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E-mail: [franco, rodrigues, stiller]@ifi.uzh.ch

Abstract—Cyberattacks are the cause of several damages on
governments and companies in the last years. Such damage
includes not only leaks of sensitive information, but also economic
loss due to downtime of services. The security market size worth
billions of dollars, which represents investments to acquire protec-
tion services and training response teams to operate such services,
determines a considerable part of the investment in technologies
around the world. Although a vast number of protection services
are available, it is neither trivial for network operators nor end-
users to choose one of them in order to prevent or mitigate an
imminent attack. As the next-generation cybersecurity solutions
are on the horizon, systems that simplify their adoption are still
required in support of security management tasks.
Thus, this paper introduces MENTOR, a support tool for cyber-
security, focusing on the recommendation of protection services.
MENTOR is able to (a) to deal with different demands from
the user and (b) to recommend the adequate protection service
in order to provide a proper level of cybersecurity in different
scenarios. Four similarity measurements are implemented in
order to prove the feasibility of the MENTOR’s engine. An
evaluation determines the performance and accuracy of each
measurement used during the recommendation process.

Keywords – Cybersecurity, Recommender System, Protection
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I. INTRODUCTION

Cyberattacks determine a rising threat for governments,
companies, and end-users. Beyond compromising the security
and privacy of individuals, malicious attackers can negatively
impact the economy of businesses supported by digital sys-
tems. Distributed Denial-of-Service (DDoS) attacks remain
one of the most dangerous threats to service providers around
the world. DDoS attacks are responsible for most occurrences
impacting [3] service downtime and performance degradation.
The growing number of unsecured Internet-of-Things (IoT)
devices, for example, ease the spreading of botnets being able
to launch massive attacks on service providers [8]. Although
enormous DDoS attacks are the major cause of concern,
cyberattacks at the application layer are evolving (e.g., code
injections and social engineering) and are equally dangerous
to the targeted system [2]. As a response, efforts increased to
develop the next-generation cybersecurity solutions (e.g., based
on artificial intelligence [19] and blockchain technology [14]).

Currently, companies invest in protection services (e.g.,
firewalls and anti-malware tools) and response teams to ensure
availability and protect crucial services and infrastructure.
The cybersecurity market is worth billions of dollars [12]
and investments are steadily rising. Thus, there are financial
incentives for Protection Service Providers (PSP) to enter the

market by offering protection services while end-users can
reduce protection costs (e.g., related to the deployment, config-
uration, and operation of services) by leveraging a competitive
market for cybersecurity to meet their specific demands. These
protections may include the acquisition of physical appliances,
software licenses, virtual network functions, and cloud-based
protection. Thus, although traditional models will still meet
specific demands, a notable amount of next-generation protec-
tion services – as an instance of cybersecurity management –
can adapt to flexible business models and provide a different
level of protection on-demand.

Thus, there are a number of on-demand protection ser-
vices and marketplaces available, which are not only offering
protection services, but also offer alternatives regarding the
deployment and management aspects of such services [4]
[6]. However, it is not a trivial task for end-users to select
one of them. Decision-making is even more critical when
infrastructure is under attack and the decision to mitigate the
attack should be provided on the basis of information about the
infrastructure, such as its economic aspects, demands, and the
characteristics of the attack. In this scenario, it is essential
to observe not only how often attacks surpass the on-site
infrastructure capacity, but also which off-site services can
provide the necessary protection, considering their different
service flavors, such as the amount of traffic supported, the
capacity to address particularities of a determined attack,
and price conditions. In this sense, recommender systems
[17] provide a valuable security management tool to support
decision during the detection and mitigation process.

Therefore, MENTOR, a protection service recommender
system, is proposed as a support tool for cybersecurity manage-
ment, being able to recommend services for the prevention and
mitigation of cyberattacks. This work investigates similarity
measure techniques to correlate information, such as budget
constraints and the type of service required, from customers
with different services available. Based on this, MENTOR is
able to indicate an adequate service to protect infrastructures
according to different demands, such as region, deployment
time, and price conditions. In addition, an evaluation and
discussion determine the performance and accuracy of each
similarity measure technique implemented within MENTOR.

