
SaCI: a Blockchain-based Cyber Insurance
Approach for the Deployment and

Management of a Contract Coverage

Muriel Franco, Noah Berni, Eder Scheid,
Christian Killer, Bruno Rodrigues, Burkhard Stiller

Communication Systems Group CSG
Department of Informatics IfI, University of Zürich UZH

Binzmühlestrasse 14, CH—8050 Zürich, Switzerland
E-mail: [franco, scheid, killer, rodrigues, stiller]@ifi.uzh.ch, noah.berni@uzh.ch

Abstract. The cyber insurance market is still in its infancy but growing
fast. Novel models and standards for this particular insurance market are
essential due to the use of modern IT (Information Technology) and since
insurance providers need to create suitable models for customers.
In this work, a refreshing approach SaCI for the deployment and manage-
ment of contract coverage is introduced. SaCI translates relevant infor-
mation of a cyber insurance contract to Smart Contracts (SC) running on
the Blockchain (BC). Thus, SaCI (i) allows for recording agreements in
an immutable way, (ii) simplifies interactions between stakeholders (e.g.,
customers and insurers), and (iii) ensures a trustworthy and transparent
process during the life-cycle of the contract. A case study is provided to
show evidence of the feasibility of the approach, which is backed by a
cost analysis and discussion regarding especially the application of BCs.

Keywords: Cyber Insurance · Cybersecurity Economics · Blockchain ·
Smart Contract (SC).

1 Introduction

Cybersecurity stands as one of the key investment pillars for companies applying
IT (Information Technology) to gain competitiveness in the market due to the
continuously increase in the number of cyberattacks on IT systems over the past
years. Predictions state that cybercrime will cost the world 10.5 trillion US$
annually by 2025, up from 3 trillion US$ in 2015, which represents the most
significant transfer of economic wealth in history [9]. In this sense, to reduce the
impact of successful attacks and to enable companies to recover faster and with
less costs, different cybersecurity investment strategies have been investigated
[14], in which one of the most prominent strategies includes cyber insurance
coverage models [12]. Although the cyber insurance market is fast-paced and is
under strong development [6], [7], cyber insurance approaches still have room
to advance from a rarely used risk transfer tool to a critical requirement for
companies risk management.

2 Franco et al.

Currently, different cyber insurance approaches are explored by companies,
effectively expanding the market, either (a) introducing new business models
and mechanisms to gain advantages or (b) improving their insurance services by
using new technologies. However, critical open challenges for a cyber insurance
adoption exist, e.g., the information asymmetry that has to be considered dur-
ing the contract’s design and the customer’s eligibility for coverage [1]. Thus,
different cyber insurance approaches have been proposed and new paradigms
have been applied in such a context [16]. One such a new paradigm that is a
relevant catalyst in the insurance market is the Blockchain (BC). BCs allow for
the implementation of Smart Contracts (SC) to remove intermediaries, automate
the deployment and management of insurance contracts, and support novel in-
surance models [4]. Due to the automation of SCs and the immutability of the
BC, BC-based cyber insurance models can provide a trustworthy and immutable
agreement between cyber insurers and customers; thus, both stakeholders can
profit from the benefits introduced by the BC.

This paper introduces a BC-based approach for the creation, deployment,
and management of a cyber insurance contract. SaCI correlates relevant cus-
tomers’ aspects and cyber insurance companies’ (i.e., insurers) requirements,
such as business information, contract constraints, and security aspects, to cre-
ate an SC that describes and manages the agreement between customers and
insurers. Based on this, both stakeholders can interact with the SC to proceed
with coverage requests, contract updates, and premium payments. SaCI ensures
a trustworthy record of the contract coverage and all changes along time; thus,
not only (i) providing automation of the process, but also (ii) acting as a referee
or proof in case of disputes (e.g., customers requesting payment for a loss due
to a cyberattack that the insurer has denied payment for). Further, if funds are
available and contractual requirements are satisfied, SaCI automatically trans-
fer funds between stakeholder to execute payments, such as those related to
premiums paid and loss coverage due to a cyberattack.

The remainder of this paper is organized as follows: Background and related
work are reviewed in Section 2. While Section 3 introduces SaCI and details of
the implementation, Section 4 discusses the feasibility of SaCI and presents a
suitable case study subject to a cost evaluation. Finally, Section 5 summarizes
the paper and outlines future work.

