
Secure Onboarding of IoT Sensing
Devices for Artwork Tracking

Mete Polat
Zürich, Switzerland

Student ID: 18-932-129

Supervisor: Thomas Grübl, Katharina Müller
Date of Submission: May 1, 2024

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Declaration of Independence

I hereby declare that I have composed this work independently and without the use of any
aids other than those declared (including generative AI such as ChatGPT). I am aware
that I take full responsibility for the scientific character of the submitted text myself,
even if AI aids were used and declared (after written confirmation by the supervising
professor). All passages taken verbatim or in sense from published or unpublished writings
are identified as such. The work has not yet been submitted in the same or similar form
or in excerpts as part of another examination.

Zürich, May 1, 2024
Signature of student

i

ii

Zusammenfassung

Die schnelle Verbreitung des Internets der Dinge (IoT) hat verschiedene Branchen revolu-
tioniert, indem sie eine verbesserte Konnektivität und Funktionalität für eine Reihe von
Anwendungen ermöglicht. Allerdings wirft die Integration von IoT-Technologien in sensi-
blen Sektoren, wie z. B. der Verfolgung von Kunstwerken, erhebliche Sicherheitsbedenken
auf. Diese Arbeit befasst sich mit den kritischen Schwachstellen, die mit dem Onboarding
von IoT-Sensorgeräten verbunden sind, und schlägt einen sicheren und effizienten Prozess
vor, der auf Systeme zur Verfolgung von Kunstwerken zugeschnitten ist.

Diese Arbeit konzentriert sich auf die Entwicklung eines leichtgewichtigen Onboarding-
Prozesses, der robuste Sicherheitsmassnahmen integriert, ohne die Benutzerfreundlich-
keit und Effizienz von IoT-Geräten zu beeinträchtigen. Unter Verwendung der Arduino-
Plattform und des ESP-NOW-Kommunikationsprotokolls untersucht diese Arbeit die Im-
plementierung fortschrittlicher kryptografischer Techniken, einschlieslich AES- und RSA-
Verschlüsselung, um die Datenübertragungen zwischen Clients und Gateway zu sichern.

Es wurden umfangreiche Tests durchgeführt, um die Wirksamkeit des vorgeschlagenen
Onboarding-Prozesses zu bewerten, wobei der Schwerpunkt auf seiner Anwendbarkeit
lag. Die Ergebnisse zeigen, dass der sichere Onboarding-Prozess nicht nur die strengen
Sicherheitsanforderungen erfüllt, die für den Schutz hochwertiger Güter erforderlich sind,
sondern auch unter typischen Betriebsbedingungen effizient funktioniert. Diese Ergebnisse
deuten darauf hin, dass die vorgeschlagene Methodik als Modell für die Verbesserung
der IoT-Sicherheit in ähnlichen Anwendungen dienen könnte und einen skalierbaren und
zuverlässigen Rahmen für die sichere Integration von IoT-Geräten bietet.

Diese Arbeit trägt zum laufenden Diskurs über IoT-Sicherheit bei und bietet eine prak-
tische Lösung für ein dringendes Problem in einem Bereich von wachsender Bedeutung.
Indem sie sich sowohl mit den theoretischen Grundlagen als auch mit der praktischen Um-
setzung der IoT-Sicherheit befasst, liefert die Forschungsarbeit wertvolle Erkenntnisse, die
für künftige Entwicklungen auf diesem Gebiet von Bedeutung sein könnten, insbesondere
für die Verbesserung der Sicherheitsprotokolle von IoT-Geräten in verschiedenen Sekto-
ren.

iii

iv

Abstract

The rapid proliferation of the Internet of Things (IoT) has revolutionized various indus-
tries by enabling enhanced connectivity and functionality across a range of applications.
However, the integration of IoT technologies in sensitive sectors, such as artwork track-
ing, raises significant security concerns. This thesis addresses the critical vulnerabilities
associated with the onboarding of IoT sensing devices, proposing a secure and efficient
process tailored for artwork tracking systems.

The research focuses on the development of a lightweight onboarding process that in-
tegrates robust security measures without compromising the usability and efficiency of
IoT devices. Utilizing the Arduino platform and the ESP-NOW communication protocol,
the thesis explores the implementation of advanced cryptographic techniques, including
AES and RSA encryption, to secure data transmissions between IoT devices and network
gateways.

Extensive testing was conducted to evaluate the effectiveness of the proposed onboarding
process, with a particular focus on its applicability to real-world scenarios in artwork
tracking. The results demonstrate that the secure onboarding process not only meets the
stringent security requirements necessary to protect high-value assets, but also operates
efficiently under typical operational conditions. These findings suggest that the proposed
methodology could serve as a model for improving IoT security in similar applications,
providing a scalable and reliable framework for the secure integration of IoT devices.

This thesis contributes to the ongoing discourse on IoT security, offering a practical so-
lution to a pressing issue in an area of growing importance. By addressing both the
theoretical underpinnings and practical implementation of IoT security, the research pro-
vides valuable insights that could inform future developments in the field, particularly in
enhancing the security protocols of IoT devices across various sectors.

v

vi

Contents

Declaration of Independence i

Zusammenfassung iii

Abstract v

1 Introduction 1

1.1 CERTIFY Project . 1

1.2 Description of Work . 2

1.2.1 Objective . 2

1.2.2 Methodology . 2

1.3 Thesis Outline . 3

2 Background 5

2.1 Internet of Things . 5

2.2 Onboarding . 5

2.3 Bootstrapping . 5

2.4 True Random Number Generator . 6

2.5 Rivest-Shamir-Adleman Encryption . 6

3 Related Work 9

3.1 Artwork Tracking . 9

3.1.1 Artwork Preservation . 9

3.1.2 Artwork Transportation . 9

3.1.3 Artwork Monitoring . 9

vii

viii CONTENTS

4 Architecture and Design 11

4.1 Application Scenario: Artwork Tracking 11

4.2 Technical Components . 12

4.2.1 Client . 12

4.2.2 Gateway . 12

4.2.3 Random Number Generation . 13

4.3 Onboarding . 13

5 Implementation 17

5.1 Hardware and Frameworks . 17

5.1.1 ESP32-S3 . 17

5.1.2 Arduino . 18

5.1.3 ESP-NOW . 18

5.1.4 Other components . 19

5.2 Setup development environment . 20

5.3 Device hardening . 20

5.3.1 Secure Boot V2 . 21

5.3.2 Flash Encryption . 21

5.4 Connecting Hardware . 22

5.5 Onboarding . 23

5.5.1 Introduction . 23

5.5.2 Initialization . 23

5.5.3 Interacting with Sensors and LEDs 24

5.5.4 Encryption . 26

5.5.5 ESP-NOW . 28

5.5.6 Sending and Receiving Long Messages 30

5.5.7 Bootstrapping . 32

5.5.8 Error Handling . 34

5.6 Summary . 36

CONTENTS ix

6 Evaluation 37

6.1 General Security considerations . 37

6.2 Bypassing Whitelist . 38

6.3 Field Test . 38

7 Summary and Conclusions 41

7.1 Summary . 41

7.2 Conclusions . 41

7.3 Future Work . 42

Bibliography 43

Abbreviations 47

List of Figures 47

List of Tables 49

A Gateway Code 53

B Client Code 65

B.1 MessageQueue.h . 76

x CONTENTS

Chapter 1

Introduction

The Internet of Things (IoT) has transformed our interaction with the world. An in-
creasing number of devices are influencing different aspects of our lives, from smart home
technology to cars, smart wearables, and artworks that are being connected to the In-
ternet. However, this rapid proliferation of IoT devices has brought new and complex
security challenges. Security is a major challenge for IoT devices due to their limited
resources, which often prevent the implementation of robust security mechanisms. To
address these challenges, new security mechanisms tailored for low-resource IoT devices
must be developed, encompassing both software and hardware.

Within the art sector, museums not only exhibit pieces from their own collections, but
also incorporate artworks from other institutions. This situation requires the need for
logistics partners who can ensure the safety of artworks during transportation. It also
offers a valuable opportunity for the deployment of IoT sensing devices, which are adept
at tracking environmental conditions such as temperature, humidity, and vibrations. Re-
grettably, factory security configurations for these devices are often insufficient to meet
these challenges. This is especially true for IoT endpoints, which are becoming smaller
and therefore have less computational power and fewer security mechanisms [1]. This
thesis aims to contribute to this area of research by proposing a secure and lightweight
onboarding process.

1.1 CERTIFY Project

CERTIFY is a multi-partner research project, with the goal of achieving a high level of
security by developing a novel framework to manage security throughout the lifecycle of
IoT devices. The project is scheduled to run from 1st October 2022 for 36 months and
involves 13 partners from eight European countries [2]. The Communication Systems
Group within the Department of Informatics at the University of Zurich participates
in CERTIFY. The work presented in this thesis represents a segment of the group’s
contributions to this pilot project [3].

1

2 CHAPTER 1. INTRODUCTION

1.2 Description of Work

1.2.1 Objective

The primary objective of this research was to enhance the security of IoT devices used in
the art industry by developing a secure and lightweight onboarding process. This process
was designed to mitigate risks such as unauthorized access and data interception, which
are prevalent in current IoT deployments.

1.2.2 Methodology

The methodology employed in this research involved three main phases: design, imple-
mentation, and testing.

Design Phase

• Security Requirements Analysis: The initial stage involved a thorough analysis of
the security requirements essential for IoT devices in the art sector. This analysis
helped in identifying the key vulnerabilities and the corresponding security controls
needed.

• System Architecture Design: Based on the requirements analysis, a detailed system
architecture was designed. Additionally the cryptographic protocols AES and RSA
integrated.

• Protocol Selection: The ESP-NOW protocol was chosen for its efficiency in handling
secure communications between IoT devices. This selection was based on its low
power consumption and its ability to operate independently of a Wi-Fi network.

Implementation Phase

• Hardware Setup: The implementation used ESP32-S3 boards programmed via the
Arduino development environment. These boards were chosen for their robust se-
curity features and compatibility with the ESP-NOW protocol.

• Software Development: The software developed included the setup of secure commu-
nication channels, cryptographic key management, and error handling mechanisms.
The Arduino IDE was used to program the devices, emphasizing the implementation
of the cryptographic functions and secure data transmission.

• Integration of Components: All components, including sensors, and communication
modules, were integrated to ensure seamless operation and communication between
the clients and the gateway.

1.3. THESIS OUTLINE 3

Testing Phase

• Field Testing: The implemented system was subjected to field testing to simulate
real-world operating conditions. This testing aimed to validate the effectiveness of
the onboarding process and the overall system security.

• Security Evaluation: The security of the system was rigorously evaluated through
penetration testing and vulnerability assessments conducted to identify any poten-
tial security flaws.

• Performance Analysis: Performance metrics such as response time were analyzed to
assess the practical viability of the implemented solution.

1.3 Thesis Outline

Chapter 1 provided an initial overview of this thesis, accompanied by background in-
formation about the CERTIFY project. Chapter 2 provides a theoretical foundation by
introducing key concepts. Chapter 3 presents the current state of research in the field and
offers a discussion of it. Chapter 4 presents a generic design for a secure and lightweight
onboarding process. In Chapter 5 the proposed design is implemented. In order to fa-
cilitate the process of setting up the development environment, a step-by-step guide is
provided, along with an explanation of the key concepts of the code. Finally, Chapter 6
evaluates the design and implementation, followed by a conclusion in Chapter 7.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Internet of Things

The IoT describes a broad network of connected devices that can transmit and receive in-
formation. Central to IoT is its integration of digital and physical systems, which increases
efficiency, precision, and economic advantages by improving automation and control. IoT
devices cover a range of uses, from domestic appliances to industrial machinery, all linked
via the internet to facilitate smooth communication and compatibility. Such connections
are crucial for real-time data gathering and analysis, which promotes intelligent decision
making and increases operational effectiveness in various fields [4].

2.2 Onboarding

Onboarding describes the essential procedures for safe incorporating a new device into
an established network, ensuring its proper authentication and secure communication
capabilities. This network layer onboarding is pivotal, as it encompasses the assignment
of network credentials, the safeguarding of IoT devices against unauthorized access, and
the defense of the network against risks posed by newly added devices. The National
Institute of Standards and Technology (NIST) underscores the need to adopt reliable and
scalable onboarding methods to securely manage IoT devices over their entire lifetime.
Effective onboarding techniques involve the issuance of secure credentials, verification
of device integrity, and ongoing secure management, all contributing to the improved
security of both devices and the networks to which they connect [5].

2.3 Bootstrapping

Bootstrapping encompasses the foundational setup and configuration tasks that allow IoT
devices to securely connect and interact within a network. This initial phase is essential

5

6 CHAPTER 2. BACKGROUND

to build trust and ensure proper authentication and authorization of devices prior to their
interaction with other network elements and services of the network [5].

The bootstrapping process generally includes critical steps such as device registration
with a registration authority, provisioning of credentials, and potentially, privilege esca-
lation. It starts with a device submitting its credentials, like certificates or tokens, for
verification by a registration authority. After successful verification, the device receives
credentials which might initially carry restricted privileges. Through a mechanism called
privilege escalation, devices may then gain expanded access rights that are essential for
their designated functions within the IoT ecosystem. This methodical process is crucial
for reducing security threats by adhering to the principle of least privilege [6].

Moreover, bootstrapping frequently incorporates strategies to ensure secure management
of devices throughout their lifecycle, covering situations where devices may require recon-
figuration or updates without jeopardizing network security. Effective lifecycle manage-
ment is vital for preserving the integrity and security of the evolving IoT system [7].

2.4 True Random Number Generator

A True Random Number Generator (TRNG) is a device or system that produces numbers
by exploiting unpredictable physical processes. Unlike deterministic systems like comput-
ers, which operate on fixed algorithms (Pseudo Random Number Generators or PRNGs),
TRNGs depend on naturally random physical phenomena. These include quantum me-
chanical effects, thermal noise, and other environmental factors that cannot be predicted
[8].

TRNGs are essential for high-security applications such as cryptography, where the unpre-
dictability of encryption keys boosts security measures. The generated random numbers
are utilized for crafting encryption keys, digital signatures, and securing communications.
Since these numbers cannot be duplicated by any algorithm, they provide enhanced se-
curity against hacking compared to PRNGs [8].

Nevertheless, producing true randomness presents challenges. TRNGs must transform the
analog unpredictability of physical processes into digital binary outputs, often necessitat-
ing advanced hardware and meticulous calibration to ensure the randomness is unbiased
and not affected by external influences. Standards like those set by NIST are employed to
assess the randomness quality, confirming that TRNG outputs adhere to specific security
standards [9].

2.5 Rivest-Shamir-Adleman Encryption

The Rivest-Shamir-Adleman (RSA) encryption method is a cornerstone in the realm of
public-key cryptography, extensively employed to protect the transmission of sensitive
information over unsecured networks such as the Internet. Central to the RSA algorithm is

2.5. RIVEST-SHAMIR-ADLEMAN ENCRYPTION 7

the complex problem of factoring large prime numbers. This algorithm employs two keys:
a public key, which is openly distributed, and a private key, which remains confidential
with its owner. The public key is used to encrypt the data, whereas the private key
decrypts them, ensuring that only the intended receiver can view the original content
[10].

The solid architecture of the RSA algorithm has positioned it as a reliable benchmark
in cryptographic standards, crucial for safeguarding the confidentiality, integrity, and au-
thenticity of digital communications across diverse technological sectors. Even with the
potential threats posed by quantum computing, RSA is still considered secure against
traditional challenges when implemented with sufficiently long key sizes and correct cryp-
tographic methods. The continued reliance on RSA’s security is reinforced by persistent
research and professional evaluations, indicating that with appropriate applications, RSA
remains a vital mechanism for secure communication [11].

8 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

3.1 Artwork Tracking

3.1.1 Artwork Preservation

Artwork conservation is impacted by several factors, notably human activities and changes
in the environment [12]. The main risks to the integrity of art involve elements such as
temperature, humidity, exposure to light, pollutants, and microbial growth [13]. Temper-
ature and humidity are often the most significant concerns [13]. Monitoring these factors
is essential to preserve the quality and longevity of art pieces [14]. The protection of
artworks is critical not only within the confines of museums or galleries but also during
their transportation.

3.1.2 Artwork Transportation

For many years, artworks have been exhibited throughout the world, frequently being
transported between different venues. The hazards involved in the movement of art pieces
have been thoroughly investigated, leading to the creation of sophisticated packaging tech-
niques and safety measures [15]. Currently, numerous companies specialize exclusively in
art logistics, providing cutting-edge services such as shock-resistant and climate-controlled
packaging [16][17]. Despite the rigorous testing of these solutions, the dependence on con-
sumer trust by many companies emphasizes the practical effectiveness of these strategies.
This dependency also highlights the opportunity to incorporate new technological ad-
vancements in monitoring systems to further improve the artwork transportation process.

3.1.3 Artwork Monitoring

Technological advances have facilitated deeper investigations of the impact of transporta-
tion on the integrity of artwork. Numerous studies have been dedicated to this topic. For

9

10 CHAPTER 3. RELATED WORK

example, a specific research used a small logging device to monitor the shocks and vi-
brations that artworks endure during transit [18]. Even with the application of advanced
packaging methods and appropriate transport techniques, considerable amounts of shock
and vibration were still observed in several shipments, suggesting that ongoing monitoring
is essential to evaluate the condition of the artwork after transport.