The remainder of this paper is organized as follows. Section
II reviews related work. Section III introduces MENTOR and
the recommendation process. Section IV provides an evalu-
ation regarding the effectiveness of the algorithms used in
the recommendation process. Finally, Section V concludes the
paper and recommends future work.
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II. RELATED WORK

Although recommender systems have been applied to dif-
ferent areas, such as advertising in vehicular networks [11]
and location-based services recommendation [18], few works
are investigating issues related to computer networks, such
as cybersecurity issues and network economic perspectives.
In the cloud computing area, [1] introduced the CSSR tool,
which is a cloud service security recommender that identifies
risks from different cloud computing models from the stake-
holder’s perspective. CSRR provides a comprehensive basis
from which alternative security solutions are identified, based
on specific stakeholder’s needs. [13] provides a recommender
system to predict cyberattacks by identifying attack paths and
demonstrates how a recommendation method can be used to
classify future cyber attacks. [10] introduced an interactive
user interface for security analysts that recommends what data
to protect, visualizes simulated protection impact, and helps
build protection plans. However, these solutions do not directly
address the recommendation of protection services.

However, it is important to note none of those solutions
mentioned above directly tackle the recommendation of pro-
tection services (e.g., cloud-based services [20] or Network
Functions Virtualization (NFV) solutions [6]) to mitigate and
protect against cyber attacks. Therefore, although past work
investigated recommendation tools for the prediction of cyber
attacks [7], there is a lack of solutions that establish an
efficient path between victims and PSPs to deliver optimal
solutions dealing with the rising number of cyber attacks
efficiently. Thus, recommender systems, in such a context, can
highly useful to reduce infrastructure damage, while reducing
cybersecurity costs.

III. MENTOR SOLUTION

The MENTOR system assists network operators during the
decision process on measures to protect critical infrastructure,
thus performing an important security management task. For
this, the recommender engine indicates protection services
available from different PSPs to prevent and mitigate threats.
MENTOR considers different properties from available protec-
tion services, the customer profile, and characteristics of the
cyber attack to establish a fair recommender system, where
one or more services from different PSPs (e.g., both small
companies and global players) can be proposed to neutralize a
threat efficiently, while minimizing cost and reducing damage.

Figure 1 overviews the architecture of MENTOR. The
recommendation flow is described as follows. First, in step 1,
the Service Requestor receives information related to the in-
frastructure under attack and characteristics of the attack (e.g.,
logs from monitors). Such information is transformed into an
appropriate data structure and delivered to the Extractor, which
initializes the recommendation process. Next, in the Extraction
and Classification phases (steps 2 and 3), the information is
analyzed and correlated with the type of attack in order to
identify those requirements, which fend off the attack. In turn,
a list of potential protection services is generated (step 4) and
forwarded (step 5) to the recommendation engine. Finally, in
step 6, the recommendation engine uses the customer profile
input to define, which service from the list, is the optimal
recommendation. Details about components that execute such
actions in each step of the system are as follows.

In the first step, the Service Requestor receives data from
monitors, stores relevant data in a database for future analysis,
and, when a threat or imminent attack is identified, the
component sends the significant information and meta-data to
the Extractor component to start the recommendation process.
Next, the Extractor, which is the first step of the recommenda-
tion process, is in charge of extracting relevant insights (e.g.,
attackers, attack characteristics, and infrastructure impacts)
from the data monitored. After the extraction, the information
is forwarded to the data categorized into different kind of
attacks.

During the next phase, the Classifier is responsible for clas-
sifying the extracted data according to the previously reported
and identified attacks (e.g., DDoS variations). To achieve this
classification, techniques to identify attacks patterns and also a
database providing attacks fingerprints [16] are applied. After
the classification, the Service Aggregator communicates with
different PSPs to obtain a list of available services available
and relevant properties of each service (e.g., price, type of
service, and coverage area). Next, the database containing the
services catalog is populated to supply customers. The list
of PSPs can be modified according to customer preferences.
Then, the Retriever is in charge of querying the Service
Aggregator, who can fully or partially address the demands
of the end-user. Such services selected and returned can yield
different solutions targeting the same problem, but can vary in
terms of performance, price, and the technology being used.

The final step of the recommendation process is composed
by the Recommendation Engine, which supports different
algorithms to select the optimal service, based on the list
provided by the Retriever. Besides the input provided by the
Retriever, a set of details is described by the customer to map
the end-user profile and requirements. Therefore, to support
such a decision, different aspects have to be considered, such
as budget constraints, service coverage, and the capacity to
address the particularities of an attack.