2 Background and Related Work

A cyber insurance is a specific product of an insurance company, which is com-
mercially offered to cover damage caused by cyber-incidents, direct or indirect
impacts caused by cyberattacks. A cyber insurance is offered for companies,
governments, or individuals, who want to reduce or share financial risks of an
attack and which shall cover costs for recovering from an incident [7]. Typically,
the process of cyber insurance contract creation involves three main steps: (i)
Risk identification, which is based on the identification of assets that can be af-
fected by different threats [14], (ii) Risk analysis, which determines the likelihood

SaCI: Smart Contracts for Cyber Insurance 3

of a threat and also its impact, and (iii) Contract establishment with a focus
on coverage specifications and premium definition. With the increase of cyber-
attacks and their actual impacts, the cyber insurance market also has to evolve
to handle different aspects, such as incomplete, asymmetric, or even insufficient
data for pricing premiums and coverage, lack of regulations and standards, and
the gap between cybersecurity and risk transfer [5].

According to a study conducted in South Korea [10], companies with high
incomes, high education, and insurance contracts are more likely to “pay ex-
tra” for insurance policies using BCs and SCs. Thus, a strategic development of
insurance products using BCs targeting these customers can increase the num-
ber of policyholders, which can, in turn, increase premium revenues. Thus, the
application of BCs can provide efficiency and trust in the entire process, while
insurers become innovators in their relation to customers.

In this context, [2] introduces a conceptual framework for cybersecurity in-
vestments and cyber insurance decisions. The framework advocates the use of
SCs for cyber insurance coverage and premium management as one of its key
pillars. A case study focuses on the maritime sector and shows evidence of the
framework’s applicability. However, no implementation details are provided at
all. [17] provides a model for determining insurance premiums based on the
Stackelberg Game to improve the time efficiency of BC applications. A BC-
based crowdsourcing system was developed as a proof-of-concept to show how
the cyber insurance model can protect blocks containing task information. Al-
though this approach improves the time to perform each crowdsourcing task,
focus is neither laid on information about contract coverage nor on interactions
between customers and insurers.

Furthemore, BlockCIS [8] proposes a BC-based cyber insurance tool, which
offers the insurer and the customer the possibility to reach an automated, real-
time, and immutable feedback cycle for a dynamic risk assessment. For that, the
system interconnects the insurer and the customer over a BC. However, BlockCIS
is presented as a supporting tool and cannot be used as an individual tool to
provide a cyber insurance service. For example, the paying of the premium and
the payment of claims are not integrated into the system, and hence that has
to be managed by external applications. However, such frameworks can well be
used to assess cybersecurity correctly and, based on that, can calculate a fair
premium for a cyber insurance contract.

Thus, although the demands in related work clearly indicate benefits of using
BC-based approaches for cyber insurance, open issues remain, especially with
regards to achieving an efficient model that considers different nuances of the
market. In order to address this gap, SaCI focuses on the mapping of information
and interactions, required to establish a trustworthy and automated interaction
between customers and cyber insurers. Therefore, this work does contribute to
the development of simplified, trustful, and efficient cyber insurance models.

4 Franco et al.

3 The SaCI Approach

SaCI is proposed to handle different demands of cyber insurance in order to
create a simplified, trustworthy, and automated process for cyber insurance con-
tracts. For that, SaCI describes a JSON (JavaScript Object Notation) file struc-
ture to store relevant information about the contract and to translate it to SC
code within well-defined functions allowing for interactions between customers
and insurers. Therefore, the SaCI allows for the (i) payment of premiums and
contract updates, (ii) request of damage coverage and dispute resolutions, and
(iii) check of contract information and its integrity, whenever it is required (e.g.,
in case one of the parties involved are not following the agreement defined).

In
su

re
r L

ay
er

U
se

r L
ay

er

SC Creator

Contract
Processor

Data
Anonymizer

Contract
Information

Contract
Information

Web-based
Interface

Contract Builder
Premium
Calculator

Blockchain Adaptor

Contract
Deployer

Contract
Interactor

A
PI

Solidity Smart Contract (SC)

Information

 Contract Period

 Premium

 Coverage IDs

Insurance Control

Report Damages

Contract Conditions

Contract
Changes

B
lo

ck
ch

ai
n

Blockchain Adaptor

Internal communication through components
External communication (via API or Adaptor)

Ethereum

Customer

Cyber
Insurance
Company

Fig. 1: SaCI Architecture.