Following these observations, a proposal was made for a real-time monitoring system
that tracks the environmental and safety conditions affecting artworks [12]. This system,
powered by a low-energy, cost-effective IoT node, enables comprehensive and continuous
surveillance, with the capability to identify problems as they arise or even preemptively.

Building further on these ideas, another research introduced a proactive approach named
PACT-ART, which leverages data mining and business process intelligence to predict
potential risks in handling artworks [19]. This model aims to pinpoint potential issues
and recommend preventive actions.

Enhancing proactive measures, Carchiolo et al. [20] have devised a framework that sup-
ports ongoing risk evaluation throughout the storage, handling, transportation, and ex-
hibition phases of artworks, thus improving the overall safety management of art.

Chapter 4

Architecture and Design

This chapter introduces the architecture and design of the suggested solution in a generic
way so that it is independent of hardware and software. To do so, the application sce-
nario is described in Section 4.1, followed by an overview of the technical components in
Section 4.2. After that, the suggested onboarding process is explained in Section 4.3. The
subsequent chapter 5 will then demonstrate the implementation of the proposed design.

4.1 Application Scenario: Artwork Tracking

The proposed solution was designed for a specific scenario, that is, artwork tracking. To be
more precise, the scenario involves the necessity of monitoring the environment during the
transportation of artwork from one location to another. Depending on the circumstances,
different environmental conditions must be monitored, such as temperature, humidity,
vibration data, GPS coordinates, etc. to ensure the safety of the artwork. In order to
monitor these environmental conditions, it is necessary to affix sensors to the artwork or
to distribute sensors throughout the environment. It should be noted that the proposed
solution is equally applicable to the monitoring of stationary artwork.

Reading the data from each sensor individually would not be efficient or user-friendly;
therefore, the data need to be collected at a central point, called a gateway. To collect
sensor data on a gateway, the sensors must first be connected to that gateway. However,
different situations require different combinations of sensors; therefore, it is essential that
sensors can be connected to the gateway independently of each other, based on the re-
quirements. As discussed in [21], IoT devices have major security concerns due to the
insufficient security measures implemented, as manufacturers prioritize speed over secu-
rity. This thesis proposes a secure, lightweight, and user-friendly onboarding process to
counteract this problem.

11

12 CHAPTER 4. ARCHITECTURE AND DESIGN

4.2 Technical Components

Prior to delving into the proposed solution, it is essential to introduce several key com-
ponents. Figure 4.1 illustrates the application scenario described in the previous section.
The scenario comprises two locations, two sensors, one gateway, and one truck as a trans-
port medium. Furthermore, a cloud environment is included. Given that this thesis
focuses on secure onboarding between the client and the gateway, the cloud will not be
discussed in subsequent sections. However, for completeness, the cloud component was
included in this Figure 4.1, as in most real-world applications, data will be uploaded to a
cloud.

Client 1

Client 2

Location old Location

new

Artwork

Send Data to Gateway

Send Data to Gateway

Gateway

Cloud

Optional

Optional Optional

Figure 4.1: Overview of Components

4.2.1 Client

The clients, which are the sensors discussed in previous chapters, are small devices with
limited computational power. Their purpose is to measure the environment and transmit
data to the gateway. One client can measure several environmental conditions, but for
the sake of simplicity, let us assume that one client measures just one aspect of the
environment (e.g., temperature and humidity).

4.2.2 Gateway

In contrast, gateways are devices with greater computational capacity and the ability to
collect, process, and forward data. Additionally, gateways can react to the data they
receive, either in a basic manner (such as changing the color of the onboard LED or
making a sound) or in a more complex way (such as sending push notifications).

4.3. ONBOARDING 13

4.2.3 Random Number Generation

The generation of secure keys depends on the utilization of the real generation of true
random numbers. Unfortunately, not all IoT devices possess the hardware required to
create true random numbers. In particular, smaller devices that are limited in size, cost,
or power consumption, among others, often lack these capabilities [22]. It is therefore
assumed that both devices have some form of hardware random number generator and are
capable of generating true random numbers. In the event that a device lacks the capacity
for true random number generation, a modular Trusted Platform Module (TPM) can be
employed instead. It is also pertinent to note that the generated keys are not required to
be stored. In accordance with the proposed design, keys are utilized on a single occasion
until the session expires (reboot of the device in this case) and are subsequently generated
anew for each onboarding.

4.3 Onboarding

Having introduced all the necessary components, the proposed onboarding process can
now be discussed. The sequence diagram in Figure 4.2 serves as a visualization and is an
exact representation of the description that follows.

The onboarding process is initiated by the gateway (after a human interaction). First,
an RSA key must be generated. Although [23] states that RSA keys with a minimum
length of 2048 bits are secure and [24] forecasts that RSA keys with a minimum length of
2048 bits will remain secure until 2030, this proposal employs keys with a length of 3072
bits to ensure continued security even after 2030. Following the generation of the key, the
gateway continuously broadcasts a signal to let nearby clients know that it is ready for
onboarding. The broadcast message is simply Artwork Tracking Onboarding.

The client initiates the onboarding process immediately following the start-up. Once the
key pair has been created, the client begins scanning for the gateway’s broadcast. Upon re-
ceiving the broadcast message Artwork Tracking Onboarding, the client responds with
the message Onboarding Request. Upon receipt of the onboarding request, the gateway
initiates a check of the device’s eligibility for onboarding, utilizing the Media Access Con-
trol (MAC) address. Should the device in question pass the eligibility check, the gateway
switches from broadcast to unicast communication. In the event that the device is not
allowed to be onboard, the incident is logged appropriately and the request is dismissed.

The process is now entering the bootstrapping phase. This phase is essential and critical
for secure onboarding of a device. In this phase, the session key (and sometimes other
secret information) is exchanged. It is of the utmost importance that the information
transferred in this phase is not leaked under any circumstances. In order to prevent
attackers from reading or at least understanding the data sent between the gateway and
the client, it must be encrypted. The data will be encrypted using asymmetric RSA
encryption. In order to facilitate the exchange of keys, the gateway transmits its public
key in the Privacy Enhanced Mail (PEM) format to the client. Upon receiving the public
key, the client transmits its public key to the gateway in the PEM format.

14 CHAPTER 4. ARCHITECTURE AND DESIGN

Once the keys have been exchanged, the client must demonstrate that it is the legitimate
owner of the private key. To this end, the gateway generates a random 128-bit challenge,
encrypts it with the client’s public key, and transmits it to the client. The client then
decrypts the challenge with its own private key, encrypts it back with the public key
of the gateway, and sends it back to the gateway. The gateway checks if the client
decrypts the challenge correctly by decrypting and comparing the received challenge with
the sent challenge. If the sent and received challenge are identical, it can be concluded
that the client has proven ownership of the private key. At this juncture, the gateway is
in a position to proceed with the main phase of the bootstrapping process, namely, the
transmission of the secure session key. In a manner analogous to the challenge, a 128-bit
session key is generated, encrypted with the RSA public key of the client, and transmitted
to the client.

Upon receiving the encrypted session key, the client decrypts it with its own private key
and establishes a new symmetric encrypted channel using the decrypted session key. From
this point on, all communication between the client and the gateway is symmetrically
encrypted. The client then begins the transmission of sensor data to the gateway. Given
the application scenario, the gateway is not required to send additional data to the client
following the successful transmission of the session key. Consequently, the gateway closes
its sending channel and listens solely to the sensor data transmissions of the clients.

4.3. ONBOARDING 15

Client

Client

Gateway

Start onboarding

Gateway

Broadcast: "Artwork Tracking Onboarding"

Response to broadcast: "Onboarding Request"

Generate RSA key pair (3072 bits) Generate RSA key pair (3072 bits)

Check if device is allowed to onboard
If so, switch from broadcast to unicast

Send RSA public key (PEM)

Send RSA public key (PEM)

Create random challenge
(128 bits) and encrypt it
with clients public key

Send challenge

Response with solution of challenge

Decrypt challenge with own
private key and encrypt it with

gateways public key

Verify challenge

Send session key

Create session key (128 bits) and
encrypt it with clients public key

Establish a new symmetric encrypted
channel using session key

Transmitting data via encrypted channel

Bootstrapping

Proof of
ownership

(private key)

Figure 4.2: Onboarding Sequence Diagram

16 CHAPTER 4. ARCHITECTURE AND DESIGN

Chapter 5

Implementation

Having discussed the architecture and design, the implementation can now be introduced.
It is important to note that this is merely one possible implementation of the proposed
design and that some of the features utilized are only available on the specific board
used for the implementation. However, the following implementation can be adapted
depending on the needs. The complete code will be available on GitHub1.

This chapter commences with an overview of the hardware and frameworks utilized in
Section 5.1, followed by instructions on how to set up the development environment
in Section 5.2 and how to secure ESP32-S3 in Section 5.3. Section 5.4 illustrates the
connection of the sensors to the ESP32-S3 and the subsequent reading of the data from
them. Once the fundamental concepts have been established, the primary implementation
is presented in Section 5.5. Finally, in Section 5.6, this chapter is summarized.

5.1 Hardware and Frameworks

This section provides an overview of the hardware and the most important frameworks
and libraries used to implement the solution.

5.1.1 ESP32-S3

The ESP32-S3 is a low-power system on a chip (SoC), based on a microprocessor. The
SoC is composed of a high performance dual-core microprocessor (Xtensa 32-bit LX7), a
low-power coprocessor, a Wi-Fi baseband, a Bluetooth LE baseband, a radio frequency
module, and other peripherals. It has the power and storage capacity necessary to handle
and process audio-visual data. The Xtensa LX7 processors are equipped to support
digital signal processing for imaging and convolutional neural network processing, as well
as digital signal processing for a variety of applications [25].

1https://github.com/secure-onboarding-iot

17

https://github.com/Secure-Onboarding-IoT

18 CHAPTER 5. IMPLEMENTATION

The ESP32-S3 comes with a sophisticated random number generation (RNG) system, cen-
tral to which is a hardware RNG capable of generating true random numbers under certain
conditions. The production of these numbers depends on the incorporation of physical
noise samples into the RNG state. This incorporation requires either the activation of
Wi-Fi or Bluetooth, or the activation of internal reference voltage noise. At startup, the
bootloader seeds the RNG state with entropy by activating a nonradio frequency entropy
source, thus guaranteeing the creation of true random numbers. Nevertheless, to maintain
a steady output of such numbers, it is necessary to activate a hardware entropy source.
Additionally, the ESP32-S3’s RNG system features another entropy source that samples
an asynchronous 8 MHz internal oscillator. This entropy source is always active and is
continuously merged into the RNG state by the hardware. The comprehensive RNG sys-
tem incorporated into the ESP32-S3 makes it a highly capable tool for applications that
require secure and reliable random number generation [26].

After careful consideration and comparison, the ESP32-S3 board was considered suitable
for this project.

5.1.2 Arduino

The Arduino platform, which emerged in the early 2000s, has profoundly impacted the
community of electronic enthusiasts and educational professionals. The core of this plat-
form is the Arduino framework, which includes a collection of software libraries and
hardware specifications aimed at enabling the application of electronics in various in-
terdisciplinary projects [27]. The primary advantages of the Arduino platform are its
user-friendliness for novices and its adaptability, which makes it a powerful tool for expe-
rienced users [28].

At the core of interaction with Arduino hardware, among others, is the Arduino Integrated
Development Environment (IDE), a cross-platform tool developed using functions from
Wiring, based on Processing. The Arduino IDE offers a simplified setup for coding and
deploying programs on microcontroller boards [29]. It supports C and C++ and provides
a suite of libraries and configurations that simplify complex tasks into easier procedures,
making microcontroller programming more accessible [30].

Furthermore, the integration of the Arduino framework with the IDE enables users to
quickly create digital devices that can interact with their surroundings using sensors and
actuators. This ease of integration allows for the development of projects ranging from
basic home appliances to intricate scientific tools [31].

5.1.3 ESP-NOW

ESP-NOW is a connectionless communication protocol developed by Espressif Systems.
It is designed to allow devices to communicate directly without the need for a Wi-Fi
network. This protocol is particularly useful for applications where quick responses and
low-power control are required, as evidenced by [32].

5.1. HARDWARE AND FRAMEWORKS 19

Its low power consumption allows for extended battery life as demonstrated by [33]. The
protocol supports various control modes and device types, ensuring flexible and efficient
device pairing. Furthermore, ESP-NOW’s simplified data-link layer reduces transmission
delays, coexists with Wi-Fi and Bluetooth LE, and offers enhanced security through
ECDH and AES algorithms [34].

ESP-NOW offers several advantages over traditional Wi-Fi protocols, particularly in
the context of IoT applications. The comparative performance study [35] found that
ESP-NOW outperforms Wi-Fi in several key performance indicators, including maximum
range, transmission speed, latency, power consumption and resistance to obstructions.
The study highlighted that ESP-NOW is more efficient in terms of power consumption
and offers faster data transmission, making it particularly suitable for real-time applica-
tions where speed and energy efficiency are crucial.

Despite its advantages, ESP-NOW also has some limitations. The size of the data packet
is limited to 250 bytes [36]. Although this is sufficient for most sensor data, the RSA
public keys and encrypted data via RSA do not fit within these 250 bytes. However,
this is crucial for the bootstrapping process, necessitating the development of a solution
to address this issue. A potential workaround is presented in a subsequent chapter.
Furthermore, ESP-NOW is limited to a maximum of six encrypted peers [36], which
should not be a significant limitation for the artwork tracking use case.

In terms of security, ESP-NOW employs the CCMP method for encryption, which is
described in IEEE 802.11-2012 [37]. This method involves maintaining a Primary Master
Key (PMK) and several Local Master Keys (LMK), each 16 bytes in length, to safeguard
the transmitted data. The PMK is used to encrypt the LMK with the AES-128 algorithm,
while the LKM is used to encrypt the vendor-specific action frame within the CCMP
method [36].

5.1.4 Other components

In the previous sections, all essential components required for implementation were intro-
duced. To enhance the realism of the application, additional components will be employed
for implementation. These are optional, and it is up to the reader to decide whether they
wish to include these components.

To enable the measurement of certain environmental data, the DHT11, which is a tem-
perature and humidity sensor, was chosen. In addition, a button on the gateway side is
necessary to initiate the onboarding process. Finally, to obtain feedback when the serial
monitor is not connected, the built-in RGB LED [38] will be used.

To focus on the primary objective of this thesis, namely secure onboarding of IoT devices,
no additional components were added. In a practical application, additional components
may be included, such as sensors to measure further environmental data, a GPS and 5G
module to locate the artwork and facilitate real-time data transmission.

20 CHAPTER 5. IMPLEMENTATION

5.2 Setup development environment

Prior to commencing the implementation, it is necessary to establish an appropriate devel-
opment environment. Although the Arduino IDE can be used for development purposes,
it lacks the required security features. To enable Secure Boot V2 and flash encryption,
it is necessary to employ the Espressif IoT Development Framework (ESP-IDF). The
integration of Arduino with the ESP-IDF serves as a bridge, allowing users to leverage
the simplicity of the Arduino platform while taking advantage of the comprehensive fea-
tures of the ESP-IDF. This process is facilitated by the Arduino Lib Builder, a tool that
customizes the default settings provided by Espressif for use in the Arduino IDE. The fol-
lowing section presents a summary of the official installation instructions for the Arduino
ESP32 Installation Guide [39].

1. Preparation: Ensure that ESP-IDF2 is installed, compatible with the latest Arduino
Core for ESP32. Start by setting up a basic ESP-IDF project.

2. Repository setup: In the project directory, create a components folder and clone
the Arduino-ESP323 repository in it. Recursively initialize and update submodules.

3. Configuration:

• Run idf.py menuconfig.

• Navigate to Arduino Configuration

• Turn on Autostart Arduino setup and loop on boot

4. Build and Flash:

• Modify main code in main.ino to include Arduino functions.

• Use idf.py -p <serial-port> flash monitor to build, upload, and moni-
tor the application.

5.3 Device hardening

As proposed by [40], several measures must be taken to enhance the security of an ESP32-
S3 board. In the context of the use case, the most relevant measures are Secure Boot V2
and flash encryption. In the following sections, both measures are discussed.

2https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32/get-started/index.html#manual-
installation

3https://github.com/espressif/arduino-esp32

5.3. DEVICE HARDENING 21

5.3.1 Secure Boot V2

Secure Boot V2 on the ESP32-S3 is a security feature designed to ensure that only au-
thenticated software can run on the device. RSA-PSS, a robust signature algorithm, is
used to verify the integrity and authenticity of the bootloader and application software
before execution. This process involves several key steps and configurations to protect
the device from unauthorized code execution [41].

