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Zusammenfassung

Die Verbreitung neuer Transport- und Anwendungsschichtprotokolle wie QUIC und
HTTP/3 verlduft schneller als die Weiterentwicklung bestehender Internet-Messwerkzeuge,
die hdufig auf TCP sowie HTTP/1.1 beziehungsweise HTTP /2 zugeschnitten sind und
keine Unterstiitzung fiir strukturierte Protokollaufzeichnung bieten. Diese Arbeit présen-
tiert die Konzeption, Implementierung und Evaluation eines modularen, erweiterbaren
Frameworks fiir internetweite aktive Messungen moderner Transport- und Anwendungs-
schichtprotokolle. Das Framework, QUIC Lab, besteht aus drei Subsystemen: Einem Do-
main Extractor, der aus grossen Domainlisten reproduzierbare Zielmengen erzeugt, einer
Probing-Engine, die konfigurierbare QUIC- und HTTP /3-basierte Messungen via plug-in-
fihige Probes orchestriert, sowie einem Analyzer, der Recorder-Ausgaben und glog-Traces
(strukturierte QUIC-Protokollierung) einliest und zu aggregierten Statistiken aufbereitet.

QUIC Lab ist in Rust auf Basis der TQUIC-Bibliothek von Tencent implementiert und
trennt klar zwischen probe-spezifischer Logik und gemeinsamen Diensten wie Konfigura-
tionsmanagement, DNS-Auflosung, Lastbegrenzung, Transportabstraktion, Aufzeichnung
und qlog-Multiplexing. Seine Skalierbarkeit und Robustheit werden anhand von zwei gros-
sangelegten Scans von etwa 6.24 M Domains aus einer Tranco-Liste demonstriert, die von
privat betriebenen Servern in der Schweiz sowie einer AWS EC2-Instanz in der Region
US-East durchgefiihrt wurden. Bei iiber rund 5.48 M Verbindungsversuchen pro Stand-
ort erzeugte das Framework etwa 240 M qlog-Ereignisse bei einer konstanten Messrate
von ungefihr 26 Domains pro Sekunde, bei gleichzeitig geringer Auslastung von CPU,
Arbeitsspeicher und Netzwerk.

Die empirischen Ergebnisse zeigen, dass QUIC und HTTP/3 unter populdren Domains
weit verbreitet, aber nicht universell verfiigbar sind: Erfolgreiche QUIC-Handshakes wur-
den bei 28-32% der Ziele beobachtet, wobei HTTP/3 die ausgehandelten ALPN-Werte
klar dominiert. Die serverseitigen QUIC-Transportparameter weisen hoch konsistente Ver-
teilungen iiber Standorte hinweg auf, was auf eine Konvergenz hin zu einigen wenigen
betrieblichen Standardkonfigurationen hindeutet. In der untersuchten Population finden
sich keine Hinweise auf eine produktive Nutzung von Multipath QUIC.
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Abstract

The deployment of new transport and application-layer protocols such as QUIC and
HTTP/3 has outpaced existing Internet measurement tooling, which is often tailored
to TCP and HTTP/1.1 or HTTP/2 and lacks support for structured protocol logging.
This thesis presents the design, implementation, and evaluation of a modular, extensible
framework for Internet-wide active measurements of modern transport and application-
layer protocols. The framework, termed QUIC Lab, comprises three subsystems: a Do-
main Extractor that constructs reproducible target sets from large domain lists, a probing
engine that orchestrates configurable QUIC- and HTTP/3-based measurements via plug-
gable probes, and an Analyzer that ingests recorder outputs and qlog (structured QUIC
logging) traces to derive aggregated statistics.

QUIC Lab is implemented in Rust on top of Tencent’s TQUIC library, with a clear separa-
tion between probe-specific logic and shared services such as configuration management,
DNS resolution, rate limiting, transport abstraction, recording, and qlog multiplexing.
Its scalability and robustness are demonstrated through two large-scale scans of approx-
imately 6.24 M domains derived from Tranco, executed from privately operated servers
in Switzerland and an AWS EC2 instance in the US-East region. Across roughly 5.48 M
connection attempts per vantage point, the framework produced about 240 M qlog events
with sustained probing rates of approximately 26 domains per second, while maintaining
low CPU, memory, and network utilization.

The empirical results show that QUIC and HTTP/3 are widely, but not universally, de-
ployed among popular domains, with successful QUIC handshakes observed for 28-32% of
targets and HTTP /3 dominating the negotiated ALPN values. Server-side QUIC trans-
port parameters exhibit highly consistent distributions across vantage points, indicating
convergence on a small set of operational defaults. No evidence of Multipath QUIC de-
ployment was found in the examined population.



vi



Acknowledgments

I am sincerely grateful to my supervisor, Thomas Griibl, whose consistent guidance, ex-
pertise, and thoughtful feedback were essential to the successful completion of this thesis.
I also wish to express my appreciation to Prof. Burkhard Stiller and the Communication
Systems Group at the University of Zurich for providing the opportunity and resources
needed to carry out this work. Finally, I am thankful to my friends and family for their
patience, encouragement, and constant support throughout this time.

vii



viil



Contents

Declaration of Independence
Zusammenfassung

Abstract

Acknowledgments

1 Introduction
1.1 Motivation . . . . . . . ..
1.2 Description of Work . . .

1.3 Thesis Outline . . . . . . .

2 Background

2.1 Internet Measurements . .

2.1.1 Active vs. Passive Measurements . . . . . . . . . . . . .. .. ...

2.1.2 Ethics in Internet Measurements . . . . . . . . . . . .. ... ...

2.1.3  Selecting Targets .

2.2 Transport Layer Security 1.3 . . . . . . . . . .. ...

2.3 Quick UDP Internet Connections (QUIC) . . . ... ... ... ... ...

2.3.1 Connection Migration . . . . . ... ... ... ... ... ... ..

2.3.2  0-RTT Resumption
2.3.3  Version Negotiation

2.3.4 Flow Control . . .

X

iii

vii



X CONTENTS
2.4  Managing Multiple Paths for a QUIC Connection (Multipath QUIC) . .. 8
2.4.1 Design Overview and Goals . . . . . .. ... ... .. ... .... 9
2.4.2 Path Identifiers and Transport Parameter Negotiation . . . . . . . . 9
2.4.3 Path Lifecycle and Path Management . . . . . . .. ... ... ... 10
2.4.4  Scheduling, Congestion Control, and Transport Dynamics . . . . . . 11

2.5 qlog: Structured Logging for Network Protocols . . . . .. .. ... .. .. 11
2.5.1 Design Goals and Overall Structure . . . . . . ... ... ... ... 12
2.5.2  Traces, Vantage Points, and Grouping . . . . . . . ... ... ... 12
2.5.3 Events and Event Schemas . . . . . ... ... ... ... .. ... 13
2.5.4 Serialization Formats and Streaming . . . . .. .. ... ... ... 13
2.5.5  Security and Privacy Considerations . . . . .. .. ... ... ... 14
2.5.6 Role in Transport and Application-Layer Measurement . . . . . . . 14

3 Related Work 15
3.1 The Evolving Landscape of Transport Protocol Measurement . . . . . . . . 15
3.2 Active Measurement and Scanning of QUIC Deployments . . . . . . . . .. 16
3.3 QUIC Server Implementation Fingerprinting . . . . . . .. ... ... ... 18
3.4 Passive Measurement Techniques for QUIC . . . . . . ... ... ... ... 18
3.4.1 Explicit In-Band Signals: The Spin Bit . . . . .. ... ... .. .. 19
3.4.2 Passive Backscatter Analysis . . . . . . . ... ... L. 19

3.5 Performance Benchmarking of QUIC Implementations . . . . . . . . .. .. 20
3.6  Measurement of Specific QUIC Protocol Mechanisms . . . . ... ... .. 20
3.6.1 Connection Migration . . . . . ... ... ... ... ... ..., 21
3.6.2 Address Validation and Security Measurement . . . . . . . . .. .. 21
3.6.3 O-RTT Connection Establishment . . . . . ... ... ... ... .. 22

3.7 Multipath Transport Protocols: From MPTCP to MP-QUIC . . . . . . .. 22
3.7.1 MPTCP (The 10-Year Context) . . . . . . . . .. ... ... .... 22
3.7.2  Multipath QUIC (The 5-Year Focus) . . .. ... ... ... .... 22
3.7.3 Measurement and Performance Evaluation of MP-QUIC . . . . .. 23

3.8 Summary and Research Gaps . . . . . . . . . ... ... .. 23



CONTENTS

4 Architecture and Design

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

High-Level Architecture . . . . .. . .. ... ... ... ... ... ..
Domain Extractor . . . . . . . . . ..o
4.2.1 Design Goals . . . . .. ...
4.2.2 Pipeline . . . ...
QUIC Lab . . . . . . e
4.3.1 Design Goals . . . . . .. ...
432 Runner. . . . . . . L
4.3.3 Core Services . . . . . . . ...
4.3.4 Probes . . . . ..
QUIC Lab Analyzer . . . . . . .. . .. .. ..
4.4.1 Design Goals . . . . . . ...
4.4.2 Analysis Pipeline . . . . . . ... ...
Ethical Measurement and Scheduling . . . . .. ... ... .. ... ....
Portability and Deployment Model . . . . . . . ... ... ... ......
Measurability and Reproducibility . . . . . . .. ... ... ... .

SUMMATY . . . . o v o o e

5 Implementation

5.1

0.2

QUIC Lab . . . . . .
5.1.1  Core . . . . .
5.1.2 Probe . . . . ..
5.1.3 Runner. . . . . . .o
5.1.4 Continuous Integration and Containerization . . . . . . . . . . ...
Domain Extractor . . . . . . . . ...
5.2.1 Streaming Zone File Parsing and SLD Extraction . . . . ... ...
5.2.2  Deduplication via Temporary SQLite Store . . . . . . . .. .. ...

5.2.3 Blacklist Integration and Suffix-Based Filtering . . . . . .. .. ..

xi

27

27

29

29

30

30

31

31

32

33

34

34

34

35

36

36

37

39



xii CONTENTS
5.2.4 CLI Modes and Metrics Generation . . . . . . ... ... ... ... 53

5.3 QUIC Lab Analyzer . . . . . . . . . . . .. .. ... 54
5.3.1 CLI Orchestration . . . . ... .. ... ... ... ... .. .... 55
5.3.2 Recorder Analysis . . . . . . . ... ... 55
5.3.3 QLOG Analysis . . . . . . . . . ... 56
5.34 Log-File Analysis . . . . . .. . ... ... . 58
5.3.5  Cross-Correlation and Visualization . . . . . . ... ... ... ... 58

6 Evaluation 61
6.1 Experiment setup . . . . . . . ... 61
6.1.1 Domain Set Construction . . . . . ... ... ... ... .. .... 61
6.1.2 Probing Configuration . . . . . ... .. ... ... ... ... ... 62
6.1.3 Deployment Environment . . . . . ... ... ... .00 62
6.1.4 Opt-Out Infrastructure . . . . . . .. .. ... ... ... ... 63
6.1.5 Multipath QUIC Considerations . . . . . . . . ... .. ... .. .. 63

6.2 Measurement Artefacts and Metrics . . . . . . . .. ... 63
6.3 Coverage and Handshake Outcomes . . . . . . . . ... .. ... ... ... 65
6.4 QLOG Event and Frame Distributions . . . . . . .. ... ... ... ... 66
6.5 Transport Parameter Distributions . . . . .. . . . ... .. ... ..... 69
6.6 FError Analysis . . . . . . . . .. 71
6.7 Impact of Vantage Point and Limitations . . . . . . . ... ... ... ... 72
6.8 Performance . . . . . . ... 73
6.8.1 Computational Resource Usage . . . . . . .. .. ... ... .... 73
6.8.2 Network Utilization . . . . . . . . .. ... ... ... 74
6.8.3 Throughput and Runtime Characteristics . . . . . . . . . .. .. .. 75

6.8.4 Summary . . . ... 75



CONTENTS xiii

7 Summary and Conclusions 77
7.1 SUMMATY . . . . o o 7
7.2 Conclusions . . . . . . . 78
7.3 Limitations . . . . . . .. 79
7.4 Future Work . . . . . . . 79

Bibliography 81

Abbreviations 85

List of Figures 86

List of Tables 87

List of Listings 89

A Docker Compose File 93



Xiv

CONTENTS



Chapter 1

Introduction

1.1 Motivation

The widespread expansion of internet usage and increasingly sophisticated web applica-
tions has driven the demand for transport protocols that deliver higher performance, im-
proved reliability, and enhanced security. Established protocols such as the Transmission
Control Protocol (TCP) and the User Datagram Protocol (UDP), although fundamen-
tal to the internet, are gradually revealing shortcomings when faced with the demands
of contemporary web traffic [1], [2]. Challenges including elevated latency—particularly
across long-distance links or mobile networks—frequent network transitions on mobile
devices, and stricter security and privacy expectations highlight the constraints of these
traditional protocols [3]. While TCP ensures reliable and ordered data transmission, it
introduces connection establishment overhead through its three-way handshake and is sus-
ceptible to head-of-line blocking when multiple data streams are multiplexed over a single
connection [4]. In contrast, UDP enables lightweight, connectionless communication but
does not natively provide reliability or congestion control mechanisms [5]. As a result,
fulfilling modern performance requirements for web browsing, video streaming, real-time
communication, and other delay-sensitive services becomes increasingly difficult.

These challenges have prompted both researchers and practitioners to pursue transport
solutions that are more efficient, secure, and adaptable [3], [6], [7]. This motivation has
given rise to new transport protocols such as Quick UDP Internet Connections (QUIC) [1],
along with advances at the application layer, including Hypertext Transfer Protocol Ver-
sion 3 (HTTP/3) [2].

For researchers and security analysts, gaining insight into the real-world deployment and
behavior of these protocol features is essential. Conventional scanning tools typically
concentrate on identifying services or enumerating versions, but they often lack the ca-
pability to evaluate detailed protocol functionalities. Consequently, specialized tools are
required to actively probe and examine the specific behaviors of modern transport and
application-layer protocols.
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1.2 Description of Work

First, a comprehensive review of existing research, protocol specifications, and ethical
guidelines is performed to identify the methodological gaps in current Internet measure-
ment approaches, with a particular focus on advanced QUIC features.

Based on the insights gained from this review, a modular scanning and fuzzing toolkit
is designed, and then implemented. For QUIC, the toolkit must support full connection
establishment, parsing of transport parameters, and protocol-compliant error handling.
The design emphasizes extensibility, reproducibility, and adherence to ethical scanning
constraints.

Finally, an evaluation is carried out using controlled deployments on multiple Virtual Pri-
vate Servers in different geographic regions. The toolkit is used to assess feature support
on enterprise-grade infrastructure, measure implementation variability, and analyze per-
formance indicators such as scan speed, detection accuracy, and cross-location consistency.
Ethical scanning practices guide target selection and experiment execution throughout all
stages of the work.

1.3 Thesis Outline

Chapter 2 introduces key concepts such as QUIC, Multipath QUIC, and qvis, to establish
a theoretical foundation. Chapter 3 discusses the current state of research in the field
and shows the research gaps. In chapter 4, a technology-independent description of the
solution is provided, followed by a concrete implementation in chapter 5. The evaluation
is presented in chapter 6 and concluded in chapter 7, along with a summary of this thesis.



Chapter 2

Background

2.1 Internet Measurements

Internet measurement studies analyze public Internet traffic to track threats, user behav-
ior, and the performance and security of systems. Telescopes and reactive vantage points
observe unsolicited traffic and sometimes elicit limited application-layer responses. They
also collect data from benign users. This creates ethical challenges: consent is infeasible
at scale, anonymization can obscure key phenomena, and institutional review boards may
miss network-level harms or misjudge risk-benefit trade-offs [8].

2.1.1 Active vs. Passive Measurements

While this research focuses on active probing, it is useful to note how passive measure-
ments complement the process. Passive measurement involves observing real traffic (e.g.,
via network taps or server logs) to infer deployment and usage of protocols. For in-
stance, [9] found that QUIC (in its pre-IETFEF Google variant) already accounted for
2.6%-9.1% of Internet traffic by 2017, with Google using QUIC for about 42% of its traffic.
Similar adoption figures were reported by Google itself [10], highlighting QUIC’s rapid
deployment at Internet scale. Such insights reveal adoption trends in the wild. However,
passive data alone cannot fully assess specific feature support, since many QUIC capabil-
ities like O-RTT or migration might be infrequently exercised or not visible without active
triggers [11], [12]. Passive methods are also constrained by where the observer sits; they
see what naturally occurs, which may omit edge cases. Active measurement, on the other
hand, allows systematically probing features on demand (e.g., deliberately attempting a
connection migration) across many targets [11]. Active and passive approaches are thus
complementary: passive studies give a broad picture of real-world usage and performance,
whereas active scans let researchers test capabilities and compliance (even for rarely used
features) in a controlled way. In academic practice, it’s common to use passive findings to
motivate active tests (for example, noticing increasing QUIC traffic share passively, then
actively scanning to see which servers support QUIC) [11].

3
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2.1.2 Ethics in Internet Measurements

Active scanning must be conducted responsibly to avoid harming others. [13]. Key ethical
practices include rate limiting the probe traffic to prevent overloads and progressive ramp-
up of scan intensity. For example, one large-scale QUIC scan first tested locally and then
gradually increased the number of targets and packet rate while monitoring for issues.
It’s also crucial to maintain a blocklist of networks or hosts that have requested not to
be scanned [14]. Providing a clear opt-out mechanism (e.g., an email contact or a web
page on the scanning host with instructions) demonstrates respect for network owners’
preferences. Likewise, using informative reverse DNS names or User-Agent strings (for
HTTP requests) that identify the measurement and provide contact information can help
administrators understand and contact the researcher if needed. Data collected from
purely network scanners is generally acceptable without consent, whereas data involving
end-users should be anonymized or obtained with consent whenever possible. In all cases,
potential harm should be minimized: avoiding sending payloads that could trigger crashes
or large downloads, and sticking to innocuous requests (e.g., a small HEAD or GET
request for HT'TP). Active measurements that might inadvertently impact users (e.g., by
inducing server load or alarms) should be carefully controlled or avoided [8].

2.1.3 Selecting Targets

Choosing an appropriate set of targets is essential when faced with large pools. A com-
mon strategy is to focus on popular domains using established “top lists”. In the research
community, the Alexa Top 1 Million list was previously prevalent, although it had re-
liability issues beyond the very top sites [13]. Modern studies favor the Tranco list, a
research-oriented ranking that aggregates multiple sources over 30 days for stability and
reproducibility. Using a stable list like Tranco (with a fixed snapshot ID) allows others to
easily replicate the experiment [15]. If the research goal is broad Internet coverage (e.g.,
finding all QUIC-supporting hosts), combining multiple sources can help: for instance,
one might take a top domains list, augment it with known QUIC host hitlists or data
from DNS. Recent QUIC scans demonstrate using DNS records and alternative services
to guide target selection. For example, [14] identified QUIC hosts via three methods:
direct UDP scanning, HTTP Alt-Sve headers, and DNS SVCB/HTTPS records. Each
method found some hosts the others missed. Notably, DNS HTTPS records revealed
many Cloudflare-supported domains (but were biased toward Cloudflare). In practice, a
hybrid approach can be used: starting with a large domain list (e.g., top 100k sites), re-
solve to IPs, and then optionally filter or augment using known QUIC indicators (Alt-Svc
or HTTPS records) [14].

