation for about Configuration Items (CI). Those CIs represent the included operating
resources, e.g. different components of the IT infrastructure. CIs are saved and main-
tained in a Configuration Management Database (CMDB). For large infrastructures, ITIL
proposes the use of multiple scoped CMBDs which belong to an unified organizational
CMS. The CMS is used by all Service Management processes and helps finally to manage
the configuration data belonging to the organization. Details about services, CIs and
infrastructure stored in the CMDB might need to be updated due to various changes
and updates during the Service Life Cycle. The CMS has to guarantee the actuality and
consistency of the represented infrastructure and services during the whole time an ele-
ment exists in the organization. Figure 3.2 shows an example of a complete Configuration
Management System. Summarizing, the CMS is a coherent logical model representing the
IT infrastructure in the organization.

3.1.3 Configuration Item Requirements

Configuration Items (CI) are primarily hardware and software related items that exist
inside the IT infrastructure. They are stored as CI Records in the CMDB. CI Records
represent the attributes of a CI and its relations to other CIs. Finally all the CI Records
stored in a CMDB demonstrate any managed component in the IT infrastructure that
provides required services. The ITIL V3 SACM plan requires a minimum set of specific
CI attributes to cover and track the information and changes in an IT infrastructure. The
Service Transition book requires the following attributes as a minimal set [15]:

• Unique identifier

• CI type

• Name / Description

• Version

• Location

• Supply Date

• License details

3.1. ITIL VERSION 3 11

Figure 3.2: Example of a Configuration Management System [15]

12 CHAPTER 3. FUNDAMENTALS

• Owner / Custodian

• Status

• Supplier / Source

• Related document masters

• Related software masters

• Historical Data

• Relationship type

• Applicable SLA

3.2 WBEM and CIM

The evolution of the IT industry during the last decades led to huge improvements in
efficiency of organizational processes and also generated new business opportunities. On
one side those improvements created a higher Return on Investment (ROI) of the IT
budgets, but on the other side resulted in more overhead and complexity for managing
the IT infrastructure. Managing a complex IT infrastructure leads often to higher Total
Cost of Ownership (TCO), which has a negative impact on the ROI. To address that issue,
many companies require molded and strong standards to manage their current IT assets
and those standards also have to account future growth. Those reasons have led to the
foundation of the Distributed Management Task Force [17] (DMTF), which is a standards-
based organization with the goal to develop, adopt and unify open management standards
for IT environments. The probably most known initiatives are Web Based Enterprise
Management [18] (WBEM) and the Common Information Model [19] (CIM). Those two
initiatives have the goal to reduce the time and efforts required to manage interoperable
IT systems and devices, which leads to TCO reduction and improved time to market.
One key aspect is to reduce the development costs by (re)using existing standard models.
The following chapters show how CIM is integrated into WBEM and also the concepts
behind CIM according to the DMTF specifications and the “CIM & MOF Tutorial” [20].

3.2.1 WBEM and CIM Integration

CIM is an object-oriented management information model which is based on UML. Basi-
cally CIM provides a framework to describe the management information. The two foun-
dations of CIM are the CIM Infrastructure Specification and the CIM Schema. While the
infrastructure specification defines the meta schema, syntax, rule and the Managed Ob-
ject Format (MOF); the schema provides a conceptual framework to describe the managed
environment.

Web Based Enterprise Management (WBEM) comprises a set of IT and management
technologies that unify IT Management in distributed environments. WBEM itself bases

3.2. WBEM AND CIM 13

on the CIM data model. While CIM represents the data model, the other components
included in the WBEM stack provide the ability to exchange CIM information in an
efficient manner. This includes mappings, protocols and discovery as well as a query
language. Figure 3.3 shows the DMTF technology diagram and how WBEM and CIM
are related.

Figure 3.3: DMTF Technology Diagram [17]

3.2.2 The Common Information Model

CIM is a conceptual information model that describes IT infrastructure elements by pro-
viding a consistent definition and structure of management information. This description
is achieved by using object-oriented techniques to express classes, properties, methods and
associations. CIM is in its outline a hierarchical management information model whose
elements are represented in the Managed Object Format (MOF). The CIM information
model facilitates various interdependencies and relationships between the managed ob-
jects. This provides a conceptual view of the managed environment that unifies and
extends existing instrumentation and management standards like SNMP and DMI.

As mentioned before, CIM is based on the CIM Specification and the CIM Schema. The
specification defines the details on integrating CIM with other management models. The
schema on the other side is responsible for capturing the notions that are used in common
areas of management. The notions are implementation-independent.

14 CHAPTER 3. FUNDAMENTALS

CIM Specification

The CIM Specification has two fundamental pillars. The first pillar is the description
of an object-oriented meta model based on UML. This is the CIM Meta Schema, which
describes a formal definition of the model to express itself, its usage and semantics. The
Meta Schema is used to express the common elements that are required to clearly represent
management applications. With respect to the UML representation, this describes the
classes, properties, methods, indications and associations of the model in CIM. Figure 3.4
shows the CIM Meta Schema for a Named Element.

Figure 3.4: CIM Meta Schema for a Named Element [17]

The second pillar of the CIM Specification is the manner of representing CIM management
information for information exchange. Syntax and rule specifications of the model are
represented in the Managed Object Format, which is based on the Interface Definition
Language (IDL). The MOF format defines the meta schema including each meta schema
element and the applied rules. Listing 3.1 shows an example MOF class description for a
Linux UnixProcess which is an instance of CIM UnixProcess. The grammar for the MOF
syntax is described in a Backus Naur Form (BNF).

CIM Schema

Management schemas are considered the building blocks for management platforms and
applications. This includes device configuration, performance management as well as
change management. In the scope of CIM, a managed environment is structured as a
collection of interrelated systems which contain a number of discrete elements. The CIM

3.2. WBEM AND CIM 15

[Provider (”cmpi:cmpiOSBase UnixProcessProvider ”)]
c l a s s Linux UnixProcess : CIM UnixProcess
{

uint32 MaxNumberOfChildProcesses ;
u int32 MaxNumberOfOpenFiles ;
u int32 MaxRealStack ;

u int8 terminate () ;
} ;

Listing 3.1: Example MOF Description for Linux UnixProcess

Schema provides a well-defined set of classes, associations and methods to represent the
managed environment. This includes the Core Model as well as the Common Models.
Extension Schemas are tightly coupled, but do not belong directly to the CIM Schema
itself.

The foundation of those building blocks is based on the Core Model. It captures the
notions applicable to all areas of management as a set of classes, associations, properties
and methods. According to [19], the Core Model is broken down into the following sections:

• Qualifiers

• Core Elements/Base Classes (e.g, ManagedElement, LogicalElement, System, Ser-
vice, Dependency, Component, LogicalIdentity)

• PhysicalElements & Location

• SoftwareIdentity

• Devices

• StorageExtents (subclass of LogicalDevice)

• Collections

• Product and Field Replaceable Units (FRU)

• Statistics

• Capabilities

• Settings

• Power Management

Figure 3.5 shows the top of the CIM building hierarchy. The CIM element on top of the
hierarchy is called ManagedElement. A ManagedElement acts as a reference for all other
class associations in the hierarchy. The subclass ManagedSystemElement can represent
systems or a component of systems. Furthermore it also can represent any kind of services,

16 CHAPTER 3. FUNDAMENTALS

Figure 3.5: Top of the CIM Building Hierarchy [21]

3.2. WBEM AND CIM 17

software or networks. The subclasses PhysicalElement and LogicalElement can represent
further definition and specification based on Core and Common Models.

The Common Models represent particular areas of management which are commonly
used. Those notions are platform-, technology- and implementation-independent and can
include systems, applications, networks and devices. This results in a more detailed view
of the managed system. The Common Models for CIM Schema 2.28.0 are:

• Application

• Database

• Device

• Event

• Interop

• IPsecPolicy

• Metrics

• Network

• Physical

• Policy

• Support

• System

• User

Those Common Models can be extended through Extension Schemas, which allow adding
platform- or implementation-specific information to concrete classes.

Extension Schema

While the CIM Schema with Core and Common model represents a generic view of man-
agement areas, in practice there is usually the need to add implementation- or platform-
specific management information. The Extension Schema allows developers to leverage
the basic CIM model classes and add their technology specific extensions.

18 CHAPTER 3. FUNDAMENTALS

3.3 Semantic Web Components

Semantic Web technologies provide mechanisms that enable machines processing data by
understanding the semantics of the provided data. This does not mean that the machine
understands the data like a human being, but the machine can classify the processed data
through the included semantics respectively metadata. With this basis, further operations
on complex knowledge relations are feasible. The term Semantic Web is defined by the
formats and technologies that enable it. Those components are based on multiple W3C
recommendations like the Resource Description Framework [22] (RDF), Web Ontology
Language [23] (OWL), SPARQL Protocol and RDF Query Language [24] (SPARQL) and
the Semantic Web Rule Language [25] (SWRL).

