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Kurzfassung

Die Zahl der Geräte im Internet der Dinge (IoT) ist in den letzten Jahren rasant gestie-
gen. IoT-Geräte sind häufig Low-End-Produkte, die von Hobbyanwendern genutzt werden
und oft nicht ausreichend konfiguriert sind. Dadurch werden diese Geräte zu einem lukra-
tiven Ziel für Angreifer, das bekannteste Beispiel dafür ist das Mirai Botnetz von 2016.
Die ordnungsgemässe Konfiguration der Geräte, z.B. durch die Deaktivierung ungenutz-
ter Protokolle und die Änderung von Standardkonfigurationen, ist eine einfache, aber sehr
wirksame Massnahme zur Verbesserung der Gerätesicherheit. Bislang gibt es noch keine
Lösung, die das Updaten der Sicherheitskonfiguration von low-end embedded Geräten wie
dem ESP32-S3 automatisiert. Aktuelle Systeme zur Überwachung von IoT-Geräten kon-
zentrieren sich in erster Linie auf die Analyse von Netzwerkpaketen. In dieser Arbeit wird
eine Lösung vorgeschlagen, die die Sicherheitskonfiguration des ESP32-S3 Mikrocontrol-
lers überwacht und sie bei Bedarf automatisch anpasst.

Die in dieser Arbeit implementierte Lösung heisst ESP32-S3 Device Hardening System,
kurz ESP-DHS. Das ESP-DHS hat einen Server, der periodisch die Sicherheitskonfigurati-
on eines ESP32-S3 Mikrocontrollers über das MQTT-Protokoll abfragt. Die Mikrocontroller-
Firmware extrahiert die Konfiguration auf Anfrage und sendet sie an den Server zurück,
wo sie analysiert wird. Der Server hat Zugri↵ auf den Quellcode der Firmware und akti-
viert bei Bedarf Secure Boot, Flash Encryption und Memory Protection. Die aktualisierte
Firmware wird dann kompiliert und auf den ESP32-S3 geflasht. Die gesamte Kommunika-
tion zwischen dem Server und dem Mikrocontroller sowie alle vom Server durchgeführten
Aktionen werden in einer Datenbank gespeichert. Das ESP-DHS bietet ausserdem Un-
terstützung für ein ATECC608B Secure Element, das kryptografische Funktionen und
Möglichkeiten zum sicheren Speichern von kryptografischen Schlüsseln bietet.

Die ESP-DHS-Firmware nutzt 41% des 2 MB grossen Flash-Speichers des ESP32-S3. Die
CPU ist im Ruhezustand 3% und während der Extraktion der Sicherheitskonfiguration
7% ausgelastet. Das Kompilieren und Flashen der Firmware dauert in der Testumgebung
1 Minute und 27 Sekunden. Um zu vermeiden, dass das ESP-DHS selbst zu einem Sicher-
heitsrisiko wird, ist es wichtig, den Zugri↵ auf den Mikrocontroller während des Flashens
der Firmware zu beschränken und die Datenbank vor unbefugten Zugri↵en zu schützen. In
zukünftigen Arbeiten kann das ESP-DHS verbessert werden, indem mehr Mikrocontroller-
Architekturen unterstützt und die Updates kabellos auf das Gerät geflasht werden.
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Abstract

The number of Internet of Things (IoT) devices has been growing rapidly over the past
few years. These devices are often low-end and deployed by amateur users that do not
configure them properly. This makes them a lucrative target for attackers, the Mirai
Botnet from 2016 being the most notable example of this. Configuring the devices prop-
erly, for example, by deactivating unused protocols and changing default configurations,
is a simple yet very e↵ective measure to improve device security. So far, a solution does
not exist that automates updating the security configuration of low-end embedded devices
like the ESP32-S3. Current IoT device monitoring systems focus primarily on the emitted
network tra�c. This thesis proposes a solution that monitors the security configuration
of the ESP32-S3 microcontroller and adjusts it automatically if necessary.

The solution implemented in this thesis is called ESP32-S3 Device Hardening System,
short ESP-DHS. The ESP-DHS has a server that periodically requests the security con-
figuration of an ESP32-S3 microcontroller over the MQTT protocol. The firmware running
on the microcontroller extracts the configuration upon request and sends it back to the
server, where it is analyzed. The server has access to the source code of the firmware and
activates secure boot, flash encryption, and memory protection if necessary. The updated
firmware is then compiled and flashed onto the ESP32-S3. All communication between
the server and the microcontroller and all actions taken by the server are logged to a
database. The ESP-DHS also has built-in support for an ATECC608B secure element
that provides cryptographic functions and secure key storage.

The ESP-DHS firmware uses 41% of the 2 MB flash memory of the ESP32-S3, 3% of CPU
power in idle state, and 7% during configuration extraction. Compiling and flashing the
firmware takes 1 minute and 27 seconds in the test environment. To avoid the ESP-DHS
itself becoming a security risk, it is important to restrict access to the microcontroller
during firmware flashing and to only grant database access to authorized entities. Future
work could focus on improving the ESP-DHS by supporting multiple types of microcon-
trollers and flashing updates over the air.
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Chapter 1

Introduction

1.1 Motivation

Security is an important requirement in any computer system but it is especially critical
in IoT devices. Compromised IoT devices are not only a problem for the security and
privacy of end users, but could also physically harm them when devices have sensors
and actuators in the real world. Since the IoT relies heavily on interconnection between
multiple devices, a compromised one is usually not isolated and can negatively impact the
whole network [1]. An empirical study with over 1.3 million IoT devices found that more
than 28 percent of them su↵ered from at least one known security vulnerability. Many
IoT devices communicate frequently with MQTT servers, of which 88 percent were found
not to be password protected due to misconfiguration [2].

Research showed that improper configuration is one of the main concerns in IoT devices.
This includes deactivated security features like secure boot or flash encryption, activated
but unused protocols or outdated protocols (e.g. HTTP instead of HTTPS or FTP instead
of FTPS). A cause of this is are inexperienced users deploying devices without changing
the default factory configuration [3]–[5]. By only adjusting the device configurations,
[5] showed that three out of four devices could be protected e↵ectively from the Mirai
malware. Security standards like the NIST IR 8259A [6] or NIST SP 800-53 [7] also
highlight the importance of proper device configuration.

Although device configuration is one of the simplest yet most e↵ective device hardening
techniques, current research about IoT device hardening does not reflect this importance.
There exist a number of systems that monitor the network tra�c or internal side channel
information of IoT devices and that can isolate a device if necessary [8]–[10]. However,
none of these systems take the configuration of the monitored devices into account. Prior
work provides concrete steps for securing the device configuration but does not automate
this process [3]–[5]. This leaves a gap for systems that monitor and automatically update
the security configuration of IoT devices.

1



2 CHAPTER 1. INTRODUCTION

1.2 Description of Work

This work proposes the ESP32-S3 Device Hardening System, short ESP-DHS. The system
automatically extracts, analyzes, and updates the security configuration of an ESP32-S3
microcontroller. The configuration is extracted by a part of the firmware running on
the microcontroller called the ESP-DHS client and analyzed remotely by the ESP-DHS
server. If the analysis reveals deactivated security features, the server activates them in
the source code of the firmware before building and flashing the hardened firmware onto
the microcontroller. All communication between server and client and all actions taken
by the server are logged and stored in a database, which allows analyzing the events that
happened in the system retrospectively. The ESP-DHS is a device monitoring tool that
does not primarily focus on anomaly detection and isolation but takes a proactive approach
to IoT device security. Meaning, that it takes action (i.e. updates the microcontroller
firmware) before an anomaly is detected.

The implemented solution consists of five main parts: the server, the database, the
firmware running on the microcontroller, the MQTTmessage broker, and the ATECC608B
secure element. The firmware extracts the device security configuration and sends it back
to the server upon request. The part of the firmware not responsible for the ESP-DHS
logic is called the user application. The secure element is added to the ESP32-S3 to im-
prove support for cryptographic functions and key storage, an example user application
is implemented to show how these capabilities can be leveraged.

Since standards play an important role in the security of IoT systems, this work presents
the most relevant IoT security standards. First, it is analyzed how the ESP32-S3 im-
plements the capabilities from the NIST IR 8259A standard, then, it is elaborated on
how selected NIST SP 800-53 controls are implemented in the ESP-DHS. This provides
guidance for when the system is implemented in contexts where compliance with these
security standards is essential, for example in large organizations.

As part of the evaluation, resource consumption, performance, and security enhancements
are tested. The ESP-DHS firmware running on the ESP32-S3 uses 40.9% of the 2 MB
flash memory and below 25% of the 0.7 MB of RAM. It only uses 3% of CPU power in idle
state and up to 7% during the configuration extraction. On the test machine (MacBook
Air M2 2022), activating security features and building and flashing the firmware takes 1
minute 27 seconds.

This work also discusses the potential attack surface the ESP-DHS introduces to the sys-
tem. Attack vectors are the physical connection between the device running the ESP-DHS
server and the ESP32-S3 as well as the unencrypted database. It is therefore important
to deploy the ESP-DHS in an environment where physical access to the microcontroller
is only possible by authorized parties and that the machine running the ESP-DHS server
and database is protected.

Immediate future work should focus on improving the security of the ESP-DHS by using
a database with access restrictions and flashing firmware over the air instead of using a
physical UART connection. The ESP-DHS could be extended to support more types of
microcontrollers and additionally monitor network tra�c to detect malicious behavior.
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1.3 Thesis Outline

This thesis is organized as follows: The background is provided in Chapter 2, which
includes information about the devices, tools, and protocols used for the development
of the ESP-DHS. Furthermore, the most relevant IoT security standards are introduced.
In Chapter 3, current research about device hardening, secure elements, and IoT device
monitoring and recovery is presented and discussed. Chapter 4 describes the design and
functionality of the ESP-DHS as well as how IoT security standards are implemented in
the system. Detailed information about all system components and their implementation
are provided in Chapter 5. Resource consumption, performance, and e↵ectiveness of the
implemented solution are discussed in Chapter 6. In Chapter 7, the thesis is summarized,
limitations of the ESP-DHS are discussed and potential future work is explored.
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Chapter 2

Background

In this chapter, the necessary backgrounds for understanding this thesis are provided.
First, selected aspects of the ESP32-S3 and its security features are presented and the
technologies used for the implementation are explained. Then, an overview of the most
relevant IoT security standards is given.

2.1 The ESP32-S3

ESP32 is a family of integrated, low cost and energy-e�cient Systems on a Chip (SoC) by
the Chinese company Espressif, first presented in 2016 [11]. These SoCs support Wi-Fi
and Bluetooth as well as a wide range of peripherals such as multiple programmable GPIO
pins and UART [12], making them a popular choice for various IoT applications [13].

Compared to other microcontrollers in the ESP32 lineup, the ESP32-S3 has AI accelera-
tion support that helps with neural network computing, which makes it especially suitable
for the Artificial Intelligence of Things (AIoT) market [14]. It has built-in security hard-
ware, 700 KB of internal SRAM, and is powered by a dual Xtensa LX7 microprocessor,
which can run at 240 MHz [12].

There exist multiple di↵erent versions of the ESP32-S3, in this work, the ESP32-S3-
DevKitC-1 is used. Figure 2.1 shows a picture of the device, Table 2.1 describes its most
important hardware components.

1 2 3 4 5 6 7 8 9

Figure 2.1: Important Hardware Components of the ESP32-S3-DevKitC-1

5



6 CHAPTER 2. BACKGROUND

Label Name Description
1 MCU Module Low energy ESP32-S3-WROOM-1 module with

support for Wi-Fi, Bluetooth and a wide range of
peripherals.

2 Pins GPIO, power supply and ground pins to which
multiple peripherals can be connected.

3 Power Regulator Converts 5V power supply into 3.3V output.
4 Power On LED Lights up when board has power through the USB

connector.
5 USB-to-UART Bridge Converts the received USB signal to an UART signal.
6 Reset Button Causes the system to restart when pressed.
7 Boot Button Pressing the reset button while holding the boot

button will cause the device to download new
firmware through the serial port.

8 USB-to-UART Port Micro-USB port for power supply and
communication with the chip by first going through
the USB-to-UART bridge.

9 USB Port Micro-USB port (USB 1.1 specification), provides
power supply and direct communication with the
chip, can be used for JTAG debugging.

Table 2.1: Description of the labeled Hardware Components of Figure 2.1 [15]

2.2 ESP32-S3 Security Features

The ESP32-S3 provides a variety of di↵erent security features [16], that are described
in the following paragraphs. These features help to prevent untrustworthy code from
being executed, secure the device’s identity, provide secure storage for data, and ensure
encrypted communication between devices.

2.2.1 eFuses

If activated, many of the security features cannot be deactivated anymore. This is due
to eFuses, special bits in the ESP32 memory that are initially all 0 and cannot be reset
anymore once set to 1. For debugging purposes, eFuses can be simulated in flash memory.
eFuses can only be accessed by hardware and not by the software running on the CPU,
making them a safe place to store confidential information, for example, the flash encryp-
tion key [17]. However, due to their one-time programmability, eFuses are not always a
suitable solution and secure elements might needed, which is explained in more detail in
Section 2.3.
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2.2.2 Secure Boot

Secure Boot ensures that no untrustworthy code can be executed on the device by checking
that every piece of software booted was signed with the private secure boot signing key.
A digest of the public key is stored in eFuses. Signed application images have a signature
block appended, which contains a signature of the preceding image and the secure boot
public key. The first stage bootloader resides in ROM and therefore does not need to
be checked, however, the second stage bootloader and application image both reside in
flash and need to be signed. The first stage bootloader loads the second stage bootloader
into RAM and verifies its signature, i.e. the public key digest in the eFuses is compared
with the public key from the signature block and then it is checked whether the image
signature is correct. If the verification is successful, the second-stage bootloader loads the
application image and goes through the same verification procedure. Only if this check
is also successful, the application will be started. If verification fails at one step and
aggressive key revocation is activated, the public key digest in the eFuses will be marked
as revoked and the corresponding private key cannot be used anymore to sign app images
and bootloaders. This provides a high level of security against physical attacks on the
device. Once activated, secure boot and aggressive key revocation cannot be deactivated
since the respective eFuses are burned [18].

2.2.3 Flash Encryption

Flash Encryption encrypts the flash memory of the ESP32-S3 and therefore helps ensure
the confidentiality of the stored firmware and data. When this feature is first activated,
the firmware is flashed in plaintext and gets encrypted on the first boot using XTS-
AES-256. This algorithm was specifically designed for disc encryption and addresses the
weaknesses of e.g. AES-CTR. The flash encryption keys are stored in eFuses. Physically
reading out the contents of the flash memory does not reveal its contents. When flash
encryption is activated, some partitions are encrypted by default, including the second-
stage bootloader, partition table, and application image. All other partitions need to be
marked manually with an encryption flag. Flash encryption cannot be turned o↵ once
activated. For the best level of security, it is recommended to use flash encryption and
secure boot in conjunction [19].

2.2.4 Memory Protection

Memory Protection is a low-level scheme that provides the ability to monitor memory
access and raise an exception if any attempt that breaks these permissions is made. This
feature is useful for preventing remote code injections [16].
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2.2.5 Transport Layer Security

Transport Layer Security (TLS) support is built into the ESP32-S3, which should be used
for all external communications. Taking advantage of this security feature does not only
require activating the secure version of the desired protocol (e.g. HTTPS or MQTTS) in
the device configuration but also changing the application code accordingly [16].

2.2.6 Other Security Features

The ESP32-S3 provides capabilities for the secure provisioning of devices in Wi-Fi systems,
secure over-the-air (OTA) updates, and non-volatile storage (NVS) encryption. Further-
more, digital signatures based on RSA are supported with hardware acceleration. This
helps establish a secure device identity to a remote endpoint [16]. These features are not
explained in more detail since they are not an important part of the solution implemented
in this thesis.

2.3 Secure Elements (ATECC608B)

Storing cryptographic keys in a secure environment is an important part of IoT security.
The eFuses on the ESP32 are hardware protected and do not allow access by software
running on the device. However, because of their one-time programmability, they are not
suited for all kinds of applications [17]. To be more flexible while still adhering to good
security practices, secure elements can be used. Secure elements have the capability to
perform cryptographic operations like true random number generation or encryption/de-
cryption tasks, and store keys with hardware protection. Applications use an interface to
the secure element to feed the data on which a cryptographic operation shall be performed
to the secure element, which then returns the result. This way, cryptographic function-
ality is physically separated from the rest of the application [20]. The secure element
used in this thesis is the ATECC608B, a low-cost device by Microchip that provides the
aforementioned functionality [21].

2.4 MQTT Protocol

Message Queuing Telemetry Transport (MQTT) is a lightweight publish-subscribe proto-
col, often used in the context of IoT applications. It is designed to have low latency in
unreliable networks with low bandwidth. The broker is the central unit of any MQTT
system and distributes the messages in the network. Clients can publish and subscribe to
topics [22].

Figure 2.2 shows an example of how this works. A straight line denotes that a message
was published, a dotted line denotes that a message was received. Client 1 and Client
2 are both subscribed to /topic-1. Client 1 is additionally subscribed to /topic-2.
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When Client 1 publishes a message to /topic-1, the broker distributes the message to all
clients that are subscribed to the topic, in this case, the message is returned to Client 1
and forwarded to Client 2. When Client 2 publishes a message to /topic-2, the message
is only passed to Client 1 since it is the only client subscribed to this topic.

Figure 2.2: MQTT Protocol Example

2.5 ESP32 Application Development

2.5.1 ESP-IDF

Applications for the ESP32-S3 are developed using the Espressif Integrated Development
Framework (ESP-IDF) [12]. The framework facilitates firmware development by providing
capabilities for building, flashing, or configuring the project. It also helps with setting
up a project by providing code snippets for di↵erent use cases or editing the eFuse table.
The ESP-IDF Visual Studio Code extension o↵ers many of these capabilities through a
graphical user interface (GUI).

2.5.2 Project Configuration

ESP-IDF projects are configured using the Kconfig language [23]. Configuration options
provide for example the Wi-Fi password or define whether secure boot is activated or not.
Since it is a compile-time configuration system, firmware needs to be recompiled after
configuration changes are made and the values are available in the code as preprocessor
macros. Kconfig provides functionality for defining dependencies between options, default
values, or grouping options. ESP-IDF provides a package that helps to edit and create
such configurations easily [24].

Listing 2.1 shows an example of a Kconfig file that specifies a submenu in an ESP-IDF
project. The menu keyword is followed by the title of the submenu. ESP_WIFI_SSID is
the name of the configuration, its value is made available in the ESP-IDF project as a
macro with the name CONFIG_ESP_WIFI_SSID. If no value is set manually, the default
value “myssid” is used. The help keyword is followed by a short explanation of what the
configuration is used for.
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1 # Kconfig.projbuild
2

3 menu "DHS WiFi Configuration"
4 config ESP_WIFI_SSID
5 string "WiFi SSID"
6 default "myssid"
7 help
8 SSID (network name) to which the program connects.

Listing 2.1: Kconfig Menu Example

In ESP-IDF projects, Kconfig files define the structure and options of the project con-
figuration, sdkconfig files store the assigned values. Listing 2.2 shows an example of a
sdkconfig file. Configuration can be edited using a graphical user interface or a command
line tool provided by the ESP-IDF. When editing configuration with Python code, the
Kconfiglib package can be used [25].