The architecture of the SaCI (cf. Figure 1) determines the two different stake-
holders (i.e., customer and cyber insurer) at the top and enables the interaction
with the system using those components running on their respective layers (i.e.,
on their own infrastructures). The User Layer is composed out of a Web-based
interface, with which the customer can access and add all information related
to business and demands (cf. Table 1). This information is forwarded to the
Contract Builder in charge of mapping these information into the JSON format.
The respective JSON file is sent to the Insurer Layer using the SaCI’s API.

Within the Insurer Layer the Contract Processor reads information from this
JSON file and stores a copy of all contract information. The Premium Calculator

SaCI: Smart Contracts for Cyber Insurance 5

estimates the premium for this contract’s coverage.While this paper does not
focus on an optimal premium calculation, it provides relevant information in a
standardized format, e.g., as input for a base rate pricing in which modifications
for the calculation can be accommodated according to insurer preferences.

Table 1: Contract Information.
Category Description Example

Business
Information

Standard Information about the company,
which is not relevant for the premium,
but which is needed to identify the company.

Company name,
Company address

Contract
Constraints

Information about the non-technical
constraints of the contract, which have to
be completely defined in each contract.

Duration of the contract,
Payment frequency

Company
Conditions

Non-technical information about the
companys business number, which affect
the premium.

Yearly revenue,
Number of employees

Company
Security

Information about the measures of the
company to increase its cyber security as
well as different metrics to measure it.

Risk assessment metrics,
attack history, security
software, security training

Company
Infrastructure

Information about the hardware and
software used by the company.

Used technologies,
Critical data amount

Contract
Coverage

Information about what attacks and
impacts are covered by the contract
and by which conditions.

DDoS attack: Business
interruption: coverage
at 50%; data breach for
third-person damage:
coverage: at 100%

After the premium calculation, the Data Anonymizer component is in charge
of removing from the contract all information that can be critical to identify the
company and its risks. This is essential before deploying the contract within a
public BC (e.g., Ethereum or Cardano). The SC Creator uses all other informa-
tion to transform the JSON file into an SC based on previously defined one (i.e.,
Solidity code) and fills in missing information in those fields mapped. Finally,
the contract is deployed on the BC and available for interactions between all
stakeholders (Actors) involved (cf. Table 2)

In order to define the relevant information for the creation of the cyber
insurance contract, and consequently, the SC, necessary information was defined
based on the related cyber insurance market. Table 1 provides an overview of
these main categories considered by SaCI. Every characteristic demanded for
by a customer is assigned to one of these categories. Note that this type of
information has to be provided by customers, which might result in “inaccurate”
information and can be impacted by companies’ biases, such as metrics related
to risk assessment and threats impacts.

The business information contains standard information about the company,
which are most likely to be known publicly. This information is needed to iden-

6 Franco et al.

tify the company, but not relevant for a premium calculation. Basic conditions
(e.g., contract duration) are stored in contract constraints. Company conditions
comprise all non-technical characteristics and mainly include information about
business numbers. The following two categories are significantly related to each
other and they encompass all technical characteristics. With the information of
these two categories, the probability and partially the impact of a successful
attack can be estimated to better understand all risks by both actors.

Table 2: Examples of SaCI Functions Implemented in the SC.
Function Actor Parameters Description

payPremium Customer -
Pays the premium converted in
Ethereum’s Wei, increases time
of validity.

reportDamage Customer

uint date,
uint amoumt,
string type of attack
string logfileHash,
uint damage id

Creates a damage struct on
the contract.

acceptDamage Insurer uint damage id
Accepts damage with ID
and pays out reported damage.

acceptCounterOffer Customer uint damage id
Accepts counter offer, which
is paid out automatically.

resolveDispute Customer uint damage id
Resolves a dispute about a
damage reported, when a
solution is found off-chain.

proposeTo-
UpdateContract

Both
uint new premium,
string new file hash

Makes a proposal to
update the contract.

While the company security category describes different metrics about secu-
rity deployed and measures taken to improve the security, the company’s infras-
tructure includes all information of hardware, software, and technology as well
as about critical parts of those. Finally, within the contract coverage category,
details about every contract’s coverage are stored in an unlimited list. For every
attack, the costs covered and possibly other constraints of the specific coverage
(e.g., maximum indemnification of insurer) are defined. The contract coverage is
the most important part besides the risk assessment to calculate the premium.
Listing 1.1 shows an example of a contract coverage against four different threats
(e.g., business interruption due to a DDoS attack and third-person damage due
to a data breach) defined in the JSON file’s descriptor. Finally, upon enter-
ing information of all categories, the content can be forwarded to the Premium
Calculator, which will calculate the premium and inputs the SC generation.

