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Abstract

Black-box adversarial attacks involve the generation of adversarial samples that can mis-
lead a model by exploring and adjusting input data without requiring knowledge of the
model’s internal structure and parameters. Attackers typically observe the model’s output
to infer and optimise the input, identifying data that causes the model to misclassify or
make incorrect predictions. This approach more closely reflects real-world scenarios, mak-
ing it highly threatening. While researchers have made significant progress in applying
black-box adversarial attack methods to machine learning, their performance in federated
learning has not been thoroughly validated.

In this work, widely used black-box adversarial attack methods in machine learning were
selected and thoroughly studied to gain a comprehensive understanding of their attack
principles and implementation methods. These attack methods were then integrated
into a federated learning platform, called Fedstellar in this work. By setting different
federated learning parameters, the performance of the attack methods was evaluated in
different environments and the robustness of the federated learning platform was assessed.
The experimental results showed significant performance differences between the different
attack methods. Moreover, the performance of these attack methods was highly related
to the number of federated learning nodes, datasets and federation methods, while the
topology had minimal impact on the attack performance. Based on the analysis of the
experimental results, a new potential timing for black-box adversarial attacks is proposed,
which could be further explored in future work to have a greater impact on federated
learning.
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Black-Box-Angriffe beinhalten die Generierung negativer Stichproben, die ein Modell in
die Irre führen können, indem sie die Eingabedaten untersuchen und anpassen, ohne
dass die interne Struktur und die Parameter des Modells bekannt sein müssen. Die An-
greifer beobachten in der Regel die Ausgabe des Modells, um daraus Rückschlüsse auf die
Eingabe zu ziehen und diese zu optimieren, indem sie Daten identifizieren, die das Modell
zu Fehlklassifizierungen oder falschen Vorhersagen veranlassen. Dieser Ansatz entspricht
eher realen Szenarien und ist daher äußerst bedrohlich. Während Forscher bei der Anwen-
dung von Black-Box-Angriffsmethoden auf das maschinelle Lernen erhebliche Fortschritte
gemacht haben, wurde ihre Leistung beim föderierten Lernen noch nicht gründlich vali-
diert.

In dieser Arbeit wurden weit verbreitete Blackbox-Angriffsmethoden für das maschinelle
Lernen ausgewählt und gründlich untersucht, um ein umfassendes Verständnis ihrer An-
griffsprinzipien und Implementierungsmethoden zu gewinnen. Diese Angriffsmethoden
wurden dann in eine föderierte Lernplattform integriert, die in dieser Arbeit Fedstellar
genannt wird. Durch die Einstellung verschiedener föderierter Lernparameter wurde die
Leistung der Angriffsmethoden in verschiedenen Umgebungen bewertet und die Robus-
theit der föderierten Lernplattform beurteilt. Die experimentellen Ergebnisse zeigten sig-
nifikante Leistungsunterschiede zwischen den verschiedenen Angriffsmethoden. Außerdem
hing die Leistung dieser Angriffsmethoden stark von der Anzahl der föderierten Lern-
knoten, der Datensätze und der Föderationsmethoden ab, während die Topologie nur
minimale Auswirkungen auf die Angriffsleistung hatte. Auf der Grundlage der Analyse
der experimentellen Ergebnisse wird ein neues potenzielles Timing für Black-Box-Angriffe
vorgeschlagen, das in zukünftigen Arbeiten weiter erforscht werden könnte, um einen
größeren Einfluss auf föderiertes Lernen zu haben.
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Chapter 1

Introduction

Federated Learning (FL) is an emerging Machine Learning (ML) approach that employs
a distributed architecture. In this architecture, users’ raw data is kept local and not
transmitted over the network. Instead, users could collect and train their data locally,
sharing the resulting local models across the network. This collaborative learning method
ensures knowledge sharing while preserving user privacy. However, the decentralized na-
ture of FL, especially in Decentralized FL (DFL), where nodes do not distinguish between
trainers and aggregators, makes it vulnerable to malicious attacks [1]. Such attacks can
compromise the robustness of the DFL system, leading to inaccurate results and dimin-
ished trustworthiness. Therefore, it is essential to develop and implement a scheme to
analyze the robustness of the DFL system.

Previous research developed a module that uses a white-box approach to analyze the DFL
platform’s robustness [2]. This approach relies on the analyst having access to the DFL
model’s parameters or training data, which often is not the case in real-world scenarios.
In contrast, black-box approach is preferred for its practical and realistic assessment.
Model outputs are utilized in black-box analysis, avoiding assumptions about parameters
or training data. This analysis often employs evasion attacks to create adversarial samples
that mislead the model. As a result, the goal of this thesis is to design and implement
a black-box robustness analysis module that specifically utilizes evasion attacks as a tool
for a more practical evaluation of model robustness within the context of DFL.

1.1 Description of Work

The purpose of this work is to integrate existing black-box adversarial attack methods
into a existing FL platform and to comprehensively evaluate the performance of different
attack methods as well as the robustness of the FL platform by setting various parameters.
The project is mainly divided into the following phases:

Literature Review. In this phase, the goal is to review and document the state-of-the-art
in terms of the concepts of DFL, adversarial attack methods, technologies, and systems
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2 CHAPTER 1. INTRODUCTION

relevant to the project. A thorough understanding of this prior knowledge will lay a solid
foundation for the implementation of subsequent functionalities.

Design and Implementation of Different Attack Methods. During this phase, the first
step is to present a proposal outlining the design and structure of the black-box robustness
analysis module within the DFL framework. Following that, the selected attack methods
will be integrated into the selected FL platform.

Evaluation and Conclusion. The primary task in this phase is to evaluate the attack
methods that have been integrated into the FL platform. By setting different parameters
within the platform, the performance of the attack methods will be measured comprehen-
sively under various conditions.

1.2 Thesis Outline

The structure of this work is outlined as follows. First, Chapter 2 establishes the theo-
retical baseline and describes the fundamental concepts used in this work. Subsequently,
currently existing ML platforms for adversarial attacks and several currently popular
black-box adversarial attack methods are described in Chapter 3. Based on these findings,
the specific implementation of the attack method on the FL platform and the methods
required for the attack are thoroughly outlined in Chapter4. In the next Chapter 5, an
extensive evaluation of the proposed attack methods with different parameters is given.
Lastly, Chapter 7 summarizes the findings of this work and proposes future opportunities.



Chapter 2

Background

This chapter clarifies the theoretical foundations of FL and points out the advantages of
FL as well as some of the security vulnerabilities that may currently exist. Based on these
security vulnerabilities, it can greatly provide attackers with the opportunity to attack
and negatively affect or even crash the platform. Therefore, this chapter will provide a
general overview of FL as well as the black-box Evasion attack in the attack methodology.

2.1 Federated Learning

FL, a distributed ML approach where multiple clients collaborate to solve ML prob-
lems under the coordination of a central aggregator, has gained increasing attention and
widespread application in recent years. In FL, a global model is initialized by a central
server, which then sends the model parameters to all participating clients. Upon receiving
these parameters, clients locally train the model using their own data and the global model
parameters. After training, each client sends their updated local model parameters back
to the central server. The central server then aggregates the local model parameters (e.g.,
via weighted averaging) to produce new global model parameters, which are redistributed
to the clients. This process repeats until a predetermined number of training rounds is
reached or the model converges, at which point training is terminated. The final global
model is then ready for real-world application.

This method enhances user privacy by sharing only model parameters or gradient infor-
mation, rather than raw data. Additionally, FL leverages decentralized local data to train
models with improved performance. Its scalability and flexibility allow it to be extended
to large-scale distributed systems, enabling numerous participants to collaboratively train
models.

However, as a developing and emerging field, FL still faces several challenges, despite its
growing impact in various areas. The first challenge is the communication cost [3]. In

3



4 CHAPTER 2. BACKGROUND

Figure 2.1: Visualization of the adversarial perturbations and examples of the Square
Attack. [5]

fact, a federated network may consist of numerous devices, leading to significant commu-
nication overhead during the training process. Therefore, it is essential to develop efficient
communication methods.

Secondly, there is the issue of model quality and robustness. Ensuring that the aggregated
global model maintains good generalization ability and robustness across various data
distributions and participant environments is crucial. Although FL enhances data privacy
to some extent, there remains a risk of attack or theft during the transmission of model
parameters or updates [4]. Malicious attackers can exploit vulnerabilities to manipulate
the global model, posing threats to data integrity, algorithms, and the overall federation.

2.2 Evasion Attacks

In an adversarial attack, an attacker attempts to alter a data point x into an adversarial
data point x’ so that x’ is misclassified by a high-confidence model, even though x’ ap-
pears indistinguishable from the original data point x to a human observer. Figure 2.1
illustrates the visualization of an adversarial attack. The original sample is shown in the
left image, where a square attack was applied. The right image depicts the adversarial
sample obtained after the attack, while the middle image shows the hotspot map of the
attack. It is evident that it is challenging for the naked eye to distinguish the difference
between the sample before and after the attack. A evasion attack is a type of adversarial
attack in which the attacker subtly modifies the input data to deceive the ML model,
causing it to make incorrect predictions. This attack is particularly relevant to supervised
learning models used for classification tasks.

