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Abstract—Peer-to-Peer (P2P) systems measurements are still
a relevant research topic, since insights in large swarm sizes
and churn are not yet available for the BitTorrent network.
To improve existing measurement methodology, this work here
tackles the aspect of swarm size estimation and complete col-
lection in the BitTorrent network. For this purpose the Coupon
Collector Problem is modified and formulated as the BitTorrent
Peer Collector (BTPC) Problem. Thus, (a) simulations are used to
test simple and maximum likelihood estimation for hidden swarm
sizes, (b) an analytical solution to the BTPC problem is presented,
and (c) measurements are used to evaluate estimators of the
BTPC model. Obtained results show that this estimation works
well for classical trackers and that churn constantly influences
measurements. Those results show that more peers use the Main-
line DHT than a single tracker, however, client implementations
challenge those models working well for trackers.

I. INTRODUCTION

Various Peer-to-Peer (P2P) system measurements were
conducted in the past two decades, typically with one specific
research goal in mind. Therefore measurement methodologies
and collected data sets as such received little attention in the
respective publications. Often, assumptions are made which
are, although reasonably chosen, not confirmed or falsified
in the course of a measurement study. One example is [5]
where the authors claim that BitTorrent (BT) swarms, i.e., all
peers sharing the same content, are stable over the course
of a few hours and that, therefore, it is valid to consider
results gathered over the course of 90 minutes as concurrent.
However, other measurements [13] indicate that BT swarms
constantly exhibit strong user fluctuations, contradicting the
stable swarm assumption at least during some hours of the
day. Such discrepancies between measurements indicate that
P2P measurements in general and specifically in the BitTorrent
network are not well enough understood and that research
on BT measurement methodologies is still essential, as P2P
technology is still being developed [9], [18] or being used
for market research [14]. Furthermore, with the narrow scopes
of those measurements conducted in the past, the resulting
data sets are hardly re-usable. With the vision of creating a
general large scale measurement system for BT it becomes
even more important that those measurements are accurate and
well understood.

This work here investigates the question of how many peers
are sharing a file at the same time, i.e., how big is a swarm?
While this question is trivial, the answer is not. Due to BT’s
distributed architecture with many trackers, it is very unlikely
that one tracker knows all peers being active at any point
in time. Furthermore, two Distributed Hash Tables (DHT), of
which the Mainline DHT is most used, with an abundance of
different client implementations are actively used. Owing to the

random tracker and DHT responses, collecting all peers from
trackers or DHTs take time, during which the state of a swarm
is changing due to churn. Thus, the longer a measurement is
taking, the more inaccuracies are introduced by churn. Since
the collection of all peers from one or multiple trackers is a
modified version of the Coupon Collector Problem [22], the
newly termed BitTorrent Peer Collector (BTPC) is introduced
here. This new approach contributes a novel method to estimate
swarm sizes based on tracker responses and on DHT time
series, a data set which contains these responses for one file
over 24 hours, and an analysis of the impact of churn on those
measurements and estimations.

The remainder of this paper is organized as follows. While
Sec. II discusses related work, Sec. III presents an in-depth
problem analysis and its formalization. The measurement
results and their interpretation under this formalization are
contained in Sec. IV, before Sec. V draws conclusions and
indicates next steps ahead.

II. RELATED WORK

The generalized Coupon Collector Problem (CCP) is well
investigated [22]. It can be formulated as: “Given that there
are N different coupons available in boxes of a certain product,
what is the probability that after buying m such boxes, one
will have collected exactly i different coupons?” [11]. Also,
the variant with k coupons being drawn at the same time, i.e.,
one box containing a set of distinct coupons, is solved [19].
However, in case of BT the problem is still different as the
number of peers returned by the DHT, i.e., k, varies. Efforts
to find analytical solutions for BT have been made [3], but the
results are not generally formulated and not evaluated.

BT measurements have been conducted for many ye-
ars [7], thus, general techniques are well understood [10] and
measurement types are classified. [10] identified two main
classes of measurements: microscopic and macroscopic. The
microscopic class focuses on a small number of swarms but in
great detail, like [6], which explored the connections between
peers in a swarm. The macroscopic class includes a large
number of swarms but with less details, such as [5][16].
[5] collected IP (Internet Protocol) addresses of peers from
trackers to investigate locality. However, the BT ecosystem
keeps changing, requiring adapted measurement systems and
models, e.g., including DHT in peer collection.