At this point, the contract is deployed on the BC and can be accessed by the
insurer and the customer utilizes functions available in the contract (cf. Table 2).

SaCI: Smart Contracts for Cyber Insurance 7

This list is not exhaustive and other functions are available in the proposed SC,
too, all details are available within the implementation [11].

After the premium is paid and the contract is enacted, the actors can interact.
For instance, in case an attack happened, the customer can call the reportDam-
age() function (cf. Listing 1.2) to ask for refunding or help. The insurer can
accept or deny the coverage requested. If accepted (i.e., acceptDamage(id)), the
payment is made automatically via the SC according to what was defined pre-
viously in the contract. Note that the customer can also provide a hash of a log
file as proof of the attack. This hash is also stored in the BC to further enable
an integrity check. At the same time, the file itself has to be stored off-chain,
especially inside the contract information datasets maintained by both actors.

1 "contract_coverage": [
2 { "name": "DDoS",
3 "coverage": [{
4 "name": "Business Interruption",
5 "coverage_ratio": 100,
6 "deductible": 1000,
7 "max_indemnification": 300000 }]},
8 { "name": "Data Breach",
9 "coverage": [

10 { "name": "Third -party damage",
11 "coverage_ratio": 100,
12 "deductible": 1000,
13 "max_indemnification": 300000 }]}]

Listing 1.1: Contract Coverage in a JSON Format.

If the parties cannot reach a conclusion, counteroffers can be made by the
insurer (i.e., payment for a specific loss but not for all financial losses). Figure 2
shows the state diagram of possible interactions after a reportDamage() is called
by the customer. The report damage process has one of the following states:
New, Paid, UnderInvestigation, Dispute, Resolved, or Canceled. This diagram
exmplifies the different functions’s use (e.g., reportDamage(), acceptDamage(),
and acceptCounterOffer()) to claim a settlement.

The Canceled status is an ending state, reached only if the customer cancels
the request. Paid status defines that the insurer accepted to cover the damage,
and it was automatically paid. If the contract has a lower balance than the value
to pay out, the insurer has to transfer funds to the contract, when accepting the
coverage. If the insurer declines the coverage payment, a reason is provided and
a counteroffer is issues. If a counteroffer is not possible to be offered at that time,
the status is defined as UnderInvestigation, which means that further manual
investigations have to be placed off-chain before a counteroffer can be placed.

If the insurer provides a counteroffer (e.g., a lower amount than the initially
requested compensation for that incident) and the customer does not accept
it, the state changes to Dispute. This refers to the fact that no agreement has
been found yet. Either the insurer creates a better counteroffer or the two actors
have to solve the dispute off-chain for which a third party may be considered.
If the dispute can be solved, the final status of Resolved will be achieved. Using
the SC function getAllReportedDamagesWithStatus all reported damages with a

8 Franco et al.

Fig. 2: Claims Settlement State Diagram.

specific status can be returned, which also allows verifying the history of past
interactions, e.g., accepted, declined, and under investigation coverage requests.

A prototype of the SaCI was implemented using Python as backend language
and Solidity for the SC development. The Ethereum blockchain running on the
Ganache testbed has been used for the deployment and tests of SC functionality.
For SaCI’s Application Programming Interface (API) Flask was used in its latest
version. Finally, for the off-chain storage, the prototype uses SQLite. The source-
code and all documentation is publicly available at [11].

The code of the function to report a damage is shown, as an example, in
Listing 1.2. It takes the date the damage happened, the amount of damage,
the damage id, the type of attack and the logfile hash as input parameters as
described in Table 2. As in the payPremium function first some restrictions are
checked. In lines 6 - 9 it is verified again if the sender of the message is the
customer. After that, it is checked if the contract covers the date the damage oc-
curred. To do so, the date of the damage is compared to the contract attributes
start date and valid until in line 11. Since damage should not be overwrit-
ten, it must be ensured that there is no damage yet, with the same damage id
as the new reported damage. This check is done in lines 15 - 18.