2.2 Transport Layer Security 1.3

Transport Layer Security (TLS) 1.3 is the most recent version of the widely deployed
security protocol that secures HTTPS and, by extension, protocols such as HTTP/2,
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HTTP/3, and QUIC encryption. Finalized in 2018, TLS 1.3 represents a substantial
redesign focused on enhancing both security and performance. It removes obsolete and
insecure cryptographic mechanisms (e.g., static RSA key exchange and legacy ciphers)
and streamlines the protocol’s state machine to mitigate historical vulnerabilities. A key
improvement is reduced handshake latency: unlike TLS 1.2, which requires two round-
trips, TLS 1.3 completes a full handshake in a single round-trip (1-RTT) and additionally
supports zero-round-trip (0-RTT) mode for resumed sessions, allowing clients to send
data immediately. This leads to faster establishment of secure connections. Furthermore,
TLS 1.3 encrypts a larger portion of the handshake, improving privacy by concealing
more metadata from passive observers [16]. Overall, TLS 1.3 enhances both privacy and
connection setup time, making it a critical component of modern transport protocols like
QUIC and HTTP/3, which integrate TLS 1.3 directly into their handshakes.

2.3 Quick UDP Internet Connections (QUIC)

QUIC is a modern transport protocol originally developed by Google and later standard-
ized by the IETF as QUIC version 1. Operating over UDP, QUIC implements advanced
transport-layer functionality in user space while providing a reliable, ordered byte-stream
abstraction to upper-layer protocols. It was designed to address long-standing limita-
tions of TCP, such as slow connection establishment, head-of-line blocking in multiplexed
applications, and lack of native support for mobility and connection migration [1].

QUIC is message-oriented, multiplexed, and inherently secure: it enables multiple con-
currently active streams within a single connection, each with independent flow control
and ordering guarantees [1]. Encryption is integrated into the transport layer by man-
dating the use of TLS 1.3 [16] for all application data and most control information. The
QUIC-TLS mapping, including key derivation, record protection, and the use of CRYPTO
frames for the handshake, is specified in a separate document [17]. Loss detection and
congestion control are defined independently of the transport mapping [18], which allows
future versions of QUIC to evolve while reusing these algorithms.

The QUIC handshake is optimized for low latency by combining the transport and cryp-
tographic handshakes into a single exchange and by supporting zero-round-trip (0-RTT)
data for resumed connections. QUIC connections are further designed to be robust to
changes in network paths. They are identified by opaque connection identifiers rather
than the IP address and port tuple, which enables seamless migration across interfaces
and networks [1], [17].

Sections 2.3.1 to 2.3.4 introduce key features of QUIC that are particularly relevant to
transport and application-layer measurement.

2.3.1 Connection Migration

In QUIC, a connection is identified by an opaque connection ID chosen by the endpoints
rather than by the 4-tuple of source and destination IP addresses and ports. This decou-
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pling of the connection identity from the underlying network path enables a connection
to survive changes in the path, such as Network Address Translator (NAT) rebinding,
interface changes, or handovers between access networks. A path is defined as a specific
4-tuple over which packets are exchanged [1].

Connection migration mechanisms distinguish between implicit migration due to NAT
rebinding and explicit, active migration initiated by an endpoint. In the NAT rebinding
case, packets from the peer appear to originate from a different 4-tuple while the connec-
tion ID remains unchanged. The peer can silently migrate the connection state to the
new path once basic validation succeeds [1]. In contrast, during active migration, typi-
cally initiated by a client that switches from one local interface to another, an endpoint
deliberately starts sending non-probing packets from a new local address and port.

To prevent off-path attackers from redirecting traffic or amplifying traffic towards a vic-
tim, QUIC performs path validation before using a new path for non-probing traffic. Path
validation uses PATH_CHALLENGE/PATH_RESPONSE frame pairs: the probing end-
point sends a PATH CHALLENGE on the candidate path and requires a matching
PATH_RESPONSE from its peer before considering the path valid [1]. Until valida-
tion completes, an endpoint is subject to anti-amplification limits and typically restricts
itself to sending only probing frames on the new path [1], [18].

Servers can influence migration behavior via transport parameters. For instance, the
disable_active_migration transport parameter signals that the client must not ac-
tively migrate away from the path used during the handshake [1]. Conversely, the
preferred_address transport parameter allows a server to advertise an alternative ad-
dress to which the client is encouraged to migrate after the handshake completes, for
example to move from a load balancer front-end to a backend server [1].

From a transport-measurement perspective, QUIC connection migration introduces addi-
tional degrees of freedom: flows can change path while maintaining a stable connection
identifier, and validation traffic (PATH CHALLENGE/PATH RESPONSE) can be ob-

served as an explicit signal of path changes.

2.3.2 0-RTT Resumption

QUIC supports the transmission of application data in 0-RTT, i.e., before completion
of the handshake, for resumed connections. This mechanism builds on TLS 1.3 early
data and the pre-shared key (PSK) mode of TLS 1.3 [16]. During an initial connection,
the server may issue a resumption ticket bound to a PSK and associated configuration
state. In subsequent connections, the client can present this ticket and immediately send
application data protected under keys derived from the PSK, without waiting for the
server’s first flight [17].

Use of 0-RTT in QUIC requires that the client and server agree on a set of remem-
bered parameters from the original connection. These include the application protocol
(via ALPN), the QUIC version, the cipher suite, and a subset of the server’s transport
parameters, including flow control limits and other configuration relevant to transport
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behavior [1], [17]. The server must verify that its current configuration is compatible with
the stored parameters before accepting 0-RTT data; otherwise it has to reject early data
and force the client to fall back to a 1-RTT handshake [17].

A central limitation of 0-RTT is that early data is not protected against replay at the TLS
layer [16], [17]. QUIC therefore places responsibility on applications and deployments to
ensure that operations triggered by 0-RTT data are either idempotent, tolerant to replay,
or otherwise protected by additional mechanisms (such as application-level anti-replay
state). Servers are permitted to reject early data for policy reasons, for example when
they cannot provide strong replay protection or when configuration differences prevent
safe reuse of stored transport parameters [17].

2.3.3 Version Negotiation

QUIC is explicitly versioned at the transport layer. Each QUIC long-header packet carries
a version field that specifies the protocol version used for the connection [1]. To enable
evolution of the protocol, endpoints must cope with unsupported versions and, where
possible, select a mutually supported version.

The base QUIC specification defines a Version Negotiation packet with version value 0,
which servers use to indicate that the version chosen by the client is not supported [1].
Upon receiving a client Initial packet with an unknown version, a server may respond with
a Version Negotiation packet that echoes the client’s connection IDs and contains a list of
versions that the server is willing to accept [1]. The client can then abandon the current
attempt and initiate a new connection using one of the advertised versions. QUIC version 1
describes how endpoints handle Version Negotiation packets but intentionally leaves the
detailed version-selection logic and downgrade protection to future specifications [1].

The version-invariant properties of QUIC, including the format of Version Negotiation
packets, are defined separately [19]. Building on these invariants, a complete, downgrade-
resistant version negotiation mechanism has been specified in a dedicated document [20].
That mechanism introduces the concept of the client’s Original Version and Chosen Ver-
sion, as well as the final Negotiated Version, and defines two complementary procedures:

o Incompatible version negotiation, in which the server cannot parse the client’s first
flight and responds with a Version Negotiation packet listing its offered versions,
causing the client to start a new connection with a different version [20].

o Compatible version negotiation, in which the server can parse the client’s first flight
and the client’s first-flight format is compatible with another version. In this case,
the server can switch to a different negotiated version without incurring an extra
round trip by conceptually converting the first flight into that version [20].

To support these procedures, the version negotiation mechanism introduces a
version_information transport parameter that carries the client’s and server’s view
of available and chosen versions and is authenticated as part of the QUIC-TLS hand-
shake [17], [20]. The client validates that the server’s chosen version is consistent with
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the versions it offered; if validation fails, the client aborts the connection with a dedi-
cated version negotiation error [20]. This design prevents on-path attackers from forcing
a downgrade by forging Version Negotiation packets or manipulating the Version field in
long headers.

2.3.4 Flow Control

QUIC employs a limit-based, receiver-driven flow control scheme to prevent a sender from
overwhelming the receiver’s buffers. Flow control in QUIC operates at two levels: per-
connection and per-stream. Both are expressed as limits on the cumulative number of
bytes that a peer is allowed to send [1].

At connection establishment, each endpoint advertises initial flow control limits via trans-
port parameters: initial max_data defines the maximum number of bytes the peer
may send in total across all streams, while initial max stream data bidi_ local,
initial max_stream_data_bidi_remote, and initial max_stream_data_uni define per-
stream limits for the different stream types [1]. These initial limits bound the amount
of data that can be sent before the receiver has processed any application data. Dur-
ing the connection, the receiver can increase these limits by sending MAX DATA and
MAX_ STREAM_DATA frames, respectively, thereby granting additional credit to the
sender [1].

The sender is required to track, for each stream and for the connection as a whole, the
highest byte offset sent and to ensure that no data is transmitted beyond the advertised
limits. If either the per-stream or the connection-level credit is exhausted, further sending
on the affected stream (or on any stream, for the connection limit) becomes flow-control
blocked until new credit is advertised. The sender can signal this condition to the receiver
using BLOCKED, STREAM_DATA_BLOCKED, or analogous frames, which can be
useful hints for tuning flow control limits [1].

Flow control is distinct from, but interacts with, congestion control as specified in the
QUIC loss detection and congestion control specification [18]. Congestion control protects
the network from overload by limiting the volume of in-flight data based on observed loss
and delay, whereas flow control protects endpoints from resource exhaustion by limiting
the total amount of data a peer may send. In practice, the effective sending rate is
constrained by the minimum of the congestion window and the available flow control
credit.

2.4 Managing Multiple Paths for a QUIC Connection
(Multipath QUIC)

While QUIC version 1 supports connection migration by switching a connection between
different network paths, only a single path is active at any point in time [1]. Connec-
tion migration primarily targets robustness against path changes, such as NAT rebinding
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or moving between Wi-Fi and cellular networks, but it does not exploit the aggregate
capacity or redundancy of multiple paths simultaneously. To address this limitation, a
multipath extension for QUIC is currently being standardized in the IETF QUIC Work-
ing Group [21]. This extension enables a single QUIC connection to use multiple network
paths in parallel, using the same or different 4-tuples of IP addresses and UDP ports,
while preserving QUIC’s security properties and application semantics.

2.4.1 Design Overview and Goals

The multipath extension introduces the notion of a path identifier (path ID) to manage
multiple simultaneous paths within a QUIC connection [21]. Each path corresponds to
a network path in the sense of RFC 9000 and is associated with its own packet number
space and connection identifiers (CIDs). Path IDs are monotonically increasing 32-bit
integers; path ID 0 denotes the initial path and additional paths are assigned consecutive
identifiers that are never reused for the lifetime of the connection.

A key design objective is to reuse the existing QUIC handshake and cryptographic mech-
anisms defined in RFC 9001 without requiring changes to the TLS 1.3 key exchange [17].
The multipath extension is negotiated via a new transport parameter and only becomes
active once the QUIC handshake has completed successfully; all multipath-specific signal-
ing is carried in 1-RTT packets and remains protected by QUIC-TLS [21]. As a result,
the extension retains the confidentiality and integrity guarantees of QUIC while adding
the ability to create, use, and remove multiple paths in a controlled fashion.

Figure 2.1 illustrates the high-level message flow for enabling multipath on a QUIC connec-
tion. The client and server first perform the standard QUIC + TLS 1.3 handshake while
advertising support for the multipath extension via the initial max_path_id trans-
port parameter. After the handshake has completed, application data is initially sent
on path ID 0. The client then activates an additional path (path ID 1) using per-path
connection identifiers, after which both paths can concurrently carry application data.

2.4.2 Path Identifiers and Transport Parameter Negotiation

Support for multipath QUIC is indicated during the handshake using the
initial max_path_id transport parameter. This parameter is a variable-length inte-
ger that specifies the maximum path ID an endpoint is willing to maintain at connection
establishment; its value is limited to 232 — 1 to ensure uniqueness of the AEAD nonces
that incorporate the path ID. If either endpoint omits this parameter, the multipath
extension is disabled and the connection behaves as a regular single-path QUIC connec-
tion. When both endpoints advertise initial max_path_id, the extension is enabled
after the handshake completes and additional paths can be created up to the negotiated
maximum [21].

The connection ID of each packet binds that packet to a specific path ID and thus to a
particular packet number space. Each CID is associated with exactly one path ID, but
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Figure 2.1: High-Level Message Flow for Enabling Multipath on a QUIC Connection

multiple CIDs may be issued for a single path, for example to support CID rotation or
migration within that path. The same path ID is used in both directions of the connec-
tion, and each path maintains its own sender and receiver packet number state starting
from 0 [21]. This design enables direct reuse of QUIC’s loss detection and congestion
control mechanisms on a per-path basis, while requiring non-zero CIDs and a modified
AEAD nonce construction that includes the path ID [18], [21].

2.4.3 Path Lifecycle and Path Management

After the handshake has indicated multipath support, endpoints can manage multiple
paths using a set of dedicated frames and procedures [21]. Path management covers four
aspects: path initiation and validation, per-path connection ID handling, preferred path
signaling, and explicit path closure.

Path initiation and validation

To open a new path, an endpoint selects an unused path ID and uses a connection ID
associated with that path ID when sending packets on the new 4-tuple. The peer per-
forms path validation using QUIC’s existing PATH_CHALLENGE/PATH_RESPONSE
mechanism before the path can be used for application data, as in single-path connection
migration [1], [21]. Endpoints are encouraged to allocate additional per-path resources
only after validation succeeds to limit exposure to resource-exhaustion attacks.
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Per-path connection identifiers

Each path relies on a set of CIDs that are specific to its path ID. The extension defines
frames such as PATH NEW_ CONNECTION ID and
PATH RETIRE CONNECTION ID, which mirror the semantics of
NEW__CONNECTION_ID and RETIRE CONNECTION_ID in RFC 9000 but oper-
ate on a per-path basis. Together with the MAX PATH 1D, PATHS BLOCKED, and
PATH_ CIDS BLOCKED frames, these mechanisms allow endpoints to bound the num-
ber of active paths and associated CIDs for resource control [21].

Preferred path signaling and path closure

Applications may prefer some paths over others (for example, cellular versus Wi-Fi). The
extension therefore specifies PATH STATUS AVAILABLE and
PATH_STATUS_BACKUP frames, which allow endpoints to signal which paths are pri-
mary and which are considered backups. Paths can be explicitly removed using
PATH ABANDON frames, accompanied by error codes that indicate why a path was
closed (e.g., resource limits or poor performance). The specification does not define per-
path idle timeouts; instead, endpoints are free to decide when to abandon unused paths,
potentially using keep-alive traffic if long-lived backup paths are desired [1], [21].

2.4.4 Scheduling, Congestion Control, and Transport Dynamics

When multipath is enabled, senders maintain separate congestion control state for each
path [1], [18], [21]. Each path has its own congestion window, round-trip time estimator,
and probe timeout (PTO), and a sender must not transmit more data on a path than
allowed by that path’s congestion window. This independence allows different paths to
react appropriately to heterogeneous characteristics such as bandwidth, delay, and loss.

The extension deliberately does not standardize any packet scheduling algorithm across
paths. Instead, it provides only basic implementation guidance and leaves the choice of
scheduler to the application or implementation, ranging from simple failover strategies
to algorithms that exploit the aggregate capacity of all active paths [21]. For example,
a video streaming application might distribute traffic across paths with similar RTTs,
whereas an interactive application might restrict traffic to a low-latency path and keep
another path as a hot standby. The draft also discusses practical aspects such as RTT
estimation per path, handling paths with different path maximum transmission units
(PMTUs), and managing idle paths and keep-alives [21].

2.5 qlog: Structured Logging for Network Protocols

Modern transport protocols such as QUIC encrypt most of their wire image, which makes
passive measurement and debugging substantially more difficult than for TCP [1], [16],
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[22]. Endpoint-based logging is therefore required to obtain protocol semantics such as
packet and frame types, state-machine transitions, and congestion-control events. The
glog main schema Internet-Draft defines an extensible structured logging format for net-
work protocols that standardizes how such information is captured and shared across im-
plementations and tools [23]. By providing common schemas for log files, traces, events,
and protocol-specific extensions, qlog enables interoperable analysis pipelines that are
particularly suitable for large-scale QUIC and HTTP/3 measurements.

2.5.1 Design Goals and Overall Structure

qlog is designed around several core principles: streamable, event-based logging; low over-
head for log producers; extensibility; and aggregation-friendly structure for consumers and
tools. A qlog artefact is organized in a three-level hierarchy of log file, trace, and event.
The abstract LogFile class defines fields that are common to all log files, in particular a
file_schema URI that identifies the concrete schema and a serialization_format me-
dia type [23]. Concrete log-file schemas derive from this definition and may add additional
metadata.

A trace corresponds conceptually to a single logical data flow observed at one vantage
point, for example one QUIC connection as seen by the client, server, or a network ob-
server. Each trace contains optional descriptive metadata, information about its vantage
point, a set of event schema URIs that describe the event namespace(s) used, and a se-
quence of events. This structure allows several related traces—for example client-side,
server-side, and on-path logs of the same connection—to be aggregated into a single file
while preserving their provenance [23].

2.5.2 Traces, Vantage Points, and Grouping

The Trace and TraceSeq structures describe per-flow metadata and provide context for
events. They include an optional vantage_point field that identifies whether the trace
originates from a client, server, or network observer, and can additionally encode the flow
direction when traces are generated from packet captures [23]. This information allows
analysis tools to interpret events such as packet sent or packet received correctly even
when identifying information from the wire image (for example IP addresses) has been
removed for privacy reasons.

Qlog introduces the group_id field to support grouping of events belonging to the same
logical entity within a trace or across traces. Typical examples include using a QUIC
connection identifier to group all events for one connection, or tagging events with a
quality-of-service class. The group_id can be stored either directly in each event or once
in the common_fields section of a trace if it is constant for all events [23]. This mechanism
is particularly useful in server deployments that log many connections in a single streamed
log file and later split them per connection during post-processing.

The tuple field provides a similar abstraction for network paths. It associates events
with an identifier representing a specific IP-address and port four-tuple, but leaves the
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concrete encoding of this identifier to protocol-specific schemas. This abstraction allows
logs to represent connection migration or multipath operation, where several tuples can
be active concurrently for the same logical connection, without exposing raw addressing
information directly [23].

2.5.3 Events and Event Schemas

At the lowest level, qlog represents protocol behavior as a sequence of events. The abstract
Event type comprises a timestamp, a name, and a protocol-specific data object, with
optional fields for time formatting, grouping, system information, and custom extensions.
Event names are globally unique strings of the form namespace:event_type, for example
quic:packet_sent, and are defined by event schemas [23].

An event schema defines a namespace and the set of event types and data structures
it contains. The main schema document specifies generic namespaces such as loglevel
for free-form logging (errors, warnings, and informational messages) and simulation
for recording test scenarios and markers. Protocol-specific schemas, for example for
QUIC and HTTP/3, define detailed events such as packet transmission, frame parsing,
and connection-state updates. Event schemas are identified by URIs and listed in the
event_schemas field of each trace, which enables tools to determine the expected event
vocabulary for a given log [23].