1 # sdkconfig
2

3 CONFIG_SOC_MPU_REGIONS_MAX_NUM =8
4 CONFIG_SOC_ADC_SUPPORTED=y
5 CONFIG_ESP_WIFI_SSID="myssid"

Listing 2.2: Sdkconfig Example

2.6 IoT Security Standards

In this section, the most important security standards in the context of hardening an
ESP32 microcontroller are discussed, with an overview given in Table 2.2. This work
focuses mainly on the NIST standards because they are freely available, but a comparison
of how NIST SP 800-53 relates to ISO/IEC 27001 is given at the end of this chapter. One
of the biggest challenges in IoT security is the fragmentation of security standards and
regulations [26]. Many of the conventional security standards do not explicitly address
the needs of IoT systems, but they can be adapted to do so [27].

2.6.1 Platform Security Architecture

First introduced in 2017 by ARM, the Platform Security Architecture (PSA) is a security
framework that aims at bringing security best practices to IoT devices. PSA security
certificates are issued by PSA Certified, a partnership between ARM and multiple other
companies. Multiple device manufacturers, including Espressif, Mediatek, AWS, and
Texas Instruments, have adopted PSA certificates for some of their devices. Complying
with the PSA standards can give them easier access to global markets because they
automatically comply with industry and government standards as well as IoT legislation.
The certificates are not designed for a specific implementation or architecture, therefore
they are applicable across a wide range of software, devices, and chips [28].
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Standard Description
PSA [28] Provides IoT security best practices and guidelines for device

manufacturers, silicon vendors, and system software providers.
PSA Certificate Level 1 automatically ensures alignment with
NIST IR 8259A and other standards.

NIST IR 8259A [6] Provides device manufacturers with a basic set of device capa-
bilities that are needed to protect IoT devices and systems.

NIST SP 800-53 [7] Provides a rich set of privacy and security controls for organi-
zations and information systems to protect them against human
errors, hostile attacks, or structural failures amongst others.

ISO/IEC 27001 [29] Provides a framework for implementing and maintaining an In-
formation Security Management System (ISMS) within an orga-
nization and defines requirements the system must meet.

Table 2.2: IoT Security Standards Overview

An important concept for PSA is the Root of Trust (RoT). It describes a collection of
inherently trusted functions that the remainder of the system or device can utilize to
ensure security [28].

There exist four di↵erent levels for PSA certificates [28]:

• Certification Level 1
This certification is for device, software, and chip vendors that want to show that
sound security principles were applied. This certification can be achieved relatively
quickly by choosing pre-certified silicon and software. The certification process
requires the vendor to fill out a questionnaire, after which the device is reviewed in
a PSA Certified laboratory. The ESP32-S3 is level 1 PSA certified [30] and therefore
automatically aligns with NIST 8259A.

• Certification Level 2 / 2+
With a level 2 certificate, chip vendors can show that their PSA Root of Trust
(PSA-RoT) e↵ectively safeguards against software attacks. Level 2+ additionally
recognizes that cryptographic keys and operations are physically secured with a
secure element.

• Certification Level 3 / 3+
A level 3 certificate shows that a device is capable of defending against significant
hardware and software attacks. A 3+ certification ensures a device protects crypto-
graphic keys and operations physically.

• Certification Level 4
A level 4 certified device has substantial protection against physical and software
attacks due to an integrated secure enclave or an external secure element.
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2.6.2 NIST IR 8259A

The NIST Interagency/Internal Report 8259A (NIST IR 8259A), also known as the “IoT
Device Cybersecurity Capability Core Baseline”, is aimed at device manufacturers and
provides them with a set of basic security features that make their devices more secure
if implemented. The document does not describe, how these capabilities must be im-
plemented, leaving a lot of flexibility for the manufacturers [6]. Table 2.3 lists the six
capabilities with a short description. Table 4.1 shows, how these capabilities are imple-
mented in the ESP32-S3 Microcontroller.

It must be noted that just using a device that implements the measures provided by this
report is not su�cient for achieving high security in a system. For example, the ESP32-
S3 implements secure boot and flash encryption for data protection, but these security
mechanisms are not enabled by default. In order to achieve high security, the developer
needs a deep understanding of the device to configure it properly.

Capability Description
Device

Identification
The device can be uniquely identified, both phys-
ically and logically.

Device
Configuration

The device’s software configuration can be
changed, but only by authorized entities.

Data Protection Stored or transmitted data can be protected from
unauthorized access and modification.

Logical Access to
Interfaces

Logical access to the device’s local and network
interfaces is only granted to authorized entities.

Software Update Authorized entities can update the device’s soft-
ware by using a secure configurable mechanism.

Cybersecurity
State Awareness

The device can keep track of its security state
and report it to authorized entities.

Table 2.3: NIST IR 8259A Capabilities [6]

2.6.3 NIST SP 800-53

The NIST Special Publication 800-53 (NIST SP 800-53), titled “Security and Privacy
Controls for Information Systems and Organizations”, is one of the most widely adopted
information security frameworks in the world [31]. The current version is Revision 5,
published in 2020. It provides a comprehensive set of security and privacy controls for
organizations and information systems to protect them against a wide variety of threads,
including human errors, hostile attacks or structural failures [7].

Table 2.4 gives an overview of the di↵erent categories of controls from NIST SP 800-
53, Table 2.5 contains an excerpt of controls with a short description that are especially
relevant in the context of hardening an ESP32-S3 microcontroller.
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ID Family
AC Access Control
AT Awareness and Training
AU Audit and Accountability
CA Assessment, Authorization, and Monitoring
CM Configuration Management
IA Identification and Authentication
IR Incident Response
MP Media Protection
PE Physical and Environmental Protection
RA Risk Assessment
SA System and Services Acquisitions
SC System and Communications Protection
SI System and Information Integrity
SR Supply Chain Risk Management

Table 2.4: Excerpt of NIST SP 800-53 Security and Privacy Control Families [7].

ID Title Description
CM-2 Baseline

Configuration
Define and continually develop a baseline configura-
tion of the system to ensure good security settings are
employed.

CM-3 Configuration Change
Control

Review proposed configuration changes and document
them

SC-3 Security Function
Isolation

Security functions must be isolated from non-security
functions.

SC-8 Transmission
Confidentiality and

Integrity

Protect the confidentiality and integrity of transmit-
ted information.

SC-13 Cryptographic
Protection

Use cryptographic functions for digital signatures,
random number or hash generation, or protecting sen-
sitive information.

SI-4 System Monitoring Monitoring the system to detect unauthorized con-
nections or malicious application behavior.

SI-7 Software, Firmware,
and Information

Integrity

Ensure software and firmware integrity and provide
security protection mechanisms against unauthorized
code execution.

IA-3 Device Identification
and Authentication

Devices should be authenticated and uniquely identi-
fied before establishing a network connection.

Table 2.5: Excerpt of relevant NIST SP 800-53 Controls [7]
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2.6.4 ISO/IEC 27001

ISO/IEC 27001 is a standard by the International Organization of Standardization (ISO)
and the International Electrotechnical Commission (IEC). ISO standards are internation-
ally recognized and organizations can get certified against ISO/IEC 27001 [29].

Compared to NIST SP 800-563, ISO/IEC 27001 does not mainly focus on the implemen-
tation of specific security controls but rather provides organizations with a framework for
implementing and maintaining an Information Security Management System (ISMS) [29].
An ISMS is a system to manage risks, protect data, and maintain cybersecurity compli-
ance [32]. Annex A of ISO/IEC 27001 provides an overview of security controls that are
necessary to implement this standard, ISO/IEC 27002 elaborates on these controls and
provides more detail regarding their implementation [31]. According to [31], the controls
of NIST SP 800-53 comprise a superset of ISO/IEC 27001. Table 2.6 gives a mapping
between relevant NIST SP 800-53 controls and their ISO/IEC 27001 counterparts.

NIST SP 800-53 Controls ISO/IEC 27001 Controls
CM-2 None
CM-7 A.12.5.1
SC-3 None
SC-7 A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.1, A.14.1.3
SC-8 A.8.2.3, A.13.1.1, A.13.2.1, A.13.2.3, A.14.1.2, A.14.1.3
SC-13 A.10.1.1, A.14.1.2, A.14.1.3, A.18.1.5
SC-41 None
SI-4 None
SI-7 None
IA-3 None
IR-4 A.16.1.4, A.16.1.5, A.16.1.6
IR-5 None
SR-5 A.15.1.3

Table 2.6: Mapping of NIST Controls to ISO Controls [31].



Chapter 3

Related Work

In this chapter, solutions for securing IoT devices from recent scientific literature are dis-
cussed. Section 3.1 focuses on a variety of di↵erent approaches to IoT security like device
hardening, security management servers, and frameworks for the IoT device hardening
process. The two research works discussed in Section 3.2 are about device hardening
solutions that address specifically the issue of secure key storage and provisioning in IoT
devices. Section 3.3 discusses four di↵erent solutions for device monitoring and recovery.

3.1 Device Hardening Solutions

Various device hardening solutions are summarized and compared in Table 3.1. The
following paragraphs describe the di↵erent solutions in more detail.

Research Work Solution
Name

Devices Summary

Carillo et al. [3]
(2023)

HALE-IoT Higher-end
devices e.g.
Linksys

EA6300v1

A framework for harden-
ing legacy IoT devices by
retrofitting defense systems into
device firmware

Echeverŕıa et al. [4]
(2021)

– Arduino
Mega 2560,
Raspberry Pi

A seven-step model to minimize
the attack surface by executing
device hardening processes

Kelly et al. [5]
(2020)

– IP Camera,
Raspberry
Pi, Siricam,
VM Device

The Mirai malware was ana-
lyzed and four IoT devices were
hardened against it by proper
device configuration

Yoon & Kim [33]
(2017)

– – An architecture for a remote
security management server for
IoT devices

Table 3.1: Device Hardening Solutions

15
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HALE-IoT [3] is a framework that can retrofit security firmware on higher-end legacy IoT
devices that do not receive manufacturer updates anymore. The HALE-IoT firmware is
implanted into the file system of the device without having access to the original source
code. HALE-IoT wraps the vulnerable services of the device with their more secure
counterparts, e.g. HTTP is wrapped with HTTPS, FTP with SFTP, and Telnet with SSH.
In between the wrapped services and the new secure front end, firewalls are installed for
proactive attack detection. Furthermore, a secure admin interface for device management
is provided. To evaluate its e↵ectiveness, almost 400 emulated firmware images and four
physical devices got HALE-IoT implanted, showing that the devices continued working
as expected while also having high detection and prevention rates of attacks.

To approach the device hardening process in a structured manner, the authors of [4]
propose a seven-step model. The seven steps are:

1. Defining the purpose and requirements of the device

2. Assessing the device risks

3. Disabling unnecessary protocols, services, and configuration

4. Determining the device’s attack surface

5. Finding vulnerabilities

6. Conducting the device hardening

7. Evaluation

The risks, attack surface, and vulnerabilities can be quantified in order to receive an
overall maturity level of the device on a scale from 0 (bad) to 4 (good). The model
was tested in two case studies, the applied hardening methods include remapping port
numbers, disabling unused file systems, configuring software updates, activating secure
boot, configuring a firewall, and blocking the network interface when an unknown device
was connected. It could be shown that with these measures, the device is not susceptible
to a wide range of cyberattacks anymore.

In [5], hardening techniques against the Mirai botnet were proposed, implemented, and
tested. First, a secure test environment consisting of four IoT devices was set up, then,
the malware was deployed on these devices, which were all running on their default con-
figurations. The authors show that three out of the four devices were vulnerable to the
malware and got infected. By analyzing the infected devices, the behavior of the mal-
ware and the used attack vectors could be determined. Based on this analysis, the device
was hardened by adjusting its configuration. Several hardening methods were suggested:
Changing the default credentials, using SSH instead of Telnet, changing the Telnet port
if the protocol cannot be deactivated, using HTTPS instead of HTTP, blocking access
to certain IP addresses/ports that were used by the malware and disable the SMTP and
FTP protocols. These countermeasures proved to be e↵ective as none of the four devices
could be infected anymore after hardening. This shows that proper device configuration
can have a great impact on the security of an IoT device.



3.2. SECURE KEY GENERATION AND STORAGE 17

The authors of [33] propose an architecture for a remote security management server that
manages various security functions of IoT devices remotely in order to make them more
secure. The server consists of 16 di↵erent modules, for example, a Privacy Protection
Module, Secure Storage Module or Crypto Engine Module. Four modules are especially
relevant for this thesis: The Firmware Update Module provides functionality to keep the
firmware on the IoT device up-to-date. The Security Policy Management Module analyzes
the device’s resources and sets a policy for the device, including an appropriate security
configuration. The Vulnerability Assessment Module checks the device’s configuration
and searches for common and new vulnerabilities. The Device State Monitoring Module
continuously checks the state in which the device currently is and uses this information
to detect intrusions by hackers. No actual implementation of the architecture or some of
its modules was provided.

The papers from Table 3.1 have di↵erent approaches to IoT device hardening. Except
for [33], concrete implementations were provided and tested. Both [5] and [4] suggest
measures that can be taken to make IoT devices more secure. In many IoT devices, these
measures can be implemented relatively easily. However, for legacy IoT devices that do
not receive firmware updates anymore and whose firmware code is not accessible, it can
be di�cult to implement them. Therefore, [3] provides a framework for the implementa-
tion of these measures by retrofitting security firmware on higher-end IoT devices. The
identification of security vulnerabilities and the implementation of the device hardening
measures were performed manually in all these papers, which may lead to bad scalability
of these approaches.

3.2 Secure Key Generation and Storage

There exist two main approaches for the problem of secure key generation and storage on
IoT devices: o✏oading the key generation to other devices or using a crypto coprocessor.
Table 3.2 summarizes and compares these two solutions.

Research
Work

Solution
Name

Devices Architecture Advantages/Drawbacks

McPherson
& Irvine [34]

(2020)

– MSP430G2553
with

Smartphones

O✏oad key
generation and
provisioning to
smartphones

+ No additional
hardware required
+ Deployable through
firmware update

Pearson et
al. [20]
(2020)

SIC2 ESP32 with
ATECC608A

Cryptographic
operations and
key storage on

crypto
coprocessor

+ lower energy
consumption and faster
TLS handshake
– Additional hardware
required

Table 3.2: Key Generation and Storage Solutions

Since low-end IoT devices usually cannot create suitable entropy to generate secure keys,
[34] propose an architecture that leverages the capabilities of smartphones in the same
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network for this purpose. The architecture can be deployed to any low-cost IoT device
by a firmware update because no additional hardware is required. The architecture was
tested with a one dollar general purpose microcontroller, performance analysis showed
good results.

SIC2 is a framework for secure key generation and provisioning on IoT devices using crypto
coprocessors. It provides a solution for device manufacturers to write private keys securely
into the crypto coprocessor. As a proof of concept, the framework was implemented using
an ESP32 and an ATECC608A. It was shown that the ESP32 is vulnerable to format string
attacks that can leak cryptographic keys. Storing the keys on the crypto coprocessor closes
this security vulnerability, even if the attacker has access to the physical UART port of
the ESP32. Additionally, results showed an improvement in TLS handshake time of up
to 82%, and energy consumption of the system could be lowered by up to 70% [20].

Although the approach taken by [34] can be implemented more cheaply, performing cryp-
tographic operations and key provisioning locally on the device is still the preferred option
as the communication between the smartphone and the IoT device is an additional po-
tential attack vector. The hardware used by [20] is very similar to the hardware used
in this thesis, therefore, the expected security benefits are the same. However, using a
secure element as the only device hardening technique is not su�cient, since the leakage of
cryptographic keys is only one security vulnerability among many. Therefore, the solution
proposed in this thesis uses the secure element as only one pillar of a more comprehensive
device hardening approach.

3.3 Device Monitoring and Recovery

Research works around device monitoring and recovery can be grouped into two categories:
solutions that monitor side channel information and solutions that monitor network tra�c.
Table 3.3 compares the current device monitoring and recovery solutions.

3.3.1 Side-channel Information Monitoring

In [35], a generally applicable system for detecting malicious behavior and recovering from
it is proposed. The system can detect cache side-channel attacks, distributed DoS attacks,
and CPU stealing attacks.

The architecture consists of the IoT device and a set of trusted services that are running
in the cloud. The IoT device is internally divided into a trusted and an untrusted environ-
ment. Malicious activity detection is implemented by a watchdog counter in the trusted
part of the IoT device, which needs to be reset by a signal from a trusted service in the
cloud. If the counter is not reset, the IoT device will reboot and install a secure version of
the firmware to overwrite any malicious application. To detect malicious behavior, a local
machine learning model analyzes whether hardware performance counters (low-level data
about the performance of the running program) deviate too strongly from the expected
behavior. If this is the case, the recovery component is invoked.
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Research
Work

Solution
Name

Devices Anomaly
Detection
Method

Monitored
Information

Stable State
Recovery
Method

Zahan et al.
[9] (2024)

IoT-AD Intel NUC
mini,
various

smart plugs

Comparing
Event

Signatures
with ML

Network
Tra�c

Isolate the
device and
rollback

propagated
states

Medwed et
al. [35]
(2021)

– Layerscape
1046ARDB

Machine
Learning
Model

Internal
Performance

Metrics

Write secure
firmware
image to
device

Wang et al.
[8] (2021)

IoT-
Praetor

Smart-
Things
Devices

Pattern
Matching

with Device
Usage Rules

Network
Tra�c,
Smart-

Things API

–

Zhang et al.
[10] (2018)

HoMonith Smart-
Things
Devices

DFA
Matching
Algorithm

Wireless
Network
Tra�c

–

Table 3.3: Device Monitoring and Recovery Solutions

A limitation of the watchdog counter approach for recovering the device is the lack of
knowledge of the IoT device about why it did not get a reset signal. For example, a
failure of the trusted services can lead the IoT device to reboot and flash new firmware,
although no malicious activity has happened. A similar problem exists with the hardware
performance counters used for malicious behavior detection since deviations might not
necessarily be a result of malicious activity. Nevertheless, the device is always reset when
such a deviation occurs.

3.3.2 Network Tra�c Monitoring

There exist three di↵erent systems for network tra�c monitoring: HoMonith, IoT-Praetor,
and IoT-AD. In the following paragraphs, these systems are presented and compared.

HoMonith [10] is a system for detecting malicious behavior of SmartApps, applications
that run on Samsung IoT devices. It was designed to detect two types of malicious
behaviors: over-privileged accesses (the application uses commands that are not needed
for its desired purpose) and event spoofing (the application sends commands to alter the
behavior of other SmartApps). The system consists of two main parts: the SmartApp
Analysis Module and the Misbehavior Detection Module. The analysis module extracts
Deterministic Finite Automatons (DFA) from benign applications by either performing
a static analysis of their source code or by analyzing the UI of the application with
Natural Language Processing (NLP). The misbehavior detection module then collects all
network tra�c, filters out the relevant packets, and infers in which state or transition the
SmartApp currently is. Then, a DFA matching algorithm is applied to detect whether
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the current state of the SmartApp is valid in the automaton of the benign application. To
evaluate the system, 30 benign SmartApps were modified to create both an over-privileged
and an event-spoofing version. Over 98% of malicious behavior of the modified versions
was detected, while only a maximum of 8% of benign application behavior was labeled
as malicious. This work was performed using the Samsung SmartThings platform, but
the approach of determining DFAs and analyzing the network tra�c can be generalized.
However, some device manufacturers could modify the wireless tra�c patterns, influencing
the accuracy of HoMonith.