The Secure Boot process commences with the authentication of the bootloader’s signature
against a public key, the corresponding private key of which is securely stored and never
exposed. This public key is embedded within the device’s eFuses, a secure memory area, to
prevent tampering or unauthorized modifications. The ESP32-S3 then compares the SHA-
256 hash of the public key against those stored in the eFuses to confirm the bootloader’s
authenticity. If the public key matches, the device verifies the signature of the application
software using the same RSA-PSS method. In the event that any of these verifications
fails, the device will not boot the unverified software, thus protecting against potential
security threats [41].

To implement Secure Boot V2, developers must first enable it through the ESP-IDF
project configuration menu and select the RSA option for the app signing scheme. This
configuration necessitates the generation of a secure RSA key pair, wherein the private key
is employed to sign the bootloader and application, while the public key is incorporated
into the eFuses of the ESP32-S3. Developers should utilize high-quality entropy sources
for key generation to ensure the robustness of the keys [41].

In addition to setting up Secure Boot, developers can configure the device to prevent
further modifications by selecting options that restrict UART ROM download modes
and other similar configurations, which enhance the security by disallowing changes after
initial programming. These steps are critical to maintaining the integrity of the device in
production environments, where security is paramount [41].

The efficacy of Secure Boot V2 depends on maintaining the confidentiality of the RSA
private key and the integrity of the public key stored in the device’s eFuses. This con-
figuration provides a robust defense against unauthorized firmware modifications, thus
securing the device from a multitude of attack vectors that target the software integrity
of embedded devices [41].

5.3.2 Flash Encryption

The flash encryption feature on the ESP32-S3 is a critical security measure designed to
protect data stored in the off-chip flash memory of the device. When enabled, this feature
automatically encrypts the firmware that is flashed as plain text during the initial boot
process. This encryption is hardware-based, utilizing a key stored within the device’s
eFuses, rendering physical extraction of the flash content an ineffective method for re-
trieving the data. The process entails verifying and setting various eFuse configurations
to manage encryption keys and settings, ensuring robust protection against unauthorized
access [42].

22 CHAPTER 5. IMPLEMENTATION

5.4 Connecting Hardware

Figure 5.1 shows the configuration of the gateway. The gateway consists of an ESP32-S3
board on the left and a blue three-pin button on the right side. The button facing the
reader, the left pin is connected to power, the middle pin is connected to General Purpose
Input/Output (GPIO) 4 and the right pin is connected to ground. The middle pin can
be connected to any digital GPIO pin, as long as the code is adjusted.

Figure 5.1: [Gateway] ESP32-S3 Board With a Connected Button

Figure 5.2 shows the client configuration. The client consists of an ESP32-S3 board on
the left and a blue four-pin DHT11 sensor, that measures temperature and humidity, on
the right side. The DHT11 sensor facing the reader, the first pin from the left is connected
to power, the second pin is connected to GPIO 14, the third pin is not connected and
remains empty, and the fourth pin is connected to ground. Here again, the second pin
from the left can be connected to any digital GPIO pin, as long as the code is adjusted.

Figure 5.2: [Client] ESP32-S3 Board With a Connected DHT11 Sensor

5.5. ONBOARDING 23

5.5 Onboarding

This chapter introduces the programming aspect of the project. Given the limited space
available, it is not possible to present the entire code in detail. Instead, each subsequent
section will focus on a principal aspect of the project. As the gateway and the client share
a substantial code base, the provided code and explanation are applicable to both unless
otherwise specified.

5.5.1 Introduction

This project used the Arduino framework, as the objective was to develop an effective and
streamlined implementation of the onboarding process outlined in Section 4.3. As previ-
ously discussed in Section 5.1.2, the Arduino framework encompasses a suite of software
libraries and hardware specifications that streamline the overall implementation process,
allowing developers to focus on core features and avoid the complexities associated with
platform-specific aspects.

As discussed in Section 5.1.1, the ESP32-S3 is an appropriate board for this project.
To simplify the process, two identical boards were employed for the gateway and the
client. According to the specific requirements, it is possible to utilize an alternative
board for either the gateway or the client, provided that the selected board is capable of
supporting ESP-NOW and possesses the necessary capability for true random generation,
as previously discussed in Section 4.2.3.

5.5.2 Initialization

Prior to the beginning of the programming process, a series of design decisions must be
made. Among these are the definition of constants, global variables, and structs. This
section will focus on the most crucial of these decisions.

Constants

The onboarding process is comprised of a series of distinct phases that must be accurately
documented during the implementation phase. The aforementioned phases can be defined
as shown in Listing 5.1.

1 # define DEFAULT 0
2 # define BROADCASTING 1
3 # define KEY_EXCHANGE 2
4 # define CHALLENGING 3
5 # define SEND_SESSION_KEY 4

Listing 5.1: Constants, defining the state of onboarding

The code presented in Listing 5.1 originates from the gateway. Although the meaning of
the state itself is identical, for the sake of clarity, the Broadcasting phase is designated
as Searching and SEND_SESSION_KEY is renamed RECEIVE_SESSION_KEY on the client.

24 CHAPTER 5. IMPLEMENTATION

In the default phase, the client transmits the sensor data to the gateway. This phase is
the desired phase and is reached upon successful onboarding. The Broadcast / Searching
mode represents the initial stage of the onboarding process. The gateway initiates the
transmission of a signal indicating the client’s search for a specific entity. During key
exchange, the public keys of the RSA algorithm are exchanged. In the challenging phase,
the client must prove to the gateway that it is the owner of the RSA private key. Fi-
nally, in the Send/Receive Session Key phase, the gateway generates a key for symmetric
encryption and transmits it to the client.

Upon initialization, the client initiates the broadcast phase and attempts to establish a
connection with the gateway without user intervention. In contrast, the gateway com-
mences in its default state, as it is crucial that the user retains control over the initiation
of the onboarding process. To facilitate the storage of all pertinent information, a global
variable designated as STATUS is defined.

Structs

Depending on the sensors used, different data need to be transmitted. In this project, the
temperature and humidity is measured. Additionally, the transmitted data must include
an additional value, namely, a threshold indicating the point at which the artwork is in
danger. To effectively process these data, a struct must be created as shown in Listing
5.2.

1 typedef struct measure {
2 int temperature ;
3 int humidity ;
4 int temperatureAlarm = 25;
5 int humidityAlarm = 50;
6 } measure ;

Listing 5.2: Measure Struct

As previously outlined in Section 5.1.3, ESP-NOW is constrained by a data limit of 250
bytes. In particular, during the bootstrapping process, the data that must be transmitted
exceed the 250-byte limit. In order to be able to send more than 250 bytes, it is neces-
sary to create a data structure that contains several structs. For the sake of enhanced
readability, the code and the accompanying explanation have been relocated to Section
5.5.6.

5.5.3 Interacting with Sensors and LEDs

Although it is not the primary focus of this thesis, the utilization of authentic data from
genuine sensors is more closely aligned with a real-world application and use case. It is
assumed that the configuration described in Section 5.4 has been completed.

Reading Data from DHT114

4Only for client

5.5. ONBOARDING 25

To read the temperature and humidity, the DHT115 library will be used. The aforemen-
tioned library facilitates the reading of data as shown in Listing 5.3.

1 measure m;
2 int temperature = dht11. readTemperature ();
3 int humidity = dht11. readHumidity ();

Listing 5.3: Reading Temperature and Humidity from DHT11 Sensor

It is possible that the sensor returns an error. This can be verified by the procedure
described in Listing 5.4.

1 if (temperature == DHT11 :: ERROR_TIMEOUT || temperature == DHT11 ::
ERROR_CHECKSUM) Serial . println (" Temperature Reading Error: " + DHT11
:: getErrorString (temperature));

2 if (humidity == DHT11 :: ERROR_TIMEOUT || humidity == DHT11 ::
ERROR_CHECKSUM) Serial . println (" Humidity Reading Error: " + DHT11 ::
getErrorString (humidity));

Listing 5.4: Error Handling DHT11 Sensor

Upon successful verification, the data can then be incorporated into the struct defined in
Section 5.5.2 and transmitted.

1 m. temperature = temperature ;
2 m. humidity = humidity ;
3 measuresQueue . enqueue (m);
4 measure m2 = measuresQueue .peek ();
5 esp_now_send (gatewayMAC , (uint8_t *)&m2 , sizeof (m2));

Listing 5.5: Using the Measure Struct

The necessity of a queue, as illustrated in lines 3 and 4, is explained in Section 5.5.8.

Using the built-in RGB LED of ESP32-S3

The ESP32-S3 is equipped with an integrated RGB LED, which is useful to provide a
straightforward indication to the user. In this example, the color of the LEDs will indicate
the phase of the onboarding process and also indicate errors and measures that exceed
a certain threshold value, as introduced in Section 5.5.2. The colors have the following
meanings:

• White: RSA key pair is being generated.

• Blue: The onboarding process is ongoing.

• Green: The onboarding process is completed, and the transmission of measurement
data has started.

• Red: Data transmission failed. In addition, for the gateway, the measured value
from the client exceeds the threshold.

5https://github.com/dhrubasaha08/DHT11

26 CHAPTER 5. IMPLEMENTATION

The LED can be controlled as shown in Listing 5.6.
1 Adafruit_NeoPixel pixels (1, 48, NEO_GRB + NEO_KHZ800);
2 pixels .begin ();
3 pixels . setPixelColor (0, pixels .Color (17, 17, 17));
4 pixels .show ();

Listing 5.6: Controlling the built-in RGB LED

Listing 5.7 illustrates a specific instance of the LED’s utilization within the project.
1 if (m. temperature >= m. temperatureAlarm || m. humidity >= m.

humidityAlarm || m. temperature > 250 || m. humidity > 250) {
2 pixels . setPixelColor (0, pixels .Color (17, 0, 0));
3 if (m. temperature > 250) m. temperature = -999;
4 if (m. humidity > 250) m. humidity = -999;
5 } else {
6 pixels . setPixelColor (0, pixels .Color (0, 17, 0));
7 }
8

9 Serial . println (" Temperature : " + (String)m. temperature + " °C");
10 Serial . println (" Humidity : " + (String)m. humidity + "%");
11 pixels .show ();

Listing 5.7: Example for LED Usage on Gateway Side

5.5.4 Encryption

This section presents a detailed account of the implementation of cryptographic functions,
with a particular focus on the generation of AES keys, the formation of RSA key pairs,
and the RSA encryption and decryption processes.

AES Key Generation

The process commences with the establishment of contexts for the entropy collection
(mbedtls_entropy_context) and the counter mode deterministic random bit genera-
tor (CTR_DRBG). These are fundamental for the generation of cryptographic quality
random numbers. The entropy function collects environmental noise as a basis for ran-
domness, which seeds the deterministic random bit generator (DRBG). The DRBG, per-
sonalized with a unique device identifier, then generates a 128-bit AES key. Listing 5.8
demonstrates this setup and key generation.

1 mbedtls_entropy_context entropy ;
2 mbedtls_entropy_init (& entropy);
3

4 mbedtls_ctr_drbg_context ctr_drbg ;
5 mbedtls_ctr_drbg_init (& ctr_drbg);
6

7 uint32_t randomNumber = esp_random ();
8 char personalization [11];
9 sprintf (personalization , "0x%08X", randomNumber);

10 mbedtls_ctr_drbg_seed (& ctr_drbg , mbedtls_entropy_func , &entropy , (
const unsigned char *) personalization , strlen (personalization));

11

5.5. ONBOARDING 27

12 unsigned char key [16];
13 mbedtls_ctr_drbg_random (& ctr_drbg , key , sizeof (key));

Listing 5.8: AES Key Generation

RSA Key Generation

A similar pattern is observed in the generation of RSA keys, where the entropy and
DRBG contexts are initialized. Subsequently, the RSA context (mbedtls_rsa_context)
is configured to generate a key pair with a specified key length and public exponent. The
generation of RSA keys is a computationally intensive process that is heavily based on
DRBG for randomness.

1 mbedtls_rsa_init (&rsa , MBEDTLS_RSA_PKCS_V15 , 0);
2 int ret = mbedtls_rsa_gen_key (&rsa , mbedtls_ctr_drbg_random , &ctr_drbg

, RSA_KEY_LENGTH , RSA_EXPONENT);

Listing 5.9: RSA Key Pair Generation

RSA Encryption

The encryption process uses the RSA algorithm to ensure data security. Initially, a public
key container is prepared and the public key is parsed from a PEM-formatted string.
Once the parsing process has been successfully completed, the data is encrypted using
the mbedtls_pk_encrypt function. This function requires the input of the public key,
the data to be encrypted, and a DRBG for randomness generation. Subsequently, the
encrypted data is converted into a hexadecimal string for transmission or storage. This
is reflected in Listing 5.10.

1 mbedtls_pk_context pk;
2 mbedtls_pk_init (&pk);
3

4 if (mbedtls_pk_parse_public_key (&pk , (const unsigned char *) pem_peer .
c_str (), pem_peer . length () + 1) != 0) {

5 mbedtls_pk_free (&pk);
6 return "";
7 }
8

9 unsigned char output [1024];
10 size_t olen;
11

12 mbedtls_ctr_drbg_context ctr_drbg ;
13 mbedtls_entropy_context entropy ;
14 mbedtls_entropy_init (& entropy);
15 mbedtls_ctr_drbg_init (& ctr_drbg);
16 uint32_t randomNumber = esp_random ();
17 char personalization [11];
18 sprintf (personalization , "0x%08X", randomNumber);
19 mbedtls_ctr_drbg_seed (& ctr_drbg , mbedtls_entropy_func , &entropy , (

const unsigned char *) personalization , strlen (personalization));
20

21 int ret = mbedtls_pk_encrypt (&pk , (const unsigned char *) data.c_str (),
data. length (), output , &olen , sizeof (output), mbedtls_ctr_drbg_random
, & ctr_drbg);

Listing 5.10: RSA Encryption

28 CHAPTER 5. IMPLEMENTATION

RSA Decryption

Prior to the decryption process, the RSA private key is validated. Subsequently, the
encrypted data, presented in hexadecimal format, is transformed into its binary equiva-
lent. The mbedtls_rsa_pkcs1_decrypt function is employed to decrypt the binary data
using the private key. Furthermore, this function is dependent on the DRBG for secure
operations. Subsequently, the binary data is converted back into a readable string for-
mat, thereby indicating the successful retrieval of the original data. The relevant code is
presented in Listing 5.11.

1 unsigned char encData [1024];
2 size_t encIndex = 0;
3

4 for (size_t i = 0; i < encHex . length (); i += 2) {
5 sscanf (encHex .c_str () + i, "%02X", & encData [encIndex ++]);
6 }
7

8 unsigned char output [1024];
9 size_t olen;

10

11 mbedtls_ctr_drbg_context ctr_drbg ;
12 mbedtls_entropy_context entropy ;
13 mbedtls_entropy_init (& entropy);
14 mbedtls_ctr_drbg_init (& ctr_drbg);
15

16 uint32_t randomNumber = esp_random ();
17 char personalization [11];
18 sprintf (personalization , "0x%08X", randomNumber);
19 mbedtls_ctr_drbg_seed (& ctr_drbg , mbedtls_entropy_func , &entropy , (

const unsigned char *) personalization , strlen (personalization));
20

21 int ret = mbedtls_rsa_pkcs1_decrypt (&rsa , mbedtls_ctr_drbg_random , &
ctr_drbg , MBEDTLS_RSA_PRIVATE , &olen , encData , output , sizeof (output)
);

Listing 5.11: RSA Decryption

5.5.5 ESP-NOW

As the communication between the client and the gateway is carried out entirely through
ESP-NOW, this section will introduce and explain the individual components of the ESP-
NOW protocol in a general manner. Section 5.5.7 will then present concrete examples of
the usage of ESP-NOW.

Initialization of ESP-NOW

In order to utilize ESP-NOW, it is necessary first to initialize the Wi-Fi driver in station
mode. This is an essential step for ESP-NOW communications. Subsequently, the ESP-
NOW module is initialized via the esp_now_init() function. This configuration is crucial
for preparing the ESP32-S3 to transmit and receive ESP-NOW messages.

5.5. ONBOARDING 29

1 WiFi.mode(WIFI_STA);
2 if (esp_now_init () != ESP_OK) {
3 Serial . println ("Error initializing ESP -NOW. Restarting ...");
4 delay (3000) ;
5 ESP. restart ();
6 }

Listing 5.12: Initialization of ESP-NOW

Creating a Peer

Peers are devices that can communicate with each other using ESP-NOW. In order to
add a peer, it is necessary to define its MAC address (or to use the broadcast MAC
address) and any additional optional parameters, such as the Wi-Fi channel and encryp-
tion preferences. Once this has been done, the peer is added to the ESP-NOW peer list
esp_now_add_peer() function.

1 esp_now_peer_info_t peerInfo ;
2 memset (& peerInfo , 0, sizeof (peerInfo));
3 memcpy (peerInfo .peer_addr , peerAddress , 6);
4 memcpy (& peerInfo .lmk , localMaster , 16);
5 peerInfo . channel = 0;
6 peerInfo . encrypt = true;
7 esp_now_add_peer (& peerInfo);

Listing 5.13: Creation of a Peer

Sending Data

The esp_now_send() function transmits data to a specified peer. Proper error handling
is crucial to ensure reliability in data transmission.