The term “churn” describes the changes observed in a P2P
system due to peers joining and leaving the system and is an
integral part of P2P systems. To join a BT swarm a peer needs
to announce itself to a tracker, from that moment the peer is
visible to others. Leaving a system can be done in a friendly
way by un-registering with the tracker or by just disappearing.



TABLE 1. RELATED WORK OVERVIEW.

Reference Coupon Collector | BT Meas. | Churn
[22] [19] v X X
[6] (5] [8] [13] X v X
[20] X v v
[2] X X v

Thus, churn has 2 components the join and leave rate. Churn
models derived from P2P measurements typically provide a
session or inter-arrival time distribution [20]. [20] points out
that time of day does have a critical effect on churn, which
is supported by results in [13]. [20] focused only on Linux
distributions torrents which is a special user group that may be
different from general file-sharing users. For peers it is possible
to estimate churn in their neighborhood of the network [2].
Further methods to estimate churn based on time series are
available [2], [21]. However, the time series constituting the
basis for these measurements are not currently available.

Finally, the overview over the related work is given in
Table I, showing that the combination of churn, Coupon
Collector, and BT measurements is missing so far. However, to
quantify the accuracy of BT measurements such a view of the
problem is critical. Therefore, this work investigates methods
to obtain swarm size estimates, forming the basis for collecting
complete swarms in a short time to obtain the required time
series to estimate churn.

III. PROBLEM ANALYSIS

What is the size of a swarm? The answer to this question
is the key to collect all its peers, and is similar to the
reverse CCP [11]. Trackers include the number of seeders and
leechers of a swarm within their responses to announce queries.
However, a tracker only knows the peers that announced with
it and since there are typically multiple trackers used for one
torrent it cannot be assumed that one tracker knows all peers in
a swarm. Furthermore, some peers might not even use a tracker
and rely solely on the two DHTs for peer discovery. The DHTs
do not provide swarm size or seeder-leecher ratio. Therefore, to
answer the question the only option is to estimate how many
peers are in a swarm. To solve the BTPC problem it needs
to be investigated how many peers need to be collected from
trackers and DHT to collect the whole swarm. The difference
to the classical Coupon Collector is the response size which
is 1 in the standard Coupon Collector as opposed to the case
of BT, where the response size is typically larger than 50 and
can be heterogeneous. Table II summarizes the notation used
in the remainder of this work.

A. The BitTorrent Peer Collector

In the general CCP [22] the goal is to find all coupons
from a set of coupons by drawing one coupon at a time
randomly. The distribution of coupons is not uniform and
therefore the probability of drawing a coupon depends on the
type of coupon.

To collect all peer addresses — coupons — of a swarm
the collector has to query a tracker to receive a set of peer
addresses — draw — until all addresses are collected. How
many times does the collector need to query the tracker to

TABLE II. NOTATION
N Real swarm size, i.e., ground truth
N~ Estimated swarm size
k Number of peers in a response

krei | Response size relative to swarm size
Ak | Time required for one request

M Number of unique peers collected
M™ | Predicted unique peers collected
Y Number of total peers collected

i Number of queries

d; Duplicates in response ¢

A The join rate of peers per second

collect a complete swarm? This question is termed the BT
Coupon Collector Problem (BTPC) and it defers from the
general instance [22] in the number, k, of distinct coupons, i.e.,
peer addresses, in one draw. A tracker has a set of IP addresses
of size N from which it randomly chooses 50 addresses to
return [4]. Since every address is in N only once and the
selection of & addresses is random, the distribution is uniform
as in the basic CCP. A tracker response contains up to k£ = 50
unique peer addresses for each request, in case of DHT queries
k can be larger than 1,000. Thus, a response is equivalent to
the random combination of N choose k (binomial coefficient).
Meaning that tracker responses can be accurately modeled
by randomly selecting k& unique addresses from N. For the
remainder of this paper the number of unique peers collected
after ¢ draws shall be denoted M;, the duplicates contained
within response 7 by d;, and the total number of peers collected
Y;.