The following paragraph assumes prior basic knowledge in the area of Semantic Web
technologies and focuses on the interaction between the different components. Figure 3.6
illustrates the major components. Such a high-level overview explains how the different
components are coupled together.

Figure 3.6: Major Semantic Web Components [26]

This allows a description of the most important components [26] in the context of this
thesis:

Statement: A statement is a triple that consists of a subject, a predicate and an object.
Those triples build the foundation of the Semantic Web.

Ontology: An ontology contains statements about an information domain model. Those
statements define the concepts, relations and constraints used in the ontology.

3.3. SEMANTIC WEB COMPONENTS 19

Instance Data: While the ontology defines a generic data concept, the instance data
represents information about specific instances.

Reasoner: Reasoners add inference support over semantic data. This provides logical
additions for further classification and realization.

Rules: Rule engines provide inference beyond the concepts that can be deducted from
description logic.

A Semantic Web framework (e.g. Jena) couples the components together and provides
facilities for the fundamental components. Those components are storage, access and
inference over the semantic data. Figure 3.7 shows those components in the context of
a Semantic Web framework. Based on a valid CIM ontology a Semantic Web framework
can be used to implement a majority of required CMDB functionalities in the area of
storage and access.

Figure 3.7: Components of a Semantic Web Framework [26]

20 CHAPTER 3. FUNDAMENTALS

Chapter 4

Design

Shortly described, this chapter explains how information and configuration data of an IT
environment is saved into a semantic CMDB. The following high-level description intro-
duces the generic conceptual steps, while the required tasks to provide such capabilities
are more sophisticated. This begins with the utilized Network Management model and
continues with multiple follow-up design choices. There is also more in-depth discussion
regarding the motivation of using Semantic Web technologies. Furthermore multiple op-
timization and extendibility aspects need to be taken into consideration. The following
sections start with a short excursion to Network Management models and explain why
WBEM with its information model CIM has been chosen. After establishing the used
data model, the generic application of the required CMDB functionalities is described.
This is done by splitting the required functionalities and features into sub-tasks. The
description goes hand in hand with the chosen frameworks.

4.1 Network Management Models

At the current state, there are multiple Network Management models with the capability
to manage IT environments. Just to mention some examples, there are SNMP, CMIP, DMI
and WBEM. Traditionally the area of Network Management was a domain of multiple
vendor specific solutions, which resulted in a technology lock-in. Furthermore, some
models are incompatible to others or have their own application field. Due to the fact that
IT environments are usually heterogeneous, organizations are using different models in the
same environment. To assure interoperability and management of such environments, a
lot of additional efforts are required. One approach to solve this problem is the concept
of mapping different incompatible models to each other. This resulted in several mapping
approaches like Domain, Technique and Recast Mapping [27]. The generated mappings
suffered loss of information due to the incompatibilities of the incorporated semantics in
many cases.

Based on the standardization processes in the past, some models disappeared and other
ones remained active. Some good examples to be mentioned, due to the fact that they are

21

22 CHAPTER 4. DESIGN

widely known in the area, are the management models SNMP and CMIP. Those between
each other incompatible models were the most often used standards in the past. During
the 90’, other integrated Network Management models appeared. They are based on other
technologies than SNMP or CMIP for resource management, even though they are able
to incorporate them (at least partially). An example for an integrated Network Manage-
ment model is WBEM. Many vendors like Microsoft, IBM, Hewlett Packard, Oracle (Sun
Microsystems), Novell and Red Hat implemented or adapted parts of the WBEM stack
for management purposes into their products.

In the context of this thesis, the usage of the WBEM stack including the CIM information
model is a promising approach. This implies using CIM as the data model for persisting
information about the IT environment in a CMDB. Since the enterprise CMDB solutions
of IBM and HP are also based on CIM, this approach seems reasonable.

4.2 Incorporating Semantic Web Technologies

The majority of CMDB solutions use an information model to represent the IT environ-
ment and store this information in a Relational Database Management System (RDBMS).
Enterprise level solutions are usually based on CIM as data model and expect enterprise
level RBDMS for storage purposes. This approach is absolutely valid and also well es-
tablished. But with more entities to manage, the complexity of developing, running and
maintaining such solutions rises very fast. This leads to possible areas of improvement.
Noteworthy is the methodology of storing the information models into the database as well
as query specific information from the database. A further aspect is the organizational
instrumentation of CMDBs. It can lead to very complex business logic implementations
to guarantee consistency, validate information or apply Service Level Agreements (SLA).
This is the area where Semantic Web technologies could be leveraged to reduce the com-
plexity of the whole CMDB architecture.

4.2.1 Information Storage and Retrieval

The first complexity barrier starts with information storage. Since CIM is an object-
oriented model, it requires mapping to a relational model to persist information in a
RDBMS. If no Object-Relational Mapping (ORM) techniques are applied, the mapping
task usually results in an extreme huge and complex database schema. Especially the
normalization and denormalization processes during database design can bloat the schema.
Understanding, maintaining and extending the database leads to a very complex and
time-consuming task. Furthermore, querying such a database is very complex without
explicit database design knowledge. Even if the knowledge is given, the SQL statements
grow very large and complex. They often include a lot of performance consuming join-
operations [28]. Such drawbacks can be partially reduced by applying Object-Relational
Mapping (ORM) frameworks like Hibernate [29]. While the ORM approach can reduce
the mentioned impacts, there are drawbacks in other areas. In practice such solutions

4.2. INCORPORATING SEMANTIC WEB TECHNOLOGIES 23

generate an overhead that results in performance impacts. Especially the additionally
required join-operations are performance decreasing.

Semantic Web technologies could provide a viable solution to address those issues. The
essential approach is to map or translate the CIM model to a semantic model. Such an
approach contains issues in the area of mapping accuracy as well as on the performance
side during the translation. Depending on the managed IT environment and the perfor-
mance requirements, those issues can vary on impact severity. This leads to the question
which benefits could be gained by using Semantic Web technologies in the area of informa-
tion storage and retrieval. In the CMDB scenario, data import performance [30] and the
required hard disk storage is enough for huge datasets and not a primary concern. The
interesting aspect is information retrieval from a Triplestore. While RDBMS use SQL,
the analog query language for Semantic Web is SPARQL. In comparison to huge SQL-
statements for CMDBs with relational back-ends, SPARQL provides more distinct and
less complicated queries. If multiple join-operations are required, SPARQL uses a more
compact and understandable notation. This leads often to less development time, because
it is easier to formulate the query right the first time and also simplifies the debugging time
needed [31, 28]. Another aspect to consider is the SPARQL query-performance, which is
fast enough even for huge datasets [32]. Even if the statements related to loading and
query performance cannot be directly compared to an RDBMS, the performance is more
than sufficient for most CMDB scenarios. This conclusion is also supported by the fact
that Semantic Web technologies are designed to handle huge datasets. Besides the fact
that SPARQL queries are easier to design, there is another major benefit by using Seman-
tic Web technologies. Any designed or translated ontology can be extended hassle-free
with new data model entities. Extending a RDBMS model can become a very complex
task, depending on the previous design choices.

Summarizing the comparison described above, leveraging Semantic Web technologies in
a CMDB can simplify querying and extending the stored information. RDBMS solutions
are more complicated and error-prone in the area of interacting with stored data and
extending the database schema.

4.2.2 Business Operations

According to ITIL V3, the data in the CMDB needs to be consistent and valid at any time.
Furthermore it is also proposed to integrate also non-IT related information. This means
for example to incorporate operational requirements or SLAs in addition. Integrating
such features to a CMDB often results in a very complex (programming) task since there
is an increase of complexity. In such cases, a semantic integration can be supported with
Semantic Web technologies. Using a Reasoner adds inference support to the Semantic
Web, which provides a richer set of mechanisms to work with. This feature offers logi-
cal additions which provide classification and realization capabilities. Furthermore those
features are beyond the basics that can be deducted from description logic and provide
support for logic integration tasks.

The mentioned features of Semantic Web technologies support overcoming complexity
issues in CMDBs. Complexities based on data validation, integrity assurance and further

24 CHAPTER 4. DESIGN

operational requirements can be reduced. Especially the ability to merge other ontologies
and support larger logical tasks can help enforcing the business requirements of a CMS.