A. Recommendation Engine

The input data for the recommendation engine depicts a list
of available protection services from PSPs. This list contains
general information about the service (e.g., price and type
of service) as well as technical details regarding threats and
attacks supported by each service. The data returned by each
PSPs should optimally be provided through an interface (e.g.,
RESTful API) to communicate with MENTOR’s Service Ag-
gregator in order to be incorporated into the recommendation
process. Thus, providing such an interface is in the interest of
every PSP.

Table I presents those parameters that define the require-
ments of the end-user running the recommender system. These
parameters are to be defined inside a profile and requirements
descriptor (e.g., a JSON file), containing useful information
used during the filtering and recommendation steps conducted
by the Retriever and the Recommendation Engine. One end-
user, for instance, can use such descriptor to configure the
recommender system to temporarily contract a reactive virtual
protection service being remotely hosted in South America,
with a deployment time of just a few seconds. The amount
available to spend on such service will be defined as 500 US$.
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Fig. 1: The MENTOR architecture

Also, if available, information about an imminent attack or
threats possible to be exploited can be described. Thus, based
on this information, protection services that do not support
all requirements will not be considered as a viable option. As
the recommender system is able to adapt to different input
scenarios, the descriptor can also be extended to support new
parameters and relevant information provided by the protection
services available, such as attack’s behaviors or vulnerable
applications.

TABLE I: Customer profile and requirements

Parameter Description Value

Type of
Service

Describes if there is a demand to
protect the network from further

threats (i.e., proactive) or react in order
to mitigate imminent attacks (i.e., reactive)

reactive or proactive

Type of
Attack

Provides details of the attack which
a protection is being required

e.g., SYN Flood or
a specific malware

Attack Details Uploads log files or
details about the attack

e.g., DDoS fingerprints or
behavior data of any attack

Region
Defines specific geolocalization that

one protection service should be
deployed or able to act

continent, country,
city, or any

Deployment
Time

Describes the maximum time between the
service being contracted until it be able

to protect the customer

seconds, minutes,
hours, days, or any

Leasing
Period

Defines the period for which the customer
want to contract a protection service

minutes, hours, days,
weeks, months, or any

Budget The amount (e.g., in Euro or USD) available
to spend with protection any

In order to evaluate the feasibility of the recommendation
process, the MENTOR was assessed using four widely used
similarity measures: (i) Euclidean distance, (ii) Manhattan
distance, (iii) Cosine similarity, and (iv) Pearson correlation.
These measures were selected because of their potential to
quantify the similarity of two objects [17]. Thus, end-users
demand can be compared with protections available in order
to decide which fits better for each specific case. MENTOR
was designed to be generic and extensible to support further
algorithms to recommend protection services. In this regard,
service requirements from customers and offered protection
services are mapped as vectors in space, i.e., their set of
attributes as well as magnitudes represents a direction in space,
allowing a geometric evaluation of similarity.

Equation 1 presents the Euclidean distance. The Euclidean
distance is calculated by taking the square root of the sum

of the squared pair-wise distances of every dimension. In
terms of the recommendation process, a vector containing the
parameters defined by the end-user (cf. Table I) are described
as a vector xi and each service available is transformed to a
vector yi in the same way. Then, the sum of differences of all
individual squared pair-wise distances is square rooted. Thus,
the Euclidean distance determines, if a service is adequate for
the request: i.e., the optimal recommendation is the service
with the lowest possible Euclidean distance.

euclidean(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (1)

In a similar approach, the Manhattan distance, introduced
in Equation 2, calculates the distance (β) between two vectors
by considering the difference of the absolute values of each
vector. The vector x represents the protection service and y
the end-user profile. The best service is the one with the
shortest diagonal path between the two vectors. Similar to
the Euclidean distance, the protection service with the lowest
possible value is optimal.

manhattan(x, y) =

n∑
i=1

|xi − yi| (2)

Equation 3 shows the Cosine similarity calculation, which
finds the normalized dot product of two attributes x and y.
cos(x, y), where x is any dimension of the end-user request
and y is a dimension of a protection service), is calculated
between the two vectors to decide, if one service fits the end-
user request. If the angle is equal to 0◦, the value for the cosine
will be 1 (best recommendation) and it is less than 1 (i.e., it
ranges from 0.99 to -1) for any other angle.

cos(x, y) =

∑n
i=1(Xi · Yi)√∑n

i=1Xi ·
√∑n

i=1 Yi
(3)