2.2.1 Types of Evasion Attack

Evasion attacks can be categorized based on different classification methods. According
to the level of knowledge possessed by the attacker, attacks can be divided into black-box
and white-box attacks. In black-box attacks, the attacker has no knowledge of the model’s
internal structure, while in white-box attacks, the attacker has full access to the model.
Based on different attack targets, it can be divided into targeted and untargeted attacks.
Targeted attacks aim to misclassify inputs into specific categories, whereas non-targeted
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attacks simply aim to cause any form of misclassification [6]. Additionally, different norms
(l0, l2, and l∞) are used in these attacks, each producing different effects. These norms
represent various norms used to measure the perturbations applied to the original data
points [7].

A Black-box attack vs White-box attack

• A black-box attack means that the attacker has no knowledge of the internal
structure and parameters of the target model and can only generate adversar-
ial samples by observing the relationship between inputs and outputs [8]. Due
to the lack of information about the model’s internals, black-box attacks re-
quire repeated trials and adjustments to generate effective adversarial samples.
This attack method typically relies on evolutionary algorithms, optimization
techniques, or generating adversarial samples by training models. Although
the success rate and efficiency of black-box attacks may be lower than that
of white-box attacks, they are more realistic in practical applications because
attackers usually do not have access to detailed information about the target
model.

• A white-box attack is one in which the attacker has complete knowledge of
the internal structure and parameters of the target model. This attack lever-
ages detailed information about the model architecture, weights, and training
data, allowing for the precise computation of adversarial samples, thus making
the attack more effective. White-box attacks typically employ gradient com-
putation methods, such as the Fast Gradient Sign Method (FGSM) [9] and
Projected Gradient Descent (PGD) [10], which generate adversarial samples
by calculating the gradient of the input data with respect to the loss function
[11]. Because the attacker has access to and can exploit all the information
about the model, white-box attacks are generally more efficient and effective
in generating adversarial samples.

B Targeted attack vs Untargeted attack

• The goal of a targeted attack is to cause the model to misclassify the input data
into a specific category predetermined by the attacker. Such attacks require
precise tuning of the adversarial samples so that the model outputs the wrong
class specified by the attacker. As a result, targeted attacks are usually more
complex and demand higher computational accuracy and resources [6].

• In contrast, untargeted attacks aim to induce misclassifications without focus-
ing on any specific incorrect classification. The attacker only seeks to ensure
that the model’s output differs from the true category, and any misclassifica-
tion is acceptable. Untargeted attacks are generally easier to implement and
less computationally demanding, as they do not require precise control over
the classification outcomes [12].

C Attacks with Different Norms

• The l0 norm attack focuses on the number of modified features in the adversar-
ial sample, aiming to minimize the number of changes. Attack methods using
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the l0 norm, such as JSMA (Jacobian-based Saliency Map Attack) [13], modify
features by selecting those that have the greatest impact on the classification
result. The advantage of this type of attack is that it can generate adversar-
ial samples with minimal modifications, making the attack harder to detect.
However, finding the optimal solution typically requires a high computational
cost.

• The l2 norm attack measures the Euclidean distance between the adversarial
sample and the original sample, with the goal of minimizing this distance.
Attack methods using l2 norm, such as the Carlini & Wagner (C&W) attack
[8], generate perturbations through an optimization algorithm to make the
adversarial samples as close as possible to the original samples. The adversarial
samples generated by this type of attack are usually more natural and less
noticeable to the human eye, but the computational complexity is higher.

• The l∞ norm attack focuses on countering the magnitude of the largest per-
turbation in the sample, with the goal of minimizing this maximum. This is
achieved by using l∞ norm attack methods, such as the Fast Gradient Sign
Method (FGSM) [9] and Projected Gradient Descent (PGD) [10], which gen-
erate adversarial samples by adding small magnitude perturbations to each
feature. These attacks are computationally efficient and suitable for large-
scale applications, but the generated adversarial samples may sometimes be
more easily detectable by the human eye [14].



Chapter 3

Related Work

This chapter introduces a series of existing platforms and frameworks for evaluating the
robustness of ML, and provides new ideas for further integration of adversarial attack
methods in FL platforms by comparing their strengths, weaknesses and unique features.
It also provides a comprehensive overview of popular black-box adversarial attack methods
and their implementation mechanisms.

3.1 Existing Adversarial Attack Platforms

As research on ML models progresses, attack and defence techniques have become an
important research focus. To assess and improve the robustness of models, researchers
have developed a series of tools and frameworks, including ART (Adversarial Robustness
Toolbox) [15], Foolbox [16], Cleverhans [17], TextAttack [18] and so on. These tools not
only provide researchers with convenient ways to implement attacks and defences, but
also guarantee the repeatability and standardisation of experiments. Although there is
no well-functional platform for evaluating the robustness of FL, based on the correlation
between ML and FL, the study of the above platforms will also provide some inspiration
for constructing a platform for FL. In the following, the features and applications of these
tools will be described in detail.

3.1.1 ART (Adversarial Robustness Toolbox)

Adversarial Robustness Toolbox (ART) [15] is an open source toolbox developed by IBM
for generating, detecting, and defending against adversarial attacks.ART has a wide range
of application areas including image classification, speech recognition, text processing, and
IoT device security. The toolkit supports several ML frameworks such as TensorFlow,
Keras, PyTorch, and MXNet, making it easy to integrate with a wide variety of existing
workflows.

7
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Figure 3.1: Illustration the Interaction Between Adversarial Attacks and Defenses in ART.
[15]

ART’s strength lies in its versatility, offering a rich set of attack and defense methods,
including FGSM [9], PGD [10], and DeepFool [19], that address different types of adver-
sarial threats, which means that we can test not only the effectiveness of the attack, but
also the effectiveness of the platform’s defences. The comparison between the two metrics
helps us optimise and adjust our attack and defence methods. Figure 3.1 illustrates vari-
ous of the attacks and defences available to ART. The ease use of ART is also a highlight,
featuring a straightforward API that allows users to develop and test with ease. However,
ART has its shortcomings, such as performance bottlenecks that can occur when dealing
with large-scale datasets due to certain complex attacks and defense methods.

Additionally, ART’s support for some frameworks may be less comprehensive than that
of their native libraries. And in terms of user interface, ART is primarily used through a
programming interface and does not have a standalone graphical user interface, requiring
users to write Python code to call its functions. However, ART is well-documented,
with detailed usage guidelines, API references, and various sample codes to help users
get started quickly and fully utilize its features. ART’s comprehensiveness and flexibility
make it a unique and powerful platform for researchers and developers aiming to improve
the robustness and security of ML models.

3.1.2 Cleverhans

Cleverhans [17] is an open source toolkit developed by the Google Brain team specifically
for generating and defending against adversarial attacks. It is mainly used in the fields
of image classification, speech recognition and text processing, and is designed to help
researchers and developers better understand and respond to adversarial attacks.

The strength of Cleverhans lies in its flexibility and robust feature support. It supports
a variety of adversarial attack methods, such as FGSM [9], BIM [20], and JSMA [14],
allowing users to choose the appropriate attack method for their specific needs. Cleverhans
also integrates very tightly with TensorFlow, making it suitable for projects using this
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framework. However, a significant shortcoming of Cleverhans is its relatively weak support
for other ML frameworks, which may be less convenient for users employing different
frameworks. For novice users, some of Cleverhans’ advanced features may require more
in-depth background knowledge of adversarial attacks to fully understand and apply.

In terms of user interface, Cleverhans is primarily used through a programming interface
and does not have a standalone GUI. Users need to write TensorFlow code to invoke
its features. Cleverhans provides detailed documentation and sample code, including
implementations of various attack methods and usage examples, to help users quickly
understand and apply its features. Cleverhans is unique due to its tight integration with
TensorFlow and its flexible and diverse adversarial attack methods, providing researchers
and developers with a powerful tool to study and enhance the adversarial robustness of
models.

3.1.3 TextAttack

TextAttack [18] is an adversarial attack and defence framework dedicated to Natural
Language Processing (NLP) models. It is mainly used in NLP domains such as text
categorisation, sentiment analysis, Q&A systems and machine translation etc. TextAt-
tack was originally designed to provide a dedicated adversarial attack platform for NLP
models, which fills the gap in this field. Its strength lies in its focus on textual data,
supporting a wide range of adversarial attack methods for NLP tasks, such as TextFooler
[21], DeepWordBug [22] and BAE [23]. TextAttack is commendably easy to use, offering
straightforward command line tools and Python APIs for generating adversarial samples
and conducting defense tests.

However, TextAttack has some shortcomings. Due to its focus on NLP tasks, support
for other types of data is relatively limited. Additionally, when dealing with large text
datasets, certain complex attack methods may lead to performance bottlenecks. Tex-
tAttack is primarily used through command-line tools and programming interfaces. Tex-
tAttack’s detailed and easy-to-understand documentation includes usage guidelines, API
references, and various sample codes to help users get started quickly and take full ad-
vantage of its functionality. TextAttack’s uniqueness lies in its focus on NLP tasks and
its diverse attack methodologies, providing researchers and developers with a powerful
platform to study and improve the adversarial robustness of NLP models.

3.1.4 Foolbox

Foolbox [16] is an open-source toolkit developed by Bethge Lab that is designed for adver-
sarial attacks and defences against ML models. It supports application domains such as
image classification, object detection, and speech recognition.A significant advantage of
Foolbox is its support for a variety of ML frameworks, including TensorFlow, PyTorch, and
Keras, making it easy to integrate with a variety of existing workflows.Foolbox provides a
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variety of attack methods such as the L-BFGS [7], DeepFool [19] and Carlini-Wagner at-
tacks [8], allowing users to choose the right attack method for their specific needs.Foolbox’s
modular design also makes it easy to extend and customise attack methods.