IoT-Praetor [8] is a system to automatically extract the baseline behavior of IoT devices
in the Samsung SmartThings ecosystem and detect malicious application interaction and
communication behaviors. To specify the application behavior, a Device Usage Descrip-
tion (DUD) model is proposed. This tool consists of three parts: the Automatic Rule
Extraction Module, the DUD Generation Module, and the Behavior Detection Engine.
The automatic rule extraction module extracts the interaction behavior of the device by
analyzing the applet, applet description, and the device with NLP tools. The commu-
nication rules are extracted by obtaining characteristics of network communication from
the device. The DUD generation module uses the behavioral information from the au-
tomatic rule extraction module to generate Device Usage Rules (DUR) as a whitelist of
device behavior. The behavior detection engine analyzes the real-time interaction and
communication behavior of the devices. Interaction information is gathered through the
SmartThings API which provides data about device location and installed applications.
The communication behavior is obtained by monitoring network packets between the de-
vices, the cloud, and the router. The real device behavior is then compared to the DURs
with a pattern-matching algorithm to detect any anomalies and take appropriate action
such as logging the event or sending an alert. The system successfully detects malicious
interaction behavior in 94.5% of the cases and malicious communication behavior in 98%
of the cases. The additional delay introduced is in the milliseconds. IoT-Praetor was
designed and implemented for the Samsung SmartThings platform, so additional e↵ort
is needed to use IoT-Praetor components with other platforms. The authors plan to ex-
tend this system to other platforms. Because of the high real-time requirements of IoT
devices, the performance of the solution should be further improved. An additional limi-
tation is that IoT-Praetor assumes that the device communication behavior can initially
be extracted in a clean environment and does not change in the life cycle of the device.

The IoT Anomaly Detector (IoT-AD) [9] is a framework that detects interaction and
communication anomalies of IoT devices and mitigates the e↵ect the e↵ects of these
anomalies by providing a method for the devices to recover to their last known stable
state. The system is able to detect anomalies that are due to device malfunctions as well
as malicious attacks. In IoT-AD, all the tra�c from the whole IoT network is routed
through the IoT-AD controller. This tra�c is then scanned by the event identifier to
extract network events. After that, a lightweight machine learning model in the Packet
Level Anomaly Detector analyzes these events to detect whether an event has an unknown
structure, which would result in discarding it. Then, the Device Interaction Validator
asynchronously checks whether the interactions in that event were legitimate. If not, the
devices are rolled back to their last known stable state, and the device causing the anomaly
is isolated. IoT-AD has an accuracy of up to 98%. The additional delay introduced to the
system is around 2 ms. A limitation of IoT-AD is the IoT-AD controller, which is a single
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point of failure. It also does not consider all types of failures that could occur in a system,
like power failures and is not well scalable to systems with hundreds of IoT devices. The
rollback functionality of this system does not flash new firmware onto a↵ected devices
but resets internal state variables to the last known secure value (e.g. light on / light
o↵). Also, IoT-AD does not provide the capability to reset the device that is causing the
anomaly but only isolates it. Performing anomaly behavior checks synchronously would
eliminate the need for rollbacks, however, the Device Interaction Validator would become
a performance bottleneck for the whole system.

3.4 Summary

Current research on IoT device hardening emphasizes the importance of proper device
configuration. The authors of [5] and [4] show that IoT devices are vulnerable to a
variety of attacks when used with their standard configuration. These attacks can be
mitigated by configuring the devices properly. In case of higher-end legacy devices whose
firmware cannot directly be updated with a more secure device configuration, [3] provides
a framework to implant the necessary security measures on the device next to the original
firmware. All these papers provide concrete steps that can be taken to harden the devices,
however, no concrete implementation of a tool that automates this process is given.

Another important aspect of IoT device security is secure key generation and provision-
ing. The two main solutions are o✏oading this functionality to smartphones in the same
network [34] or using a crypto coprocessor [20]. It could be shown that both approaches
improve security and can for example prevent the leakage of cryptographic keys. This the-
sis builds directly upon the findings of [20] since almost the same hardware is used. The
demonstrated security improvements are therefore assumed to also apply to the solution
implemented in this thesis.

The third branch of IoT device hardening research is about device monitoring and recovery.
There exists a solution that monitors side-channel information of the devices [35], but
with HoMonith [10], IoT-Praetor [8] and IoT-AD [9], the majority of solutions focuses on
monitoring the network tra�c. These papers use di↵erent methods for the detection of
malicious behavior, although machine learning approaches are becoming more and more
popular. While HoMonith and IoT-Praetor focus purely on the detection of malicious
behavior, IoT-AD also automatically isolates the causing device and resets the states of
devices that were a↵ected by the anomaly. The solution by [35] is the only one that tries
to recover the malicious device itself by writing a secure firmware image to the device
after a malicious event occurs. All these monitoring solutions focus on the detection of
malicious behavior after the device has already been compromised. None of the solutions
extracts the device state and proactively ensures a secure device configuration, which is
the problem this thesis is going to address.
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Chapter 4

Design

In this chapter, the requirements, architecture, workflow, and components of the ESP-
DHS are introduced. The architecture is the foundation for the implementation, which is
explained in more detail in Chapter 5. Furthermore, it is elaborated on how the architec-
ture implements the NIST IR 8259A and NIST SP 800-53 security standards.

4.1 Overview

From a high-level perspective, the ESP-DHS ensures the integrity of the ESP32-S3 micro-
controller, safeguards it against malicious tampering, and prevents it from unauthorized
access. The ESP-DHS consists of two main parts: the firmware running on the ESP32-S3,
called “client” and the software running on a physically separate host computer, called
“server”.

The server requests the security configuration from the client. When the client receives
such a request, it reads out the configuration of the microcontroller and sends it back to
the server. The configuration consists of security-relevant device properties like the MAC
address or model number and a list of security features and whether they are activated
or not. If the server recognizes some deactivated security features, these features are
automatically activated, and a new version of the client firmware is compiled and flashed
onto the ESP32-S3. This workflow and the involved components are described in more
detail in Sections 4.3 and 4.4.

4.2 Prerequisites

For ESP-DHS to work properly and to provide a high level of security, several prerequisites
need to be satisfied:

• A working Python version 3.9 or higher installation is necessary on the host com-
puter to run the ESP-DHS server.
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• The host computer needs to have the ESP integrated development framework (ESP-
IDF) installed in order to compile new firmware.

• The server needs access to the ESP32-S3 application source code so that it is able
to compile a new firmware version with improved security configurations.

• The host computer needs to have access to a good random key generator so that
the secure boot key generated on the server is of high quality and does not pose a
security vulnerability by itself.

• The ESP32-S3 and server need to be connected to the Internet or at least be in the
same network so that the ESP-DHS client and server are able to communicate.

• The ESP32-S3 needs to be physically connected via USB to the host computer in
order to receive firmware updates.

4.3 Components

The ESP-DHS consists of five components: the ESP32-S3 as the client, a secure element
that is connected to it, a server program that runs on a host machine, a state database, and
a MQTT message broker for the communication between the ESP32-S3 and the server.
Figure 4.1 shows an overview of the high-level components of the system, how they are
connected, and which protocols are used. The blue annotations show which controls are
implemented by the components, which is explained in more detail in Section 4.6.2. In the
implementation of the ESP-DHS used for the evaluation, the broker, server, and database
reside on the same physical machine, although it would be relatively easy to move them
to di↵erent machines.

The Python program on the server communicates with the SQLite database via the SQL
Alchemy Python library [36]. Between the server and the ESP32-S3 exist two connec-
tions, one for exchanging messages and one for flashing new firmware. For exchanging
messages, the MQTT protocol is used, therefore, messages always go through the MQTT
broker. Communication with the MQTT broker works via a wireless TLS-secured TCP
connection. In order to download new firmware, the microcontroller needs to be physi-
cally connected to the host computer via its USB UART port. If this connection is not
present, the server cannot update the ESP32-S3 and will not do anything besides logging
the MQTT message exchange and security state of the ESP32-S3.

As an additional security component, an ATECC608B secure element is physically con-
nected to the ESP32-S3 via the Inter-Integrated Circuit (I2C) protocol. The secure ele-
ment is intended to improve the security of user applications running on the ESP32-S3.
When extracting the device security configuration, the ESP-DHS client checks whether
the secure element is connected.
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Figure 4.1: Components with their Connections, Protocols, and Standards

4.4 Workflow

The workflow of the ESP-DHS is described in Figure 4.2. The blue annotations show the
used protocols and in the case of MQTT, on which topic the message is sent. Since the
MQTT broker is only a relay station for the message exchange, it is not modeled in the
sequence diagram. Also, the ATECC608B secure element is not modeled, since it is only
intended for use in the user application, not the ESP-DHS directly.

Figure 4.2: ESP-DHS Workflow Sequence Diagram
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First, the server requests the security configuration of the ESP32-S3 1 . This configura-
tion includes for example whether secure boot or flash encryption are activated. When
the ESP32-S3 receives the state request, it extracts its configuration and sends it back
to the server 3 . The server then analyzes this configuration to check, whether all the
relevant security features are activated. If the configuration is not secure, the server au-
tomatically compiles a new version of the firmware with updated security settings and
flashes it onto the ESP32-S3 5 . The firmware flashing happens, other than the previous
and subsequent message exchanges, over the physical USB UART connection and not
wirelessly over MQTT. After being flashed with the new firmware version and a success-
ful reboot, the ESP32-S3 sends a message to the server to notify that it is back online
7 . All communication happening between the server and the ESP32-S3 is logged and
stored in a database. This includes the security configuration request 2 and the actual
configuration that was received 4 . It is also stored when the server decides to flash a
new firmware onto the client 6 and when the client responds that it is back online after
being flashed 8 . This data can later be used to reproduce the system communications
or detect unexpected changes in the device configuration that were not initiated by the
ESP-DHS itself.

4.5 User Applications

The firmware running on the ESP32-S3 is divided into two parts: the ESP-DHS client
and the user application (UA). The client is the part of the firmware used for the ESP-
DHS itself, this includes establishing the network connection for MQTT messaging or
extracting the security configuration. However, the ESP-DHS is only intended to have a
supporting role in the IoT system, the user application provides the actual functionality
the device is used for. For example, when the ESP32-S3 is used as a weather station, the
user application is responsible for reading the data from the sensors and passing it to the
IoT gateway, the ESP-DHS client’s role is only to make sure the device is always in a
proper security state.

In this thesis, a minimal viable example of a user application is implemented to show
how the ESP-DHS client, the secure element, and the user application can coexist and
interact. The user application lets the built-in LED of the ESP32-S3 blink in random
colors. The random values for the red, green, and blue channels of the LED are provided
by the ATECC608B secure element.

The firmware on the ESP32-S3 is divided into components, which are shown in Figure
4.3. These are not to be confused with the more high-level ESP-DHS components from
Figure 4.1.

The Main component is the entry point of the ESP32-S3 firmware. This component
is primarily used to initialize other components like the MQTT, Wi-Fi, and ATECC
components, but also to start the user application by calling the UA Main component.
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Figure 4.3: ESP-DHS Client and User Application on the ESP32-S3

4.5.1 ESP-DHS Client Components

• The Wi-Fi component establishes a connection to a WPA2 secured Wi-Fi network.
The network connection can also be used by the user application.

• The MQTT component is responsible for managing the MQTT tra�c, this includes
handling the incoming messages but also sending messages when necessary. This
component is set up with the MQTT broker needed for the ESP-DHS and therefore
not intended to be used by the user application.

• The ATECC component is used for the connection with the ATECC608B secure
element. This component provides an interface to get a random number from the
secure element. More interface functions could be provided to make this component
more useful to the user application.

• The Config component extracts the relevant security configuration from the ESP32-
S3 and creates a JSON string with the data. This string can then be sent back to
the server by the MQTT component.

4.5.2 User Application Components

A user application could potentially consist of as many components as necessary, in Figure
4.3 this is shown with two gray boxes in the user application. The example user application
only consists of two components.

• The UA Main component is the entry point of the user application. It initializes the
blink component, gets a random number from the ATECC608B, and loops through
the random digits to calculate the color to be shown.
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• The Blink component sets up the connection with the LED and lets it glow in the
color received by the UA Main component.

4.6 Security Standards

The ESP-DHS implements security controls from the NIST IR 8259A and NIST SP 800-
53 standards. This section shows, how these standards are implemented in the ESP-DHS.
NIST IR 8259A is presented in more detail in Section 2.6.2, NIST SP 800-53 in Section
2.6.3.

4.6.1 NIST IR 8259A Mapping to ESP32-S3 Components

Since the ESP32-S3 microcontroller is used in the ESP-DHS, the solution adheres to the
NIST IR 8259A standard. This is because the NIST IR 9259A standard is a subset of
the PSA standard, and the ESP32-S3 is PSA certified [28]. NIST IR 9259A consists of
seven capabilities IoT devices should have. The following paragraphs show, how these
capabilities are implemented in the microcontroller. A summary of the capabilities is
provided in Table 2.3, the implementations are listed in Table 4.1.

The first device capability is Device Identification, which means that every device needs
to be uniquely identified both physically and logically [6]. The factory MAC address of
the ESP32-S3 uniquely identifies the microcontroller physically. In case the user defines a
custom MAC address, he is responsible for ensuring uniqueness [37]. Logical identification,
for example, when connecting the device to a remote endpoint, can be ensured with digital
signatures. The ESP32-S3 provides a dedicated digital signature component [16].

The Device Configuration capability states that the device’s software configuration can
be changed, but only by authorized entities. Changing the configuration requires flashing
a new firmware onto the microcontroller that has implemented these changes. By using
the secure boot feature of the ESP32-S3, it can be ensured that only authorized entities
that have the secure boot signing key can flash new firmware [18].

The Data Protection capability ensures that devices protect stored and transmitted data
from unauthorized access. Data stored on the ESP32-S3 can be encrypted with flash
encryption. To protect transmitted data, security protocols like WPA3 and HTTPS are
supported [38].

The Logical Access to Interfaces capability ensures the device’s local and network in-
terfaces are only accessible by authorized entities. This is ensured by secure boot, which
makes sure that no unauthorized code can run on the device that could access the device’s
APIs [18].

The Software Update capability makes sure that authorized entities can update the soft-
ware or firmware running on the device by a secure and configurable mechanism. The
ESP32-S3 provides two main mechanisms for updating its firmware: over-the-air (OTA)
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Capability Implementation
Device

Identification
Physical identification possible by factory MAC
address [37], logical identification for remote con-
nection by digital signature support [16]

Device
Configuration

Project configuration is changeable but requires
flashing new firmware [24]

Data Protection Flash encryption protects stored data [24],
WPA3 and HTTPS protect (wirelessly) trans-
mitted data [38]

Logical Access to
Interfaces

Secure boot prevents unauthorized code from
running that could access APIs [18]

Software Update Updates can be distributed OTA or via UART,
secure boot ensures the integrity of the flashed
firmware [18]

Cybersecurity
State Awareness

Secure boot key revocations are stored in eFuses
[18].

Table 4.1: NIST IR 8259A [6] Capabilities with ESP32-S3 Implementation

updates and standard firmware updates via UART. Secure boot can be used with both
methods and ensures the integrity of the firmware [18].

The Cybersecurity State Awareness capability ensures that the device can keep track of
its security state and report it to authorized entities. If the verification of an app image
fails during the boot process, the corresponding key is revoked [18]. This information is
burned into eFuses, which cannot be changed anymore but are still possible to read out
from application code or a connected device [17].

Many of these capabilities are implemented by secure boot and flash encryption. However,
since these features are not enabled by default, it is crucial for the device security to
activate them properly.

4.6.2 NIST SP 800-53 Mapping to ESP-DHS Components

The ESP-DHS implements several controls from the NIST SP 800-53 standard. The
following paragraphs describe which controls are implemented by which component, the
control IDs are indicated inside brackets in the text. A summary of the controls with
their corresponding implementation is found in Table 4.2. The components in Figure 4.1
are also annotated with the corresponding controls in blue color.

On the server, a baseline configuration is defined, which outlines the security features that
must be activated to ensure a secure system. The ESP-DHS automatically enables these
features on the ESP32-S3 if they are deactivated (CM-2). The server requests the security
configuration at regular intervals (SI-4), keeps track of any changes, and stores them in a
database (CM-3).
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ID Title Component Implementation
CM-2 Baseline

Configuration
Server The server has a predefined secure

configuration that is automatically
applied to the ESP32-S3.

CM-3 Configuration Change
Control

Database All changes to the ESP32-S3 configu-
ration are stored and documented in
the database alongside all necessary
metadata.

SC-3 Security Function
Isolation

ATECC608B The secure element is responsible for
secure cryptographic operations and
key storage and is physically sepa-
rated from the rest of the microcon-
troller.

SC-8 Transmission
Confidentiality and

Integrity

MQTT
Broker

Communication between the ESP-
DHS server and client happens TLS
encrypted via the MQTT broker.

SC-13 Cryptographic
Protection

ATECC608B,
ESP32-S3

The ATECC608B provides crypto-
graphic functions to protect data in
the user program. Flash encryp-
tion and secure boot cryptograph-
ically protect the microcontroller’s
memory and firmware [16].

SI-4 System Monitoring Server The server continuously requests a
configuration state update of the
ESP32-S3 and stores it in the
database.

SI-7 Software, Firmware,
and Information

Integrity

ESP32-S3 The secure boot feature of the ESP32-
S3 prevents unauthorized firmware
from running on the device [18].

IA-3 Device Identification
and Authentication

ESP32-S3 The ESP32-S3 provides unique MAC
addresses. It can establish secure con-
nections via TLS to remote endpoints
due to its digital signature peripheral
[16].

Table 4.2: Implementation of NIST SP 800-53 Controls in ESP-DHS.
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Communication between the server and the client is routed through the MQTT broker.
The broker is TLS encrypted, therefore, the confidentiality and integrity of the exchanged
messages can be guaranteed (SC-8).

To ensure the integrity of the firmware running on the device, the ESP32-S3 employs
secure boot. This prevents unauthorized code from running on the microcontroller (SI-7).
The ESP32-S3 is uniquely identified by its factory-assigned MAC address. Furthermore,
it can establish a secure device identity for remote connections due to its digital signature
capabilities (IA-3). The ESP32-S3 uses cryptographic protection in multiple instances:
flash encryption and secure boot sign the flash memory and firmware cryptographically to
prevent malicious parties from reading it out. The ATECC608B secure element provides
cryptographic functions to enhance security in the user application (SC-13). The secure
element also makes sure that security functions are isolated from non-security functions,
by providing a secure interface for cryptographic operations and storage for cryptographic
keys (SC-3).

