
Data Aggregation and Visualization
for the Torrent Measurement

Software Kraken

Sebastian Schrepfer
Oberwil-Lieli, Switzerland
Student ID: 10-737-567

Supervisor: Andri Lareida, Dr. Thomas Bocek
Date of Submission: December 11th, 2014

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

The share of BitTorrent in the global Internet traffic is, despite the rise of movie on-
demand platforms, still very high. As a contribution to the research in this field, the
Kraken measurement study gathers metadata from peers which are downloading movies
in BitTorrent networks. The large bulk of data is solely stored in a database, which makes
it difficult to interpret. In the scope of this Bachelor Thesis, a web interface has been
developed, which derives meaningful information from the raw data and allows online ac-
cess for fellow researchers. The Kraken Web Interface automatically aggregates the data
and presents the obtained information in cartographic and in time-based visualizations.
The visualizations focus on the integrity of the supplied information, the usability of the
application and an appealing design.

Der Anteil von BitTorrent im weltweiten Internettraffic ist trotz des Wachstums von
Video-on-Demand Angeboten noch immer sehr hoch. Die Software der Studie Kraken
beschäftigt sich deshalb mit Filmdownloads aus BitTorrent-Netzwerken und zeichnet Meta-
daten anderer Teilnehmer auf. Die gewonnene Datenmenge ist sehr gross und nur in einer
Datenbank hinterlegt, was die Interpretation dieser Daten erheblich erschwert. Im Rah-
men dieser Bachelorarbeit wurde eine Weboberfläche als Schnittstelle entwickelt, um aus
den Rohdaten aussagekräftige Information zu erhalten und online zu veröffentlichen. Das
Kraken Web Interface aggregiert die Daten und präsentiert die gewonnen Information in
kartographischen und zeitbasierten Visualisationen. Die Darstellung der Informationen
orientiert sich an der Korrektheit der dargestellten Informationen sowie der Benutzer-
freundlichkeit und dem Design der Webapplikation.

i

ii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor Andri
Lareida, who supported me throughout the course of this thesis. He offered his continuous
advice and encouragement. Without him, this thesis and the work on the Kraken Web
Interface would not have been possible. I thank him for the systematic guidance and the
great effort he put into supporting me.

I would also like to thank the 19 persons, who participated in the questionnaire about
the usability evaluation of the website. A special thanks goes to the participants who
provided an extended feedback with an explanation to their evaluation and directions for
possible improvements to the software.

My sincere thanks also goes to Annika Sinkwitz and Christina Sinkwitz for helping me
improve the english grammar and syntax of this thesis.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 2

1.2 Description of Work . 2

1.3 Thesis Outline . 3

2 Related Work & Technologies 5

2.1 BitTorrent . 5

2.2 Kraken Core Software . 5

2.3 Front-End Technologies . 6

2.3.1 Cascading Style Sheets . 6

2.3.2 Sass/Compass . 7

2.3.3 jQuery . 7

2.3.4 D3 and Related Technologies (Frameworks) 8

2.3.5 Further Front-End Technologies . 9

2.4 Back-End Technologies . 9

2.5 System Usability Scale (SUS) . 10

2.5.1 Interpretation of the SUS Score . 10

v

vi CONTENTS

3 Design 13

3.1 Generic Information . 14

3.2 Specific Information . 14

3.2.1 Torrent List . 14

3.2.2 Observed Torrent Details . 17

3.3 The Map . 17

3.3.1 Color Functions . 19

3.3.2 Map Navigation . 20

3.3.3 Map Dataset . 21

3.4 System Status . 21

3.5 Navigation . 22

3.6 Mobile Optimization . 22

4 Architecture 25

4.1 Data Aggregation . 26

4.1.1 Kraken Core Database . 26

4.1.2 Reduction of Duplicated Data . 26

5 Implementation 29

5.1 JavaScript Code Structuring . 29

5.2 Build Process . 31

5.2.1 Sass/Compass & Minifying . 31

5.3 Map Data Generation . 32

5.4 Java Back-End . 33

5.4.1 Socket Connection to Kraken Core 33

5.5 Torrent List . 34

5.6 The Map . 34

5.7 Time Chart . 37

CONTENTS vii

6 Usability Evaluation 39

6.1 Scenario & Setup . 39

6.2 Results . 41

6.3 Interpretation and Analysis . 42

7 Summary, Conclusions & Future Work 45

7.1 Summary and Conclusions . 45

7.2 Future Work . 46

Bibliography 46

Abbreviations 53

Glossary 55

List of Figures 56

List of Tables 58

A SQL Script 61

B Sass/Compass update 63

C SUS 65

C.1 Standard Questions . 65

C.2 Response Data . 66

C.3 Calculations . 67

C.4 Approaching the User Comments . 68

D Installation Guidelines 71

D.1 Development Environment . 71

D.2 Build process . 72

D.3 Build from CD . 72

E Contents of the CD 73

viii CONTENTS

Chapter 1

Introduction

The share of BitTorrent in Internet traffic is worldwide very high. The upstream traffic
of BitTorrent is on top of the ranking of the peak period applications worldwide [54]. Its
upstream share lies between 19.8% in Latin America and 45.7% in Asia and Pacific. With
this said, it is more than reasonable to study the underlying network of BitTorrent.

Kraken is a large scale BitTorrent measurement software which gathers data of the users of
the BitTorrent network. It sends announce requests for movies and collects the returning
data. This data mainly contains IP addresses of other participants of the particular movie
download. The functionality of Kraken ceases with successfully storing of the data into
a database. The raw data is neither aggregated nor interpreted by the existing Kraken
Core software.

This Bachelor Thesis takes up the work of Kraken Core and aims to provide a tool for
the continuous interpretation and visualization of the aggregated data in the form of a
web application. The front-end of the application mainly depicts the peer localization
on various maps. Those maps are filled with data of a general observation of all of the
tracked movies together, but can also be filtered to show data of a single movie on a
selected observation day. Furthermore, the Kraken Web Interface displays the current
status of the Kraken Core software in order to give the administrator a quick overview
about the current Kraken infrastructure.

The aggregation and visualization of the gathered data leads to new insights. It helps to
further examine and research the BitTorrent network by displaying the relevant data and
providing a visual interface.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

When developing an application, the visualization and usability is often put in the rear.
The main goal of the application is designed and implemented, while the visual and
interactive part remains disregarded. With Kraken, only the core application had already
been built, but the visual part was still missing.

It has been proven that the perceived usability has a direct and positive relationship on the
degree of the consumer’s trust and satisfaction [23]. Hence, it is obvious that a software
needs to be provided with a usable, interactive user interface. Building a front-end web
interface was therefore a strong reason for working on the Kraken Web Interface.

The Kraken Web Interface has been created with both newer technologies like D3 and
Sass, but also with more seasoned technologies like the Java socket connections. Creating
a web project with those unfamiliar technologies and learning how to apply them in a
web project was challenging, but also very interesting. The technological challenges were
another reason for working on the Kraken Web Interface.

As mentioned before, BitTorrent has a great significance in global Internet traffic. Exam-
ining the network and analyzing its data could lead to research with major impact on the
architecture of the BitTorrent network. Having the opportunity to make a contribution
to this research feels very exciting to me.

1.2 Description of Work

This Bachelor Thesis visualizes the obtained information of raw data provided by the
Kraken Core Software. The work contains the design, architectural planning and imple-
mentation of the Kraken Web Interface.

The Kraken Web Interface is designed to be user-friendly and interactive. It is completely
mobile optimized and offers dynamic charts. The charts display by choice very specific or
generic data. Additionally, the Kraken Web Interface provides an overview of the current
system status of the Kraken Core software.

The application can be roughly divided into a back-end and a front-end part. The back-
end part contains the aggregation from the data, which has been collected by the Kraken
Core software. It removes duplicates and converts the raw data into a state in which it
can be accessed and processed by the front-end. The web server, which is a part of the
back-end, then acts as a proxy between the aggregated data and the front-end. There
has also been established a connection to the running Kraken Core software in order to
obtain the latest system status. In the front-end part of the application, the data is being
received and visualized in various formats. A map displays the information in a movie-
specific or in a general way. A time chart displays the progression of the number of peers
of each observed torrent over time. Furthermore, the system status is presented in a table.

1.3. THESIS OUTLINE 3

Eventually, a usability evaluation questionnaire was conducted. The participants were
asked to familiarize with the software, whereupon they were asked to answer some con-
textual questions. In the next step, the default questions of the System Usability Scale
(SUS) were asked, followed by some optional demographic questions. The analysis of the
questionnaire led to interesting results.

1.3 Thesis Outline

This thesis begins by describing the technologies used in the front-end and in the back-
end of the Kraken Web Interface. Chapter 2 also describes the related work, such as
BitTorrent, Kraken Core or the SUS scale. Since this work has a strong focus on the
development of a technical application, the engaged technologies will be described in
detail.

In Chapter 3, the design of the Kraken Web Interface will be discussed. This includes the
concepts of all visible parts throughout the web front-end, in particular the three front-
end modules ”Generic information”, ”Specific information” and ”System Status”. The
functionality of these modules and their components will be described in detail. One
section will be devoted to the navigation on the website. Because the web interface is
fully mobile optimized, there will be a separate section on the mobile optimization.

Subsequently, Chapter 4 explains the architecture of the Kraken Web Interface and its
connection to the Kraken Core software. There will be described how the Kraken Web In-
terface connects with its own database to the database of the Kraken Core and aggregates
the data on a regular basis. Furthermore, there has been established a socket connection
between the two, for transmitting the current system status. This chapter also considers
the details of the data aggregation.

The beginning of the chapter on the implementation covers the JavaScript Module Pat-
tern. The front-end JavaScript code has been structured alongside this pattern. Chapter 5
continues with a section on the build process which includes comments on how a Maven
build process evolved with the CSS precompiler Sass and its framework Compass. Fur-
thermore, there will be provided a detailed explanation of the conversion of the raw map
data to the effective map in the front-end. In the end of the chapter, the Java back-end
and its socket connection to the Kraken Core will be described in detail.

Chapter 6 discusses the usability evaluation. It begins with a section on the Scenario &
Setup of the questionnaire, continues with the results and finishes with their interpretation
and analysis.

In the final chapter, the thesis will be summarized. In addition, the results of the thesis
will be discussed. The thesis ends with a section on potential future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work & Technologies

This chapter discusses related work and the technologies used in the development of the
Kraken Web Interface. First, an overview of BitTorrent will be given, then the Kraken
Core Software will be described. Finally an overview of the front-end technologies will
be described, followed by a section of the back-end technologies used to implement the
Kraken Web Interface.

2.1 BitTorrent

BitTorrent (BT) is a peer-to-peer file sharing network protocol, as specified on the official
website [19]. The network consists of peers and trackers, the latter helps the peers to find
each other. A peer downloads splitted parts, chunks, of the requested file from a seeder.
The seeder does not have to be in possession of the full file, only the requested part of it,
in order to provide it to other peers.

A user can join a torrent network with a small torrent file, which contains metadata of
the desired file. This metadata contains information about the file name, length, hashing
information and the url of the tracker [18] [19].

A centralized server, called tracker, is responsible for helping downloaders find each other
[18]. A peer connects to the tracker to receive a list of other peers’ ip addresses and port
numbers. It then connects to the received ip addresses simultaneously and downloads
the different pieces of the file from different peers [53]. The tracker therefore acts as a
distribution server of ip addresses and port numbers.

2.2 Kraken Core Software

Kraken is a torrent measurement system which investigates the behavior of BT users
when downloading movies from a BitTorrent network. It consists of multiple slaves and

5

6 CHAPTER 2. RELATED WORK & TECHNOLOGIES

one master. The connection between master and slave is established with a TCP socket
connection.

The master connects in a predefined time interval to the torrent plattform Kickass Torrents
[46]. The platform provides an RSS feed with the newest movie torrents available. This
feed is parsed by the master which will then download all the current torrents from that
feed. The downloaded torrents are forwarded to all slaves which are currently registered
to the master.

The slaves connect to each tracker of a torrent file repeatedly. The list of ip addresses
of peers, which are currently downloading the movie, is returned and forwarded to the
master. The master stores this dataset into the database. This procedure is being repeated
until a torrent is marked as inactive. An torrent is defined as inactive when the number
of connected peers have dropped below a predefined threshold.

2.3 Front-End Technologies

In this chapter, the technologies used to create the web front-end of the Kraken Web In-
terface will be described. Front-end in this context consists of the web-based technologies.
The back-end is separated from the front-end by the JSON interface, which provides data
from the back-end to the the front-end, where the data will be processed.

This chapter starts by describing the styling of a website, particularly CSS, Sass/Com-
pass. It continues with the JavaScript frameworks and libraries jQuery, D3.js and C3.js.
Eventually there will be provided a paragraph about the compression of JavaScript and
CSS.

2.3.1 Cascading Style Sheets

Cascading style sheets (CSS) [61] is the standard language when formatting web pages.
While the HTML of a website is only useful for structuring a website, CSS uses selectors
to identify a HTML element. Every kind of style (fonts, colors, margins, etc.) can then
be added to a HTML element with CSS.

The third version of CSS supports individual fonts, rounded edges on elements and also
background gradients. As it is not yet implemented in older versions of some browsers
(especially in Internet Explorer), the websites which are optimized for CSS3 may look
different in certain browsers. There exist a few frameworks for CSS3. Being one of them,
Normalize.css is useful to make browsers render the HTML elements more consistently
and in line with modern standards [37]. Instead of just resetting all styles for cross-browser
equality, when starting a new project, it provides default styling standards.