1 uint8_t data [] = { ’H’, ’e’, ’l’, ’l’, ’o’ };
2 esp_err_t result = esp_now_send (peerAddress , data , sizeof (data));
3 if (result != ESP_OK) {
4 Serial . println ("Error sending the data");
5 }

Listing 5.14: Sending Data using ESP-NOW

Sender and Receiver Callbacks

Callbacks in ESP-NOW are used to handle events such as data sent and data received.
These functions are registered right after the initialization of ESP-NOW, and they help
monitor the status of the sent data and processing the received data.

1 void onDataSent (const uint8_t *mac_addr , esp_now_send_status_t status) {
2 Serial .print("Last Packet Send Status : ");
3 if (status == ESP_NOW_SEND_SUCCESS) {
4 Serial . println (" Delivery Success ");
5 } else {
6 Serial . println (" Delivery Fail");
7 }
8 }
9

30 CHAPTER 5. IMPLEMENTATION

10 void onDataRecv (const uint8_t *mac_addr , const uint8_t *data , int
data_len) {

11 Serial .print("Bytes received : ");
12 Serial . println (data_len);
13 }
14

15 esp_now_register_send_cb (onDataSent);
16 esp_now_register_recv_cb (onDataRecv);

Listing 5.15: Sender and Receiver Callbacks

Limitations

Using ESP-NOW, only 250 bytes of data can be sent. For the onboarding process, espe-
cially key exchanges, more than 250 bytes are needed. Section 5.5.6 proposes a solution
that includes splitting the message.

5.5.6 Sending and Receiving Long Messages

As previously stated in Section 5.5.5, ESP-NOW has a limitation of 250 bytes of data
that can be sent during a single transmission. The primary issue arises during the RSA
public key exchange, where the keys can be up to 3072 bits, which is equivalent to 384
bytes. Moreover, there may be instances where a client is required to transmit more than
250 bytes of measurement data, although this would be a rare occurrence.

Message Structuring

The handling of long messages in ESP-NOW begins with the struct message, which serves
to structure the data for transportation. This struct is designed to carry a segment of data,
along with metadata that is used to manage the segmentation and reassembly process.
The metadata includes a unique message ID (id), the sequence number of the current
packet (count), and the total number of packets (total). The field designated as data
is where the actual payload of the segment is located.

1 typedef struct message {
2 char id [37];
3 byte count;
4 byte total;
5 char data[MAX_DATA_SIZE];
6 } message ;

Listing 5.16: Struct for handling splitted messages

Sending Long Messages

Prior to the transmission of data, the sendLongMessage function first calculates the total
number of messages required, based on the maximum data size allowed by ESP-NOW.
Subsequently, a unique identifier is assigned to each message. This identifier ensures
that the receiving end can distinguish between segments belonging to the same original
message. For each segment, the function adjusts the length to fit within the packet size
limit, populates the structure, and sends the packet using the esp_now_send() function.

5.5. ONBOARDING 31

1 void sendLongMessage (const char* input_data , const uint8_t * macAddr) {
2 int total_messages = (strlen (input_data) + MAX_DATA_SIZE - 1) /

MAX_DATA_SIZE ;
3 int attempts = 1;
4 char buffer [37];
5 sprintf (buffer , "%u", esp_random ());
6

7 for (int i = 0; i < total_messages ; i++) {
8 message msg;
9 strncpy (msg.id , buffer , sizeof (msg.id));

10 msg.count = i;
11 msg.total = total_messages ;
12

13 int length = strlen (input_data) - i * MAX_DATA_SIZE ;
14 if (length > MAX_DATA_SIZE) length = MAX_DATA_SIZE ;
15 strncpy (msg.data , & input_data [i * MAX_DATA_SIZE], length);
16 if (length < MAX_DATA_SIZE) msg.data[length] = ’\0’;
17

18 esp_err_t result = esp_now_send (macAddr , (const uint8_t *)&msg ,
sizeof (msg));

19

20 if (result != ESP_OK) {
21 if (attempts ++ >= 3) {
22 Serial . println ("Could not send long message . Abbort ...");
23 reset ();
24 break;
25 }
26 --i;
27 } else {
28 attempts = 1;
29 }
30 }
31 }

Listing 5.17: Sending Long Messages

Receiving and Reassembling Messages

Upon reception, the receiveLongMessage function takes the incoming data packet and
casts it to a message struct. Subsequently, the system searches for an existing record of a
multipart message with the same ID or, in the absence of such a record, initializes a new
one. This record keeping process is facilitated by the MessageRec struct, which stores
each received part, as well as the total number of parts expected and the number received
so far.

1 String receiveLongMessage (const uint8_t * macAddr , const uint8_t * data ,
int len) {

2 message * msg = (message *) data;
3

4 MessageRec * fullMessage = NULL;
5 for (auto& message : messages) {
6 if (strcmp (message .id , msg ->id) == 0) {
7 fullMessage = & message ;
8 break;
9 } else if (message . received == 0) {

10 strcpy (message .id , msg ->id);

32 CHAPTER 5. IMPLEMENTATION

11 message .total = msg ->total;
12 fullMessage = & message ;
13 break;
14 }
15 }
16

17 if (fullMessage == NULL) return "";
18

19 strcpy (fullMessage ->parts[msg ->count].data , msg ->data);
20 fullMessage ->parts[msg ->count]. index = msg ->count;
21 fullMessage -> received ++;
22

23 if (fullMessage -> received == fullMessage ->total) {
24 String fullMessageStr = "";
25 for (int i = 0; i < fullMessage ->total; i++) fullMessageStr +=

fullMessage ->parts[i]. data;
26

27 fullMessage -> received = 0;
28 return fullMessageStr ;
29 }
30

31 return "";
32 }

Listing 5.18: Receiving and Reassembling Long Messages

Error Handling and Flow Control

Error handling is crucial during the transmission of message segments. If a transmission
fails, the function will retry sending the segment a specified number of times before
aborting the process. This ensures that temporary issues do not permanently disrupt the
message flow.

5.5.7 Bootstrapping

During the bootstrapping phase, a considerable number of messages are transmitted in
both directions. The sequence of messages is of paramount importance and must be
strictly adhered to, as each step in the bootstrapping process is contingent upon the
preceding step. The nature of the bootstrapping process determines the required actions.

As previously outlined in Section 5.5.5, ESP-NOW offers an interface for callback functions
that can be registered dynamically during run-time. This feature was employed in the
development process. Consequently, instead of employing a single, extensive, and opaque
callback function comprising numerous if statements for each state, a distinct callback
function was devised for each state. The active callback function is registered during
runtime, dependent on the state. Listing 5.19 illustrates the callback function associated
with the receipt of the public key, followed by a supplementary method to transmit the
subsequent message.

1 void receivePublicKey (const uint8_t * macAddr , const uint8_t * data , int
dataLen) {

5.5. ONBOARDING 33

2 if (! deviceAllowed (macAddr) || memcmp (clientMAC , macAddr , 6) != 0)
return ;

3

4 Serial . println (" Receiving Public Key from " + formatMacAddress (macAddr
));

5 String message = receiveLongMessage (macAddr , data , dataLen);
6

7 if (! message . equals ("")) {
8 pem_peer = message ;
9 sendChallenge (macAddr);

10 }
11 }
12

13 void sendChallenge (const uint8_t * macAddr) {
14 STATE = CHALLENGING ;
15 esp_now_register_recv_cb (receiveChallengeResponse);
16 Serial . println (" Sending Challenge to " + formatMacAddress (macAddr) + "

started .");
17 challengePhrase = generateAESKey ();
18 sendLongMessage (encryptRSA (challengePhrase).c_str (), macAddr);
19 }

Listing 5.19: Receiving Public Key and Sending Challenge (Gateway)

On the client side, the transmission is handled in a manner that is analogous to that
described above. Listing 5.20 illustrates the manner in which the client handles the
incoming challenge, transmits it to the gateway, and establishes the new callback function
for subsequent transmission.

1 void receiveChallenge (const uint8_t * macAddr , const uint8_t * data , int
dataLen) {

2 if (memcmp (gatewayMAC , macAddr , 6) != 0) return ;
3 Serial . println (" Receiving Challenge from " + formatMacAddress (macAddr)

);
4 String message = receiveLongMessage (macAddr , data , dataLen);
5 if (! message . equals ("")) sendChallenge (message , macAddr);
6 }
7

8 void sendChallenge (String data , const uint8_t * macAddr) {
9 STATE = CHALLENGING ;

10 esp_now_register_recv_cb (receiveSessionKey);
11 Serial . println (" Sending Challenge Solution to " + formatMacAddress (

macAddr));
12

13 sendLongMessage (encryptRSA (decryptRSA (data)).c_str (), macAddr);
14 }

Listing 5.20: Receiving Challenge and Sending Solution of Challenge (Client)

The remaining stages of the bootstrapping process are handled in a comparable manner.
As the implementation is in accordance with the proposed design in Section 4.3 and Figure
4.2, a further explanation of the code and the process has been omitted.

Once the bootstrapping process is complete, the client and gateway terminate the commu-
nication channel and establish a new encrypted communication channel. As the onboard-
ing process is concluded with the final step of the bootstrapping, the gateway removes

34 CHAPTER 5. IMPLEMENTATION

the send callback function from its registration list and the client removes the receive
callback function from its registration list. From this point onward, communication is
unidirectional.

5.5.8 Error Handling

During the implementation phase, a number of techniques were developed for error han-
dling. This section presents the most significant and effective of these techniques.

Check if Onboarding is Stuck

A procedure was implemented to determine whether the onboarding process was pro-
gressing or encountering difficulties across all stages. Following the initial handshake, the
program commences the counting of elapsed seconds. In the event that the onboarding
process is still ongoing for a period exceeding 60 seconds, the board will be reset. Using
the built-in loop function of Arduino, the implementation is simple as shown in Listing
5.21.

1 if (STATE != DEFAULT) {
2 sleep (3);
3 if (++ time_elapsed >= 20) reset ();
4 }

Listing 5.21: Checking if Onboarding is Stuck

Using RGB LED as Medium

As previously stated in Section 5.5.3, the integrated RGB LED can be used to transmit
different error messages to the user. At this time, only one type of error results in a
red color, namely, if the send fails on the client site. This can be readily expanded to
accommodate different error types, with each error having a different color. Listing 5.22
illustrates the implementation of this feature.

1 void sendHandler (const uint8_t * macAddr , esp_now_send_status_t status) {
2 if (status == ESP_NOW_SEND_FAIL) {
3 Serial . println (" Package sent to " + formatMacAddress (macAddr) + "

FAILED ");
4 pixels . setPixelColor (0, pixels .Color (17, 0, 0));
5 } else {
6 pixels . setPixelColor (0, pixels .Color (0, 17, 0));
7 if (STATE == DEFAULT) {
8 messageQueue . dequeue ();
9 if (! messageQueue . isEmpty ()) {

10 measure m = messageQueue .peek ();
11 esp_now_send (gatewayMAC , (uint8_t *)&m, sizeof (m));
12 }
13 }
14 }
15 pixels .show ();
16 }

Listing 5.22: Using built-in RGB LED and Queuing System

5.5. ONBOARDING 35

Queue System to Overcome Temporary Signal Loss

Finally, a queueing system was implemented on the client side to overcome temporary
signal loss. After measuring data, the measure struct is placed into the queue using
the enqueue() function. Subsequently, the function peak() is used to retrieve the first
element of the queue without deleting it. The first element is then attempted to be
sent. Upon successful transmission, the dequeue() function is executed to delete the first
element (which was just transmitted) from the queue. This process is repeated until the
queue is empty, as shown in Listing 5.22. If the queue is full, which would indicate that
the signal has been lost for a period of five minutes with the default settings, the board
resets itself, and the onboarding process must be repeated.

Listing 5.23 illustrates the implementation of the queue system. This code is located in
a separate file designated MessageQueue.h which is imported into the client code as a
library.

1 # ifndef MESSAGE_QUEUE_H
2 # define MESSAGE_QUEUE_H
3

4 typedef struct measure {
5 int temperature ;
6 int humidity ;
7 int temperatureAlarm = 25;
8 int humidityAlarm = 50;
9 } measure ;

10

11 class MessageQueue {
12 private :
13 measure * queueArray ;
14 int capacity ;
15 int front;
16 int rear;
17 int count;
18

19 public :
20 MessageQueue (int size = 100) {
21 capacity = size;
22 queueArray = new measure [size];
23 front = 0;
24 rear = -1;
25 count = 0;
26 }
27

28 ~ MessageQueue () {
29 delete [] queueArray ;
30 }
31

32 void enqueue (measure item) {
33 if (! isFull ()) {
34 rear = (rear + 1) % capacity ;
35 queueArray [rear] = item;
36 count ++;
37 }
38 }
39

36 CHAPTER 5. IMPLEMENTATION

40 measure dequeue () {
41 measure item;
42 if (! isEmpty ()) {
43 item = queueArray [front];
44 front = (front + 1) % capacity ;
45 count --;
46 }
47 return item;
48 }
49

50 measure peek () {
51 measure item;
52 if (! isEmpty ()) {
53 item = queueArray [front];
54 }
55 return item;
56 }
57

58 int size () {
59 return count;
60 }
61

62 bool isEmpty () {
63 return (count == 0);
64 }
65

66 bool isFull () {
67 return (count == capacity);
68 }
69 };
70

71 #endif

Listing 5.23: MessageQueue.h Library

5.6 Summary

This chapter outlines the practical implementation of the proposed secure onboarding
system, introduced in Section 4.3. The initial section provides an overview of the hard-
ware and software frameworks utilized, with a particular focus on the ESP32-S3 and its
capabilities. Subsequently, the development environment setup is described, with the ob-
jective of ensuring the system’s security through the implementation of measures such as
Secure Boot V2 and flash encryption. In addition, the chapter provides practical guidance
on connecting hardware and configuring the device. This chapter outlines the process of
integrating ESP-NOW for communication, addressing limitations such as data packet size
and the number of encrypted peers. Furthermore, the chapter discusses the challenges
encountered during the implementation phase, particularly in managing long message
transmissions within the constraints of ESP-NOW.

Chapter 6

Evaluation

This chapter will focus on general security considerations, which are discussed in Section
6.1. Subsequently, the functionality of the whitelist is discussed in Section 6.2. Finally, a
field test was performed, which is discussed in Section 6.3.

6.1 General Security considerations

Security was a primary consideration during the design phase. In order to minimize the at-
tack surface, solutions that utilize pre-shared keys or credentials were deemed unsuitable.
The ESP-NOW protocol’s broadcast feature enables the transmission of an onboarding
signal to nearby devices in a connection-less manner. A traditional connection, such as
WiFi, would not have allowed this functionality. For each device undergoing onboarding,
new RSA key pairs and new session keys are generated. Consequently, even if an adversary
were to successfully extract a key, only the single communication would be compromised,
and only for a brief period, until the next reboot of either the client or gateway.

In addition, security measures have been implemented on the hardware side. As previously
discussed in Section 5.3, the security of the ESP32-S3 has been enhanced by enabling
Secure Boot V2 and Flash encryption.

With regard to RSA encryption, the key length of 3072 bits has been selected. Although
2048-bit keys would also be secure, as previously stated in Section 4.3, a key with a
length of 3072 bits is being used, with consideration for future developments. However,
a compromise between security and efficiency was necessary. Although 3072-bit RSA
keys are considered more secure, they require a longer generation time. In particular,
in constrained environments such as the ESP32-S3, where performance is limited, this
can result in a greater computational time for key generation. In contrast, a 3072-bit
key takes, on average, 17.59 seconds to generate, whereas a 2048-bit key takes just 5.21
seconds on average to generate. The measurement was carried out using the built-in
clock of the ESP32-S3, with the key generated 100 times. No significant discrepancy was
observed between the two runs.

37

38 CHAPTER 6. EVALUATION

6.2 Bypassing Whitelist

In order to enhance the security of the system, a whitelist was implemented. Any device
(client) that is not included in the whitelist, which is stored on the gateway, is rejected
upon receiving an onboarding request. To assess the efficacy of this measure, attempts
have been made to onboard devices that are not permitted. Various scenarios have been
tested, including instances where no client is connected, one client is already connected,
and during the onboarding of another device. The security mechanism was found to be
effective in all tests.

6.3 Field Test

In this field test, the onboarding process was conducted in a real-world setting, rather than
within the laboratory. Various settings were used to assess the efficacy of the implemen-
tation in its entirety. Firstly, the range of ESP-NOW was tested. During the onboarding
process and when transmitting data over a distance of 50 meters with minimal obstruc-
tions between, there were no issues or delays in communication. Subsequently, the time
component was tested. Even after a period of two hours, the communication remained
operational and the expected functionality was maintained.

Figure 6.1 shows the gateway with a red LED, indicating that the threshold of the mea-
sured data has been exceeded.

Figure 6.1: [Gateway Outdoor] Threshold of Measured data Exceeded

Figure 6.2 depicts the scenario in which the client is unable to transmit any data to
the gateway. This is indicated by the red LED. From this point onward, the messages
are queued. Once the client is able to send the data to the gateway again, all previous

6.3. FIELD TEST 39

measures are also transmitted. This was also tested in the field test and the results were
as expected.