B. Simple Estimation

The simplest approach for estimating a swarm’s size is to
look at duplicates contained in responses. Since the peers in
the response are uniformly randomly distributed the ratio of
duplicates to response size is, on average, the same as the ratio

of discovered peers to swarm size, i.e., JVJI\'}_:l = % Therefore,
an estimation N,  can be made with each response after
the second response is received (because My = 0 and d; = 0)
by solving for N;, . as in Equ. 1.
. k
Nf =M1~ M)
d;

Fig. 1 shows simulation results for swarm size of N =
20,000 chosen to be comparable to the swarm measured and
analyzed in Section IV. The response size was varied between
k = 50 and & = 1’000 in steps of 100 and each k was run
a 100 times. The estimate, N, ... has been normalized by
the swarm size N to center the plots around 1. To receive
better and more consistent results the moving average of the
last 20 estimates was taken, for this reason the plots start
at 20 responses. Fig. la illustrates the estimates of 4 runs
for the different ks showing that the accuracy increases with
increasing response size and increasing number of responses.
Even with the smallest k£ accurate estimates can be made for
this swarm after 200 requests. With increasing response size,
k, the accuracy of the estimate increases.

Fig. 1b shows the median and the 95% confidence inter-
vals for 100 runs of the simulation. The three smallest ks



Swarm Size Normalized by N
o
o
o
Response Size k

50 100 150 200 250 300 350 400 450 500
Number of Returned Responses

(a) Illustration of the estimates with 4 samples.

Fig. 1.

BTPC Simulation per Response

1000

09 F

0.8

0.7 ¢

06

05F

o

(=3

o
Response Size k

0.4

031

0.2,

Fraction of Collected Unique Peers M/N

0.1

0 i L L
0 50 100 150 200
Number of Received Responses

(a) After X responses have been received.

Median and 95% Confidence Intervals

12— .
X k=50
1181 X k=150 |
116 k=250 |
p4
2114 S
fool |
RREISs 1
s -
E 44 i
s i
g 1.08
3 [
£ 1.06
5
& 1.04 %
1.02F %%

50 100 150 200 250 300 350 400 450 500
Number of Returned Responses

(b) Median and 95% confidence intervals from 100 runs.

Swarm size estimates for a swarm size of 20,000 with response sizes between 50 and 1000.

BTPC Simulation per Peer
1 = 1000

0.9 3'/

900

700

0.6 I 600
0.5

500

0.4r

Response Size k

400
0.3

I 300
0.2

200

Fraction of Collected Unique Peers M/N

0.1
100

0 0.5 1 15 2
Number of Received Peers Y x10°

(b) After X peers have been responded.

Fig. 2. Portion of the swarm of size N = 20’000 discovered per requests and per peers.

are shown since those are the least accurate. The statistical
analysis confirms that the simple estimate converges to N with
increasing number of responses received and it converges faster
with larger response size. All N, ;. approach the real swarm
size from above, thus, the simple estimate has a tendency to
overestimate the swarm size.

Furthermore, the simulation allows to investigate what por-
tion of a swarm has been collected after ¢ responses have been
received. Fig. 2a shows the portion of the swarm discovered
after X responses of size k have been received where k is
varied from 50 to 1,000. As expected, with larger response
sizes more unique peers are discovered than with the same
amount of smaller responses. More importantly, the shape of
the curves indicate that the fraction of unique collected peers
asymptotically approaches 100%. That means the more peers
from a swarm are collected the more difficult it becomes
to collect new peers, as in the CCP. Therefore, it will be
very difficult to collect all peers of a large swarm. However,
discovering a large part of a swarm, e.g., 95%, seems to be
feasible.

Fig. 2b presents the same simulation data as Fig. 2a the
only difference being the x-axis, which has been changed
to show returned peers. While Fig. 2a shows the number of
responses received, Fig. 2b shows the cumulative sum of peers
returned by all the responses, or k - #responses. The fact
that all the points lie on the same trajectory indicates that the
size of a response k does not influence the number of unique
peers found for the number of peers received, at least for large
swarms. This observation indicates that if the k is significantly
smaller than the swarm size N, k does not have a measurable
influence on the discovery rate of unique peers. To get accurate
results instantaneously several requests can be sent in parallel
using multiple machines if necessary.