Foolbox has its own drawbacks, certain complex functions that require time and back-
ground knowledge to understand and apply fully. Despite the detailed documentation, the
use of certain advanced features may still need to be explored further. Foolbox primarily
utilizes a programming interface and lacks a separate GUI. In order to take full advantage
of its various functionalities, users are required to write Python code that allows them to
access and utilize these features effectively. Foolbox’s documentation offers comprehensive
usage guidelines, API references, and sample code to assist users in understanding and
utilizing its features. Foolbox stands out in the field of ML and adversarial robustness
due to its impressive range of supported frameworks. This unique combination provides
researchers and developers with a highly effective and powerful tool that is invaluable
for studying adversarial attacks. Additionally, it facilitates efforts to enhance the robust-
ness of models against such attacks, making it an essential resource for both theoretical
exploration and practical application in the realm of adversarial ML.

3.2 Black-box Evasion Attack Methods

This section discusses the current state of research and contributions from other authors.
Since black-box attacks do not require access to too much information about the model’s
internals and present a powerful capability in different attack scenarios, researchers have
developed a variety of efficient black-box attack algorithms, such as Simple Black-box
Attack(SimBA) [24], Square Attack [5], Boundary Attack [25], HopSkipJumpAttack [26]
and etc. In this work, the above attacks are integrated in the Fedstellar [27] to measure
its robustness. In the following, the design theory of these key algorithms and their
implementations are described in detail.

3.2.1 Simple Black-box Attack(SimBA)

SimBA (Simple Black-box Attack) [24] is a black-box adversarial attack method for image
classifiers that aims to find adversarial samples that can spoof the model relies on queries
to the model output. SimBA’s core idea is to use random sampling to modify the pixel
values in the pixel space of an image step-by-step to minimise or maximise the output
probability of the target classifier, so as to cause the classifier to misjudge.

SimBA firstly randomly selects a pixel or direction from the input image and tests per-
turbations in both positive and negative directions to find which one most reduces the
classifier’s predicted probability. Then, the direction of the perturbation with more sig-
nificant effect is selected and this perturbation is accumulated to gradually construct the
adversarial samples. This process is repeated until a predetermined attack effect or an
upper limit on the number of queries is reached.
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SimBA has the advantage of simplicity and ease of implementation, and can be applied on
a wide range of complex models and tasks since it only requires access to the output of the
model [28]. In addition, SimBA employs a random sampling strategy that avoids relying
on gradient information, allowing it to exhibit high efficiency when dealing with high-
dimensional inputs. SimBA achieves a better balance between query count and attack
effectiveness, but its random nature can lead to significant performance variability across
different images and models [29]. SimBA offers an innovative and efficient approach to
black-box attacks, with a straightforward design and minimal computational overhead,
making it highly practical for real-world applications.

Algorithm 1 Pseudo-code about SimBA

1: Input: x, y,Q, ϵ
2: δ ← 0
3: p← ph(y | x)
4: while py = maxy′ py′ do
5: Pick randomly without replacement: q ∈ Q
6: for α ∈ {ϵ,−ϵ} do
7: p′ ← ph(y | x+ δ + αq)
8: if p′y < py then
9: δ ← δ + αq
10: p← p′

11: break
12: end if
13: end for
14: end while
15: return δ

Algorithm 1 shows the pseudo-code about the SimBA pixel attack, which illustrates the
SimBA pixel attack process. In addition to the attacked image x and the target classifica-
tion label y (the desired misclassification label for a targeted attack and the correct label
for a untargeted attack), it is also necessary to provide the set of perturbation directions
Q and the perturbation step size ϵ. Before starting the attack (the second and third line
of the code) there is no perturbation in the initial state, i.e., the initialisation against
perturbation δ is a zero vector, and p is the probability distribution of image x under
current model. The loop is entered when the probability py of the current label y is the
highest among all categories. Firstly, a perturbation direction q is randomly selected from
the set Q, to avoid repetition the same direction is selected and not put back. Then, try
the two values of the perturbation step size, ϵ and −ϵ, in succession. For the selected
perturbation step size, calculate the predicted probability distribution of the new image
under the model after adding the perturbation αq and assign it to p’ (seventh line of
code). If the new predicted probability p′y is less than the probability py of the current
label y, the direction of the perturbation is considered valid, and the valid perturbation
αq will be accumulated to the current perturbation δ and the new predicted probability
distribution will be assigned to p (the eighth to the tenth lines of code). Finally, when
the probability of the current label y is no longer the maximum probability, the final
adversarial perturbation δ is returned.
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3.2.2 Square Attack

Square Attack [5] is an efficient black-box adversarial attack method that generates adver-
sarial samples that can mislead DL models through random search. The method derives its
name from its use of square-shaped perturbations to attack image classifiers.The core idea
of Square Attack is to iteratively apply small square-shaped perturbations to an image,
and gradually optimize these perturbations to maximize the target model’s classification
error probability. In particular, Square Attack first initialises an adversarial perturbation,
then randomly selects a part of the image in each iteration, applies a square perturba-
tion of a certain magnitude, calculates the model’s prediction, and decides whether to
accept the perturbation based on the result. If the new perturbation makes the model’s
classification probability significantly lower, the perturbation is retained; otherwise, the
perturbation is discarded and then search for a new perturbation direction continues ran-
domly. In this way, Square Attack is able to find effective adversarial samples with fewer
queries.

Square Attack provides a wide array of advantages. Firstly, just like other black-box
attack methods, it does not rely on the gradient information of the target model, and
thus is suitable for any type of black-box model, including those without access to the
internal structure and parameters [28]. Second, due to the strategy of random search and
square perturbation, Square Attack exhibits high attack efficiency in high-dimensional
input spaces. In addition, the use of square perturbation is able to generate visually im-
perceptible adversarial samples while keeping the number of queries low.Square Attack’s
approach is straightforward, yet it is highly effective, demonstrating superior attack per-
formance on several standard datasets and models [30]. Although Square Attack has a
certain degree of randomness in the random search process, stable and effective attack
results can usually be obtained through reasonable hyper-parameter settings and multi-
ple experiments. Overall, Square Attack provides a novel and effective idea for black-box
counterattacks, and its high efficiency and versatility make it have a wide range of poten-
tial and value in practical applications.

Algorithm 2 Pseudo-code about Square Attack

Require: classifier f , point x ∈ Rd, image size w, number of color channels c, lp-radius ϵ,
label y ∈ {1, . . . , K}, number of iterations N

Ensure: approximate minimizer x̂ ∈ Rd of the problem stated in Eq. (1)
1: x̂← init(x), l∗ ← L(f(x), y), i← 1
2: while i < N and x̂ is not adversarial do
3: h(i) ← side length of the square to modify (according to some schedule)
4: δ ∼ P (ϵ, h(i), w, c, x̂, x)
5: x̂new ← Project(x̂+ δ onto {z ∈ Rd : ∥z − x∥p ≤ ϵ} ∩ [0, 1]d)
6: lnew ← L(f(x̂new), y)
7: if lnew < l∗ then
8: x̂← x̂new, l

∗ ← lnew
9: end if
10: i← i+ 1
11: end while
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Algorithm 2 is a concise description of the Square Attack flow using pseudo-code. Before
the attack begins, initialize the adversarial sample as the input image x̂, compute its loss
value under the current model and assign it to l∗, then set the iteration count i to 1.
The loop continues while the number of iterations i is less than the maximum N or the
current sample x̂ is not adversarial. Determine the side length h(i) of the square to be
modified according to some strategy (e.g. stepwise reduction) (third line of code). Sample
a perturbation δ from a perturbation distribution P that depends on the perturbation
step size ϵ, the side length of the square h(i), the width of the image w, the number of
colour channels c, the current adversarial sample x̂ and the original input image x. Then,
project the image x̂ + δ after adding the perturbation into the image space that satisfies
the lp paradigm constraint ϵ and has pixel values in the range [0, 1] to ensure that the
perturbation does not exceed the given constraint. Compute the loss value of the new
adversarial sample under the model and assign it to lnew. If the new loss value is less than
the current minimum loss value, the adversarial sample is updated to the new sample and
the minimum loss value is updated. The number of iterations is increased until either i
reaches the maximum N or an adversarial sample is generated.

3.2.3 Boundary Attack

Boundary Attack [25] is an efficient and reliable black-box adversarial attack method
that focuses on image classification models. The core idea of the method is to find the
smallest perturbation that can deceive the model by progressively searching for adversarial
samples near the decision boundary of the target model. Boundary Attack starts with an
adversarial sample that has been classified incorrectly. This initial step is crucial, as it
sets the foundation for the subsequent processes within the attack methodology. It then
progressively reduces the adversarial perturbation through a series of iterations, while
ensuring that the perturbed sample remains misclassified. Each iteration is divided into
two steps: first, large jumps are made in the direction normal to the decision boundary
to get closer to the decision boundary as quickly as possible; then, small fine-tuning steps
are taken along the direction parallel to the decision boundary to reduce the magnitude of
the perturbation. In this way, by alternating large and small steps, Boundary Attack can
efficiently search for adversarial samples with the smallest perturbation near the decision
boundary [31].