When the restrictions are met, a Reported Damage struct is created and
mapped by the id into the contract attribute reported damages. The struct
is created with the values passed by the function and default values for the
counter offer. The current status of the damage is set to New. The new damage
id is added to the contract’s list of ids in line 28, and the count of reported
damages is increased by 1 in line 29.

Theoretically, it is possible to automatically pay out some damages without
a check from the insurer, as shown in lines 31 - 33. For example, when the dam-

SaCI: Smart Contracts for Cyber Insurance 9

age amount is quite small, and the last reported damages were all covered. This
would reduce the administrative effort of the insurer and increase customers sat-
isfaction. However, it offers an additional possibility for fraud, and the conditions
when automatic payment is possible should be chosen very well. The insurer af-
terward also should be able to challenge paid-out damage automatically in case
of fraudulent behavior. Hence, lines 31 - 33 are not mandatory to be included in
the contract, but they offer an additional possibility to the insurer. The code of
the automaticPayOut function that is called in line 32 is shown in Listing 1.3.

1 function reportDamage (uint date_of_damage ,
2 uint amount_of_damage ,
3 uint damage_id ,
4 string memory type_of_attack ,
5 string memory logfile_hash) public {{
6 require(
7 customer_address == msg.sender ,
8 "Only the registered customer can report a damage."
9);

10 require(
11 date_of_damage > start_date && date_of_damage <= valid_until ,
12 "The contract was not valid at the date of damage."
13);
14 //check if the id is already given away
15 require(
16 reported_damages[damage_id]. amount_of_damage == 0,
17 "Already exists a damage with the selected id."
18);
19 reported_damages[damage_id]
20 = Reported_Damage(date_of_damage ,
21 amount_of_damage ,
22 StatusDamage.New ,
23 damage_id ,
24 type_of_attack ,
25 logfile_hash ,
26 "",
27 0);
28 list_of_damage_ids[count_of_damages] = damage_id;
29 count_of_damages = count_of_damages + 1;
30 // Possibly allow an automatic payment
31 if(amount_of_damage < premium && count_of_damages < 4){
32 automaticPayOut(damage_id , false);
33 }
34 }

Listing 1.2: Example of the SC Function for Damage Report.

The function takes as parameter the id of the damage and a boolean named
is counter offer. The boolean defines if the value of the counteroffer should
be paid out or the value of the initially reported damage. As this function should
not be called from outside of the contract, it is assigned to be private. The
restriction in lines 3 - 6 checks if the damage was already paid out, canceled,
or otherwise resolved to protect the insurer of unintended double payout. If the
damage status is not in an ending state, the amount to pay is calculated in lines
7 - 12. Considering the parameter is counter offer, either the initial value
of the reported damage or the value of the counteroffer is converted into Wei
using the exchange rate returned from the oracle again. Afterward, it is checked
if the contract currently has enough balance to pay out the damage. In the case
that there is not enough balance, the insurer is notified by the error message in

10 Franco et al.

line 15. Otherwise, the calculated amount is transferred to the customer address
stored in the contract, and the status of the damage changes to Paid.

1 function automaticPayOut (uint damage_id , bool is_counter_offer) private
{

2 StatusDamage current_status = reported_damages[damage_id]. status;
3 require(
4 current_status != StatusDamage.Paid && current_status !=

StatusDamage.Canceled && current_status != StatusDamage.
Resolved ,

5 "This damage is already paid , deleted or resolved otherwise."
6);
7 uint payOutInWei = 0;
8 if(is_counter_offer){
9 payOutInWei = convertEuroToWei(reported_damages[damage_id].

counter_offer);
10 }else{
11 payOutInWei = convertEuroToWei(reported_damages[damage_id].

amount_of_damage);
12 }
13 require(
14 address(this).balance >= payOutInWei ,
15 "Not enough Ether available in the contract."
16);
17 customer_address.transfer(payOutInWei);
18 reported_damages[damage_id]. status = StatusDamage.Paid;
19 }

Listing 1.3: SC for the Automatic Payment.

4 Evaluation

While evaluations of cyber insurance models as such will cover the precision of
risk models and their prediction granularity, SaCI’s evaluation here focuses on
the systems’ operations, which are based on a real-world case. Furthermore, cost
analysis and discussion concerning its BC-based implementation are provided.