Qlog is explicitly extensible. The data field uses a CDDL type extension point that
permits additional events and new fields to be added by later schemas without breaking
existing tooling. Similarly, each event data definition can contain an extension socket
that allows future documents to add optional properties [23]. This extension mechanism
is essential for evolving protocols such as QUIC, where new transport parameters or frames
may be introduced without changing the base logging schema.

To reduce redundancy, qlog offers the common_fields mechanism: fields that have the
same value for all events in a trace, such as time format, reference time, group identifier,
and tuple, can be moved from individual events into a shared dictionary. This significantly
reduces log size and simplifies logging implementations while keeping the event model
conceptually uniform [23].

2.5.4 Serialization Formats and Streaming

Although schema definitions are serialization-independent, the main schema document
specifies mappings to JSON and JSON Text Sequences, which are recommended default
formats due to their interoperability and ease of tooling [24], [25]. For non-streaming use
cases, the QlogFile schema aggregates one or more traces into a single JSON object, with
media type application/qlog+json and typically the .qlog file extension. This format
is well suited for offline analysis but requires the file to be closed properly before it can
be parsed.
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For streaming scenarios, qlog defines the QlogFileSeq schema, which is serialized using
JSON Text Sequences. A QlogFileSeq file contains a single TraceSeq header record
followed by an unbounded sequence of event records, each prefixed by a record-separator
character and terminated by a newline [23], [25]. The corresponding media type is
application/qlog+json-seq, and the conventional file extension is . sqlog. This stream-
oriented design enables low-overhead continuous logging in high-volume deployments and
is especially suitable for long-running QUIC servers and large-scale Internet scans.

Qlog also provides guidelines for optimization and interoperability, including support for
[-JSON environments with restricted integer ranges and for truncating raw byte fields
while retaining length metadata [23], [26]. These features are important when logs are
processed by browser-based tools or must be stored efficiently at scale.

2.5.5 Security and Privacy Considerations

Because qlog can expose detailed packet and frame-level information, connection identi-
fiers, addressing information, and even decrypted application data, its use has significant
security and privacy implications. The main schema therefore includes a dedicated discus-
sion of data-at-risk categories, such as IP addresses, QUIC connection IDs, TLS session
secrets, and raw payloads, and recommends that operators carefully control which fields
are logged and who can access the resulting files [23], [27]. Techniques such as data min-
imization, anonymization, truncation of raw payloads, and encryption of log files at rest
and in transit are explicitly encouraged.

Qlog further suggests operational best practices including access-control and auditing for
both log generation and log consumption, as well as environment variables (QLOGDIR,
QLOGFILE) that allow operators to direct log output in a controlled fashion. These mech-
anisms are essential when qlog is deployed in production systems that process sensitive
user traffic.

2.5.6 Role in Transport and Application-Layer Measurement

For the purposes of transport- and application-layer measurement, qlog provides a protocol-
independent but QUIC-aware logging substrate that combines high semantic richness
with a well-specified, machine-readable format. In contrast to pcap-based measurements,
which operate solely on the wire image, qlog exposes internal protocol state such as
loss-detection timers, congestion-control variables, stream-level flow control updates, and
connection identifiers [23]. When combined across multiple vantage points, qlog traces
enable reconstruction of end-to-end behavior and correlation with external data sources
such as DNS measurements or HT'TP performance metrics.

The event-based, streaming design of qlog, together with its grouping and tuple abstrac-
tions, makes it particularly well suited for large-scale experiments involving many concur-
rent QUIC connections, connection migration, or multipath operation. As a consequence,
qlog is a central building block for the measurement techniques developed later in this
thesis.
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Related Work

This chapter provides an overview of the state of the art in transport and application
layer measurement techniques, thereby establishing the necessary context for the novel
contributions of this thesis. The initial step in this study is a review of the measure-
ment challenges of legacy and transitional protocols, such as Multipath TCP (MPTCP).
These challenges directly motivate the design of modern encrypted protocols. A thorough
examination of measurement methodologies developed for the Quick UDP Internet Con-
nections (QUIC) protocol is subsequently conducted, with a particular emphasis on the
time period from 2019 to the present. The recent work is categorized as follows: large-
scale active discovery, server implementation fingerprinting, passive and in-band analysis,
performance benchmarking, and measurement of specific protocol mechanisms. In con-
clusion, a comprehensive review is presented on the evolution from MPTCP to Multipath
QUIC, as this subject is a primary focus of the present thesis.

3.1 The Evolving Landscape of Transport Protocol
Measurement

For decades, transport-layer measurement techniques were inextricably linked to the de-
sign of the Transmission Control Protocol (TCP). Network monitors, middleboxes, and
researchers relied on their ability to passively observe unencrypted TCP headers. By
tracking TCP sequence (SEQ) and acknowledgment (ACK) numbers, one could easily
infer network round-trip time (RTT), packet loss, and reordering. This provided the
foundation for network diagnostics and management. Active measurements were simi-
larly straightforward and often involved simple probes, such as TCP SYN packets, to
determine service availability [28].

This measurement paradigm was first and most significantly challenged by transport
protocols that extended TCP, notably Multipath TCP (MPTCP). First standardized as
an experimental protocol (MPTCPvO0) in 2013 and later as MPTCPv1 in 2020, MPTCP
extends TCP to utilize multiple network paths (e.g., Wi-Fi and cellular) simultaneously
by introducing new TCP options, such as MP_CAPABLE, during the initial handshake [29].

15
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This reliance on TCP options proved to be a critical flaw for both deployment and mea-
surement. Longitudinal studies conducting Internet-wide scans for the MP_CAPABLE option
revealed that naive active measurements produced overwhelmingly false-positive results.
This measurement failure was a direct consequence of middlebox interference. Middle-
boxes (e.g., firewalls, NATs) on the path, not understanding the new options, would either
strip them from the packet, making the server appear as a legacy TCP endpoint, or, more
deceptively, mirror the unknown options back to the sender [30]. [29] conducted a compre-
hensive longitudinal study and found that this mirroring artifact affected a “substantial
share” of seemingly MPTCP-capable hosts; on port 80, 80-90% of all positive MP_CAPABLE
responses were artifacts of mirroring middleboxes.

This fundamental challenge forced the network measurement community to develop a
more sophisticated, multi-stage active measurement methodology to filter these false pos-
itives. The state-of-the-art technique for MPTCP discovery involves: (1) a high-speed,
stateless scan using ZMap to probe for the MP_CAPABLE option; (2) a filtering stage to
discard all responses that merely “echo” the sender’s MPTCP key; and (3) a robust
validation stage using tools like Tracebox [29]. Tracebox sends MPTCP packets and ob-
serves hop-by-hop which device on the path, if any, modifies or strips the options, thereby
isolating true server-side support from on-path interference [30].

Using this robust methodology, longitudinal studies from 2020-2022 revealed the true,
sparse state of MPTCP deployment. True MPTCPv0 deployment, while growing, was
limited to approximately 13,000 [Pv4 addresses, and MPTCPv1 deployment was “com-
paratively low” or “almost non-existent,” with approximately 100 hosts, driven almost
entirely by Apple. Passive traffic analysis from CAIDA and MAWI confirmed this, show-
ing that the MPTCP traffic share, while increasing 20 times, remained below 0.4% of
TCP traffic and was “almost all” attributable to Apple [29].

The failure of MPTCP, due to its reliance on clear-text TCP options being ossified by
middleboxes, serves as the primary technical motivation for the design of QUIC. QUIC was
designed from the ground up to avoid this problem by running over UDP and encrypting
all of its transport-layer headers [31]. This design creates a new measurement paradox:
by successfully hiding transport semantics from interfering middleboxes, QUIC also hides
them from legitimate passive network monitors. This paradox establishes the central
theme of modern transport measurement: techniques must evolve from implicit passive
inference (as with TCP) to advanced active probing and the analysis of explicit, protocol-

defined signals (as with QUIC) [32].

3.2 Active Measurement and Scanning of QUIC De-
ployments

The first challenge in QUIC measurement is discovery. Given that QUIC runs on UDP,
a simple TCP SYN-style liveness check is not possible.

The foundational technique for large-scale, stateless discovery was developed by [7] and
[14]. This method uses the ZMap high-speed scanner 1 to send a minimal QUIC Initial
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packet. The version field of this packet is intentionally set to a reserved value (e.g.
Ox7a?a?a?a). A compliant server, upon receiving this, is expected to reply statelessly
with a Version Negotiation (VN) packet, which confirms QUIC support without requiring
the server to commit state or complete a handshake [33].

However, this technique was found to be incomplete. Recent work demonstrated that this
simple VN probe fails to detect major QUIC deployments. Using a controlled testbed, they
showed that implementations such as Amazon’s s2n-quic and 1squic would attempt to
parse the entire Initial packet. Finding it malformed (e.g., missing a complete Transport
Layer Security (TLS) Client Hello), these implementations would simply drop the packet
rather than sending a VN reply [33].

This discovery led to a novel, evolved stateless discovery technique. The improved method-
ology involves crafting a fully valid QUIC Initial packet, including a syntactically correct
Client Hello and the required 1200-byte padding, but still setting a reserved version num-
ber. This valid-but-wrong-version packet successfully passes the initial parsing steps of
all major implementations and correctly triggers the VN packet response. This single
change in measurement methodology was profound: it “found 2.6 M more IPv4 and 7.4
M IPv6 targets”, primarily operated by Amazon [33]. This demonstrates that accurate,
large-scale discovery is highly sensitive to implementation-specific parser behavior.

Beyond simple discovery, stateful scanners like QScanner 1, which is based on the quic-go
library, are required to perform a full QUIC handshake. This stateful technique is neces-
sary to collect richer data, such as supported QUIC versions, negotiated TLS parameters,
QUIC transport parameters, and application-layer support (e.g., HTTP/3 (H3)) [14], [33].

This stateful scanning methodology revealed another critical component of modern mea-
surement: the necessity of Server Name Indication (SNI). While the new ZMap probe suc-
cessfully identified millions of QUIC-enabled IPs at Content Delivery Networks (CDNs)
like Amazon, stateful QScanner probes to those same IPs without an SNI value failed,
typically resulting in a timeout. However, probing the exact same IPs with a valid SNI
(e.g., “a.cloudfront.net”) resulted in a 97.7% handshake success rate. This demonstrates
that for large-scale, multi-tenant CDN deployments, the server requires a valid SNI to
select a certificate and will not complete a handshake (or even send an error) without
one [33].

This finding invalidates naive IP-based stateful scanning. A correct, large-scale QUIC
measurement methodology must be a multi-stage process: (1) stateless IP discovery (e.g.,
ZMap with the evolved probe), (2) a mapping phase to find a valid domain name for
that IP (e.g., via reverse-DNS or large-scale DNS datasets), and (3) a stateful probe (e.g.,
QScanner) that uses the discovered domain name in the SNI field of its Client Hello [33].

Alternative discovery methods have also been analyzed, such as parsing HI'TP Alternative
Service (ALT-SVC) headers or the Domain Name System (DNS) HTTPS Resource Record
(RR). However, these studies found that such methods were, at the time, heavily biased
towards specific early adopters (e.g., Cloudflare was a dominant user of the HT'TPS RR)
and thus did not provide a comprehensive, unbiased view of Internet-wide deployment [14].
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3.3 QUIC Server Implementation Fingerprinting

A more advanced measurement technique goes beyond discovery (is QUIC present?) to
identification (which QUIC library is running?). Given the diversity of QUIC implemen-
tations, each with different performance and security characteristics, fingerprinting the
server-side library is a key goal for network measurement [33].

The “QUIC Hunter” methodology, provides a novel, two-pronged approach for active
QUIC library fingerprinting. The technique was developed by creating a local testbed us-
ing Docker containers to run over 18 different QUIC server implementations and observing
their unique, non-configurable responses to specific probes [33].

The first technique, CONNECTION_CLOSE Frame Analysis, is a 1-RTT method that does not
require a successful handshake. The scanner sends a QUIC Initial packet containing an
invalid Application-Layer Protocol Negotiation (ALPN) value (e.g., the string “invalid”).
A compliant server must reject this negotiation and reply with a CONNECTION_ CLOSE
frame. The QUIC specification permits this frame to contain an arbitrary, human-readable
“reason phrase” string. This string is frequently hard-coded into the server library and
is unique to the implementation. For example, Cloudflare’s quiche library replies with
“tls: no application protocol,” whereas 1squic replies with “no suitable application pro-
tocol” [33]. This provides a fast and stable fingerprint.

The second technique, Transport Parameter (TP) Order Analysis, is used if a handshake
is successful or the error string is not unique. The scanner completes the handshake
and inspects the quic_transport_parameters extension returned by the server. The
IETF standard does not specify the order in which these parameters must be encoded.
Consequently, the order is an incidental artifact of the server’s source code (e.g., the
declaration order of fields in a struct). This order is static for most implementations;
for example, Amazon’s s2n-quic was found to always use the order 4-6-7-8-0-f. Some
libraries, such as Google Quiche and Akamai QUIC, explicitly randomize their TP order as
a security feature. This behavior itself becomes a fingerprint; a re-probe of a server running
Google Quiche will yield a different TP order, distinguishing it from a server running
HAProxy, which has a static order that collides with one of Google’s permutations [33].

This two-pronged active measurement technique proved highly effective. It successfully
identified 18 distinct QUIC libraries deployed on over 8.0 million IPv4 and 2.5 million
IPv6 addresses. This revealed a diverse QUIC ecosystem, with up to 12 different libraries
found operating within a single Autonomous System (AS). This methodology repurposes
protocol metadata and error-handling logic as new, robust fingerprinting vectors in an
encrypted world [33].

3.4 Passive Measurement Techniques for QUIC

The encryption of transport headers in QUIC fundamentally breaks traditional passive
measurement [32]. In response, two new categories of measurement have emerged: analysis
of explicit in-band signals and analysis of unencrypted metadata.
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3.4.1 Explicit In-Band Signals: The Spin Bit

QUIC (RFC 9000) introduced the optional spin bit as an explicit, in-band signal for
passive RTT measurement, intended to replace the functionality of TCP timestamps.
An on-path observer can measure the time between state transitions of this bit (0—1
and 1—0) as it is “spun” by the client and “reflected” by the server, with one full cycle
corresponding to one RTT [32].

While this mechanism was proposed as a solution, its real-world utility was unknown
until [32] conducted a novel study to measure the accuracy of the spin bit itself. The
methodology involved actively establishing connections to spin-bit-enabled servers while
simultaneously capturing detailed qlog traces. This log data provided both the RTT as
perceived by a passive observer (measuring the spin edge timing) and the ground truth
network RTT (as measured by the client’s QUIC stack using packet-ACK timing) [32].

The study’s key finding is that the spin bit is a flawed mechanism for measuring net-
work RTT. The spin is applied by the endpoint’s application layer upon processing a
packet, meaning the measured RT'T includes not only the network RTT but also all end-
host processing delays. In modern, complex server environments, this application-level
delay can be substantial. The study found that for 51.7% of connections, the spin bit
drastically overestimated the actual network RTT by more than a factor of three. This
identifies a significant limitation of this first-generation explicit measurement signal, as it
is confounded by end-host performance [32].

3.4.2 Passive Backscatter Analysis

A second passive technique, explored by [11], leverages QUIC backscatter traffic. This
methodology uses data from network telescopes (e.g., CAIDA’s /9 telescope) to analyze
unsolicited QUIC packets. These packets are often replies from servers to spoofed-IP
addresses, typically generated during DDoS reflection attacks.

While QUIC payloads are encrypted, the public header (specifically the short header)
contains the Source Connection ID (SCID) in cleartext. The researchers discovered that
hypergiants like Facebook and Cloudflare use structured SCIDs, encoding internal infras-
tructure information—such as Worker ID, Host ID, and Process ID—directly into this
public, unencrypted value. This creates a stable, passive fingerprint for their infrastruc-
ture, including off-net deployments.

Furthermore, by observing the inter-arrival time of retransmitted Initial packets within
the backscatter traffic, this technique allows for the passive measurement of provider-
specific Retransmission Timeout (RTO) strategies. This methodology provides a powerful,
non-intrusive way to measure and map QUIC deployments by leveraging unencrypted
metadata and protocol retransmission behavior.
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3.5 Performance Benchmarking of QUIC Implemen-
tations

Understanding the performance of QUIC requires a reproducible, high-fidelity bench-
marking methodology capable of isolating bottlenecks across the protocol stack. A novel
framework for this purpose was developed by [34]. This work extends the existing QUIC
Interop Runner (QIR), which is typically used for functional correctness testing with net-
work emulation via ns-3. The new methodology adapts the QIR to orchestrate client and
server containers on dedicated bare-metal hardware connected by a 10 Gbit/s link. This
high-speed testbed, combined with detailed metric collection from the kernel (ethtool,
netstat) and CPU (perf), allows for a precise analysis of performance bottlenecks [34].

This high-rate benchmarking methodology yielded several key findings:

1. Implementation Asymmetry: QUIC performance is not monolithic. The goodput
varies dramatically based on the specific pair of client and server implementations,
ranging from as low as 90 Mbit/s to 4900 Mbit/s on the same 10G link [34].

2. Bottleneck Identification: On modern CPUs with hardware-accelerated encryption
(AES-NI), the primary CPU bottleneck is not cryptography. Instead, perf profiles
consistently identified Packet I/O—the cost of sendmsg and recvmsg system calls to
move data between the user-space QUIC application and the kernel’s UDP socket—
as the main performance limiter [34].

3. S-Level Tuning: The default Linux UDP Receive Buffer (RCVBUF) size (208 KiB)
is far too small for high-speed (10G) traffic, leading to high packet drop rates at
the receiver’s socket. A critical finding was that increasing this buffer by at least
an order of magnitude (>16x) was necessary to mitigate these drops and achieve
maximum goodput [34].

4. Offloading Ineffectiveness: Because QUIC implementations operate in user-space
over UDP, they do not benefit from kernel-level TCP Segmentation Offload (TSO)
or Generic Segmentation Offload (GSO). In contrast, standard TCP/TLS on the
same hardware achieved 8000 Mbit/s, largely due to TSO [34].

Collectively, these studies show that “QUIC benchmarking” is a non-trivial measurement
technique. A robust methodology must use bare-metal hardware, control for OS-level
tuning (especially RCVBUF), test a matrix of N x M client/server pairs, and measure
at both the raw transport (e.g., H0.9) and application (H3) layers to obtain a complete
performance profile [34].

3.6 Measurement of Specific QUIC Protocol Mecha-
nisms

This thesis focuses on novel measurement techniques; therefore, a review of techniques
for QUIC’s unique mechanisms is essential.
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3.6.1 Connection Migration

A key feature of QUIC is the ability to migrate a connection (e.g., from Wi-Fi to cellular)
by changing the 4-tuple while retaining the Connection ID (CID), providing session per-
sistence. Measuring server-side support for this feature, however, proved challenging [35].

[35] found that existing stateful scanners, such as QScanner, were unable to test this fea-
ture because their underlying library (quic-go) did not implement client-side migration
support. This required the development of a new, custom stateful scanner based on Cloud-
flare’s quiche library. The methodology of this new scanner is as follows: (1) Establish a
successful H3 connection. (2) Verify that the server provides at least one additional CID,
a prerequisite for migration. (3) Send a PATH_CHALLENGE frame from a new source port
(simulating a path change) to trigger the server’s migration validation mechanism. (4) A
successful PATH_RESPONSE from the server confirms support for connection migration [35].

