
Radiommender: P2P On-line Radio
with a Distributed Recommender System

Fabio V. Hecht, Thomas Bocek, Nicolas Bär, Robert Erdin, Beat Kuster, Marium Zeeshan, Burkhard Stiller
University of Zurich, Department of Informatics (IFI), Zurich, Switzerland

Email: {hecht,bocek,stiller}@ifi.uzh.ch, {nicolas.baer,robert.erdin,beat.kuster,marium.zeeshan}@uzh.ch

Abstract—Radiommender is a fully-distributed, peer-to-peer
on-line radio. Users can share their music collection and explore
music collections of other users. The difference to current file
sharing systems is that songs do not need to be searched individ-
ually – a distributed recommender system is used to estimate user
preference. Recommendation is done with a combination of an
implicit voting system that assigns songs to search terms and an
affinity network that correlates user interest. The demonstration
shows the software functionality and includes the visualization
of affinity graphs built by the recommender system.

I. INTRODUCTION

Peer-to-peer (P2P) architectures for media distribution at-
tract a large user base, saving bandwidth costs and profiting
from increased scalability in, e.g., BitTorrent [1] and eDon-
key [2] networks. These systems require that users search
for media files, download them, and play them later. On-
line radio systems, such as Spotify [3], work differently by
performing download and playback of songs with minimal
user intervention, used at parties, while driving, or working.
Spotify, however, is a client/server application that uses a P2P
architecture to offload the central server by downloading songs
from other peers whenever possible.

This paper introduces Radiommender, an Internet radio
system that benefits from a fully-distributed P2P architecture.
Similarly to a file-sharing application, users share music files;
however, no user interaction is required while the radio is
playing. In order to start playback, users must only input a
search term T (e.g., genre or artist), based on which a play
list is populated with highly relevant songs by a distributed
recommender system. During playback, interaction between
the user and the system is minimal – only skip and stop
buttons are available, besides performing a new search. The
main challenge is on predicting the user preference with a high
probability in a fully-distributed environment.

II. RELATED WORK

P2P on-line radios that perform application-layer multicast
for live audio streaming exist since several years, but the idea
of a distributed recommender system that builds a play list
out of existing songs is novel. The demonstration developed
is based on a collection of works on P2P distributed recom-
mender systems, as described in Section IV.

III. RADIOMMENDER DESIGN

Figure 1 displays the high-level architecture of Radiom-
mender. The Player and Controls components play back audio

Fig. 1. Radiommender high-level architecture

and interact with the user, respectively. The Play List com-
ponent keeps and selects songs to be played, by using the
two recommender systems, SearchTerm and Affinity Network,
which are described in Section IV.

In order to benefit from fully-distributed properties, Radi-
ommender uses the TomP2P [4] as both a DHT substrate,
and to send direct messages between peers. TomP2P is an
advanced DHT and tracker that allows multiple values to be
stored under a single key, and is able to return a subset of
values with specified criteria, order, and size.

The Radiommmender uses a distributed tracker-based ar-
chitecture to keep track which peer has which song. A song
s is associated with a 20-byte songID and is defined as a
quadruple (genre, artist, album, title). A song that a user
chooses to share is added to the tracker using songID as key
and its peer address as value. In order to download a song,
a peer first searches for the tracker using the songID, then
requests a list of peers that can provide the song.

IV. DISTRIBUTED RECOMMENDER SYSTEM

Designing a distributed recommender system imposes in-
herent challenges compared to a centrally hosted system, such
as lack of global state, limited possibility to pre-compute
information and possibility of bogus meta information. Thus, a
combination of two recommender systems – SearchTerm and
Affinity Network – is proposed. While SearchTerm searches
for songs with a high probability of being related to the search
term based on user-ratings, the Affinity Network explores and
suggests new songs based on similar music taste of users,
independently of the search term entered by the user.

A. SearchTerm

The SearchTerm recommender system is based on a com-
bination of item-based collaborative filtering [5] and content-

based recommender systems [6], relying on user votes stored
in the DHT. Every song recommended (i.e. played) receives
an implicit vote by the user – if the song is played through, it
is considered that the song is related to the search term (like);
if the user presses the skip button, the vote is cast against
the relationship (dislike). Thus, search accuracy is trained by
vote information from users without relying entirely on meta
data. Explicit voting and rating were considered as options,
but minimal user interaction during playback was favored.

The rating function R for song s and given search term T
is defined in 1, where lTs and dTs represent, respectively, the
total number of likes and dislikes of the song s under T for
songs that have at least one vote.

R(T, s) =
lTs

lTs + dTs
∈ [0, 1]; lTs , d

T
s ∈ N (1)

To avoid a song being rated 1 after one vote only, a threshold
τ (currently set to 5) is defined on the minimum number of
votes necessary for the song to receive its full rate. Up to
the threshold, the maximum rating of a song is 0.5, which
still allows it to be discovered and further rated. The values
of lTs and dTs are added to the DHT under different keys
k(Ts, like)→ lTs and k(Ts, dislike)→ dTs .