2.3. FRONT-END TECHNOLOGIES 7

2.3.2 Sass/Compass

Sass [15] is a CSS pre-compiler software which was developed in Ruby [48]. Sass allows to
use functions, variables, and nesting of css rules which facilitate the organization of the
CSS code. Compass [21] runs on Sass and provides plenty of useful predefined functions.
One of the strengths of compass is its uncomplicated way of handling browser prefixes. To
browser suppliers, the so-called vendor-prefixes provide a way of introducing a new CSS
functionality. For all major browsers, there exists a vendor-prefix for the CSS property
user-select. Therefore, it is necessary to use four properties instead of just one: -webkit-
use-select, -moz-user-select, -ms-user-select and user-select. Compass, however, provides
one function user-select which then compiles to the vendor-specific css rules. Together
with Sass, it is an indispensable tool in the modern web development.

As Sass is written in Ruby, it cannot regularly be integrated into a maven process. For-
tunately though, a solution exists for this problem: jRuby [5]. jRuby runs as a standard
java library but caters a full running instance of Ruby. After performing a recompilation
of ruby together with Sass/Compass modules, the library will be able to compile the sass
code into css rules, which can be run in a java process and therefore also during a Maven
[4] build process. The downside of this procedure consists in the cumbersome way of
updating the Sass/Compass library. Consult Chapter 5.2.1 for further information.

2.3.3 jQuery

jQuery is a standard JavaScript library which presents a simple interface to the DOM
elements of a website. It eliminates the different ways in which browsers implement the
JavaScript engine by simply introducing one function, which then handles the browser
differences. It also provides many functions for looping through different DOM elements.
jQuery supports the extensibility of the framework through plugins. The following three
jQuery plugins were used in the Kraken Web Interface.

jQuery Template [13] allows to store a template in the form of an HTML snippet in a
script tag with content type text/html. The variables, which are embedded in the data
attributes of the HTML DOM elements, will be scanned in every loadTemplate() call and
prefilled with the data given to the plugin. It is also possible to add formatting functions
to preformat the given values.

jQuery Tablesorter [38] contributes a sorting functionality to an HTML table. It au-
tomatically adds ClickListeners to the table header row and provides many configuration
possibilities - including the specifying of the css arrow classes. The paging plugin of the
tablesorter also bringsthe possibility of splitting the table content into multiple pages,
despite the sorting feature.

jQuery Pickadate [1] is a mobile optimized date picker. Its visual interface consists of
a calendar where one can select a date. It can be configured in a certain way, that only
the days are selectable.

8 CHAPTER 2. RELATED WORK & TECHNOLOGIES

2.3.4 D3 and Related Technologies (Frameworks)

Data Driven Documents, also called D3.js, is a JavaScript framework which is used to
visualize data in the web browser. It manages to create graphs which can be made
interactive. To visualize the graphs, D3.js relies heavily on Scalable Vector Graphics
(SVG) standard.

SVG is a standard for displaying two-dimensional vector graphics. Due to the graphics
being defined in a vector and not in pixels, the images are stored in XML text files. It
is also possible to directly include them in the HTML markup. The graphics can be
animated with JavaScript.

D3.js can be used to select and modify DOM and SVG elements, but it also provides a
large set of functions to facilitate the visualization for the software engineer. It makes
use of SVG together with the regular browser standards HTML and CSS and provides
low level functionality for individual graphs, but also high level functionality in maps and
some other areas. D3.js offers an API for the creation of maps. The map coordinates,
which are specified in JSON, can be passed on to D3.js, together with a map projection,
in order to eventually create the map.

In order to create a map with D3, it is necessary to provide the map data in the JSON
format. The shape file, however, has evolved to a leading map data transfer standard.
It is mainly being used in geographic information system software (GIS) [59]. For that
reason, a conversion between a shape file and JSON is inevitable.

GeoJSON [14] is an open standard for encoding geographical features in the JavaScript
Object Notation JSON. It consists of coordinates and metadata about a map entity (for
example a country). GeoJSON can be directly passed on to D3.js in order to visualize a
map according to the map data.

TopoJSON [9] extends and optimizes GeoJSON. It reduces redundancy by combining
and storing shared borders of countries only once. By removing the redundancy, the file
size can be largely decreased. In an example provided on the website of TopoJSON [11],
the file size of a GeoJSON file with all the US counties could be reduced by 80% when
using TopoJSON instead. TopoJSON is available as a command line tool to encode map
data from GeoJSON or shape files to TopoJSON, and as a JavaScript extension of D3.js
for interpreting the encoded map data.

C3.js [56] is a chart library which relies on D3.js. It provides customizable charts, mainly
standard line and area charts. In contrary to D3.js, most of the functionality is not
programmable, but configurable. As it was first released in May, 2014, most of the
functionality was still undocumented at the time when the Kraken Web Interface was
developed.

2.4. BACK-END TECHNOLOGIES 9

2.3.5 Further Front-End Technologies

Moment.js [62] is a framework for parsing, manipulating and displaying times and dates
in JavaScript. It is useful for calculating or simply for displaying dates from another
format on a website. It runs in browsers, but also in Node.js.

The YUI compressor [63] minifies JavaScript and CSS files to a minimal byte foot-
print while preserving the operational qualities of the code. In JavaScript, it removes all
unnecessary whitespace characters and renames the local variables and functions names
to one-character names (in some cases up to three characters). In CSS, it uses multiple
regular expressions in order to remove the unnecessary whitespace.

The YUI compressor is written in Java and can therefore easily be integrated into a Maven
build process.

2.4 Back-End Technologies

This chapter describes the technologies used in the Java back-end of the Kraken Web
Interface. It starts with the web server Apache Tomcat and continues with the MySQL
database and the Java Servlet Pages, which are necessary for the supply of HTML frag-
ments. In the end, the build process tools Apache Maven and Apache Ant are described.

Apache Tomcat
Apache Tomcat is an open source web server which implements the specifications
for Java Servlets. It allows the use of Java in servlet/jsp based web applications.

Java Servlet Pages (JSP)
Java Servlet Pages (JSP) are HTML Pages with additional Tags. For example, an-
other JSP file can be included into the page by usage of the tag <jsp:include/>.
This allows greater flexibility in coding reusable components. It also supports tag
libraries, which are supplied as frameworks. With the c taglib, for example, one can
integrate loops and conditions with tags directly into the JSP files. It also supports
variables which can be defined by the servlet.

MySQL Database
MySQL is a database which supports scheduled executions of SQL queries. The
queries can be stored in the database, similar to views. MySQL also supports the
federated engine, which is able to create views of tables of another MySQL database
over network.

Apache Maven
Apache Maven is a software project management and comprehension tool [4]. Maven
is used to manage project builds by one central file called pom.xml.

Apache Ant
Apache Ant is a Java library which can be employed to run tasks [2]. Not unlike

10 CHAPTER 2. RELATED WORK & TECHNOLOGIES

Apache Maven, it is used to build Java applications. Ant also manages to run file
based operations and java applications. Therefore, it is suitable for running a Sass
compilation and a YUI compression in a script.

2.5 System Usability Scale (SUS)

The System Usability Scale (SUS) was developed by Brooke (1996) [12] as a ”quick-and-
dirty” usability scale. It is a simple ten-item scale, giving a global view of subjective
assessments of usability [12]. SUS is a Likert scale, where the respondent indicates the
degree of agreement or disagreement with their statement on a five-point scale.

The SUS is technology agnostic and applicable for a wide range of interface technologies
[7]. It is easy to use for both study participants and administrators, it provides a single
score that is easily understood by a wide range of people, and it is non-proprietary [7].

Brooke described the calculation of the SUS value in his paper in the following way: The
result is calculated through the answers of the single questions. The scale response of
every second question (1, 3, 5, 7, 9) is subtracted by one. For the scale response of all the
other questions (2, 4, 6, 8, 10) the value is subtracted from 5. Multiplying the sum of the
scores by 2.5 leads to the overall score of the SUS, which is a value in the range of 0 to
100. Higher scores indicate better usability.

Bangor et al. [7] described the score of SUS as highly reliable. They also discovered that
there is a significant, but not very strong correlation between the age of the respondent
and the SUS score, with a higher age having a negative impact to the SUS score. However,
according to Bangor et al., there is no significant difference between the mean SUS scores
of women or men.

2.5.1 Interpretation of the SUS Score

As a standard rule of thumb, a typical grading scale called university grading scale [7] has
evolved. A SUS score from 90 to 100 related to an A, a score from 80 to 89 to a B and so
on. Despite this concept being very handy, it has not yet been validated [7].

In a subsequent study, Bangor et al. (2009) [6] added an 11th question to the SUS survey:
”Overall, I would rate the user-friendliness of this product as:” with 7 possible answers.
The SUS score of 212 surveys was then mapped to those adjectives, which produced a
mean SUS score of every single adjective. Table 2.1 displays the SUS scores mapped to the
corresponding adjective. With exception of the adjectives ”worst imaginable” and ”awful”,
all of the adjectives were significantly different.

2.5. SYSTEM USABILITY SCALE (SUS) 11

Adjectives Mean SUS Score

Worst imaginable 12.5
Awful 20.3
Poor 35.7
OK 50.9
Good 71.4
Excellent 85.5
Best Imaginable 90.9

Table 2.1: This table represents the adjectives mapped to the mean SUS score.

12 CHAPTER 2. RELATED WORK & TECHNOLOGIES

Chapter 3

Design

The Kraken Web Interface consists of three disparate modules Generic information, Spe-
cific information and Current System Status. The Current System Status displays the
current state of the Kraken Core software. As Generic information, a project descrip-
tion page provides information about the Kraken Web Interface and the Kraken Core
software. It is also equipped with a world map containing all collected data from one
specific day. As Specific information, a page with a filterable torrent list displays all
observed movie torrents from one specific day. Furthermore, there is meta information
about every torrent in the list displayed. Each torrent can be selected for receiving de-
tailed information. A Torrent Details Page with a time graph and a specific map for the
torrent on one day will open. The design of the modules is depicted in Figure 3.1.

Current

System Status

Generic

information
Specific

information

Refreshable

Status Table

Project

Information

Generic Map

Torrent List

Time Graph

Specific Map

Figure 3.1: The Kraken Web Interface Modules: Generic information, specific information
and the current system status. Image Icons: [20, 36, 25, 30, 33]

13

14 CHAPTER 3. DESIGN

3.1 Generic Information

The generic information consists of a page with a project description. The description
gives an overview of the Kraken Core software and in more detail the Kraken Web Inter-
face. This page contains a map with generic torrent movie data. The data is an insight
into the torrent observation from one specific day. It displays the distribution of torrent
peers over to world: from the most active countries to the non-participating countries. In
Figure 3.2 the project information and the generic map will be depicted.

The project description page provides an entrance to the Kraken project. The information
about the project explains the reasons behind the Kraken Core software and the Web
Interface. The user is not overwhelmed by too much information, due to the torrent
specific pages being on separate pages. Nevertheless, they still get an insight into the
project with the description and the generic map.

3.2 Specific Information

The specific information consists of two separate pages. The first page provides a filterable
page with all observed torrents from one day. The user can select one torrent and will
receive more detailed information about this specific torrent on the next page.

3.2.1 Torrent List

The torrent list, depicted in Figure 3.3, provides an overview of torrents, which were
observed on one single day. Per default, the most up to date day with stored data will be
preselected. The preselected day regularly equals the day prior to the current calendar
date, because the data aggregation takes only place once a day at midnight.

One row displays metadata of a movie torrent: The movie title, the publish date and the
file size are presented. It also displays the aggregated data: observed peers and maximal
swarm size on the selected day. A user can select one torrent and will be redirected to
the details page.

Users can click on the date, which will make a calendar with all selectable days appear.
This calendar is depicted in Figure 3.5. It is also possible to switch to the next or to the
previous day without opening the calendar. The results are filterable by keyword. The
results are filterable by keyword. In Figure 3.4 a screenshot of the keyword filtered list is
depicted. Only one movie is found when entering the keyword ”mamula”. The date and
the keyword, if stated, are deposited in the URL. Thus, users can bookmark the url and
the same data will be presented on their return.

3.2. SPECIFIC INFORMATION 15

Figure 3.2: Project information and generic map as the entry page when visiting the
Kraken Web Interface.

16 CHAPTER 3. DESIGN

Figure 3.3: Torrent List with all torrents from one day. The list is filterable and the date
can be switched.

Figure 3.4: The torrent list is filterable. In this example, the word ”mamula” leads to one
movie entry.

3.3. THE MAP 17

Figure 3.5: Selection of a date with observed torrents.

3.2.2 Observed Torrent Details

The observed torrent details page contains two sorts of graphs. The page is depicted in
Figure 3.6. The first graph displays a timeline from the beginning of the observation of the
torrent to the end. The end of the observation is either the final end of the observation,
when a torrent has been marked as inactive, or just the date of the last data aggregation,
hence the previous day. It displays the number of peers and the number of seeders on each
date. By visualizing this data with a timeline graph, the user gains a quick impression
of where the peaks, the ups and downs lie. This graph does not contain geographical
information. It is the sum of the observation of all countries. One of the dates displayed
on the graph can be selected to receive a specific map of the torrent on the selected date,
which is the second graph.

After selecting a date on the graph, there will appear a map below the graph, which is
based on the specific dataset. This map visualizes the data from the selected date and
torrent. Another date can be selected, which will make the map refresh. A date can also
be unselected, whereupon the map will disappear.

The selected date will be stored in the URL. The user can then bookmark the address,
which will lead him back on the same page.

3.3 The Map

In order to understand the distribution of the peers in the BitTorrent network, it is
highly interesting to comprehend from which geographic locations the movies are being
downloaded. When visualizing the origin of a peer, a map is the obvious form of depiction.
The map displays the number of observed peers, the maximal swarm size per country and
the share in percentage, visualized per day.

18 CHAPTER 3. DESIGN

Figure 3.6: The torrent details page displays a time chart and a specific map.

3.3. THE MAP 19

The countries’ shares were visualized in the map by using different color shapes for each
country. The darker a country is displayed, the more people have downloaded the movie
from within this country.