4.3 Conceptual Steps

Very simplified, the task is to retrieve related CIM data and store it in a semantic database.
To perform such an operation, a CIM to OWL translation is required. The first approaches
began with the translation of the CIM Schema distribution to an ontology. The drawback
of such a static translation approach is that the Schema distribution only includes CIM
Core and CIM Common. This means that the vendor-specific Extension Schemas are not
included in the translation. Such an approach allowed validating the translation concepts,
but it is not feasible for a real world approach. The lack of incorporating the Extension
Schemas resulted in the loss of host specific CIM information. In WBEM the common
practice advises adding host-specific Extension Schemas in MOF format to the CIMOM
and then loading a minimal required schema. Using only the CIM Schema in place is an
even better solution, since there is no nonessential translation performed. The explained
facts lead to three fundamental steps to perform the investigated task:

1. Access the CIM Server and extract the loaded CIM Schema and Instances.

2. Translate the CIM Schema and Instances to an ontology.

3. Store the translated CIM Schema and Instances in a semantic database.

Figure 4.1 visualizes a high-level overview of the three required steps to perform. Accord-
ing to ITIL V3, there is also a CMS involved that collects data from multiple CMDBs
and performs further administrative tasks as well as visualization. Those functionalities
are out of the thesis scope. The following sections explain the design choices and used
framework to fulfill the three steps.

4.4 Accessing a CIM Server

While it is possible to translate only the CIM Core and Common schemas, the practical
value of such an approach is very limited. The idea of WBEM is to gather information and
data about managed entities of the IT environment. Usually the CIM Schema is loaded
into the CIMOM of a managed entity and includes the Schema Extensions. Since the
CIM Instances represent the current management data, the focus lies on gathering that
specific data. A WBEM Client establishes a connection to any WBEM Server and queries
the data. Figure 4.2 shows a very detailed explanation of the WBEM layers according
to the Solaris WBEM Services architecture. In short, the client and server communicate
after authentication through HTTP (port 5988) respectively HTTPS (port 5989). After
establishing such a connection, the CIMOM data can be enumerated.

4.4. ACCESSING A CIM SERVER 25

Figure 4.1: Basic Task Description for a Semantic CMDB

4.4.1 Communicating with a CIMOM

The protocol to exchange CIM information is called CIM-XML. It is built on four basic
components [20]:

• The Common Information Model (CIM).

• XmlCIM encoding to represent CIM data and operations in XML.

• A set of operations to retrieve and manipulate CIM data.

• HTTP(S) encapsulation.

This implies that CIM-XML uses HTTP(S) as transport protocol, while the payload
contains all the CIM operations and responses encoded in xmlCIM. The operations that
WBEM defines are described in the “CIM Operations over HTTP” specification [34]. For
the purposes in this thesis, the following CIM operations are relevant:

GetClass Retrieves a single CIM Class of the used namespace.

EnumerateClasses Enumerates the subclasses of a specific CIM Class in the used
namespace.

EnumerateClassNames Enumerates the subclass names of a specific CIM Class in the
used namespace.

GetInstance Retrieves a single CIM Instance of the used namespace.

26 CHAPTER 4. DESIGN

Figure 4.2: Solaris WBEM Services Architecture [33]

EnumerateInstances Enumerates the CIM Instances of a specific CIM Class in the
used namespace.

EnumerateInstanceNames Enumerates the CIM Instance names (model paths) of a
specific CIM Class.

GetProperty Returns a single property value of a CIM Instance in the used namespace.

Associators Enumerates CIM Classes or Instances that are associated to a specific source
CIM Class or Instance.

AssociatorNames Enumerates the names of associated CIM Classes or Instances for a
specific source CIM Class or Instance.

References Enumerates the Association objects for a specific CIM Class or Instance.

ReferenceNames Enumerates the names of CIM Classes or Instances for a specific CIM
Class or Instance.

4.4. ACCESSING A CIM SERVER 27

GetQualifier Returns a single Qualifier declaration for a specific namespace.

EnumerateQualifiers Enumerates Qualifier declarations for a specific namespace.

Listing 4.1 shows an extract of a Linux UnixProcess instance enumeration in human-
readable format, while Listing 4.2 shows the same enumerated extract encoded in xmlCIM.

i n s t anc e o f Linux UnixProcess {
Caption = ”Linux (Unix) Process ” ;
CreationClassName = ”Linux UnixProcess ” ;
CreationDate = ”20110404145111.000000+060 ” ;
CSCreationClassName = ”Linux ComputerSystem ” ;
CSName = ”octane . loca ldomain ” ;
Des c r ip t i on = ”This c l a s s r ep r e s en t s i n s t an c e s o f cu r r en t l y running . . . ” ;
ElementName = ” i n i t ” ;
. . .

Listing 4.1: Human-readable Extract of an Linux UnixProcess Instance

<INSTANCE CLASSNAME=”Linux UnixProcess ”>
. . .
<PROPERTY NAME=”CreationDate ” TYPE=”datet ime ”>

<VALUE>20110404145111.000000+060</VALUE>
</PROPERTY>
. . .
<PROPERTY NAME=”Name” TYPE=”s t r i n g ”>

<VALUE> i n i t</VALUE>
</PROPERTY>
. . .
<PROPERTY NAME=”CreationClassName ” TYPE=”s t r i n g ”>

<VALUE>Linux UnixProcess</VALUE>
</PROPERTY>
<PROPERTY NAME=”OSName” TYPE=”s t r i n g ”>

<VALUE>octane . loca ldomain</VALUE>
</PROPERTY>
<PROPERTY NAME=”OSCreationClassName ” TYPE=”s t r i n g ”>

<VALUE>Linux OperatingSystem</VALUE>
</PROPERTY>
<PROPERTY NAME=”CSName” TYPE=”s t r i n g ”>

<VALUE>octane . loca ldomain</VALUE>
</PROPERTY>
<PROPERTY NAME=”CSCreationClassName ” TYPE=”s t r i n g ”>

<VALUE>Linux ComputerSystem</VALUE>
</PROPERTY>
. . .

Listing 4.2: Extract of an xmlCIM Encoded Linux UnixProcess Instance

4.4.2 Available Java WBEM Clients

At the moment there are two major Java WBEM Clients available. The first one is the
WBEM Services reference implementation and the second one is the SBLIM Java CIM

28 CHAPTER 4. DESIGN

Client. The common denominator for both implementation is, that they are based on the
JSR-48 [35] specification. Besides that, they include different features, tools and partial
implementations which are discussed in the following paragraphs.

WBEM Services

The WBEM Services [11] implementation is the reference implementation of WBEM for
Java. The origins of this code are based on theWBEM Services for Solaris implementation,
which has been adapted and revised. The code underlies the Sun Industry Standards
Source License v1.2 and the last release is dated back to November 2004. This implies
that the code is designed for a partially outdated CIM Schema. Actually this does not
result in essential consequences, since the basic WBEM specifications are still covered and
only the CIM Schema has undergone some minor changes and extensions. The distribution
includes further WBEM components like:

CIM Object Manager (CIMOM): An example CIMOM implementation is included
in the distribution, to support implementation tests.

MOF Compiler: A Java MOF compiler is included to add CIM Schemas to the CIMOM.

MOF-to-JavaBeans Generator: A basic utility to generate JavaBeans based on CIM
classes.

CIM Workshop: A GUI tool to browse and alter the CIMOM data.

Preliminary Java API: The implementation is a preliminary snapshot of the JSR-48
specification.

Example Code: Code examples on how to use the API and its features.

SBLIM

Standards Based Linux Instrumentation [36] (SBLIM) is a project that provides an up-
to-date implementation of WBEM. The different components of the WBEM stack are
optimized for high performance and a minimal memory footprint. The SBLIM stack
includes:

WBEM Clients: Besides a command line interface, the SBLIM stack also includes a C
and a Java WBEM Client.

CIMOM: SFCB (Small Footprint CIM Broker) is a performance optimized, small disk
and memory footprint CIM server.

Providers: Several Common Manageability Programming Interface (CMPI) providers
are included, to feed SFCB with management data.

4.5. TRANSLATION OF CIM DATA TO OWL 29

CIM Tools: The Ecute suite includes a modeler, explorer and analyzer to support the
development for CIM related software.

The SBLIM Java Client is released under the Eclipse Public License. The older 1.x API
is outdated and the current 2.1.x branch is recommended for productive use. A further
feature is the inclusion of the Service Location Protocol (SLP) defined in RFC2614 [37].
SLP provides the dynamic discovery of WBEM enabled services in a network.

Conclusion of the Java WBEM Clients

From a technical point of view, the SBLIM implementation is more advanced compared to
the WBEM Services implementation. The reason for this conclusion lies in the fact, that
the code is more up to date and underwent a lot of development steps which have been
tested in productive environments. Since both implementations are based on JSR-48,
the SBLIM client seems to be the preferred solution. Both solutions include additional
API methods to process CIM objects, which go further than the WBEM specification.
The SeConD code is based on the OWL Tools implementation, which uses the WBEM
Services library. During the development process multiple API incompatibilities emerged,
which finally led to the use of WBEM Services. This choice would be arguable for an
implementation in an organization, but since the JSR-48 compatibility is given for both
versions and JSR-48 is still in the community process, this fact can be accepted.