Playback is always started by a user search. The search
term T is looked up on the DHT under the key k(T) =
hash(T). The peer responsible for storing k(T) returns a
set of recommendations (songs) s ∈ ST in decreasing or-
der of rating R(T, s). For each recommended song s, the
search is extended by looking up its artist artist(s) and
genre genre(s). These are used as search terms to obtain an
additional song set S′

T , which allows the possibility of other
artists from the same genre to be recommended. Ratings for
songs in S′

T are multiplied by the rating of the original song
(e.g. R(T, s′) = R(T, s) × R(artist(s), s′)). This broadens
the number of related songs to be considered for playback.
Recommended songs obtained using the algorithm described
above are added to the play list with probability defined by
their rating. SearchTerm stops when there are enough good
recommendations (currently 50 songs with R > .95).

B. Affinity Network

SearchTerm only recommends songs that have received
ratings. New songs, though, need to be played occasionally
in order to receive ratings. Since a random search for songs
may perform badly, and relying solely on meta data would be
problematic for songs with incomplete or incorrect meta data,
the Affinity Network, inspired by [7], is defined to provide a
heuristic for random elements to train SearchTerm.

The Affinity Network is a weighted undirected graph, where
nodes consist of a set of users U = {u1, u2, . . . , un}, and
edges are calculated based on the affinity function. Consider-
ing Si the set of songs shared by user ui, the affinity function
is defined in 2.

A(ui, uj) =
Σsi∈SiΣsj∈Sjm(si, sj)

4× |Sj |
∈ [0, 1] (2)

TABLE I
SONG SIMILARITY

Match Similarity m(si, sj)
genre, artist, album, song 4
genre, artist, album 3
genre, artist 2
genre 1
none 0

The song similarity function m(si, sj) ∈ R+ is defined
by using a method loosely inspired by the Borda count [8],
an election method under which each candidate is ranked by
voters and assigned an amount of points inversely proportional
to its ranking. Each candidate c ∈ C is assigned a weight
w = |C|−k, where k is its ranking. In the scenario considered,
the degrees of matching between songs in Si and Sj are used
as candidates, as in Table I.

Counting Bloom filters [9] are used to reduce meta data
traffic between peers. Four filters are sufficient to perform the
calculation in 2, one for each non-zero value of m(si, sj) in
Table I.

Initially, a peer calculates its affinity to a random set n ∈ N
of other peers obtained from the DHT. The peer with highest
affinity is selected and its affinity to other peers Mn is
requested. The affinity to peers in m ∈ Mn is estimated
transitively by multiplying the affinity of n with m, since
calculating the affinity to another peer is a costly (O(i × j))
operation. Peers with higher affinity values are more likely to
be asked to recommend a random song.

V. DEMONSTRATION SCENARIO

The demonstration scenario is composed of several peers
running the Radiommender software and sharing short
copyright-free songs. Users can search and play songs and
see how the recommender system works. Affinity graphs and
SearchTerm logic are displayed in large screens to provide a
visualization of the distributed recommender system used.

REFERENCES

[1] “BitTorrent,” http://www.bittorrent.com/, last visited: June 2012.
[2] O. Heckmann, A. Bock, A. Mauthe, and R. Steinmetz, “The eDonkey

File-Sharing Network,” Proceedings of the Workshop on Algorithms and
Protocols for Efficient Peer-to-Peer Applications, vol. 51, pp. 2–6, 2004.

[3] G. Kreitz and F. Niemela, “Spotify – Large Scale, Low Latency, P2P
Music-on-Demand Streaming,” in 2010 IEEE Tenth International Con-
ference onPeer-to-Peer Computing (P2P), aug 2010, pp. 1–10.

[4] “TomP2P, a P2P-Based Key-Value Pair Storage Library,” http://tomp2p.
net/, last visited: June 2012.

[5] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based Collaborative
Filtering Recommendation Algorithms,” in 10th Intl. Conference on World
Wide Web. New York, NY, USA: ACM, 2001, pp. 285–295.

[6] M. J. Pazzani and D. Billsus, “Content-based Recommendation Systems,”
in The Adaptive Web: Methods and Strategies of Web Personalization, ser.
LNCS, vol. 4321. Springer, 2007, pp. 325–341.

[7] G. Ruffo and R. Schifanella, “A Peer-to-peer Recommender System
Based on Spontaneous Affinities,” ACM Trans. Internet Technol., vol. 9,
no. 1, pp. 4:1–4:34, Feb. 2009.

[8] D. Black, “Partial Justification of the Borda Count,” Public Choice,
vol. 28, pp. 1–15, 1976, 10.1007/BF01718454.

[9] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scalable
wide-area web cache sharing protocol,” SIGCOMM Comput. Commun.
Rev., vol. 28, no. 4, pp. 254–265, Oct. 1998.