Figure 6.2: [Client Outdoor] Sent Messages are not Received by the Gateway

40 CHAPTER 6. EVALUATION

Chapter 7

Summary and Conclusions

7.1 Summary

In this thesis, the security vulnerabilities inherent in IoT devices were investigated, with
a specific focus on their application in artwork tracking. This research was motivated by
the increasing integration of IoT technologies in sensitive sectors, where security often
lags behind functionality, posing significant risks to valuable assets like artwork.

The primary objective was to develop a secure and lightweight onboarding process for
IoT devices tasked with monitoring artworks during transportation and storage. Utiliz-
ing the Arduino platform and ESP-NOW protocol, the proposed solution enhances se-
curity through encrypted communication channels and streamlined device authentication
processes. The methodology adopted involved the design and implementation of crypto-
graphic functions, including AES and RSA encryption, to safeguard data transmissions
between IoT devices and gateways.

Key findings from the research underscore the effectiveness of the proposed onboarding
process in mitigating common security threats such as unauthorized access and data
breaches. Field tests demonstrated that the implementation not only adheres to security
best practices but also operates efficiently under real-world conditions. These outcomes
suggest that the strategic integration of robust encryption mechanisms can significantly
enhance the security posture of IoT systems in the art sector.

The implications of these findings are profound, offering viable pathways to fortify the
security frameworks of IoT devices across various applications. The enhanced onboarding
process developed in this thesis could be adapted for broader IoT security applications,
marking a step forward in balancing functionality with stringent security needs.

7.2 Conclusions

Conclusively, this thesis contributes to the crucial discourse on IoT security, particularly
within the context of high-value asset tracking. The development of a secure, efficient

41

42 CHAPTER 7. SUMMARY AND CONCLUSIONS

onboarding process for IoT devices in artwork tracking addresses a significant gap in the
current security measures, providing a scalable model that can be adapted across similar
IoT applications.

The research highlights the potential of integrating advanced cryptographic techniques
with conventional IoT communication protocols to enhance security. Despite these ad-
vancements, the study acknowledges limitations, including the scalability of the proposed
methods across different IoT platforms and the potential for increased system complexity.

7.3 Future Work

The proposed implementation provides a solid foundation for the artwork tracking use
case. Depending on the specific requirements, the implementation can be further devel-
oped and optimized.

At this stage, the setup comprises only two entities: the gateway and the client. All
measurements made by the client are transmitted to the gateway, where they are stored.
The user receives minimal feedback based on the color of the built-in LED. Although this
may be sufficient for some basic use cases, it is now evident that most scenarios would
benefit from remote monitoring by integrating cloud systems [43]. The implementation
of a 5G module would facilitate this [44].

Currently, the measure structure, which is needed to transport the data in a meaningful
manner, is hard coded and must be known in advance by the client and the gateway. To
enhance the system’s flexibility, a novel generic measure structure could be devised. This
structure could encapsulate all the information necessary for the gateway to process the
measured data correctly. This would confer the advantage that new clients could have
sensors that are not known to the gateway, yet the gateway would still be able to process
the data.

Finally, the implementation began as a proof of concept and was subsequently developed
further. Consequently, there may be instances where more efficient or elegant solutions
could be implemented.

Bibliography

[1] C. Kelly, N. Pitropakis, S. McKeown, and C. Lambrinoudakis, „Testing and harden-
ing iot devices against the mirai botnet“, in 2020 International conference on cyber
security and protection of digital services (cyber security), IEEE, 2020, pp. 1–8.

[2] About - certify project, Web Page, Accessed: 2024-04-30. [Online]. Available: https:
//certify-project.eu/about/.

[3] E. Commission, „Certify: Horizon europe (horizon) description of the action (doa)“,
Tech. Report, Jun. 2022.

[4] A. Whitmore, A. Agarwal, and L. Da Xu, „The internet of things—a survey of
topics and trends“, Information systems frontiers, vol. 17, pp. 261–274, 2015.

[5] S. Symington, W. Polk, and M. Souppaya, „Trusted internet of things (iot) device
network-layer onboarding and lifecycle management (draft)“, US Department of
Commerce, Tech. Rep., 2020.

[6] Device bootstrap, Web Page, Accessed: 2024-04-30. [Online]. Available: https://
iotatlas.net/en/patterns/device_bootstrap/.

[7] Industrial Internet Consortium, Automated onboarding and device provisioning best
practices, Accessed: 2023-04-30, Sep. 2022. [Online]. Available: https : / / www .
iiconsortium . org / wp - content / uploads / sites / 2 / 2022 / 09 / Automated -
Onboarding- and- Device- Provisioning- Best- Practices- 2022- 10- 04- v0.
3.11.pdf.

[8] B. Sunar, „True random number generators for cryptography“, in Dec. 2008, pp. 55–
73, isbn: 978-0-387-71816-3. doi: 10.1007/978-0-387-71817-0_4.

[9] V. Fischer, „A closer look at security in random number generators design“, vol. 7275,
May 2012, pp. 167–182, isbn: 978-3-642-29911-7. doi: 10.1007/978-3-642-29912-
4_13.

[10] R. L. Rivest, A. Shamir, and L. Adleman, „A method for obtaining digital signatures
and public-key cryptosystems“, Communications of the ACM, vol. 21, no. 2, pp. 120–
126, 1978.

[11] D. J. Bernstein and T. Lange, „Post-quantum cryptography“, Nature, vol. 549,
no. 7671, pp. 188–194, 2017.

[12] E. Landi, L. Parri, R. Moretti, A. Fort, M. Mugnaini, and V. Vignoli, „An iot sensor
node for health monitoring of artwork and ancient wooden structures“, in 2022 IEEE
International Workshop on Metrology for Living Environment (MetroLivEn), IEEE,
2022, pp. 110–114.

43

https://certify-project.eu/about/
https://certify-project.eu/about/
https://iotatlas.net/en/patterns/device_bootstrap/
https://iotatlas.net/en/patterns/device_bootstrap/
https://www.iiconsortium.org/wp-content/uploads/sites/2/2022/09/Automated-Onboarding-and-Device-Provisioning-Best-Practices-2022-10-04-v0.3.11.pdf
https://www.iiconsortium.org/wp-content/uploads/sites/2/2022/09/Automated-Onboarding-and-Device-Provisioning-Best-Practices-2022-10-04-v0.3.11.pdf
https://www.iiconsortium.org/wp-content/uploads/sites/2/2022/09/Automated-Onboarding-and-Device-Provisioning-Best-Practices-2022-10-04-v0.3.11.pdf
https://www.iiconsortium.org/wp-content/uploads/sites/2/2022/09/Automated-Onboarding-and-Device-Provisioning-Best-Practices-2022-10-04-v0.3.11.pdf
https://doi.org/10.1007/978-0-387-71817-0_4
https://doi.org/10.1007/978-3-642-29912-4_13
https://doi.org/10.1007/978-3-642-29912-4_13

44 BIBLIOGRAPHY

[13] E. Schito and D. Testi, „Integrated maps of risk assessment and minimization of
multiple risks for artworks in museum environments based on microclimate control“,
Building and Environment, vol. 123, pp. 585–600, 2017.

[14] M. Cannistraro, G. Cannistraro, and R. Restivo, „Environmental monitoring of
sacred artworks–a case study for the search for an index of correlation between
particle concentration and mass of fine dust“, Thermal Science and Engineering
Progress, vol. 14, p. 100 405, 2019.

[15] M. F. Mecklenburg, „Art in transit: Studies in the transport of paintings“, 1991.
[16] High-quality packaging for sensitive valuables, Web Page, Accessed: 2024-04-30. [On-

line]. Available: https://hasenkamp.com/en/fineart/packaging.
[17] Made-to-measure for perfect protection, Web Page, Accessed: 2024-04-30. [Online].

Available: https://kraft-els.ch/en/packing/.
[18] N. G. (Britain), National gallery technical bulletin. Publications Department, Na-

tional Gallery, 1988, vol. 12.
[19] R. Mousheimish, Y. Taher, K. Zeitouni, and M. Dubus, „Pact-art: Adaptive and

context-aware processes for the transportation of artworks“, in 2015 Digital Her-
itage, IEEE, vol. 2, 2015, pp. 347–350.

[20] V. Carchiolo, M. P. Loria, M. Toja, and M. Malgeri, „Real time risk monitoring in
fine-art with iot technology.“, in FedCSIS (Communication Papers), 2018, pp. 151–
158.

[21] E. Schiller, A. Aidoo, J. Fuhrer, J. Stahl, M. Ziörjen, and B. Stiller, „Landscape of
iot security“, Computer Science Review, vol. 44, p. 100 467, 2022.

[22] K. Seyhan and S. Akleylek, „Classification of random number generator applications
in iot: A comprehensive taxonomy“, Journal of Information Security and Applica-
tions, vol. 71, p. 103 365, 2022.

[23] E. Barker and A. Roginsky, „Transitioning the use of cryptographic algorithms and
key lengths“, National Institute of Standards and Technology, Tech. Rep., Mar.
2019.

[24] A. K. Lenstra, „Key lengths“, The Handbook of Information Security, 2006.
[25] Esp32-s3 technical information, Web Page, Accessed: 2024-04-22. [Online]. Avail-

able: https://www.espressif.com/en/products/socs/esp32-s3/.
[26] Random number generation, Web Page, Accessed: 2024-04-28. [Online]. Available:

https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/api-
reference/system/random.html.

[27] M. Banzi and M. Shiloh, Getting started with Arduino. Maker Media, Inc., 2022.
[28] M. Margolis, B. Jepson, and N. R. Weldin, Arduino cookbook: recipes to begin, ex-

pand, and enhance your projects. O’Reilly Media, 2020.
[29] B. Craft, Arduino projects for dummies. John Wiley & Sons, 2013.
[30] S. Monk, Programming Arduino: getting started with sketches, vol. 176.
[31] P. Scherz, Practical electronics for inventors. McGraw-Hill, Inc., 2006.

https://hasenkamp.com/en/fineart/packaging
https://kraft-els.ch/en/packing/
https://www.espressif.com/en/products/socs/esp32-s3/
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/api-reference/system/random.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/api-reference/system/random.html

BIBLIOGRAPHY 45

[32] Arduino-esp32 esp-now api, Web Page, Accessed: 2024-04-28. [Online]. Available:
https://docs.espressif.com/projects/arduino- esp32/en/latest/api/
espnow.html.

[33] D. Urazayev, A. Eduard, M. Ahsan, and D. Zorbas, „Indoor performance evaluation
of esp-now“, in 2023 IEEE International Conference on Smart Information Systems
and Technologies (SIST), IEEE, 2023, pp. 1–6.

[34] Esp-now, Web Page, Accessed: 2024-04-28. [Online]. Available: https : / / www .
espressif.com/en/solutions/low-power-solutions/esp-now.

[35] D. Eridani, A. F. Rochim, and F. N. Cesara, „Comparative performance study
of esp-now, wi-fi, bluetooth protocols based on range, transmission speed, latency,
energy usage and barrier resistance“, in 2021 international seminar on application
for technology of information and communication (iSemantic), IEEE, 2021, pp. 322–
328.

[36] Esp-now, Web Page, Accessed: 2024-04-28. [Online]. Available: https : / / docs .
espressif.com/projects/esp- idf/en/v5.2.1/esp32s3/api- reference/
network/esp_now.html.

[37] Ieee 802.11-2012, Web Page, Accessed: 2024-04-30. [Online]. Available: https://
standards.ieee.org/ieee/802.11/4523/.

[38] Esp32-s3-devkitc-1 v1.1, Web Page, Accessed: 2024-04-29. [Online]. Available: https:
/ / docs . espressif . com / projects / esp - idf / en / v5 . 2 . 1 / esp32s3 / hw -
reference/esp32s3/user-guide-devkitc-1.html#description-of-components.

[39] Arduino as an esp-idf component, Web Page, Accessed: 2024-04-24. [Online]. Avail-
able: https://docs.espressif.com/projects/arduino-esp32/en/latest/esp-
idf_component.html.

[40] Security, Web Page, Accessed: 2024-04-29. [Online]. Available: https : / / docs .
espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/security/security.
html.

[41] Secure boot v2, Web Page, Accessed: 2024-04-29. [Online]. Available: https://docs.
espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/security/secure-
boot-v2.html.

[42] Flash encryption, Web Page, Accessed: 2024-04-29. [Online]. Available: https://
docs.espressif.com/projects/esp- idf/en/v5.2.1/esp32s3/security/
flash-encryption.html.

[43] A. Botta, W. De Donato, V. Persico, and A. Pescapé, „Integration of cloud comput-
ing and internet of things: A survey“, Future generation computer systems, vol. 56,
pp. 684–700, 2016.

[44] News meet walter, our new esp32-s3-based friend!, Web Page, Accessed: 2024-04-30.
[Online]. Available: https://www.espressif.com/en/news/Walter.

https://docs.espressif.com/projects/arduino-esp32/en/latest/api/espnow.html
https://docs.espressif.com/projects/arduino-esp32/en/latest/api/espnow.html
https://www.espressif.com/en/solutions/low-power-solutions/esp-now
https://www.espressif.com/en/solutions/low-power-solutions/esp-now
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/api-reference/network/esp_now.html
https://standards.ieee.org/ieee/802.11/4523/
https://standards.ieee.org/ieee/802.11/4523/
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html#description-of-components
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html#description-of-components
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html#description-of-components
https://docs.espressif.com/projects/arduino-esp32/en/latest/esp-idf_component.html
https://docs.espressif.com/projects/arduino-esp32/en/latest/esp-idf_component.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/security/security.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/security/security.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/security/security.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/security/secure-boot-v2.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/security/secure-boot-v2.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/security/secure-boot-v2.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32s3/security/flash-encryption.html
https://www.espressif.com/en/news/Walter

46 BIBLIOGRAPHY

Abbreviations

CTR_DRBGCounter Mode Deterministric Random Bit Generator
DRBG Deterministric Random Bit Generator
ESP-IDF Espressif IoT Development Framework
GPIO General Purpose Input/Output
IDE Integrated Development Environment
IoT Internet of Things
LMK Local Master Key
NIST The National Institute of Standards and Technology
PEM Privacy Enhanced Mail
PMK Primary Master Key
PRNG Pseudo Random Number Generator
RNG Random Number Generation
RSA Rivest-Shamir-Adleman
SoC System on a Chip
TPM Trusted Platform Module
TRNG True Random Number Generator

47

48 ABBREVIATONS

List of Figures

4.1 Overview of Components . 12

4.2 Onboarding Sequence Diagram . 15

5.1 [Gateway] ESP32-S3 Board With a Connected Button 22

5.2 [Client] ESP32-S3 Board With a Connected DHT11 Sensor 22

6.1 [Gateway Outdoor] Threshold of Measured data Exceeded 38

6.2 [Client Outdoor] Sent Messages are not Received by the Gateway 39

49

50 LIST OF FIGURES

List of Listings

5.1 Constants, defining the state of onboarding 23
5.2 Measure Struct . 24
5.3 Reading Temperature and Humidity from DHT11 Sensor 25
5.4 Error Handling DHT11 Sensor . 25
5.5 Using the Measure Struct . 25
5.6 Controlling the built-in RGB LED . 26
5.7 Example for LED Usage on Gateway Side 26
5.8 AES Key Generation . 26
5.9 RSA Key Pair Generation . 27
5.10 RSA Encryption . 27
5.11 RSA Decryption . 28
5.12 Initialization of ESP-NOW . 29
5.13 Creation of a Peer . 29
5.14 Sending Data using ESP-NOW . 29
5.15 Sender and Receiver Callbacks . 29
5.16 Struct for handling splitted messages . 30
5.17 Sending Long Messages . 31
5.18 Receiving and Reassembling Long Messages 31
5.19 Receiving Public Key and Sending Challenge (Gateway) 32
5.20 Receiving Challenge and Sending Solution of Challenge (Client) 33
5.21 Checking if Onboarding is Stuck . 34
5.22 Using built-in RGB LED and Queuing System 34
5.23 MessageQueue.h Library . 35
A.1 Complete Code of Gateway . 53
B.1 Complete Code of Client . 65
B.2 Custom Library for MessageQueue used in Client 76

51

52 LIST OF LISTINGS

Appendix A

Gateway Code

1 # include <WiFi.h>
2 # include <esp_now .h>
3 # include <Adafruit_NeoPixel .h>
4 # include <mbedtls / entropy .h>
5 # include <mbedtls / ctr_drbg .h>
6 # include <mbedtls /rsa.h>
7 # include <mbedtls /pk.h>
8

9 # define BUTTON_PIN 7
10 # define RSA_KEY_LENGTH 3072
11 # define RSA_EXPONENT 65537
12 # define DEFAULT 0
13 # define BROADCASTING 1
14 # define KEY_EXCHANGE 2
15 # define CHALLENGING 3
16 # define SEND_SESSION_KEY 4
17 # define MAX_DATA_SIZE 211
18 # define MAX_MESSAGES 10
19 # define MAX_PARTS 10
20 # define PMK "# ArtworkTracking "
21