4.1 Case Study

Suppose that a customer wants to protect her business from financial loss possi-
bly caused by Distributed Denial-of-Service (DDoS) attacks. The customer will
access SaCI’s Web-based interface and fills all information related to her busi-
ness and respective requirements, such as the company’s conditions (e.g., sector,
revenue, and number of employees), security aspects (e.g., attacks history, risk
assessment, available protections), and coverage demands. The insurer uses this
information to propose a contract offering coverage of 90% of all financial loss, if
a business interruption happens due to a DDoS attack until a maximum amount
of 300,000 e. For that, the deductible amount of 1,000 e is considered besides
a yearly premium of 2,000 e. Figure 3 provides an overview of all interactions
and actors considered for this case study.

After the customer and insurer decided about the contract off-chain, this gen-
erates a JSON file with all information and SC is created with the anonymization
of private information (cf. Section 3). Finally, the contract is deployed on the

SaCI: Smart Contracts for Cyber Insurance 11

BC and the hash of the JSON file with all contact information is stored together
with the SC. Both actors also store a copy of the JSON file (i.e., all contract
information without anonymization) in private databases for further reference,
while the hash stored in the BC allows for an integrity validation. The customer
will finally call the function payPremium(amount) to initiate the coverage.

Customer
Cyber

Insurance
Company

Smart Contract (SC)

Blockchain

Coverage Details

"contract_coverage": [{
 "name": "DDoS",
 "coverage": [{
 "name": "Business
 Interruption",
 "coverage_ratio": 90,
 "deductible": 1000,
 "max_indemnification":
 300000
}]}]

"business_information": {
 "companyName": "CSG-UZH",
 "type": "University",
 "sector": "Research and
 Education",
 "address": {
 "streetAddress":
 "Binzmulehstrasse 14",
 "city": "Zurich",
 "state": "ZH",
 "postalCode": 8049
}}

Customer Details

payment_frequency = "yearly"
cancellation_penalty = 0.5
premium = 2000
deductible = 1000

contract_hash = c9d1ad...f4020a
insurer_address = 0xbe0...cd138
customer_address = 0x53...c8a3d

Coverages = [{DDoS, 90}]
reportedDamages = []

payPremium(2000)
1

reportDamage(date, 15000,
DDoS, SHA-256Hash)

2

4
payDeductible(1000)

transferFunds(address, 15000)
5

acceptDamage(id, 15000)
3

Fig. 3: Case Study’s Information and Flows.

If an attack happened at the customer’s IT resulting in 15,000 e of loss,
a request for coverage is placed by calling the function reportDamage(date,
amount, type of attack, logFile hash). Based on this, the insurer automatically
checks, if the request complies to the contract and calls the function acceptDam-
age(amount), ensuring that the amount is available in the SC for the payment.
The amount is automatically sent to the customer in order to pay for her losses.
If the damage was not accepted, a counteroffer will be placed or further in-
vestigations are required, as discussed above. The logFile hash allows for the
verification of the attack and losses if required. Thus, the insurer can ask the
customer to send log files via a secure channel, e.g., containing network traces,
reports, or internal analysis data explaining the incident. The hash stored in the
BC provides a trustworthy record in case a dispute is required.

4.2 SC Cost Evaluation

Of key relevance for the economic efficiency of such an approach are costs re-
lated to the BC-based solution. Thus, Table 3 summarizes all costs for calling
functions available in the SC, including the deployment (i.e., Constructor) of the
contract. These Gas costs in Ethereum were estimated using the function esti-
mateGas provided by the Web3 library. Gas defines the internal pricing to run a
transaction or a contract in the Ethereum BC. Gas does “measure” the compu-
tational usage in terms of monetary costs (e.g., Gas per Swiss Franc or e) [3].
These functions as of today within the proof-of-concept were not yet optimized
in terms of Gas costs; they can be reduced for a production deployment by (a)

12 Franco et al.

using different implementations of BC, which support SCs, and also (b) by opti-
mizing the overall process, such as by increasing the time to process transactions
to reduce the amount of Gas that have to be spent. Furthermore, as many BC
projects (e.g., Cardano and Polkadot) are promising efficient features, the can
enable a cheapest and most efficient way to implement cyber insurance models
that rely on SCs.

Gas costs were converted into Wei (i.e., smallest denomination of Ether)
using a Gas cost of 20 GWei per Gas, which is the default value of Ganache. The
Ether value was converted into e using an exchange rate of 600 e per Ether,
which is approximately the current exchange rate as of January 2021; in general
the exchange rate from Ether to e changes permanently. The most expensive
function is the one that deploys the contract (i.e., Constructor), followed by
reportDamage.