C. Maximum Likelihood Estimation

A more general and accurate solution to swarm size estima-
tion can be achieved with a Maximum Likelihood Estimator
(MLE), which is one solution to the reverse CCP [11]. An
MLE calculates the probability at each step ¢ for a range
of possible swarm sizes N, the swarm size with the highest
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probability will become the estimate N#p,r, . This way, re-
sponse size k can be ignored and each returned peer address is
treated as a single observation equivalent to k = 1. Therefore,
a sequence of peers x is observed, e.g., x = [1,2,3,4]. The
probability, ¢;, to observe a new i-th peer is the number of un-
discovered peers divided by the swarm size N:q; = 1]\\;[ =1
Vice-versa the probability, 1 — ¢;, to observe a duplicate i- th
peer is the number of discovered peers divided by the swarm
size N: 1 —q; = ]‘\, L Usmg both formulas the probability
P(N|z) to observe x for a given N can be expressed like:

P(Nz) = sz )
with p; — q;, if 1—t_h Peer is neiw .
1 —gq;, if i-th peer is duplicate
It is Y = |x| the total number of returned peers.

Itis Mo =0and M; =1

Equ. 2 can be used as an MLE by finding the maximum
probability P(N|z) for a pattern « indicating the most likely
estimate Ny, gt

N*= max P(N|z) 3)

N=|M|:00

After Y; peers have been collected, possibilities for several
N* larger than M, is calculated. The N* with the largest
probability is selected as the most likely N and denoted
N3, - Fig. 3a illustrates such an estimation for different N*.

Fig. 3b shows a comparison of MLE swarm size estimation
results which are in the range of +1% of the real N. For
numerical reasons, the log-likelihood is used to give a more
robust numerical evaluation, e.g., for large N's. The box plot
shows median, 25th and 75th percentile, and the outliers of
the number of peers collected, Y, divided by the swarm size,
N, of the first values that estimated N* = +1% of N. First,
the plot shows that for larger swarms a smaller fraction of
collected peers Y is required to get an accurate measurement.
This implies that the MLE is more dependent on collected
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Ilustration of an MLE calculation and comparison of accuracy with different swarm sizes.

peers Y than on swarm size N. As a general rule, 4,000
peers or more need to be collected to get accurate estimates.
In a practical implementation the accuracy also depends on
the range and resolution of the Ns selected to calculate the
probabilities.

D. Analytical Collector

An analytical solution to the BTPC problem is preferable
as it can be used without much overhead to decide when to
stop querying a tracker or to determine how many queries
have to be executed to collect a certain fraction of a swarm.
Therefore, k is expressed relative to N as k.., = k/N which
is the fraction of the swarm returned within each response. As
N 1is always bigger than or equal to k£ and k is not zero the
range of k. is (0, 1]. Thus, with each response 4 the number
of collected peers M;_1 grows by the pool of collected peers
N — M;_ times the relative response size, i.e., Equ. 4

M =M1+ (N — Mi_1) - krei “

This formula is simpler than using simulation data but still
not elegant since it is iterative and, thus, hard to compute for
large ¢s. To simplify things one can look at the number of
a swarm’s not collected peers which will decrease with the
rate r = 1 — k,.;. With each response received the number of
unknown peers decreases as in Equ. 5.

N—M;=N-r 5)

To obtain the number of collected peers, the expression can
be subtracted from 1, and r can be substituted with 1 — k,.;
which gives the formula for the fraction of peers collected
after the i-th response of size k has been received, i.e., Equ. 6.

- (1 - k’rel,)i
M L,=1—(1-ka) (6)
This formula does produce a result relative to N, if the

absolute number is desired the result has to be multiplied by
N. The calculated M™* can be compared to the simulated M



to determine the goodness of fit of the model by calculating
the coefficient of determination (R2). Applying R-squared to
a simulation with 50 ks ranging from 1 to 1’000 the mean
of R? is R? ~ 0.999987 for all the ks simulated. That is an
almost complete fit and means that 99.9987% of the variance
in the model can be explained by the model. The advantage
of this model is that it can be used to coordinate multiple
distributed collectors. The number of collectors is x and k..
is the fraction of the swarm that a collector has collected. As
long as each collector behaves the same, each can decide when
the collection is complete.