Boundary Attack has several significant advantages. The method is versatile, applicable
to various models and tasks, including image classification and speech recognition. In ad-
dition, Boundary Attack is highly efficient in generating adversarial samples. Its iterative
process can quickly converge to the optimal solution, reducing the number of queries and
computational overhead.

In practical implementation, Boundary Attack employs a random search strategy, ex-
ploring the decision boundary through random perturbations in high-dimensional space.
This strategy avoids reliance on gradient information, making it robust and stable when
handling high-dimensional inputs. Additionally, the method incorporates optimization
techniques such as adaptive step size adjustment and sample pruning to enhance search
efficiency and the quality of adversarial samples. Algorithm 3 shows the pseudo-code for
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Algorithm 3 Boundary Attack Pseudo-code

Require: original image o, adversarial criterion c(.), decision of model d(.)
Ensure: adversarial example õ such that the distance d(o, õ) = ∥o− õ∥22 is minimized
1: initialization: k = 0, õ0 ∼ U(0, 1) such that õ0 is adversarial
2: while k < maximum number of steps do
3: draw random perturbation from proposal distribution ηk ∼ P(õk−1)
4: if õk−1 + ηk is adversarial then
5: set õk = õk−1 + ηk
6: else
7: set õk = õk−1

8: end if
9: k = k + 1
10: end while

Boundary Attack. The inputs needed for Boundary Attack are original image õ, adver-
sarial criterion c̃(.) and model d̃(.). Firstly, the number of iterations k is set to 0 and
an initial adversarial sample õ0 is randomly generated from the uniform distribution U(0,
1) so that it is an adversarial sample. When k is less than the predetermined maximum
number of iterations, a random perturbation ηk is drawn from the proposed distribution
P (õk−1), which is based on the current adversarial sample õk−1. If the new perturbation
sample õk−1 + ηk is an adversarial sample, set the new adversarial sample õk to õk−1 + ηk.
Conversely, if the new perturbation sample is not an adversarial sample, leave the current
adversarial sample unchanged.

3.2.4 HopSkipJumpAttack (HSJA)

HopSkipJumpAttack (HSJA) [26] is an efficient decision-based attack method designed to
generate adversarial samples that deceive an image classification model while minimizing
the number of queries. HSJA achieves this by accessing the decision results of the model
instead of obtaining information about its internal structure or parameters. The core idea
of the method is to generate adversarial samples by using a boundary gradient estima-
tion algorithm and a binary search strategy to perform effective perturbations near the
classification boundary in order to find the minimum amount of perturbations.

Initially, HSJA generates an adversarial sample on the decision boundary of the target
model. To be specific, the attacker starts with a correctly categorised sample and finds
the initial adversarial sample on the boundary by gradually adding perturbations such
that the sample is just misclassified. This process can be achieved by a simple geometric
method, i.e., searching along the connecting line between the input sample and the target
category sample.

After obtaining the initial adversarial samples, HSJA uses a boundary gradient estima-
tion method to optimize the perturbations. Boundary gradient estimation exploits the
geometric properties near the decision boundary by estimating the normal vector of the
decision boundary, which is completed by applying small perturbations to the input sam-
ples and observing the changes in the model’s classification results. This normal vector
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indicates how the minimum perturbation on the decision boundary can be made so that
samples are misclassified across the boundary.

Subsequently, HSJA further optimises the adversarial samples using a binary search strat-
egy. Concretely, the attacker performs a binary search between the input sample and the
initial adversarial sample, gradually narrowing the search interval to find the adversarial
sample with the smallest amount of perturbation. The binary search decides the next
search direction by taking the midpoint between the input sample and the adversarial
sample and checking result of this midpoint. This method not only improves the search
efficiency [32], but also ensures that the adversarial samples found have the minimum
amount of perturbation.

The basic intuition behind the HopSkipJumpAttack algorithm is depicted in Algorithm 4.
The algorithm is initialised from initialising the variable θ, and is guaranteed to initialise
x̃0 so that it is on the decision boundary of the target class x∗, and also need to calculate
the ℓp distance between x̃0 and the target class x∗ , denoted as d0. When the number of
iterations is below the maximum limit T, a boundary search is first performed to find a
new adversarial sample xt on the boundary using a binary search, a method that will be
mentioned next. The following step is gradient-direction estimation, calculate the batch
size for the current iteration Bt by calculating B0

√
t, and compute the direction vector vt.

Next for the step size search, where ξt (Step size) is initialised as the ℓp distance between
the current adversarial sample xt and the target class sample x∗ divided by

√
t. As the

number of iterations increases, the step size is gradually reduced to 1/2 of the original.
The while loop ends when the model no longer classifies it as the target class x∗. Then,
calculating the ℓp distance between the current x̃ and the target class x∗, denoted as
dt. Upon exiting the for loop, output the final adversarial sample xt using binary search
again.

The binary search in Algorithm 5 used in HopSkipJumpAttack is a method to finally
obtain a sample that satisfies the constraints by gradually narrowing the upper and lower
bounds and adjusting the position of the upper and lower bounds according to the classifi-
cation results. Firstly, the upper and lower bounds are initialised as αu and αl respectively,
and when the difference between the upper and lower bounds is greater than the threshold
θ, iteration is performed. In the loop, the midpoint αm of αl and αu is first calculated,
and if ϕ(Πx,αm(x

′)) is equal to 1 (i.e., the sample at the midpoint is classified as 1), the
upper bound αu is set to αm. Otherwise, set the lower bound αl to αm. Finally output
samples that close to the decision boundary x′′.

3.3 Research Motivation

Current research reveals a significant knowledge gap in DFL regarding defenses against
black-box attacks. Currently, platforms like Adversarial Robustness Toolbox (ART) and
Foolbox provide comprehensive frameworks for assessing the adversarial robustness of ML
models. However, these platforms are mainly oriented towards traditional ML models and
lack support for FL environments, especially those containing DFL models, which are part
of the FedStellar. DFL models operate under a fully decentralised architecture with no
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Algorithm 4 Pseudo-code about HopSkipJumpAttack

Require: Classifier C, a sample x, constraint ℓp, initial batch size B0, iterations T
Ensure: Perturbed image xt

1: Set θ
2: Initialize at x̃0 with ϕ∗

x(x̃0) = 1
3: Compute d0 = ∥x̃0 − x∗∥p
4: for t in 1, 2, . . . , T − 1 do
5: (Boundary search)
6: xt = BIN-SEARCH(x̃t−1, x, θ, ϕ

∗
x, p)

7: (Gradient-direction estimation)
8: Sample Bt = B0

√
t unit vectors u1, . . . , uBt

9: Set δt
10: Compute vt(xt, δt)
11: (Step size search)
12: Initialize step size ξt = ∥xt − x∗∥p/

√
t

13: while ϕ∗
x(xt + ξtvt) = 0 do

14: ξt ← ξt/2
15: end while
16: Set x̃t = xt + ξtvt
17: Compute dt = ∥x̃t − x∗∥p
18: end for
19: Output xt = BIN-SEARCH(x̃t−1, x, θ, ϕ

∗
x, p)

Algorithm 5 Pseudo-code about HopSkipJumpAttack’s Binary Search Method

Require: Samples x′, x, with a binary function ϕ, such that ϕ(x′) = 1, ϕ(x) = 0, threshold
θ, constraint ℓp

Ensure: A sample x′′ near the boundary
1: Set αl = 0 and αu = 1
2: while |αl − αu| > θ do
3: Set αm ← αl+αu

2

4: if ϕ(Πx,αm(x
′)) = 1 then

5: Set αu ← αm

6: else
7: Set αl ← αm

8: end if
9: end while
10: Output x′′ = Πx,αu(x

′)



3.3. RESEARCH MOTIVATION 17

Table 3.1: Classification of evasion attacks.

Category Type Method Efficiency
SimBA Black-box Random order

Low
Diagonal order
SimBA-Pixel
SimBA-DCT
Targeted/Untargeted

Pixel Attack Black-box Random Pixel Attack
LowOne Pixel Attack

Targeted/Untargeted
Square Attack Black-box l2 norm

Moderatel∞ norm
Targeted/Untargeted

Threshold Attack Black-box l0 norm
Moderatel∞ norm

Targeted/Untargeted
Boundary Attack Black-box Targeted/Untargeted High
HSJA Black-box l0 norm

Highl∞ norm
Targeted/Untargeted

PGD White-box Iterative attack High
FGSM White-box Single-step attack High

central server to coordinate model updates. This decentralised nature requires robustness
assessment tools to be able to handle different topologies and communication patterns in
order to efficiently assess the defensive capabilities of the model.

Another issue is the lack of user-friendly interfaces for existing tools. These platforms
usually require users to have a high level of technical background to use them effectively,
which limits their application to a wider user community. Moreover, the straightforward
user interface enables researchers to easily perform adversarial tests and analyses.

A summary of previous work with a focus on their advantages and things need to be
improved is available in Table 3.1, which highlights the need for innovative research.
Another Table summarises the current common adversarial attack methods and the sub-
categories included in each attack, making it more intuitive to select the attack methods
to be integrated on Fedstellar by comparison.