Using this novel scanner, the study found that despite rapid and widespread QUIC de-
ployment, “some of the most popular destinations do not support connection migration
yet”. This demonstrates a significant gap between protocol specification and real-world
feature deployment, highlighting the need for custom measurement tools to track specific
protocol extensions [35].

3.6.2 Address Validation and Security Measurement

QUIC’s handshake, being UDP-based, is vulnerable to amplification/reflection DDoS at-
tacks, where an attacker sends a small, spoofed-IP packet to a server, inducing a large
reply to a victim. QUIC’s primary defense is the 1200-byte padding requirement for
Initial packets, designed to ensure the client’s first packet is larger than the server’s
potential first response [14].

[33] developed QUICforge, a security measurement framework to test the compliance of
server implementations with these anti-amplification guarantees [33]. This methodology
involves actively probing servers with spoofed-source-IP packets designed to trigger spe-
cific server responses:

» Version Negotiation Request Forgery (VNRF): A spoofed Initial packet with an
invalid version number triggers a Version Negotiation packet to the victim.

o Connection Migration Request Forgery (CMRF): A spoofed packet initiating a con-
nection migration triggers a PATH _CHALLENGE packet to the victim.

This security measurement technique found that 9 of the 13 open-source implementations
tested were non-compliant with QUIC’s anti-amplification limits, often due to ambigu-
ities in the specification regarding packet retransmissions. This allowed for significant
amplification factors, with a Bandwidth Amplification Factor (BAF) as high as 374x for
CMREF. This work provides a formal methodology for measuring the security compliance
of transport protocol implementations, a critical area of measurement.
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3.6.3 O-RTT Connection Establishment

QUIC’s 0-RTT (Zero Round-Trip Time) connection establishment feature allows a client
to send application data in its very first flight of packets upon resuming a session, eliminat-
ing connection setup latency [36], [37]. Measurement studies have confirmed its significant
impact on latency-sensitive applications. In CDN environments, 0-RTT is the mechanism
that enables connection resumption across consecutive page visits, allowing H3 to “skip
the connection phase”. This provides a key performance benefit over H2+TCP and is crit-
ical for improving metrics like Page Load Time (PLT) and video start-up time [37]. While
the benefits of 0-RTT are well-measured, the deployment rates and security implications
(e.g., vulnerability to replay attacks) of O-RTT specifically are less studied, representing
a measurement gap [36].

3.7 Multipath Transport Protocols: From MPTCP
to MP-QUIC

This section synthesizes the 10-year evolution of multipath transport, providing the direct
context for the user’s thesis on Multipath QUIC.

3.7.1 MPTCP (The 10-Year Context)

As established in Section A, the story of MPTCP measurement is defined by the challenge
of middlebox interference. The required measurement technique is a complex, multi-stage
active probing and filtering process using ZMap and Tracebox [29], [30]. The finding
from this methodology is that MPTCPv1l (RFC 8684) deployment remains “almost non-
existent” as of 2022, limited almost exclusively to Apple’s infrastructure [29].

3.7.2 Multipath QUIC (The 5-Year Focus)

Multipath QUIC (MP-QUIC) was designed as the direct solution to MPTCP’s fundamen-
tal flaws. Its design—running over UDP and encrypting all transport semantics—makes
it immune to the TCP Option-stripping and -mirroring that plagued MPTCP [31].

The core mechanisms of MP-QUIC, as specified in the IETF draft draft-ietf-quic-multipath-
17, are the targets for any novel measurement technique:

1. Path ID: An explicit, unencrypted identifier for each path, used to manage connec-
tion IDs and packet number spaces [31].

2. Per-Path Packet Number (PN) Space: This is the most critical design choice. Each
Path ID is associated with its own independent PN space. This resolves a major
ambiguity from MPTCP, as loss detection and congestion control state are now
managed on a per-path basis [31].
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3. Encrypted Path Management Frames: The protocol specifies new, encrypted frames
for path management, such as PATH_NEW_CONNECTION_ID, PATH_ABANDON, and path
status frames [31].

4. 0-RTT Path Establishment: Unlike MPTCP, which requires a 3-way handshake
(1I-RTT) to add a new subflow, MP-QUIC can immediately send data on a new
path after its address is validated (e.g., via PATH_CHALLENGE), eliminating new-path
handshake latency [31].

3.7.3 Measurement and Performance Evaluation of MP-QUIC

The foundational evaluation of MP-QUIC (De Coninck & Bonaventure, 2017) used Mininet
emulation. This methodology compared an extended quic-go implementation against the
Linux kernel’s MPTCP implementation. This study established that MP-QUIC maintains
MPTCP’s core benefits (bandwidth aggregation, network handover) while outperforming
it in lossy and low-BDP scenarios, thanks to QUIC’s superior loss recovery and the lack
of handshake latency on new paths [31].

More recent work has focused on measuring MP-QUIC performance for aggregating cellu-
lar networks (LTE/5G). This research found that default packet schedulers (e.g., Round-
Robin) are insufficient. A key finding was that “it is not worth communicating on all the
available links,” as a single low-quality link can stall the entire connection (Head-of-Line
blocking), making performance worse than single-path. This highlights that MP-QUIC’s
performance is entirely dependent on the intelligence of its packet scheduler [31].

This leads to the most advanced measurement methodology: Application-Aware Schedul-
ing. Because MP-QUIC is a user-space protocol, the application itself can provide input to
the transport-layer scheduler. A landmark study by [31], an MP-QUIC solution deployed
in the Taobao short-video app, measured this concept at scale. The measurement tech-
nique was a large-scale A/B test (over 100,000 users) comparing the XLINK MP-QUIC
scheduler against single-path QUIC.

The XLINK scheduler’s logic was QoE-driven: it reads the client’s video buffer level (an
application QoE metric). If the buffer was full (> Ti2), it used only the cheap (Wi-Fi)
path to save cost. If the buffer was low (< Ty1), it aggressively re-injected packets on
the fast (5G) path to prevent a stall. This application-transport co-design resulted in a
23-67% reduction in video re-buffering at the cost of only 2.1% redundant traffic. This
study demonstrates that the state-of-the-art in multipath transport measurement is no
longer just about measuring goodput; it is about measuring application-specific QoE as
a function of novel, cross-layer scheduling algorithms [31].

3.8 Summary and Research Gaps

This review of related work reveals a clear 10-year trajectory in transport protocol mea-
surement. The field has been forced to evolve from passively inferring state from clear-text
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TCP headers (a methodology that is now obsolete) to actively filtering middlebox inter-
ference (the MPTCP era). We are now in a new paradigm defined by QUIC, where
encryption is the default.

This new landscape requires a new generation of measurement techniques, which this
chapter has surveyed:

1. Implementation-Aware Active Discovery: Using full, valid Initial packets to dis-
cover deployments hidden by simple probes.

2. Stateful SNI-Aware Scanning: Combining DNS and IP-based probing to bypass
CDN certificate-selection requirements.

3. Protocol-Artifact Fingerprinting: Using CONNECTION_CLOSE error strings and Trans-
port Parameter ordering to identify server implementations.

4. Explicit Signal Utility Measurement: Quantifying the limitations of in-band signals
like the Spin Bit, which is confounded by end-host delay.

5. Passive Metadata Analysis: Using clear-text SCIDs and RTOs from backscatter
traffic to map infrastructure.

6. High-Fidelity Benchmarking: Using bare-metal frameworks to identify user-space
I/O bottlenecks and the critical role of OS tuning.

7. Security Compliance Measurement: Using active “fuzzing” frameworks like QUIC-
forge to validate implementation security against amplification attacks.

8. Application-Aware Transport Measurement: Moving beyond goodput to measure
QoE as a function of cross-layer (application-to-transport) schedulers, as seen in
MP-QUIC.

This comprehensive review identifies several clear research gaps that motivate the work
of this thesis:

1. MP-QUIC Deployment Measurement: The user’s specific focus, Multipath QUIC
(defined in draft-ietf-quic-multipath-17) 27, has not yet been measured at scale in
the wild. All existing studies are confined to emulated (Mininet), cellular testbed,
or controlled A /B test (XLINK) 30 environments. A major gap exists to design and
implement a measurement technique (e.g., an “MP-QUIC Hunter”) to discover and
“fingerprint” its deployment as it becomes available from major providers.

2. MP-QUIC Scheduler Inference: The IETF draft 27 intentionally does not specify a
packet scheduler, leaving it to the implementation. As studies 9 clearly show, per-
formance is entirely dependent on the scheduler’s logic. This is a critical research
gap. A novel measurement technique would be one that can remotely and exter-
nally infer the scheduling logic (e.g., is it RTT-based, loss-based, or QoE-aware like
XLINK?) of a target MP-QUIC server.
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3. Robust In-Band RTT Measurement: The Spin Bit is a “first-generation” explicit
signal, and studies 1 prove it is significantly flawed by end-host delay. A novel
design could propose an improved in-band signal or, more relevantly, a measurement
technique that can actively probe and calibrate this end-host delay component to
correct the spin bit’s RT'T estimate.

4. Security Measurement of Multipath: The “QUICforge” 11 work provides a method-
ology for single-path QUIC. This methodology can be extended. A novel mea-
surement technique would be to design and implement probes to test the security
compliance of Multipath QUIC implementations, particularly their vulnerability to
resource exhaustion attacks via the path management frames (e.g., PATH_CHALLENGE
flooding on multiple paths).
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Chapter 4

Architecture and Design

This chapter presents the overall architecture of the probing framework and motivates the
main design decisions. The goal is to provide a technology-independent description that
can, in principle, be instantiated in any programming language or runtime. The prober
is designed as a modular scanning and fuzzing framework for advanced transport and
application layer protocols, with a particular focus on QUIC, Multipath QUIC, HTTP/3
and related mechanisms.

The architecture is structured around three logically separated subsystems:
1. Domain Extractor: a configurable pipeline that cleans, filters, and canonicalizes
input domains into a well-defined target set.

2. QUIC Lab: a general, protocol-independent probing framework that orchestrates
large-scale measurements against the target set using pluggable probes.

3. QUIC Lab Analyzer: an analysis layer that ingests the raw measurement outputs,
aggregates them, and derives interpretable statistics and visualizations.

Figure 4.1 provides a high-level overview of the architecture and visualizes the data flow
between these three systems. It is important to note that all three systems are independent
and can also be run independently of each other. The subsequent subchapters will provide
a comprehensive overview of all subsystems.

4.1 High-Level Architecture

At a high level, the measurement process is organized as a unidirectional pipeline:

1. The Domain Extractor ingests one or more raw domain sources and produces a
sanitized, reproducible list of targets in a canonical format.

27
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2. The QUIC Lab Probing Framework consumes this canonical list and executes a
configurable set of probes against each target, under rate limiting and concurrency
constraints to respect ethical requirements.

3. The QUIC Lab Analyzer consumes the outputs produced by QUIC Lab, joins
them with metadata, and derives feature-level statistics.

The three subsystems are decoupled via clearly defined, file-based interfaces rather than
shared internal data structures. This decoupling serves several purposes:

o Implementation independence: each subsystem can be implemented or reim-
plemented in a different language or technology stack without affecting the others,
as long as the external interface contracts are preserved.

o Extensibility: additional domain sources, probe types, or analysis routines can be
integrated without modifications to the existing components.

« Reproducibility: each subsystem can be re-executed independently (e.g., re-running
the analyzer on the same raw outputs, or re-running QUIC Lab with a previously
stored domain list).

In the following subchapters, the three subsystems and the cross-cutting design aspects—
ethical measurement, portability, and measurability—are described in more detail.

4.2 Domain Extractor

4.2.1 Design Goals

The Domain Extractor is designed to solve a recurring precondition for Internet measure-
ments: the construction of a high-quality, ethically acceptable, and reproducible set of
domains. The following goals guided its design:

o Input flexibility: support for multiple heterogeneous domain sources (e.g., popu-
larity rankings, manually curated lists, or top level domain zone files).

o Sanitization and safety: systematic removal of malformed, harmful, or inappro-
priate domains before they enter the probing phase.

e Deduplication and normalization: canonical representation of domains to avoid
redundant measurements and to simplify downstream processing.

« Configurability: the ability to selectively enable or disable stages (e.g., filter only)
without modifying code.

« Reproducibility: the ability to regenerate the exact same target list at a later
point in time, given the same input configuration and data.
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4.2.2 Pipeline

Conceptually, the Domain Extractor is modeled as a linear pipeline of transformation
stages, each of which consumes a stream of domain identifiers and outputs a transformed
stream. The main stages are:

1. Source ingestion: adapters import domains from various sources. Typical exam-
ples include:

» Research-oriented popularity rankings such as Tranco [15].

e Domain lists published by other measurement studies or operational commu-
nities.

o Zone Files

2. Normalization and validation: each candidate domain is transformed into a
canonical representation, for example by:

o Lowercasing, trimming, and removing protocol prefixes.

» Rejecting syntactically invalid domain names and internationalized domain
names that cannot be normalized reliably.

e Optionally mapping subdomains to a canonical parent, depending on the mea-
surement question.

3. Deduplication: domains are de-duplicated across all sources to ensure that each
canonical target appears at most once in the final list.

4. Safety and blacklist filtering: the pipeline applies blacklists to exclude domains
that are known to be malicious, inappropriate, or otherwise out of scope. This stage
reflects ethical constraints and reduces the risk of probing harmful infrastructure.

The output of the pipeline is a canonical domain list that serves as the sole input to the
probing framework. This list is stored in a stable, machine-readable format (e.g., line-
based) and is accompanied by a metrics file that tracks the amount of domains dropped
per TLD and total.

4.3 QUIC Lab

The probing framework QUIC Lab forms the core of the architecture. It provides the
generic functionality required to execute large-scale transport and application layer mea-
surements against the domain list produced by the Domain Extractor. QUIC Lab is in-
tentionally designed to be protocol-independent and extensible, with QUIC and HTTP /3
probes representing specific instantiations rather than hard-coded assumptions.
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4.3.1 Design Goals

The following design goals guided the architecture of QUIC Lab:
o Modularity: separation of concerns between orchestration, shared infrastructure
services, and probe-specific logic.

e Protocol-independent transport abstraction: support for multiple transport
protocols (e.g., QUIC, TCP) through a common interface.

o Probe extensibility: simple integration of new probes without changes to the
core, enabling future experimentation with additional protocols.

o Ethical-by-design operation: built-in rate limiting and scheduling mechanisms
that enable conservative scanning behavior and prevent overload of remote systems.

o Portability: minimal assumptions about the execution environment, enabling de-
ployment on different operating systems and vantage points.

e Observability and measurability: detailed logging and structured outputs that

allow downstream analysis and validation of experimental results.

To achieve these goals, QUIC Lab is decomposed into three main architectural elements:
the Runner, the Core, and the Probes.

4.3.2 Runner

The Runner acts as the entry point of the probing framework. Its responsibilities are
purely orchestration-related:
o Parsing command-line arguments or other external parameters.

» Loading configuration files and constructing an effective configuration (defaults over-
ridden by user-specified values).

o Initializing shared services (e.g., logging, scheduling, transport abstractions) pro-

vided by the Core.
» Discovering and instantiating the set of probes to be executed.
« Dispatching work units (individual domains or domain—probe combinations) to the

scheduler.

The Runner is intentionally kept free of measurement-specific logic. This separation en-
sures that high-level orchestration can evolve independently of the probe implementations
or core service internals.
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4.3.3 Core Services

The Core offers reusable services that implement the generic cross-cutting functionality
required by all probes. Conceptually, the Core comprises the following modules:

Configuration module: defines the configuration schema (e.g., concurrency limits,
timeouts, feature toggles) and provides typed access to configuration values. Each
parameter has a documented default value and can be overridden externally without
code changes.

Domain resolution module: translates domains into IP addresses. This module
encapsulates name resolution strategies and error handling.

Logging module: provides structured logging facilities for all components. Logs
are written to persistent storage rather than standard output, enabling offline anal-
ysis and post-mortem debugging. Log records include timestamps, severity levels,
component identifiers, and vantage-point metadata.

Scheduling and rate-limiting module: orchestrates concurrent probe execution
while enforcing resource limits and ethical constraints. The module manages:

— A configurable concurrency limit, bounding the number of simultaneous con-
nections or probe executions.

— A requests-per-second (RPS) parameter that caps the average rate at which
new probe attempts are initiated.

— A burst limit, effectively modeling a token-bucket capacity that allows short-
term bursts while still enforcing the long-term RPS constraint.

— Per-target backoff rules, specifying minimum waiting times before repeated
connection attempts toward the same endpoint.

Conceptually, the scheduler maintains queues of pending probe tasks and uses the
token-bucket parameters (RPS and burst) to decide when new tasks may be admit-
ted, while the concurrency limit bounds the number of active tasks at any given
moment. This combination allows fine-grained control over both instantaneous load
and long-term scanning rate.

Recording module: offers an abstraction for recording measurement-specific events
and custom metrics that are not captured by general-purpose logs. Probes use this
module to emit structured records such as transport parameters, handshake out-
comes, error codes, and feature-detection flags.

Transport abstraction module: exposes a generic transport interface that hides
protocol-specific details. For example, QUIC connections are managed through a
transport-layer abstraction that supports connection establishment, stream man-
agement, and graceful teardown. This design permits later integration of additional
transports (e.g., different QUIC stacks, TCP) without modifying probe logic.



4.3. QUIC LAB 33

« Key logging module: optionally records cryptographic session keys (e.g., TLS
1.3 keys) in a standardized format to support offline decryption of captured traffic
in external tools. This capability is particularly relevant when detailed packet-level
analysis with tools such as Wireshark! is required.

o File handling and rotation module: manages the persistent storage of mea-
surement outputs. To avoid the scalability problems of maintaining millions of tiny
files, the design aggregates records for multiple connections into larger files up to a
configurable size limit. Once a file reaches this threshold, it is rotated: a new file
is created, and the old file is sealed and renamed using a monotonically increasing
sequence number. This approach balances the need for append-only, fault-tolerant
logging with the operational constraints of file systems.

o Shared types module: defines common data types and schemas used across the

framework (e.g., identifiers for probes, connections, or targets), thereby ensuring
type consistency between the Core and probes.

These modules encapsulate all non-probe-specific functionality, enabling probes to focus
exclusively on protocol logic and measurement strategy.

4.3.4 Probes

The Probe layer is the extensibility point of QUIC Lab. A probe encapsulates a specific
measurement procedure—for example, testing support for QUIC connection migration,
evaluating 0-RTT capability, or assessing HTTP /3 QPACK behavior.

Each probe is modeled as a state machine that progresses through a sequence of steps,
such as:
1. Obtaining a domain and resolving it to one or more endpoints via the Core’s reso-
lution module.

2. Establishing a transport-layer connection using the Core’s transport abstraction.

3. Conducting a protocol-specific interaction pattern (e.g., sending application-layer
requests, triggering migration events, or injecting edge-case inputs).

4. Observing responses and behavior, including timeouts, error codes, and advertised
protocol parameters.

5. Emitting structured records via the Recording module and logging any unexpected
events.

'https://wiki.wireshark.org/TLS#using-the-pre-master-secret
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Probes interact with the Core exclusively through stable interfaces, including configu-
ration access, logging facilities, transport primitives, and recording APIs. They do not
implement their own concurrency mechanisms or rate limiting; these responsibilities are
handled centrally by the scheduler. This separation of concerns allows probe authors to
focus solely on measurement logic without engaging with orchestration complexity, guar-
antees that system-wide constraints such as ethical limits and timeouts are uniformly
enforced, and ensures that probes remain portable and reusable across different deploy-
ments.