IV. MEASUREMENT AND RESULTS

To evaluate those concepts established in Section III and
to investigate the impact of churn on actual measurements a
measurement series was conducted. The measurement, con-
sisting of one torrent with the Mainline DHT and all trackers
found in the corresponding meta data file, was executed for 25
hours from May 9, 2016 08:05 GMT. The measurement was
conducted on a single machine to introduce as little noise into
the data as possible. The data set was acquired by sending
one announce request per second, Ak = 1s, to each of the
4 responding trackers in the torrent “Deadpool 2016 1080p
BluRay x264 DTS-JYK" and the DHT. Although, it has been
claimed that trackers block or ban clients that send requests
too frequently, no such effect could be observed in this mea-
surement. The torrent was chosen, because it ranked highest
among movie based torrents at the time of measurement. The
data contains a time stamp, IP addresses, seeder, leecher, and
total peer count data for tracker responses. The data set is
available for download at [12]. For ethical reasons IP addresses
contained in the data set were anonymized to prevent the
identification of individual users while still maintaining the
uniqueness of IP addresses for a detailed analysis.

A. Quantifying Churn

The simulations in Sec. III did not account for churn, thus,
the difference between the measurement and the simulations
can be either accounted to churn or wrong assumptions. A
BT measurement over some period of time, such as those
24 hours, will inevitably be biased by churn. Thus, it is
of key importance to quantify that bias for the conducted
measurement.

To evaluate the tracker case, responses from the tracker
with the largest swarm size during the measurement period are
used. In this case this was the Open Trackr (OTR) [15] which
initially reported a swarm size of 14,877. Fig. 4a depicts the
first 2,500 OTR replies, which equals the first 2,500 seconds of
the measurement. The circles show Morg, the unique peers
collected from OTR. At a first glance the pattern seems to
be as expected from the simulations in Sec. III. However, the
circles surpass the swarm size announced by the tracker Norg,
what should not be possible since collecting more unique peers
than the swarm size is not possible. Since peers are constantly
joining and leaving the swarm Mo g will contain peers that
have already left, which is not possible to filter out with the
current measurement as very accurate snapshots of the swarm
would be required. The crosses represent the simple estimates,
Nimpieorr» and the diamonds the MLE, NG, o/ - After

being close to the reported swarm size between 250 s and 500
s both follow a curve close to MoTg.

The increase of Mo and both estimates is a result of
peers joining the swarm over time, which will be collected
and added to M unique peers. Leaving peers that were already
collected do not influence this result anymore since they are not
removed from M. Only those leaving before being collected
might slightly reduce estimates in the beginning since Morg
is slightly smaller than expected, but this effect is countered
by the joining peers. Therefore, for measurements the main
concern are the peers joining per second which is called the
join rate and denoted \. Since the increase of Mo g is almost
linear for 3,000s < t < 5,000s, A\orgr is approximately
constant and linear regression can be applied to estimate Ao 7R,
i.e., the slope of the curve. This is only valid for a short period
of time and does not mean the join rate is constant at all times.
The y-intercept of the regression gives another estimate of the
swarm size Np, orp at ¢ = 0. In this case the slope was
Aorr = 1.095, meaning that 1.095 peers join the swarm
per second. The intercept was at N RegOTR = 14,684,
meaning that there were about 14,700 peers in the swarm at
the start of measurement, which is very close to the swarm
size reported by the tracker Norr = 14,877 being 1.3% off.
Finally, the join rate A can be included in the model from
Equ. 6 to analytically calculate M;* with Equ. 7, the unique
peers at time ¢. The result of applying the revised model is
shown in Fig. 4a as asterisks. It does not reach an exact match
to Morr, but a very close one. Note, that this model is time
dependent as A is time dependent.

)aF) @)

As these MLE results are accurate for a period of time
At in which churn does not have a noticeable influence on
N3 eorr- Section III revealed that with 30% of N collected
Y > N-30%, in 75% of the cases MLE estimates are accurate
to 1%. Therefore, accurate estimates can be expected for
Y > 5,000peers which translates to 100 received responses
or Atyin = 100s of measurements. At can be reduced by
sending queries faster or by using a distributed measurement
sending queries simultaneously. Fig. 4a shows Ny, paooorr
for 200s < At < 400s is plotted, twice At,,;, to receive
smoother results and four times At,,;, as the upper bound
to reduce calculation overhead. These Nj;; pyooorr results
follow Norgr with very small deviation. The relative error
E)y, introduced by Aorpr for ¢4, = 400 can be calculated
by subtracting the predicted value without churn M o7 R400,
Equ. 6, from the real Morgr,00 and dividing by MorRra0o,
which amounts to Ergrp o, = 1%. Based on Eq. 7, the
relative error between our measurements and the model can
be derived, allowing to derive the required time span At such
that the relative error is < e with probability p for given A. The
main problem is that the churn rate A needs to be accurately
determined. This can either be done with linear regression
as presented or by applying more sophisticated methods for
estimating churn in overlay networks.