3.3.1 Color Functions

Due to the data changing every day, it is possible that on one day, the majority of peers are
downloading from a single country, but on the next day the shares are equilibrated. With
regard to visualizing those kind of contortions, it is necessary to choose from multiple
color functions, which calculate the values between the maximum and minimum color.

There is a set of different color mapping functions available. The functions were selected
from the basic set of elementary mathematical functions. They can be extended by
new functions easily. The linear color function is the most straightforward example.
It calculates the percentage value of one country in dependence of the maximum value of
the countries. This value is then transformed directly into a color between the maximum
and the minimum color.

With the logarithmic scale, as another example, the number of observed peers is first
passed on as an argument to the logarithmic function. Following that, the percentage
value in dependence of the logarithmic scaled maximum of one of the observed peers is
transformed into a color, in a similar way to the process with the linear function. This
example leads to a different distribution of the colors. Higher values are less important
than in the linear scale, lower values a fortiori. The logarithmic scale was chosen as the
standard color function for the map. It does not react as strong to distortion values as
the linear functions, what leads to a general improvement of the color distribution. In
Figure 3.7 the linear color function is used to render the map. In Figure 3.8 the logarithmic
one was used to display the same dataset as in the linear one. The comparison of those
two maps should give an impression, about the usefulness of various color functions.

LINEAR COLOR FUNCTION

LOGARITHMIC COLOR FUNCTION

Figure 3.7: The linear color function of a map, which is displaying a dataset of one day.

20 CHAPTER 3. DESIGN

LINEAR COLOR FUNCTION

LOGARITHMIC COLOR FUNCTION

Figure 3.8: The logarithmic color function of a map, which is displaying a dataset of one
day.

3.3.2 Map Navigation

In Figure 3.9 a country on the map is selected, whereupon the number of observed peers
will be shown together with the maximal swarm size from peers of the selected country
on the selected day. As a third value, the percentage of the observed peers to the sum of
observed peers is displayed. It also shows the name of the country and the continent to
which the country belongs.

Figure 3.9: Australia as an example for a selected country.

When clicking on the ”List” button, a collection of all countries slides over half of the map
(Figure 3.10). The list presents all the data which is available for the selected day. It shows
the number of observed peers, the maximum swarm size per country and the percentage
value. These entries are equal to the ones which appear after selecting a country on the
map. If a user has already selected a country on the map, it will be visually emphasized
in the list.

There is also the possibility of downloading all the listed data in a CSV file for further
examination.

3.4. SYSTEM STATUS 21

Figure 3.10: The list which slided over the map shows the aggregated data for all countries.

The map can also be displayed in fullscreen mode, where the size of the map increases to
the full width and height of the window. It is recalculated and shown in an appropriate
size. With a click on the red close button, it resizes back to the normal view.

The map adapts to the browser window on initialization. It reacts on resizing of the
browser window, recalculates its size and redraws it completely. For further information
see Chapter 3.6.

3.3.3 Map Dataset

The generic map shows the summary of information about all collected torrents from
the last aggregated day, which is usually the day before. It displays an overview of the
BitTorrent activity in a single country. The generic map is inserted into the project
description page in order to give a first impression of the project.

The same map is shown in the detailed view with the only difference being the dataset,
which only contains peers from one single torrent per day.

3.4 System Status

The system status or status page represents the current status of the Kraken Core soft-
ware. It contains a table with information that is being directly delivered by the master.
Precisely, the master delivers the number and ip address of every current slave, together
with their status. The slave’s status contains the number of messages sent and received,
as well as the number of messages in the send/receive queue.

22 CHAPTER 3. DESIGN

The system status is a helpful tool for the Kraken Core software administrator to see what
the system is currently doing, all on one page. It is not necessary anymore to connect to
the master via shell as you can see all the relevant information online. The pageable table
opens the possibility to add multiple slaves without having a very long list on one page.

Since the information is only valuable to the administrator of the Kraken Core software,
it is commonly expected for such information to be hidden in a secured environment.
However, the data of the system status is not confidential. Therefore, a login would
not be necessary, which is why the system status is publicly available. The entry in the
website’s menu is also less significant, as it is not useful for anyone apart from the system
administrators.

3.5 Navigation

The navigation throughout the window is depending on the modules described in the
beginning of this chapter. As a starting page, the project information and the general
map were chosen. It gives the users some insight on the project. They are able to navigate
to the other pages by making use of the menu on the top of the page (see Figure 3.11). The
menu includes links to both the torrent list and the system status, whereas the specific
torrent details page is only reachable via the selection of a torrent from the torrent list.

Figure 3.11: The navigation menu and title of the Kraken Web Interface.

3.6 Mobile Optimization

The Kraken Web Interface has been optimized for mobile devices. The appearance of
the website depends on the width of the browser window or mobile screen port. If the
browser window is larger than 1’200 Pixel, the website will be displayed in a centered
bar with a width of 1’200 Pixel. If the window is smaller, the website adapts to the full
screen width. The columns of the description texts as well as the table entries adapt to
the smaller space by rearranging their content. The menu also rearranges to full width
buttons if the window becomes even smaller.

This concept of a responsive website is commonly propagated to address mobile and tablet
devices. Therefore, the Kraken Web Interface is fully mobile optimized. It can be accessed
with a smartphone or a tablet as well as with a device with a larger screen. See Figure 3.12
for a view on the Kraken Web Interface project page on different devices.

3.6. MOBILE OPTIMIZATION 23

Figure 3.12: The Kraken Web Interface on different devices. Image Source: [47].

24 CHAPTER 3. DESIGN

Chapter 4

Architecture

All data provided by the Kraken Web Interface is being collected by the Kraken Core
software. The Kraken Core downloads the newest torrent files from the Kickass torrent
platform. The tracker URI of each torrent is spread to all slaves, which then obtain a
set of ip addresses. These addresses are transmitted to the master. The master collects
the data and stores it into the database. The Web Interface database is connected to the
Core Database with a federated engine. Every night, the new data is being aggregated
and transmitted to the Web Interface database.

The status information is directly transferred from the master to the web server through
a socket connection. It uses the same protocol as in the communication with the slaves.

Upon entering the website, the user receives data from both the database and the buffer
of the socket connection, whilst being unaware of the source of the data. Figure 4.1 shows
the architecture of the Kraken infrastructure.

WebServerMaster

SlavesTrackers

kickass.to Kraken DB Statistics DB

KRAKEN CORE

Federated

Socket

System Status

Generic Information

Specific Information

KRAKEN WEB INTERFACE

Browser

USER

Figure 4.1: Architectural overview of the Kraken system. Image Icons: [27, 31, 52, 35,
24, 32, 26, 34, 42, 29]

25

26 CHAPTER 4. ARCHITECTURE

4.1 Data Aggregation

In order to collect the greatest possible amount of unique peers, the Kraken Core software
repeatedly connects to the tracker of the same torrents in short time intervals, and each
time collects a random set of ip addresses. The outcome of this behavior leads to redun-
dancy. To extract the relevant information out of the large database, the data needs to
be aggregated.

4.1.1 Kraken Core Database

The Kraken Core database consists of three tables, where all gathered data is being stored.
The table ”TORRENTS” stores the metadata of every obtained torrent file, the table
”ANNOUNCE RESULT” stores every single request from the Kraken Core to a tracker
of a torrent, and the table ”PEERS” consists of every single collected and localized ip
address.

For each torrent there are multiple requests to the tracker by multiple slaves, which then
return a list of ip addresses. This leads to a sort of distribution of the data in which the
table ”PEERS” contains the most entries.

ANNOUNCE RESULT PEERS TORRENTS
ID ID INFO HASH
TRACKER URI IP ADDRESS ACTIVE
INTERVAL NUMBER PORT TORRENT TITLE
ANNOUNCE COMPLETED ASNUMBER TORRENT SIZE KB
SEEDERS CONTINENT TORRENT TRACKER COUNT
LEECHERS COUNTRY TORRENT COMMENT
TOTAL PEERS CITY PUBLISH DATE
RETURNED PEERS LATITUDE MAGNET URI
SLAVE IP LONGITUDE TIME ADDED
SLAVE PORT TIME DEACTIVATED
LOCAL TIMESTAMP TORRENT LINK
TIMESTAMP

Table 4.1: Kraken Core database structure.

4.1.2 Reduction of Duplicated Data

Interesting for data visualization are mainly the activity per peer and the summed up
activity per country. The peers table contains many duplicated entries due to aforemen-
tioned reasons. The activity per peer needs to be in a certain time range, which was
determined to be one day long. From a perspective of an average torrent lifespan of
around 30 to 300 hours [41], one day seemed to be a reasonable scale.

In the daily process of aggregation, the entries of the table ”PEERS” were reduced to
match the following criteria:

4.1. DATA AGGREGATION 27

1. In a dataset of one day, one peer is only present once , except 2.

2. It can be present multiple times, if it was observed in down- or uploading multiple
torrents. The number of occurrences needs to match the number of torrents in which
the peer has been participating.

The entries are reduced automatically every day at midnight and stored in a separated
database. This scheduling task is being done with an event scheduler. The connection
between the databases is established as a federated connection. See Appendix A for the
SQL statement for the data aggregation.

The aggregated database also contains three tables including the ip addresses and some
additional metadata. Table 4.2 shows an overview of the tables of the aggregated database.

The entries of all tables are being copied. This procedure produces a redundancy between
the Kraken Core database and the aggregated database. It is legitimate though, because
the entries of the core database will be archived when a torrent is not active anymore,
whereas the aggregated database needs to have the data of archived entries present.

statistics torrents statistics torrentmeta statistics peers
info hash id id
title observed peers ip address
filesize max swarm size country iso code
publish date seeder quota info hash

info hash date
date

Table 4.2: Aggregated database tables for statistical and visualization purposes.

28 CHAPTER 4. ARCHITECTURE

Chapter 5

Implementation

This chapter discusses the implementation of the design and the architecture of the Kraken
Web Interface. In the section about the structuring of the JavaScript Code, there will
be described that the JavaScript front-end modules are structured in a pattern using
self-invoking functions which allows the usage of private variables and methods. There
will follow a section about the build process including deliberations on how the CSS
preprocessor Sass and its framework Compass were integrated into a Maven build process.
In the next section, the map data generation will be illustrated, with remarks on how the
raw data needed to be converted to a superset of the JSON format. In the following section
on the Java back-end, the functionality of the back-end as an intermediate between the
database and the front-end will be discussed. It also provides an insight to the connection
between the Java back-end and the Kraken Core. To continue, the functionalities of the
torrent list will be explained in detail and following that, all the functionalities of the map
will be described. The chapter will conclude with a section on the time charts.

5.1 JavaScript Code Structuring

The JavaScript files were managed in the so-called JavaScript Module Pattern [17]. The
benefit of using this pattern lies in the gain of modular structure in the otherwise un-
structured JavaScript code.

It is possible to use private variables in JavaScript with the module pattern. A module
consists of one function, assigned to a scope variable. This outer function defines some
variables and inner functions in its own scope and only returns the ones which are to be
accessed from the outside. The rest of it stays private.

The JavaScript Module Pattern works with self-invoking functions. After the definition
of a function it will be directly executed. In the function parameters, libraries and other
modules can be passed by as dependencies. These dependencies are renamed according
to the function signature and can then be used inside the function in shorter variables.

29

30 CHAPTER 5. IMPLEMENTATION

One example of the JavaScript Module Pattern is the simplified JavaScript module of the
system status page in Listing 5.1.

1 kraken.systemstatus = (function($, moment, d3, errorHandling) {
2

3 /*

4 * System Status

5 * -------------

6 * This module loads the data from the system

7 * status servlet into the HTML table.

8 *

9 */

10 "use strict";
11

12 var servletUrl = null;
13

14 function convertTimestamp(timestamp) {
15 [...]

16 }
17

18 function init(servletUrlNew) {
19 servletUrl = servletUrlNew;
20 [...]

21 }
22

23 [...]

24

25 return {
26 init: init
27 };
28

29 }(jQuery, moment, d3, kraken.errorHandling));

Listing 5.1: Simplified systemstatus.js as a sample for the Module Pattern.

The module in Listing 5.1 is depending on jQuery, moment, d3 and the Kraken module
errorHandling. Those modules can then be directly used inside the function. The required
dependencies are clearly declared.

The module returns only one function called init(). This function acts as a constructor and
is public, because it is returned by the module. It can be accessed from the outside by the
call kraken.systemstatus.init(url). The constructor assigns its parameter servletUrlNew
to the instance variable servletUrl. However, servletUrl is a private variable, as it is not
returned by the module. The method convertTimestamp(timestamp) is neither returned
by the module and therefore private as well.

5.2. BUILD PROCESS 31

5.2 Build Process

The build process is managed by Apache Maven. The main task in the Kraken Web
Interface besides the compilation of Java files is the build of the web resource files. The
style files are written in the Sass syntax, relying on the Compass framework and the
JavaScript files need to be concatenated. Both resulting output files need also to be
minified for a better web page performance. Another part of the build process is the
deployment to a standalone web server that is reachable in the internet.

5.2.1 Sass/Compass & Minifying

This section treats the build process of Sass and Compass. Firstly, an overview will be
given of two possible solutions: jRuby together with the official Sass/Compass version
and Wro4j. Eventually arguments in favor of and against the two solutions are discussed
and the final decision is presented.

Sass and compass are both written in Ruby. To be able to compile the Sass code to
regular CSS styles in a Maven process, it was necessary to either install Ruby on the
build machine or produce an executable Java file, which will then run in the process. In
order to be independent of installed software on a build system, a Java solution is the
better option.

Wro4j [50] is a library, capable of these requirements. It supports Sass, is runnable in
Maven and exists also as a runtime solution, whereas the files are compiled in runtime.
On the downside, it neither supports Compass nor does it disallow the compilation of
JavaScript files in a specified order. If an update of Sass is released the build also depends
on the update cycle of Wro4j.