As a result, design and implementation of a black-box robustness analysis module for DFL
models is of great significance. This module can not only make up for the shortcomings
of existing platforms in DFL, but also improve the usability of the tool through a user-
friendly interface, and promote the further development of adversarial robustness research.
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Chapter 4

Design and Implementation

With well-defined attack methods and identified research gaps. Firstly, this chapter will
present the attack methods used in this research, the selection criteria for the parameters
required during the attack and the metrics used to evaluate the performance of the attack.
Secondly, the next sections will detail the implementation steps, experimental setups in
Fedstellar for each of the attack methods.

4.1 Attack Specification & Evaluation Metrics

In this context of work, four types of black-box attacks are selected to evaluate the ef-
fectiveness of current methods and the model’s capacity to resist attacks, which are Sim-
ple Black-box Attack (SimBA), Square Attack, Boundary Attack, and HopSkipJumpAt-
tack(HSJA). The reasons for choosing these attacks are that they cover almost all types
of black-box attacks types, such as decision-based attack and score-based attack, use dif-
ferent norms as well as different attack order for the samples. Moreover, these attacks
are designed without assuming that the attacker understands the deployed aggregation
algorithm. In addition, the following attack parameters are introduced:

• The step size(ϵ) sets the maximum perturbation applied to the original input, which
means that the difference between the generated adversarial samples and the original
samples will not exceed the range of epsilon. Smaller (ϵ) values can make the
adversarial samples more stealthy, while larger (ϵ) values may generate more easily
detectable adversarial samples.

• Maximum number of iterations(max iter) Although the probability of a successful
attack is extremely high, a suitable max iter will be set in order to avoid some
extreme cases that will lead to failure of the attack and a dead loop. Furthermore,
choosing an appropriatemax iter can effectively reduce the time of the attack, which
is very helpful to improve the efficiency of the attack.

19
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Parameters Metrics
SimBA ϵ = 0.4 max iter = 1000

Accyracy
Precision
Recall
F1 Score

Square Attack ϵ = 0.3 max iter = 500 pinit = 0.3
Boundary Attack ϵ = 0.01 max iter = 500 δ = 0.01

HSJA
norm = l2 max iter = 50

δ and θ depend on l2 distance
norm = l∞ δ and θ depend on l∞ distance

Table 4.1: Configuration overview for each of the selected attacks. The calculations of
HSJA δ using l2 norm are given in Equations 4.1, and the calculations of HSJA δ using
the l∞ norm are given in Equations 4.2.

Figure 4.1: Relative Probability with Different ϵ. [24]

• The size of the initial perturbation is an initial probability parameter that controls
the size and scope of the initial perturbation. Higher values of the initial probability
parameter allow the algorithm to explore more in different regions of the image, thus
increasing the chances of finding vulnerabilities. With the progress of the attack, the
value of the initial probability parameter usually decreases to allow for finer tuning
of the perturbation, thus increasing the accuracy and effectiveness of the attack.

• Sign of the end of the attack are similar to max iter in that both of them aim
to prematurely terminate attacks. It is typically used to indicate a change in the
model’s probability of misclassification or incorrect prediction.

Table 4.1 summarises all the attacks and the parameters required for their attack. This
course of section explains the details of the parameter value selection and the metrics used
to evaluate the effectiveness of the attack.
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Figure 4.2: Demo of the Boundary Attack Process. [25]

SimBA. In this attack, the value of ϵ is chosen to be 0.3. As can be seen in Figure 4.1,
the probability of both increasing and decreasing predicted class probability increases as
ϵ increases, and the average change (purple line) exhibits a tendency to first decrease
and then increase, with a peak at about the time when ϵ is 0.3. Most of the probability
change curves remain within a relatively small range when ϵ is near 0.3, which neither
induces a large perturbation nor makes the effect of the perturbation too small. When
applying small ϵ (e.g., below 0.1), the perturbation effect has a limited impact on the
probability, while applying larger ϵ (e.g., above 0.6), the perturbation may significantly
alter the probability, potentially resulting in unstable model performance or failure of the
attack. Experiments show that when the number of queries is large enough (>7500), the
probability of success of the SimBA attack tends to be close to 1. Due to differences in
the dataset and the significant effect of increasing max iter on attack time, we select a
maximum of 1000 iterations to attain about 90% success rate (showed in [24]) and the
reduction of attack time.

Square Attack. In this attack, the value of ϵ is sample dependent and needs to be taken
into account whether the pixels are in [0, 1] or in [0, 255] for a particular dataset dataset
and model. For example, for the standard ImageNet models, the correct l2 ϵ to specify is
1275 since after division by 255 it will become 5.0. In this experiment, all pixels are in [0, 1].
Therefore, the final value of ϵ selected is 0.3. Experiments show that ϵ = 0.3 can produce
effective adversarial samples on multiple datasets and models with good generality. Based
on experimental verification and theoretical analysis, the optimal choice for pinit is 0.3, as
it significantly enhances the probalility of generating effective perturbations in the initial
stage, facilitating the exploration of the input space and identification of the optimal
attack path.

Boundary Attack. Two relevant parameters in Boundary Attack: the length of the total
perturbation δ and the step size towards the original input are dynamically varied. In other
words, these two parameters are dynamically adjusted according to the local geometry
of the boundary. As it is shown in Figure 4.2, Boundary Attack begins with rejection
sampling along the boundary separating the adversarial and non-adversarial images (Left).
At each step, generate a new random direction by (#1) sampling from an iid Gaussian
and projecting it onto a sphere, and (#2) making a slight adjustment toward the target
image (Center). Typically, the closer we get to the original image, the flatter the decision
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boundary becomes, and the smaller the step size has to be to continue making progress.
The attack is considered converged when the step size approaches zero. The max iter
depends on the angle of the decision boundary in the local neighbourhood . If the success
rate is too small we decrease it, if it is too large we increase it. Comprehensive experiments
have shown that max iter of 500 is able to guarantee a high success rate of the attack
while at the same time taking into account the efficiency.

HSJA. In HopSkipJumpAttack, Monte Carlo estimation is used to approximate the gra-
dient direction. Specifically, θ is a small positive parameter that controls the size of the
perturbation at the sampled points on the unit sphere. This perturbation parameter needs
to be chosen in such a way that the estimated gradient direction is unbiased, i.e., the es-
timation is unbiased as θ tends to zero. δ is used in the boundary search step to ensure
that the adversarial samples are located near the decision boundary. The size of δ affects
the proximity to the boundary, with smaller values of δ bringing the adversarial sample
closer to the decision boundary, but also potentially increasing the number of queries. For
different norms, δ is calculated differently, when using the l2 norm:

δ =

√√√√ n∏
i=1

shapei × θ × ∥original sample− current sample∥2 (4.1)

when using l∞ norm:

δ =

(
n∏

i=1

shapei

)
× θ × ∥original sample− current sample∥∞ (4.2)

Metrics. Measuring the performance of an attack method using Accuracy (Equation 4.3),
Precision (Equation 4.4), Recall (Equation 4.5), and F1 Score (Equation 4.6) has several
significant advantages. These metrics provide a comprehensive view of the model’s perfor-
mance on positive and negative samples; Accuracy measures the model’s overall predictive
correctness, but may not be sensitive enough in class-imbalanced datasets, Precision and
Recall measure the model’s performance in predicting positive cases, providing a more fine-
grained analysis, which is especially important when the data is class-imbalanced, and F1
Score, which is the reconciled average of Precision and Recall, combines the strengths of
the two metrics for scenarios where they need to be balanced. The above four metrics are
calculated as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.3)

Precision =
TP

TP + FP
(4.4)

Recall =
TP

TP + FN
(4.5)
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F1 Score = 2× Precision× Recall

Precision + Recall
(4.6)

Meanwhile, the metrics used to measure the performance of DFL in Fedstellar are also
Accuracy, Precision, Recall and F1 Score, which intuitively reflect the performance of
the attack method by comparing the difference between the metrics before and after the
attack. After the attack is complete, a significant decrease in model Accuracy indicates
an effective attack and a decline in Precision suggests an increase in false positives, while
a reduction in Recall implies that the attack successfully misclassifies many positive ex-
amples as negative. If the F1 Score also decreases, it reflects a more detrimental overall
effect of the attack.

4.2 Adaption to Fedstellar

For the Fedstellar with black-box evasion attack, a number of adaptions have been im-
plemented. In the next sections, the structure of the added modules in Fedstellar will be
presented through three different modules.

(a) Normal version of the Fedstellar
front-end.

(b) Experimental version of the Fed-
stellar front-end.

Figure 4.3: Different versions of the Fedstellar front-end.