M;=(M+N)-(1—(1-

a

Fig. 4b shows the respective DHT results, lacking the
swarm size due to the swarm size information not being
available in the DHT. As expected, due to the larger response
size M ppr increases faster than Morg in the beginning, but
also the Apgr = 1.965 and N#*pegpur = 25,259 estimated
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Fig. 4. The first 2,500 s of measurements for Mainline DHT and Open Tracker (OTR).

by linear regression are higher. This reads as, that more peers
use the DHT than the OTR and that over-proportionally more
peers join the DHT than the OTR. This is due to the fact
that there is only one official DHT, while there are multiple
trackers, i.e., 4 in this case. Also, censorship and Internet
blockades can have an influence. An effort of fitting the model
from Equ. 7 to the DHT results in a bad fit to the actual Mp g
as the discovery of unique peers is not as fast as expected. This
is due to non-random DHT responses. Accordingly, moving
MLEs do not work for the DHT case. Fig. 4b shows MLEs
calculated in the same fashion as for the OTR data. The
larger At the larger the estimate becomes. A reason for this
observation is that DHT tracker implementations [1] specify
a time to live of 5 minutes on address entries in the DHT
(src/kademlia/dht_tracker.cpp line 65), but the client refreshes
its address only every 15 minutes (src/session.cpp line 1341).
Thus, at any point only the peers that refreshed in the last 5
minutes are contained in the DHT, which amounts to 1 third on
average if peers refresh only every 15 minutes. One possible
practical solution is to use multiple measurement nodes in
parallel to reduce the time needed to collect peers and measure
for at least 15 minutes, thus, the effects of churn on peer
collection are reduced to this 15 minutes window.

The presented results of this work show that the BTPC
Problem introduces an error into measurements which can be
quantified by comparing the theoretical model in Equ. 6 to
the measured M. With evaluated models it becomes possible
to estimate swarm size and calculate the number of requests
required to collect the swarm. Those requests can be executed
in parallel and churn can be neglected.

V. CONCLUSIONS AND FUTURE WORK

This work showed that churn is constantly influencing
measurements in P2P systems. In case of BitTorrent this is
not an issue with small swarms, but with larger ones, where
collecting all peers becomes a time consuming challenge due
to the BitTorrent Peer Collector (BTPC) Problem. With the
models presented here it is possible to quantify those effects

of churn or to mitigate them by issuing a sufficient number of
parallel requests. The simulations presented in Section III show
that a factor of 5 of returned peers to swarm size is sufficient
to collect a swarm of size 20,000. This means that with 10
parallel requests and 1s per request, as in the measurement,
and 50 returned peers per request, 200 seconds is enough
to collect such a swarm, limiting the effects of churn on
the measurement. The measurements presented in Section IV
show that a 400s window is small enough for MLE to provide
accurate results.

Therefore, these results presented confirm that the proposed
estimators and model can deliver accurate results for classical
trackers under practical and realistic circumstances. More work
remains with regard to the Mainline DHT results which showed
unexpected behavior. It needs to be investigated whether the
Mainline DHT returns peers randomly in this 5 minutes
window and if there are more differences among popular
implementations. The presented model within this paper can
be adapted to take such a bias into account.

Furthermore, the effects and characteristics of churn this
work presents are merely a first step. The collected data set
represents one example of a swarm where there are many more.
To further validate the models presented a large scale data set
needs to be applied to it. Furthermore, analyzing churn itself
and the impact external factors, such as location and time of
day, have on churn rates and user behavior, e.g., [4], [17] is
essential.

Finally, the BTPC work shows that those gaps observed
and partially closed in BitTorrent research still require efforts
to fully achieve accurate measurements for more cases, as these
are essential to improve BT operations, traffic optimizations,
and its energy efficiency.
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