4.5 Translation of CIM Data to OWL

This section covers the fundamental aspects of mapping CIM to OWL. Both data models
are based on different modeling concepts, therefore mapping CIM specific constructs to
OWL is very important. Mapping semantically equivalent constructs is rather simple.
CIM-only constructs lead to further issues, because the mapping cannot be done in a one-
to-one fashion. Some constructs need to be simplified or can be adapted only partially.
As result, it is important that the mapping is unambiguous. The following paragraphs
explain the mapping approach and finally also explain which Semantic Web framework
fulfills the “semantic level” requirements.

4.5.1 CIM to OWL Mapping

The Semantic Web includes different levels of expressiveness for the described information
constructs. This begins with rather simple RDF constructs, advances with RDFS and
concludes finally in OWL Full. Each level adds further vocabulary and formal semantic
features. To exploit all the strengths of the Semantic Web, the taken approach is to use
OWL, because it provides the greatest expressiveness possible in this context. This means
that the mapping approaches can utilize the possibilities and features of ontologies like
reasoning and predicate logic.

30 CHAPTER 4. DESIGN

The mapping approach starts with semantically equivalent constructs and then focuses
on not fully equivalent constructs. The concepts and approaches used are described in
[7, 12]. Semantically equivalent constructs are class definitions and inheritance (to a
limited extend) as well as data type attributes and cardinality constraints. The CIM
constructs and rules are mapped as exactly as possible. Some constructs and rules had
to be mapped in a partial and simplified, but always unambiguous way. Those constructs
concerned especially the following areas [7]:

• Data Restriction: e.g. qualifier Value, Value Maps

• Distinction: e.g. qualifier Key, Propagated, Weak

• Redefinition: e.g. qualifier Override

• Access: e.g. qualifier Read, Write

• Versioning: e.g. qualifier Version

• Default Values

• Abstraction: e.g. qualifier Abstract

• Dynamics : e.g. procedures, qualifier IN/OUT

The inclusion of a further “Meta” ontology provides the missing CIM vocabulary. This
approach is considered the best mapping solution upon now. Other mapping approaches
are possible, but this approach is used in the K-Wf Grid project and proved to be reliable
as well as adequate. The obtained mapping for CIM Schema is used as basis for the CIM
Instance translation. Table 4.1 shows the final mapping definition for a CIM artifact to
its corresponding OWL construct.

4.5.2 Semantic Web Frameworks

The choice of using Java as programming language restricts the amount of considerable
Semantic Web frameworks. The three most known frameworks in this area are Jena [38],
Sesame [39] and OWL API [40]. Those frameworks however differ in provided functional-
ities and semantic level. The following paragraphs shortly describe each framework and
their features.

Jena is an open source Semantic Web framework developed in the context of the HP Labs
Semantic Web Programme [41]. The framework provides an API for all semantic levels
like RDF, RDFS and OWL Full. A SPARQL query engine named ARQ is included as
well as a rule-based inference engine. Other Reasoners like Pellet [42] are also supported.
Besides the typical in-memory storage, Jena also provides multiple storage layers. Jena
SDB uses a RDBMS as storage back-end and TDB implements a native Triplestore. Those
features support the statement, that Jena is the most advanced and complete framework
for developing Semantic Web applications.

4.5. TRANSLATION OF CIM DATA TO OWL 31

Table 4.1: The CIM to OWL Mapping [7]
CIM Artifact OWL Construct
Class <owl:Class>

Generalization <rdfs:subClassOf>

Association (Aggrega-
tion, Composition)

<owl:Class rdf:ID="..."> <rdfs:subClassOf

rdf:resource="cim-meta:CIM_Association"/>

</owl:Class>

Property <owl:DatatypeProperty>

REF Property <owl:ObjectProperty>

Method <cim-meta:hasMethod>

Default Value <cim-meta:defaultValue>

Override <rdfs:subPropertyOf>

Key <owl:InverseFunctionalProperty>

Min, Max <owl:minCardinality>, <owl:maxCardinality>

ValueMap, Values <cim-meta:CIM_Value> composed of <cim-

meta:value> and <cim-meta:valueMap>

Deprecated <owl:deprecatedClass> or

<owl:deprecatedProperty>

Required <owl:minCardinality rdf:datatype="&xsd;int"> 1

</owl:minCardinality>

Experimental <cim-meta:Experimental>

Alias <owl:equivalentClass>,

<owl:equivalentProperty> or <owl:sameAs>

ModelCorrespondence <rdfs:seeAlso>

Read, Write <cim-meta:readable>, <cim-meta:writeable>

Version <cim-meta:cimVersion>

Abstract <cim-meta:Abstract>

Units <rdfs:comment>

Vectors <rdfs:comment>

32 CHAPTER 4. DESIGN

Sesame is another open source Semantic Web framework which allows working with
RDF data. Its origins are based on the On-To-Knowledge project. Sesame supports the
SPARQL and the SeRQL query languages. On the storage side, the typical in-memory
storage is supported as well as Triplestore and RDBMS back-ends. The major drawback of
Sesame is the lack of OWL Full support. There are approaches utilize the lower semantic
levels of OWL, but they are insufficient the purpose of this thesis.

The third interesting framework is OWL API, which is an open source framework for
working with OWL ontologies. This reference implementation is currently developed by
the University of Manchester. The primary focus of this implementation is the creation
and manipulation of OWL in an in-memory manner. Therefore further storage layers are
not supported out of the box. This matter of fact discourages the use of OWL API for
this thesis.

The conclusion of this short assessment in Semantic Web frameworks is, that Sesame and
OWL API are not adequate for the usage in this thesis. Jena on the other side provides the
full semantic capabilities required as well as including established storage and inference
layers. Therefore the use of Jena is undisputed.

4.6 Storing the Translated Data

The best performance for operations on semantic data is delivered by in-memory storage.
With huge datasets, the amount of usable memory becomes a limiting factor. To solve
this issue, other storage layers are required. In Semantic Web technologies, this is part is
provided by RDF stores which are also known as Triplestores. They provide functionalities
similar to a RDBMS in the area of storing and querying data. While SPARQL is a query
language for RDF stores, the storage model is based on subject, predicate and object
triples. Compared to traditional RDBMS, a Triplestore suffers from issues in the area
of read and write performance [43, 44]. An approach to reduce this impact is to cluster
the Triplestores [45]. Even if those issues could have an impact on the proposed CMDB;
there are alternative approaches like portioning the managed IT environment into smaller
managed domains. This thesis underlies the assumption that such performance problems
can be handled and do not result in unresolvable performance impacts on the storage side.

There are two approaches for RDF stores at the moment. The first approach uses a
RDBMS like PostgreSQL as back-end, while the second approach is based on a native
Triplestore. Jena provides interfaces for both approaches, SDB for relational back-ends
and TDB as a native Triplestore using B+ Trees internally. There are also other Triple-
store solutions like Mulgara [46] and OWLIM [47]. Since Jena provides APIs for both
storage layers and is used in the CIM to OWL translation, it is obvious to use it for the
storage implementation too.

The final storage back-end decision is between TDB and SDB. With loading performance
as primary concern, TDB is superior to SDB nearly up to the factor three [48]. In practice
the query performance on the datasets is often more important. Statements about the
query performance are problematic, since it depends on the underlying ontology structure,

4.6. STORING THE TRANSLATED DATA 33

the number of datasets, the query complexity and the required reasoning process [49].
Sometimes TDB is in front and sometimes SDB, or even other RDF store solutions [50]. As
a starting point, TDB has been chosen because it is fast enough and a native Triplestore.
A drawback of TDB is the fact that Atomicity, Consistency, Isolation and Durability
(ACID) transactions are not yet supported. SDB supports acid-style transactions, since
it relies on RDBMS back-ends. This shortcoming in the current stage of SeConD is still
acceptable. A change to SDB can be done in an uncomplicated manner, since both storage
interfaces work in a similar way.

34 CHAPTER 4. DESIGN

Chapter 5

Implementation

This chapter illustrates how the previous design assumptions and concepts are applied
to the SeConD framework. It begins with the initial requirements for the execution
environment and continues with a high-level overview based on the package structure.
This part introduces the framework components. The chosen package structure is built
around two essential functionalities of the implementation. The first one is the CIM to
OWL translation and the second one is the storage functionality. Those deeper insights
allow discussing the details of the packages based on the interfaces and implementation
specific choices.

5.1 Initial Requirements and Package Structure

Before compiling and running SeConD, some initial requirements should be met. Those
initial requirements arise from the utilized Java libraries as well as the concepts of Semantic
Web technologies. The following initial requirements have to be fulfilled:

JDK 5: Some used libraries require or recommend the usage of JDK5.

HTTP Server: The current SeConD implementation relies on accessing the Meta ontol-
ogy from meta-file/Meta and the translated CIM Schema ontologies through a web
server. The required files should be accessible under http://second-cmdb-host/
ontology/cim/. Therefore the CMDB requires write access to the corresponding
file system path where web server documents are stored.