22 Adafruit_NeoPixel pixels (1, 48, NEO_GRB + NEO_KHZ800);
23 int STATE = DEFAULT ;
24 int time_elapsed = 0;
25 mbedtls_rsa_context rsa; // Initialize a global RSA context
26 uint8_t clientMAC [6];
27 String pem_peer ; // public key of peer
28 String challengePhrase ;
29 const uint8_t broadcastAddress [] = { 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF

};
30 // Populate whitelist with allowed mac addresses
31 const uint8_t allowedMacAddresses [][6] = {
32 { 0xf4 , 0x12 , 0xfa , 0xe6 , 0x56 , 0xe4 },
33 };
34

35 typedef struct message { // Structure for long messages
36 char id [37]; // Unique message id
37 byte count; // Number of packets sent yet
38 byte total; // Total number of packages to be sent

53

54 APPENDIX A. GATEWAY CODE

39 char data[MAX_DATA_SIZE]; // Data
40 } message ;
41

42 struct MessagePart {
43 int index;
44 char data[MAX_DATA_SIZE];
45 };
46

47 struct MessageRec {
48 char id [37];
49 MessagePart parts[MAX_PARTS];
50 int total;
51 int received ;
52 };
53 MessageRec messages [MAX_MESSAGES];
54

55

56 typedef struct measure { // Structure for sensor data
57 int temperature ;
58 int humidity ;
59 int temperatureAlarm ;
60 int humidityAlarm ;
61 } measure ;
62

63

64 void setup () {
65 // General initialization
66 Serial .begin (115200) ;
67 pixels .begin ();
68 pixels . setPixelColor (0, pixels .Color (17, 17, 17));
69 pixels .show ();
70 pinMode (BUTTON_PIN , INPUT);
71

72 // Setup ESP -NOW
73 WiFi.mode(WIFI_STA);
74 if (esp_now_init () == ESP_OK) {
75 uint8_t pmk [16];
76 hexStringToByteArray (PMK , pmk , 16);
77 esp_now_set_pmk (pmk); // Change the PMK for

an extra layer of security
78 esp_now_register_recv_cb (receiveSensorData); // Register the

default recieve callback
79 esp_now_register_send_cb (sendHandler); // Register the

default send callback
80 } else {
81 Serial . println ("ESP -NOW Init Failed . Retry ...");
82 delay (3000) ;
83 ESP. restart ();
84 }
85

86 pixels . setPixelColor (0, pixels .Color (0, 17, 0)); // Set the led to
green

87 pixels .show ();
88 }
89

90 void loop () {

55

91 if (STATE == BROADCASTING) {
92 sendBroadcast ();
93 } else if (STATE == DEFAULT && digitalRead (BUTTON_PIN) == HIGH) {
94 STATE = BROADCASTING ;
95 esp_now_register_recv_cb (receiveOnboardRequest); // Register the

onboarding callback
96 esp_now_unregister_send_cb (); // Unregister the

send callback
97

98 pixels . setPixelColor (0, pixels .Color (17, 17, 17));
99 pixels .show ();

100

101 initializeRSAKey (); // RSA key pair generation . Can take up to 25s
102

103 pixels . setPixelColor (0, pixels .Color (0, 0, 17));
104 pixels .show ();
105

106 Serial . println (" Sending Broadcast to " + formatMacAddress (
broadcastAddress));

107 }
108

109 if (STATE != DEFAULT) {
110 sleep (3);
111 if (++ time_elapsed >= 20) reset (); // Reset after 60 seconds (3s *

20)
112 }
113 }
114

115

116 // Called when data is sent
117 void sendHandler (const uint8_t * macAddr , esp_now_send_status_t status) {
118 if (status == ESP_NOW_SEND_FAIL) {
119 Serial . println (" Package sent to " + formatMacAddress (macAddr) + "

FAILED ");
120 pixels . setPixelColor (0, pixels .Color (17, 0, 0));
121 } else {
122 pixels . setPixelColor (0, pixels .Color (0, 17, 0));
123 }
124 pixels .show ();
125 }
126

127 // Called when sensor data is received (default)
128 void receiveSensorData (const uint8_t * macAddr , const uint8_t * data , int

dataLen) {
129 if (! deviceAllowed (macAddr)) return ;
130 measure m;
131 memcpy (&m, data , sizeof (m));
132

133 if (m. temperature >= m. temperatureAlarm || m. humidity >= m.
humidityAlarm || m. temperature > 250 || m. humidity > 250) { // Check

if alarm is triggered
134 pixels . setPixelColor (0, pixels .Color (17, 0, 0));
135 if (m. temperature > 250) m. temperature = -999;
136 if (m. humidity > 250) m. humidity = -999;
137 } else {
138 pixels . setPixelColor (0, pixels .Color (0, 17, 0));

56 APPENDIX A. GATEWAY CODE

139 }
140

141 Serial . println (" Temperature : " + (String)m. temperature + " °C");
142 Serial . println (" Humidity : " + (String)m. humidity + "%");
143 pixels .show ();
144 }
145

146 void sendBroadcast () {
147 esp_now_peer_info_t peerInfo = {};

// Create peer
148 memcpy (& peerInfo .peer_addr , broadcastAddress , 6);

// Add mac adress of peer (in this case broadcast to everyone)
149 if (! esp_now_is_peer_exist (broadcastAddress)) esp_now_add_peer (&

peerInfo); // Add the peer to the list
150

151 // Send message
152 const String message = " Artwork Tracking Onboarding ";
153 esp_err_t result = esp_now_send (broadcastAddress , (const uint8_t *)

message .c_str (), message . length ());
154

155 if (result != ESP_OK) Serial . println (" Broadcast Failed ... Trying again
.");

156 }
157

158 // Called when onboarding request is received
159 void receiveOnboardRequest (const uint8_t * macAddr , const uint8_t * data ,

int dataLen) {
160 if (! deviceAllowed (macAddr)) return ;
161 for (int i = 0; i < 6; i++) clientMAC [i] = macAddr [i];
162 Serial . println (" Receiving Onboarding Request from " + formatMacAddress

(macAddr));
163 time_elapsed = 0;
164

165 char buffer [dataLen + 1]; // Only allow a maximum of 250 characters
in the message + a null terminating byte

166 strncpy (buffer , (const char *)data , dataLen);
167 buffer [dataLen] = 0; // Make sure we are null terminated
168

169 if (strcmp (buffer , " Onboarding Request ") == 0) {
170 esp_now_register_send_cb (sendHandler);
171 sendPublicKey (macAddr);
172 } else {
173 Serial . println ("Bad request from " + formatMacAddress (macAddr) + "."

);
174 }
175 }
176

177 void sendPublicKey (const uint8_t * macAddr) {
178 STATE = KEY_EXCHANGE ;
179 Serial . println (" Sending Public Key to " + formatMacAddress (macAddr));
180 esp_now_register_recv_cb (receivePublicKey); // Register the recieve

callback
181

182 esp_now_del_peer (broadcastAddress); //
Remove broadcast since it is not necessary any more.

57

183 esp_now_peer_info_t peerInfo = {}; //
Create peer

184 memcpy (& peerInfo .peer_addr , macAddr , 6); // Add
mac adress of peer (in this case broadcast to everyone)

185 if (esp_now_is_peer_exist (macAddr)) esp_now_del_peer (macAddr); //
Remove if there is an old connection

186 esp_now_add_peer (& peerInfo); // Add
the peer to the list

187

188 sendLongMessage (exportPublicKey ().c_str (), macAddr);
189 }
190

191 void receivePublicKey (const uint8_t * macAddr , const uint8_t * data , int
dataLen) {

192 if (! deviceAllowed (macAddr) || memcmp (clientMAC , macAddr , 6) != 0)
return ; // Check if data comes from correct client

193

194 Serial . println (" Receiving Public Key from " + formatMacAddress (macAddr
));

195 String message = receiveLongMessage (macAddr , data , dataLen);
196

197 if (! message . equals ("")) { // Message completely received .
198 pem_peer = message ;
199 sendChallenge (macAddr);
200 }
201 }
202

203 void sendChallenge (const uint8_t * macAddr) {
204 STATE = CHALLENGING ;
205 esp_now_register_recv_cb (receiveChallengeResponse); // Register the

recieve callback
206 Serial . println (" Sending Challenge to " + formatMacAddress (macAddr) + "

started .");
207 challengePhrase = generateAESKey ();
208 sendLongMessage (encryptRSA (challengePhrase).c_str (), macAddr);
209 }
210

211 void receiveChallengeResponse (const uint8_t * macAddr , const uint8_t *
data , int dataLen) {

212 if (! deviceAllowed (macAddr) || memcmp (clientMAC , macAddr , 6) != 0)
return ; // Check if data comes from correct client

213 Serial . println (" Receiving Challenge Response from " + formatMacAddress
(macAddr) + " received ");

214

215 String message = receiveLongMessage (macAddr , data , dataLen);
216

217 if (! message . equals ("")) { // Message completely received .
218 if (decryptRSA (message). equals (challengePhrase)) {
219 challengePhrase .clear ();
220 sendSessionKey (macAddr);
221 } else {
222 Serial . println (" Challenge not passed . Abbord ...");
223 reset ();
224 }
225 }
226 }

58 APPENDIX A. GATEWAY CODE

227

228 void sendSessionKey (const uint8_t * macAddr) {
229 STATE = SEND_SESSION_KEY ;
230 esp_now_register_recv_cb (receiveSensorData); // Register the recieve

callback
231 Serial . println (" Sending Session Key to " + formatMacAddress (macAddr) +

" started .");
232 String sessionKey = generateAESKey ();
233

234 sendLongMessage (encryptRSA (sessionKey).c_str (), macAddr);
235

236 if (esp_now_is_peer_exist (macAddr)) esp_now_del_peer (macAddr);
237 uint8_t lmk [16];
238 hexStringToByteArray (sessionKey , lmk , 16);
239 esp_now_peer_info_t peerInfo = {}; //

Create peer
240 memcpy (& peerInfo .peer_addr , macAddr , 6); //

Add mac adress of peer (in this case broadcast to everyone)
241 memcpy (& peerInfo .lmk , lmk , 16); //

Add Local Master Key (LMK) of peer
242 peerInfo . encrypt = true; //

Enable encryption
243 if (! esp_now_is_peer_exist (macAddr)) esp_now_add_peer (& peerInfo); //

Add the peer to the list
244

245 sessionKey .clear ();
246 Serial . println (" Onboarding of " + formatMacAddress (macAddr) + "

complete \n");
247 reset ();
248 }
249

250 // Util for long messages
251 void sendLongMessage (const char* input_data , const uint8_t * macAddr) {
252 int total_messages = (strlen (input_data) + MAX_DATA_SIZE - 1) /

MAX_DATA_SIZE ;
253 int attempts = 1;
254 char buffer [37];
255 sprintf (buffer , "%u", esp_random ());
256

257 for (int i = 0; i < total_messages ; i++) {
258 message msg;
259 strncpy (msg.id , buffer , sizeof (msg.id));
260 msg.count = i;
261 msg.total = total_messages ;
262

263 int length = strlen (input_data) - i * MAX_DATA_SIZE ;
264 if (length > MAX_DATA_SIZE) length = MAX_DATA_SIZE ;
265 strncpy (msg.data , & input_data [i * MAX_DATA_SIZE], length);
266 if (length < MAX_DATA_SIZE) msg.data[length] = ’\0’; // Ensure null

termination
267

268 esp_err_t result = esp_now_send (macAddr , (const uint8_t *)&msg ,
sizeof (msg)); // Send message

269

270 if (result != ESP_OK) {
271 if (attempts ++ >= 3) {

59

272 Serial . println ("Could not send long message . Abbort ...");
273 reset ();
274 break;
275 }
276 --i;
277 } else {
278 attempts = 1;
279 }
280 }
281 }
282

283 // Util for long messages
284 String receiveLongMessage (const uint8_t * macAddr , const uint8_t * data ,

int len) {
285 message * msg = (message *) data; // Cast the data to a message
286

287 // Find or create the message in the messages array
288 MessageRec * fullMessage = NULL;
289 for (auto& message : messages) {
290 if (strcmp (message .id , msg ->id) == 0) {
291 fullMessage = & message ;
292 break;
293 } else if (message . received == 0) {
294 strcpy (message .id , msg ->id);
295 message .total = msg ->total;
296 fullMessage = & message ;
297 break;
298 }
299 }
300

301 if (fullMessage == NULL) return ""; // If message couldn ’t be found
or created , return an empty string

302

303 // Store this part of the message
304 strcpy (fullMessage ->parts[msg ->count].data , msg ->data);
305 fullMessage ->parts[msg ->count]. index = msg ->count;
306 fullMessage -> received ++;
307

308 // If received all parts of the message , combine them into a single
string

309 if (fullMessage -> received == fullMessage ->total) {
310 String fullMessageStr = "";
311 for (int i = 0; i < fullMessage ->total; i++) fullMessageStr +=

fullMessage ->parts[i]. data;
312

313 fullMessage -> received = 0; // Reset the message
314 return fullMessageStr ; // Return the full message
315 }
316

317 return ""; // If not all parts of the message have been received ,
return an empty string

318 }
319

320 // Reset STATE
321 void reset () {

60 APPENDIX A. GATEWAY CODE

322 esp_now_register_recv_cb (receiveSensorData); // Register the recieve
callback

323 esp_now_unregister_send_cb ();
324 freeRSAKey ();
325 memset (clientMAC , 0, sizeof (clientMAC));
326 STATE = DEFAULT ;
327 time_elapsed = 0;
328 pixels . setPixelColor (0, pixels .Color (0, 17, 0));
329 pixels .show ();
330 }
331

332 // Helpers
333 // Check if request from device is allowed
334 bool deviceAllowed (const uint8_t * macAddr) {
335 for (int i = 0; i < sizeof (allowedMacAddresses) / sizeof (

allowedMacAddresses [0]); i++) {
336 if (memcmp (macAddr , allowedMacAddresses [i], sizeof (

allowedMacAddresses [i])) == 0) {
337 return true;
338 }
339 }
340 Serial . println (" Transmission from unauthorized device (" +

formatMacAddress (macAddr) + ") rejected .");
341 return false;
342 }
343

344 // Formats MAC Address for prints
345 String formatMacAddress (const uint8_t * macAddr) {
346 char res [18];
347 snprintf (res , sizeof (res), "%02x:%02x:%02x:%02x:%02x:%02x", macAddr

[0], macAddr [1], macAddr [2], macAddr [3], macAddr [4], macAddr [5]);
348 return String (res);
349 }
350

351 void hexStringToByteArray (const String & hexString , uint8_t * byteArray ,
int byteArrayLength) {

352 for (int i = 0; i < byteArrayLength ; i++) {
353 String hexByte = hexString . substring (i * 2, i * 2 + 2);
354 byteArray [i] = (uint8_t) strtol (hexByte .c_str (), nullptr , 16);
355 }
356 }
357

358 // ENCRYPTION
359 // Function to generate a 128- bit AES key and return it as a string
360 String generateAESKey () {
361 mbedtls_entropy_context entropy ; // Context for entropy collection
362 mbedtls_entropy_init (& entropy); // Initialize entropy context to

gather entropy used for random number generation
363

364 mbedtls_ctr_drbg_context ctr_drbg ; // Context for the CTR_DRBG random
number generator

365 mbedtls_ctr_drbg_init (& ctr_drbg); // Initialize the CTR_DRBG context
366

367 uint32_t randomNumber = esp_random ();
368 char personalization [11]; // Personalization string for the DRBG

seeding

61

369 sprintf (personalization , "0x%08X", randomNumber);
370 // Seed the CTR_DRBG context with entropy collected plus a

personalization string for additional randomness
371 mbedtls_ctr_drbg_seed (& ctr_drbg , mbedtls_entropy_func , &entropy , (

const unsigned char *) personalization , strlen (personalization));
372

373 unsigned char key [16]; // Buffer to hold the 128- bit key (16 bytes)
374 // Generate a random 128- bit key using the seeded CTR_DRBG context
375 mbedtls_ctr_drbg_random (& ctr_drbg , key , sizeof (key));
376

377 String keyHex = ""; // String to hold the hexadecimal representation
of the key

378 for (unsigned char i : key) {
379 char hex [3]; // Temporary buffer to hold each byte in

hex format
380 sprintf (hex , "%02X", i); // Format each byte of the key as two

hexadecimal characters
381 keyHex += hex; // Append the hex string to the keyHex

string
382 }
383

384 mbedtls_ctr_drbg_free (& ctr_drbg); // Free the CTR_DRBG context to
release any associated resources

385 mbedtls_entropy_free (& entropy); // Free the entropy context to
release any associated resources

386

387 return keyHex ; // Return the hexadecimal string representation of the
key

388 }
389

390 // Function to initialize and generate RSA keys
391 void initializeRSAKey () {
392 mbedtls_entropy_context entropy ; // Context for entropy collection
393 mbedtls_entropy_init (& entropy); // Initialize entropy context
394