4.4 QUIC Lab Analyzer

The third major subsystem, the QUIC Lab Analyzer, addresses the challenge of inter-
preting the large volumes of data generated by QUIC Lab. Its role is to convert raw
per-connection and per-probe records into aggregated, human-interpretable results that
directly address the research questions.

4.4.1 Design Goals

The design of the Analyzer is driven by the following goals:
o Scalability: the ability to process measurement campaigns comprising millions of
connections and large volumes of structured logs.

e Modularity: clear separation between low-level parsing, aggregation, and presen-
tation layers.

« Reusability: the capability to reuse analysis components across different experi-
ments and vantage points.

e Reproducibility: deterministic analysis pipelines that can be rerun on the same
input to reproduce published results.

4.4.2 Analysis Pipeline

Conceptually, the Analyzer is organized as a sequence of stages:

1. Ingestion and parsing: raw output files produced by QUIC Lab are read and
parsed into internal data structures. The parser understands the schemas emit-
ted by the Recording and logging modules (e.g., connection identifiers, transport
parameters, error codes, feature flags).

2. Normalization and enrichment: records are augmented with contextual meta-
data, such as:
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o The originating vantage point and time window.
o The domain and endpoint group (e.g., cloud provider vs. other hosts).

e The probe type and version.

3. Aggregation and metric computation: the Analyzer computes aggregate statis-
tics such as:

 Fraction of targets supporting specific protocol versions or features (e.g., QUIC
version negotiation outcomes, presence of connection migration support).

o Distributions of handshake success, error types, and performance-related met-
rics.

4. Visualization and reporting: finally, the Analyzer produces outputs in formats
suitable for integration into the evaluation chapter, including:

o Tables summarizing feature support across domains.
o Plots and diagrams highlighting distributions and correlations.

 Intermediate artifacts (e.g., CSV files or serialized data structures) for further
manual inspection.

The Analyzer is designed to be decoupled from QUIC Lab’s implementation details beyond
the output schema. This decoupling allows the analysis pipeline to be reused even if the
underlying probing framework is reimplemented, as long as the schema remains stable or
is appropriately versioned.

4.5 Ethical Measurement and Scheduling

Large-scale Internet measurements raise ethical concerns related to potential service dis-
ruption, misinterpretation of probing activity, and unintended interaction with vulnerable
systems. In accordance with the established guidelines on active measurements, ethical
considerations are integrated directly into the architecture rather than treated as an af-
terthought.

Key design elements include:

o Global rate limiting: the RPS and burst parameters are chosen conservatively
to avoid overwhelming remote systems. The token-bucket model bounds both the
long-term average rate and the short-term peak rate of connection attempts.

e Bounded concurrency: the concurrency limit prevents excessive simultaneous
connections from a single vantage point, which could otherwise resemble a denial-
of-service attempt.

» Per-target backoff: repeated failures toward a specific target (e.g., connection
refusals, timeouts) trigger exponential or fixed backoff intervals before further at-
tempts, thereby reducing the risk of persistent unwanted traffic.



36 CHAPTER 4. ARCHITECTURE AND DESIGN

« Configurable safety margins: all ethical parameters (concurrency, RPS; burst,
backoff intervals) are configurable, allowing stricter settings in more sensitive envi-
ronments (e.g., when probing outside well-known cloud providers).

« Transparent logging and opt-out capability: logs contain sufficient detail to
reconstruct what traffic was sent to which targets. This transparency facilitates
incident response, should operators inquire about measurement traffic, and permits
future integration of opt-out mechanisms.

By embedding these mechanisms into the scheduler and configuration system of QUIC
Lab, the framework ensures that any probe executed within it automatically inherits the
same ethical safeguards.

4.6 Portability and Deployment Model

The architecture assumes deployment across multiple vantage points, such as private
servers in different geographic regions. To accommodate heterogeneous environments,
the design follows the principle of self-contained deployment units:

o The Runner exposes a single entry point that can be invoked by standard process
managers or scheduling systems.

« All adjustable behavior is externalized in configuration files (or equivalent config-
uration mechanisms), removing the need to recompile or repackage the framework
for different experiments.

o Input and output are mediated via well-defined file system locations or streams,
which can be mapped to different storage backends depending on the environment
(e.g., local disks, network file systems, or object storage).

This approach enables straightforward packaging into containers or virtual machines when
desired, without tying the architecture to a specific container or orchestration technology.

4.7 Measurability and Reproducibility

A central requirement of this thesis is the ability to quantify protocol feature support and
to reproduce the measurements at a later date. To this end, the architecture incorporates
several mechanisms:

o Complete input preservation: the canonical domain list produced by the Do-
main Extractor, together with its configuration manifest and references to external
sources (e.g., Tranco list identifiers), is archived for each campaign.
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o Configuration snapshotting: QUIC Lab stores a copy of the effective configura-
tion (including default values and derived parameters) alongside the measurement
outputs, ensuring that all operational parameters are documented.

o Deterministic analysis pipelines: the QUIC Lab Analyzer is constructed as a
deterministic pipeline without hidden randomness, so that rerunning it on the same
input produces the same outputs.

These design decisions collectively ensure that the toolkit does not only produce answers
for a single point in time, but also supports transparent and reproducible scientific anal-
ysis.

4.8 Summary

The architecture described in this chapter decomposes the overall measurement system
into three major subsystems—Domain Extractor, QUIC Lab, and QUIC Lab Analyzer—
connected through stable, implementation-independent interfaces. The Domain Extractor
constructs a safe and reproducible target set, leveraging research-oriented rankings such
as Tranco and configurable filters. QUIC Lab provides a modular, protocol-independent
probing core with strong ethical safeguards and clear extensibility points for new probes
and transport protocols. The QUIC Lab Analyzer transforms raw output into aggregated,
interpretable results suitable for scientific evaluation.

This separation of concerns, combined with explicit attention to ethical operation, porta-
bility, and reproducibility, yields a flexible measurement toolkit that matches the goals of

the thesis and can be extended to future transport and application layer protocols beyond
QUIC and HTTP/3.
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CHAPTER 4. ARCHITECTURE AND DESIGN



Chapter 5

Implementation

This chapter describes the concrete implementation of the measurement framework, fo-
cusing on the main prober that performs large-scale QUIC scans. The implementation
is written in Rust (edition 2024) and organized as a multi-crate workspace, with a clear
separation between reusable core components, protocol-specific probes, and the command-
line runner. Throughout the implementation, the need for tools to extract domains from
various sources and later interpret the raw data created by the measurement framework
arose. Therefore, in addition to QUIC Lab, the side projects Domain Extractor and
QUIC Lab Analyzer were created. The source code for the entire project can be found
on GitHub!. Section 5.1 shows the implementation of QUIC Lab in detail, followed by
sections 5.2 and 5.3, which then give a detailed overview of Domain Extractor and QUIC
Lab Analyzer, respectively.

Figure 5.1 provides an overview of the implementation of the entire project, including the
side projects. In the following chapters, the explanations of the implementation implicitly
refer to this figure, which serves as a general reference.

5.1 QUIC Lab

The Rust code is structured into three crates:

o core: reusable building blocks shared by all probes. This crate encapsulates con-
figuration handling, DNS resolution, rate limiting, transport abstractions on top of
TQUIC, logging, QLOG and TLS key log handling, and a generic JSONL recorder.

e probes: protocol-specific measurement logic. In the current prototype, it contains
an HTTP/3 probe that drives TQUIC’s Http3Connection on top of the QUIC
transport exposed by core. The probes crate was designed to be easily extendable
with more probes.

'https://github.com/QUIC-Lab/quic-1lab
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o runner: the main executable. It loads configuration and domain lists, configures
the global logging and output sinks, instantiates the rate limiter and thread pool,
and drives the probe in parallel over all domains.

The code uses the following external libraries in addition to the Rust standard library:

¢ tquic?: QUIC and HTTP/3 implementation used as the underlying transport en-
gine. tquic also supports an early draft of the Multipath Extension for QUIC
(draft-ietf-quic-multipath-05).

« mio*: low-level I/O event loop and UDP socket abstraction for driving the TQUIC
endpoint.

e rayon®: data-parallel thread pool used to process domains in parallel.
¢ governor®: rate limiter, used for global requests-per-second throttling.

« tracing-subscriber, tracing-appender, and tracing-log’: structured, rotating
logging.

o serde® serde_json?, toml!'%: configuration and recorder file serialization.

o indicatif!!: user-friendly progress bar for interactive runs.
Packaging and CI/CD are handled by a GitHub Actions workflow that builds multi-
architecture Docker images and publishes them to the GitHub Container Registry. The
utilization of multi-architecture images is a strategy employed to ensure the availability

on an even a broader range of systems. Dependabot is configured to monitor both Cargo
dependencies and GitHub Actions versions and to open weekly update suggestions.

5.1.1 Core

The core crate collects all functionality that is independent of a specific probe. This
section describes its main components.

Zhttps://github.com/Tencent /tquic
3https://github.com/Tencent /tquic/discussions /379
4https://github.com/tokio-rs/mio
Shttps://github.com /rayon-rs/rayon
Shttps://github.com/antifuchs/governor
"https://github.com /tokio-rs/tracing
8https://github.com /serde-rs/serde
9https://github.com /serde-rs/json
Ohttps://github.com/toml-rs/toml
Hhttps://github.com/console-rs/indicatif
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Configuration Management

Configuration is modelled by the RootConfig structure in config.rs. It is deserialized
from a TOML file via serde:

» SchedulerConfig: controls concurrency and throttling.

— concurrency: desired number of worker threads. A value of zero selects an
automatic mode where the runner derives a thread count from the number of
available CPU cores.

— requests_per_second: global rate limit (RPS) across all probes. A value of
zero disables throttling.

— burst: short-term burst capacity for the rate limiter, expressed as additional
tokens.

— inter_attempt_delay_ms: delay between two consecutive connection attempts
to the same domain when multiple ConnectionConfig profiles are tried in se-
quence.

o IOConfig: controls file system layout for input and output.
— in_dir, domains_file_name: directory and file name for the input domain
list.
— out_dir: base directory for all outputs (logs, recorder files, QLOG, keylog,
session files).

o GeneralConfig: enables or disables various output channels.

— log_level: global log level.

— save_log _files,
save _recorder files,
save_qlog_files,
save_keylog files,
save_session files: boolean switches that control whether the correspond-
ing sub-systems are initialized.

o ConnectionConfig: encodes all parameters for one connection attempt:

— Application-level knobs: port, path, user_agent, alpn.
— TLS behavior: verify_peer.

— IP family preference: ip_version (auto, ipv4, ipv6).
— QUIC transport parameters:

* max_idle_ timeout_ms
* flow control limits for streams and connection
* max_ack_delay

* active_connection_id limit
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* send_udp_payload_size

* max_receive_buffer_size

— Multipath flags for TQUIC: enable_multipath and multipath_algorithm
(minrtt, roundrobin, or redundant).

Defaults are provided via #[serde(default)] and small helper functions for each field.
This ensures that even a minimal configuration file yields a valid RootConfig. If no con-
nection attempt is specified explicitly, read_config inserts a default ConnectionConfig
so that the system always has at least one profile to try.

The domain list is consumed lazily via read domains_iter, which returns an iterator
over trimmed, non-empty lines while ignoring everything after a # comment character.
This allows the domain extractor to annotate the list while keeping it readable.

DNS Resolution and IP Version Handling

The resolver.rs module encapsulates address resolution and IP family selection via the
IpVersion enum defined in types.rs. It implements three functions:

e resolve_peer: resolves a single (host,port) pair and filters the result to the
requested IP family (IPv4 or IPv6).

e resolve_peers_for_both: resolves both A and AAAA records and returns at most
one IPv4 and one IPv6 address each.

e resolve_targets: orchestrates the above and returns a vector of (IpVersion,
SocketAddr) pairs depending on ip_version:

— For auto, it attempts to resolve both IPv4 and IPv6, returning the available
families, which allows the probe to try both sequentially.

— For an explicit family, it resolves a single address and normalizes the family
based on the actual result.

This abstraction decouples the probe logic from low-level DNS APIs and keeps the family
selection logic in one place.

Rate Limiting

Global throttling is implemented by the RateLimit wrapper in throttle.rs. Internally,
it wraps a governor: :DefaultDirectRateLimiter with a per-second quota and an ex-
plicit burst capacity:

e RatelLimit::per_second(rps, burst) constructs a shared limiter with a per-second
quota of rps tokens and an additional burst capacity of burst tokens. A minimum
burst of 1 is enforced to avoid edge cases. Passing rps = 0 yields a disabled limiter.
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e until_ready blocks the caller until a token is available. The prober invokes this
before each connection attempt, so the global rate is enforced across all worker
threads and all domains.

By decoupling concurrency (number of worker threads) from RPS (global rate), the im-
plementation can exploit parallelism without overloading the network or remote servers.

Transport Layer Abstraction

Given the central focus of this thesis on novel transport layer protocols, as of 2025 the
implementation is limited to QUIC. However, the application was designed to be modular
and extendable. Consequently, the framework can be extended by other transport layer
protocols, such as TCP and UDP. The current transport-level interactions with TQUIC
are implemented in transport/quic, which splits into:

e QuicSocket (mod.rs): a thin wrapper around mio: :net: :UdpSocket that handles
UDP socket creation, registration with mio’s Registry, and send_to/recv_from
operations. It uses a Slab and a hash map to associate local addresses with socket
identifiers, allowing TQUIC to bind multiple local addresses if needed. QuicSocket
implements TQUIC’s PacketSendHandler trait, so the QUIC endpoint can offload
packet sending directly to it.

« Client and event loop (quic.rs): the Client struct bundles the TQUIC Endpoint,
the mio: :Poll object, the QuicSocket, a shared ClientContext, and a receive
buffer. The event loop repeatedly:

1. calls endpoint.process_connections() tolet TQUIC handle timers and state,
2. polls mio for readable UDP events,
3. feeds received datagrams back into TQUIC via endpoint.recv, and

4. invokes endpoint.on_timeout to handle timer expirations.

The loop terminates when the ClientContext marks the connection as finished,
which happens when TQUIC signals that the QUIC connection has been closed.

The connection life-cycle is driven by a ClientHandler that implements TQUIC’s
TransportHandler trait. It receives callbacks such as on_conn_created,
on_conn_established, on_stream readable, and on_conn_closed. Instead of hard-
coding any specific application protocol, ClientHandler delegates application-level be-
havior to an implementation of the AppProtocol trait, as shown in listing 5.1.

This separation allows multiple probes (e.g., HTTP /3, MASQUE, or protocol-independent
QUIC measurements) to reuse the same transport engine by providing different AppProtocol
implementations.

The function run_probe is a small convenience wrapper around open_connection, which
constructs a Client with the given configuration and application protocol and runs its
event loop until the connection terminates.
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1| pub trait AppProtocol {

2| fn on_connected(&mut self, _conn: &mut Connection){}

3| fn on_stream_readable(&mut self, _conn: &mut Connection, _stream_id: u64){}
4| fn on_stream_writable(&mut self, _conn: &mut Connection, _stream_id: u64){}
5| fn on_stream_closed(&mut self, _conn: &mut Connection, _stream_id: u64){}

6| fn on_conn_closed(&mut self, _conn: &mut Connection){}

Listing 5.1: Implementation of AppProtocol Trait

Session Resumption and Sharding

To enable TLS session resumption across runs and avoid reperforming costly handshakes,
the implementation stores and reloads session tickets:

e On connection creation, ClientHandler attempts to locate a session file for the
current host in session_files/, using a small sharding helper shard2 that hashes
the host name and maps it into a two-level directory tree (two bytes of the hash,
printed as hexadecimal). This keeps any single directory from containing too many
session files.

e On connection establishment or closure, if sessions are enabled, TQUIC’s
conn.session() is serialized to {host}.session in the corresponding shard di-
rectory.

This mechanism is fully independent of the probe: it can be enabled or disabled via con-
figuration and transparently accelerates repeated scans against the same set of domains.

Rotating File Writer

The rotate.rs module provides a generic RotatingWriter<H> for size-bounded log files.
It maintains a current active file base and renames it to base.1, base.2, etc., once the
configured size threshold is exceeded. Each writer can be associated with a NewFileHook
that runs exactly once on newly created empty files. This hook is used, for example, to

prepend a JSON-SEQ header to each QLOG file.

All higher-level output subsystems (QLOG, key log, recorder, and the main log) are
implemented on top of RotatingWriter, which centralises the rotation logic and ensures
that individual records are not split across files: each logical record is serialized into a
contiguous buffer that is passed as a single write call.
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Measurement Metadata and Recorder

The types.rs module defines small serialisable data structures used for measurement
metadata, in particular MetaRecord and BasicStats. When a connection closes, the
ClientHandler extracts statistics from TQUIC via conn.stats() and stores them as a
JSON object through the Recorder. A MetaRecord instance contains the host and peer
address, the negotiated ALPN, indicators for handshake success, any local or peer close
reasons, a flag denoting whether multipath was enabled, and an embedded BasicStats
object. The BasicStats structure records the number of bytes and packets sent, received,
and lost.

The Recorder in recorder.rs writes one JSON record per line into a size-rotating file
quic-lab-recorder. jsonl. Each record is of the form:

{"key": "<trace_id>", "value": { ... MetaRecord ... }}

where key is the TQUIC trace identifier of the connection. The recorder is optional and
can be disabled via configuration; in that case, calls become no-ops.

Logging

The logging.rs module configures the global logging pipeline. At start-up, the runner
calls init_file_logger, which creates the directory <out_dir>/log_files if it does not
already exist, constructs a RotatingWriter for the main log file quic-lab.log with a
size limit of 128 MiB, wraps this writer in a thread-safe adapter backed by a non-blocking
tracing_appender channel, and installs a tracing subscriber registry that respects
the configured log level (or a RUST_LOG environment override) while suppressing verbose
dependencies such as TQUIC. Using a non-blocking writer ensures that logging cannot
become a bottleneck or add noticeable latency to the measurement process.

Global QLOG Aggregation and Minimization

The glog.rs module implements a two-stage QLOG pipeline:

1. Per-connection writer (PerConnSqlog): Each TQUIC connection is configured
with a PerConnSqlog instance as its QLOG sink in on_conn_created. This object
implements Write and receives a bytestream in JSON-SEQ format from TQUIC
(each record is preceded by the ASCII Record Separator 0x1E and terminated by a
newline).

o It buffers bytes, extracts full RS...LF frames, and JSON-parses the payload
into a serde_json: :Value.

o If the QLOG event has no group_id, it injects the trace identifier of the con-
nection.
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o It enforces monotonically increasing timestamps per connection: if the incom-
ing time field is not strictly larger than the previous one, it is adjusted by a
small epsilon.

e Depending on the compile-time constant MINIMIZE QLOG, it passes the event
through a minimiser that drops unnecessary fields and entire event types.