There are several default paths and variables for SeConD that can be customized. This in-
cludes the CMDB hostname, the local storage paths and also the CIM to OWL conversion
parameters. To customize those settings, the config.properties file is provided. Besides
those settings, the Meta ontology needs to be changed to the actual CMDB hostname
(meta-file/Meta, line 12 and 13).

The distributed package and directory structure is based on the default values in the prop-
erties file. This means that by default the translated ontologies are stored locally under

35

http://second-cmdb-host/ontology/cim/
http://second-cmdb-host/ontology/cim/

36 CHAPTER 5. IMPLEMENTATION

Ontologies/ and also under the local path for http://second-cmdb-host/ontology/

cim/. The storage implementation uses TDBStorage/ as default path for TDB. An default
meta ontology is provided in the directory meta-file/. Figure 5.1 shows the dependencies
between the packages.

Figure 5.1: SeConD Package Dependencies

The implementation contains three primary packages that can include further sub pack-
ages:

ch.uzh.csg.second.cim2owl This package provides the functionalities to translate the
CIM Schemas and Instances to an ontology. The utilized mapping structure is hard-
coded into the source code and the meta ontology. Translation specific parameters
like the inclusion of CIM comments and the usage of default values are loaded from
the config.properties file.

http://second-cmdb-host/ontology/cim/
http://second-cmdb-host/ontology/cim/

5.2. IMPLEMENTING THE TRANSLATION 37

ch.uzh.csg.second.database The database package represents the primary access point
for the SeConD API. It includes the generic StorageInterface and a TDB specific
TDBStorageImpl implementation. The generic interface includes all the API meth-
ods to create, read, update and delete the processed CIM Schemas and Instances.
The implementation uses TDB as storage back-end and includes further back-end
specific methods.

ch.uzh.csg.second.util This package includes sub packages which provide auxiliary
functions. Those functions are related to CIMOM connection handling and property
file access.

This overview supports the understanding of the following sections which explain the two
fundamental parts of the implementation in specific. The first part is the translation
implementation and the second one is the storage implementation.

5.2 Implementing the Translation

The translation functionality is always invoked by the storage implementation as soon as
new CIM information needs to be added to the database. Figure 5.2 shows the UML class
diagram of the cim2owl package. The following description explains how the CIM2OWL
class is invoked and processes the CIM Schema and Instances:

CIM2OWL The first invocation is based on a non-default constructor which specifies
the required translation parameters. The first parameters affect the CIMOM host,
user name and password. Those parameters specify the connection to a CIMOM on
the default CIM namespace /root/cimv2/. The last two Boolean parameters specify
the designated translations of CIM Schema and Instance. This allows to initializes
the convert() process, where the desired CIM translation are started. The process
incorporates also the properties of the translation and the used ontology storage
paths.

CIM2OWLFlatConverter This class represents the implementation of the abstract
class CIM2OWLConverter, which provides the functions to translate extracted CIM
classes and CIM instance paths to the destination ontology. The principle behind
this process is a flat translation. This means that CIM is represented in portioned
namespaces. This fact requires handling implicit CIM semantics like nested naming
and implicit references [51].

The CIM Schema flat translation needs to incorporate the implicit CIM semantics, which
is done by the following steps:

1. Acquire all simple CIM classes that are not associations.

2. Generate a simple class subsumption hierarchy.

38 CHAPTER 5. IMPLEMENTATION

Figure 5.2: CIM2OWL UML Class Diagram

5.2. IMPLEMENTING THE TRANSLATION 39

3. Generate all associations as object properties. This step includes also the CIM
qualifiers Aggregation, Association and Composition.

4. Generate simple object properties.

Those steps generate a valid OWL ontology for the CIM Schema that is used as basis for
Instance translation. The Instance translation maps a regular CIM class to an ontology
individual and traverses all its properties. Each translated individual includes a timestamp
of the current time in milliseconds as suffix. This notation allows establishing a time
line for all translated instances. Furthermore the actual CIM object path is added as a
<dc:identifier> property to include it direct way. Figure 5.3 shows the translation of the
CIM hierarchy to the destination OWL2 ontology. The CIM class Linux ComputerSystem
holds a translated CIM instance named Linux ComputerSystem1302112524119.

Figure 5.3: CIM Ontology for the Extension Schema Class Linux ComputerSystem

40 CHAPTER 5. IMPLEMENTATION

5.3 Implementing the Storage Layer

The StorageInterface class represents an interface for the defined functionalities. Figure
5.4 shows the UML class diagram of the database package. The typical Create, Read,
Update and Delete (CRUD) functionalities are provided through this interface. Those
functionalities take care of handling semantic data stored in (ontology) models. This in-
cludes the synchronization of the used in-memory ontology model with the model used for
the storage layer. The API provides a set of useful and required CMDB operations in the
context of a unifying CMS. An explicit SPARQL interface was not included do to the fact
that Jena already provides such an interface through ARQ. The different listAllCIMxxx()
methods provide functionalities to retrieve information about the managed hosts. This
includes the host addresses that are maintained through the CMDB and also information
about all or specific CIM Instances and classes. The returned values are strings and not
ontology classes or individuals. At the moment, there is no application for a CMDB to
manipulate ontology classes and individuals outside of the direct CMDB context. Fur-
thermore public methods that provide capabilities to manipulate the ontology classes and
individuals directly could lead to data corruption and inconsistencies. This restriction
is based on the fundamental idea of having a CMS (or an integrated CMDB) that pro-
vides further data processing and management capabilities for all managed entities at the
Information Integration Layer.

The TDBStorageImpl implementation uses TDB as storage back-end. The implementa-
tion maintains two semantic models. The first model is an in-memory ontology that is
used as “working model” for all operations on the semantic data. After each in-memory
operation, the “working model” is explicitly synchronized with the “storage model” used
for TDB. The reason for this explicit synchronization lies in the fact that TDB does not
support ACID-style transactions. One way to get around this issue would be the usage
of SDB as storage back-end. To reduce the impact of this drawback, only successfully
translated ontologies are processed at the storage layer. After each update on the “work-
ing model”, a synchronization with the “storage model” is carried out. This minimizes the
drawback of not supporting rollback operations for writing and update purposes. Read-
only and SPARQL queries are not affected, but the issue should be considered if the
SPARQL Update [52] language is used on the SeConD framework.

5.3. IMPLEMENTING THE STORAGE LAYER 41

Figure 5.4: StorageInterface UML Class Diagram

42 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

A final evaluation of the provided SeConD framework can be done from different points
of view. The first part of the evaluation covers a set-actual comparison of the given
thesis goals as well as the translation performance. While such a comparison can be done
inside clear context boundaries, a qualitative comparison allows discussing the aspects
and advantages of the taken approach. Those aspects are based on the fact that the
provided solution is the first publicly known attempt in implementing an open source
CIM-based semantic CMDB. This leads to the second part of the evaluation chapter,
which is represented as a high-level qualitative comparison. This aspect is necessary,
because there are a lot of implementation and context specific variables that can lead
to very different performance behavior. Therefore the chapter contains a discussion of
possible bottlenecks and advantages of a semantic CMDB.

6.1 Thesis Goals and Related Aspects

The thesis goal comprised the design and development of an open source RDF-based
CMDB for IT management purposes. The implemented solution should be based on the
CIM model. The following sub-goals had to be achieved:

• Implementation of a RDF schema that represents the CIM model (full model or a
subset).

• Design and implementation of a scalable CMDB including well-defined interfaces to
persist data (respecting the CIM model).

• Design and implementation of an abstract layer (e.g. Java library) that enables the
use of the CMDB by external software.

The first goal and foundation of this thesis required a mapping of CIM (Core and Com-
mon) to a RDF schema. First partial mapping approaches pointed out that a deeper
semantic level than RDF was required to incorporate all CIM semantics. This finally led

43

44 CHAPTER 6. EVALUATION

to the use of OWL Full, which provides a better and more precise mapping result. The
initial mapping focused on the CIM Core and Extension Schemas, which proved to be
sufficient for the first mapping stages. The decision to use the WBEM stack for further
development led to a solution that includes the Extension Schemas. Furthermore, only the
actual used CIM classes and Schema Extension classes are translated. A clear advantage
of this approach is the avoidance of unnecessary translations and therefore minimizing the
host specific ontology overhead. From this perspective the goal was not only achieved,
furthermore the used approach exceeds the initial requirement.

At the current stage, the SeConD framework provides an abstract layer to access the
provided functionalities. In regard to further development, a generic storage interface
has been designed. The design choice to use an internal in-memory ontology model and
a second model for the storage layer allows uncomplicated integration of other storage
back-ends.

Last but not least, there are some remarks on the provided distribution. The framework
still produces some CIM error messages, but they have no practical impact on the trans-
lation results. It is a problem of using an old WBEM reference API on actual CIM. This
issue can be addressed as soon as JSR-48 will be accepted and officially integrated into
Java.