An alternative solution to Wro4j is using jRuby and the original Sass and Compass release.
jRuby acts as a wrapped Ruby instance in a Java environment. The gems for Sass and
Compass can be directly installed into the jRuby .jar file with just a few commands (see
Appendix B for further instructions). The resulting .jar file is thus able to compile the
Sass code with all Compass libraries to regular CSS code. It uses the official Sass and
Compass distribution and can be easily updated. It is independent from installed software
on a build system and easily integratable into a Maven build process. However on the
downside, the compiling duration is rather high and the jar file is not managed by Maven.
Wro4j also supports Minifying of CSS and JavaScript files, which is not supported within
this solution.

Minifying JavaScript and CSS leads to a large decrease in the file size [49, 55]. It is there-
fore strongly recommended for a performant web application to minify the resources.
Wro4j, the web resource optimizer for Java, has an integrated JavaScript and CSS minifi-
cation unit. The compression is done with the YUI compressor, an open source JavaScript
and CSS compressor. The YUI compressor can be also be used as a standalone JavaScript
library. It is easily integratable into a Maven build process, but not able to concatenate
JavaScript files.

32 CHAPTER 5. IMPLEMENTATION

Decision against Wro4j

The benefits of Wro4j, an integrated solution, did not overcome the drawbacks of its usage.
Also, the solution of using the official compiler and compressor was convincing.

As the YUI compressor was not able to concatenate files, a file operation during the
build process was necessary. The order of JavaScript files is important because of the
dependencies between the JavaScript modules. For those reasons it was also necessary
to have a list of file names deposited in a text file, which is then responsible for the
concatenation order.

In Maven, basic file operations are only possible through additional plugins. In Apache
Ant it is significantly easier to work with file based operations. An Ant build file can be
easily executed by Maven with the Maven-Antrun-Plugin [3]. It is also possible to run
Ant files automatically on a save operation in Eclipse. Hence, it is preferable to use an
Apache Ant builder for concatenating the JavaScript files before the minification.

In order to combine all the web resource optimization in one place and to be able to use
the resource optimization in an automatical build action in Eclipse, experience has shown
that it is most reasonable to run all the resource optimization in one Ant script.

During the process of development, a minification of JavaScript and CSS is not useful. In
a browser, debugging is much more complicate, if not impossible, with minified code. For
that reason, the Ant script only minifies the code, if the ”productive” variable is set. This
variable is set with the Maven profile ”productive”.

5.3 Map Data Generation

The visualization of the torrents on a map requires geographical map data of the entire
world. Natural Earth Data, a public domain map dataset in various resolutions, created
by many volunteer contributors of the North American Cartographic Information Society
(NACIS) provides world-wide map data. The data is provided in a shape file together
with political and statistical metadata.

For the generation of a map, D3.js expects map data in the JSON format, particularly
GeoJSON or, with an additional JavaScript library, TopoJSON. The creator of D3.js
provides a command-line tool, installable via NPM which is able to convert from all
common formats to Topojson. This identically named software also supports shape files
and GeoJSON as source.

In Figure 5.1 a progress overview of the map data generation is depicted. It starts by
converting the shape file with the TopoJSON command-line tool to a TopoJSON file.
The tool offers a lot of configurable options. The properties, that were already part of
the shape file, could be partially removed, the resolution could be decreased etc. [10].
In the Kraken Web Interface, country name, continent and country ISO code remained
unchanged during the generation. The generated TopoJSON file and the aggregated data
from the database could then be used as an input for D3.js and the TopoJSON extension
to visualize the map.

5.4. JAVA BACK-END 33

Natural Earth

Data Website

Shape file TopoJSON

Command Line

TopoJSON

file

D3.js and

TopoJSON.js

Visualized

World Map

Aggregated

Data

Figure 5.1: Conversion of the map data with TopoJSON. Image Icons: [43, 34, 60, 24, 28,
44]

5.4 Java Back-End

Since the Java back-end mainly acts as proxy between database and front-end, a main
task of it is the mapping between the database and the JSON format. The Java back-
end does not contain much logic and does not model every database entity. Therefore,
it was reasonable not to use powerful frameworks as Gson [40] for the mapping. JSON
Simple [45] however supports the simple, programmatic mapping between java objects
and JSON. It was used to create JSON strings while looping through the returned results
of the database.

The connection between the MySQL database and the Java back-end is established
through the standard Java Database Connectivity Interface (JDBC). In order to keep
the back-end simple, the SQL queries are directly stored in the database controller and
similar to the JSON mapping, no powerful framework like Hibernate was used for calls to
the database.

Following, the data requested from the database and mapped into the JSON format is
then provided to the front-end with a Java Servlet. A servlet extends HttpServlet and
provides a method which is called when the user requests the specified URL. This method
then returns the queried data.

5.4.1 Socket Connection to Kraken Core

The information about the system status is not provided by the database but by the
Kraken Core directly. A socket connection permanently runs between the web server and
the master of the Kraken Core. The information is forwarded through a servlet directly to
the front-end, since it is already received in the standard JSON format from the Kraken
Core. Because the data is published publicly there is no need for strong security standards.
Security could simply be provided by a firewall or other means.

34 CHAPTER 5. IMPLEMENTATION

In the front-end, the data is loaded with an Ajax call, that is standardized by jQuery.
The data is then displayed in a standard HTML table filled in by jQuery template. It can
be reloaded by clicking on the refresh icon.

5.5 Torrent List

The torrent list provides a filterable list of observed torrents, limited to one day. The list
is filled with jQuery Template.

The day can be selected by clicking on the input field of the day on the top right of the
table. A click on the field opens an inpage popup, where the user can select a day in a
calendar view. The calendar has clickable days in the range of the first dataset in the
database to the last. The calendar view is provided by jQuery pickadate. The day can
also be changed by clicking on one of the two arrows on both sides of the day field. By
clicking one of the arrows, the next or previous day is calculated with moment.js and
passed to the API of jQuery pickadate.

The list can be filtered by keyword. When entering a keyword, it will be searched for in
every word of every torrent. The keyword is split up on a space and it looks for every single
keyword similar to SQL OR statement. The advantage of this technique is its accuracy:
If an error is in one keyword, there are still results for the others. The disadvantage of
this technique is however, because it does not capture all keywords at once, the user can
be presented with a lot of search results. For example, if you enter ”en”, it leads to many
results, because they are not filtered by the second or third keyword.

5.6 The Map

The core of the map module mainly consists of the integration of the D3 map functionality.
D3 supports the simple creation of maps when providing map raw data in the format of
GeoJSON or with an additional extension TopoJSON. A projection type is also required.
It determines the way of how the map is modeled in two dimensions. See Figure 5.2 for
a depiction of the twelve possible projection types in D3, which are part of the D3 core.
In Kraken Web Interface, the equirectangular projection map was selected. It provides
a well-known form of a map and is also the most simple projection using the identity
function to calculate the map [8].

The plain map is merged with the data of the back-end. It was joined by matching the
country ISO codes of the raw map data and the Kraken data. The additional data is
attached to the D3 data model of the SVG map. Before rendering the map, the maximal
value of the dataset of the observed peers is stored. The fraction of each of the country is
calculated to produce a percentage value for the calculation of the color of each country.
Eventually, the percentage value is transformed according to the selected color function
(see Section 3.3.1) to an effective color of a country. The result is displayed in Figure 5.3.

5.6. THE MAP 35

Figure 5.2: An extract of possible projection types in D3. Image: [8]

Figure 5.3: The colored map of Kraken Web Interface without any additional controls or
functions.

36 CHAPTER 5. IMPLEMENTATION

In addition, the plain map offers a zooming feature. D3 already provides a default zoom-
ing, which reacts to mouse events. Usually, there are two buttons on a map which allow
the zoom by clicking a button instead of mouse events. This is a handy feature for mobile
devices because of the absence of a mouse. The zoom buttons also indicates that there is
actually the possibility to zoom into the map.

The ”Click-to-Zoom” feature is not natively supported by the D3 library. With their open
API, it can be added with reusing all the existing functionalities of D3. By adding this
kind of feature, calculations of the position of the current viewport are inevitable. A
viewport is a zoomed extract of the map, which does not show the full map anymore.
Figure 5.4 displays an example of it. The x and y values, which are illustrated in the
figure, need to be recalculated every time the map is zoomed. Considering the model
of the viewport in Figure 5.4, the zooming is the increase or decrease of the size of the
viewport. The user expects the center of the map to be still in the center of the map after
the zooming. Therefore, the current center of the map needed to be taken into account as
well. Eventually, after recalculating the new position of the viewport, it shows the same
center as before with a new zoom depth.

FULL SIZE MAP

VIEWPORT

x

y

Figure 5.4: A zoomed viewport in relation to the full map. The x and y values represent
the offset value of the viewport.

Zooming, dragging and dropping of the map leads to another problem, which is also not
part of the native library of D3: The dragging of the map does not stop on any side of
the map. This makes it possible to drag the map outside of the viewport. To prevent this
from happening, a custom move() function was implemented. On every drag, it compares
the current viewport in consideration of the current zoom depth to the maximal value,
where the map is still inside the viewport.

The map is capable of being depicted in every size desired. It automatically reacts to
changes of the browser width and redraws the map. Thanks to this functionality, it is also
possible to open the map in fullscreen mode. The map redraws to the size of the browser
viewport. One major difference to the regular view is however the possibility to drag

5.7. TIME CHART 37

the map outside of the browser viewport in fullscreen mode. When in regular mode, the
map adapts its width proportionally to its height, while it behaves contrarily in fullscreen
mode. In the fullscreen mode, the user expects a map which actually takes in the full
height of the screen. If the map does not fit, it is not expected that either a scrollbar or
a blank space on the bottom of the page appears, but that the map is draggable to the
outside of the browser viewport. This scenario is illustrated in Figure 5.5.

Figure 5.5: The map in fullscreen mode needs to fill the full height of the browser window.

The JavaScript module map.js offers an API which supports three different ways to ini-
tialize. Along with the regular initialization it is possible to initialize the module hidden
or without controls. The hidden initialization prepares the map in a hidden version and
assures that no side effects occur. The hidden controls are useful for very small map
depictions where the controls overlay the map too much. The API offers also a way to
disable the redrawing of the map on browser window width changes.

Furthermore, the map reacts to the two events ”mapInfoHashChange” and ”mapDate-
Change”, which both need to provide either the date or the info hash of a torrent. If one
of these two events are fired to the <body>, the map reacts accordingly and adapts itself
to the new parameters. An event based communication between the modules allows the
strict separation of the modules. Those two events are mainly used for the communication
between the time chart and the specific map on the Torrent Details Page.

5.7 Time Chart

The time chart is a configured instance of the C3.js chart library. C3.js relies on D3.js,
but, in contrary to D3.js, it is not a programming library, but a configurable one.

38 CHAPTER 5. IMPLEMENTATION

The time chart of the Kraken Web Interface is a spline area chart. It depicts the peers and
the fraction of seeders on each observed day. Each day is selectable. If selected, it calls
a custom function, which loads the specific map of one movie torrent on the selected day
and highlights the date. In order to optimize the visual impression, a spline area chart
was selected. Another possibility for rendering the chart would be a line or line area chart
with sharp edges. As it was pointed out in the comments of the evaluation questionnaire
(see Appendix C.4), a spline chart may have some disadvantages in displaying the peaks
on the exact date.

Figure 5.6: The time chart graph with a sample dataset.

The zoom feature of the chart is enabled, meaning that the user is able to zoom and drag
and drop the chart. While adding the zooming feature, an issue evolved: The time chart
jumped an inch to the right, when dragging the graph. This issue was reported as an
official bug report [57] on the GitHub Issues website of the framework. The author of
the framework reacted, and after a few written exchanges, the bug was fixed. Although
a new bug had emerged from the primary bugfix, a new bug report [58] was resolved
quickly. Eventually, there was a new version of the C3.js framework released, including
both bugfixes.

Chapter 6

Usability Evaluation

Today, an evaluation of the usability of the software is very important. The usability is
a leading factor for the user to decide whether to use the software on a regular basis. If
they decide not to revisit a website because they did not find the desired information, the
website has failed as a medium of information transmission. In this chapter, the usability
of the Kraken Web Interface will be evaluated. It will begin with the scenario and setup
of a questionnaire to gather data of the users opinion of the software. For this thesis,
a standardized SUS questionnaire was chosen for determining a usability score. In the
second section of this chapter, the responses to the questionnaire will be evaluated, before
being analyzed and interpreted in the last section.

6.1 Scenario & Setup

The usability of the Kraken Web Interface was evaluated by a standardized System Us-
ability Scale (SUS) questionnaire. The SUS questionnaire consists of 10 questions with a
scale from 1 to 5. In this evaluation, the scale was stretched to a scale from 1 to 10, to get
even exacter results. Table C.1 in Appendix C.1 lists the asked standard SUS questions.

The SUS questionnaire expects the user to be familiar with the software. For that reason,
in the beginning of the questionnaire, there were six additional non-required questions
to motivate the user to get familiar with the software. These questions were contentual
and asked for detail facts, which could be found on different parts of the Kraken Web
Interface. A response to these questions was optional. Table 6.1 lists the questions.

For statistical reasons, at the end of the survey there were five demographic questions and
one input field for general comments. Two of those questions regarded the IT skills of the
user and were required to answer, the other three questions were optional. In Table 6.2
they are listed.

The questionnaire was online conducted with Google Forms [39]. An e-mail with an
invitation to participate at the questionnaire was sent to 28 persons. Additionally, the
link to the questionnaire was released in two different Facebook groups with primarily
members of the University of Zurich.

39

40 CHAPTER 6. USABILITY EVALUATION

1. Find the generic map with all the observed peers from one day in it. Find the
torrent list, which is a list of torrents observed on one specific day. Click on
one of them and find the torrent details page with a timegraph and a specific
map.

2. How many people in percentage were downloading from Italy on 2014-09-15?
3 On what day were the most people downloading the movie ”Subha Hone Na De

Full Song 1080p HD”?
4. Select the following movie and see what the distribution looks like on 2014-09-12.