395 mbedtls_ctr_drbg_context ctr_drbg ; // Context for random number
generator

396 mbedtls_ctr_drbg_init (& ctr_drbg); // Initialize CTR_DRBG context
397

398 uint32_t randomNumber = esp_random ();
399 char personalization [11]; // Personalization string for the DRBG

seeding
400 sprintf (personalization , "0x%08X", randomNumber);
401 mbedtls_ctr_drbg_seed (& ctr_drbg , mbedtls_entropy_func , &entropy , (

const unsigned char *) personalization , strlen (personalization));
402 // Seed the DRBG
403

404 mbedtls_rsa_init (&rsa , MBEDTLS_RSA_PKCS_V15 , 0); // Initialize RSA
context

405 int ret = mbedtls_rsa_gen_key (&rsa , mbedtls_ctr_drbg_random , &ctr_drbg
, RSA_KEY_LENGTH , RSA_EXPONENT);

406 // Generate RSA key pair
407

408 if (ret != 0) {
409 Serial .print(" Failed to generate RSA key with error code: ");
410 Serial . println (ret);

62 APPENDIX A. GATEWAY CODE

411 }
412 if (mbedtls_rsa_check_privkey (& rsa) != 0) {
413 Serial . println (" Generated RSA private key is not valid.");
414 }
415

416 mbedtls_ctr_drbg_free (& ctr_drbg); // Free the DRBG context
417 mbedtls_entropy_free (& entropy); // Free the entropy context
418 }
419

420 // Function to encrypt data using an external RSA public key
421 String encryptRSA (const String & data) {
422 mbedtls_pk_context pk; // Public key container
423 mbedtls_pk_init (&pk); // Initialize the public key container
424

425 // Parse the public key from provided PEM string
426 if (mbedtls_pk_parse_public_key (&pk , (const unsigned char *) pem_peer .

c_str () , pem_peer . length () + 1) != 0) {
427 mbedtls_pk_free (&pk);
428 return ""; // Return empty if public key parsing fails
429 }
430

431 // Encrypt the data
432 unsigned char output [1024]; // Buffer to hold encrypted data
433 size_t olen;
434

435 mbedtls_ctr_drbg_context ctr_drbg ;
436 mbedtls_entropy_context entropy ;
437 mbedtls_entropy_init (& entropy);
438 mbedtls_ctr_drbg_init (& ctr_drbg);
439 uint32_t randomNumber = esp_random ();
440 char personalization [11]; // Personalization string for the DRBG

seeding
441 sprintf (personalization , "0x%08X", randomNumber);
442 // Seed the CTR_DRBG context with entropy collected plus a

personalization string for additional randomness
443 mbedtls_ctr_drbg_seed (& ctr_drbg , mbedtls_entropy_func , &entropy , (

const unsigned char *) personalization , strlen (personalization));
444

445 int ret = mbedtls_pk_encrypt (&pk , (const unsigned char *) data.c_str (),
data. length (), output , &olen , sizeof (output), mbedtls_ctr_drbg_random
, & ctr_drbg);

446

447 mbedtls_pk_free (&pk);
448 mbedtls_ctr_drbg_free (& ctr_drbg);
449 mbedtls_entropy_free (& entropy);
450

451 if (ret != 0) return ""; // Return empty if encryption fails
452

453 String encHex = "";
454 for (size_t i = 0; i < olen; i++) {
455 char hex [3];
456 sprintf (hex , "%02X", output [i]);
457 encHex += hex;
458 }
459

460 return encHex ; // Return the hex string of the encrypted data

63

461 }
462

463 // Function to decrypt data using RSA
464 String decryptRSA (const String & encHex) {
465 if (mbedtls_rsa_check_privkey (& rsa) != 0) {
466 Serial . println ("RSA private key is not valid.");
467 }
468

469 unsigned char encData [1024]; // Buffer to store the encrypted data in
binary form

470 size_t encIndex = 0; // Index for filling the encData buffer
471

472 // Convert hexadecimal string back to binary data
473 for (size_t i = 0; i < encHex . length (); i += 2) {
474 sscanf (encHex .c_str () + i, "%02X", & encData [encIndex ++]); // Parse

two hexadecimal characters at a time_elapsed
475 }
476

477 unsigned char output [1024]; // Buffer to hold the decrypted data
478 size_t olen; // Variable to store the length of the

decrypted data
479

480 mbedtls_ctr_drbg_context ctr_drbg ; // Context for the CTR_DRBG random
number generator

481 mbedtls_entropy_context entropy ; // Context for entropy collection
482 mbedtls_entropy_init (& entropy); // Initialize the entropy context
483 mbedtls_ctr_drbg_init (& ctr_drbg); // Initialize the CTR_DRBG context
484

485 uint32_t randomNumber = esp_random ();
486 char personalization [11]; // Personalization string for the DRBG

seeding
487 sprintf (personalization , "0x%08X", randomNumber);
488 // Seed the CTR_DRBG context with entropy collected plus a

personalization string for additional randomness
489 mbedtls_ctr_drbg_seed (& ctr_drbg , mbedtls_entropy_func , &entropy , (

const unsigned char *) personalization , strlen (personalization));
490

491 // Decrypt the data using the private key
492 int ret = mbedtls_rsa_pkcs1_decrypt (&rsa , mbedtls_ctr_drbg_random , &

ctr_drbg , MBEDTLS_RSA_PRIVATE , &olen , encData , output , sizeof (output)
);

493

494 mbedtls_ctr_drbg_free (& ctr_drbg); // Free the CTR_DRBG context
495 mbedtls_entropy_free (& entropy); // Free the entropy context
496

497 if (ret != 0) {
498 Serial .print(" Decryption failed with error: ");
499 Serial . println (ret);
500 return "";
501 }
502

503 if (mbedtls_rsa_check_privkey (& rsa) != 0) {
504 Serial . println ("RSA private key is not valid.");
505 }
506

64 APPENDIX A. GATEWAY CODE

507 return String ((char *) output); // Convert the decrypted binary data
back to a string and return it

508 }
509

510 String exportPublicKey () {
511 char buf [626]; // Ensure buffer is large enough for the key
512 mbedtls_pk_context pk;
513 mbedtls_pk_init (&pk); // Initialize the PK context
514

515 // Setup the PK context to hold an RSA key
516 if (mbedtls_pk_setup (&pk , mbedtls_pk_info_from_type (MBEDTLS_PK_RSA))

!= 0) {
517 mbedtls_pk_free (&pk);
518 return "";
519 }
520

521 // Copy the RSA context to the PK context
522 mbedtls_rsa_context * rsa_copy = mbedtls_pk_rsa (pk);
523 mbedtls_rsa_copy (rsa_copy , &rsa); // Correctly copy RSA context
524

525 // Check if the public key can be written into buffer
526 if (mbedtls_pk_write_pubkey_pem (&pk , (unsigned char *)buf , sizeof (buf))

< 0) {
527 mbedtls_pk_free (&pk);
528 return ""; // Return empty string on failure
529 }
530

531 mbedtls_pk_free (&pk); // Free the PK context
532 return String (buf); // Return the public key in PEM format
533 }
534

535 // Function to clean up RSA context when no longer needed
536 void freeRSAKey () {
537 volatile char* p = const_cast <char *>(pem_peer .c_str ()); // Access the

underlying character array of the string
538 size_t len = pem_peer . length (); // Get the

length of the string
539 while (len --) *p++ = 0; // Overwrite

each character with zero
540 pem_peer .clear (); // Clear the

string to remove all content and reduce its size to zero
541

542 secureZeroMemory (&rsa , sizeof (rsa));
543 mbedtls_rsa_free (& rsa); // Free the RSA context and all associated

resources
544 }
545

546 void secureZeroMemory (void* ptr , size_t size) {
547 volatile uint8_t * p = (volatile uint8_t *) ptr;
548 while (size --) *p++ = 0;
549 }

Listing A.1: Complete Code of Gateway

Appendix B

Client Code

1 # include <WiFi.h>
2 # include <esp_now .h>
3 # include <Adafruit_NeoPixel .h>
4 # include <DHT11.h>
5 # include <mbedtls / entropy .h>
6 # include <mbedtls / ctr_drbg .h>
7 # include <mbedtls /rsa.h>
8 # include <mbedtls /pk.h>
9 # include " MeasureQueue .h"

10

11 # define RSA_KEY_LENGTH 3072
12 # define RSA_EXPONENT 65537
13 # define DEFAULT 0
14 # define SEARCHING 1
15 # define KEY_EXCHANGE 2
16 # define CHALLENGING 3
17 # define RECEIVE_SESSION_KEY 4
18 # define MAX_DATA_SIZE 211
19 # define MAX_MESSAGES 10
20 # define MAX_PARTS 10
21 # define PMK "# ArtworkTracking "
22

23 Adafruit_NeoPixel pixels (1, 48, NEO_GRB + NEO_KHZ800);
24 DHT11 dht11 (14);
25 int STATE = SEARCHING ;
26 int time_elapsed = 0;
27 mbedtls_rsa_context rsa; // Initialize a global RSA context
28 String pem_peer ; // public key of peer
29 uint8_t gatewayMAC [6];
30 MessageQueue messageQueue (100); // Queue with capacity for 100 measures
31

32 typedef struct message { // Structure for long messages
33 char id [37]; // Unique message id
34 byte count; // Number of packets sent yet
35 byte total; // Total number of packages to be sent
36 char data[MAX_DATA_SIZE]; // Data
37 } message ;
38

39 struct MessagePart {

65

66 APPENDIX B. CLIENT CODE

40 int index;
41 char data[MAX_DATA_SIZE];
42 };
43

44 struct MessageRec {
45 char id [37];
46 MessagePart parts[MAX_PARTS];
47 int total;
48 int received ;
49 };
50 MessageRec messages [MAX_MESSAGES];
51

52 void setup () {
53 // General initialization
54 Serial .begin (115200) ;
55 pixels .begin ();
56 pixels . setPixelColor (0, pixels .Color (17, 17, 17));
57 pixels .show ();
58

59 // Setup ESP -NOW
60 WiFi.mode(WIFI_STA);
61 if (esp_now_init () == ESP_OK) {
62 uint8_t pmk [16];
63 hexStringToByteArray (PMK , pmk , 16);
64 esp_now_set_pmk (pmk);
65 initializeRSAKey ();
66 esp_now_register_recv_cb (receiveBroadcast); // Register the recieve

broadcast callback
67 esp_now_register_send_cb (sendHandler); // Register the default

send callback
68 } else {
69 Serial . println ("ESP -NOW Init Failed . Retry ...");
70 delay (3000) ;
71 ESP. restart ();
72 }
73

74 pixels . setPixelColor (0, pixels .Color (0, 0, 17));
75 pixels .show ();
76 }
77

78 void loop () {
79 if (STATE == DEFAULT) sendSensorData ();
80

81 sleep (3);
82 if (STATE != DEFAULT && STATE != SEARCHING) {
83 if (++ time_elapsed >= 20) reset ();
84 }
85 }
86

87 // Called when data is sent (default)
88 void sendHandler (const uint8_t * macAddr , esp_now_send_status_t status) {
89 if (status == ESP_NOW_SEND_FAIL) {
90 Serial . println (" Package sent to " + formatMacAddress (macAddr) + "

FAILED ");
91 pixels . setPixelColor (0, pixels .Color (17, 0, 0));
92 } else {

67

93 pixels . setPixelColor (0, pixels .Color (0, 17, 0));
94 if (STATE == DEFAULT) {
95 measuresQueue . dequeue ();
96 if (! measuresQueue . isEmpty ()) {
97 measure m = measuresQueue .peek ();
98 esp_now_send (gatewayMAC , (uint8_t *)&m, sizeof (m));
99 }

100 }
101 }
102 pixels .show ();
103 }
104

105 void sendSensorData () {
106 if (measuresQueue . isFull ()) {
107 Serial . println (" Gateway connection lost. Resetting board ...");
108 ESP. restart ();
109 return ;
110 }
111

112 measure m;
113 int temperature = dht11. readTemperature ();
114 int humidity = dht11. readHumidity ();
115

116 if (temperature == DHT11 :: ERROR_TIMEOUT || temperature == DHT11 ::
ERROR_CHECKSUM) Serial . println (" Temperature Reading Error: " + DHT11
:: getErrorString (temperature));

117 if (humidity == DHT11 :: ERROR_TIMEOUT || humidity == DHT11 ::
ERROR_CHECKSUM) Serial . println (" Humidity Reading Error: " + DHT11 ::
getErrorString (humidity));

118

119 m. temperature = temperature ;
120 m. humidity = humidity ;
121 measuresQueue . enqueue (m);
122 measure m2 = measuresQueue .peek ();
123 esp_now_send (gatewayMAC , (uint8_t *)&m2 , sizeof (m2));
124 }
125

126 // Called when broadcast is received
127 void receiveBroadcast (const uint8_t * macAddr , const uint8_t * data , int

dataLen) {
128 for (int i = 0; i < 6; i++) gatewayMAC [i] = macAddr [i];
129 Serial . println (" Receiving Broadcast from " + formatMacAddress (macAddr)

);
130 char buffer [dataLen + 1]; // Only allow a maximum of 250 characters

in the message + a null terminating byte
131 strncpy (buffer , (const char *)data , dataLen);
132 buffer [dataLen] = 0; // Make sure we are null terminated
133

134 if (strcmp (buffer , " Artwork Tracking Onboarding ") == 0) {
135 sendOnboardigRequest (macAddr);
136 } else {
137 Serial . println ("Bad request from " + formatMacAddress (macAddr));
138 }
139 }
140

141 void sendOnboardigRequest (const uint8_t * macAddr) {

68 APPENDIX B. CLIENT CODE

142 STATE = SEARCHING ;
143 Serial . println (" Sending Onboarding request to " + formatMacAddress (

macAddr));
144

145 esp_now_peer_info_t peerInfo = {}; //
Create peer

146 memcpy (& peerInfo .peer_addr , macAddr , 6); // Add
mac adress of peer (in this case broadcast to everyone)

147 if (esp_now_is_peer_exist (macAddr)) esp_now_del_peer (macAddr); //
Remove if there is an old connection

148 esp_now_add_peer (& peerInfo); // Add
the peer to the list

149

150 const String message = " Onboarding Request ";
151 esp_err_t result = esp_now_send (macAddr , (const uint8_t *) message .c_str

(), message . length ()); // Send message
152

153 if (result == ESP_OK) {
154 esp_now_register_recv_cb (receivePublicKey);
155 time_elapsed = 0;
156 } else {
157 Serial . println (" Onboarding request could not be sent. Restart the

board.");
158 }
159 }
160

161 // Called when public key is received
162 void receivePublicKey (const uint8_t * macAddr , const uint8_t * data , int

dataLen) {
163 if (memcmp (gatewayMAC , macAddr , 6) != 0) return ; // Check if data

comes from correct gateway
164 Serial . println (" Receiving Public Key from " + formatMacAddress (macAddr

));
165

166 String message = receiveLongMessage (macAddr , data , dataLen);
167

168 if (! message . equals ("")) { // Message completely received .
169 pem_peer = message ;
170 sendPublicKey (macAddr);
171 }
172 }
173

174 void sendPublicKey (const uint8_t * macAddr) {
175 STATE = KEY_EXCHANGE ;
176 esp_now_register_recv_cb (receiveChallenge); // Register the recieve

callback
177 Serial . println (" Sending Public Key to " + formatMacAddress (macAddr));
178

179 mbedtls_pk_context pk; // Public key container
180 mbedtls_pk_init (&pk); // Initialize the public key container
181

182 sendLongMessage (exportPublicKey ().c_str (), macAddr);
183 }
184

185 // Called when challenge is received
186 void receiveChallenge (const uint8_t * macAddr , const uint8_t * data , int

69

dataLen) {
187 if (memcmp (gatewayMAC , macAddr , 6) != 0) return ; // Check if data

comes from correct gateway
188 Serial . println (" Receiving Challenge from " + formatMacAddress (macAddr)

);
189 String message = receiveLongMessage (macAddr , data , dataLen);
190 if (! message . equals ("")) sendChallenge (message , macAddr); // Message

completely received .
191 }
192

193 void sendChallenge (String data , const uint8_t * macAddr) {
194 STATE = CHALLENGING ;
195 esp_now_register_recv_cb (receiveSessionKey); // Register the recieve

callback
196 Serial . println (" Sending Challenge Solution to " + formatMacAddress (

macAddr));
197

198 sendLongMessage (encryptRSA (decryptRSA (data)).c_str (), macAddr);
199 }
200

201 // Called when session key is received
202 void receiveSessionKey (const uint8_t * macAddr , const uint8_t * data , int

dataLen) {
203 if (memcmp (gatewayMAC , macAddr , 6) != 0) return ; // Check if data

comes from correct gateway
204 STATE = RECEIVE_SESSION_KEY ;
205 Serial . println (" Receiving Session Key from " + formatMacAddress (

macAddr));
206 String message = receiveLongMessage (macAddr , data , dataLen);
207

208 if (! message . equals ("")) { // Message completely received .
209 esp_now_unregister_recv_cb ();
210 if (esp_now_is_peer_exist (macAddr)) esp_now_del_peer (macAddr);
211 uint8_t lmk [16];
212 hexStringToByteArray (decryptRSA (message), lmk , 16);
213 esp_now_peer_info_t peerInfo = {}; // Create peer
214 memcpy (& peerInfo .peer_addr , macAddr , 6); // Add mac adress of peer