6.2 Translation Performance and Network Usage

A very important aspect of the overall performance is the translation performance itself.
Therefore an exemplary testbed has been designed to gather some reference points on the
translation performance. Figure 6.1 shows the testbed design. This rather simple design
includes a CIMOM host to provide the management data as well as a CMDB host running
SeConD. Both machines are interconnected through Fast Ethernet.

CIMOM host configuration:

• Operating System: Ubuntu 10.10 Server (x64)

• Hardware: Intel Core i5-750, 8GB RAM

• CIMOM: SBLIM sfcbd 1.3.8 (including cmpi-base provider)

• CIM Schema: DMTF CIM 2.25.0

CMDB host configuration:

• Operating System: Windows 7 Professional (x64)

• Hardware: Intel Core 2 Duo,4GB RAM

• JDK: Oracle JDK6 (1.6.0 24)

6.2. TRANSLATION PERFORMANCE AND NETWORK USAGE 45

Figure 6.1: Testbed Design

The performance measurements are based on the Java Execution Time Measurement [53]
library. To achieve reproducible results, the translation performance has been measured
for 10 iterations of a CIM Schema and Instance translation. Furthermore the CIMOM
host had to be idle to assure identical measurement conditions. Another important aspect
to classify the measured results is the number of actually maintained CIM Schema and
Instance classes. Table 6.1 summarizes the resulting measurements. It is evident, that
the CIM Instance translation seems to perform rather poorly. The bottleneck occurs
while traversing the properties of the resulting ontology individuals. Each affected CIM
Schema class and property has to be processed and the corresponding data type values
are assigned to the resulting ontology individual. A further approach to trace the origins
of the bottleneck was based on the traffic observation between CIMOM and CMDB host.
During one complete translation, a continuous dataflow of totally 27.30 MB has been
monitored. More precisely the CIMOM transmitted 15.80 MB and received 11.50 MB.
Approximately 94% of the measured traffic was related to the Instance translation. Table
6.2 shows the traffic measurements for one complete translation based on the same test
conditions as stated before.

The preceding chapters attested that the storage back-end performance itself should be
sufficient. The bottleneck occurs during the CIM Instance translation. The bandwidth
usage itself is not excessive, but rather processing the exchanged data. An approach to
reduce the impact of the required Instance translation time could base on smaller and
sliding Instance update batches.

Table 6.1: Translation Performance over 10 Iterations
Classes Average Min Max Total

CIM Schema 168 6’306 ms 5’954 ms 6’909 ms 63’065 ms
CIM Instance 93 365’269 ms 321’940 ms 380’149 ms 3’652’693 ms

46 CHAPTER 6. EVALUATION

Table 6.2: Traffic Measurements for a Complete Translation
TX RX

CIM Schema 1.490 MB 0.0667 MB
CIM Instance 14.31 MB 11.43 MB

Total 15.80 MB 11.50 MB

6.3 High-Level Qualitative Comparison

Actually there is no comparison to other open and closed source CMDBs that use CIM
as data model and include Semantic Web technologies. The SeConD framework seems
to be the first publicly know approach in this direction. Therefore a high-level qualita-
tive evaluation of expected advantages based on the new CMDB approach is especially
preferable. Moreover this implementation could act as an enabler for further research in
the area. The following paragraph covers the expected improvements in data query and
business logic integration.

Almost every well-established CMDB solution utilizes a RDBMS storage back-end. Main-
taining and extending optimized database schemas can become a very complex task. On
the other side an ontology based schema can be developed, maintained and extended in
a less elaborate way. Ontology editors like Protégé [54] are very useful tools for that
purpose. While the mentioned aspects have their focus on development and operation,
the practical integration and usefulness factor in a CMDB provides more concrete advan-
tages. Creating complex queries on relational database schemas can lead to an error-prone
task that under certain conditions involves a lot of debugging time. Compared to SQL,
SPARQL queries are easier to create and understand. Even if those features seem to be in-
teresting, the principal value of leveraging Semantic Web technologies lies in an area with
direct business impact. The principal area of improvement is based on the business logic
for CMS and CMDB systems. Such business logics can contain consistency checks, SLA
integration or further operational rules. Those rules are usually included in the database
schema or provided by stored procedures as well as in program code. Especially multiple
and complex rules can result in huge code fragments that are difficult to maintain and
extend. With Semantic Web technologies, the rule engines provide a way to leverage pred-
icate logic. Creating business logic rules based on predicate logic can simplify this process
and finally lead to faster time to market. Depending on the requirements of the complete
CMS solution, those aspects can reduce the Total Costs of Ownership for maintaining the
IT infrastructure of an organization and help improving the business processes.

As promising as the stated concepts sound, there are still many unknown variables that
can result in various forms of performance impact. Even if those factors are out of the
thesis scope, they are still noteworthy. At the current state, the performance impact of
reasoning is not fully investigated. Depending on the number and structure of the stored
triples as well as the amount of the incorporated rules, the reasoning process could result in
serious performance hits [49]. Those impacts can be reduced by choosing a smaller CMDB
domain or changing the update intervals. Another promising approach is a clustered TDB
to improve load time and query throughput [45]. This leads to the final conclusion that
a trade-off between CMDB size and performance has to be evaluated. Such a trade-off

6.3. HIGH-LEVEL QUALITATIVE COMPARISON 47

depends on multiple deployment specific parameters, which cannot be generally evaluated
at the current stage of Semantic Web development.

48 CHAPTER 6. EVALUATION

Chapter 7

Summary and Conclusions

This thesis describes the design and implementation of an open source IT Configuration
Management Database according to the IT Infrastructure Library Version 3. The resulting
SeConD framework makes use of the Common Information Model as data model and
leverages Semantic Web technologies. A CMDB implementation that combines both
concepts has not yet been seen - at least in public domain.

The first two chapters comprise an introduction into the thesis topic as well as a discussion
of thesis related work.

The succeeding chapter three introduces the fundamental components and concepts of a
CMDB. This includes an introduction into the relevant ITIL and WBEM concepts. The
first part provides an overview of the adapted ITIL and Web Based Enterprise Manage-
ment concepts. A high-level overview about Semantic Web components concludes this
chapter.

Chapter four illustrates the design choices for the CMDB as well as their justification.
This includes the motivation for choosing CIM as data model and the expected benefits
of leveraging Semantic Web technologies.

This leads to chapter five where the applied design choices result in the implementation
of the SeConD framework. The chapter describes the provided framework based on the
interfaces and internal operation.

Chapter six finally evaluates the framework in the context of the thesis task and depicts
performance measurement points. The chapter is closed up with a high-level qualitative
comparison between existing and newly introduced CMDB concepts.

7.1 Conclusions

The SeConD framework is based on a well-established and widely accepted data model.
This fact enables the underlying data model to be in tune with the ITIL V3 concepts for
a CMDB. Applying Semantic Web technologies promises further overall improvements in

49

50 CHAPTER 7. SUMMARY AND CONCLUSIONS

the area of CMDB operation. The expected benefits could result in diminishing Total
Cost of Ownership for IT environments. Regardless how promising the expected benefits
appear in theory, they are not yet proven in a live environment. The size and diver-
sity of heterogeneous IT environments as well as the business operation requirements
can lead to not yet recognized issues. The scalability and possible bottlenecks can be
roughly arranged, but only concrete appliance provides reliable indications of realizable
benefits. There is also the possibility that Semantic Web technologies are poorly con-
ceived for CMDB specific purposes at the current stage. Furthermore, it is possible that
the Semantic Web concepts are overhyped. Nevertheless, the developed framework is an
enabler technology. It provides a solid basis for further research in this area. Therefore
it facilitates an examination of the expected benefits. On one side, this can lead to the
conclusion that Semantic Web technologies are not fully applicable for CMDB purposes.
On the other side, it could reinforce the research of semantic CMDBs and perhaps lead
to new CMDB capabilities. SeConD is considered as an advance towards answering those
questions.

7.2 Further Work

Since the SeConD framework is a prototype, there are several areas of improvement. One
aspect is the further development of SeConD itself. This begins with a better scoped
exception handling and continues with the integration of a logging facility. Especially
the poor CIM Instance translation performance should be considered the next working
point. Helpful in this context would be the final approval of JSR-48. Since it became
quiet around this specification request, a change to the SBLIM WBEM Client could be
considered as an alternative. This would allow further source code improvements.

Another aspect is the full integration of a Reasoner respectively a rule engine. This would
allow exploring the performance impacts of reasoning and inference. This functionality
finally enables further research in a live environment. Therefore it facilitates a review
of the expected benefits as well as the investigation of bottlenecks and their disposal.
Furthermore common limitations and required trade-offs can be debated.

Bibliography

[1] HP Website. Hp universal cmdb software. Available online at https://

h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&

cp=1-11-15-25^1059_4000_100__. Last visited on: April 15th 2011.

[2] IBM Website. Tivoli change and configuration management database. Available on-
line at http://www-01.ibm.com/software/tivoli/products/ccmdb/. Last visited
on: April 15th 2011.