4.2.1 Front-end

Fedstellar is a DFL platform with a user-friendly interface, based on which a module for
black-box attack is added (Figure 4.3a), and the attack methods that the user can choose
from are SimBA with Random Order (SimBA_Random), Square Attack(Square attack),
Boundary Attack(Boundary attack), HopSkipJumpAttack with l2 norm(HSJA_L2), and
HopSkipJumpAttack with l∞ norm(HSJA_Linf). Users can select different datasets, mod-
els, topologies, and number of nodes, among other parameters for FL, and perform attacks
on the trained models. An experimental version (Figure 4.3b) is included to ensure accu-
racy and minimize errors in the experiments. Users can conduct all attacks on a model
after it has been trained, rather than performing FL before each attack, ensuring consis-
tency across all attacks on the same model.
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Listing 4.1: Code for the AdversarialSampleGenerator class

1 class AdversarialSampleGenerator:

2 def __init__(self , model , dataloader):

3 self.model = model

4 self.dataloader = dataloader

5 self.attack_methods = {

6 "SimBA": (SimBA , {}),

7 "Square attack": (SquareAttack , {}),

8 "Boundary attack": (BoundaryAttack , {}),

9 "HSJA_L2": (HSJA , {"norm": 2}),

10 "HSJA_Linf": (HSJA , {"norm": "inf"})

11 }

12

13 def generate_adversarial_samples(self , attack_method):

14 if attack_method not in self.attack_methods:

15 raise ValueError(f"Unknown attack method: {

attack_method}")

16

17 attack_class , attack_params = self.attack_methods[

attack_method]

18 attacker = attack_class(self.model , self.dataloader , **

attack_params)

19

20 return attacker.attack ()

4.2.2 Attack Performing Module

The attack module is the most important one, which is mainly responsible for generating
adversarial samples by attacking the trained model and test dataloader using the attack
method selected by the user in the front-end after the FL process is completed. The
AdversarialSampleGenerator(Listing 4.1) is first instantiated by passing in the model
and training dataloader, generate_adversarial_samples method in AdversarialSam-

pleGenerator is then called to conduct the attack. The advantage of this structure is to
abstract as much as possible the common parameters of all attack methods, such as model
and dataloader, to avoid redundant code. In addition to this, any other parameters, if
any, can be passed to the corresponding attack method via attack_params. Using Adver-
sarialSampleGenerator enhances the code’s extensibility and maintainability, allowing
new attack methods to be directly added to the self.attack_methods dictionary which
allows new attack methods to be implemented without changing other code.

4.2.3 Logging Module

The logging module is mainly concerned with displaying the current process and showing
the final results. In the same way as the results of FL are displayed on Fedstellar, the
results of the black-box attack are also displayed in the Black-boxAttack fold-out page
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Figure 4.4: Black-box Attack Performance Logging in Fedstellar Tensorboard

(Figure 4.4) of Fedstellar’s TensorBoard. In addition to this, the results of the black-box
attack are also recorded in the logs of each node (e.g. participant 0.log, participant 1.log,
etc.), which is aimed at the purpose that we are not convenient to record the metrics
of each attack method directly from Fedstellar’s TensorBoard but can easily record the
metrics of each attack method from the node’s logs by writing scripts. The time needed
for black-box attacks differs across datasets and models. To better monitor the attack
process, records will be logged in the node’s file after every 10 attack batches. Listing 4.2
briefly depicts the node logs before the black box attack, while the black box attack is in
progress and after the black box attack is completed.

Listing 4.2: Example of a node log participant x.log, x represents the different nodes
involved in the federated learning process.

1 2024 -07 -28 16:22:46 ,965 - Prepare black -box attack with HSJA_L2.

2 2024 -07 -28 16:22:46 ,967 - start hsja .....

3 2024 -07 -28 16:22:46 ,970 - norm = 2

4 2024 -07 -28 16:22:47 ,056 - Processing batch 0 / 312

5 ......

6 ......

7 2024 -07 -28 16:24:25 ,707 - Processing batch 10 / 312

8 ......

9 ......

10 2024 -07 -28 16:27:25 ,707 - Processing batch 310 / 312

11 2024 -07 -28 16:28:46 ,578 - Complete black -box attack with HSJA_L2.

12 2024 -07 -28 16:28:46 ,961 - Accuracy = 0.014829405583441257 ,

Precision = 0.03971002623438835 , Recall = 0.014839405583441257 ,

F1 Score = 0.0.01766916923224926
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4.3 Implementation of the Attacks

4.3.1 SimBA

Simple Black-box Attack (SimBA) is a simple and effective attack with only 20 lines
of Pytorch code. It’s pseudo-code has already mentioned in Figure ??. In order to im-
prove the efficiency and effectiveness of adversarial sample generation, the SimBA method
was rewritten and successfully integrated into the Fedstellar platform. Listing 4.3 demon-
strates the integration of SimBA with random order into Fedstellar to generate adversarial
samples. This reformulation not only optimises the performance of the SimBA method,
but also ensures its compatibility with the Fedstellar platform, which enables the nodes
in the distributed environment to work efficiently and collaboratively to generate high-
quality adversarial samples, thus further enhancing the robustness and security of the FL
model. In summary, the SimBA attack process can be divided into the following three
steps:

Step1: Preparation phase before each SimBA batch.(2 to 16 lines of code in Listing 4.3.)
Firstly, initialise the empty lists x_adv_list and y_list for storing the adversarial sam-
ples and labels respectively, obtain the input data x and labels y by iterating through the
batches in the data loader and clone the input data to initialise the adversarial samples
x_adv. Since SimBA is a scored-based attack method, it is necessary to compute the pre-
dicted probability by using the softmax method and assign it to y_prob_pred. it is also
essential to obtain the predicted labels y_i by using the argmax method, which is mainly
applied to make the model end the current attack after making an incorrect judgement
and to avoid wasting resources.

Step2: Preparation phase before each SimBA sample.(18 to 35 lines of code in List-
ing 4.3.) In this step, it is firstly required to set the desired_label as the label initially
predicted by the model, in untargeted attack, when the current_label is not equal to
the desired_label, it can be regarded as the success of this attack. Also, the predicted
probability (last_prob) of the current sample on the initial label is obtained, and the
direction of the attack is optimised and adjusted for the change of last_prob in the at-
tack. It should be noted that since SimBA requires a large number of queries to ensure
the success of the attack, it is very likely that the total number of dimensions n_dims of
the current sample is less than max_iter. Therefore, the index list indicesindices need
to be randomly arranged and spliced by repeated generation to reach the required length.
Also to prevent the values after adding the perturbation from going over the range of
the original data, it is possible to ensure that the adversarial samples remain within a
reasonable range after adding the perturbation by determining the minimum(clip_min)
and maximum(clip_max) values of the input tensor.

Step3: Attack phase in SimBA.(39 to 82 lines of code in Listing 4.3.) First, initialize
a zero perturbation diff, then update it based on the index list indices. Calculate the
model outputs left_logits and right_logits, along with the corresponding probabili-
ties left_prob and right_prob using the softmax method after adding and subtracting
the perturbation. Compare the probabilities before and after the perturbation, selecting
the direction that leads to a greater reduction in probability to update the adversarial
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sample x_adv. The iteration stops if the current label is no longer the desired label or if
the maximum number of iterations is reached.

Listing 4.3: Algorithm for SimBA with Random Order.

1

2 def generate(self):

3 x_adv_list = []

4 y_list = []

5

6 for batch in self.dataloader:

7

8 x, y = batch

9 x = x.to(self.device)

10 y = y.to(self.device)

11

12 x_adv = x.clone()

13 y_list.append(y)

14

15 y_logits = self.model.forward(x)

16 y_prob_pred = softmax(y_logits , dim=1)

17 y_i = torch.argmax(y_prob_pred , dim=1)

18

19 for i_sample in range(x.size (0)):

20 desired_label = y_i[i_sample]

21

22 current_label = y_i[i_sample]

23 last_prob = y_prob_pred[i_sample ][ desired_label]

24 init_prob = last_prob

25

26 n_dims = torch.tensor(x[i_sample ].shape).prod().

item()

27 indices = torch.randperm(n_dims)[: self.max_iter]

28 indices_size = len(indices)

29

30 while indices_size < self.max_iter:

31 tmp_indices = torch.randperm(n_dims)

32 indices = torch.cat((indices , tmp_indices))[:

self.max_iter]

33 indices_size = len(indices)

34

35 clip_min = torch.min(x)

36 clip_max = torch.max(x)

37

38 term_flag = 0

39 nb_iter = 0

40 while term_flag == 0 and nb_iter < self.max_iter:

41 diff = torch.zeros(n_dims)

42

43 diff[indices[nb_iter ]] = self.epsilon *

clip_max
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44

45 left_logits = self.model.forward(torch.clamp(x

[i_sample] - diff.view_as(x[i_sample ]), min

=clip_min , max=clip_max).unsqueeze (0))

46 left_prob = softmax(left_logits , dim=1).view

(-1)[desired_label]

47

48 right_logits = self.model.forward(torch.clamp(

x[i_sample] + diff.view_as(x[i_sample ]),

min=clip_min , max=clip_max).unsqueeze (0))

49 right_prob = softmax(right_logits , dim=1).view

(-1)[desired_label]

50

51 if left_prob < last_prob:

52 if left_prob < right_prob:

53 x_adv[i_sample] = torch.clamp(x[

i_sample] - diff.view_as(x[i_sample

]), min=clip_min , max=clip_max)

54 last_prob = left_prob

55 current_label = torch.argmax(

left_logits , dim=1)

56 else:

57 x_adv[i_sample] = torch.clamp(x[

i_sample] + diff.view_as(x[i_sample

]), min=clip_min , max=clip_max)

58 last_prob = right_prob

59 current_label = torch.argmax(

right_logits , dim =1)

60 else:

61 if right_prob < last_prob:

62 x_adv[i_sample] = torch.clamp(x[

i_sample] + diff.view_as(x[i_sample

]), min=clip_min , max=clip_max)

63 last_prob = right_prob

64 current_label = torch.argmax(

right_logits , dim =1)

65

66 if desired_label != current_label:

67 term_flag = 1

68

69 x_adv_list.append(x_adv)

70

71 x_adv_tensor = torch.cat(x_adv_list)

72 y_tensor = torch.cat(y_list)

73

74 return x_adv_tensor , y_tensor

Listing 4.4: Preparation phase before each Square Attack batch.