2. Global multiplexer (QlogMux): The global QlogMux instance, initialized once per
run, writes all events into a single JSON-SEQ file quic-1lab.sqlog (again managed
by RotatingWriter). A QlogHeaderHook ensures that each new file begins with
a QLOG header that sets the format to "JSON-SEQ", defines a vantage point, and
establishes a reference time.

e The mux maintains its own per-group timestamp map to ensure monotonically
increasing times across file rotation.

e It drops any incoming frames that look like QLOG file headers from TQUIC
(to avoid nested headers) by scanning for known keys ("qlog_format" or
"file schema").

o For each event, it writes a complete JSON object framed as RS JSON LF.

The minimization function qvis_minimize_in_place is tuned for compatibility with qvis
and custom statistics scripts. It preserves:

o all meta:* and loglevel:* events (with heavy raw fields removed),
» parameter events (*:parameters_set),

« error-related and connection loss events (with payload trimming),

e '"recovery:packet_lost" events from the recovery namespace, and

o packet events ("quic:packet_sent"/"quic:packet_received") with a reduced
header (only packet type, number, and CID lengths), raw length and payload length,
and simplified frame descriptors (frame_type and optional stream_id only).

Noisy events such as "quic:stream_data_moved" are dropped entirely. All other events
are pruned to remove nested raw fields and excessive per-frame metadata. This sig-
nificantly reduces QLOG volume when scanning large domain sets while keeping the
information needed for most analyzes.

TLS Key Logging

TLS key logging is implemented in keylog.rs. A process-wide KeylogSink is initialized
as a rotated writer quic-lab.keylog under keylog files/. Each connection receives a
PerConnKeylog writer, which buffers bytes from TQUIC’s keylog callback and forwards
complete lines to the global sink. Again, writes are buffered and flushed periodically to
limit overhead.
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Exported key logs can be used to decrypt QUIC traffic in external tools such as Wire-
shark!?, if needed for offline debugging or validation.

5.1.2 Probe

The probes crate contains an HTTP /3 probe that is implemented as a thin application
layer on top of the generic QUIC transport described above.

Application Protocol Hook

The main component is the H3App struct in h3.rs, which implements the AppProtocol
trait:
o [t stores the target host, path, and user agent string.

« [t maintains an optional Http3Connection object from TQUIC, the identifier of the
request stream, and simple state variables such as the observed HTTP status code
and whether response headers have been seen.

Upon on_connected, H3App performs the following steps:

1. Constructs a default Http3Config.

2. Creates an HTTP /3 connection on top of the already established QUIC connection
via Http3Connection: :new_with_quic_conn.

3. Opens a new unidirectional HTTP/3 stream via stream_new.
4. Sends a minimal GET request with the following headers:

GET
https

e :method

e :scheme
e :authority = <host>

e :path = <path>

e user-agent = <configured user-agent>

e accept = */%
The headers are sent with the FIN flag set, so no request body follows.
In on_stream_readable, the application drives the HT'TP /3 state machine by repeatedly

calling h3.poll(conn) until TQUIC signals that no more events are available (via an
internal Done error). For each event:

2https://wiki.wireshark.org/TLS#using-the-pre-master-secret
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o On Http3Event: :Headers, it iterates over the received headers and extracts the
:status pseudo-header if present, parsing it into a ul6é status code. If the header
event carries the FIN flag, the probe closes the HTTP/3 stream and initiates a
graceful QUIC connection close with a zero error code.

e On Http3Event::Data, it drains and discards the response body by repeatedly
calling recv_body.

e On Http3Event::Finished, it closes the HTTP/3 stream and closes the QUIC
connection as above.

The implementation deliberately keeps the HTTP /3 logic minimal: it retrieves only the
status code and validates that a syntactically correct HTTP /3 response is received. The
status code is stored in memory and logged via the debug logger upon connection close;
it can be persisted later via the recorder if needed.

Probe Orchestration and Connection Attempts

The public entry point for the HTTP /3 probe is visible in listing 5.2.

1| pub fn probe(

2 host: &str,

3 scheduler_config: &SchedulerConfig,

4 io_config: &I0Config,

5 general _config: &GeneralConfig,

6 connection_configs: &[ConnectionConfig],
7 rl: &RatelLimit,

8 recorder: &Recorder,

9| ) => Result<()>

Listing 5.2: Public Entry Point of HTTP/3 Probe

For each ConnectionConfig profile, it performs the following steps:

1. Resolves the host to one or more target addresses via resolve_targets, taking into
account the configured IP family preference.

2. Iterates over all target addresses of this attempt:

(a) Calls rl.until_ready() to respect the global rate limit.

(b) Constructs a new H3App with the host, path, and user agent of the current
profile.

(¢) Invokes run_probe, which establishes a QUIC connection, performs the HTTP/3
request /response exchange, and runs until the QUIC connection is closed.

(d) If run_probe returns without error, the attempt is considered successful and
the loop over addresses is terminated.
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3. If all addresses for this profile fail and more profiles are configured, the probe sleeps
for inter_attempt_delay_ms before proceeding to the next profile.

This pattern allows the probe to implement flexible fallback strategies, for example trying
IPv6 and IPv4 in sequence, or trying different transport parameter sets or multipath
configurations, while still enforcing a single global RPS limit.

A template for generic QUIC-based probes is provided in template.rs. It illustrates how
to combine resolve_targets, RatelLimit, run_probe, and the recorder with a minimal
AppProtocol implementation that operates directly on QUIC streams. This template
serves as a blueprint for future probes beyond HTTP/3.

5.1.3 Runner

The runner crate provides the binary entry point in main.rs and is responsible for or-
chestrating the entire measurement execution. It loads the configuration and the do-
main list, configures global logging, QLOG, keylog, and recorder sinks according to the
GeneralConfig settings, instantiates the global rate limiter, and sets up a Rayon thread
pool. Once initialization is complete, it drives the probes over all domains in parallel and
manages progress reporting throughout the scan.

Start-Up and Configuration

On start-up, the runner expects an optional command-line argument specifying the path
to the TOML configuration file; if omitted, it defaults to in/config.toml. After loading
RootConfig via read_config, it initialises:

file logging (if enabled),

TLS key logging (if enabled),

the global QLOG multiplexer (if enabled), and

 a Recorder instance for quic-lab-recorder. jsonl (if enabled).

The domain list is read from <in_dir>/<domains file name> via read domains iter
and collected into a Vec<String>. An empty list is treated as a configuration error.

Concurrency and Global Rate Limiting

The runner derives the effective thread pool size from SchedulerConfig: :concurrency:

o If concurrency > 0, this value is used directly as the number of worker threads.
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o If concurrency = 0, an automatic mode determines the number of hardware threads
(via available_parallelism) and multiplies it by a factor of ten. This heuristic
reflects the fact that many probes are I/O-bound and benefit from a larger number
of in-flight tasks than there are CPU cores.

Rayon’s global thread pool is then configured accordingly. The global rate limiter is
constructed as RateLimit: :per_second(requests_per_second, burst) and passed by
reference to all probes.

The set of domains is processed via domains.par_iter().for_each(\dots). For each
host, the runner invokes the probes with the shared configuration, rate limiter, and
recorder. Errors from the probe are counted via an atomic counter and logged; successful
probes simply increment the processed counter.

Progress Reporting

To provide user feedback during long-running scans, the runner chooses between two
reporting modes based on whether standard output or error is attached to a terminal:

o On Teletypewriters (TTYs), it uses indicatif’s progress bar, showing the number of
processed domains, percentage, elapsed time, estimated remaining time, processing
rate (domains per second), and the current error count.

e On non-TTY environments (e.g., batch runs or CI), it spawns a dedicated reporter
thread that prints a summary line every ten seconds, including processed domains,
percentage, elapsed time, estimated remaining time, processing rate, and cumulative
error count. Once the parallel loop completes, a final summary line is printed.

Both modes rely on atomic counters for processed domains and errors, ensuring that
reporting remains lock-free with minimal overhead.

5.1.4 Continuous Integration and Containerization

To ease deployment and reproducible execution, the repository contains an automated
build pipeline in .github/workflows/docker-publish-latest.yml. On each push to
the main branch (or on manual trigger), GitHub Actions:

1. checks out the repository,

2. sets up QEMU and Docker Buildx for multi-architecture builds,

3. logs into the GitHub Container Registry, and

4. builds and pushes a Docker image tagged ghcr.io/<owner>/<repo>:latest.
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Build arguments allow parameterising the project name and entry point crate (here:
PROJECT_ENTRYPOINT=runner, PROJECT_NAME=quic-lab). The resulting container em-
beds the compiled prober together with its runtime dependencies, enabling consistent
execution across different measurement vantage points (e.g., private servers and cloud

VMs).

Taken together, these components realize a modular and extensible measurement engine.
The core crate abstracts all transport, logging, and persistence concerns; the probes crate
encapsulates protocol-specific logic on top of the generic AppProtocol interface; and the
runner crate ties everything together into a scalable, rate-limited domain scanner that
can be deployed as a single Docker container.

5.2 Domain Extractor

The domain_extractor.py script is a stand-alone tool that reduces full TLD zone files to
a sorted list of unique second-level domains (SLDs) and, optionally, applies host blacklists
to remove obvious unwanted targets. The implementation explicitly restricts itself to the
Python standard library, which simplifies deployment on arbitrary measurement vantage
points.

5.2.1 Streaming Zone File Parsing and SLD Extraction

The extractor processes very large zone files in a fully streaming manner. Input files are
discovered in the specified folder based on their extension (.txt, .gz, or .txt.gz), and
the TLD is inferred heuristically from the filename (for example, com.txt.gz implies the
TLD com). Each zone file is then opened as a text stream: compressed files are read via
gzip.open, while plain text files use standard file I/O, ensuring that no file is ever loaded
into memory in its entirety. The core parsing routine
parse_slds_from_lines(lines, tld) implements a lightweight zone-file reader. It keeps
track of the current $0RIGIN directive and honours the special owner "@" representing apex
records, skips comments and $TTL directives, constructs the fully qualified domain name
for each owner, normalizes it, and reduces it to an SLD using fqdn_to_sld(fqdn, tld).
The latter enforces that the name ends with the expected TLD and returns only the imme-
diate child domain (for example, transforming www.api.example.com into example.com).

To provide precise progress reporting even for multi-gigabyte files, the extractor uses spe-
cialized byte-based iterators (_iter_lines_bytes_progress_txt and
_iter_lines_bytes_progress_gz). These iterators read text lines while periodically
sampling the underlying byte offset using tell(), and they forward the measured byte
deltas to a shared Progress object. The progress bar thus displays a throttled, compact
line showing percentage completion, domains processed per second, and elapsed time. Be-
cause progress is derived directly from byte positions rather than estimated line counts,
the resulting per-file progress is deterministic and accurate.
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5.2.2 Deduplication via Temporary SQLite Store

Because different zone files may contain overlapping SLDs, the extractor performs dedu-
plication in a separate layer backed by SQLite. A context manager domain_db() creates
a temporary SQLite database in the system’s temporary directory with a single table
domains (domain TEXT PRIMARY KEY, tld TEXT). Parsed SLDs are first collected in a
Python list and then periodically flushed into this table using batched INSERT OR IGNORE
operations, which keeps per-row overhead low. Several SQLite pragmas—
journal mode=WAL, synchronous=0FF, and temp_store=MEMORY—are applied to maxi-
mize throughput at the cost of durability, meaning a crash may lose the most recent batch
but a re-run is always safe. Once all zone files have been processed,
dump_domains(conn, out_path) retrieves all distinct domains in sorted order and writes
them sequentially to the output text file. This design effectively turns SQLite into a disk-
backed set abstraction that scales to hundreds of millions of domains while keeping the
Python process’s memory usage low.

5.2.3 Blacklist Integration and Suffix-Based Filtering

To reduce the risk of probing domains that are clearly unwanted—such as advertising,
tracking, or otherwise inappropriate hosts—the extractor can optionally apply block-
lists obtained from Firebog!®. This filtering step is fully optional and controlled by the
--mode flag. Blacklist acquisition is performed by downloading Firebog’s index pages (for
example, type=nocross or type=adult), extracting the listed URLs, and retrieving each
referenced hosts file using only urllib.request, with a byte-level progress bar indicat-
ing download progress. The downloaded hosts files are then parsed by parse_hosts_line,
which supports common formats such as "0.0.0.0 example.com" or simply
"example.com", while ignoring comments and IP address entries. All valid domains are
normalized and added to a Python set, which forms the blacklist. Filtering is based on
suffix matching: the function suffix_blacklisted(domain, blacklist) checks whether
the domain itself appears in the blacklist or whether any of its parent domain suffixes—
obtained by progressively removing labels from the left—match an entry. Consequently,
an entry such as "example.com" blocks both "example.com" and any of its subdomains,
such as "www.example.com". In extract+filter mode, this suffix-based filtering is ap-
plied during zone-file parsing, ensuring that only non-blacklisted SLDs are inserted into
the SQLite store. In filter-only mode, the extractor reads a pre-existing domains.txt,
applies the same blacklist evaluation, and produces a filtered domains filtered.txt.

5.2.4 CLI Modes and Metrics Generation

The extractor offers three modes, implemented by mode_extract_and filter,
mode_extract_only, and mode_filter_only:

Bhttps://firebog.net
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o Extract + filter (default): read all zone files, derive SLDs, apply blacklists,
deduplicate via SQLite, and write domains.txt.

o Extract only: same as above, but without any blacklist; still deduplicates and
writes domains.txt.

« Filter only: assume domains. txt already exists in the given folder; apply blacklists
and write domains filtered.txt.

Each operating mode records detailed metrics that capture both per-TLD and global be-
havior. For every TLD, the extractor tracks how many SLDs were extracted, how many
were kept, and—when filtering is enabled—how many were filtered. It also measures
the processing time per TLD and derives throughput values, such as extracted-per-second
and kept-per-second rates. After processing all TLDs, the script computes global totals,
including the overall runtime. All collected metrics are written as a JSON document
named metrics. json in the input directory (or another user-specified location), ensur-
ing reproducibility and enabling detailed post-hoc analysis. The command-line interface
is provided by parse_args() and exposed via main(), allowing the tool to be invoked
directly with python3 domain_extractor together with the required arguments.

5.3 QUIC Lab Analyzer

The second Python component is a modular analysis toolbox that processes the mea-
surement artefacts produced by QUIC Lab: recorder JSONL files, QLOG streams, and
rotating log files. The project is organized into four main modules plus a CLI entry point:

» recorder_analyzer.py: aggregates connection-level statistics from recorder JSONL
files.

e qlog_analyzer.py: performs event-level and transport-parameter analysis on QLOG

files.
« log_analyzer.py: extracts error statistics from textual prober logs.
e visualize.py: renders selected metrics as static PNG plots using Matplotlib.
e cli.py: command-line orchestration and output directory management.
The toolbox is designed to be independent of the prober implementation language. It

assumes only a file layout (recorder files, qlog files, and log files in separate directories)
and specific output formats as defined in the architecture.
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5.3.1 CLI Orchestration

The main entry point cli.py coordinates the complete analysis:

o It accepts a ——root directory (defaulting to the current directory of the analysis
project) that must contain:
— recorder_files/ with quic-lab-recorder. jsonlx,
— qlog_files/ with quic-lab.sqlogx,
— log_files/ with quic-lab.logx.

o It creates an --out directory (default analysis_output/) for derived summaries
and plots.

o It delegates to the analyzers in a fixed order:

1. process recorder files,

2. process QLOG files (possibly using multiple worker processes),
3. process log files,
4

. compute a cross-set summary of connection identifiers present in recorder and

QLOG,

5. optionally generate plots (unless ——no-plots is specified).

The CLI configures Python’s logging module with timestamps and log levels, so all steps
are traceable.

5.3.2 Recorder Analysis

The RecorderAnalyzer ingests the JSONL output generated by QUIC Labs recorder
component. Each line is expected to be a JSON object with a key (connection identifier)
and a value containing metadata such as handshake success, ALPN, and QUIC close
reasons.

Its design is intentionally simple and streaming-based:
o All matching files quic-lab-recorder. jsonl* are processed sequentially. Lines
are parsed one by one; invalid JSON lines are skipped.
o For each record, the analyzer:

— increments a global total_records counter,

— collects all unique key values into a group_ids set (used later for cross-correlation
with QLOG),

— updates handshake_ok_counts (number of successful vs. failed handshakes),
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— updates enable multipath_counts to quantify how often multipath was ac-
tivated,

— records the distribution of ALPN values in alpn_counts, treating missing
ALPN as "<none>",

— extracts QUIC close error codes (from human-readable strings such as
"error_code=0x15") via a small regular expression and tallies them for both
peer-initiated and local closes.

o At the end, the analyzer writes:
— a JSON summary recorder_summary. json with all aggregated counters and

the number of unique group identifiers; and

— CSV files for ALPN distributions and close error-code histograms, which are
straightforward to import into external tools.

5.3.3 QLOG Analysis

The QlogAnalyzer handles the potentially very large QLOG streams generated by the
prober’s QLOG multiplexer. These are stored as JSON-SEQ files quic-lab.sqlogk,
where each event is encoded as a JSON object prefixed by the ASCII record separator.

Key design aspects include:

« Parallel processing: depending on the --workers setting, QLOG files are pro-
cessed either sequentially or via a ProcessPoolExecutor. Each worker runs the
helper function _process_qlog_file(path), which returns a picklable dictionary
of aggregated counters.

e Streaming event loop: _process_qlog_file reads each file line by line, strips
the record separator, and attempts to parse JSON. Invalid lines are counted in
invalid_events but otherwise ignored.

« Event-level aggregation:

— total_events counts all valid events.
— event_name_counts records the frequency of each event name.

— error_event_counts focuses on events whose name suggests an error, closed
connection, or connection loss.

— path_event_counts focuses on "quic:path_..." events, which are relevant
for multipath behavior.

o Packet- and frame-level analysis:

— For "quic:packet_sent" and "quic:packet_received" events, the analyzer
extracts direction, packet type, and a best-effort packet size (from packet_size,
payload_length, or length fields).
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— Packet types are counted by direction in packet_type_counts, and cumulative
sent and received bytes are tracked in total_bytes_sent and
total_bytes_received.

— For each packet, the analyzer iterates through any attached frames list and
tallies frame types in frame_type_counts.

o Transport-parameter distributions:

— For "quic:parameters_set" events with owner="remote", the analyzer iter-
ates over all parameters and counts the frequency of each wvalue in
transport_param_counts, using a defaultdict(Counter).

— Values are kept as scalars where possible; complex values are stringified.
o Connection identifiers: any string-valued group_id field is added to a set of
group identifiers for later cross-correlation with the recorder.

After processing all files, QlogAnalyzer merges the worker-level results and writes:

e a JSON summary qlog_summary.json with aggregate event counts, packet and
frame distributions, transport parameter distributions, total bytes, and the number
of unique group identifiers; and

e a series of CSV files:

global event name counts,
— frame-type counts,
— packet-type counts (with direction), and

— per-parameter distributions (qlog_transport_param_<name>.csv).

Experiments with qvis for Visual Inspection of Individual Connections

To complement the large-scale, machine-driven QLOG analysis described above, several
experiments were conducted using qvis, an interactive visualization toolkit specifically
designed for inspecting the behavior of QUIC and HTTP/3 connections. qvis is part of
the broader glog ecosystem and provides a rich set of visual inspection tools, including se-
quence diagrams, multiplexing diagrams, congestion graphs, and packetization diagrams.
These tools translate glog event streams into domain-specific visualizations that reveal
handshake progress, stream scheduling, packetization efficiency, congestion-control dy-
namics, packet loss, and reordering patterns [38].