(in this case broadcast to everyone)
215 memcpy (& peerInfo .lmk , lmk , 16); // Add Local Master Key (

LMK) of peer
216 peerInfo . encrypt = true; // Enable encryption
217 esp_now_add_peer (& peerInfo); // Add the peer to the

list
218 done ();
219 }
220 }
221

222 // Util for long messages
223 void sendLongMessage (const char* input_data , const uint8_t * macAddr) {
224 int total_messages = (strlen (input_data) + MAX_DATA_SIZE - 1) /

MAX_DATA_SIZE ;
225 int attempts = 1;
226 char buffer [37];
227 sprintf (buffer , "%u", esp_random ());
228

229 for (int i = 0; i < total_messages ; i++) {

70 APPENDIX B. CLIENT CODE

230 message msg;
231 strncpy (msg.id , buffer , sizeof (msg.id));
232 msg.count = i;
233 msg.total = total_messages ;
234

235 int length = strlen (input_data) - i * MAX_DATA_SIZE ;
236 if (length > MAX_DATA_SIZE) length = MAX_DATA_SIZE ;
237 strncpy (msg.data , & input_data [i * MAX_DATA_SIZE], length);
238 if (length < MAX_DATA_SIZE) msg.data[length] = ’\0’; // Ensure null

termination
239

240 esp_err_t result = esp_now_send (macAddr , (const uint8_t *)&msg ,
sizeof (msg)); // Send message

241

242 if (result != ESP_OK) {
243 if (attempts ++ >= 3) {
244 Serial . println ("Could not send long message . Abbort ...");
245 reset ();
246 break;
247 }
248 --i;
249 } else {
250 attempts = 1;
251 }
252 }
253 }
254

255 // Util for long messages
256 String receiveLongMessage (const uint8_t * macAddr , const uint8_t * data ,

int len) {
257 message * msg = (message *) data; // Cast the data to a message
258

259 // Find or create the message in the messages array
260 MessageRec * fullMessage = NULL;
261 for (auto& message : messages) {
262 if (strcmp (message .id , msg ->id) == 0) {
263 fullMessage = & message ;
264 break;
265 } else if (message . received == 0) {
266 strcpy (message .id , msg ->id);
267 message .total = msg ->total;
268 fullMessage = & message ;
269 break;
270 }
271 }
272

273 if (fullMessage == NULL) return ""; // If message couldn ’t be found
or created , return an empty string

274

275 // Store this part of the message
276 strcpy (fullMessage ->parts[msg ->count].data , msg ->data);
277 fullMessage ->parts[msg ->count]. index = msg ->count;
278 fullMessage -> received ++;
279

280 // If received all parts of the message , combine them into a single
string

71

281 if (fullMessage -> received == fullMessage ->total) {
282 String fullMessageStr = "";
283 for (int i = 0; i < fullMessage ->total; i++) fullMessageStr +=

fullMessage ->parts[i]. data;
284

285 fullMessage -> received = 0; // Reset the message
286 return fullMessageStr ; // Return the full message
287 }
288

289 return ""; // If not all parts of the message have been received ,
return an empty string

290 }
291

292 void reset () {
293 STATE = SEARCHING ;
294 time_elapsed = 0;
295 esp_now_register_recv_cb (receiveBroadcast); // Register the recieve

callback
296 pixels . setPixelColor (0, pixels .Color (0, 0, 17));
297 pixels .show ();
298 }
299

300 void done () {
301 STATE = DEFAULT ;
302 time_elapsed = 0;
303 esp_now_unregister_recv_cb ();
304 freeRSAKey ();
305 Serial . println (" Onboarding to " + formatMacAddress (gatewayMAC) + "

complete \n");
306 pixels . setPixelColor (0, pixels .Color (0, 17, 0));
307 pixels .show ();
308 }
309

310 // Helpers
311 // Formats MAC Address for prints
312 String formatMacAddress (const uint8_t * macAddr) {
313 char res [18];
314 snprintf (res , sizeof (res), "%02x:%02x:%02x:%02x:%02x:%02x", macAddr

[0], macAddr [1], macAddr [2], macAddr [3], macAddr [4], macAddr [5]);
315 return String (res);
316 }
317

318 void hexStringToByteArray (const String & hexString , uint8_t * byteArray ,
int byteArrayLength) {

319 for (int i = 0; i < byteArrayLength ; i++) {
320 String hexByte = hexString . substring (i * 2, i * 2 + 2);
321 byteArray [i] = (uint8_t) strtol (hexByte .c_str (), nullptr , 16);
322 }
323 }
324

325 // ENCRYPTION
326 // Function to generate a 128- bit AES key and return it as a string
327 String generateAESKey () {
328 mbedtls_entropy_context entropy ; // Context for entropy collection
329 mbedtls_entropy_init (& entropy); // Initialize entropy context to

gather entropy used for random number generation

72 APPENDIX B. CLIENT CODE

330

331 mbedtls_ctr_drbg_context ctr_drbg ; // Context for the CTR_DRBG random
number generator

332 mbedtls_ctr_drbg_init (& ctr_drbg); // Initialize the CTR_DRBG context
333

334 uint32_t randomNumber = esp_random ();
335 char personalization [11]; // Personalization string for the DRBG

seeding
336 sprintf (personalization , "0x%08X", randomNumber);
337 // Seed the CTR_DRBG context with entropy collected plus a

personalization string for additional randomness
338 mbedtls_ctr_drbg_seed (& ctr_drbg , mbedtls_entropy_func , &entropy , (

const unsigned char *) personalization , strlen (personalization));
339

340 unsigned char key [16]; // Buffer to hold the 128- bit key (16 bytes)
341 // Generate a random 128- bit key using the seeded CTR_DRBG context
342 mbedtls_ctr_drbg_random (& ctr_drbg , key , sizeof (key));
343

344 String keyHex = ""; // String to hold the hexadecimal representation
of the key

345 for (unsigned char i : key) {
346 char hex [3]; // Temporary buffer to hold each byte in

hex format
347 sprintf (hex , "%02X", i); // Format each byte of the key as two

hexadecimal characters
348 keyHex += hex; // Append the hex string to the keyHex

string
349 }
350

351 mbedtls_ctr_drbg_free (& ctr_drbg); // Free the CTR_DRBG context to
release any associated resources

352 mbedtls_entropy_free (& entropy); // Free the entropy context to
release any associated resources

353

354 return keyHex ; // Return the hexadecimal string representation of the
key

355 }
356

357 // Function to initialize and generate RSA keys
358 void initializeRSAKey () {
359 mbedtls_entropy_context entropy ; // Context for entropy collection
360 mbedtls_entropy_init (& entropy); // Initialize entropy context
361

362 mbedtls_ctr_drbg_context ctr_drbg ; // Context for random number
generator

363 mbedtls_ctr_drbg_init (& ctr_drbg); // Initialize CTR_DRBG context
364

365 uint32_t randomNumber = esp_random ();
366 char personalization [11]; // Personalization string for the DRBG

seeding
367 sprintf (personalization , "0x%08X", randomNumber);
368 mbedtls_ctr_drbg_seed (& ctr_drbg , mbedtls_entropy_func , &entropy , (

const unsigned char *) personalization , strlen (personalization));
369 // Seed the DRBG
370

371 mbedtls_rsa_init (&rsa , MBEDTLS_RSA_PKCS_V15 , 0); // Initialize RSA

73

context
372 int ret = mbedtls_rsa_gen_key (&rsa , mbedtls_ctr_drbg_random , &ctr_drbg

, RSA_KEY_LENGTH , RSA_EXPONENT);
373 // Generate RSA key pair
374

375 if (ret != 0) {
376 Serial .print(" Failed to generate RSA key with error code: ");
377 Serial . println (ret);
378 }
379 if (mbedtls_rsa_check_privkey (& rsa) != 0) {
380 Serial . println (" Generated RSA private key is not valid.");
381 }
382

383 mbedtls_ctr_drbg_free (& ctr_drbg); // Free the DRBG context
384 mbedtls_entropy_free (& entropy); // Free the entropy context
385 }
386

387 // Function to encrypt data using an external RSA public key
388 String encryptRSA (const String & data) {
389 mbedtls_pk_context pk; // Public key container
390 mbedtls_pk_init (&pk); // Initialize the public key container
391

392 // Parse the public key from provided PEM string
393 if (mbedtls_pk_parse_public_key (&pk , (const unsigned char *) pem_peer .

c_str (), pem_peer . length () + 1) != 0) {
394 mbedtls_pk_free (&pk);
395 return ""; // Return empty if public key parsing fails
396 }
397

398 // Encrypt the data
399 unsigned char output [1024]; // Buffer to hold encrypted data
400 size_t olen;
401

402 mbedtls_ctr_drbg_context ctr_drbg ;
403 mbedtls_entropy_context entropy ;
404 mbedtls_entropy_init (& entropy);
405 mbedtls_ctr_drbg_init (& ctr_drbg);
406 uint32_t randomNumber = esp_random ();
407 char personalization [11]; // Personalization string for the DRBG

seeding
408 sprintf (personalization , "0x%08X", randomNumber);
409 // Seed the CTR_DRBG context with entropy collected plus a

personalization string for additional randomness
410 mbedtls_ctr_drbg_seed (& ctr_drbg , mbedtls_entropy_func , &entropy , (

const unsigned char *) personalization , strlen (personalization));
411

412 int ret = mbedtls_pk_encrypt (&pk , (const unsigned char *) data.c_str (),
data. length (), output , &olen , sizeof (output), mbedtls_ctr_drbg_random
, & ctr_drbg);

413

414 mbedtls_pk_free (&pk);
415 mbedtls_ctr_drbg_free (& ctr_drbg);
416 mbedtls_entropy_free (& entropy);
417

418 if (ret != 0) return ""; // Return empty if encryption fails
419

74 APPENDIX B. CLIENT CODE

420 String encHex = "";
421 for (size_t i = 0; i < olen; i++) {
422 char hex [3];
423 sprintf (hex , "%02X", output [i]);
424 encHex += hex;
425 }
426

427 return encHex ; // Return the hex string of the encrypted data
428 }
429

430 // Function to decrypt data using RSA
431 String decryptRSA (const String & encHex) {
432 if (mbedtls_rsa_check_privkey (& rsa) != 0) {
433 Serial . println ("RSA private key is not valid.");
434 }
435

436 unsigned char encData [1024]; // Buffer to store the encrypted data in
binary form

437 size_t encIndex = 0; // Index for filling the encData buffer
438

439 // Convert hexadecimal string back to binary data
440 for (size_t i = 0; i < encHex . length (); i += 2) {
441 sscanf (encHex .c_str () + i, "%02X", & encData [encIndex ++]); // Parse

two hexadecimal characters at a time_elapsed
442 }
443

444 unsigned char output [1024]; // Buffer to hold the decrypted data
445 size_t olen; // Variable to store the length of the

decrypted data
446

447 mbedtls_ctr_drbg_context ctr_drbg ; // Context for the CTR_DRBG random
number generator

448 mbedtls_entropy_context entropy ; // Context for entropy collection
449 mbedtls_entropy_init (& entropy); // Initialize the entropy context
450 mbedtls_ctr_drbg_init (& ctr_drbg); // Initialize the CTR_DRBG context
451

452 uint32_t randomNumber = esp_random ();
453 char personalization [11]; // Personalization string for the DRBG

seeding
454 sprintf (personalization , "0x%08X", randomNumber);
455 // Seed the CTR_DRBG context with entropy collected plus a

personalization string for additional randomness
456 mbedtls_ctr_drbg_seed (& ctr_drbg , mbedtls_entropy_func , &entropy , (

const unsigned char *) personalization , strlen (personalization));
457

458 // Decrypt the data using the private key
459 int ret = mbedtls_rsa_pkcs1_decrypt (&rsa , mbedtls_ctr_drbg_random , &

ctr_drbg , MBEDTLS_RSA_PRIVATE , &olen , encData , output , sizeof (output)
);

460

461 mbedtls_ctr_drbg_free (& ctr_drbg); // Free the CTR_DRBG context
462 mbedtls_entropy_free (& entropy); // Free the entropy context
463

464 if (ret != 0) {
465 Serial .print(" Decryption failed with error: ");
466 Serial . println (ret);

75

467 return "";
468 }
469

470 if (mbedtls_rsa_check_privkey (& rsa) != 0) {
471 Serial . println ("RSA private key is not valid.");
472 }
473

474 return String ((char *) output); // Convert the decrypted binary data
back to a string and return it

475 }
476

477 String exportPublicKey () {
478 char buf [626]; // Ensure buffer is large enough for the key
479 mbedtls_pk_context pk;
480 mbedtls_pk_init (&pk); // Initialize the PK context
481

482 // Setup the PK context to hold an RSA key
483 if (mbedtls_pk_setup (&pk , mbedtls_pk_info_from_type (MBEDTLS_PK_RSA))

!= 0) {
484 mbedtls_pk_free (&pk);
485 return "";
486 }
487

488 // Copy the RSA context to the PK context
489 mbedtls_rsa_context * rsa_copy = mbedtls_pk_rsa (pk);
490 mbedtls_rsa_copy (rsa_copy , &rsa); // Correctly copy RSA context
491

492 // Check if the public key can be written into buffer
493 if (mbedtls_pk_write_pubkey_pem (&pk , (unsigned char *)buf , sizeof (buf))

< 0) {
494 mbedtls_pk_free (&pk);
495 return ""; // Return empty string on failure
496 }
497

498 mbedtls_pk_free (&pk); // Free the PK context
499 return String (buf); // Return the public key in PEM format
500 }
501

502 // Function to clean up RSA context when no longer needed
503 void freeRSAKey () {
504 volatile char* p = const_cast <char *>(pem_peer .c_str ()); // Access the

underlying character array of the string
505 size_t len = pem_peer . length (); // Get the

length of the string
506 while (len --) *p++ = 0; // Overwrite

each character with zero
507 pem_peer .clear (); // Clear the

string to remove all content and reduce its size to zero
508

509 secureZeroMemory (&rsa , sizeof (rsa));
510 mbedtls_rsa_free (& rsa); // Free the RSA context and all associated

resources
511 }
512

513 void secureZeroMemory (void* ptr , size_t size) {
514 volatile uint8_t * p = (volatile uint8_t *) ptr;

76 APPENDIX B. CLIENT CODE

515 while (size --) *p++ = 0;
516 }

Listing B.1: Complete Code of Client

B.1 MessageQueue.h

1 # ifndef MESSAGE_QUEUE_H
2 # define MESSAGE_QUEUE_H
3

4 typedef struct measure {
5 int temperature ;
6 int humidity ;
7 int temperatureAlarm = 25;
8 int humidityAlarm = 50;
9 } measure ;

10

11 class MessageQueue {
12 private :
13 measure * queueArray ;
14 int capacity ;
15 int front;
16 int rear;
17 int count;
18

19 public :
20 MessageQueue (int size = 100) {
21 capacity = size;
22 queueArray = new measure [size];
23 front = 0;
24 rear = -1;
25 count = 0;
26 }
27

28 ~ MessageQueue () {
29 delete [] queueArray ;
30 }
31

32 void enqueue (measure item) {
33 if (! isFull ()) {
34 rear = (rear + 1) % capacity ;
35 queueArray [rear] = item;
36 count ++;
37 }
38 }
39

40 measure dequeue () {
41 measure item;
42 if (! isEmpty ()) {
43 item = queueArray [front];
44 front = (front + 1) % capacity ;
45 count --;
46 }
47 return item;
48 }

B.1. MESSAGEQUEUE.H 77

49

50 measure peek () {
51 measure item;
52 if (! isEmpty ()) {
53 item = queueArray [front];
54 }
55 return item;
56 }
57

58 int size () {
59 return count;
60 }
61

62 bool isEmpty () {
63 return (count == 0);
64 }
65

66 bool isFull () {
67 return (count == capacity);
68 }
69 };
70

71 #endif

Listing B.2: Custom Library for MessageQueue used in Client

	Declaration of Independence
	Zusammenfassung
	Abstract
	Introduction
	CERTIFY Project
	Description of Work
	Objective
	Methodology

	Thesis Outline

	Background
	Internet of Things
	Onboarding
	Bootstrapping
	True Random Number Generator
	Rivest-Shamir-Adleman Encryption

	Related Work
	Artwork Tracking
	Artwork Preservation
	Artwork Transportation
	Artwork Monitoring

	Architecture and Design
	Application Scenario: Artwork Tracking
	Technical Components
	Client
	Gateway
	Random Number Generation

	Onboarding

	Implementation
	Hardware and Frameworks
	ESP32-S3
	Arduino
	ESP-NOW
	Other components

	Setup development environment
	Device hardening
	Secure Boot V2
	Flash Encryption

	Connecting Hardware
	Onboarding
	Introduction
	Initialization
	Interacting with Sensors and LEDs
	Encryption
	ESP-NOW
	Sending and Receiving Long Messages
	Bootstrapping
	Error Handling

	Summary

	Evaluation
	General Security considerations
	Bypassing Whitelist
	Field Test

	Summary and Conclusions
	Summary
	Conclusions
	Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	Gateway Code
	Client Code
	MessageQueue.h