[3] IEC Website. Welcome to iec - international electrotechnical commission. Available
online at http://www.iec.ch/. Last visited on: March 21st 2011.

[4] CIMTool Website. Welcome to cimtool.org. Available online at http://wiki.

cimtool.org/index.html. Last visited on: March 21st 2011.

[5] Eclipse Website. Eclipse - the eclipse foundation open source community website.
Available online at http://www.eclipse.org/. Last visited on: March 21st 2011.

[6] Langdale Consultants. Cimtool: Bridge from cim to applications. Available online at
http://files.cimtool.org/CIMUGPresentation.pdf. Last visited on: March 21st
2011.

[7] Marta Majewska, Bartosz Kryza, and Jacek Kitowski. Translation of Common In-
formation Model to Web Ontology Language, volume 4487, pages 414–417. Springer
Berlin Heidelberg, 2007.

[8] Cracow’06 Grid Workshop, Vol 2: K-Wf Grid: the knowledge-based workflow system
for Grid applications: October 15–18, 2006 Cracow, Poland. Academic Computer
Centre CYFRONET AGH, 2007.

[9] LK-Wf Grid Website. K-wf grid - home. Available online at http://www.kwfgrid.
eu/. Last visited on: March 21st 2011.

[10] KIGForge Website. Owl tools: Projektinfo. Available online at https://kig.icsr.
agh.edu.pl/projects/owltools/. Last visited on: March 21st 2011.

[11] WBEM Services Website. Wbem services. Available online at http://

wbemservices.sourceforge.net/. Last visited on: March 21st 2011.

[12] FiVO Website. Kig/cim2owl - fivo. Available online at http://fivo.cyfronet.pl/
trac/fivo. Last visited on: March 21st 2011.

51

https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-15-25^1059_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-15-25^1059_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-15-25^1059_4000_100__
http://www-01.ibm.com/software/tivoli/products/ccmdb/
http://www.iec.ch/
http://wiki.cimtool.org/index.html
http://wiki.cimtool.org/index.html
http://www.eclipse.org/
http://files.cimtool.org/CIMUGPresentation.pdf
http://www.kwfgrid.eu/
http://www.kwfgrid.eu/
https://kig.icsr.agh.edu.pl/projects/owltools/
https://kig.icsr.agh.edu.pl/projects/owltools/
http://wbemservices.sourceforge.net/
http://wbemservices.sourceforge.net/
http://fivo.cyfronet.pl/trac/fivo
http://fivo.cyfronet.pl/trac/fivo

52 BIBLIOGRAPHY

[13] SourceForge Website. xcim2owl conversion tool. Available online at http://

sourceforge.net/projects/xcim2owl/. Last visited on: March 21st 2011.

[14] Office of Government Commerce Website. Ogc - home. Available online at http://
www.ogc.gov.uk/. Last visited on: March 21st 2011.

[15] Office of Government Commerce. ITIL Lifecycle Publication Suite Books. The Sta-
tionery Office, third edition, January 2007.

[16] itSMF International Website. itsmf international - it service management, itil and
complimentary best practices. Available online at http://www.itsmfi.org/. Last
visited on: March 21st 2011.

[17] DMTF Website. Home | dmtf. Available online at http://www.dmtf.org/. Last
visited on: March 28th 2011.

[18] DMTF WBEM Website. Web-based enterprie management. Available online at
http://www.dmtf.org/standards/wbem. Last visited on: March 28th 2011.

[19] DMTF CIM Website. Common information model. Available online at http://www.
dmtf.org/standards/cim. Last visited on: March 28th 2011.

[20] DMTF Website. Cim & mof tutorial. Available online at http://www.

wbemsolutions.com/tutorials/DMTF/. Last visited on: March 21st 2011.

[21] Andrea Westerinen and John Strassner. Common information model (cim) core
model version 2.4. White paper, Distributed Management Task Force, August 2000.

[22] W3C RDF Website. Rdf primer. Available online at http://www.w3.org/TR/

rdf-primer/. Last visited on: March 21st 2011.

[23] W3C OWL2 Website. Owl 2 web ontology language. Available online at http://
www.w3.org/TR/owl-overview/. Last visited on: March 21st 2011.

[24] W3C SPARQL Website. Sparql query language for rdf. Available online at http://
www.w3.org/TR/rdf-sparql-query/. Last visited on: March 21st 2011.

[25] W3C SWRLWebsite. Swrl: A semantic web rule language combining owl and ruleml.
Available online at http://www.w3.org/Submission/SWRL/. Last visited on: March
21st 2011.

[26] John Hebeler, Matthew Fisher, Ryan Blace, Andrew Perez-Lopez, and Mike Dean.
Semantic Web Programming. Wiley, Indianapolis, IN, 2009.

[27] Jorge E. López De Vergara, Vı́ctor A. Villagrá, and Julio Berrocal. Semantic manage-
ment: advantages of using an ontology-based management information meta-model.
In Proceedings of the HP Openview University Association Ninth Plenary Workshop
(HP-OVUA’2002), distributed videoconference, pages 11–13, 2002.

[28] Steve Battle and David Booth. The hp universal cmdb sparql adapter. In HP Software
Universe 2007, 2007.

http://sourceforge.net/projects/xcim2owl/
http://sourceforge.net/projects/xcim2owl/
http://www.ogc.gov.uk/
http://www.ogc.gov.uk/
http://www.itsmfi.org/
http://www.dmtf.org/
http://www.dmtf.org/standards/wbem
http://www.dmtf.org/standards/cim
http://www.dmtf.org/standards/cim
http://www.wbemsolutions.com/tutorials/DMTF/
http://www.wbemsolutions.com/tutorials/DMTF/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-overview/
http://www.w3.org/TR/owl-overview/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/Submission/SWRL/

BIBLIOGRAPHY 53

[29] Hibernate Website. Hibernate - jboss community. Available online at http://www.
hibernate.org/. Last visited on: March 31st 2011.

[30] Kurt Rohloff, Mike Dean, Ian Emmons, Dorene Ryder, and John Sumner. An eval-
uation of triple-store technologies for large data stores. In Robert Meersman, Zahir
Tari, and Pilar Herrero, editors, OTM Workshops (2), volume 4806 of Lecture Notes
in Computer Science, pages 1105–1114. Springer, 2007.

[31] Jim Melton. Sql, xquery, and spa. Technical report, Oracle Corp., 2006.

[32] BSBM Website. Berlin sparql benchmark results - 02 22 2011. Available
online at http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/

results/V6/index.html. Last visited on: March 28st 2011.

[33] Oracle Website. About solaris wbem services (solaris wbem developerś guide).
Available online at http://download.oracle.com/docs/cd/E19683-01/817-3096/
chap-ov-23345/index.html. Last visited on: March 28th 2011.

[34] Distributed Management Task Force. Cim operations over http version 1.3.1. Speci-
fication, Distributed Management Task Force, July 2009.

[35] Jim Davis, Paul Ferdinand, Carl Chan, Arora Ramandeep, and Dave Blaschke. The
java api for web based enterprise management. Proposed final draft, WBEM Solu-
tions, Inc., October 2009.

[36] SBLIM Website. Sblim main page. Available online at http://sourceforge.net/
apps/mediawiki/sblim/index.php?title=Main_Page. Last visited on: March 28th
2011.

[37] openSLP Website. An api for service location. Available online at http://www.

openslp.org/doc/rfc/rfc2614.txt. Last visited on: March 28th 2011.

[38] Jena Website. Jena - a semantic web framework for java. Available online at http://
openjena.org/. Last visited on: April 2nd 2011.

[39] Sesame Website. openrdf.org ...home of sesame. Available online at http://www.

openrdf.org/. Last visited on: April 2nd 2011.

[40] OWL API Website. The owl api. Available online at http://owlapi.sourceforge.
net/. Last visited on: April 2nd 2011.

[41] HP Labs Website. Hp labs semantic web research. Available online at http://www.
hpl.hp.com/semweb/. Last visited on: April 2nd 2011.

[42] Pellet Website. Pellet: Owl 2 reasoner for java. Available online at http://

clarkparsia.com/pellet/. Last visited on: April 2nd 2011.

[43] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J. Hollenbach. Scal-
able semantic web data management using vertical partitioning. In VLDB, pages
411–422, 2007.

http://www.hibernate.org/
http://www.hibernate.org/
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/V6/index.html
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/V6/index.html
http://download.oracle.com/docs/cd/E19683-01/817-3096/chap-ov-23345/index.html
http://download.oracle.com/docs/cd/E19683-01/817-3096/chap-ov-23345/index.html
http://sourceforge.net/apps/mediawiki/sblim/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/sblim/index.php?title=Main_Page
http://www.openslp.org/doc/rfc/rfc2614.txt
http://www.openslp.org/doc/rfc/rfc2614.txt
http://openjena.org/
http://openjena.org/
http://www.openrdf.org/
http://www.openrdf.org/
http://owlapi.sourceforge.net/
http://owlapi.sourceforge.net/
http://www.hpl.hp.com/semweb/
http://www.hpl.hp.com/semweb/
http://clarkparsia.com/pellet/
http://clarkparsia.com/pellet/

54 BIBLIOGRAPHY

[44] Daniel Alexander Smith, Alisdair Owens, M. C. Schraefel, Patrick Sinclair, Paul
André, Max L. Wilson, Alistair Russell, Kirk Martinez, and Paul Lewis. Challenges
in supporting faceted semantic browsing of multimedia collections. In Proceedings of
the semantic and digital media technologies 2nd international conference on Semantic
Multimedia, SAMT’07, pages 280–283, Berlin, Heidelberg, 2007. Springer-Verlag.