Table 3: Cost Estimations of SaCI’s Functions.

Function
Estimation in Ether
(20 GWei/Gas)

Converted in e
(600 e/Ether)

Constructor 0.10893 65.36

paySecurity 0.00080 0.48

payPremium 0.00084 0.50

reportDamage 0.00435 2.61

acceptDamage 0.00109 0.65

declineDamage 0.00174 1.04

acceptCounterOffer 0.00082 0.49

proposeToUpdateContract 0.00264 1.58

agreeToUpdateContract 0.00098 0.59

Although this amount has to be paid by the actors involved, this value does
not represent a high values, since it is paid only when the function is called.
Therefore, 65 e are paid for the deployment of the contract and 4.5 e have to
be paid, when a coverage request is done. Note that all of these values already
represent the most expensive case, in which the blocks are mined as fast as
possible. Taking a Gas cost of 2 GWei, which is considered a price that usually
persists a transaction in a block within the next minutes in the Ethereum network
[13], the final cost to deploy a contract can be divided by ten, thus, resulting in
a cost of 6.5 e.

These costs can also be affected due to the choice of the BC technology to
be used. For this prototype, Ethereum was used for convenience (i.e., support
to SC, extensive documentation, and frameworks for development). However,
the approach proposed by SaCI can be implemented using any permissioned or
permissionless BCs that support SCs implementation, such as Cardano, Polka-
dot, and Hyperledger Fabric [15]. The decision might depend upon the insurer’s
demands in terms of performance, privacy, and scalability.

SaCI: Smart Contracts for Cyber Insurance 13

5 Summary, Conclusions, and Future Work

This work presented SaCI, a blockchain-based approach for the creation, deploy-
ment, and life-cycle management of cyber insurance contracts. SaCI handles the
translation of human-readable demands (e.g., JSON file) to SC contracts exe-
cuted on the BC. The approach proposed allows users’ information input, pro-
vides the SC code with all functions for interactions, and deploys the contract
coverage information as an SC running on the public Ethereum BC for any
interactions required between customers and insurers.

Concluding, the proof-of-concept implementation of SaCI is fully operational
and was developed taking into consideration real-life actors and their interac-
tions. Moreover, the system is fully decentralized, with no intermediaries due to
the usage of a BC. However, off-chain disputes are still possible to resolve open
issues that require interactions, since they cannot be automated at this step
(e.g., analysis of log files, agreement between the premium price, and decision
about the coverage payment). SaCI’s feasibility was investigated by conducting
a case study and cost analysis that shows basic interactions of the approach as
well as concerns regarding the costs while using public BCs. Besides the advan-
tages introduced by this approach (e.g., automation and trust), it is important
to conduct further investigations to verify the role of BC in the future of cyber
insurance, such as introducing trust and simplifying the process while reducing
its costs.

Future work includes: (i) the development of a Web-based interface for the
interaction with SaCI and the contract running on the BC, (ii) the investigation
of premium calculation models that can provide a fair way to define the value of
the premium and the coverage amount, and (iii) an analysis of different types
of BCs (private and hybrid) and distributed systems (e.g., Inter-Planetary File
Systems) to increase the efficiency of this solution (in terms of costs, privacy, and
time to process transactions), while reducing its overall complexity. Furthermore,
additional studies are still required in the field of cyber insurances to map and
improve all different tasks required from the creation (e.g., contract underwriting
and premium definition) until the termination of a contract.

Acknowledgements. This paper was supported partially by (a) the University
of Zürich UZH, Switzerland and (b) the European Union’s Horizon 2020 Research
and Innovation Program under Grant Agreement No. 830927, the CONCORDIA
Project.

References

1. B. Aziz, Suhardi, Kurnia: A Systematic Literature Review of Cyber Insurance
Challenges. In: International Conference on Information Technology Systems and
Innovation (ICITSI 2020). Padang, Indonesia, 2020, pp. 357–363

2. A. Farao, S. Panda, S. A. Menesidou, E. Veliou, N. Episkopos, G. Kalatzantonakis,
F. Mohammadi, N. Georgopoulos, M. Sirivianos, N. Salamanos, S. Loizou, M.