82.4% of all downloads of this movie were conducted by people based in Italy.
Change the color visualization on the bottom left to see how the color of the
countries change by changing the function from Logarithmic to Linear. ”Chef La
Ricetta Perfetta 2014 iTALiAN MD WEBRip XviD-FREE[MT] avi”

5. Same Movie as in 4. Open the map list of the movie and download the CSV file
containing all the data. Open the CSV file in a text editor or Excel.

6. How many people from Switzerland downloaded the movie ”Al Filo Del Mañana
[BluRay Screener][Español Castellano]” on 2014-09-11?

Table 6.1: Context questions before starting the questionnaire.

1. Male/Female
2. Name
3. Age
4. What is the highest level of education you have completed?
5. Would you like to leave a comment?

Table 6.2: Demographic questions at the end of the questionnaire.

6.2. RESULTS 41

6.2 Results

In total, 19 persons completed the questionnaire, whereas 32% were women. Most of the
probands were highly educated with a rate of 82% of the participants having at least a
Bachelor degree. 15 out of 19 are working or studying in the IT sector, whereas the mean
estimated IT skills of the users is 7.74 on a scale between 1 and 10. In the Appendix C.2
you can find in Table C.2 the responses to the SUS questionnaire. In Figure 6.1 you can
find the statistical data about the usability evaluation visualized.

26 - 50 years

5%

51 - 65 years

10%

> 65 years

0%

< 18 years

0%
18 - 25 years

32%

26 - 35 years

53%
IT Sector

79%

Outside IT

21%

MEAN IT SKILLS

74.85%

0 2 4 6 8 10

Mandatory School

Apprenticeship

Professional Maturity

Higher education entrance

Bachelor degree

Master degree

Postgraduate Degree

Figure 6.1: Visualized statistical data about the evaluation study participants.

The responses of the questionnaire were evaluated and rescaled to the original SUS
scale between 1 and 5. Then, the SUS scores were calculated according to the rules
of Brooke [12]. The calculation approach is in Appendix C.3.

The mean SUS score of the Kraken Web Interface attained 70.94 with a median value of
70. The bandwidth of the scores was between 33.33 and 94.44. In ten-point ranges, the
most SUS scores were between 80 and 90. In Figure 6.2 you can see the full distribution
of the SUS scores.

Women rated the software higher, than men. The mean SUS score of female participants
was 74.07, whereas the mean SUS score of men was 69.49. The age of the participant
is relevant for the SUS score, the youngest participants were most convinced about the
software. Participants in the age of 18 to 25 rated with an average score of 82.41, whereas
the older participant were all below the total mean SUS score. See Table 6.3 for the
distribution among the age of the participants and number of participants in that group.

42 CHAPTER 6. USABILITY EVALUATION

0

0

0

1

1

3

4

2

6

2

0

1

2

3

4

5

6

7

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

SUS Score Distribution

Figure 6.2: SUS score distribution in ranges of 10 out of 100 with the number of partici-
pants with a SUS score in that range.

Age mean SUS Score Nr. of participants
18 - 25 years old 82.41 6
26 - 35 years old 65.33 10
36 - 50 years old 67.78 1
51 - 65 years old 66.11 2

Table 6.3: Distribution of the SUS scores among the age of the participants.

The SUS score of the 15 persons who are working or studying in the IT sector is minimally
lower than the total average: 69.41. However, the score of the people who are not related
to the IT sector is with 76.67 higher than the total average.

90.35% of the optional context questions were answered correctly, whereas just 1.75% of
the questions remained unanswered. Every participant responded to the optional ques-
tions. The mean SUS score of the 8 participants with at least one faulty answer in the
context questions is with 68.89 not significant smaller than the total average SUS score.

6.3 Interpretation and Analysis

According to the adjective-mapping of the SUS score, a mean score of 70.94 is closest to
the word ”good” [6]. According to the same study, it is slightly above the average value
of SUS scores evaluating websites, which is 68.2.

Most attentive in this evaluation is the large difference of SUS scores between the young
participants (18-25 years old) and the older ones (> 25 years). One possible explanation
might be that the younger the participating persons are, the more natively they handle
digital media. Digital natives can be described as a group of people who are born after
1980 and grew up with digital technologies [51]. The second group of persons (25-34 years
old) would also match the criteria of being digital natives. However, this group shows the
largest anomalies in the data, as in this group the two lowest SUS scores were measured.

6.3. INTERPRETATION AND ANALYSIS 43

The people, who are not studying or working in the IT sector rated the software higher
than the ones, related to the IT sector. A possible explanation for this phenomenon
might be their lower knowledge about the matter of BitTorrent. If the people do not
know much about the context of the software, they might allege their unclarity to their
lack of knowledge and not to possible unusable parts of the software. Another reason
might be, that people, which are not related to the IT do matter about the context of the
software that much, but rather focus on the visual part of it, what might influence the
resulting SUS score.

The context questions in the beginning may also have had an impact on the SUS scores.
A question like the sixth, where the participant was encouraged to answer how many
downloads were made on a day, may confuse people who are not familiar with BitTorrent.
On the website the term ”download” was only used in the project description, but not
on the map or map list. Only the term ”Observed Peers” was written next to the looked
for number. The evaluated data however showed a different picture. Only one of six
participants, who did not answer or answered the sixth question incorrectly, was effectively
a person without a relation to the IT sector. This these could not be ascertained.

The anomalies in the data can be explained by the comments the respective participants
left behind. Their biggest concern was the functionality of the search bar, which did not
deliver the expected results. Another concern was the navigation of the page, which was
not clear to everybody. These matters may have impacted the ratings in the SUS score
negatively.

Scores for individual items are not meaningful on their own, according to Brooke [12]. This
disallows a further examination of the single questions and how a SUS score is achieved.

44 CHAPTER 6. USABILITY EVALUATION

Chapter 7

Summary, Conclusions & Future
Work

This chapter concludes the thesis of the Kraken Web Interface. There will be a summary
of the results of the work on the Kraken Web Interface, followed by conclusions on how
this thesis might have an impact on future torrent research. Eventually, there will be
some thoughts of how the Kraken Web Interface could be further developed.

7.1 Summary and Conclusions

As the main result, a web interface which visualizes the aggregate Kraken Core data has
evolved from this Bachelor Thesis. It continuously interprets the current data and visual-
izes the aggregated data as information in three disparate modules: ”Specific information”,
”Generic information” and ”System Status”. There are mainly two visualizations present
on it: A map with either generic or specific information and a time chart, which visual-
izes the activity of one single torrent over time. The resulting Kraken Web Interface is
currently deployed on a server of the IFI at the University of Zurich with a mock dataset
of one week:

http://kraken-vm.csg.uzh.ch:8080/kraken-ui/

The data aggregation has transformed the raw data, which has been randomly collected
by the Kraken Core application, into a meaningful form. It is now being used in the
specific and generic map, but also in the time chart.

The general map depicts worldwide BitTorrent traffic. The distribution on the map
indicates how many peers have connected to the network in general and from which
locations. The user can identify the country in which the peers are most active in down-
or uploading, and the countries, in which the peers are not active at all.

The specific maps of the torrents allow for researchers to observe the changes in the
geographic locality of one specific torrent file in the course of multiple days. The according

45

46 CHAPTER 7. SUMMARY, CONCLUSIONS & FUTURE WORK

time graph delivers the data on the mass of downloads over time. Researchers can now
understand the development of BitTorrent traffic both in relation to geographic locality
and in absolute figures.

The time chart depicts the progression of the quantity of peers of one single torrent on
one day. The user can select a day, and the map will refresh with the selected dataset.

The Kraken Web interface can have an impact on the BitTorrent research community,
because the gathered data of the Kraken measurement study has now been made publicly
available. Researchers from all over the world are now able to look up the data of the
Kraken Web Interface to further study the activities in a BitTorrent network.

7.2 Future Work

Currently, the torrent list and the specific map are two separate pages. User comments,
which were gathered in the evaluation questionnaire, have shown that the placement of
the torrent list and the torrent details page on separate web pages causes confusion to
some users. All user comments are listed in Appendix C.4. A reasonable variation of the
specific information section could include a merging of those two pages. The torrent list
could be exchanged by an autocomplete input field, which would open the map and the
time chart directly on this page. The selection of the torrent and the depiction on the
map would remain on one page. This change would also simplify the main navigation, as
there would only be one page behind the button ”Torrent Visualization”, instead of the
torrent list and the torrent details page.

The map currently supports only a depiction of data of one single day. The map needs to
be redrawn upon switching to another day, e.g. after selecting another date in the time
chart. A possible improvement of the Kraken Web Interface could involve an adaption of
the map to a multi-day view. The map could involve a range selector within the lifespan of
the depicted torrent. This extension would increase the interactivity and user experience
of the map.

In further research, the localized and aggregated data of the Kraken Web Interface might
also be used to improve the locality principle. In this context, locality means that it is
preferable to share files in the same or close network, rather than in distant networks.
Keeping traffic local is generally less expensive for the Internet Service Providers (ISP).
The aggregated data could be downloaded via CSV or directly withdrawn from the Kraken
Web Interface database in order to further examine the locality.

Bibliography

[1] Amsul. jquery pickadate. http://amsul.ca/pickadate.js. [Online, accessed 2014-
11-30].

[2] Apache. The ant project. http://ant.apache.org. [Online, accessed 2014-11-10].

[3] Apache. Maven antrun plugin. http://maven.apache.org/plugins/

maven-antrun-plugin. [Online, accessed 2014-11-29].

[4] Apache. Official maven website. http://maven.apache.org. [Online, accessed 2014-
11-10].

[5] Stefan Matthias Aust, Anders Bengtsson, Geert Bevin, et al. jruby: The ruby pro-
gramming language on the jvm. http://jruby.org. [Online, accessed 2014-11-10].

[6] Aaron Bangor, Philip Kortum, and James Miller. Determining what individual sus
scores mean: Adding an adjective rating scale. Journal of usability studies, 4(3):114–
123, 2009.

[7] Aaron Bangor, Philip T Kortum, and James T Miller. An empirical evaluation of the
system usability scale. Intl. Journal of Human–Computer Interaction, 24(6):574–594,
2008.

[8] Mike Bostock. Geo projections in d3.js. https://github.com/mbostock/d3/wiki/

Geo-Projections. [Online, accessed 2014-12-03].

[9] Mike Bostock. Topojson. https://github.com/mbostock/topojson/wiki. [Online,
accessed 2014-11-10].

[10] Mike Bostock. Topojson: Command-line tool. https://github.com/mbostock/

topojson/wiki/Command-Line-Reference. [Online, accessed 2014-11-17].

[11] Mike Bostock. Topojson project description. https://github.com/mbostock/

topojson/wiki. [Online, accessed 2014-11-15].

[12] John Brooke. SUS-A quick and dirty usability scale, volume 189. London: Taylor &
Francis, 1996.

[13] Paul Burgess. jquery template. https://github.com/codepb/jquery-template.
[Online, accessed 2014-11-30].

47

http://amsul.ca/pickadate.js
http://ant.apache.org
http://maven.apache.org/plugins/maven-antrun-plugin
http://maven.apache.org/plugins/maven-antrun-plugin
http://maven.apache.org
http://jruby.org
https://github.com/mbostock/d3/wiki/Geo-Projections
https://github.com/mbostock/d3/wiki/Geo-Projections
https://github.com/mbostock/topojson/wiki
https://github.com/mbostock/topojson/wiki/Command-Line-Reference
https://github.com/mbostock/topojson/wiki/Command-Line-Reference
https://github.com/mbostock/topojson/wiki
https://github.com/mbostock/topojson/wiki
https://github.com/codepb/jquery-template

48 BIBLIOGRAPHY

[14] Howard Butler, Martin Daly, Allan Doyle, Sean Gillies, Tim Schaub, and Christopher
Schmidt. Geojson format specification. http://geojson.org/geojson-spec.html.
[Online, accessed 2014-11-10].

[15] Hampton Catlin, Natalie Weizenbaum, Christopher Eppstein, and numerous con-
tributors. Sass: The official website guide. http://sass-lang.com/guide. [Online,
accessed 2014-11-10].

[16] Xi Chen. Sass/compass installation guide with jruby. http://seanchenxi.com/

java/sass-compass-jruby-single-jar. [Online, accessed 2014-12-01].

[17] Ben Cherry. Javascript module pattern: In-depth. http://www.adequatelygood.

com/JavaScript-Module-Pattern-In-Depth.html. [Online, accessed 2014-12-02].

[18] Bram Cohen. Incentives build robustness in bittorrent. In Workshop on Economics
of Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[19] Bram Cohen. Bittorrent protocol specification. http://www.bittorrent.org/beps/
bep_0003.html, 2008. [Online, accessed 2014-11-10].

[20] Designmodo. Icon: News notice. http://www.flaticon.com/free-icon/

news-notice_4442. [Online, accessed 2014-12-02].

[21] Christopher Eppstein. Compass: An open-source css authoring framework. http:

//compass-style.org. [Online, accessed 2014-11-10].

[22] Kraig Finstad. The system usability scale and non-native english speakers. Journal
of usability studies, 1(4):185–188, 2006.

[23] Carlos Flavián, Miguel Guinaĺıu, and Raquel Gurrea. The role played by perceived
usability, satisfaction and consumer trust on website loyalty. Information & Man-
agement, 43(1):1–14, 2006.

[24] Freepik. Icon: Database. http://www.flaticon.com/free-icon/database_1059.
[Online, accessed 2014-12-04].

[25] Freepik. Icon: Directory submission. http://www.flaticon.com/free-icon/

directory-submission-symbol_48671. [Online, accessed 2014-12-04].

[26] Freepik. Icon: Document with line chart. http://www.flaticon.com/free-icon/

document-with-line-chart_33279. [Online, accessed 2014-12-04].