The fourth measure under investigation is the Pearson
correlation (cf. Equation 4). The Pearson correlation deter-
mines linear relationships between two normalized distributed



variables. This correlation provides a value ranging from -1
to 1, representing the correlation between two vectors. Thus,
the lower the value, the worse is a protection service x
recommended for a demand y.

pearson(x, y) =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(4)

The recommendation process works as follows. The first
step involves the indexing of (a) service parameters required by
the customer and (b) each service in order to build an integer
array representing the service. These steps are necessary to
map services and enable the application of similarity measures
geometrically. Similarly, Step 2 is applied to each service
to index its properties. Steps 3 and 4 involve the actual
recommendation of services and storing of the rating. In Step
3, the customer profile is mapped as a vector Y and each
protection services as a vector X , which are provided as input
to similarity algorithms. In Step 4, ratings are stored as a
similarity dictionary with the service ID as a key, especially
to enable the export or plot similarity data later.

B. Prototype and Implementation

A prototype of MENTOR was implemented in order to
evaluate the feasibility of such a solution practically. The
web-based user interface was developed using ReactJS 16.8.
The Recommendation Engine was implemented using Python
3.7.3. Flask 1.0.2 was used to implement REST APIs allowing
the communication between components. The recommendation
engine’s code is available online [15].

End-users can access a dashboard provided to configure
their requirements (i.e., customer profile) and prioritizing each
demand from High to Low. Defining priorities during the rec-
ommendation process, such as High priority for price, will im-
pact the recommendation and, thus, returns the protection ser-
vice with a lower price, while neglecting others, less prioritized
criteria. After that, a list of the most recommended protection
services available is returned. Even though a dashboard was
implemented, the recommendation engine is loosely coupled to
the dashboard and can be executed autonomously, without any
interaction, only providing the adequate inputs (e.g., attack’s
characteristics or specific demands) via MENTOR’s API in
order to automate the process. The possible automation favors
further steps towards a real-time recommendation of protection
services.

As the MENTOR offers support for different algorithms,
the recommendation algorithm can be selected by the end-
user according to preference. In order to help in the decision
process, different information (e.g., graphs plots) are provided,
representing how the algorithm classified each protection ser-
vice. Thus, the end-user can visually process and understand
the accuracy of a recommendation by comparing the vector de-
scribing the customer profile and the vector of each protection
service.

To evaluate the dashboard’s feasibility, the database was
populated based on real-world protection services against
DDoS attacks. Prices were generated randomly because most
of these services do not publicly disclose prices. The MENTOR

not only optimizes the service selection for end-users, but also
encourages PSPs to actively publish their prices, which in turn
increases price competition and usually results in a decreased
price for the end-user. New services can be automatically
added by using descriptors provided through the RESTful
API running on the PSPs side. For this, each PSP that wants
to announce its service, needs to describe its services as a
JSON file containing relevant information about the service
and adhering to the model provided in Table I. After that,
MENTOR’s components receives such descriptors and extract
information to populate the database.

The prototype implemented also allows for an upload
of log files to provide feedback on protection services.
The end-users’ feedback can be used to feed a reputation
system for PSPs and customers. Thus, a reputation system
can provide more accurate recommendations, decreasing the
necessary trust placed in information advertised by the PSP.
Reputation mechanisms are under development and there are
still open challenges [9], such as how to verify and rely on
the feedback data provided. The usage of a blockchain-based
system can be further investigated.

By using the input of the end-user, a JSON file is auto-
matically created via the dashboard, thus, describing require-
ments and attack characteristics. Also, information regarding
the end-user’s infrastructure can be described in order to
refine MENTOR’s filters. For example, some protection ser-
vices can be highly recommended for specific technologies
(e.g., Openstack-based infrastructure) , while other on-site
protections (e.g., IPtables-based Firewalls) are already running.
This file can be created manually by any PSP, for example,
following the standard defined by MENTOR.

IV. EVALUATIONS

The dataset generated for the evaluation contains 10,000
randomly generated protection services, such as each service
was described based on parameters available for the customer
profile (cf. Table I) and with a price range between 100 US$
and 1,000 US$. Thus, by using such data as an input to the
MENTOR, the performance and accuracy of the measurement
algorithms to recommend protection services were analyzed.