[45] Alisdair Owens, Andy Seaborne, Nick Gibbins, and mc schraefel. Clustered tdb: A
clustered triple store for jena. November 2008.

[46] Mulgara Website. Welcome to the mulgara project. Available online at http://www.
mulgara.org/. Last visited on: March 21st 2011.

[47] Ontotext Website. Owlim. Available online at http://www.ontotext.com/owlim.
Last visited on: March 21st 2011.

[48] W3C Website. Largetriplestores - w3c wiki. Available online at http://www.w3.

org/wiki/LargeTripleStores. Last visited on: March 21st 2011.

[49] Marian Babik and Ladislav Hluchy. On automated testing of description logic reason-
ers. In Proceedings of the 5th International Conference on Distributed Computing and
Internet Technology, ICDCIT ’08, pages 13–25, Berlin, Heidelberg, 2009. Springer-
Verlag.

[50] Christian Bizer and Andreas Schultz. Benchmarking the performance of storage
systems that expose sparql endpoints. In In Proceedings of the ISWC Workshop on
Scalable Semantic Web Knowledgebase, 2008.

[51] Dennis Heimbigner. Dmtf - cim to owl: A case study in ontology conversion.

[52] W3C SPARQL Update Website. Sparql update. Available online at http://www.

w3.org/Submission/SPARQL-Update/. Last visited on: March 21st 2011.

[53] JETM Website. Java(tm) execution time measurement library. Available online at
http://jetm.void.fm/. Last visited on: March 21st 2011.

[54] Protégé Website. The protégé ontology editor and knowledge acquisition system.
Available online at http://protege.stanford.edu/. Last visited on: March 21st
2011.

http://www.mulgara.org/
http://www.mulgara.org/
http://www.ontotext.com/owlim
http://www.w3.org/wiki/LargeTripleStores
http://www.w3.org/wiki/LargeTripleStores
http://www.w3.org/Submission/SPARQL-Update/
http://www.w3.org/Submission/SPARQL-Update/
http://jetm.void.fm/
http://protege.stanford.edu/

Abbreviations

ACID Atomicity, Consistency, Isolation, Durability
API Application Programming Interface
BNF Backus Naur Form
CIM Common Information Model
CIMOM CIM Object Manager
CMIP Common Management Information Protocol
CMS Configuration Management System
CMDB Configuration Management Database
CRUD Create, Read, Update and Delete
DMI Desktop Management Interface
DMTF Distributed Management Task Force
FRU Field Replaceable Unit
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IDL Interface Definition Language
IEC International Electrotechnical Commission
ITIL IT Infrastructure Library
JSR Java Specification Request
MOF Managed Object Format
OGC Office of Government Commerce
ORM Object-Relational Mapping
OWL Web Ontology Language
RDBMS Relational Database Management System
ROI Return on Investment
SACM Service Asset and Configuration Management
SBLIM Standards Based Linux Instrumentation
SFCB Small Footprint CIM Brooker
SLA Service Level Agreement
SLP Service Location Protocol
SNMP Simple Network Management Protocol
SPARQL SPARQL Protocol and RDF Query Language
SQL Structured Query Language
SWRL Semantic Web Rule Language
TCO Total Cost of Ownership
UML Unified Modeling Language

55

56 ABBREVIATONS

W3C World Wide Web Consortium
WBEM Web Based Enterprise Management
XMI XML Metadata Interchange
XML Extensible Markup Language

Glossary

ARQ A query engine in Jena that provides SPARQL support.

Common Information Model Schema A collection of class definitions to represent
managed objects.

Common Management Information Protocol A protocol that provides communi-
cation between network management applications and the management agents.

Common Information Model A hierarchical and object-oriented model to describe
the components of a managed IT environment.

Common Information Model Object Manager Part of a CIM server that provides
interaction between providers and management applications.

Configuration Item A Configuration Item represents any managed entity that is in-
volved in providing an IT service.

Configuration Management Database A Configuration Management Database stores
the Configuration Records of a managed entity through its whole life cycle.

Configuration Management System A Configuration Management System consists
of a set of tools and multiple Configuration Management Databases that are used
to manage the configuration data of an IT environment. This includes additional
information about problems, incidents, changes and releases.

Configuration Record The details of a Configuration Item are stored in a Configura-
tion Record during its life cycle.

Managed Object Any component of a computer system that is represented as a CIM
Instance.

Managed Object Format The Managed Object Format is the language used to de-
scribe CIM classes.

Ontology An ontology defines the vocabulary that is needed to represent and describe
a knowledge area.

Service Asset and Configuration Management An IT Infrastructure Library pro-
cess that involves Configuration Management as well as Asset Management.

57

58 GLOSSARY

Service Level Agreement A contract between a service provider and a customer that
defines the provided services and responsibilities.

SPARQL SPARQL is a query language for RDF developed by the W3C.

List of Figures

3.1 ITIL V3 Service Life Cycle [16] . 8

3.2 Example of a Configuration Management System [15] 11

3.3 DMTF Technology Diagram [17] . 13

3.4 CIM Meta Schema for a Named Element [17] 14

3.5 Top of the CIM Building Hierarchy [21] . 16

3.6 Major Semantic Web Components [26] . 18

3.7 Components of a Semantic Web Framework [26] 19

4.1 Basic Task Description for a Semantic CMDB 25

4.2 Solaris WBEM Services Architecture [33] 26

5.1 SeConD Package Dependencies . 36

5.2 CIM2OWL UML Class Diagram . 38

5.3 CIM Ontology for the Extension Schema Class Linux ComputerSystem . . 39

5.4 StorageInterface UML Class Diagram . 41

6.1 Testbed Design . 45

59

60 LIST OF FIGURES

List of Tables

4.1 The CIM to OWL Mapping [7] . 31

6.1 Translation Performance over 10 Iterations 45

6.2 Traffic Measurements for a Complete Translation 46

61

62 LIST OF TABLES

Listings

3.1 Example MOF Description for Linux UnixProcess 15
4.1 Human-readable Extract of an Linux UnixProcess Instance 27
4.2 Extract of an xmlCIM Encoded Linux UnixProcess Instance 27

63

64 LISTINGS

Appendix A

Installation Guidelines

The installation guideline is provided by the README file in the SeConD-1.0.0 distribution.

65

66 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the CD

The CD contains following files and folders:

B.1 Files

Files located in the directory root:

thesis.pdf The Bachelor Thesis as PDF file.

thesis.ps The Bachelor Thesis as PS file.

abstract.pdf The abstract of the Bachelor thesis in English.

zusfsg.pdf The abstract of the Bachelor Thesis in German.

B.2 Folders

Folders located in the directory root:

Presentations The slides of the thesis presentation as PDF, PPSX, PPT and PPTX
files.

Related Software Libraries and further software used in the thesis.

Related Work References A complete set of all referenced related work papers.

Thesis Latex Source Code LATEX source code and images used in the thesis.

Thesis Software The source code distribution of SeConD-1.0.0.

67

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Motivation
	Description of Work
	Thesis Outline

	Related Work
	CIMTool
	K-Wf Grid OWLTools
	xCIM2OWL

	Fundamentals
	ITIL Version 3
	A Primer to ITIL V3
	Service Asset and Configuration Management
	Configuration Item Requirements

	WBEM and CIM
	WBEM and CIM Integration
	The Common Information Model

	Semantic Web Components

	Design
	Network Management Models
	Incorporating Semantic Web Technologies
	Information Storage and Retrieval
	Business Operations

	Conceptual Steps
	Accessing a CIM Server
	Communicating with a CIMOM
	Available Java WBEM Clients

	Translation of CIM Data to OWL
	CIM to OWL Mapping
	Semantic Web Frameworks

	Storing the Translated Data

	Implementation
	Initial Requirements and Package Structure
	Implementing the Translation
	Implementing the Storage Layer

	Evaluation
	Thesis Goals and Related Aspects
	Translation Performance and Network Usage
	High-Level Qualitative Comparison

	Summary and Conclusions
	Conclusions
	Further Work

	Bibliography
	Abbreviations
	Glossary
	List of Figures
	List of Tables
	List of Listings
	Installation Guidelines
	Contents of the CD
	Files
	Folders