4.7 Summary

This chapter provided a high-level overview of the structure and functionality of the
proposed ESP-DHS. The system consists of five components: the ATECC608B secure
element, ESP32-S3, MQTT broker, Python server, and SQLite database. The firmware
running on the ESP32-S3 is divided into two parts: the ESP-DHS client and the user
application. The ESP-DHS client has a supporting role and ensures the microcontroller
is always in a secure state, the user application implements the actual functionality of
the device. The Python server is responsible for checking whether the configuration of
the microcontroller is secure and updating the firmware if necessary. There exist two
connections between the ESP32-S3 and the server, one is over Wi-Fi and uses the MQTT
protocol to exchange messages, and the other is a physical USB connection and used for
flashing firmware onto the microcontroller. The workflow of the ESP-DHS is as follows:
the server requests a security configuration of the ESP32-S3, this configuration contains,
for example, whether secure boot, flash encryption, or memory protection are activated.
The ESP-DHS client extracts this configuration from the microcontroller and sends it
back to the server, where it is evaluated. If any deactivated security features are detected,
the server automatically updates and compiles a new version of the client firmware and
flashes it onto the ESP32-S3. The microcontroller sends a message back to the server
as soon as it has booted the new firmware. The server stores all messages and device
configurations in a database, this data can be used to keep track of exchanged messages
and changes in the security configuration.

Since the ESP32-S3 microcontroller is used in the ESP-DHS, the NIST IR 8259A standard
is already implemented. The ESP32-S3 implements most of the required capabilities by
flash encryption and secure boot, which are not activated by default. The system also
implements selected controls of the NIST SP 800-53 standard.
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Chapter 5

Implementation

In this chapter, the implementation of the ESP-DHS is explained, every section describes
a particular component. The source code for the ESP-DHS server [39] and the client
firmware [40] can be found on GitHub. A detailed description of how to set up the
project is in Appendix A.

5.1 Server

The server is responsible for requesting the security configuration from the ESP32-S3,
evaluating it, compiling new firmware if necessary, and flashing it to the microcontroller.
In this section, the file structure and selected code snippets of the server project are
described. The programming language used for the server implementation is Python
version 3.9.6 [41]. Functions with a leading underscore are intended for file-internal use
only.

5.1.1 Overview

The ESP-DHS-server folder contains all files necessary for the server to operate. The
following list explains the purpose of all the contained files and folders of the server, the
directory tree is shown in Figure 5.1.

• The backups/ folder contains copies of secure boot signing keys that were found in
the client project. The location of this folder does not necessarily need to be inside
the ESP-DHS-server folder and can be set manually in the .env file.

• The database.sqlite3 file is where all the data from the database is stored. The
location of this file can also be set manually in the .env file.

• The ca.crt file is the TLS certificate used for the secured connection with the
MQTT broker.

33
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• The .env file contains environment variables for both the server and the client.
This file should be kept secret. A detailed explanation of all environment variables
is provided in Section 5.1.2.

• The .env.example file is the blueprint for the .env file, it is intended to be shared
to provide the structure of the .env file and does not contain sensitive information.
It also contains explanations for the environment variables.

• The main.py file is the entry point of the server application. It contains the main
program loop that sends the period configuration requests and the callbacks to
handle incoming MQTT messages. The evaluation of the ESP32-S3 security config-
uration also happens in this file.

• The mqtt_client.py file contains the logic for setting up the Paho MQTT client.

• The compile.py file contains the logic used for activating security features, compil-
ing the firmware, and flashing it onto the ESP32-S3.

• The database.py file is used for connecting the server to a database using SQLAlchemy
and contains a helper function to add entries to the database more easily.

• The models.py contains the schema for the database tables that are used for storing
new entries in it.

• The run_with_env.sh file is necessary to run ESP-IDF terminal commands from
the compile.py Python script. The IDF export file is not called directly but through
this shell script. This is explained in more detail in Section 5.1.6.

• The README.md file contains instructions on how to set up the ESP-DHS server.

ESP-DHS-server/
backups/
database.sqlite3
ca.crt
.env
.env.example
main.py
mqtt_client.py
compile.py
database.py
models.py
run_with_env.sh
README.md

Figure 5.1: Project File Structure of the Server
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5.1.2 Environment Variables

Environment variables are stored in the .env file and used to separate project settings
and security parameters from the code. The variables are imported into the Python code.
In order to keep sensitive information like the MQTT broker username and password
confidential, the .env file should not be made public, for example by adding it to a Git
repository. However, the .env.example file has the same structure as the .env file, but
with dummy values and can be published. It can then be used as a blueprint when for
creating the actual .env file. Listing 5.1 shows an example of a .env file, the following
list explains what the variables are used for. The variables can be used in Python code
with the syntax os.getenv(’VARIABLE_NAME’), sometimes this expression is assigned to
a constant so that VARIABLE_NAME can be used directly.

• The HOST variable is the Fully Qualified Domain Name (FQDN) of the device on
which the MQTT broker resides. This domain name is used to locate the MQTT
broker so that messages can be exchanged with the client.

• The USERNAME variable is the required username for authentication with the MQTT
broker.

• The PASSWORD variable is the required password for authentication with the MQTT
broker.

• The DB_PATH variable is the path to the SQLite 3 database file.

• The PROJECT_PATH variable is the location to the root directory of the ESP32-S3
firmware source code.

• The ESP_IDF_PATH variable is the location of the root directory of the Espressif
Integrated Development Framework (ESP-IDF).

• The BACKUP_DIR_PATH variable is the path to the folder where the secure boot key
backups will be stored.

• The KEY_FILE_NAME variable is the name of the secure boot signing key, including
the file extension.

• The PORT variable is the name of the USB port at which the ESP32-S3 is connected
to the host computer.

• The TARGET variable is the architecture for which the firmware will be compiled, i.e.
which type of ESP microcontroller is used.

• The BAUD_RATE variable contains the serial baud rate used for flashing firmware to
the ESP32-S3.

• The REQUEST_INTERVAL variable is the interval in seconds in which the security
configuration of the ESP32-S3 is requested. If the ATECC608B is connected to
the ESP32-S3, this value should be at least 60, because when the secure element
gets disconnected, the response of the client takes longer. This is explained in more
detail in Section 6.2.1.
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1 # .env
2

3 ############# MQTT
4 HOST = ’macbook -air -von -michel.home’
5 USERNAME = ’user1’
6 PASSWORD = 123456
7

8 ############# DATABASE
9 DB_PATH = ’/database.sqlite3 ’

10

11 ############# ESP -IDF
12 PROJECT_PATH = ’/Users/michel/esp/v5.2.1/ projects/BA -project ’
13 ESP_IDF_PATH = ’/Users/michel/esp/v5.2.1/esp -idf’
14 BACKUP_DIR_PATH = ’/Users/michel/BA-project -server/backups ’
15 KEY_FILE_NAME = ’secure_boot_signing_key.pem’
16 PORT = ’/dev/cu.usbserial -140’
17 TARGET = ’esp32s3 ’
18 BAUD_RATE = 115200
19

20 ############# REQUEST INTERVAL
21 REQUEST_INTERVAL = 60

Listing 5.1: Example of a Server .env File

5.1.3 Main Loop

The ESP-DHS server can be started by running the main.py file. Listing 5.2 shows the
code of the main loop. The run_main_loop variable is used to control when configuration
requests can be sent. The variable is initially set to true, however, before new firmware
is compiled and flashed, it is set to false. This prevents sending unnecessary requests
since the ESP32-S3 cannot respond during flashing. The client variable is the MQTT
client object, when the loop_start() method is called, it is ready to send and receive
messages. Inside the main loop, the configuration request messages are sent to the topic
/config-request. At the end of every loop iteration, the program waits for the in the
REQUEST_INTERVAL environment variable specified number of seconds before continuing.

1 # main.py
2

3 run_main_loop = True
4 client = init_mqtt_client ()
5 client.loop_start ()
6 while True:
7 if run_main_loop:
8 publish_message(client , ’/config -request ’)
9 time.sleep(int(os.getenv(’REQUEST_INTERVAL ’)))

Listing 5.2: Server Main Loop
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5.1.4 MQTT Client

The MQTT client provides functionality for publishing messages and connecting to the
broker. The functionality of MQTT and the broker is explained in more detail in Section
5.4. To establish the MQTT connection, the Paho Python package [42] is used. Listing
5.3 shows an excerpt of the MQTT client code.

The function init_mqtt_client() first creates the Paho client, sets the TLS certificate,
sets the username and password for the broker, and finally connects to it. A number of
callback functions are set that are executed when specific events occur. For example, when
the connection to the broker was successful, the _on_connect() function is executed, in
which the client gets subscribed to topics. Other callback functions are defined for when a
topic subscription was successful or a message was received or published. These functions
are only used for logging the events to the console.

The server sends the configuration request to the /config-request topic, and the ESP-
DHS client responds with the payload on the /config-response topic. Directly after
being restarted, the client also publishes its configuration to the /device-connected
topic. This flow is shown in Figure 4.2.

The publish_message() function is a helper function that first publishes a message to
the provided topic. The message is then stored in the database.

1 # mqtt_client.py
2

3 import paho.mqtt.client as paho
4

5 def _on_connect(client , userdata , flags , rc):
6 if rc == 0:
7 print(’connection successful ’)
8 client.subscribe(’/config -response ’)
9 client.subscribe(’/device -connected ’)

10

11 def publish_message(client , topic , payload=None):
12 return_code , message_id = client.publish(topic , payload)
13 database.add_row(Message(topic=topic , status=return_code , type=’sent’)

)
14

15 def init_mqtt_client ():
16 client = paho.Client ()
17 client.tls_set(’./ca.crt’)
18 client.username_pw_set(os.getenv(’USERNAME ’), os.getenv(’PASSWORD ’))
19 client.on_connect = _on_connect
20 client.on_publish = _on_publish
21 client.on_subscribe = _on_subscribe
22 client.on_message = _on_message
23 client.connect(os.getenv(’HOST’), 8883)
24 return client

Listing 5.3: Excerpt of the MQTT Client Code
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5.1.5 Configuration Evaluation

The security configuration is evaluated after a message is received on the /config-
response topic. Three security features are evaluated and activated if necessary: secure
boot, flash encryption, and memory protection. More details about these features and
how they enhance device security can be found in Section 2.2.

Listing 5.4 shows the code that performs the evaluation. The @client.topic_callback
decorator signifies that the handle_config_response function contains the logic for han-
dling received messages on the specified topic. The message payload contains the current
security configuration of the ESP32-S3 in JSON format as shown in Listing 5.19 and is
stored in the configuration variable. Before the evaluation begins, the message and
configuration are stored in the database. For the evaluation, it is checked whether the
keys of the three previously mentioned security features are set to false. If so, the fea-
ture needs to be activated and added to the features array. If the features array is
empty, execution stops here. If not, the main loop is stopped and an entry is stored in
the Flashes table of the database with “pending” in the status column and the current
timestamp in the start column. The entry also contains which features will be activated.
After that, the features array is passed to the compile_secure function, which compiles
the ESP32-S3 firmware with updated security features and flashes it to the device. If the
function returns without raising an exception, the status of the database entry is updated
to “success”, the current timestamp is added to the end column, and the main loop is
resumed.

1 # main.py
2

3 run_main_loop = True
4

5 @client.topic_callback(’/config -response ’)
6 def handle_config_response(client , userdata , message):
7 global run_main_loop
8 print(’/config -response message received ’)
9 configuration = json.loads(message.payload)

10 compare_configurations(configuration)
11 message_db = Message(topic=message.topic , type=’received ’)
12 configuration_db = Configuration(message=message_db , ** configuration)
13 database.add_row ([message_db , configuration_db ])
14 features = []
15 if configuration[’flash_encryption_enabled ’] == False:
16 features.append(’flashencryption ’)
17 if configuration[’secure_boot_enabled ’] == False:
18 features.append(’secureboot ’)
19 if configuration[’memory_protection_enabled ’] == False:
20 features.append(’memoryprotection ’)
21 if features:
22 print(’The following features will be activated:’, features)
23 run_main_loop = False
24 flash_db = Flash(status=’pending ’,
25 flashencryption=’flashencryption ’ in features ,
26 secureboot=’secureboot ’ in features ,
27 memoryprotection=’memoryprotection ’ in features)
28 database.add_row(flash_db)



5.1. SERVER 39

29 try:
30 compile_secure(features)
31 flash_db.status = ’success ’
32 except Exception as e:
33 print(’Could not flash firmware:’, e, ’\nYou may need to restart

the device manually.’)
34 flash_db.status = ’error’
35 flash_db.end = datetime.now(timezone.utc).replace(microsecond =0)
36 database.add_row(flash_db)
37 run_main_loop = True

Listing 5.4: Security State Evaluation

The compare_configurations function shown in Listing 5.5 is used to log detected
changes to the console. The global current_config dictionary holds the last known
security configuration of the ESP32-S3. Received configurations are compared with the
values in this dictionary and di↵erences are logged to the console. At the end, cur-
rent_config gets replaced with the new configuration. An example of a resulting output
is shown in Listing 5.6.

1 # main.py
2

3 current_config = {}
4

5 def compare_configurations(new_config):
6 global current_config
7 if current_config != {}:
8 change_detected = False
9 output = ""

10 for key in current_config:
11 if current_config[key] != new_config[key]:
12 change_detected = True
13 output += key + ’: ’ + str(current_config[key]) + ’ -> ’ + str(

new_config[key]) + ’\n’
14 if change_detected:
15 print(’\nChange in config detected:’)
16 print(output)
17 current_config = new_config

Listing 5.5: Compare and Print Configuration Di↵erences

1 Change in config detected:
2 flash_encryption_enabled: False -> True
3 flash_encryption_mode: 0 -> 1
4 secure_boot_enabled: False -> True
5 memory_protection_enabled: False -> True
6 memory_protection_locked: False -> True

Listing 5.6: Example Console Output of the compare_configurations Function
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5.1.6 Compiling and Flashing Firmware

When deactivated security features are detected as described in Section 5.1.5, these se-
curity features get activated in the source code of the ESP32-S3 firmware, which gets
compiled and then flashed onto the microcontroller. This requires that the source code
of the firmware is on the same machine as the ESP-DHS server and accessible from the
Python code. Details about the ESP-IDF project that contains the source code of the
firmware can be found in Section 5.3.

To edit the client project configuration from Python code, the Kconfiglib package [25]
is used. Erasing and restarting the ESP32-S3 is done with the esptool package [43].
The firmware is built using the idf.py command line tool from the ESP-IDF. Flashing
firmware onto the microcontroller can be done either with esptool or ESP-IDF.

Initializing IDF Commands

Since the ESP-IDF does not provide an API for using it programmatically, a command
line needs to be simulated in a subprocess. Listing 5.7 shows how this is implemented. To
prepare the command line for running the idf.py utility, the IDF export.sh script needs
to be executed. However, doing this directly leads to an error because the script modifies
environment variables, that are outside its scope when the subprocess spawns a new shell.
Therefore, the path to export.sh is passed to the wrapper script run_with_env.sh,
which is executed. After that, the shell is ready to run idf.py. The -project-dir flag
specifies the location of the client project, and the -port flag the USB port on which
the ESP32-S3 is connected. These commands are stored in the init_commands tuple and
need to be prepended every time idf.py functionality is used.

1 # compile.py
2

3 init_commands = (
4 ’./ run_with_env.sh’, ESP_IDF_PATH + ’/export.sh’,
5 ’idf.py’,
6 ’--project -dir’, PROJECT_PATH , ’--port’, PORT
7 )

Listing 5.7: Initializing Commands for idf.py

Running IDF Commands

The _run_commands() function shown in Listing 5.8 is a utility for running a list of
commands received as an argument in a subprocess. The while- and for-loops are for
printing the output to the command line in real time.
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1 # compile.py
2

3 def _run_commands(commands):
4 process = subprocess.Popen(commands , stdout=subprocess.PIPE , stderr=

subprocess.PIPE , text=True)
5 while True:
6 output = process.stdout.readline ()
7 if output == ’’ and process.poll() is not None:
8 break
9 if output:

10 print(output.strip())
11 for line in process.stdout:
12 print(line.strip())

Listing 5.8: Run Command Utility Function

Erasing Flash Memory

Listing 5.9 shows how the esptool API is used to erase the flash memory of the ESP32-
S3. This is done before flashing new firmware. Although the flash command overwrites
old firmware, in rare cases errors might occur when the flash was not erased completely
beforehand. Esptool commands are provided to the esptool.main() function in a list.
Since esptool is used under the hood of ESP-IDF, esptool commands could also be used
through idf.py. However, using it directly is preferable since the logic can be accessed
directly through the API and no command line needs to be simulated in a subprocess.

1 # compile.py
2

3 def _erase_flash ():
4 command = (
5 ’--chip’, TARGET ,
6 f’--port={PORT}’,
7 ’erase_flash ’)
8 esptool.main(command)

Listing 5.9: Erase Flash Memory of the ESP32-S3

Changing Security Features

The _change_security_features() function shown in Listing 5.10 is responsible for
changing the client project configuration. When the mode argument is “activate”, the
security features provided in the features argument are activated. If the value is “deac-
tivate”, the features argument is ignored and all security features are deactivated. This
is only used for debugging. The kconfig variable holds a Kconfig object. This object
keeps track of all possible configurations, options, and default values that were defined in
the root Kconfig file. Since ESP-IDF projects do not use a single Kconfig file but multiple
hierarchical ones, it is necessary to set some environment variables that allow kconfiglib
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to search the project for all the necessary files. With kconfig.load_config(), the sd-
kconfig file from the client project with the actual values is loaded and can thereafter be
manipulated with the set_value() method.

1 # compile.py
2

3 import kconfiglib
4

5 def _change_security_features(mode: Literal[’activate ’, ’deactivate ’],
features = None):

6 if mode == ’activate ’ and features == None:
7 raise Exception(’Cannot activate features if none are listed.’)
8

9 kconfig_path = ESP_IDF_PATH + ’/Kconfig ’
10 sdkconfig_path = PROJECT_PATH + ’/sdkconfig ’
11

12 if not os.path.exists(sdkconfig_path):
13 print(’Create the sdkconfig file at’, sdkconfig_path)
14 open(sdkconfig_path , ’w’)
15

16 os.environ[’COMPONENT_KCONFIGS_PROJBUILD_SOURCE_FILE ’] = PROJECT_PATH
+ ’/build/kconfigs_projbuild.in’

17 os.environ[’COMPONENT_KCONFIGS_SOURCE_FILE ’] = PROJECT_PATH + ’/build/
kconfigs.in’

18 os.environ[’IDF_PATH ’] = ESP_IDF_PATH
19 os.environ[’IDF_TARGET ’] = TARGET
20

21 kconfig = kconfiglib.Kconfig(kconfig_path)
22 kconfig.load_config(sdkconfig_path)
23 _set_debug_sdkconfig(kconfig)
24

25 if mode == ’activate ’:
26 if ’secureboot ’ in features:
27 kconfig.syms[’SECURE_BOOT ’]. set_value(’y’)
28 if ’flashencryption ’ in features:
29 kconfig.syms[’SECURE_FLASH_ENC_ENABLED ’]. set_value(’y’)
30 if ’memoryprotection ’ in features:
31 kconfig.syms[’ESP_SYSTEM_MEMPROT_FEATURE ’]. set_value(’y’)
32 elif mode == ’deactivate ’:
33 kconfig.syms[’SECURE_BOOT ’] .set_value(’n’)
34 kconfig.syms[’SECURE_FLASH_ENC_ENABLED ’] .set_value(’n’)
35 kconfig.syms[’ESP_SYSTEM_MEMPROT_FEATURE ’]. set_value(’n’)
36 else:
37 raise TypeError(’Invalid value for the mode variable.’)
38

39 kconfig.write_config(sdkconfig_path)

Listing 5.10: Change Client Project Security Features

Setting Debug Options

Activating secure boot and flash encryption burns eFuses. Therefore, these features cannot
be turned o↵ once activated, which poses a problem for debugging the application. To
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keep the ability to turn o↵ security features, eFuses need to be simulated in flash. This
requires setting some specific values in the client project configuration, which is explained
in more detail in Section 5.3.2. The _set_debug_sdkconfig() function shown in Listing
5.11 activates these debugging options. It is very important to remove the function call to
_set_debug_sdkconfig() from compile_secure() once the system is used in production
since simulated eFuses do not provide any security.