For exploratory experiments, selected per-connection qlog traces generated by the prober
were transformed into qvis-compatible JSON using a custom conversion script
(qlog2qvis.sh). The script converts the prober’s JSON-SEQ QLOG output into a
legacy qlog-0.3 JSON structure expected by qvis and optionally applies the same event-
minimization rules used during Rust-side QLOG generation. This makes it possible to
inspect individual connections visually without modifying qvis itself.
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One example output is shown in fig. 5.2, illustrating a complete end-to-end QUIC +
HTTP/3 exchange. The diagram reveals key handshake events, packet-level bidirectional
traffic, RTT evolution, and stream scheduling behavior, in line with the visualization
capabilities documented in [38]. In particular, the sequence diagram highlights packet
ordering and the timing relationship between client/server events; this aligns with the
intended use of the tool and emphasizes qvis’s ability to expose handshake deadlocks, loss
episodes, reordering, and congestion-control anomalies.

While qvis proved highly useful for validating and debugging individual connections, the
experiments also confirmed a major design limitation: qvis is not intended for large-
scale or high-volume analysis. The tool operates entirely on single-connection JSON logs
and does not support aggregated, multi-connection analyzes or batch visualization. As a
consequence, qvis is an effective tool for manual inspection, teaching, and debugging—as
intended by its authors—but it cannot be scaled to millions of domains or thousands of
connection traces. This limitation is explicitly acknowledged in the qvis literature, where
the focus is on interactive, human-driven analysis rather than automated or statistical
processing across large datasets [38]. For this reason, qvis was used only as a qualitative
inspection tool in this project, whereas all large-scale quantitative evaluations rely on the
Python-based QLOG analysis pipeline described earlier.

5.3.4 Log-File Analysis

The LogAnalyzer concentrates on extracting and classifying error messages from the
prober’s textual logs. It processes all files matching quic-1lab.log* and parses them se-
quentially, line by line. DNS resolution errors are detected by the presence of the substring
"ERROR: failed to lookup address information:", and for each occurrence the an-
alyzer increments both a general DNS-error counter and a counter for the specific error
message extracted from the line. Connection-related errors are identified through lines
containing both "connect" and "err:"; in these cases, the substring following "err:"
is extracted and tallied as the connection error message. Any remaining line containing
the keyword "ERROR" is categorized as other error. After processing all log files, the
analyzer produces a JSON summary file logs_summary. json that reports overall error
counts and histograms for DNS and connection errors. Additionally, it generates two
CSV files—1logs_dns_error_counts.csv and logs_connect_error_counts.csv—that
contain per-message error counts sorted by frequency.

5.3.5 Cross-Correlation and Visualization

After the individual analyzers have completed, the CLI derives a cross-summary of all
group identifiers observed across the different data sources. It counts how many group
IDs appear in the recorder output, how many appear in the QLOG files, and determines
the size of their intersection, including the identifiers that occur exclusively in one of
the two. This information is written to cross_summary.json and provides a basis for
evaluating how fully the QLOG data aligns with the recorder’s coverage.
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The Visualizer renders selected aspects of these summaries as static PNG plots using
Matplotlib:

o bar charts for handshake success, ALPN distributions, and dominant error codes
from the recorder;

e bar charts for the most frequent QLOG event names and frame types, and per-
direction packet-type distributions;

o histograms for selected numeric transport parameters (e.g., max_idle_timeout,
initial _max_data) with weights derived from connection counts;

e bar charts for the most common DNS and connect error messages; and
 a bar chart showing the overlap and disjoint portions of group IDs between recorder

and QLOG.

All plots are written to the analysis output directory. The toolbox thus closes the loop
between raw measurement artefacts and human-readable insights, while remaining decou-
pled from the implementation details of the prober itself.



Chapter 6

Evaluation

This chapter evaluates the proposed Internet measurement framework based on two large-
scale scans of the same domain set conducted from different vantage points. The first scan
was conducted on privately operated servers in Switzerland, while the subsequent scan
was executed on an Amazon Web Services (AWS) Elastic Compute Cloud (EC2) instance
in the US-East region. Both scans used identical probe configuration and the same list
of approximately 6 M domains. The goal of this evaluation is twofold: (i) to assess the
robustness and scalability of the framework, and (ii) to study whether the vantage point
introduces systematic bias, for example via middleboxes, path-specific impairments, or
geolocation-based restrictions.

6.1 Experiment setup

This evaluation is based on two large-scale QUIC measurement runs carried out from
two vantage points: privately operated servers in Switzerland and an AWS EC2 instance
in the US-East region. Both scans used the same domain input, probing configuration,
software stack, and measurement pipeline to ensure comparability across vantage points.

6.1.1 Domain Set Construction

The initial target list was derived from the Tranco ranking, using list identifier SLKJ V.
The list was processed by the Domain Extractor module to filter entries as described in
section 5.2. The extraction and filtering step produced the metrics depicted in table 6.1.

A total of 6.24 M domains were retained for probing and used in both vantage-point
measurements.

"https://tranco-list.eu/list/8LKJIV/full
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Table 6.1: Overview of Extraction Metrics

Metric Value
Extracted 6 436 542
Kept 6242 562
Filtered 193980
Time (s) 214.36
Extracted per second | 30026.787
Kept per second 29121.86

6.1.2 Probing Configuration

All scans were executed using the same configuration file, which controlled concurrency,
rate limiting, logging behavior, and the set of connection configurations. The scheduler
was configured to allow up to 500 concurrent probes, a sustained request rate of 150
requests/s, and a burst size of 150, with a minimum inter-attempt delay of 3 seconds
for the same domain. Logging of recorder files and QLOG traces was enabled for all
connections.

The configuration defines three QUIC connection profiles corresponding to representative
parameter sets for TQUIC, Firefox, and Chrome. These profiles differ in flow-control
limits, initial per-stream budgets, maximum UDP payload sizes, and active connection
ID limits. All configurations set enable_multipath=true, using the redundant scheduling
algorithm. The full configuration file used in all scans is reproduced in listing A.1.

6.1.3 Deployment Environment

QUIC Lab was containerized to guarantee reproducible deployments across all vantage
points. The scanner and the nginx-based opt-out page were bundled into a single Docker
image. Deployment required only the minimal Compose specification shown in listing 6.1.

1 | services:

2 quic-lab:

3 container_name: quic-lab
4 image: ghcr.io/quic-lab/quic-lab
5 ports:

6 -

7 dns:

R -

o -

10 -

11 -

12 volumes:

13 - ./in:/app/in

14 - ./out:/app/out

Listing 6.1: Docker Compose Definition for QUIC Lab
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This setup enabled zero-friction redeployment on both the private servers and the AWS
instance and ensured strict environmental parity across vantage points.

DNS configuration

To minimise DNS-induced bias between vantage points, Cloudflare DNS was used as the
primary resolver and Google DNS as the secondary resolver. This ensured consistent DNS
resolution behavior and avoided artefacts caused by resolver-specific caching, filtering, or
regional variability.

6.1.4 Opt-Out Infrastructure

To comply with ethical research guidelines, an opt-out mechanism was deployed. A
lightweight nginx server was bundled into the same Docker container to serve a static in-
formation page describing the purpose of the measurements, the collected metadata, and
the opt-out process as depicted in fig. 6.1. Furthermore, the User-Agent header was set to
"QUIC Lab (research; no-harm-intended; opt-out: opt-out@quiclab.anonaddy.com)"
to signal the research nature of the request. Opt-out requests submitted to the dedicated
opt-out address were processed promptly, and affected domains were added to a blacklist.

6.1.5 Multipath QUIC Considerations

The framework uses the Tencent TQUIC implementation as its QUIC library. At the
time of the experiment, TQUIC supported only draft-ietf-quic-multipath-052, an early
and now outdated version of the multipath extension. No actively maintained QUIC
implementation supporting more recent multipath drafts was available. Consequently,
multipath detection in this study is limited to the presence or absence of the transport
parameters defined in draft-05. The framework is modular and can incorporate updated
logic once newer versions are implemented in TQUIC or other QUIC stacks.

6.2 Measurement Artefacts and Metrics

The framework produces three complementary artefact types per scan:

1. Recorder data: The recorder component stores one JSON record for each at-
tempted connection. This record summarizes the result of the handshake, the ne-
gotiated Application-Layer Protocol Negotiation (ALPN) identifier, the presence of
multipath-related transport parameters, local and peer-side error codes, and statis-
tics such as number of bytes and packages sent, received, and lost.

’https://github.com/Tencent/tquic/discussions/379#discussioncomment-10470855
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About These QUIC/HTTP/3 Scans

This host is running academic measurements to understand suppeort and behavior of modern
Internet protocols (e.g., QUIC and HTTP/3). We perform lightweight active probes to check
feature availability, interoperability, and reliability across public infrastructure.

What we do

e Establish short, low-rate connections to public endpoints.
¢ Record minimal technical metadata needed for research.
¢ Follow conservative rate limits and avoid service disruption.

Data we may store

# Target domain and IP, connection timing, negotiated protocol versions/ALPN.
¢ Non-payload protocol metadata (no application content).
¢ Timestamp and basic scan outcome (success, error cade).

Opt out

you want excluded. Example:

Subject: Opt-out request

Body: Please exclude the following domains from your scans:

* example.org

e sub.example.org
We will add your domain(s) to our blocklist promptly.
Opt-out requests will be accepted until 11 November 2025, the planned end of this study. After
this date, no further scans will be conducted.
Questions

If you believe your service was misidentified or affected, contact opt-cut@quiclab.anonaddy.com.

Research purpose only. No commercial use. We strive to be good Internet citizens.

Figure 6.1: Opt-Out Page
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Table 6.2: Global Scan Statistics

Private AWS
Total Records 5483 325 5482651
Unique Group IDs 5483 325 5482651
QLOG Group IDs 5491470 5489530
Total Events 241786 486 236 636 215
Events per Connection | 44.0295 43.1068
Handshake OK 1559779 (28.44%) | 1728807 (31.54%)
DNS Errors 756 521 757633
Connect Errors 8199 6879

2. QLOG traces: For each connection, a structured QUIC trace is recorded in QLOG
format, containing events such as packet transmission and reception, frame types,
transport parameter settings, and loss events.

3. Application logs: The Rust implementation writes diagnostic log lines, which are
used to parse high-level error categories at a later point: Domain Name System
(DNS) lookup failures, connection establishment errors, and other implementation-
level errors.

The QUIC Lab Analyzer merges these artefacts into machine-readable summaries:
recorder_summary.json, qlog_summary.json, and logs_summary. json, complemented
by CSV exports and plots. All numbers reported in this section are derived from these
aggregated summaries. An overview of both scans is given in table 6.2.

6.3 Coverage and Handshake Outcomes

For the private Swiss vantage point, the recorder processed 5483 325 records, correspond-
ing to 5483325 unique group identifiers (one group identifier per probed target). From
the AWS vantage, 5482651 records and group identifiers were observed. The small dif-
ference in total records is due to implementation-level retries and minor discrepancies in
the execution runs and is negligible compared to the overall dataset size.

The first key metric is the proportion of successful QUIC handshakes. The recorder’s
handshake_ ok flag was set to true for 1559779 connections on the private vantage and
for 1728 807 connections on the AWS vantage, as visualized in fig. 6.2. This corresponds
to handshake success rates of 28.4% (private) and 31.5% (AWS). The difference of ap-
proximately 3 percentage points indicates that more targets are reachable from the AWS
vantage, which suggests some level of path- or location-dependent reachability variation.

The ALPN distribution is tightly coupled to the handshake outcome. For the private van-
tage, 1559870 connections negotiated the HTTP/3 ALPN identifier h3, while 3923455
connections either did not complete the handshake or did not negotiate any ALPN
(recorded as <none>). For the AWS vantage, 1728906 connections negotiated h3 and
3753745 were recorded as <none>. Table 6.3 summarizes the ASPN distribution. The
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Figure 6.2: handshake ok Flag set in Recorder (AWS and Private combined)

Table 6.3: ALPN distribution
Private | AWS

h3 1559870 | 1728906
<none> | 3923455 | 3753745

close numerical match between successful handshakes and h3 ALPN counts in both scans
shows that the framework predominantly observes QUIC endpoints that directly support
Hypertext Transfer Protocol Version 3 (HTTP/3) and that nearly all successful QUIC
handshakes lead to HT'TP/3-capable connections.

A central objective of the thesis is to assess the deployment status of Multipath QUIC. For
this purpose, the recorder tracks the enable multipath transport parameter advertised
by the remote peer. In both scans, enable multipath is recorded as false for all 5.48 M
records, and no single connection advertises multipath support. Consistently, the QLOG
traces do not contain any quic:path_x events; the corresponding path-event counters
remain zero for both vantage points. Within the limits of this dataset, no Internet-wide
deployment of Multipath QUIC was observed in the remote transport parameters.

The internal consistency of the artefacts is confirmed by the cross-summary of recorder
and QLOG group identifiers. On AWS, all 5482651 recorder group identifiers are also
present in the QLOG set, and only 0.13% of QLOG group identifiers lack a corresponding
recorder entry. On the private vantage, 99.999% of recorder identifiers are matched in
QLOG, with 0.15% of QLOG identifiers having no corresponding recorder entry. This
demonstrates that the instrumentation reliably produces coherent recorder and QLOG
data at scale.

6.4 QLOG Event and Frame Distributions

The QLOG summaries quantify both the load on the logging subsystem and the struc-
ture of observed QUIC traffic. The AWS scan produced 236.6 M valid QLOG events
across 5489530 unique connections, corresponding to an average of approximately 43.1
events per connection. The private scan produced 241.8 M events across 5491 470 unique
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Figure 6.3: QLOG Event Names (AWS and Private combined)

connections, i.e., approximately 44.0 events per connection. The difference is modest
and mainly results from a higher number of retransmission and loss-related events on the
private vantage.

In both scans, the QLOG event space is dominated by quic:packet_received and
quic:packet_sent events. On AWS, 167.9 M packet-receive events and 46.99 M packet-
send events were recorded. On the private vantage, 161.5 M packet-receive events and
58.47 M packet-send events were observed. The absolute counts differ slightly, but the
qualitative picture is similar: most QLOG entries correspond to individual QUIC pack-
ets, which underlines that the logging volume scales linearly with the number of packets
rather than with the number of connections. Figure 6.3 visualizes the amount of events
for every QLOG event and compares it for both scans.

At the frame level, both vantage points exhibit very similar distributions. The most
frequent frame type is the STREAM frame, with 164.2 M occurrences (AWS) and 158.0 M
occurrences (private), followed by CRYPTO frames (30.3 M vs. 30.5 M) and ACK frames
(27.2 M vs. 38.0 M). PADDING, NEW__ CONNECTION_ ID, CONNECTION_ CLOSE,
HANDSHAKE DONE, and PING frames also appear frequently in both scans, with
counts in the low single-digit million range, as shown in fig. 6.4. These distributions
are consistent with typical HTTP /3 workloads over QUIC: application data is primarily
sent on a small number of bidirectional streams, with frequent acknowledgements and
cryptographic handshake traffic.

A notable difference between vantage points appears in the number of
recovery:packet_lost events. As shown in table 6.4, the AWS scan records 58 127
such events, whereas the private scan records 702 780 events. While these counters are
implementation-specific, the order-of-magnitude difference indicates that the private van-
tage experiences significantly more packet loss or loss-like conditions (e.g., reordering
above the loss threshold) than the AWS vantage. This is consistent with the expectation
that a residential or non-datacenter link is more likely to exhibit congestion and jitter
than a well-provisioned cloud network path.



68

count

1.6

14

1.2

1.0

0.8

0.6

0.4

0.2

0.0

le8

CHAPTER 6. EVALUATION

QLOG frame types (AWS vs. Private)
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Figure 6.4: QLOG Frame Types (AWS and Private combined)

Table 6.4: Loss-rel

ated Event Counts

Private AWS
quic:packet__received | 161463677 | 167943612
quic:packet__sent 58474765 | 46986403
loglevel:info 12533945 | 12700612
quic:parameters_set | 7051330 7218435
meta:connection 1559766 1728807
recovery:packet_ lost | 702780 58127
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6.5 Transport Parameter Distributions

The QLOG summaries further expose the distribution of remote QUIC transport parame-
ters, which reflect server-side configuration. For each successful connection, the framework
records the set of transport parameters observed in the server’s quic:parameters_set
events. Across both vantage points, 15 parameters are consistently present, including:

e max_idle_timeout

e initial _max_data

e initial max_stream_data_x*
e initial max streams *

e max_udp_payload_size

e ack_delay_exponent

e max_ack_delay

e active_connection_id_limit
e disable_active_migration

o the negotiated Transport Layer Security (TLS) cipher suite.

The distributions of these parameters are remarkably stable across vantage points, which
is expected, as they are properties of the remote endpoints rather than of the path.
Only small variations appear due to the slightly different sets of endpoints that com-
pleted a handshake from each vantage point. In fact, the AWS scan completes approxi-
mately 10.8% more successful QUIC handshakes than the private vantage point (1728 807
vs. 1559779), which directly translates into a proportional increase in the number of
transport-parameter blocks observed. Consequently, the absolute counts in the AWS
histograms are consistently higher by this factor, while the relative shapes of the dis-
tributions remain effectively identical. Figure 6.5 demonstrates this explicitly for the
parameter max_idle_timeout and is representative of the behavior observed for all other
transport-parameter distributions across vantage points.

The following trends are observed:

« ACK delay exponent: In both scans, the ACK delay exponent equals 3 for
approximately 96.3-96.4% of connections, with small minorities using 8 or 10. This
aligns with the default value suggested in the QUIC specification.

o Active connection ID limit: Approximately 83.3-83.4% of connections adver-
tise an active connection identifier limit of 2. Values of 4, 8, or 3 are used by
smaller fractions of endpoints. This suggests that the majority of deployments do
not aggressively exploit connection migration or connection ID rotation.
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QLOG transport parameter: max_idle_timeout (AWS vs. Private)
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Figure 6.5: Distribution of max_idle_timeout transport parameter values observed (AWS
and Private)

Disable active migration: Around 74.7-74.8% of connections set
disable_active_migration=true, indicating that active address migration is not
permitted. Only about one quarter of endpoints allow active migration, which is
consistent with the current deployment status where server operators tend to prefer
stable paths over client-driven migration.

Flow control parameters: For initial max_data, roughly three quarters of end-
points cluster around large window sizes in the range of 10 MB to 16 MiB, with
a prominent mode at 10000000 bytes (about 50% of AWS-side connections) and
10485 760 bytes (about 47% on the private side). The initial_max_stream_data_x
parameters show similar patterns, with many endpoints granting approximately
1 MB per stream and a second cluster at 1 MiB. This indicates that most deploy-
ments provision generous flow-control limits suitable for high-throughput HTTP/3
traffic.

Stream concurrency limits: About 87% of connections advertise an
initial max_streams _bidi value of 100, and about 88% advertise an
initial _max_streams_uni value of 3. A second cluster around 103 unidirectional
streams is visible (6-7% of connections). This pattern is consistent across both
vantage points and reflects common HTTP /3 stack defaults.