[27] Freepik. Icon: Earth. http://www.flaticon.com/free-icon/earth_32445. [On-
line, accessed 2014-12-04].

[28] Freepik. Icon: Engineering. http://www.flaticon.com/free-icon/engineering_

1850. [Online, accessed 2014-12-04].

[29] Freepik. Icon: Frontal standing man silhouette. http://www.flaticon.com/

free-icon/frontal-standing-man-silhouette_10522. [Online, accessed 2014-12-
04].

http://geojson.org/geojson-spec.html
http://sass-lang.com/guide
http://seanchenxi.com/java/sass-compass-jruby-single-jar
http://seanchenxi.com/java/sass-compass-jruby-single-jar
http://www.adequatelygood.com/JavaScript-Module-Pattern-In-Depth.html
http://www.adequatelygood.com/JavaScript-Module-Pattern-In-Depth.html
http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html
http://www.flaticon.com/free-icon/news-notice_4442
http://www.flaticon.com/free-icon/news-notice_4442
http://compass-style.org
http://compass-style.org
http://www.flaticon.com/free-icon/database_1059
http://www.flaticon.com/free-icon/directory-submission-symbol_48671
http://www.flaticon.com/free-icon/directory-submission-symbol_48671
http://www.flaticon.com/free-icon/document-with-line-chart_33279
http://www.flaticon.com/free-icon/document-with-line-chart_33279
http://www.flaticon.com/free-icon/earth_32445
http://www.flaticon.com/free-icon/engineering_1850
http://www.flaticon.com/free-icon/engineering_1850
http://www.flaticon.com/free-icon/frontal-standing-man-silhouette_10522
http://www.flaticon.com/free-icon/frontal-standing-man-silhouette_10522

BIBLIOGRAPHY 49

[30] Freepik. Icon: News notice. http://www.flaticon.com/free-icon/

educational-graphic_42927. [Online, accessed 2014-12-04].

[31] Freepik. Icon: Rack server. http://www.flaticon.com/free-icon/rack-servers_
31726. [Online, accessed 2014-12-04].

[32] Freepik. Icon: Server with the earth. http://www.flaticon.com/free-icon/

server-with-the-earth_31553. [Online, accessed 2014-12-04].

[33] Freepik. Icon: Spreadsheet cell. http://www.flaticon.com/free-icon/

spreadsheet-cell_31023. [Online, accessed 2014-12-04].

[34] Freepik. Icon: Text document. http://www.flaticon.com/free-icon/

text-document_32329. [Online, accessed 2014-12-04].

[35] Freepik. Icon: Torrent symbol file format. http://www.flaticon.com/free-icon/

torrent-symbol-file-format_28969. [Online, accessed 2014-12-04].

[36] Freepik. Icon: World map. http://www.flaticon.com/free-icon/world-map_

62443. [Online, accessed 2014-12-04].

[37] Nicolas Gallagher and Jonathan Neal. Normalize.css: A modern, html5-ready alterna-
tive to css resets. http://necolas.github.io/normalize.css/. [Online, accessed
2014-11-10].

[38] Rob Garrison and Christian Bach. jquery tablesorter. http://mottie.github.io/

tablesorter/docs. [Online, accessed 2014-11-30].

[39] Google. Forms. http://www.google.com/forms/about. [Online, accessed 2014-12-
06].

[40] Google. Gson library. https://code.google.com/p/google-gson. [Online, ac-
cessed 2014-11-29].

[41] Lei Guo, Songqing Chen, Zhen Xiao, Enhua Tan, Xiaoning Ding, and Xiaodong
Zhang. Measurements, analysis, and modeling of bittorrent-like systems. In Proceed-
ings of the 5th ACM SIGCOMM conference on Internet Measurement, pages 4–4.
USENIX Association, 2005.

[42] Icomoon. Icon: Chrome logo. http://www.flaticon.com/free-icon/

chrome-logo_23689. [Online, accessed 2014-12-04].

[43] Icomoon. Icon: Earth. http://www.flaticon.com/free-icon/earth_24390. [On-
line, accessed 2014-12-04].

[44] Icons8. Icon: World map trifold. http://www.flaticon.com/free-icon/

world-map-trifold_24485. [Online, accessed 2014-12-04].

[45] Json simple. https://code.google.com/p/json-simple. [Online, accessed 2014-
11-29].

[46] Kickass torrents. https://kickass.so. [Online, accessed 2014-11-29].

http://www.flaticon.com/free-icon/educational-graphic_42927
http://www.flaticon.com/free-icon/educational-graphic_42927
http://www.flaticon.com/free-icon/rack-servers_31726
http://www.flaticon.com/free-icon/rack-servers_31726
http://www.flaticon.com/free-icon/server-with-the-earth_31553
http://www.flaticon.com/free-icon/server-with-the-earth_31553
http://www.flaticon.com/free-icon/spreadsheet-cell_31023
http://www.flaticon.com/free-icon/spreadsheet-cell_31023
http://www.flaticon.com/free-icon/text-document_32329
http://www.flaticon.com/free-icon/text-document_32329
http://www.flaticon.com/free-icon/torrent-symbol-file-format_28969
http://www.flaticon.com/free-icon/torrent-symbol-file-format_28969
http://www.flaticon.com/free-icon/world-map_62443
http://www.flaticon.com/free-icon/world-map_62443
http://necolas.github.io/normalize.css/
http://mottie.github.io/tablesorter/docs
http://mottie.github.io/tablesorter/docs
http://www.google.com/forms/about
https://code.google.com/p/google-gson
http://www.flaticon.com/free-icon/chrome-logo_23689
http://www.flaticon.com/free-icon/chrome-logo_23689
http://www.flaticon.com/free-icon/earth_24390
http://www.flaticon.com/free-icon/world-map-trifold_24485
http://www.flaticon.com/free-icon/world-map-trifold_24485
https://code.google.com/p/json-simple
https://kickass.so

50 BIBLIOGRAPHY

[47] Ben Kroll. What is responsive web design. http://blog.dudamobile.com/

what-is-responsive-web-design. [Online, accessed 2014-11-29].

[48] Yukihiro Matsumoto. Ruby, the programming language. https://www.ruby-lang.

org/en/. [Online, accessed 2014-11-10].

[49] Alex Nicolaou. Best practices on the move: building web apps for mobile devices.
Queue, 11(6):30, 2013.

[50] Alex Objelean and Bogdan Csoregi. Wro4j: Web resource optimizer for java. https:
//code.google.com/p/wro4j/. [Online, accessed 2014-12-05].

[51] John Palfrey and Urs Gasser. Opening universities in a digital era. New England
Journal of Higher Education, 23(1):22–24, 2008.

[52] Picol. Icon: Server. http://www.flaticon.com/free-icon/server_14725. [Online,
accessed 2014-12-04].

[53] Dongyu Qiu and Rayadurgam Srikant. Modeling and performance analysis of
bittorrent-like peer-to-peer networks. In ACM SIGCOMM Computer Communication
Review, volume 34, pages 367–378. ACM, 2004.

[54] Sandvine. Global internet phenomena report 1h 2014. https://www.

sandvine.com/downloads/general/global-internet-phenomena/2014/

1h-2014-global-internet-phenomena-report.pdf. [Online, accessed 2014-
12-07].

[55] Steve Souders. High-performance web sites. Communications of the ACM, 51(12):36–
41, 2008.

[56] Masayuki Tanaka. C3.js: D3-based reusable chart library. http://www.c3js.org.
[Online, accessed 2014-11-10].

[57] Masayuki Tanaka and Sebastian Schrepfer. Bug report (a) of the c3.js chart library.
https://github.com/masayuki0812/c3/issues/598. [Online, accessed 2014-12-
03].

[58] Masayuki Tanaka and Sebastian Schrepfer. Bug report (b) of the c3.js chart library.
https://github.com/masayuki0812/c3/issues/721. [Online, accessed 2014-12-
03].

[59] David M. Theobald. Understanding topology and shapefiles. http://www.esri.

com/news/arcuser/0401/topo.html, 2011. [Online, accessed 2014-11-10].

[60] TutsPlus. Icon: Line command. http://www.flaticon.com/free-icon/

line-command_23399. [Online, accessed 2014-12-04].

[61] W3C. Official css website. http://www.w3.org/Style/CSS. [Online, accessed 2014-
11-29].

[62] Tim Wood and Iskren Chernev. Moment.js: Parse, validate, manipulate, and display
dates in javascript. http://momentjs.com. [Online, accessed 2014-11-10].

http://blog.dudamobile.com/what-is-responsive-web-design
http://blog.dudamobile.com/what-is-responsive-web-design
https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/
https://code.google.com/p/wro4j/
https://code.google.com/p/wro4j/
http://www.flaticon.com/free-icon/server_14725
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/1h-2014-global-internet-phenomena-report.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/1h-2014-global-internet-phenomena-report.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/1h-2014-global-internet-phenomena-report.pdf
http://www.c3js.org
https://github.com/masayuki0812/c3/issues/598
https://github.com/masayuki0812/c3/issues/721
http://www.esri.com/news/arcuser/0401/topo.html
http://www.esri.com/news/arcuser/0401/topo.html
http://www.flaticon.com/free-icon/line-command_23399
http://www.flaticon.com/free-icon/line-command_23399
http://www.w3.org/Style/CSS
http://momentjs.com

BIBLIOGRAPHY 51

[63] Yahoo. Yui: Compressing javascript and css files. http://yui.github.io/

yuicompressor/. [Online, accessed 2014-11-10].

http://yui.github.io/yuicompressor/
http://yui.github.io/yuicompressor/

52 BIBLIOGRAPHY

Abbreviations

API Application Programming Interface
BT BitTorrent
DOM Document Object Model
HTML Hypertext Markup Language
IP Internet Protocol
ISP Internet Service Provider
JDBC Java Database Connectivity Interface
JSON JavaScript Object Notation
NPM Node.js Package Manager
SQL Structured Query Language
TCP Transmission Control Protocol
URI Uniform Resource Identifier
W3C World Wide Web Consortium

53

54 ABBREVIATONS

Glossary

Back-End The back-end is a broad term. In this thesis, it is used for the collection
of the data from the Kraken Core, its aggregation, rehashing and delivering to the
front-end.

BitTorrent BitTorrent is a file sharing protocol with an own distribution network for
every single shared file.

ClickListener An event listener on a DOM element. Reacts on clicking an element and
runs a defined function.

Compass A framework for the Sass language, which e.g. simplifies the handling of
browser vendor-prefixes.

Front-End The front-end is a broad term. In this thesis, it is used for the visual part of
the software, thus the web site.

GeoJSON A format for encoding a various geographic data structures like maps.

GIS Software Geographic Information Systems Software; models geographic informa-
tion.

GitHub A collaborative, distributed revision control software with source code manage-
ment functionality.

Java An object-oriented cross-platform programming language which was used in the
Kraken Web Interface to program the back-end.

JavaScript A script language, which is running in the browser and offering dynamic
changes to a static HTML website.

jQuery A front-end web library, which simplifies the DOM manipulation by providing
cross-browser functions.

jRuby An implementation of a Ruby interpretor in Java. In Kraken Web Interface it is
used for running Sass.

Kraken Kraken is a torrent measurement study and software for analyzing the routes of
the BitTorrent network.

Kraken Core Kraken Core is the software part of the Kraken measurement study. It
involves the data gathering, but not the visualization of the data.

55

56 GLOSSARY

Leecher A peer in the BitTorrent network, which is mainly download data from the
network.

Node.js A framework for building JavaScript back-end applications.

Ruby An object-oriented programming language which supports dynamic typing. In the
Kraken Web Interface is used for the CSS precompiler Sass.

Ruby Gem Ruby Gem or simple Gem; a package in the Ruby programming language.

Sass A scripting language which is interpreted into CSS styles.

Seeder A peer in the BitTorrent network, which is mainly uploading data into the net-
work.

TopoJSON An extension of the GeoJSON encoding standard, that supports storing
shared borders only once.

Torrent A file sharing concept with the most comment implementation of BitTorrent
(see BitTorrent)

Viewport The part of the window, which actually available for displaying content. In
the context of a cartography, it is the section of the map which is currently visible
(e.g. when zoomed in).

List of Figures

3.1 The Kraken Web Interface Modules: Generic information, specific infor-
mation and the current system status. Image Icons: [20, 36, 25, 30, 33] . . 13

3.2 Project information and generic map as the entry page when visiting the
Kraken Web Interface. 15

3.3 Torrent List with all torrents from one day. The list is filterable and the
date can be switched. 16

3.4 The torrent list is filterable. In this example, the word ”mamula” leads to
one movie entry. 16

3.5 Selection of a date with observed torrents. 17

3.6 The torrent details page displays a time chart and a specific map. 18

3.7 The linear color function of a map, which is displaying a dataset of one day. 19

3.8 The logarithmic color function of a map, which is displaying a dataset of
one day. 20

3.9 Australia as an example for a selected country. 20

3.10 The list which slided over the map shows the aggregated data for all countries. 21

3.11 The navigation menu and title of the Kraken Web Interface. 22

3.12 The Kraken Web Interface on different devices. Image Source: [47]. 23

4.1 Architectural overview of the Kraken system. Image Icons: [27, 31, 52, 35,
24, 32, 26, 34, 42, 29] . 25

5.1 Conversion of the map data with TopoJSON. Image Icons: [43, 34, 60, 24,
28, 44] . 33

5.2 An extract of possible projection types in D3. Image: [8] 35

5.3 The colored map of Kraken Web Interface without any additional controls
or functions. 35

57

58 LIST OF FIGURES

5.4 A zoomed viewport in relation to the full map. The x and y values represent
the offset value of the viewport. 36

5.5 The map in fullscreen mode needs to fill the full height of the browser window. 37

5.6 The time chart graph with a sample dataset. 38

6.1 Visualized statistical data about the evaluation study participants. 41

6.2 SUS score distribution in ranges of 10 out of 100 with the number of par-
ticipants with a SUS score in that range. 42

List of Tables

2.1 This table represents the adjectives mapped to the mean SUS score. 11

4.1 Kraken Core database structure. 26

4.2 Aggregated database tables for statistical and visualization purposes. . . . 27

6.1 Context questions before starting the questionnaire. 40

6.2 Demographic questions at the end of the questionnaire. 40

6.3 Distribution of the SUS scores among the age of the participants. 42

C.1 SUS Questions with hints like it was asked in the evaluation. 65

C.2 The responses of the users in the questionnaire. 66

C.3 The calculations made during the evaluation of the questionnaire. 67

59

60 LIST OF TABLES

Appendix A

SQL Script

The following SQL script aggregates the data from the Kraken database and inserts them
into into the statistics database of the Kraken Web Interface. It creates an event, which
automatically triggers this aggregation shortly after midnight.