1 # compile.py
2

3 def _set_debug_sdkconfig(kconfig):
4 kconfig.syms[’PARTITION_TABLE_CUSTOM ’]. set_value(’y’)
5 kconfig.syms[’PARTITION_TABLE_OFFSET ’]. set_value(’0x10000 ’)
6 kconfig.syms[’EFUSE_VIRTUAL ’]. set_value(’y’)
7 kconfig.syms[’EFUSE_VIRTUAL_KEEP_IN_FLASH ’]. set_value(’y’)

Listing 5.11: Activate Debug Configuration

Generate Secure Boot Key

When secure boot needs to be activated, a new signing key is automatically generated
using the Python cryptography module. The standard RSA key size of Secure Boot V2 is
3072 bits. If a key file already exists in the client project, it is copied to a backup folder
before it is overwritten with the new key. Listing 5.12 shows the process of backing up
the old key, generating a new one, and copying it to the client project folder.

1 # compile.py
2

3 from cryptography.hazmat.primitives.asymmetric import rsa
4 from cryptography.hazmat.primitives import serialization
5

6 def _generate_signing_key ():
7 key_file_path = PROJECT_PATH + ’/’ + KEY_FILE_NAME
8 # backup old key if exists
9 if os.path.exists(key_file_path):

10 current_datetime = datetime.datetime.now().strftime(’%Y-%m-%d_%H:%M
:%S’)

11 backup_key_name = ’backup_ ’ + current_datetime + ’_’ + KEY_FILE_NAME
12 shutil.copyfile(key_file_path , BACKUP_DIR_PATH + ’/’ +

backup_key_name)
13 # create new key
14 private_key = rsa.generate_private_key(public_exponent =65537 , key_size

=3072)
15 private_key_pem = private_key.private_bytes(
16 encoding=serialization.Encoding.PEM ,
17 format=serialization.PrivateFormat.TraditionalOpenSSL ,
18 encryption_algorithm=serialization.NoEncryption ()
19 )
20 with open(key_file_path , ’w’) as key_file:
21 key_file.write(private_key_pem.decode ())

Listing 5.12: Secure Boot Signing Key Generation
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Compile Secure Firmware

Inside handle_config_response(), the compile_secure() function from Listing 5.13 is
called. The features argument contains the security features that need to be activated.
First, the target architecture for the compilation is set. If secure boot needs to be acti-
vated, the signing key is generated and copied to the client project. Then, the security fea-
tures are activated in the project configuration by calling _change_security_features().
This only works if the client project was built at least once manually and the build/ di-
rectory is not empty. After that, the bootloader is compiled and flashed before the rest
of the application image is flashed. These two steps must be done separately after secure
boot is activated. Because some of the steps include file manipulations, it is necessary to
wait a second between function calls with time.sleep() so that the file system is stable
before flashing the binaries. Finally, the ESP32-S3 is restarted.

In the compile.py file, there exists the function compile_standard(), which is only in-
tended for debugging purposes. It compiles and flashes the firmware with deactivated
security features so that the ESP32-S3 can be quickly made ready for testing the ESP-
DHS functionality.

1 # compile.py
2

3 def compile_secure(features = None):
4 os.environ[’IDF_TARGET ’] = TARGET
5 if ’secureboot ’ in features:
6 _generate_signing_key ()
7 _erase_flash ()
8 _change_security_features(’activate ’, features)
9 time.sleep (1) # necessary so that the right files are flashed

10 commands = init_commands + (
11 ’fullclean ’, # delete the build directory
12 ’bootloader ’, # compile the bootloader
13 )
14 _run_commands(commands)
15 time.sleep (1)
16 _flash_bootloader ()
17 time.sleep (1)
18 commands = init_commands + (
19 ’flash’, # build and flash the partition table and app image
20 )
21 _run_commands(commands)
22 _restart_application () # manually restart the ESP32
23 print(’Finished secure compiling and flashing.’)

Listing 5.13: Compile and Flash Secure Firmware
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5.1.7 Device Reconnection

When the ESP32-S3 is restarted, for example on the first boot or after being flashed
with new firmware, it sends a message to the /device-connected topic with its current
security configuration in the payload. The server calls the compare_configurations()
function described in Section 5.1.5 to log detected changes to the console. The message
and configuration are stored in the database. The implementation is shown in Listing
5.14.

1 # main.py
2

3 @client.topic_callback(’/device -connected ’)
4 def handle_device_start(client , userdata , message):
5 print(’/device -connected message received ’)
6 configuration = json.loads(message.payload)
7 compare_configurations(configuration)
8 message_db = Message(topic=message.topic , type=’received ’)
9 configuration_db = Configuration(message=message_db , ** configuration)

10 database.add_row ([message_db , configuration_db ])

Listing 5.14: Device Reconnection Handling

5.1.8 Database Connection and Manipulation

The SQLite database is accessed by the Python code using the SQLAlchemy package
[36]. The package facilitates the database connection but also provides object-relational
mapping (ORM) functionalities. By using SQLAlchemy instead of the built-in SQLite
package, the database schema is kept in sync with the models used in the code. It also
facilitates switching from SQLite to another type of database like MySQL at a later point.

Listing 5.15 shows the code responsible for database communications. The engine variable
holds the SQLAlchemy object with the pointer to the database file. If the file does not
yet exist, it will be created by create_engine(). Rows are committed to the database
using the add_row utility function. The argument can either be a single Object of an
ORM model or a list of models to commit multiple entries at once. The available ORM
models are explained in Section 5.2.2.
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1 # database.py
2

3 from sqlalchemy import create_engine
4 from sqlalchemy.orm import Session
5

6 engine = create_engine(’sqlite ://’ + os.getenv(’DB_PATH ’))
7 Base.metadata.create_all(engine)
8

9 def add_row(rows):
10 with Session(engine) as session:
11 if type(rows) in [list , tuple]:
12 session.add_all(rows)
13 elif isinstance(rows , object):
14 session.add(rows)
15 else:
16 raise Exception(’Parameter type not valid.’)
17 session.commit ()

Listing 5.15: Database Connection and Manipulation

5.2 Database

The server stores messages, configurations, and flashes in the database so that the state
of the system and changes in the device configuration can be tracked. The database
architecture used is SQLite 3 [44], since it provides the convenience of a relational database
while being easy to set up.

5.2.1 Structure

The database consists of three tables: messages, flashes, and configurations. The entity-
relationship diagram in Figure 5.2 shows the relationships between the tables and their
columns with data types.

Messages Table

The messages table stores all sent and received MQTT messages and has the following
columns:

• message_id is the primary key of the relation.

• created_at is the timestamp when the database entry was created. This time
should be approximately the same as the time the message was sent or received.

• topic is the MQTT topic on which the message was sent or received.
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• status contains the status code of the message. For received messages, the status
code is set to NULL. A status code of 0 for sent messages means success.

• type contains the value“sent”for sent messages and“received”for received messages.

Configurations Table

The configurations table contains the security configurations of the ESP32-S3 that were
received by MQTT messages. Every configuration references the message with which it
was received. Since a message contains exactly one or zero configurations, the messages
and configurations have an optional one-to-one relationship. The following list explains
the columns of the configurations table.

• configuration_id is the primary key of the relation.

• message_id is a foreign key that references the primary key of the messages table.

• All other columns store the values of the JSON security configuration, which is
explained in Section 5.3.4.

Flashes Table

The flashes table stores an entry every time a new firmware is flashed to the microcon-
troller. The entry is committed to the database before compilation begins and updated
once the firmware is flashed successfully.

• flash_id is the primary key of the relation.

• start contains the timestamp before the compilation started.

• end contains the timestamp after the firmware was flashed successfully.

• status is initially “pending”, but gets updated to “error” or “success” after the flash.

• flashencryption is 1 when the feature got activated, 0 otherwise.

• secureboot is 1 when the feature got activated, 0 otherwise.

• flashencryption is 1 when the feature got activated, 0 otherwise.



48 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Entity-relationship Diagram of the Database

5.2.2 ORM Models

The SQLAlchemy [36] ORM is used to represent database models in the server Python
code, the used models are shown in Listing 5.16. Models are created with classes that
inherit an ORM base class. The __tablename__ property specifies the name that will be
used in the database. Columns are defined as properties of type Mapped, in square brackets
is the datatype provided. A datatype wrapped in an Optional means that the column
can have NULL values. If necessary, more configuration about a column can be provided
by assigning the mapped_column() function, for example, to specify that a column stores
the primary key. Relations between models can be defined using the relationship()
function.
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1 # models.py
2

3 class Message(Base):
4 __tablename__ = ’messages ’
5 message_id: Mapped[int] = mapped_column(primary_key=True)
6 created_at: Mapped[datetime] = mapped_column(server_default=func.

now())
7 topic: Mapped[str]
8 status: Mapped[Optional[int]]
9 type: Mapped[str]

10 configuration: Mapped[’Configuration ’] = relationship(back_populates=’
message ’)

11

12 class Configuration(Base):
13 __tablename__ = ’configurations ’
14 configuration_id: Mapped[int] = mapped_column(primary_key=True)
15 message_id: Mapped[int] = mapped_column(ForeignKey(’messages.

message_id ’), unique=True)
16 message: Mapped[’Message ’] = relationship(back_populates=’

configuration ’, single_parent=True)
17 # ESP32 -S3 security configuration fields omitted
18

19 class Flash(Base):
20 __tablename__ = ’flashes ’
21 flash_id: Mapped[int] = mapped_column(primary_key=True)
22 start: Mapped[datetime] = mapped_column(server_default=func

.now())
23 end: Mapped[Optional[datetime ]] = mapped_column(

server_onupdate=func.now())
24 status: Mapped[str]
25 flashencryption: Mapped[bool] = mapped_column(default=False)
26 secureboot: Mapped[bool] = mapped_column(default=False)
27 memoryprotection: Mapped[bool] = mapped_column(default=False)

Listing 5.16: SQLAlchemy ORM Models

5.3 Client

The client is the ESP32-S3 and the firmware running on it. On request, it extracts its
security configuration and sends it back to the server. In this section, the file structure
and selected code snippets of the client project are described. The firmware is developed
with the C programming language [45] and the ESP Integrated Development Framework
[12].

5.3.1 Overview

The client project contains the source code for the firmware running on the ESP32-S3.
This includes the ESP-DHS client and the user application. The following list explains
the files and folders of the project, also shown in Figure 5.3.
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• The build directory is automatically generated when the firmware is built and
contains the binaries.

• The main.c file inside the main/ directory is the entry point of the application.

• CMakeLists.txt files define dependencies on other components and are necessary
for the build system.

• The components/ directory contains custom components that provide functionality
that can be used throughout the code.

• The dhs_mqtt/ component is responsible for connecting the ESP-DHS client to the
MQTT server. The content of the other component directories is very similar.

� The dhs_mqtt.h file inside the include/ directory contains declarations for
component interface functions.

� The certificate ca.crt is specific to this component and is necessary to create
a TLS-secured connection between the ESP-DHS client and the MQTT broker.

� The dhs_mqtt.c file contains the logic of the component.

� The Kconfig.projbuild file defines configurations for the component that can
be managed by the Kconfig system.

• The dhs_atecc/ component is responsible for the connection and communication
between the ESP32-S3 and the ATECC608B. It provides an interface to the rest of
the code to leverage the functionality of the secure element.

• The dhs_configuration/ component is responsible for extracting the security con-
figuration of the device and encoding it in JSON format.

• The dhs_wifi/ component connects the device to a Wi-Fi network.

• The ua_main/ component is the entry point of the user application.

• The ua_blink/ component contains the logic to let the built-in LED of the ESP32-
S3 blink in di↵erent colors.

• The managed_components/ directory is automatically generated and contains com-
ponents that were automatically downloaded from a component repository.

• The partitions.csv file defines what partitions the ESP32-S3 flash memory is
divided in.

• The sdkconfig file contains the values of the project configuration.

• The sdkconfig.defaults file contains default configurations that are set automat-
ically on the first build of the project.

• The secure_boot_key.pem is the signing key for secure boot and might be generated
by the ESP-DHS server.

• The README.md file contains instructions for setting up the project.
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Figure 5.3: File Structure of the Client Project

5.3.2 Project Configuration

The project is configured with the Kconfig mechanism. The configuration can be edited in
a GUI by running the command idf.py menuconfig from the ESP-IDF terminal, which
can be seen in Figure 5.4. Alternatively, the Visual Studio Code extension can be used.
The following sections provide an overview of the most important project configuration
options.

DHS ATECC608 Configuration

This menu belongs to the dhs_atecc component, ATECC_CONNECTED is its only configu-
ration. If this option is not selected, the configuration module will not check whether a
secure element was connected. Since checking whether a secure element takes a relatively
long time, the option can speed up the performance of the application if it is known
beforehand that no secure element will be used.
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Figure 5.4: UI of the Client Project Configuration

DHS MQTT Configuration

The BROKER_URI configuration of the MQTT menu is used to provide the connection URL
of the broker. The URL is of format mqtts://<username>:<password>@<URL>:<port>.

DHS Wi-Fi Configuration

In theWi-Fi menu, theWi-Fi SSID (ESP_WIFI_SSID) and password (ESP_WIFI_PASSWORD)
are provided. It is also possible to define the maximal number of retries that should be
performed after an unsuccessful connection attempt (ESP_MAXIMUM_RETRY).

Debugging Configurations

To ensure flash encryption and secure boot can be properly debugged, it is necessary
to set some configurations that prevent actual eFuses from being burned. For that, the
eFuses are simulated in RAM by activating EFUSE_VIRTUAL and stored in flash memory
by EFUSE_VIRTUAL_KEEP_IN_FLASH to be available again after a device restart. This re-
quires an additional flash memory partition. The CONFIG_PARTITION_TABLE_CUSTOM op-
tion needs to be checked and the path to the partitions.csv file that defines the custom
partition table needs to be assigned to CONFIG_PARTITION_TABLE_CUSTOM_FILENAME.

UA Main Configuration

UA Main is the user application configuration menu. UA_DURATION specifies in millisec-
onds how long the LED blinks in one color. If UA_LED_ACTIVE is deactivated, the LED
is turned o↵ and UA_LOGS_ACTIVE can be used to disable log messages to the console by
the user application.
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5.3.3 Application Entry Point

The app_main() function in the main component shown in Listing 5.17 is the entry point
of the firmware. First, the secure element is initialized if the configuration indicates that
it should be connected. Then, the security configuration is extracted and printed to the
console for debugging purposes. To run the ESP-DHS, NVS, Wi-Fi, and MQTT are
initialized. At the end, the user application is started.

1 // main.c
2

3 void app_main(void)
4 {
5 if(ATECC_CONNECTED) {
6 dhs_atecc_init ();
7 }
8

9 char* config = dhs_config_get ();
10 printf("%s\n", config);
11 free(config);
12

13 // initialize ESP -DHS
14 ESP_ERROR_CHECK(nvs_flash_init ());
15 dhs_wifi_init ();
16 dhs_mqtt_init ();
17

18 ua_main_init ();
19 }

Listing 5.17: Example JSON of the Security Configuration

5.3.4 Security Configuration

The security configuration is extracted in the dhs_configuration component as shown in
Listing 5.18. There exist di↵erent ways to extract the state of security features. For MAC
addresses, chip info, flash encryption, and secure boot, the ESP-IDF provides dedicated
functions to read out the state. The secure element status check is provided by the
dhs_atecc module, the download mode disabled bit needs to be read out directly from
eFuses.

The cJSON library [46] is used to create the JSON string. The *configuration pointer
references a cJSON object, to which key-value pairs are appended. For example, prop-
erties of type string are appended using cJSON_AddStringToObject(). The object is
converted to a string with cJSON_Print() and then deleted with cJSON_Delete() to free
the memory. To avoid memory leaks, *json_res also needs to be freed after usage.
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1 // dhs_configuration.c
2

3 #include <cJSON.h>
4

5 char* dhs_config_get ()
6 {
7 cJSON *configuration = cJSON_CreateObject ();
8

9 char buffer [18];
10

11 uint8_t base_mac_address [6];
12 esp_base_mac_addr_get(base_mac_address);
13 format_mac_address(base_mac_address , buffer);
14 cJSON_AddStringToObject(configuration , "base_mac_address", buffer);
15

16 const char *idf_version = esp_get_idf_version ();
17 cJSON_AddStringToObject(configuration , "esp_idf_version",idf_version);
18

19 esp_chip_info_t chip_info;
20 esp_chip_info (& chip_info);
21

22 cJSON_AddNumberToObject(configuration , "chip_cores", chip_info.cores);
23

24 bool flash_encryption_enabled = esp_flash_encryption_enabled ();
25 cJSON_AddBoolToObject(configuration , "flash_encryption_enabled",

flash_encryption_enabled);
26

27 bool secure_boot_enabled = esp_secure_boot_enabled ();
28 cJSON_AddBoolToObject(configuration , "secure_boot_enabled",

secure_boot_enabled);
29

30 bool memory_protection_enabled = MEMORY_PROTECTION_ENABLED;
31 cJSON_AddBoolToObject(configuration , "memory_protection_enabled",

memory_protection_enabled);
32

33 bool download_mode_disabled = esp_efuse_read_field_bit(
ESP_EFUSE_DIS_DOWNLOAD_MODE);

34 cJSON_AddBoolToObject(configuration , "download_mode_disabled",
download_mode_disabled);

35

36 bool atecc_connected = false;
37 if(ATECC_CONNECTED) { // config indicates ATECC should be connected
38 // check if ATECC is connected
39 atecc_connected = dhs_atecc_get_status ();
40 }
41 cJSON_AddBoolToObject(configuration , "atecc_connected",

atecc_connected);
42

43 char *json_res = cJSON_Print(configuration);
44 cJSON_Delete(configuration);
45 return json_res;
46 }

Listing 5.18: Excerpt of the Code for Extracting the Security Configuration
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The structure of the JSON containing the security configuration is shown in Listing 5.19.
The properties are explained in the following list:

• base_mac_address is the manually set address.

• efuse_default_mac is the by Espressif factory programmed MAC address.

• efuse_custom_mac is the MAC address written to the eFuse Block 3.

• esp_idf_version is the IDF version used to develop the firmware.

• chip_cores is the number of processor cores of the microcontroller.

• chip_features is the bit mask of feature flags.

• chip_model is the type of chip, e.g. ESP32-S3.

• chip_revision is the chip revision number.

• flash_encryption_enabled tells whether flash encryption is activated.

• flash_encryption_mode can either be disabled (0), development (1) or release (2).

• secure_boot_enabled tells whether secure boot is activated.