1 def square_attack(self):
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2

3 x_adv_list = []

4 y_list = []

5

6 # Step1: Preparation phase before each Square Attack batch

.

7 for batch in self.dataloader:

8

9 x, y = batch

10 x = x.to(self.device)

11 y = y.to(self.device)

12

13 x_adv = x.clone()

14

15 def adv_criterion(y_pred , y):

16 return y_pred != y

17

18 if self.channels_first:

19 channels = x.shape [1]

20 height = x.shape [2]

21 width = x.shape [3]

22 else:

23 height = x.shape [1]

24 width = x.shape [2]

25 channels = x.shape [3]

26 y_adv = y[torch.randperm(y.size (0))]

27

28 clip_min = torch.min(x)

29 clip_max = torch.max(x)

30 ......

31 ......

4.3.2 Square Attack

Square Attack is an image region-based attack method that randomly selects a square
region on the image to be perturbed each time. Square Attack has a larger and more
localized perturbation compared to SimBA, quickly identifying effective attack points by
gradually increasing the perturbed area. In the next few paragraphs, the attack process
of Square Attack will be described in detail.

Step1: Preparation phase before each Square Attack batch.(Listing 4.4) Rather sim-
ilarly to SimBA, Square Attack also needs to initialise the list of adversarial samples
(x_adv_list) and labels (y_list) as it iterates through each batch in the data_loader,
as well as determining the minimum (clip_min) and maximum (clip_max) values that
will prevent values from falling beyond the range of the original data after the addition
of the perturbation, based on the original samples x. In addition to this, the values of
height and width need to be determined by determining whether is channels_first,
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as the shape to be perturbed is a rectangle. Different DL frameworks or models may
use different tensor layout methods, commonly channels first and channels last. In the
channels first format, the shape of the image data is usually [batch_size, channels,

height, width], which is commonly used in the PyTorch framework, while in channels
last format, the image data is usually in the shape of [batch_size, height, width,

channels], which is commonly used in the TensorFlow or Keras frameworks.

Listing 4.5: The pre-attack phase of Square Attack.

1 def square_attack(self):

2

3 # Step1: Preparation phase before each Square Attack batch

.

4 for batch in self.dataloader:

5 ......

6 ......

7 # Step2: The pre -attack phase of Square Attack.

8 for _ in range(self.nb_restarts):

9 y_pred = torch.argmax(self.model.forward(x_adv), dim

=1)

10 sample_is_robust = adv_criterion(y_pred , y)

11 if torch.sum(sample_is_robust) == 0:

12 break

13

14 x_robust = x[sample_is_robust]

15 y_robust = y[sample_is_robust]

16 sample_loss_init = self._get_logits_diff(x_robust ,

y_robust)

17

18 if self.channels_first:

19 size = (x_robust.shape[0], channels , 1, width)

20 else:

21 size = (x_robust.shape[0], 1, width , channels)

22

23 x_robust_new = torch.clamp(

24 x_robust + self.eps * (2 * torch.randint(low=0,

high=2, size=size , dtype=x_robust.dtype , device

=self.device) - 1),

25 min=clip_min ,

26 max=clip_max

27 )

28

29 sample_loss_new = self._get_logits_diff(x_robust_new ,

y_robust)

30 loss_improved = (sample_loss_new - sample_loss_init) <

0.0

31

32 x_robust[loss_improved] = x_robust_new[loss_improved]

33 x_adv[sample_is_robust] = x_robust
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Step2: The pre-attack phase of Square Attack.(Listing 4.5) The reason why this phase is
called pre-attack phase is that the nb_restarts parameter is set in Square Attack. When
max_iter is reached in the attack but no adversarial samples are generated, the attack is
restarted based on the nb_restarts parameter set before to increase the chances of suc-
cessfully generating adversarial samples. Before the formal attack, firstly, use the model
to predict the adversarial samples x_adv to get the prediction labels y_pred, and then
call the adv_criterion method is used to determine which samples are still robust (i.e.,
not successfully attacked). If all samples are successfully attacked (sample_is_robust
is False), exit the loop immediately. Otherwise, the robust samples x_robust and the
corresponding labels y_robust are extracted from the original data, and the initial loss of
the robust samples is computed by the sample_loss_init method, which is used to com-
pare the effect before and after the perturbation. Before generating a new perturbation
x_robust_new, the perturbation shape size is set according to channels_first to ensure
it matches the original sample perturbation. After the new perturbation x_robust_new is
determined, the _get_logits_diff method is called to determine if the new loss is lower
than the initial loss, i.e., if the perturbation succeeded in reducing the loss. Finally, the
portion of samples for which the perturbation was successful is updated in x_adv.

Listing 4.6: Attack phase in Square Attack.

1 def square_attack(self):

2

3 # Step1: Preparation phase before each Square Attack batch.

4 for batch in self.dataloader:

5 ......

6 ......

7 # Step2: The pre -attack phase of Square Attack.

8 for _ in range(self.nb_restarts):

9 ......

10 ......

11 # Step3: Attack phase in Square Attack

12 for i_iter in range(self.max_iter):

13 percentage_of_elements = self.

_get_percentage_of_elements(i_iter)

14

15 sample_is_robust = adv_criterion(torch.argmax(self

.model.forward(x_adv), dim=1), y)

16

17 if torch.sum(sample_is_robust) == 0:

18 break

19

20 x_robust = x_adv[sample_is_robust]

21 x_init = x[sample_is_robust]

22 y_robust = y[sample_is_robust]

23 sample_loss_init = self._get_logits_diff(x_robust ,

y_robust)

24

25 height_tile = max(int(round(math.sqrt(

percentage_of_elements * height * width))), 1)

26 height_mid = torch.randint(0, height - height_tile
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, (1,)).item()

27 width_start = torch.randint(0, width - height_tile

, (1,)).item()

28

29 delta_new = torch.zeros_like(x_robust)

30 if self.channels_first:

31 delta_new[:, :, height_mid:height_mid +

height_tile , width_start:width_start +

height_tile] = (

32 torch.randint(0, 2, size=(channels , 1, 1),

device=self.device , dtype=torch.

float32) * 4 * self.eps - 2 * self.eps

33 )

34 else:

35 delta_new[:, height_mid:height_mid +

height_tile , width_start:width_start +

height_tile , :] = (

36 torch.randint(0, 2, size=(1, 1, channels),

device=self.device , dtype=torch.

float32) * 4 * self.eps - 2 * self.eps

37 )

38

39 x_robust_new = x_robust + delta_new

40

41 x_robust_new = torch.min(torch.max(x_robust_new ,

x_init - self.eps), x_init + self.eps)

42

43 x_robust_new = torch.clamp(x_robust_new , min=

clip_min , max=clip_max)

44

45 sample_loss_new = self._get_logits_diff(

x_robust_new , y_robust)

46 loss_improved = (sample_loss_new <

sample_loss_init)

47

48 x_robust[loss_improved] = x_robust_new[

loss_improved]

49 x_adv[sample_is_robust] = x_robust

50

51 x_adv_list.append(x_adv)

52 y_list.append(y_adv)

53 return torch.cat(x_adv_list), torch.cat(y_list)

Step3: Attack phase in Square Attack. (Listing 4.6) This phase implements the core
part of Square Attack, where adversarial samples are generated by adding perturbations
to different regions of the image. This process gradually adjusts the size and position of
the perturbed regions until the maximum number of iterations is reached or all samples are
successfully attacked. The steps are as follows: first, the percentage of perturbed regions
for the current iteration is derived using the _get_percentage_of_elements method,



4.3. IMPLEMENTATION OF THE ATTACKS 33

which returns the percentage of perturbed regions based on the number of iterations.
Subsequently, similar to the pre-attack phase, the model is used to predict the current
adversarial samples x_adv to check if all samples have been successfully attacked. When
there are samples that have not yet been successfully attacked, further attacks are per-
formed and the initial loss sample_loss_init of the robust samples is recorded. The
size of the perturbed region for the current iteration height_tile is determined by the
previously computed percentage_of_elements, and the currently perturbed region gets
smaller and smaller as the attack progresses. The perturbed region’s starting positions,
height_mid and width_start, are randomly chosen from height_tile. This is fol-
lowed by the generation of the perturbation by the Square Attack, which adds a square
perturbation within the range [−2ϵ, 2ϵ] at a random position in the image based on the
channel order (channels first or channels last) on an initialised all-zero perturbation tensor
delta_new. Add the new perturbation to the robust sample, generate a new adversarial
sample x_robust_new and use torch.clamp to crop the result to the range [clip_min,

clip_max] to ensure that the perturbed value does not fall outside the range of the original
data. When complete the attack, calculate whether the new loss sample_loss_new after
adding the perturbation is lower than the initial loss sample_loss_init, i.e., whether the
perturbation succeeded in reducing the loss. If the perturbation succeeds in reducing the
loss, update the robust sample x_robust to the new perturbed sample x_robust_new.

Listing 4.7: _get_logits_diff method in Square Attack.