1 DELIMITER $$
2 CREATE EVENT ‘CREATE DAILY STATISTICS‘
3 ON SCHEDULE EVERY 1 DAY STARTS ’2014−09−30 00:03:00’
4 DO BEGIN
5

6 −− yesterday’s date
7 SET @QUERYDATE = DATE(DATE SUB(NOW(), INTERVAL 1 DAY));
8

9 INSERT INTO ‘kraken−statistics‘.statistics peers
10 (ip address, country iso code, info hash, date)
11

12 (SELECT PEERS.IP ADDRESS AS ip address,
13 PEERS.COUNTRY AS country iso code,
14 ANNOUNCE RESULT.INFO HASH AS info hash,
15 @QUERYDATE AS date
16

17 FROM ‘kraken−master‘.ANNOUNCE RESULT,
18 ‘kraken−master‘.PEERS
19 WHERE ANNOUNCE RESULT.ID = PEERS.ID
20 AND DATE(ANNOUNCE RESULT.TIMESTAMP) = @QUERYDATE
21 GROUP BY PEERS.IP ADDRESS,
22 ANNOUNCE RESULT.INFO HASH);
23

24 INSERT INTO ‘kraken−statistics‘.statistics torrentmeta
25 (observed peers, max swarm size, seeder quota, info hash, date)
26

27 (SELECT observed peers,
28 max swarm size,
29 seeder quota,

61

62 APPENDIX A. SQL SCRIPT

30 table1.info hash,
31 date
32

33 FROM (
34 SELECT MAX(TOTAL PEERS) AS max swarm size,
35 AVG(SEEDERS/TOTAL PEERS) AS seeder quota,
36 INFO HASH AS info hash,
37 @QUERYDATE AS date
38

39 FROM ‘kraken−master‘.‘ANNOUNCE RESULT‘
40 WHERE ANNOUNCE COMPLETED = 1
41 AND DATE(TIMESTAMP) = @QUERYDATE
42 GROUP BY INFO HASH
43) AS table1, (
44 SELECT COUNT(*) AS observed peers,
45 info hash AS info hash
46 FROM ‘kraken−statistics‘.statistics peers
47 WHERE date = @QUERYDATE
48 GROUP BY info hash
49) AS table2
50

51 WHERE table1.info hash = table2.info hash);
52

53 INSERT INTO ‘kraken−statistics‘.statistics torrents
54 (info hash, title, filesize, publish date)
55

56 (SELECT INFO HASH AS info hash,
57 TORRENT TITLE AS title,
58 TORRENT SIZE KB AS filesize,
59 DATE(PUBLISH DATE) AS publish date
60

61 FROM ‘kraken−master‘.TORRENTS
62 WHERE INFO HASH NOT IN (
63 SELECT info hash
64 FROM ‘kraken−statistics‘.statistics torrents)
65 AND INFO HASH IN (
66 SELECT info hash
67 FROM ‘kraken−statistics‘.statistics torrentmeta
68 WHERE date = @QUERYDATE));
69

70 END $$
71 DELIMITER ;

Appendix B

Sass/Compass update

Sass and Compass is directly installed as a gem in jRuby [5]. This jar file can be updated, if
a new version of Sass or Compass is available. With the following step-by-step installation
guide illustrates, how to update the Sass library used in the Kraken Web Interface. This
guide was adapted, but initially provided by Xi Chen [16].

1. Go to http://www.jruby.org/download and download the latest
jruby-complete-[version].jar.

2. Install the necessary gems locally:
java -jar jruby-complete-[version].jar -S gem install -i ./compass-gems shared –no-rdoc –no-ri

java -jar jruby-complete-[version].jar -S gem install -i ./compass-gems sass –no-rdoc –no-ri

java -jar jruby-complete-[version].jar -S gem install -i ./compass-gems compass –no-rdoc –no-ri

3. Rename the jruby-complete.jar file to jcompass.jar
mv jruby-complete-[version].jar jcompass.jar

4. Now compile all into one jar
jar uf jcompass.jar -C compass-gems .

5. All done! Test it:
java -jar jcompass.jar -S compass create –help

java -jar jcompass.jar -S compass compile –help

java -jar jcompass.jar -S compass watch –help

63

http://www.jruby.org/download

64 APPENDIX B. SASS/COMPASS UPDATE

Appendix C

SUS

This appendix contains the standard SUS questions, which were asked during the us-
ability evaluation questionnaire. The gathered data from the questionnaire and also the
calculation of the SUS score is depicted in the preceding sections. It concludes with an
approach to the user comments given in the questionnaire.

C.1 Standard Questions

The following questions were asked during the questionnaire of the usability evaluation. It
contains all additional hints, which were given to the participants. The word cumbersome
is explained in German, because a significant proportion of non-native English speaking
people fails to understand this word [22].

1. I think that I would like to use this system frequently.
Hint: Please answer this question from the point of view of a BitTorrent researcher.

2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical person to be able to use this system.
5. I found the various functions in this system were well integrated.
6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system very quickly.
8. I found the system very cumbersome to use.

Hint: According to http://dict.cc, cumbersome means: schwerfällig, mühselig,
umständlich, mühsam.

9. I felt very confident using the system.
10. I needed to learn a lot of things before I could get going with this system.

Table C.1: SUS Questions with hints like it was asked in the evaluation.

65

66 APPENDIX C. SUS

C.2 Response Data

D
a
te

C
Q

1
C

Q
2

C
Q

3
C

Q
4

C
Q

5
C

Q
6

S
Q

1
-S

Q
1
0

G
e
n

d
e
r

A
g

e
 R

a
n

g
e

H
ig

h
e
s
t

E
d

u
c
a
ti

o
n

P
1

1
7
.1

0
.2

0
1
4

F
e
m

a
le

1
8
 -

 2
5

P
ro

fe
s
s
io

n
a
l
M

a
tu

ri
ty

 (
B

e
ru

fs
m

a
tu

ri
tä

t)

P
2

1
9
.1

0
.2

0
1
4

M
a
le

2
6
 -

 3
5

B
a
c
h
e
lo

r
d
e
g
re

e

P
3

1
9
.1

0
.2

0
1
4

M
a
le

5
1
 -

 6
5

P
o
s
tg

ra
d
u
a
te

 d
e
g
re

e

P
4

2
0
.1

0
.2

0
1
4

M
a
le

2
6
 -

 3
5

M
a
s
te

r
d
e
g
re

e

P
5

2
0
.1

0
.2

0
1
4

M
a
le

2
6
 -

 3
5

M
a
s
te

r
d
e
g
re

e

P
6

2
0
.1

0
.2

0
1
4

F
e
m

a
le

1
8
 -

 2
5

B
a
c
h
e
lo

r
d
e
g
re

e

P
7

2
1
.1

0
.2

0
1
4

F
e
m

a
le

1
8
 -

 2
5

B
a
c
h
e
lo

r
d
e
g
re

e

P
8

2
2
.1

0
.2

0
1
4

M
a
le

1
8
 -

 2
5

H
ig

h
e
r

e
d
u
c
a
ti
o
n
 e

n
tr

a
n
c
e
 q

u
a
lif

ic
a
ti
o
n
 (

M
a
tu

ri
tä

t)

P
9

2
2
.1

0
.2

0
1
4

M
a
le

2
6
 -

 3
5

B
a
c
h
e
lo

r
d
e
g
re

e

P
1
0

2
2
.1

0
.2

0
1
4

M
a
le

2
6
 -

 3
5

B
a
c
h
e
lo

r
d
e
g
re

e

P
1
1

2
3
.1

0
.2

0
1
4

M
a
le

2
6
 -

 3
5

M
a
s
te

r
d
e
g
re

e

P
1
2

2
3
.1

0
.2

0
1
4

M
a
le

2
6
 -

 3
5

B
a
c
h
e
lo

r
d
e
g
re

e

P
1
3

2
4
.1

0
.2

0
1
4

M
a
le

2
6
 -

 3
5

B
a
c
h
e
lo

r
d
e
g
re

e

P
1
4

2
4
.1

0
.2

0
1
4

M
a
le

1
8
 -

 2
5

B
a
c
h
e
lo

r
d
e
g
re

e

P
1
5

2
6
.1

0
.2

0
1
4

F
e
m

a
le

5
1
 -

 6
5

A
p
p
re

n
ti
c
e
s
h
ip

 (
L
e
h
re

)

P
1
6

0
1
.1

1
.2

0
1
4

M
a
le

2
6
 -

 3
5

M
a
s
te

r
d
e
g
re

e

P
1
7

0
1
.1

1
.2

0
1
4

F
e
m

a
le

2
6
 -

 3
5

B
a
c
h
e
lo

r
d
e
g
re

e

P
1
8

0
5
.1

1
.2

0
1
4

M
a
le

3
6
 -

 5
0

M
a
s
te

r
d
e
g
re

e

P
1
9

1
2
.1

1
.2

0
1
4

F
e
m

a
le

1
8
 -

 2
5

B
a
c
h
e
lo

r
d
e
g
re

e

C
Q

C
o
n
te

x
t
Q

u
e
s
ti
o
n

 C
o
rr

e
c
t
A

n
s
w

e
r

S
Q

S
U

S
 Q

u
e
s
ti
o
n

 M
is

s
in

g
 A

n
s
w

e
r

 W
ro

n
g
 A

n
s
w

e
r

see SUS Calculation for SUS Responses

Table C.2: The responses of the users in the questionnaire.