14 Franco et al.

Pingos, J. Polley, A. Fielder, E. Panaousis, C. Xenakis: SECONDO: A Platform
for Cybersecurity Investments and Cyber Insurance Decisions. In: S. Gritzalis, E.
R. Weippl, G. Kotsis, A. M. Tjoa, I. Khalil (eds.) Trust, Privacy and Security in
Digital Business. Springer International Publishing, Cham, Switzerland, 2020, pp.
65–74

3. M. F. Franco, E. J. Scheid, L. Z. Granville, B. Stiller: BRAIN: Blockchain-based Re-
verse Auction for Infrastructure Supply in Virtual Network Functions-as-a-Service.
In: IFIP Networking 2019 (Networking 2019). Warsaw, Poland, May 2019, pp. 1–9

4. V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda, V. Santamara: Blockchain
and Smart Contracts for Insurance: Is the Technology Mature Enough? Future
Internet 10(2), 2018

5. E. Kenneally: Ransomware: A Darwinian Opportunity for Cyber Insurance. Con-
necticut Insurance Law Journal Fall Symposium Edition 28.1, 1–13, 2020

6. N. Kshetri: The Economics of Cyber-Insurance. IT Professional 20(6), 9–14, 2018
7. N. Kshetri: The evolution of cyber-insurance industry and market: An institutional

analysis. Telecommunications Policy 44(8), 102007, 2020
8. T. Lepoint, G. Ciocarlie, K. Eldefrawy: Blockcisa blockchain-based cyber insurance

system. In: IEEE International Conference on Cloud Engineering (IC2E 2018).
Orlando, USA, 2018, pp. 378–384

9. S. Morgan: Cybercrime To Cost The World $10.5 Trillion Annu-
ally By 2025, November 2020, https://cybersecurityventures.com/

hackerpocalypse-cybercrime-report-2016/, Last visit June, 2021.
10. S. O. Nam: How much are insurance consumers willing to pay for blockchain and

smart contracts? a contingent valuation study. Sustainability 10(4332), 1–11, 2018
11. M. F. Noah Berni: SaCI - Prototype and Source-Code, January 2021, https://

gitlab.ifi.uzh.ch/franco/saci, Last visit June, 2021.
12. R. Pal, L. Golubchik, K. Psounis, P. Hui: Will Cyber-Insurance Improve Network

Security? A Market Analysis. In: IEEE Conference on Computer Communications
(INFOCOM 2014). Toronto, Canada, 2014, pp. 235–243

13. A. Rajeevan: Tokens, Gas and Gas limit in Ethereum,
February 2019, https://arunrajeevan.medium.com/

tokens-gas-and-gas-limit-in-ethereum-f07790f56d8f, Last visit June,
2021.

14. B. Rodrigues, M. F. Franco, G. Paranghi, B. Stiller: SEConomy: A Framework for
the Economic Assessment of Cybersecurity . In: 16th International Conference on
the Economics of Grids, Clouds, Systems, and Services (GECON 2019). Springer
LNCS, Leeds, UK, September 2019, pp. 1–9

15. E. J. Scheid, B. Rodrigues, C. Killer, M. Franco, S. R. Niya, B. Stiller: Blockchains
and Distributed Ledgers Uncovered: Clarifications, Achievements, and Open Issues,
pp. 1–29. No. 1 in IFIP AICT Festschrifts, Springer, Cham, Switzerland, August
2021, https://www.springer.com/gp/book/9783030817008

16. J. Wargin: Insurance Company Technology Trends Transforming the
Industry in 2021, January 2021, https://www.duckcreek.com/blog/

insurance-technology-trends/, Last visit June, 2021.
17. J. Xu, Y. Wu, X. Luo, D. Yang: Improving the Efficiency of Blockchain Applications

with Smart Contract based Cyber-insurance. In: IEEE International Conference
on Communications (ICC 2020). Dublin, Ireland, 2020, pp. 1–7

https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://gitlab.ifi.uzh.ch/franco/saci
https://gitlab.ifi.uzh.ch/franco/saci
https://arunrajeevan.medium.com/tokens-gas-and-gas-limit-in-ethereum-f07790f56d8f
https://arunrajeevan.medium.com/tokens-gas-and-gas-limit-in-ethereum-f07790f56d8f
https://www.springer.com/gp/book/9783030817008
https://www.duckcreek.com/blog/insurance-technology-trends/
https://www.duckcreek.com/blog/insurance-technology-trends/

	SaCI: a Blockchain-based Cyber Insurance Approach for the Deployment and Management of a Contract Coverage