• aggressive_key_revoke_enabled tells whether keys are revoked aggressively.

• memory_protection_enabled tells whether memory protection is activated.

• memory_protection_locked tells whether the memory protection setting can be
changed.

• download_mode_disabled tells whether new firmware can be flashed onto the de-
vice.

• security_download_enabled tells whether arbitrary code can be downloaded through
the UART port.

• anti_rollback_secure_version is the latest security version of an OTA flashed
firmware. Firmware with lower secure versions cannot be flashed.

• atecc_connected tells whether the ATECC608B is connected. If the value is false,
it may either be that the secure element is not intended to be used (which must be
defined in the project configuration) or that it got disconnected.



56 CHAPTER 5. IMPLEMENTATION

1 {
2 "base_mac_address": "F4:12:FA:E3:47:5C",
3 "efuse_default_mac": "F4:12:FA:E3 :47:5C",
4 "efuse_custom_mac": "0:0:0:0:0:0",
5 "esp_idf_version": "v5.2.1- dirty",
6 "chip_cores": 2,
7 "chip_features": 18,
8 "chip_model": 9,
9 "chip_revision": 1,

10 "flash_encryption_enabled": false ,
11 "flash_encryption_mode": 0,
12 "secure_boot_enabled": false ,
13 "aggressive_key_revoke_enabled": false ,
14 "memory_protection_enabled": false ,
15 "memory_protection_locked": false ,
16 "download_mode_disabled": false ,
17 "security_download_enabled": false ,
18 "anti_rollback_secure_version": 0,
19 "atecc_connected": true
20 }

Listing 5.19: Example JSON of the Security Configuration

5.3.5 MQTT Messaging

A prerequisite for MQTT messaging is a working Wi-Fi connection. The code of the Wi-
Fi component was taken from the Wi-Fi Station Example [47] of the ESP-IDF examples
repository and modified for the use case. The code for the MQTT component is based on
the MQTT SSL Example [48] and was extended with custom logic.

Listing 5.20 shows the MQTT event handler, which runs in the client event loop and
permanently listens for dispatched events, which are explained in the following list:

• MQTT_EVENT_CONNECTED is dispatched when the connection with the broker is estab-
lished. In this case, the client subscribes to the /config-request topic and then
publishes its security configuration on the /device-connected topic.

• MQTT_EVENT_DISCONNECTED is dispatched when the client disconnects from the MQTT
broker. The event is logged to the console.

• MQTT_EVENT_SUBSCRIBED is dispatched when the subscription to a topic is successful.

• MQTT_EVENT_PUBLISHED is dispatched when a message is published successfully.

• MQTT_EVENT_DATA is dispatched when a message is received. If it happened on the
/config-response topic, the configuration JSON is extracted and appended to the
payload of a message that is published to the /config-response topic.

• MQTT_EVENT_ERROR is dispatched when an error occurs in the event loop. Errors are
logged to the console.
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1 // dhs_mqtt.c
2

3 static void mqtt_event_handler(void *handler_args , esp_event_base_t base
, int32_t event_id , void *event_data)

4 {
5 esp_mqtt_event_handle_t event = event_data;
6 esp_mqtt_client_handle_t client = event ->client;
7 int msg_id;
8 switch (( esp_mqtt_event_id_t)event_id) {
9 case MQTT_EVENT_CONNECTED:

10 ESP_LOGI(TAG , "MQTT_EVENT_CONNECTED");
11 msg_id = esp_mqtt_client_subscribe(client , "/config -request", 0);
12 ESP_LOGI(TAG , "sent subscribe successful , msg_id =%d", msg_id);
13 char *data = dhs_config_get ();
14 msg_id = esp_mqtt_client_publish(client , "/device -connected", data

, 0, 2, 0);
15 free(data);
16 break;
17 case MQTT_EVENT_DISCONNECTED:
18 ESP_LOGI(TAG , "MQTT_EVENT_DISCONNECTED");
19 break;
20 case MQTT_EVENT_SUBSCRIBED:
21 ESP_LOGI(TAG , "MQTT_EVENT_SUBSCRIBED , msg_id =%d", event ->msg_id);
22 break;
23 case MQTT_EVENT_UNSUBSCRIBED:
24 ESP_LOGI(TAG , "MQTT_EVENT_UNSUBSCRIBED , msg_id =%d", event ->msg_id)

;
25 break;
26 case MQTT_EVENT_PUBLISHED:
27 ESP_LOGI(TAG , "MQTT_EVENT_PUBLISHED , msg_id =%d", event ->msg_id);
28 break;
29 case MQTT_EVENT_DATA:
30 ESP_LOGI(TAG , "MQTT_EVENT_DATA");
31 if(strcmp(event ->topic , "config -request")) {
32 char *data = dhs_config_get ();
33 msg_id = esp_mqtt_client_publish(client , "/config -response",

data , 0, 2, 0);
34 free(data);
35 }
36 break;
37 case MQTT_EVENT_ERROR:
38 // log errors to the console
39 break;
40 default:
41 ESP_LOGI(TAG , "Other event id:%d", event ->event_id);
42 break;
43 }
44 }

Listing 5.20: Event Handler for MQTT Messages
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5.3.6 ATECC608B Connection

The ATECC608B component is based on the Secure Element Example [49] and was
extended with custom functionality. Listing 5.21 shows the code responsible for check-
ing whether the secure element is connected. The dhs_atecc_get_status() function
calls atca_ecdsa_test(), which performs an Elliptic Curve Digital Signature Algorithm
(ECDSA) test by letting the ATECC608B first create and then verify an ECDSA sig-
nature. If the return code is 0, the test was successful, the secure element works as
expected and dhs_atecc_get_status() returns true. For any other return code, false
is returned.

1 // dhs_atecc.c
2

3 #include "cryptoauthlib.h"
4 #include "mbedtls/atca_mbedtls_wrap.h"
5

6 static int atca_ecdsa_test ()
7 {
8 mbedtls_pk_context pkey;
9 int ret;

10 unsigned char buf[MBEDTLS_MPI_MAX_SIZE ];
11 size_t olen = 0;
12

13 // generate ECDSA signature
14 ret = atca_mbedtls_pk_init (&pkey , 0);
15 if (ret != 0) goto exit;
16

17 ret = mbedtls_pk_sign (&pkey , MBEDTLS_MD_SHA256 , hash , 0, buf ,
MBEDTLS_MPI_MAX_SIZE , &olen , mbedtls_ctr_drbg_random , &ctr_drbg);

18 if (ret != 0) goto exit;
19

20 // verifying ECDSA signature
21 ret = mbedtls_pk_verify (&pkey , MBEDTLS_MD_SHA256 , hash , 0, buf , olen

);
22 if (ret != 0) goto exit;
23 mbedtls_pk_free (&pkey);
24

25 exit:
26 mbedtls_pk_free (&pkey);
27 fflush(stdout);
28 return ret;
29 }
30

31 bool dhs_atecc_get_status () {
32 int ret = atca_ecdsa_test ();
33 if (ret != 0) {
34 ESP_LOGE(TAG , "ECDSA sign/verify failed");
35 return false;
36 }
37 return true;
38 }

Listing 5.21: Checking the Secure Element Connection
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In the dhs_atecc module, custom functionality can be defined to provide secure element
capabilities to the user application. Listing 5.22 shows how the atcab_random() function
can be leveraged to get a random number from the ATECC608B. This functionality can
be accessed in other parts of the code via the dhs_atecc_get_random_number() function.

1 #include "cryptoauthlib.h"
2 #include "mbedtls/atca_mbedtls_wrap.h"
3

4 bool dhs_atecc_get_random_number(uint8_t buf [32]) {
5 int ret = atcab_random(buf);
6 if (ret != 0) {
7 ESP_LOGE(TAG , "Failed to get random number: %d", ret);
8 return false;
9 }

10 ESP_LOGI(TAG , "Random number successfully obtained");
11 return true;
12 }

Listing 5.22: Random Number Generation using ATECC608B

5.3.7 User Application

The user application performs the actual functionality for the intended microcontroller
use case. As an example, a user application that blinks the built-in LED of the ESP32-S3
in random colors is implemented. The code of the ua_blink module is based on the Blink
Example [50] of the ESP-IDF example repository.

Listing 5.23 shows the implementation of the user application in the ua_main module.
Random numbers for the application are generated by the ATECC608B and retrieved by
the dhs_atecc_get_random_number() function. The random number is an array of 32
8-bit integers. Each of these integers has a range from 0 to 255. The random colors are
generated by looping through the integer array and using the values of three consecutive
integers as activation values for the RGB channels of the LED.

1 void ua_main_init ()
2 {
3 if(! ATECC_CONNECTED) {
4 ESP_LOGI(TAG , "User application cannot run without connected

ATECC608.");
5 return;
6 }
7 ua_blink_init ();
8 uint8_t random_number [32];
9 int ret = dhs_atecc_get_random_number(random_number);

10 if(ret == 0) {
11 ESP_LOGE(TAG , "Cannot get random number.");
12 } else {
13 while(true) {
14 for(int i=0; i<27; i+=3) {
15 uint8_t red = random_number[i];
16 uint8_t green = random_number[i+1];
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17 uint8_t blue = random_number[i+2];
18 if(LOGS_ACTIVATED) {
19 ESP_LOGI(TAG , "Current color (r,g,b): %d,%d,%d", red , green ,

blue);
20 }
21 if(LED_ACTIVATED) {
22 ua_set_led_color(red , green , blue);
23 }
24 vTaskDelay(CONFIG_UA_DURATION / portTICK_PERIOD_MS);
25 }
26 }
27 }
28 }

Listing 5.23: User Application Main Loop

5.4 MQTT Broker

The broker is the gateway through which all MQTT messages between the ESP-DHS
server and the client are routed. Mosquitto [51], which is an open-source message broker,
was used for the ESP-DHS. The broker was installed on the same machine as the ESP-
DHS server, but could theoretically reside on any machine. To ensure only authorized
entities can connect to the broker and messages cannot be read by unauthorized parties,
the broker is secured with TLS as well as username and password authentication. A guide
on how to set up the Mosquitto broker is in Appendix A.

Mosquitto provides the mosquitto_passwd command line utility to create password files.
Listing 5.24 shows an example of such a file, usernames are followed by a colon and the
encrypted password.

1 # passwords.txt
2

3 user1:$7$101$sFoRmj4caqK ... Bxi3ypw ==
4 user2:$7$578$6PXuttS89qv ... TFmtuIa ==

Listing 5.24: Mosquitto Password File

The broker can be configured in the mosquitto.conf file, an example is shown in 5.25.
The password file needs to be referenced in that file. The listener option specifies on
which port the broker listens for incoming messages, the standard value for TLS-secured
brokers is port 8883.

To set up TLS encryption, the on most devices pre-installed openssl command line tool
can be used to create the necessary certificates. Three files need to be generated:

• ca.crt is the certificate authority certificate. This file is needed on the broker and
on all clients that want to connect to it. In the mosquitto.conf file, it is referenced
by the cafile option.
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• server.key holds the private key and is only stored on the broker. It is referenced
by the keyfile option.

• server.crt is the server certificate and is only stored on the broker. It is referenced
by the certfile option.

1 # mosquitto.conf
2

3 listener 8883
4 password_file /user/michel/mosquitto/passwords.txt
5 cafile /user/michel/mosquitto/ca.crt
6 keyfile /user/michel/mosquitto/server.key
7 certfile /user/michel/mosquitto/server.crt

Listing 5.25: Mosquitto Configuration File

5.5 Summary

This chapter provided the most relevant implementation details from the di↵erent ESP-
DHS components. The following paragraphs summarize the implementation of each com-
ponent.

The server is programmed in Python [41] and configured with a .env file that con-
tains environment variables like the path to the database file, broker credentials, or
request interval. MQTT messaging is implemented with the Paho library [42]. The
main loop continuously publishes messages to the /config-request topic and listens on
the /config-response topic for the security configuration of the ESP32-S3 and on the
/device-connected topic whether the client got connected to the broker. If received,
it is checked whether secure boot, flash encryption, and memory protection are enabled.
If not, the client project configuration is changed with the Kconfiglib [25] library. For
compiling and flashing the firmware with updated security settings, the ESP-IDF com-
mand line tool [12] and esptool [43] are used. For safe debugging, eFuses are simulated in
memory, which needs to be disabled when using ESP-DHS in production. All messages,
configurations, and flashes are stored in the database using the SQLAlchemy library [36].

For the database, SQLite 3 [44] was used. The database schema has three tables: mes-
sages, configurations, and flashes. Since, every configuration was received by a message
but not every message contains a configuration, the messages and configurations tables
have an optional one-to-one relationship. The flashes table is independent of the messages.
Tables are represented in Python code as SQLAlchemy ORM models.

The client project contains the firmware running on the ESP32-S3 which consists of the
ESP-DHS client and the user application. It is developed with the C programming lan-
guage [45] and ESP-IDF [12]. The client project is configured with the Kconfig mechanism
[23] and contains standard options like the secure boot activation but also custom options
like the MQTT server path. The security configuration can be extracted by various mech-
anisms like built-in functions from the ESP-IDF or reading options directly from eFuses.
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Converting the configuration to a JSON string is done with the cJSON library [46]. The
components for connecting to the Wi-Fi, MQTT broker, and ATECC608B are based
on examples provided by the ESP-IDF. If the connection to the broker was successful,
the client publishes a message to the /device-connected topic. It also subscribes to
the /config-request topic and sends the configuration to the /config-response topic
upon request. The user application lets the built-in LED of the ESP32-S3 blink in di↵er-
ent colors. This is done by getting an array of random numbers from the ATECC608B
and looping through it to get the values for the red, green, and blue channels of the LED.

The MQTT broker distributes the messages between client and server is set up with the
open-source Mosquitto software [51]. It is secure with a username and password and is
set up to require a TLS secure connection with all its clients.



Chapter 6

Evaluation

In this chapter, the resource consumption, performance, and security enhancements of the
ESP-DHS are discussed. Furthermore, it is shown how the ESP-DHS provides a potential
new attack surface and what has been done to minimize it.

6.1 Resource Consumption

6.1.1 Memory Usage

Memory usage of the ESP32-S3 can be analyzed with the idf.py size command of
the ESP-IDF. The used microcontroller has two megabytes of non-volatile flash memory,
which is used to store the firmware binary. Table 6.1 shows the usage of the di↵erent
memory types of the ESP-DHS without user application, Table 6.2 shows the memory
usage with user application.

Flash memory is the non-volatile memory in which the firmware binary is stored. DRAM
is used to hold data, while IRAM is used for instructions. D/IRAM can be used for
both data and instructions. Depending on the use case, it can vary how much memory is
allocated to IRAM and D/IRAM, but the combined value is always roughly 708 KB.

The ESP-DHS without user application uses 818.4 KB (40.9%) of flash memory, 86.4
KB (23.8%) of static IRAM and 35.3 KB (10.2%) of static D/IRAM. The example user
application only uses an additional 19 KB (⇠ 1%) of flash memory, static D/IRAM usage
stays the same. For simple IoT applications, this might be enough if the user application
can leverage functionality from the ESP-DHS, like the secure element interface or Wi-Fi
connection. However, for more complex functionality, it is recommended to use an ESP32
model with more memory or to connect external RAM [52].

63
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Memory Type Available Used (Absolute) Used (%)
Flash Memory 2000 KB 818.4 KB 40.9%
Static IRAM 362.2 KB 86.4 KB 23.8%

Static D/IRAM 345.9 KB 35.3 KB 10.2%

Table 6.1: ESP-DHS Memory Usage without User Application

Memory Type Available Used (Absolute) Used (%)
Flash Memory 2000 KB 837.5 KB 41.9%
Static IRAM 362.2 KB 91.2 KB 25.2%

Static D/IRAM 345.9 KB 35.4 KB 10.2%

Table 6.2: ESP-DHS Memory Usage with User Application

6.1.2 CPU Usage

CPU usage was measured with the esp32-perfmon component [53], which is not a stan-
dard part of the ESP-IDF. When the CPU cores are idle, they run specified idle functions,
which increase an idle counter. The counter is divided by the expected number of the
counter if the CPU were idle all the time. The resulting value is subtracted from one to
get the CPU usage in percent. The usage is calculated for five-second intervals, e.g. a
value of 10% means that the CPU was used for 10% of the time in the last five seconds.

CPU usage of the ESP-DHS is summarized in Table 6.3. The ESP-DHS is idle when no
MQTT messages are handled and the security configuration is not being extracted. Only
the MQTT server uses the CPU to listen passively for incoming requests. In this state,
CPU usage for core 0 is only 3% and 2% for core 1. In the interval where an incoming
configuration request is handled and the security configuration is extracted, core 0 usage
increases to 7%, and core 1 decreases to 1%. If the ATECC608B is not connected, although
it should be, core 0 usage is 4% and core 1 usage is 2% in the interval where the security
configuration is returned. The CPU usage is overall very low and leaves enough room for
computationally heavy user applications.

Interval Core 0 Core 1
Idle 3% 2%

Request Processing and
Configuration Extraction

7% 1%

Configuration Extraction
(ATECC608B disconnected)

4% 2%

Table 6.3: ESP-DHS CPU Usage
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6.2 Performance

6.2.1 Configuration Extraction

The duration for extracting the security configuration was measured by calling the func-
tion esp_timer_get_time() before and after the call of dhs_config_get() and taking
the di↵erence of the returned times. The extraction takes around 216 milliseconds. How-
ever, if the secure element is not properly connected, this time drastically increases to
over 44 seconds. This slows down the whole ESP-DHS since the function call blocks other
parts of the program. If it is known beforehand that no secure element will be connected,
the ATECC_CONNECTED option in the project configuration must be disabled, which will
skip the time costly dhs_atecc_get_status() function and always returns false for the
atecc_connected property of the security configuration JSON, as shown in Listing 5.18.

6.2.2 Building and Flashing Firmware

The speed of building and flashing depends largely on the computational power of the
host machine on which the ESP-DHS server runs. The host machine used for the tests is
a MacBook Air M2 from 2022. The measurements were made by calling datetime.now()
before and after the call of compile_secure() function and taking the di↵erence of the
returned times.

Building and flashing the client project takes 1 minute and 27 seconds if all features need
to be activated. Activating only one feature is up to 3 seconds faster. Table 6.4 shows
the time taken depending on which security features were activated. The measurements
deviated in di↵erent tests only by a few milliseconds.

Activated Feature Build and Flash Time
Secure Boot 1 min 24 s

Flash Encryption 1 min 26 s
Memory Protection 1 min 24 s

All Features 1 min 27 s

Table 6.4: Build and Flash Time for Security Features

6.2.3 Workflow

Workflow performance is measured by analyzing the timestamps stored in the database.
There are two workflow scenarios to consider, depending on whether the firmware needs
to be updated. If not, the ESP-DHS only has one round trip, by requesting the security
configuration and getting the response. An additional round trip is added when the
configuration is not secure, by flashing the firmware and getting the “device connected”
response.
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Step Execution Time Di↵erence
Config Request Sent 0 0

Config Response Received 0.29 s + 0.29 s
Flash Start 0.30 s + 0.01 s
Flash End 1 min 26.12 s + 1 min 25.83 s

Device Connected Received 1 min 52.53 s + 26.41 s

Table 6.5: Workflow Measurements

The round trip time is influenced by the computational power of the host computer and the
microcontroller and the network speed. Table 6.5 shows how much time the steps need to
execute and the time di↵erence to the last step. The configuration request is sent at time
0. After 0.29 seconds, the response with the ESP32-S3 security configuration is received.
After another 0.01 seconds, compiling and flashing the firmware begins, which takes 1
minute and 25.83 seconds. The microcontroller sends the “device connected” message
after it has rebooted, which takes 26.41 seconds. The overall workflow from sending
the configuration request until the ESP32-S3 has booted the new secure firmware takes 1
minute and 52.53 seconds in the test environment. The measurements were made multiple
times and revealed only small di↵erences by a few milliseconds between the di↵erent test
runs.