The four similarity measurements described beforehand
were used to conduct this experiment. These requirements are
indexed and translated into the vector composed by region,
service type, deployment time, leasing period, and price, which
is given as input to the recommendation engine. The customer
profile (i.e., input) was defined to represent a request for a
reactive service against a DDoS attack, running in Europe with
a deployment time in minutes, a leasing period in days, and
the maximum budget to be up at 200 US$

After the dataset’s creation and the customer profile input,
the recommendation engine applies a filter to discard unrelated
services (e.g., outside the price range, region, or deployment
time). The similarity is calculated based on the given vector
(i.e., customer profile) by using each algorithm available on
the current version of the MENTOR.

Figure 2 depicts the top fifty ranked services for each
similarity algorithm, in which the best five are highlighted in



(a) Cosine similarity (b) Manhattan distance

(c) Euclidean distance (d) Pearson correlation

Fig. 2: Ratings of the fifty best-ranked protection services according to each algorithm.

TABLE II: Summary of the five best-ranked protection services according to ratings calculated as of Fig. 2

(a) Cosine similarity

Rank ID Rating Price Deployment Leasing
1 5362 0.26585 100 Hours Days
2 8182 0.26493 102 Seconds Days
3 2062 0.26448 103 Seconds Days
4 3202 0.26361 105 Hours Days
5 122 0.26318 106 Seconds Days

(b) Manhattan distance

Rank ID Rating Price Deployment Leasing
1 5362 101 100 Hours Days
2 7512 101 102 Seconds Days
3 1352 103 104 Seconds Days
4 8182 103 102 Hours Days
5 1552 104 105 Seconds Days

(c) Euclidean distance

Rank ID Rating Price Deployment Leasing
1 5362 99.0202 100 Hours Days
2 7512 101 102 Seconds Days
3 8182 101.02 102 Hours Days
4 2062 102.02 103 Hours Days
5 1352 103 104 Seconds Days

(d) Pearson correlation

Rank ID Rating Price Deployment Leasing
1 7512 -0.38774 102 Seconds Days
2 1352 -0.38814 104 Seconds Days
3 1552 -0.38834 105 Seconds Days
4 9312 -0.38834 105 Seconds Days
5 1692 -0.38872 107 Seconds Days

Table II. Although these recommended services were similar
concerning the properties being compared, there are major
differences in how these algorithms work depending on how
the input vector is mapped. For example, all features of a
protection service are described as a vector in space, in which
certain properties can significantly change their direction, and
consequently their rating. Therefore, high-magnitude variables
(e.g., price, deployment time, and leasing period) cause a
major influence in the vector’s direction in space, and thus,

change the rating of its recommendation. For instance, a
”worse” rating can be given to services that, in practice, may
be better than those specified in the customer profile. That
is, a service with a slightly higher price and a significantly
lower deployment period may have a worse ranking due to
the disparity, in absolute terms, between the properties of the
protection service.

This is observed in the distance-based algorithms (e.g.,
Cosine, Euclidean, and Manhattan in Table II), in which the



price was the most significant factor for the ranking of a
service. For example, as observed in Figure 3, the service
with ID 5362 was the service most similar to the vector
specified by the customer profile (according to the distance-
based algorithms), but it was not necessarily the best service.
In this sense, services with a shorter deployment time (in the
order of seconds) and without a significant price difference
obtained a worse ranking due to the price difference. This
happened for services ID 8182 and 7512 in the Tables of the
Cosine, Manhattan, and Euclidean algorithms.

Fig. 3: Best ranked solutions per algorithm in contrast to the
customer profile represented by the dotted line

However, the major difference between the Pearson corre-
lation and the distance-based algorithms is that it is invariant
to the magnitude of elements. Hence, differences in service
prices do not cause a major impact on their ratings because it
mainly observes, whether properties of protection services and
the customer profile vary in a similar way. Thus, the service
ID 7512 is recommended as the best service because they
consider an insignificant increase in the price in contrast to
a significant smaller deployment time. Therefore, considering
the mapping of these characteristics of a protection service as a
vector in space, the Pearson Correlation algorithm is presented
as a generally better alternative in contrast to other distance-
based similarity algorithms.

A possible alternative to circumvent these differences is
given by grouping the vector of protection services for each
attribute. Thus, it is possible to compare these service attributes
with customer profile attributes in a 1-to-1 manner. Therefore,
the final rating of a service is achieved by an average of
the rating of its attributes. It should be noted, however, that
attributes of protection services offering better conditions than
those specified in the customer profile would receive worse
ratings. Thus, an alternative can be a rearrangement of input
attributes to the best possible conditions, making the recom-
mendation algorithms offer the best alternative possible instead
of the closer to the end-user request. For example, if one
wants a protection service with deployment time in minutes,
protection services a bit more expensive but with deployment
time in seconds can be a most suitable recommendation since
this still fits the budget and others requirements.