Idle timeout and maximum UDP payload size: The most common
max_idle_timeout value is 180000 ms (180 s), used by about 62-63% of endpoints,
followed by 30000 ms (30 s) for roughly 22% of endpoints and 300,000 ms (300 s)
for about 4-5%. For max_udp_payload_size, two configurations dominate: either
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a conservative value around 1350 bytes (50% of endpoints on AWS, 27% on the pri-
vate vantage) or the maximum of 65527 bytes (36.6% on AWS, 59.6% on the private
vantage). These values correspond to either path-MTU-conservative endpoints or
endpoints that accept almost full-size User Datagram Protocol (UDP) datagrams
and rely on path MTU discovery or fragmentation handling.

o TLS ciphers: Finally, the negotiated TLS cipher suites show a very clear picture.
Approximately 93% of connections use AES-128-Galois/Counter Mode (AES-128-
GCM), around 6.5% use AES-256-GCM, and less than 1% use ChaCha20-Poly1305.
The distribution is nearly identical on both vantage points and reflects the dominant
usage of AES-based AEAD ciphers in modern QUIC deployments.

Overall, the transport parameter distributions are highly consistent across vantage points.
This suggests that the vantage point does not introduce observable bias in the character-
ization of server-side QUIC configurations.

6.6 Error Analysis

The application logs provide insight into failure modes during the scanning process. Errors
are classified into DNS lookup failures, connection establishment errors, and a residual
category of other errors.

DNS lookup failures are significant but nearly identical across vantage points. The AWS
scan recorded 757633 DNS lookup errors, whereas the private scan recorded 756 521.
These counts correspond to roughly 0.138 DNS errors per probed target in both runs, i.e.,
approximately 14% of domains cannot be resolved successfully. The three dominant error
messages are consistent across vantage points: “No address associated with hostname”
(about 383k occurrences), “Name or service not known” (about 209k), and “Temporary
failure in name resolution” (about 164k). This indicates that the DNS resolution outcome
is essentially independent of the vantage point for this dataset.

Connection establishment errors are rare by comparison. On AWS, 6 879 connect errors
were recorded, corresponding to about 0.00125 errors per target. On the private vantage,
8199 connect errors (0.00150 per target) were observed. The primary connect error on
AWS is “Network is unreachable,” which suggests transient routing or local socket issues
within the cloud environment. On the private vantage, the most frequent connect errors
are “Cannot assign requested address” and “Invalid argument,” which are symptomatic of
local socket configuration or ephemeral port/address exhaustion. In both cases, connect
errors are two orders of magnitude less frequent than DNS failures and do not materially
affect the aggregate statistics.

The residual category other error aggregates all log lines containing “ERROR” that do
not match the DNS or connect patterns. It accounts for roughly 1.24 M events on AWS
and 1.11 M events on the private vantage. These errors largely correspond to higher-level
handshake failures or protocol-level issues and are better understood via the recorder’s
peer-close error codes.
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On the recorder side, local closes are overwhelmingly reported with error code 0
(NO_ERROR), which indicates that the measurement framework itself terminates con-
nections cleanly after completing the probing logic. For example, on the private vantage,
1547661 of 1547687 local closes carry error code 0. Peer-side closes exhibit a rich dis-
tribution of error codes, with two dominant codes around 296 and 336 across both van-
tage points (roughly 250k and 75-80k occurrences, respectively), and smaller counts for
core QUIC error codes such as 0 (NO_ERROR), 1 (INTERNAL_ERROR), 11 (PRO-
TOCOL_ VIOLATION), and 12 (INVALID_ TOKEN). The near-identical distribution of
peer-close error codes between vantage points indicates that endpoints react in the same
way, regardless of whether the client is located in Switzerland or on AWS.

6.7 Impact of Vantage Point and Limitations

The comparison of both scans allows the following conclusions about the impact of the
vantage point:

o The proportion of domains that can be resolved via DNS is practically identical
for both vantage points. Vantage-point-dependent differences in authoritative DNS
responses or resolver behavior, if present at all, are smaller than the noise in this
dataset.

o The distribution of server-side QUIC transport parameters is extremely stable across
vantage points. No systematic shift in idle timeouts, flow-control windows, stream
limits, migration flags, or cipher suites is observed between the private server and

the AWS instance.

« The main vantage-point-dependent differences arise in path quality metrics (as in-
ferred from recovery:packet_lost events) and in handshake success rates. The
private vantage experiences an order of magnitude more loss events and a slightly
lower handshake success rate, which is consistent with more congested or heteroge-
neous paths compared to the datacenter environment.

» No evidence of vantage-point-specific blocking or protocol downgrades was observed
at the aggregate level. In particular, there is no indication that HTTP/3 or QUIC
are selectively blocked or degraded for one vantage point while being allowed for the
other on a significant fraction of endpoints.

Two limitations of the present evaluation must be noted. First, the current QLOG traces
in this dataset do not expose per-path events, which prevents a detailed analysis of mul-
tipath behavior even if it existed. Second, the analyzer was unable to extract per-packet
size information reliably from the QLOG traces (all byte counters remain zero), which
precludes throughput and volume-based comparisons. These limitations are due to the
structure of the TQUIC QLOG output and can be addressed by future extensions of the
logging and analysis, or directly by the authors of the TQUIC library.
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In summary, the evaluation demonstrates that the proposed framework scales to millions
of targets and produces internally consistent recorder, QLOG, and log artefacts. For the
considered dataset, the vantage point has negligible impact on the characterization of
QUIC and HTTP/3 deployment (ALPN negotiation, transport parameter distributions,
cipher usage) but does affect loss-related metrics and, to a lesser extent, handshake suc-
cess rates. Within these constraints, the measurements provide a robust view of current
QUIC deployments and confirm the absence of observable Multipath QUIC support in
the examined population.

6.8 Performance

This subsection evaluates the performance characteristics of the measurement framework
during the large-scale scans. Both scans processed the same domain set and completed in
approximately 58 hours, resulting in a sustained throughput of roughly 26 domains per
second. The performance analysis focuses on CPU utilization, memory consumption, and
network utilization on the private server in Switzerland and the AWS EC2 instance in the
US-East region.

6.8.1 Computational Resource Usage
Private server

Resource monitoring is available for the initial 12 hours of the scan. During this period,
CPU utilization fluctuates between approximately 10% and 25%, with an average around
17%. Memory usage remains low (typically below 1 GB) and does not exhibit any trend
that would indicate growth, leak, or pressure. Figure 6.6 provides an overview of the
CPU, memory, and network utilization of the private server during the first 12 hours of
the scan. According to system-level telemetry and manual observation, this utilization
pattern remained stable for the remainder of the 58-hour run, with no signs of saturation or
performance degradation. This behavior indicates that the client-side processing pipeline
(DNS resolution, QUIC handshakes, logging, and local preprocessing) is lightweight rela-
tive to the available hardware and that the scanning rate is not constrained by compute
resources on the private vantage point.

AWS EC2 instance

Full 58-hour monitoring is available for the AWS instance. The CPU utilization profile
closely mirrors the private server: values range between 18% and 24%, with a stable
mean around 21%. Memory usage remains below 1 GB throughout the entire measure-
ment period. This confirms that the framework’s workload is well within the instance’s
capacity, even for long-running experiments. Figure 6.7 shows the corresponding resource
utilization on the AWS EC2 instance, covering the full fifty-eight-hour duration of the
scan.
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Figure 6.7: Resource Consumption of AWS EC2 over the entire Scan Period

Overall, both vantage points show almost identical computational behavior, with low and
stable utilization, and no indication of bottlenecks caused by the measurement framework
itself.

6.8.2 Network Utilization

Both vantage points exhibit consistent and gradually increasing inbound traffic as more
QUIC endpoints respond over time. Outbound packet rates remain relatively stable,
reflecting the constant probing rate enforced by the scheduler.

e On the private server, inbound network throughput grows steadily during the first
12 hours. This increase corresponds to the natural progression of the scan, where
later stages of the domain list contain more active HTTP/3 deployments. Subse-
quent monitoring showed that this trend continued for the rest of the experiment.

o« On AWS, where complete data is available, the same overall pattern appears: stable
outbound traffic and a slow upward trend in inbound traffic, interrupted only by
occasional short peaks due to bursty responses from certain clusters of endpoints.

At both vantage points, the network interface remains well below saturation, confirming
that throughput is dominated by remote server behavior, path latency, and protocol-level
timing—rather than by local link capacity or congestion.
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6.8.3 Throughput and Runtime Characteristics

Both scans completed in ~ 58 hours, with a sustained rate of:

5.48 x 10° domains
58 hours

~ 26.2 domains/s

Neither vantage point exhibits slowdowns, backlog accumulation, or cyclic performance
variation. This demonstrates that:

1. concurrency limits and rate-control mechanisms operate as intended,

2. long-running measurements do not accumulate overhead,

3. QLOG writing and recorder logging scale linearly without creating 1/O pressure.

6.8.4 Summary

The performance evaluation shows that:

« CPU utilization remains low (<25%) and stable on both vantage points,

e Memory consumption is very small (<1 GB) and does not grow over time,

o Network utilization scales smoothly without interface saturation,

» Resource usage patterns are nearly identical on both machines,

o The difference in QUIC-level behavioral metrics (e.g., packet loss, handshake success

rate) stems from path properties, not from local performance limitations.

Although only the first 12 hours of private-server utilization were recorded, the observed
stability and absence of variance strongly indicate that the full run behaved consistently.
The AWS data, covering the entire scan duration, supports this conclusion by showing
nearly identical utilization patterns over the full 58-hour period.
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Chapter 7

Summary and Conclusions

This chapter summaries the work conducted in this thesis, distills the main scientific
conclusions, and outlines promising directions for future work.

7.1 Summary

The goal of this thesis was to design, implement, and evaluate a scalable framework for
Internet-wide measurements of modern transport- and application-layer protocols, with
a particular focus on QUIC, and emerging extensions such as Multipath QUIC. Rather
than concentrating on a single protocol mechanism, the work set out to provide a reusable
measurement toolkit that can be extended with new probes and analysis modules as the
protocol ecosystem evolves.

To this end, the thesis first established the necessary background on Internet measure-
ment, TLS 1.3, QUIC, and Multipath QUIC in chapter 2, and positioned the work in the
context of existing active and passive measurement studies, as well as prior work on mul-
tipath transport and structured protocol logging in chapter 3. This survey motivated the
need for a measurement framework that (i) operates at Internet scale, (ii) targets protocol
features beyond simple reachability, and (iii) builds on structured logging formats such
as glog to preserve rich protocol semantics.

On this basis, chapter 4 introduced a modular architecture comprising three main subsys-
tems: the Domain Fxtractor, the QUIC Lab, and the QUIC Lab Analyzer. The Domain
Extractor ingests one or more input lists (such as Tranco lists), applies configurable fil-
tering and normalization rules, and produces a canonicalized target set together with
reproducible extraction artifacts. QUIC Lab is a general probing engine built around a
small, stable core that handles configuration, scheduling, concurrency control, transport
abstractions, logging, and recording, while delegating protocol-specific logic to pluggable
probes. The QUIC Lab Analyzer ingests recorder outputs, glog files, and application
logs, and turns them into aggregated statistics and visualizations that directly address
the research objectives. A central design principle throughout the architecture is a strict

7
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separation of concerns: probes implement only the protocol logic, while orchestration,
rate limiting, logging, and persistence are handled by the core framework.

Chapter 5 described a concrete realization of this architecture in Rust. The implemen-
tation integrates Tencent’s TQUIC library as the QUIC transport, including its qlog
support, and provides an HTTP/3 probe that issues minimal GET requests over QUIC to
each target domain. The QUIC Lab Analyzer subproject provides parsers for recorder
and qglog artifacts, performs multi-process aggregation of events, frames, and transport
parameters, and exports results as JSON summaries and CSV files.

The evaluation in chapter 6 demonstrated the capabilities of the framework through a
large-scale Internet measurement campaign. A domain set of 6.24 M targets was con-
structed from the Tranco list, with 6436542 input entries, 6242562 domains retained,
and 193980 filtered during extraction. Using the same configuration, two full scans were
run from independent vantage points: privately operated servers in Switzerland and an
AWS EC2 instance in the US-Fast region. Each scan attempted QUIC connections to ap-
proximately 5.48 M domains and enabled both recorder and qlog logging for all attempts.

7.2 Conclusions

The empirical analysis showed that QUIC and HTTP/3 are widely but not universally
deployed among the considered domains. Only 28.44% of connection attempts from the
private vantage point and 31.54% from AWS resulted in successful QUIC handshakes,
with the remainder failing at the DNS or connection stage. Among the successful hand-
shakes, the ALPN distribution was dominated by HTTP/3: the counts of h3 ALPN
values closely matched the number of successful handshakes, and all other connections
reported <none>. The qglog-based analysis of remote QUIC transport parameters revealed
a high degree of convergence on a small set of operational defaults. For example, approx-
imately 96% of connections used an ACK delay exponent of three, about 83% advertised
an active_connection_id limit of two, and roughly three quarters disabled active mi-
gration. Flow-control limits and stream concurrency parameters clustered around values
that are generous enough for high-throughput HTTP/3 traffic, while idle timeouts and
maximum UDP payload sizes concentrated around a few typical configurations.

Furthermore, the framework was specifically instrumented to detect deployment of Mul-
tipath QUIC via the enable multipath transport parameter. In the collected dataset,
this parameter was consistently recorded as false across all 5.48 M connections, and no
evidence of Internet-wide Multipath QUIC deployment was found. A comparison of the
two vantage points indicated that DNS resolution success, transport parameter distribu-
tions, and TLS cipher suites were effectively identical, and that the main differences arose
in low-level packet metrics, such as retransmission and loss events, which were slightly
more pronounced on the privately hosted server. Resource monitoring showed that CPU
utilization remained below 25%, memory usage stayed well under 1 GB, and network in-
terfaces were far from saturation on both machines, confirming that the framework itself
does not constitute a bottleneck even under long-running, large-scale workloads.
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Overall, the thesis delivered (i) a modular, extensible measurement framework for QUIC,
(ii) a concrete implementation based on TQUIC and qlog with support for pluggable
probes, and (iii) an Internet-wide measurement study that characterizes current QUIC and
HTTP/3 deployment practices and provides negative evidence regarding the deployment
of Multipath QUIC in the examined population.

7.3 Limitations

Several limitations of the present work should be acknowledged when interpreting the
results.

First, the domain set is restricted to a single Tranco snapshot and thus to a popularity-
biased subset of the Internet. While this is appropriate for characterizing deployment
practices among prominent domains, it leaves out the long tail of smaller sites, regional
services, and specialized infrastructures. The measured distributions of transport param-
eters and protocol support therefore reflect the behavior of popular domains and may not
generalize to the broader Internet.

Second, the analysis is constrained by the structure and semantics of the glog output
produced by the TQUIC library. In particular, reliable per-packet size information was
not available in the collected traces, which precludes precise throughput and volume-based
comparisons across endpoints and vantage points. Some higher-level metrics that could
in principle be derived from glog, such as detailed congestion-window dynamics, are also
not exploited in the current analysis pipeline. These limitations stem from the specific
glog implementation and can be alleviated only by changes to the logging library or by
complementing qlog with additional measurement sources.

Finally, all probing is conducted using a single client implementation (TQUIC) and a
single HTTP/3 probe that issues a minimal GET request. While this choice simplifies the
analysis and ensures consistent behavior across measurements, it may not trigger all code
paths in server implementations, especially for features that are only enabled under spe-
cific application-layer conditions. The results therefore characterize server behavior under
a particular, carefully controlled client workload rather than under arbitrary application
traffic.

7.4 Future Work

A natural extension is to develop additional probes that exercise specific QUIC and
HTTP/3 mechanisms beyond basic reachability and header retrieval. Examples include
probes that explicitly trigger and measure connection migration under controlled changes
of the client address, experiments that evaluate 0-RTT resumption behavior over repeated
connections, or probes that assess QPACK behavior and header compression efficiency.
The existing probe interface and scheduler are designed to support such extensions with-
out modifications to the core.
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Second, the analysis pipeline can be enhanced to exploit a larger portion of the informa-
tion contained in qlog traces. This includes reconstructing per-connection time series of
congestion-window size, loss recovery episodes, and round-trip times, as well as correlat-
ing transport-parameter choices with observed performance characteristics. Automated
detection of anomalous behavior, such as excessive loss, reordering, or protocol viola-
tions, could be added on top of the existing aggregation modules, potentially leveraging
machine-learning techniques for clustering and anomaly detection.

Finally, the current negative results regarding Multipath QUIC motivate continued mon-
itoring of multipath-related transport parameters and, once deployments emerge, the
design of dedicated multipath probes. These probes could, for example, deliberately es-
tablish multiple paths, inject controlled path failures, or manipulate path characteristics
to study how endpoints schedule traffic across paths and how robust multipath imple-
mentations are under adverse network conditions.
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[scheduler]

# 0 = number of CPUs

concurrency = 500

requests_per_second = 150

burst = 150

# Wait this long between attempts to the same domain (ms)
inter_attempt_delay_ms = 3000

[io]

in_dir = "in"

domains_file_name = "tranco PLXVJ filtered.txt"
out_dir = "out"

[generall

log_level = "INFO" # OFF/ERROR/WARN/INFO/DEBUG/TRACE
save_log_files = true

save_recorder_files = true

save_qlog_files = true

save_keylog_files = false

# Caution: Creates one .sesstion file for every connection
save_session_files = false

# comnection_configs are tried in order until first success.

many.

# Default TQUIC
[[connection_config]]

port = 443
path = ||/||
user_agent = "QUIC Lab (research; no-harm-intended; opt-out:

opt-out@quiclab.anonaddy.com)"
verify_peer = false
alpn = ["h3"]
ip_version = "auto" # "auto" | "vi" | "w6"
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max_idle_timeout_ms = 30000

initial_max_data = 10485760
initial_max_stream_data_bidi_local = 5242880
initial_max_stream_data_bidi_remote = 2097152
initial _max_stream_data_uni = 1048576
200

100

initial_max_streams_bidi =
initial_max_streams_uni =
max_ack_delay = 25
active_connection_id_limit = 2
send_udp_payload_size = 1200
max_receive_buffer_size = 65536

enable_multipath = true
multipath_algorithm =

# Firefox
[[connection_config]]
port = 443
path =
user_agent =
verify_peer = false
alpn = ["h3"]

ip_version = # "auto" [ "w4" | "vw6"

max_idle_timeout_ms = 30000
initial_max_data = 25165824
initial_max_stream_data_bidi_local = 12582912
initial _max_stream_data_bidi_remote = 1048576

initial_max_stream_data_uni = 1048576
initial_max_streams_bidi = 16
initial_max_streams_uni = 16
max_ack_delay = 20
active_connection_id_limit = 8
send_udp_payload_size = 1200
max_receive_buffer_size = 65536

enable_multipath = true
multipath_algorithm =

# Chrome
[[connection_config]]
port = 443

path =

user_agent =

verify_peer = false
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98

alpn = ["h3"]
ip_version = # "auto" [ "w4" | "v6"

max_idle_timeout_ms = 30000

initial_max_data = 15728640
initial_max_stream_data_bidi_local = 6291456
initial_max_stream_data_bidi_remote = 6291456
initial_max_stream_data_uni = 6291456
initial_max_streams_bidi = 100
initial_max_streams_uni = 103

max_ack_delay = 20
active_connection_id_limit = 2
send_udp_payload_size = 1472
max_receive_buffer_size = 65536

enable_multipath = true
multipath_algorithm =
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