6.3 Security Considerations

The ESP-DHS hardens the ESP32-S3 by activating secure boot, flash encryption, and
memory protection. Furthermore, it provides support for the ATECC608B secure element.
The security benefits of these features are discussed on a high level, conducting attacks
on the hardened microcontroller to test the measure’s e↵ectiveness is beyond the scope of
this thesis.

6.3.1 Secure Element

The e↵ectiveness of using a secure element for cryptographic operations and key storage
was shown in [20] and summarized in Section 3.2. The authors used an ESP32 micro-
controller with the ATECC608A, which are very similar devices to the ones used in this
thesis. Therefore the results should be transferrable to a big extent. It could be shown
that the ESP32 is vulnerable to format string attacks, a type of attack where more mem-
ory segments than intended are read out when printing to the console. If this happens to
memory segments containing cryptographic keys, this poses a security risk. By using a
secure element, this can be avoided.

In the implementation of this thesis, the ATECC608B was connected to the ESP32-S3
via GPIO pins. If an attacker has physical access to the device, he could disconnect the
secure element from the microcontroller and potentially break the application running on
it. An attacker could also intercept the tra�c between the microcontroller and the secure
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element. To mitigate these security risks in a production environment, it is advisable to
use a microcontroller where the secure element is on the same circuit board as the CPU
or inside the chip.

6.3.2 Secure Boot

Secure boot ensures that only signed firmware can run on the ESP32-S3 microcontroller
[18]. Since the signing key created by the ESP-DHS server only exists on the host com-
puter, this is an e↵ective countermeasure to prevent malicious code from being run on
the microcontroller. It is crucial that this key is kept confidential, this is most e↵ectively
done by restricting access to the host computer and the directory where the secure boot
signing key is stored.

6.3.3 Flash Encryption

Flash encryption is used to encrypt the flash memory of the ESP32-S3, which ensures that
an attacker cannot read out data and firmware from the device. The flash encryption key is
generated on the microcontroller itself and stored in eFuses [19]. The ESP-DHS activates
flash encryption only in development mode to allow for debugging. To ensure the highest
level of security, production mode should be activated.

6.3.4 Memory Protection

Memory protection prevents the program running on the ESP32-S3 from reading and writ-
ing memory regions without explicit permission. Permissions are granted automatically
by the microcontroller [16]. To exploit disabled memory protection, malicious firmware
would need to run on the microcontroller, which is prevented by secure boot.

6.3.5 ESP-DHS Attack Surface

While the ESP-DHS hardens the ESP32-S3, it also introduces an additional layer of
complexity and therefore a new attack surface. Minimizing this attack surface could be
part of future work and is discussed in Chapter 7.

The security configuration contains critical information about potential device vulner-
abilities and must be kept confidential. It is exchanged over the MQTT protocol, the
ESP-DHS makes sure that this connection is TLS secured and messages cannot be read
by unauthorized parties in a man-in-the-middle attack. The security configuration is
stored in an SQLite database, which does not provide encryption or password protection
by default. It is therefore crucial that no unauthorized parties have access to the host
computer on which the database file is stored.
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New firmware is flashed over a physical UART connection between the host computer and
the ESP32-S3, which is not secured. If secure boot is not activated, the UART connection
is susceptible to man-in-the-middle attacks, where an attacker could read the firmware
binary. In the flashing process, after secure boot was first activated, the secure boot key
is transferred from the host computer to the microcontroller over this connection. If an
attacker has access to the connection in this stage of the process, he could decrypt the
firmware binaries and sign malicious firmware.

Another security risk is that the ESP-DHS client is not isolated from the rest of the
firmware running on the ESP32-S3. On-device malware could intercept and forge the
security configuration before it is sent to the server.

The ESP-DHS cannot make sure that the device sending the security configuration over
MQTT and the device receiving the firmware over UART are the same. This could lead
to a scenario where one ESP-DHS client sends a device configuration where all security
features are activated, but the ESP32-S3 connected to the UART port has a di↵erent
configuration. The device connected to the port could then be used in production without
activated security features.

6.4 Summary

The ESP-DHS uses a big part of the ESP32-S3 flash memory, while the usage of static
IRAM and D/IRAM is moderate. 40.9% (818.4 KB) of the 2 MB flash memory of the
used microcontroller gets occupied by the ESP-DHS. Static IRAM usage is 23.8% (86.4
KB), D/IRAM usage is 10.2% (35.3 KB). When developing a user application, it is im-
portant to make sure to also consider the memory usage of the ESP-DHS. The ESP-DHS
is computationally very light, CPU performance was measured by calculating CPU occu-
pation in a five-second interval. Only 3% of the CPU core 0 is used in an idle interval, 7%
when the security configuration is extracted, and 4% when the configuration is extracted
but the ATECC608B was disconnected. Core 1 usage is always around 2%. This leaves
enough computational power for computationally intensive user applications.

The configuration extraction is very fast with 216 milliseconds. However, when the
ATECC608B is not connected although it should be, this duration increases to 44 sec-
onds. It is therefore very important to specify in the client project configuration whether
a secure element is used or not. Building and flashing firmware with all activated security
features takes around 1 minute and 27 seconds on the used host computer (MacBook Air
M2 2022), with only very little performance improvement when just a single feature is
activated. The workflow of the ESP-DHS has two round trips when the security config-
uration needs to be updated. In the test setup, a configuration response is received 0.29
seconds after the request. Configuration evaluation, updating the configuration, compil-
ing, and flashing the firmware takes around 1 minute and 25 seconds. The server receives
the “device connected”message 1 minute and 52 seconds after it has sent a configuration
request. Compiling and flashing the firmware and restarting the microcontroller are the
steps that take the longest.
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The ESP-DHS hardens the ESP32-S3 by automatically activating secure boot, flash en-
cryption, and memory protection if necessary. Secure boot ensures that only signed
firmware can run on the microcontroller, flash encryption prevents attackers from reading
out the flash memory contents and memory protection ensures only authorized entities
can access the memory of the device. The ESP-DHS also provides an API for accessing
the ATECC608B secure element. The usage of a secure element helps to avoid string
format attacks that can leak cryptographic keys, which was shown in [20].

The ESP-DHS stores the security configuration in an unencrypted database, the UART
connection between the host computer and ESP32-S3 is also not encrypted. It is therefore
important to restrict access to the machine hosting the database and to ensure only au-
thorized entities have access to the physical UART connection during the flashing process.
The ESP-DHS client does not run isolated from the rest of the firmware, which is a security
risk. The ESP-DHS client does not run isolated from the rest of the firmware, therefore,
the security configuration could potentially be forged by an on-device malware before it
is sent to the server. The system has no way to check whether the device connected to
the host computer is the same from which it receives the MQTT messages.
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Chapter 7

Conclusion

Section 7.1 of this chapter summarizes the findings of this thesis. The limitations of the
implemented solution, how they can be addressed and future research opportunities are
discussed in Section 7.2.

7.1 Summary

The main contribution of this thesis was the development of the ESP32-S3DeviceHardening
System (ESP-DHS), which extracts the security configuration of an ESP32-S3 microcon-
troller and updates it if necessary. An analysis of related work emphasized the importance
of proper device configuration and device hardening to IoT security. Some papers provide
concrete measures or frameworks on how to secure IoT devices against attackers. Current
solutions for device monitoring focus on monitoring the network tra�c and only react
if the device is already behaving maliciously. There exist no systems for the ESP32-S3
microcontroller that take a proactive approach by monitoring its security configuration
and automatically updating it if necessary. The ESP-DHS aims to close this gap.

The ESP-DHS consists of five parts: a server, database, ESP32-S3 firmware, MQTT
broker and ATECC608B secure element. The Python server requests the security config-
uration of the ESP32-S3 over MQTT. The firmware on the microcontroller extracts the
configuration and sends it back to the server, where it is analyzed. The server has access
to the firmware source code. If necessary, secure boot, flash encryption, or memory protec-
tion are activated in the firmware source code. The new firmware with activated security
features is then built and flashed onto the ESP32-S3 over a physical UART connection.
All actions taken by the server and all communication between the server and microcon-
troller are logged to a SQLite database. For additional device security, the firmware has
support for the ATECC608B secure element, which provides secure cryptographic func-
tions and key storage. To run custom code next to the ESP-DHS on the microcontroller,
it is possible to develop user applications that are integrated into the ESP-DHS firmware.

Evaluation of the ESP-DHS showed that at most 7% of CPU resources of the ESP32-S3
are used in a five-second interval. The firmware uses below 25% of the available 0.7 MB
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of RAM. 40.9% of the 2 MB flash storage is occupied by the firmware. The process of
adjusting the device configuration and building and flashing new firmware takes 1 minute
and 27 seconds in the test environment. The ESP-DHS is therefore computationally very
light, however, it is necessary to use a microcontroller with su�cient flash memory since
the ESP-DHS can take up a considerable amount of it.

7.2 Limitations and Future Work

While the ESP-DHS can enhance the security of the ESP32-S3, it also introduces a new
potential attack surface. The data going through the physical UART connection between
the host computer and the ESP32-S3 is not encrypted. The SQLite database also does
not o↵er any encryption and access control capabilities. Another limitation is that the
ESP-DHS cannot be sure the device from which it receives the security configuration is
the same device connected to the UART port. This could result in the connected device
not being flashed with secure firmware. Also, the ESP-DHS client does not run isolated
from the user application on the microcontroller. On-device malware could potentially
intercept MQTT messages and for example, send a forged security configuration.

Immediate future work building upon the ESP-DHS should first focus on improving these
limitations. For example, using MySQL [54] instead of SQLite would provide the database
with access rights management and encryption capabilities. For the server to ensure the
UART device is the same as the MQTT device, the microcontroller could send its MAC
address to the server over UART with the serial protocol. The MAC address received
over this channel would be compared to the one received over MQTT to ensure they are
the same. To avoid that on-device malware can change the data sent by the ESP32-S3,
the ESP-DHS client should be isolated from the rest of the firmware.

The practicability of the ESP-DHS in real-world use cases is limited because the ESP32-
S3 needs to be physically connected to the host computer. The system continues working
when the device is not connected, however, it will only request and log the device con-
figuration without being able to change it. The ESP-IDF provides methods to update
firmware over the air (OTA) [55] which could be integrated into the system in the future.
Flashing firmware with the OTA mechanism provides improved security compared to
UART updates and would remove the vulnerable connection between the host computer
and the microcontroller. Currently, the ESP-DHS only works with one ESP32-S3. By
using OTA updates, the system could be extended to support multiple microcontrollers
with only one server.

The ESP-DHS was built specifically for the ESP32-S3 microcontroller, adding support for
other Espressif devices that use the ESP-IDF would be relatively easy. Adding support
for a broader range of IoT platforms could be considered for future work. Additionally,
the ESP-DHS could be enhanced with network monitoring capabilities as proposed by [8],
[9], and [10] to detect malicious behavior.
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[4] A. Echeverŕıa, C. Cevallos, I. Ortiz-Garces, and R. O. Andrade, “Cybersecurity
Model Based on Hardening for Secure Internet of Things Implementation”, Applied
Sciences, vol. 11, no. 7, p. 3260, Apr. 2021. doi: 10.3390/app11073260.

[5] C. Kelly, N. Pitropakis, S. McKeown, and C. Lambrinoudakis, “Testing And Hard-
ening IoT Devices Against the Mirai Botnet”, in 2020 International Conference on
Cyber Security and Protection of Digital Service, Jun. 2020, pp. 1–8. doi: 10.1109/
CyberSecurity49315.2020.9138887.

[6] IoT device cybersecurity capability core baseline, NIST IR 8259A, May 2020. [On-
line]. Available: https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.
8259A.pdf.

[7] Security and Privacy Controls for Information Systems and Organizations, NIST-
SP-800-53, Sep. 2020. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-53r5.pdf.

[8] J. Wang, S. Hao, R. Wen, et al., “IoT-Praetor: Undesired Behaviors Detection for
IoT Devices”, IEEE Internet of Things Journal, vol. 8, no. 2, pp. 927–940, Jan.
2021. doi: 10.1109/JIOT.2020.3010023.

[9] H. Zahan, M. W. Al Azad, I. Ali, and S. Mastorakis, “IoT-AD: A Framework to
Detect Anomalies Among Interconnected IoT Devices”, IEEE Internet of Things
Journal, vol. 11, no. 1, pp. 478–489, Jan. 2024. doi: 10.1109/JIOT.2023.3285714.

[10] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu, “HoMonit: Moni-
toring Smart Home Apps from Encrypted Tra�c”, in ACM SIGSAC Conference on
Computer and Communications Security, Oct. 2018, pp. 1074–1088. doi: 10.1145/
3243734.3243820.

[11] Espressif Announces the Launch of ESP32 Cloud on Chip and Funding by Fosun
Group. [Online]. Available: https://www.espressif.com/en/media_overview/
news/20160907-esp32briefing (visited on 03/22/2024).

73

https://datatracker.ietf.org/doc/rfc8576
https://doi.org/10.1109/TDSC.2020.3037908
https://doi.org/10.1109/JIOT.2022.3224649
https://doi.org/10.3390/app11073260
https://doi.org/10.1109/CyberSecurity49315.2020.9138887
https://doi.org/10.1109/CyberSecurity49315.2020.9138887
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8259A.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8259A.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf
https://doi.org/10.1109/JIOT.2020.3010023
https://doi.org/10.1109/JIOT.2023.3285714
https://doi.org/10.1145/3243734.3243820
https://doi.org/10.1145/3243734.3243820
https://www.espressif.com/en/media_overview/news/20160907-esp32briefing
https://www.espressif.com/en/media_overview/news/20160907-esp32briefing


74 BIBLIOGRAPHY

[12] Get Started - ESP32-S3 - ESP-IDF Programming Guide latest documentation. [On-
line]. Available: https://docs.espressif.com/projects/esp-idf/en/latest/
esp32s3/get-started/index.html (visited on 03/22/2024).

[13] Espressif Leads the IoT Chip Market with Over 1 Billion Shipments Worldwide.
[Online]. Available: https://www.espressif.com/en/news/1_Billion_Chip_
Sales (visited on 07/16/2024).

[14] Announcing ESP32-S3 for AIoT Applications. [Online]. Available: https://www.
espressif.com/en/news/ESP32_S3 (visited on 03/23/2024).

[15] ESP32-S3-DevKitC-1 v1.1 - ESP32-S3 - ESP-IDF Programming Guide latest doc-
umentation. [Online]. Available: https://docs.espressif.com/projects/esp-
idf/en/latest/esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html
(visited on 03/24/2024).

[16] Security - ESP32-S3 - ESP-IDF Programming Guide v5.2.2 documentation. [On-
line]. Available: https://docs.espressif.com/projects/esp-idf/en/v5.2.2/
esp32s3/security/security.html (visited on 07/15/2024).

[17] eFuse Manager - ESP32-S3 - ESP-IDF Programming Guide v5.2.2 documentation.
[Online]. Available: https://docs.espressif.com/projects/esp- idf/en/
stable/esp32s3/api-reference/system/efuse.html (visited on 07/15/2024).

[18] Secure Boot V2 - ESP32-S3 - ESP-IDF Programming Guide v5.2.1 documentation.
[Online]. Available: https://docs.espressif.com/projects/esp-idf/en/v5.2.
1/esp32s3/security/secure-boot-v2.html (visited on 05/08/2024).

[19] Flash Encryption - ESP32-S3 - ESP-IDF Programming Guide v5.2.1 documenta-
tion. [Online]. Available: https://docs.espressif.com/projects/esp-idf/en/
stable/esp32s3/security/flash-encryption.html (visited on 05/08/2024).

[20] B. Pearson, C. Zou, Y. Zhang, Z. Ling, and X. Fu, “SIC2: Securing Microcontroller
Based IoT Devices with Low-cost Crypto Coprocessors”, in 2020 IEEE 26th In-
ternational Conference on Parallel and Distributed Systems (ICPADS), Dec. 2020,
pp. 372–381. doi: 10.1109/ICPADS51040.2020.00057.

[21] ATECC608B. [Online]. Available: https://www.microchip.com/en-us/product/
atecc608b (visited on 07/16/2024).

[22] M. Krohn, What is MQTT? A practical introduction, Mar. 2022. [Online]. Available:
https://www.opc-router.com/what-is-mqtt/ (visited on 08/07/2024).

[23] Kconfig Language – The Linux Kernel documentation. [Online]. Available: https:
//www.kernel.org/doc/html/next/kbuild/kconfig-language.html (visited on
08/08/2024).

[24] Project Configuration - ESP32-S3 - ESP-IDF Programming Guide v5.2.1 documen-
tation. [Online]. Available: https://docs.espressif.com/projects/esp-idf/
en/stable/esp32s3/api-reference/kconfig.html (visited on 05/08/2024).

[25] U. Magnusson, Ulfalizer/Kconfiglib. [Online]. Available: https://github.com/
ulfalizer/Kconfiglib (visited on 08/08/2024).

[26] IoT Security Certification for Device Manufacturers | PSA Certified. [Online]. Avail-
able: https://www.psacertified.org/getting-certified/device-manufacturer/
(visited on 05/07/2024).

[27] N. M. Karie, N. M. Sahri, W. Yang, C. Valli, and V. R. Kebande, “A Review of
Security Standards and Frameworks for IoT-Based Smart Environments”, IEEE
Access, vol. 9, pp. 121 975–121 995, 2021. doi: 10.1109/ACCESS.2021.3109886.

https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/get-started/index.html
https://www.espressif.com/en/news/1_Billion_Chip_Sales
https://www.espressif.com/en/news/1_Billion_Chip_Sales
https://www.espressif.com/en/news/ESP32_S3
https://www.espressif.com/en/news/ESP32_S3
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.2/esp32s3/security/security.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.2/esp32s3/security/security.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/system/efuse.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/system/efuse.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/security/secure-boot-v2.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/security/secure-boot-v2.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/security/flash-encryption.html
https://doi.org/10.1109/ICPADS51040.2020.00057
https://www.microchip.com/en-us/product/atecc608b
https://www.microchip.com/en-us/product/atecc608b
https://www.opc-router.com/what-is-mqtt/
https://www.kernel.org/doc/html/next/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/next/kbuild/kconfig-language.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/kconfig.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/kconfig.html
https://github.com/ulfalizer/Kconfiglib
https://github.com/ulfalizer/Kconfiglib
https://www.psacertified.org/getting-certified/device-manufacturer/
https://doi.org/10.1109/ACCESS.2021.3109886


BIBLIOGRAPHY 75

[28] PSA Certified: IoT Security Framework and Certification. [Online]. Available: https:
//www.psacertified.org/ (visited on 04/23/2024).