Lastly, such an evaluation indicates that MENTOR can
recommend adequate protection services considering the price,
geolocalization, and other requirements defined by end-users.
The distance-based algorithms recommended the cheapest ser-
vice that is adequate for the end-user according to their de-
mands. However, this service recommended is not necessarily
the best one in terms of performance. The Pearson correlation
decided toward a bit more expensive service fitting the end-
user’s budget, while delivering the best performance possible.
A more in-depth evaluation, as well as discussion regarding
the limitations and open challenges of this work, are available
in [5].

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK

This paper introduced MENTOR, a protection services
recommender system supporting the cybersecurity decision
process. The MENTOR recommender system maps different
customers’ requirements to recommend off-site protection
services concerning not only price conditions, but also the
capacity of services to address specific attacks. In addition,
MENTOR leverages a competitive market, allowing end-users
to acquire services from companies that openly announce their
protection services. Also, a modular recommendation engine
is provided to support further recommendations algorithms (as
openly accessible code [15]). The offering of a dashboard for
human interactions in cybersecurity management tasks enables
a practical and deployable solution. Since MENTOR does
additionally offer an open API, the use of such a recommender
system within an existing Operation Support System (OSS) can
automate decisions to be taken, too.

The mapping of the protection services as well as their
attributes enables an accurate evaluation of the similarity
between customer requirements and offered security services.
MENTOR, in this sense, offers a viable approach for the
recommendation of services (e.g., possibly offered in open
marketplaces based on blockchain). Specifically, the Pearson
correlation presented the best balance between cost/benefit
considering the mapping of services as a vector. Therefore, in
the defined implementation, non-binary characteristics have a
significant impact on the evaluation of similarity in contrast to
binary ones due to the order of their magnitude, which affects
the direction of the vector in space, and as a consequence, its
similarity rating.

Although these results are very promising, further inves-
tigations are planned in the direction of consolidating the
recommendation of protection services, such as by supporting
new attributes for the customer profile and services. Also,
future work includes: (i) investigation of machine learning
techniques to combine different similarity measurements, (ii)
investigation of cybersecurity decisions during real-time cy-
berattacks, which involves techniques to recognize patterns
of different attacks and recommend protections fastly, (iii)
investigation of recommender systems in the context of service
function chaining creation, which involves the determination
of which protection services can be part of a chain in order
to achieve an adequate level of cybersecurity, and (iv) de-
velopment of a blockchain-based marketplace and reputation
system for protection services to introduce a trustworthy public
hub, where service providers and independent developers can
announce their cybersecurity solutions.
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Springer, June 2017, pp. 16–29.

[15] B. Rodrigues and M. Franco, “MENTOR - Protection Ser-
vices Recommender System,” 2019, https://gitlab.ifi.uzh.ch/franco/
recommendersystem, last visit June 15, 2019.

[16] J. Santanna, “DDoSDB: Collecting and Sharing information of DDoS
attacks,” 2019, https://ddosdb.org/, last visit June 15, 2019.

[17] K. Shah, A. Salunke, S. Dongare, and K. Antala, “Recommender
Systems: An Overview of Different Approaches to Recommendations,”
in International Conference on Innovations in Information, Embedded
and Communication Systems (ICIIECS 2017), Coimbatore, India, March
2017, pp. 1–4.

[18] N. B. Umate and V. G. Bhujade, “A Real Time Technique for Targeted
Advertising using Location-based Services For GPS Enabled Device:
A Review,” in International Conference of Electronics, Communication
and Aerospace Technology (ICECA 2017), Coimbatore, India, April
2017, pp. 689–693.

[19] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou,
and C. Wang, “Machine Learning and Deep Learning Methods for
Cybersecurity,” IEEE Access, vol. 6, pp. 35 365–35 381, May 2018.

[20] W. Zhang, Y. Wen, and X. Zhang, “Towards Virus Scanning as a
Service in Mobile Cloud Computing: Energy-Efficient Dispatching
Policy under N-Version Protection,” IEEE Transactions on Emerging
Topics in Computing, vol. 6, no. 1, pp. 122–134, January 2018.