C.3. CALCULATIONS 67

C.3 Calculations

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0
Q

1
Q

2
Q

3
Q

4
Q

5
Q

6
Q

7
Q

8
Q

9
Q

1
0

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0
M

u
lt

ip
li

e
d

 s
u

m

P
1

5
1

9
2

1
0

2
9

1
9

2
2
.8

1
.0

4
.6

1
.4

5
.0

1
.4

4
.6

1
.0

4
.6

1
.4

1
.8

4
.0

3
.6

3
.6

4
.0

3
.6

3
.6

4
.0

3
.6

3
.6

8
7
.7

7
7
8

P
2

1
0

2
7

1
8

3
1
0

2
7

4
5
.0

1
.4

3
.7

1
.0

4
.1

1
.9

5
.0

1
.4

3
.7

2
.3

4
.0

3
.6

2
.7

4
.0

3
.1

3
.1

4
.0

3
.6

2
.7

2
.7

8
3
.3

3
3
3

P
3

8
3

6
3

8
5

8
1

8
1

4
.1

1
.9

3
.2

1
.9

4
.1

2
.8

4
.1

1
.0

4
.1

1
.0

3
.1

3
.1

2
.2

3
.1

3
.1

2
.2

3
.1

4
.0

3
.1

4
.0

7
7
.7

7
7
8

P
4

3
2

7
3

6
2

6
5

5
2

1
.9

1
.4

3
.7

1
.9

3
.2

1
.4

3
.2

2
.8

2
.8

1
.4

0
.9

3
.6

2
.7

3
.1

2
.2

3
.6

2
.2

2
.2

1
.8

3
.6

6
4
.4

4
4
4

P
5

1
0

1
8

1
0

9
1

1
0

1
9

1
5
.0

1
.0

4
.1

5
.0

4
.6

1
.0

5
.0

1
.0

4
.6

1
.0

4
.0

4
.0

3
.1

0
.0

3
.6

4
.0

4
.0

4
.0

3
.6

4
.0

8
5
.5

5
5
6

P
6

6
1

1
0

1
1
0

2
9

2
1
0

1
3
.2

1
.0

5
.0

1
.0

5
.0

1
.4

4
.6

1
.4

5
.0

1
.0

2
.2

4
.0

4
.0

4
.0

4
.0

3
.6

3
.6

3
.6

4
.0

4
.0

9
2
.2

2
2
2

P
7

1
0

1
9

1
1
0

1
1
0

2
7

1
5
.0

1
.0

4
.6

1
.0

5
.0

1
.0

5
.0

1
.4

3
.7

1
.0

4
.0

4
.0

3
.6

4
.0

4
.0

4
.0

4
.0

3
.6

2
.7

4
.0

9
4
.4

4
4
4

P
8

4
6

5
3

8
2

8
6

4
2

2
.3

3
.2

2
.8

1
.9

4
.1

1
.4

4
.1

3
.2

2
.3

1
.4

1
.3

1
.8

1
.8

3
.1

3
.1

3
.6

3
.1

1
.8

1
.3

3
.6

6
1
.1

1
1
1

P
9

2
8

2
3

2
8

6
8

3
3

1
.4

4
.1

1
.4

1
.9

1
.4

4
.1

3
.2

4
.1

1
.9

1
.9

0
.4

0
.9

0
.4

3
.1

0
.4

0
.9

2
.2

0
.9

0
.9

3
.1

3
3
.3

3
3
3

P
1

0
9

8
4

2
5

3
4

5
6

7
4
.6

4
.1

2
.3

1
.4

2
.8

1
.9

2
.3

2
.8

3
.2

3
.7

3
.6

0
.9

1
.3

3
.6

1
.8

3
.1

1
.3

2
.2

2
.2

1
.3

5
3
.3

3
3
3

P
1

1
8

2
8

1
9

1
8

2
9

2
4
.1

1
.4

4
.1

1
.0

4
.6

1
.0

4
.1

1
.4

4
.6

1
.4

3
.1

3
.6

3
.1

4
.0

3
.6

4
.0

3
.1

3
.6

3
.6

3
.6

8
7
.7

7
7
8

P
1

2
5

3
4

4
2

3
8

7
4

1
2
.8

1
.9

2
.3

2
.3

1
.4

1
.9

4
.1

3
.7

2
.3

1
.0

1
.8

3
.1

1
.3

2
.7

0
.4

3
.1

3
.1

1
.3

1
.3

4
.0

5
5
.5

5
5
6

P
1

3
8

2
3

1
9

2
1
0

2
8

1
4
.1

1
.4

1
.9

1
.0

4
.6

1
.4

5
.0

1
.4

4
.1

1
.0

3
.1

3
.6

0
.9

4
.0

3
.6

3
.6

4
.0

3
.6

3
.1

4
.0

8
3
.3

3
3
3

P
1

4
9

1
8

1
8

1
9

3
9

2
4
.6

1
.0

4
.1

1
.0

4
.1

1
.0

4
.6

1
.9

4
.6

1
.4

3
.6

4
.0

3
.1

4
.0

3
.1

4
.0

3
.6

3
.1

3
.6

3
.6

8
8
.8

8
8
9

P
1

5
5

2
2

4
9

5
7

3
5

1
0

2
.8

1
.4

1
.4

2
.3

4
.6

2
.8

3
.7

1
.9

2
.8

5
.0

1
.8

3
.6

0
.4

2
.7

3
.6

2
.2

2
.7

3
.1

1
.8

0
.0

5
4
.4

4
4
4

P
1

6
3

2
7

3
4

2
9

7
4

3
1
.9

1
.4

3
.7

1
.9

2
.3

1
.4

4
.6

3
.7

2
.3

1
.9

0
.9

3
.6

2
.7

3
.1

1
.3

3
.6

3
.6

1
.3

1
.3

3
.1

6
1
.1

1
1
1

P
1

7
3

7
3

5
4

3
4

8
8

3
1
.9

3
.7

1
.9

2
.8

2
.3

1
.9

2
.3

4
.1

4
.1

1
.9

0
.9

1
.3

0
.9

2
.2

1
.3

3
.1

1
.3

0
.9

3
.1

3
.1

4
5
.5

5
5
6

P
1

8
7

2
6

1
0

6
3

9
3

8
2

3
.7

1
.4

3
.2

5
.0

3
.2

1
.9

4
.6

1
.9

4
.1

1
.4

2
.7

3
.6

2
.2

0
.0

2
.2

3
.1

3
.6

3
.1

3
.1

3
.6

6
7
.7

7
7
8

P
1

9
7

4
6

3
8

3
8

4
6

3
3
.7

2
.3

3
.2

1
.9

4
.1

1
.9

4
.1

2
.3

3
.2

1
.9

2
.7

2
.7

2
.2

3
.1

3
.1

3
.1

3
.1

2
.7

2
.2

3
.1

7
0
.0

0
0
0

Ø
 7

0
.9

3
5

7

S
U

S
 S

c
o

re
 i
n

it
ia

l
v
a

lu
e
s

S
c
a

le
 m

o
d
if
ie

d
 f

ro
m

 1
-1

0
 t
o

 1
-5

S
c
a

le
 S

U
S

if
ie

d

M
ea

su
re

d
 v

a
lu

es
 f
ro

m
 1

-1
0

S
ca

le
d
-d

o
w

n
 v

a
lu

es
 f
ro

m
 1

-5
S
U

S
 a

lg
o
ri
th

m
 a

p
p
li
ed

Table C.3: The calculations made during the evaluation of the questionnaire.

68 APPENDIX C. SUS

C.4 Approaching the User Comments

In the evaluation, there was one optional question at the end of the questionnaire, which
asked for a comment. This question was commonly used and several issues were men-
tioned. This list discusses the mentioned issues:

The page jumps sometimes to the top of the page.
The Kraken Web Interface is mobile optimized. Therefore it needs to recalculate its
map on every change of the browser window width. The map is redrawn and then
the browser is scrolled to the top of the map. If the map is not the main concern of
a page, this feature could be obstructive.

The menu was not intrusive enough and the specific information were not
found.

The menu has three different buttons for the three main sections of the page: Gen-
eral & Specific information and System Status. The torrent list and the detailed
map is together behind one button in the menu, because they belong to each other.
The detailed page cannot be opened without specifying what movie should show up.
For further work, those two pages could be integrated into one page to resolve this
problem.

The top menu ”Torrent Visualization” is also selected on the details page.
This problem is similar to the aforementioned. The menu ”Torrent Visualization”
congregates all the specific information, which means, the torrent list and the de-
tailed page. It could be integrated into one page with one menu button in further
work.

The search bar and the torrent list disappears after the selection of a torrent.
Currently, the torrent list and the details page are two different pages. For this
reason, the search bar and the torrent list disappear when selecting a movie. By
integrating these two pages into one page, this issue could be resolved.

The navigation on the page is not straight-forward. A back button is missing
and the user always needs to navigate with the top menu.

The back button is not inside the page, but the behavior of the browser back button
works as expected. If the user returns with the browser back button from the de-
tails page to the torrent list, he receives the same page he left before. This means,
that the search and the selected date are the same as before. If the user copies the
detailed page URL, he will return to the exact same page. If a date is selected, it is
also stored in the address line. For further work, a back button could be integrated
into the details page. It could be linked to the standard back button command of
the browser.

The user has to click too many times before he gets the relevant information
(especially the CSV download).

The Kraken Web Interface is a website to present and spread the scientific work on
Kraken. The data can be downloaded and further processed by researchers by down-
loading the data in the CSV format. The main goal of the Web Interface is not to

C.4. APPROACHING THE USER COMMENTS 69

induce researchers to use the raw data, but to get to know to work behind Kraken.
If they are interested in expanding the work on Kraken or to participate in further
research, contacting the Kraken researchers would be the way to go.

The entries on the torrent list can not be filtered by country.
This is the case by design. Not every movie can be listed when opening the torrent
list, because its size would be too long. Therefore, a filtering needs to be done. At
the moment, every observed torrent on one day appears when selecting a date in
torrent list filter. This filtering could be improved by handling more than a key-
word and a date. One possibility to improve the torrent list is to eliminate the
date selection and adding an endless scrolling. Endless scrolling means, that a new
chunk of data is reloaded when the user scrolled to the bottom of the page. This
would resolve the issue with the day selection. If the list is then ordered by date
and searchable with keywords, the usability would probably improve.

It is expected to choose the movie before the day of observation (torrent list).
This issue could be resolved by implementing an endless scrolling as mentioned pre-
viously.

The search displays too many entries and the matching title not on the top.
Currently, the search of the torrent list is splitting up the keywords on a space and
shows all entries where at least one keyword is present. If the user searches for
single-lettered or short keywords, every movie with this letter or keyword shows up.
A search for ”a new house” leads to a search result of every movie with an ”a” in
it. The search results are not reordered again, the search only hides non-matching
movie entries. This leads to the situation, that an exact match of the keyword and
one torrent title may not show this movie on the top, if there are is more than one
possible match. In further work, there is room for improvement here.

The map (especially the generic one) should not be restricted to one day. It
is not straight-forward, why a date needs to be selected.

This restriction was introduced to keep the logic of the map simple in this first ver-
sion of the Kraken Web Interface. If there is more data to show on the map than
from one day, a day range selection would be necessary. This would need bound-
aries of the lifespan of the torrent (or its observation). Furthermore, if on one day
no peer was observed (by technical problems or just because nobody downloaded
the movie) and on the following days, the peers were starting to download again,
the range would need to be capable of handling gaps. These problems do not oc-
cur, when one day needs to be selected. Though, an extension of the Kraken Web
Interface could implement this feature.

With a broad dataset, it is possible, that the peak of the curve is not on the
right day in the timeline graph of the details page.

The timeline graph on the details page is a spline chart and has therefore rounded
curves. With a broad dataset, this involves, that the peak of a graph is not always
on the highest data point, but slightly next to it. For a more precise depiction of the
time graph, it would be necessary to switch from a spline chart to a line chart with
sharp edges by simply changing one property. C3.js supports both kind of graphs.
In further work, the benefits and disadvantages could be discussed.

70 APPENDIX C. SUS

Appendix D

Installation Guidelines

The installation of Kraken Web Interface was tested in Eclipse with a number of additional
plug-ins. It cannot be guaranteed, that all the steps work or are similiar in different IDE’s.
If you follow the steps given, you can run the Kraken Web Interface locally on a Tomcat
Server.

D.1 Development Environment

To further develop on the Kraken Web Interface, you can follow these steps to set up the
environment.

1. Download a new instance of ”Eclipse IDE for Java EE Developers” from the official
website http://www.eclipse.org.

2. Go to http://eclipse.org/subversive and drag and drop the install button into Eclipse.
Install Subversive SVN.

3. Go to http://eclipse.org/m2e and copy the Maven Eclipse Plugin Repository Path.
Install the Eclipse Maven Plugin by selecting Help - Install new Software and then
pasting the link. It may already be installed.

4. Go to http://www.aptana.com and download and install the Eclipse Plugin-in of
Aptana Studio 3.x.x similar to the Eclipse Maven plug-in. This plug-in is necessary
for the syntax highlighting in SCSS (Sass) files.

5. Go to http://github.eclipsesource.com/jshint-eclipse/ and drag and drop the install
button into eclipse. Install the JSHint plug-in.

6. Go to http://tomcat.apache.org and download Tomcat 8.x.x in a zip version. Un-
pack and move it to a directory of your choice.

71

http://www.eclipse.org
http://eclipse.org/subversive
http://eclipse.org/m2e
http://www.aptana.com
http://github.eclipsesource.com/jshint-eclipse/
http://tomcat.apache.org

72 APPENDIX D. INSTALLATION GUIDELINES

7. Open the ”SVN Repository” perspective (Window - Open Perspective - SVN Repos-
itory) and add a new Repository Location with this URL:
https://svn.csg.uzh.ch/svn/kraken/trunk
Use also your SVN credentials here.

8. Check out at all kraken-* projects, JKad Development and TTorrent. Relevant for
the development is only kraken-ui, but there are many dependencies between the
projects.

9. Convert all projects, which are not yet Maven projects into Maven projects: Right
click on a project - Configure - Convert to Maven Project.

10. Open the Servers view in Eclipse (Window - Show View - Others - Servers) and add
a new Tomcat 8 server. You need to link it to the download/installation directory
of Tomcat 8. Add the kraken-ui project to the newly created server.

11. Run Maven install on kraken-ui. The source files are now generated.

12. Connect to the University of Zurich with a VPN connection or be sure to be con-
nected to a WiFi hotspot inside the University of Zurich. This is necessary to
connect to the remote database.

13. Start the server in the servers view.

D.2 Build process

� The minification is only enabled in the productive build, in debug mode it does not
minify.

� Debug build: Run the build without adding a build profile. Debug mode is standard.

� Productive build: Add a new Maven build configuration with the goal ”install”. Add
the build profile ”productive”. The source files will now be minified.

� Deployment: To deploy, you can add the server address in the pom.xml file. If
you then run a Maven build process with goal: ”tomcat:redeploy” it automatically
deploys to the specified server. You still need to add the productive profile.

D.3 Build from CD

1. Do steps 1 to 6 from Section D.1.

2. Copy the contents from the folder /source on the CD to your workspace directory.

3. Import the projects with File - Import.

4. Do steps 9 to 13 from Section D.1.

Appendix E

Contents of the CD

/
You can find three different files in the root of the CD. The abstract in English, called
Abstract.txt, the abstract in German, called Zusfsg.txt and this Bachelor Thesis in
the PDF format, called Bachelorarbeit.pdf.

/source
The source folder contains all source files from the Kraken Core software and Kraken
Web Interface. The files can be copied to a set up an Eclipse instance and to build
the Kraken Web Interface project. Please take a look at Appendix D.3 to see how
the Kraken Web Interface can be runned on a local server.

/database
In the database folder, you can find an SQL script for the set up of the database
schema, used by the Kraken Web Interface. The script, which automatically aggre-
gates the data from the Kraken Core database to the Kraken Web Interface on a
daily basis is also in this folder.

/latex
In the latex folder, you can find a LATEX version of this Bachelor Thesis. All images,
text and source files are included.

73

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Description of Work
	Thesis Outline

	Related Work & Technologies
	BitTorrent
	Kraken Core Software
	Front-End Technologies
	Cascading Style Sheets
	Sass/Compass
	jQuery
	D3 and Related Technologies (Frameworks)
	Further Front-End Technologies

	Back-End Technologies
	System Usability Scale (SUS)
	Interpretation of the SUS Score

	Design
	Generic Information
	Specific Information
	Torrent List
	Observed Torrent Details

	The Map
	Color Functions
	Map Navigation
	Map Dataset

	System Status
	Navigation
	Mobile Optimization

	Architecture
	Data Aggregation
	Kraken Core Database
	Reduction of Duplicated Data

	Implementation
	JavaScript Code Structuring
	Build Process
	Sass/Compass & Minifying

	Map Data Generation
	Java Back-End
	Socket Connection to Kraken Core

	Torrent List
	The Map
	Time Chart

	Usability Evaluation
	Scenario & Setup
	Results
	Interpretation and Analysis

	Summary, Conclusions & Future Work
	Summary and Conclusions
	Future Work

	Bibliography
	Abbreviations
	Glossary
	List of Figures
	List of Tables
	SQL Script
	Sass/Compass update
	SUS
	Standard Questions
	Response Data
	Calculations
	Approaching the User Comments

	Installation Guidelines
	Development Environment
	Build process
	Build from CD

	Contents of the CD