[29] Information security, cybersecurity and privacy protection — Information security
management systems, ISO/IEC 27001, Oct. 2022. [Online]. Available: https://
www.iso.org/standard/27001.

[30] ESP32-S3 Series (ESP32-S3, ESP32-S3FN8, ESP32-S3R2, ESP32-S3R8, ESP32-
S3R8V, ESP32-S3FH4R2) | PSA Certified. [Online]. Available: https : / / www .
psacertified.org/products/esp32- s3- series- esp32- s3- esp32- s3fn8-
esp32-s3r2-esp32-s3r8-esp32-s3r8v-esp32-s3fh4r2/ (visited on 04/21/2024).

[31] Y. Kurii and I. Opirskyy, “Analysis and comparison of the NIST SP 800-53 and
ISO/IEC 27001: 2013”, in Cybersecurity providing in information and telecommu-
nication systems, 2022. [Online]. Available: https://api.semanticscholar.org/
CorpusID:254045769.

[32] V. Kanade, ISMS Meaning, Its Working, Benefits, and Best Practices - Spiceworks.
[Online]. Available: https://www.spiceworks.com/it-security/vulnerability-
management/articles/what-is-isms/ (visited on 05/09/2024).

[33] S. Yoon and J. Kim, “Remote security management server for IoT devices”, in 2017
International Conference on Information and Communication Technology Conver-
gence (ICTC), Oct. 2017, pp. 1162–1164. doi: 10.1109/ICTC.2017.8190885.

[34] R. McPherson and J. Irvine, “Using Smartphones to Enable Low-Cost Secure Con-
sumer IoT Devices”, IEEE Access, vol. 8, pp. 28 607–28 613, 2020. doi: 10.1109/
ACCESS.2020.2968627.

[35] M. Medwed, V. Nikov, J. Renes, T. Schneider, and N. Veshchikov, “Cyber Resilience
for Self-Monitoring IoT Devices”, in 2021 IEEE International Conference on Cyber
Security and Resilience (CSR), Jul. 2021, pp. 160–167. doi: 10.1109/CSR51186.
2021.9527995.

[36] SQLAlchemy. [Online]. Available: https : / / www . sqlalchemy . org (visited on
08/08/2024).

[37] Miscellaneous System APIs - ESP32-S3 - ESP-IDF Programming Guide v5.3 doc-
umentation. [Online]. Available: https://docs.espressif.com/projects/esp-
idf/en/stable/esp32s3/api- reference/system/misc_system_api.html
(visited on 08/25/2024).

[38] Networking APIs - ESP32-S3 - ESP-IDF Programming Guide v5.2.1 documenta-
tion. [Online]. Available: https://docs.espressif.com/projects/esp-idf/en/
stable/esp32s3/api-reference/network/index.html (visited on 05/08/2024).

[39] M. Sabbatini, Atomis14/esp-dhs-server. [Online]. Available: https://github.com/
Atomis14/esp-dhs-server (visited on 08/26/2024).

[40] M. Sabbatini, Atomis14/esp-dhs-client. [Online]. Available: https://github.com/
Atomis14/esp-dhs-client (visited on 08/26/2024).

[41] Welcome to Python.org. [Online]. Available: https://www.python.org/ (visited
on 08/29/2024).

[42] Paho-mqtt 2.1.0. [Online]. Available: https://pypi.org/project/paho-mqtt/
(visited on 08/07/2024).

[43] Esptool.py Documentation - ESP32-S3. [Online]. Available: https://docs.espressif.
com/projects/esptool/en/latest/esp32s3/index.html (visited on 08/08/2024).

[44] SQLite Home Page. [Online]. Available: https://www.sqlite.org/ (visited on
08/09/2024).

https://www.psacertified.org/
https://www.psacertified.org/
https://www.iso.org/standard/27001
https://www.iso.org/standard/27001
https://www.psacertified.org/products/esp32-s3-series-esp32-s3-esp32-s3fn8-esp32-s3r2-esp32-s3r8-esp32-s3r8v-esp32-s3fh4r2/
https://www.psacertified.org/products/esp32-s3-series-esp32-s3-esp32-s3fn8-esp32-s3r2-esp32-s3r8-esp32-s3r8v-esp32-s3fh4r2/
https://www.psacertified.org/products/esp32-s3-series-esp32-s3-esp32-s3fn8-esp32-s3r2-esp32-s3r8-esp32-s3r8v-esp32-s3fh4r2/
https://api.semanticscholar.org/CorpusID:254045769
https://api.semanticscholar.org/CorpusID:254045769
https://www.spiceworks.com/it-security/vulnerability-management/articles/what-is-isms/
https://www.spiceworks.com/it-security/vulnerability-management/articles/what-is-isms/
https://doi.org/10.1109/ICTC.2017.8190885
https://doi.org/10.1109/ACCESS.2020.2968627
https://doi.org/10.1109/ACCESS.2020.2968627
https://doi.org/10.1109/CSR51186.2021.9527995
https://doi.org/10.1109/CSR51186.2021.9527995
https://www.sqlalchemy.org
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/system/misc_system_api.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/system/misc_system_api.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/network/index.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/network/index.html
https://github.com/Atomis14/esp-dhs-server
https://github.com/Atomis14/esp-dhs-server
https://github.com/Atomis14/esp-dhs-client
https://github.com/Atomis14/esp-dhs-client
https://www.python.org/
https://pypi.org/project/paho-mqtt/
https://docs.espressif.com/projects/esptool/en/latest/esp32s3/index.html
https://docs.espressif.com/projects/esptool/en/latest/esp32s3/index.html
https://www.sqlite.org/


76 BIBLIOGRAPHY

[45] C docs - get started, tutorials, reference. [Online]. Available: https : / / learn .
microsoft.com/en-us/cpp/c-language/?view=msvc-170 (visited on 08/29/2024).

[46] D. Gamble, DaveGamble/cJSON. [Online]. Available: https : / / github . com /
DaveGamble/cJSON (visited on 08/10/2024).

[47] Wi-Fi Station Example. [Online]. Available: https://github.com/espressif/
esp- idf/tree/release/v5.2/examples/wifi/getting_started/station
(visited on 08/10/2024).

[48] ESP-MQTT SSL Sample application. [Online]. Available: https://github.com/
espressif/esp- idf/tree/release/v5.2/examples/protocols/mqtt/ssl
(visited on 08/10/2024).

[49] ECDSA sign/verify Example with ESP32-WROOM-32SE. [Online]. Available: https:
//github.com/espressif/esp-idf/tree/release/v5.2/examples/peripherals/
secure_element (visited on 08/10/2024).

[50] Blink Example. [Online]. Available: https://github.com/espressif/esp-idf/
tree/release/v5.2/examples/get-started/blink (visited on 08/10/2024).

[51] Eclipse Mosquitto. [Online]. Available: https://mosquitto.org/ (visited on 08/09/2024).
[52] Support for External RAM - ESP32-S3 - ESP-IDF Programming Guide v5.3 doc-

umentation. [Online]. Available: https://docs.espressif.com/projects/esp-
idf/en/stable/esp32s3/api-guides/external-ram.html (visited on 08/13/2024).

[53] Carbon225/esp32-perfmon: ESP IDF CPU usage monitor. [Online]. Available: https:
//github.com/Carbon225/esp32-perfmon (visited on 08/14/2024).

[54] MySQL. [Online]. Available: https://www.mysql.com/de/ (visited on 08/22/2024).
[55] Over The Air Updates (OTA) - ESP32-S3 - ESP-IDF Programming Guide v5.3

documentation. [Online]. Available: https://docs.espressif.com/projects/
esp-idf/en/stable/esp32s3/api-reference/system/ota.html#secure-ota-
updates-without-secure-boot (visited on 08/23/2024).

https://learn.microsoft.com/en-us/cpp/c-language/?view=msvc-170
https://learn.microsoft.com/en-us/cpp/c-language/?view=msvc-170
https://github.com/DaveGamble/cJSON
https://github.com/DaveGamble/cJSON
https://github.com/espressif/esp-idf/tree/release/v5.2/examples/wifi/getting_started/station
https://github.com/espressif/esp-idf/tree/release/v5.2/examples/wifi/getting_started/station
https://github.com/espressif/esp-idf/tree/release/v5.2/examples/protocols/mqtt/ssl
https://github.com/espressif/esp-idf/tree/release/v5.2/examples/protocols/mqtt/ssl
https://github.com/espressif/esp-idf/tree/release/v5.2/examples/peripherals/secure_element
https://github.com/espressif/esp-idf/tree/release/v5.2/examples/peripherals/secure_element
https://github.com/espressif/esp-idf/tree/release/v5.2/examples/peripherals/secure_element
https://github.com/espressif/esp-idf/tree/release/v5.2/examples/get-started/blink
https://github.com/espressif/esp-idf/tree/release/v5.2/examples/get-started/blink
https://mosquitto.org/
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-guides/external-ram.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-guides/external-ram.html
https://github.com/Carbon225/esp32-perfmon
https://github.com/Carbon225/esp32-perfmon
https://www.mysql.com/de/
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/system/ota.html#secure-ota-updates-without-secure-boot
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/system/ota.html#secure-ota-updates-without-secure-boot
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-reference/system/ota.html#secure-ota-updates-without-secure-boot


Abbreviations

AI Artificial Intelligence
AIoT Artificial Intelligence of Things
API Application Programming Interface
CPU Central Processing Unit
DFA Deterministic Finite Automaton
DUD Device Usage Description
DUR Device Usage Rule
ECDSA Elliptic Curve Digital Signature Algorithm
ESP-DHS ESP32-S3 Device Hardening System
ESP-IDF Espressif Integrated Development Framework
FQDN Fully Qualified Domain Name
GPIO General Purpose Input/Output
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
I/O Input/Output
IDF Integrated Development Framework
IEC International Electrotechnical Commission
ISO International Organization for Standardization
IoT Internet of Things
ISMS Information Security Management System
JSON JavaScript Object Notation
LED Light Emitting Diode
MB Megabyte
MAC Media Access Control
MCU Microcontroller Unit
MITM Man in the Middle
ML Machine Learning
MQTT Message Queuing Telemetry Transport
NIST National Institute of Standards and Technology
NLP Natural Language Processing
NVS Non-volatile Storage
ORM Object-relational mapping
OTA Over-the-Air
PSA Platform Security Architecture
RAM Random Access Memory
ROM Read Only Memory

77



78 ABBREVIATONS

RoT Root of Trust
SDN Software Defined Networking
SoC System on a Chip
SRAM Static Random Access Memory
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
UA User Application
UI User Interface
UART Universal Asynchronous Receiver/Transmitter
VM Virtual Machine
WPA Wi-Fi Protected Access



List of Figures

2.1 Important Hardware Components of the ESP32-S3-DevKitC-1 . . . . . . . 5

2.2 MQTT Protocol Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Components with their Connections, Protocols, and Standards . . . . . . . 25

4.2 ESP-DHS Workflow Sequence Diagram . . . . . . . . . . . . . . . . . . . . 25

4.3 ESP-DHS Client and User Application on the ESP32-S3 . . . . . . . . . . 27

5.1 Project File Structure of the Server . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Entity-relationship Diagram of the Database . . . . . . . . . . . . . . . . . 48

5.3 File Structure of the Client Project . . . . . . . . . . . . . . . . . . . . . . 51

5.4 UI of the Client Project Configuration . . . . . . . . . . . . . . . . . . . . 52

79



80 LIST OF FIGURES



List of Tables

2.1 Description of the labeled Hardware Components of Figure 2.1 [15] . . . . 6

2.2 IoT Security Standards Overview . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 NIST IR 8259A Capabilities [6] . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Excerpt of NIST SP 800-53 Security and Privacy Control Families [7]. . . . 13

2.5 Excerpt of relevant NIST SP 800-53 Controls [7] . . . . . . . . . . . . . . . 13

2.6 Mapping of NIST Controls to ISO Controls [31]. . . . . . . . . . . . . . . . 14

3.1 Device Hardening Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Key Generation and Storage Solutions . . . . . . . . . . . . . . . . . . . . 17

3.3 Device Monitoring and Recovery Solutions . . . . . . . . . . . . . . . . . . 19

4.1 NIST IR 8259A [6] Capabilities with ESP32-S3 Implementation . . . . . . 29

4.2 Implementation of NIST SP 800-53 Controls in ESP-DHS. . . . . . . . . . 30

6.1 ESP-DHS Memory Usage without User Application . . . . . . . . . . . . . 64

6.2 ESP-DHS Memory Usage with User Application . . . . . . . . . . . . . . . 64

6.3 ESP-DHS CPU Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Build and Flash Time for Security Features . . . . . . . . . . . . . . . . . 65

6.5 Workflow Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

81



82 LIST OF TABLES



List of Listings

2.1 Kconfig Menu Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Sdkconfig Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.1 Example of a Server .env File . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Server Main Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Excerpt of the MQTT Client Code . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Security State Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Compare and Print Configuration Di↵erences . . . . . . . . . . . . . . . . 39
5.6 Example Console Output of the compare_configurations Function . . . . 39
5.7 Initializing Commands for idf.py . . . . . . . . . . . . . . . . . . . . . . . 40
5.8 Run Command Utility Function . . . . . . . . . . . . . . . . . . . . . . . . 41
5.9 Erase Flash Memory of the ESP32-S3 . . . . . . . . . . . . . . . . . . . . . 41
5.10 Change Client Project Security Features . . . . . . . . . . . . . . . . . . . 42
5.11 Activate Debug Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.12 Secure Boot Signing Key Generation . . . . . . . . . . . . . . . . . . . . . 43
5.13 Compile and Flash Secure Firmware . . . . . . . . . . . . . . . . . . . . . 44
5.14 Device Reconnection Handling . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.15 Database Connection and Manipulation . . . . . . . . . . . . . . . . . . . . 46
5.16 SQLAlchemy ORM Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.17 Example JSON of the Security Configuration . . . . . . . . . . . . . . . . . 53
5.18 Excerpt of the Code for Extracting the Security Configuration . . . . . . . 54
5.19 Example JSON of the Security Configuration . . . . . . . . . . . . . . . . . 56
5.20 Event Handler for MQTT Messages . . . . . . . . . . . . . . . . . . . . . . 57
5.21 Checking the Secure Element Connection . . . . . . . . . . . . . . . . . . . 58
5.22 Random Number Generation using ATECC608B . . . . . . . . . . . . . . . 59
5.23 User Application Main Loop . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.24 Mosquitto Password File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.25 Mosquitto Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.1 Server Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

83



84 LIST OF LISTINGS



Appendix A

Installation Guidelines

The host computer on which the client firmware was developed and the server, database
and broker run was a MacBook Air M2 2022 with macOS Sonoma 14.6.1. The installation
steps may vary for other systems.

A.1 Client Setup

To develop, build and flash ESP32-S3 firmware, the ESP-IDF [12] is needed. For the
installation, follow the “Get Started” guide from the ESP-IDF programming guide [12].
The used version of the ESP-IDF VS Code plugin was v1.7.1, newer versions did not
work.

For the ESP-DHS to work, it is necessary that the firmware was built manually at least
once (i.e. the /build directory should not be empty).

The following configurations need to be set manually before first building the project (not
by writing them manually to a sdkconfig file, but by entering the values in the menuconfg
UI):

1 # the custom table contains a virtual eFuse partition
2 CONFIG_PARTITION_TABLE_CUSTOM=y
3

4 # bigger offset needed for secure boot bootloader
5 CONFIG_PARTITION_TABLE_OFFSET =0 x10000
6

7 # SSID of the Wi-Fi network
8 ESP_WIFI_SSID=<SSID >
9

10 # password of the Wi-Fi network
11 ESP_WIFI_PASSWORD=<PASSWORD >
12

13 # URI of the MQTT broker in the following format:
14 # mqtts://<username >:<password >@<fqdn >:8883
15 BROKER_URI=<URI >
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16

17 # y if you intend to use a secure element , n otherwise
18 ATECC_CONNECTED=y/n
19

20 # if ATECC608B will be connected , add these additionally:
21 CONFIG_ATCA_MBEDTLS_ECDSA=y
22 CONFIG_ATCA_MBEDTLS_ECDSA_SIGN=y
23 CONFIG_ATCA_MBEDTLS_ECDSA_VERIFY=y
24 CONFIG_ATCA_I2C_SDA_PIN =14 # or any other used pin
25 CONFIG_ATCA_I2C_SCL_PIN =13 # or any other used pin

Listing A.1: Server Configuration

A.2 Mosquitto Setup

Mosquitto [51] is the software used to run the MQTT broker. These installation guidelines
assume the broker runs on the same machine as the server.

A.2.1 Install Mosquitto

1. Install mosquitto by running: brew install mosquitto

2. Configure the broker

• Create a password file by running:
mosquitto_passwd -c <path to password file> <username>

• Add the listener option to the mosquitto.conf file (located at /opt/home-
brew/Cellar/mosquitto/2.0.18/etc/mosquitto) in order to not only allow
connections from the same machine: listener 1883

• Add the password_file option to mosquitto.conf:
password_file <path to the password file>

• Grant permission to the user to read/write the password file by running:
chmod 0700 <path to password file>

3. Start the broker by running: /opt/homebrew/opt/mosquitto/sbin/mosquitto -c
/opt/homebrew/etc/mosquitto/mosquitto.conf

A.2.2 Setup TLS Encryption

1. Create a key pair for the Certificate Authority (CA) by running:
openssl genrsa -out ca.key 2048

2. Create certificate for CA using private key from step 1 by running:
openssl req -new -x509 -days 1826 -key ca.key -out ca.crt



A.3. SERVER SETUP 87

3. Fill in the requested information, remember the fully qualified domain name (FQDN),
which could be e.g. the IP address of the broker. The FQDN can be retrieved by
running hostname -f.

4. Create server key pair that is used by the broker by running: openssl genrsa -out
server.key

5. Create certificate request using the server key from before (use FQDN from before
as the common name) by running:
openssl req -new -out server.csr -key server.key

6. Use CA key to verify and sign the server certificate, this creates the server.crt file:
openssl x509 -req -in server.csr -CA ca.crt -CAkey ca.key -CAcreateserial
-out server.crt -days 360

7. Copy the following files to a folder under the mosquitto folder: ca.crt, server.crt,
server.key

8. Copy ca.crt to the root directory of the ESP-DHS server and /components/dhs_mqtt
directory of the ESP32-S3 firmware project

9. Edit the mosquitto.conf file:

• Change listener 1883 to listener 8883

• Add cafile <path to ca.crt>

• Add keyfile <path to server.key>

• Add certfile <path to server.crt>

A.3 Server Setup

To run the server, a Python installation version 3.9.6 or higher is necessary. The server
needs access to the directory containing the source code of the ESP32-S3 firmware.

1. Install the necessary Python packages on your machine:

• esptool for flashing firmware onto the ESP32 over USB

• paho-mqtt for the MQTT connection over TCP

• dotenv to read environment variables from the .env file

• kconfiglib to programmatically edit the sdkconfig files

• SQLAlchemy for the communication with the SQLite database

2. Copy the .env.example file, rename it to .env and adjust the environment variables
as needed.

3. To start the server, run the main.py file.
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Appendix B

Submitted Documents

The following documents were handed in:

1. The midterm presentation of this thesis.

2. The LATEX source code and PDF.

3. Links to the GitHub repositories [39], [40].

4. The abstract as .txt files in English and German.
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