1

2 def _get_logits_diff(self , x, y):

3

4 y_pred = softmax(self.model.forward(x))

5 logit_correct = torch.gather(y_pred , 1, y.unsqueeze (1))

6

7 sorted_logits , _ = y_pred.sort(dim=1, descending=True)

8 logit_highest_incorrect = sorted_logits [:, 1:2]

9

10 return (logit_correct - logit_highest_incorrect).squeeze ()

Listing 4.8: _get_percentage_of_elements method in Square Attack.

1

2 def _get_percentage_of_elements(self , i_iter):

3

4 i_p = i_iter / self.max_iter

5 intervals = [0.001 , 0.005, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6,

0.8]

6 p_ratio = [1, 1 / 2, 1 / 4, 1 / 8, 1 / 16, 1 / 32, 1 / 64, 1 /

128, 1 / 256, 1 / 512]

7 i_ratio = bisect.bisect_left(intervals , i_p)

8

9 return self.p_init * p_ratio[i_ratio]

Other methods used in Square Attack In addition to the aforementioned attack methods,
Square Attack includes other methods to help perform the attack. _get_logits_diff



34 CHAPTER 4. DESIGN AND IMPLEMENTATION

(Listing 4.7) implements a method for calculating differences in logits, which is primar-
ily used to evaluate the effectiveness of counter samples. Specifically, it calculates the
difference between the logit of the correct category and the highest logit of the wrong
category for each sample. The goal attack is to reduce this difference so that the model
has less confidence in the correct category, thus increasing the likelihood of misclassifi-
cation. Another method is called _get_percentage_of_elements (Listing 4.8), which is
used to dynamically adjust the percentage of perturbation based on the current number
of iterations. During the adversarial attack, the proportion of perturbation decreases as
the number of iterations increases, thus refining the impact of the perturbation. This
approach allows the use of larger perturbations in the early stages of the attack to quickly
reduce model confidence, and smaller perturbations in the later stages of the attack to
further fine-tune and optimise the effect of the attack.

4.3.3 Boundary Attack

The main idea of Boundary Attack is to find an adversarial sample by gradually adjusting
the initial sample so that it is close to the decision boundary. The method first generates a
random initial sample with a different class from the original sample, then adds orthogonal
perturbations in each iteration and gradually reduces the magnitude of the perturbations.
The next overview of the whole attack process is presented through the methods used in
the implementation of Boundary Attack.

Listing 4.9: boundary_attack method in Boundary Attack.

1

2 def boundary_attack(self):

3

4 x_adv_list = []

5 y_list = []

6

7 for batch in self.dataloader:

8

9 x, y = batch

10 x, y = x.to(self.device), y.to(self.device)

11 x_adv = x.clone()

12 y_list.append(y)

13

14 preds = torch.argmax(self.model.forward(x), dim=1)

15

16 x_adv = x_adv.clone()

17 clip_min , clip_max = torch.min(x), torch.max(x)

18

19 for ind , val in enumerate(x_adv):

20 x_adv[ind] = self._perturb(

21 x=val ,

22 y=-1, # For untargeted attack

23 y_p=preds[ind],

24 clip_min=clip_min ,
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25 clip_max=clip_max

26 )

27

28 x_adv_list.append(x_adv)

29 return torch.cat(x_adv_list), torch.cat(y_list)

boundary_attack method (Listing 4.9) This part of code implements the main loop of
the Boundary Attack, which calls other methods in the boundary_attack method to
accomplish the whole attack, and prepares the parameters used in the Boundary Attack,
including the storage of adversarial samples x_adv_list and labels y_list, as well as the
minimum value clip_min and maximum value clip_max for later perturbation trimming,
and so on. Subsequently, the _perturb method is invoked to generate the adversarial
samples by iterating over each sample x_adv in the current batch.

Listing 4.10: _perturb method in Boundary Attack.

1

2 def _perturb(self , x, y, y_p , clip_min , clip_max):

3 initial_sample = self._init_sample(x, y, y_p , clip_min ,

clip_max)

4

5 if initial_sample is None:

6 return x

7

8 x_adv = self._attack(initial_sample , x, y_p , self.delta , self.

epsilon , clip_min , clip_max)

9

10 return x_adv

_perturb method (Listing 4.10) This method is used to generate a single adversarial
sample. The _init_sample method is called first to generate an initial perturbation
sample initial_sample. If the initial perturbation sample fails to be generated, the
original sample x is returned, otherwise _attack method is called to optimise the initial
perturbation sample and create the final adversarial sample x_adv.

Listing 4.11: _init_sample method in Boundary Attack.

1

2 def _init_sample(self , x, y, y_p , clip_min , clip_max):

3 nprd = torch.Generator ().manual_seed (0)

4 initial_sample = None

5

6 # The initial image unsatisfied

7 for _ in range(self.init_size):

8 random_img = torch.empty_like(x).uniform_(clip_min ,

clip_max , generator=nprd)

9 random_class = torch.argmax(self.model.forward(random_img.

unsqueeze (0)), dim=1).item()

10

11 if random_class != y_p:

12 initial_sample = random_img
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13 break

14

15 return initial_sample

_init_sample method (Listing 4.11) _init_sample is a method that finds a valid initial
sample of perturbations by generating random images and ensuring that the predicted
categories of these images are different from the predicted classes of the original sample.
At first, a random number generator nprd is created and the seed is set to 0 to ensure
that the random numbers generated are repeatable. Loop init_size times, each time
generating a random image random_img with the same shape as the input sample x,
whose values are uniformly distributed in the range [clip_min, clip_max]. Then, use
the model to predict the random image to get the prediction class random_class, and if
it is different from the prediction class y_p of the original sample, use that random image
as the initial perturbation sample initial_sample and exit the loop.

Listing 4.12: _attack method in Boundary Attack.

1

2 def _attack(self , initial_sample , original_sample , y_p ,

initial_delta , initial_epsilon , clip_min , clip_max):

3 x_adv = initial_sample.clone()

4 self.curr_delta = initial_delta

5 self.curr_epsilon = initial_epsilon

6

7 self.curr_adv = x_adv

8

9 for _ in range(self.max_iter):

10 for _ in range(self.num_trial):

11 potential_advs_list = []

12 for _ in range(self.sample_size):

13 potential_adv = x_adv + self._orthogonal_perturb(

self.curr_delta , x_adv , original_sample)

14 potential_adv = torch.clamp(potential_adv ,

clip_min , clip_max)

15 potential_advs_list.append(potential_adv)

16

17 preds = torch.argmax(self.model.forward(torch.stack(

potential_advs_list)), dim=1)

18 satisfied = preds != y_p

19

20 delta_ratio = torch.mean(satisfied.float()).item()

21

22 if delta_ratio < 0.2:

23 self.curr_delta *= self.step_adapt

24 elif delta_ratio > 0.5:

25 self.curr_delta /= self.step_adapt

26

27 if delta_ratio > 0:

28 x_advs = torch.stack(potential_advs_list)[

satisfied]
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29 break

30 return x_adv

31

32 for _ in range(self.num_trial):

33 perturb = (original_sample - x_advs) * self.

curr_epsilon

34 potential_advs = x_advs + perturb

35 potential_advs = torch.clamp(potential_advs , clip_min ,

clip_max)

36 preds = torch.argmax(self.model.forward(potential_advs

), dim=1)

37 satisfied = preds != y_p

38

39 epsilon_ratio = torch.mean(satisfied.float()).item()

40

41 if epsilon_ratio < 0.2:

42 self.curr_epsilon *= self.step_adapt

43 elif epsilon_ratio > 0.5:

44 self.curr_epsilon /= self.step_adapt

45

46 if epsilon_ratio > 0:

47 x_adv = self._best_adv(original_sample ,

potential_advs[satisfied ])

48 self.curr_adv = x_adv

49 break

50 return self._best_adv(original_sample , x_advs)

51

52 if self.curr_epsilon < self.min_epsilon:

53 return x_adv

54

55 return x_adv

_attack method (Listing 4.12) This piece of code implements the _attack method of
Boundary Attack, which is used to generate the final adversarial samples by adjusting
the perturbations to the initial perturbation samples through several iterations, gradually
approaching the decision boundary. After initialising the adversarial samples and pertur-
bation parameters, iterative optimisation begins. The first step is to adjust delta at the
first inner loop, in which a set of potential adversarial samples is generated for each trial,
and orthogonal perturbations are generated using the _orthogonal_perturb method and
clipped to the [clip_min, clip_max] range. Subsequently, the generated potential ad-
versarial samples are predicted to obtain the prediction labels preds, and satisfied is
obtained by comparing the original labels y_p. Finally, satisfied is used to calculate
delta_ratio, the proportion of the prediction changed by the perturbation. And the
current delta is adjusted according to the value of delta_ratio. This serves to try to
fine-tune the input samples in all directions that are closer to the decision boundary, if
the delta_ratio is too small it means that very few perturbation samples succeeded in
changing the model’s prediction, indicating that delta is too large and the perturbation
is too large, thus it is necessary to reduce the delta. Conversely, delta needs to be
increased to explore a wider range. The second internal loop is used to adjust epsilon
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in a similar way as adjusting delta, and eventually adjusts the current epsilon based on
the value of epsilon_ratio. If epsilon_ratio is too small, it indicates that few pertur-
bation samples succeed in changing the model’s prediction, which suggests that epsilon
and the size of the perturbation is too large. So that epsilon needs to be reduced for
finer tuning, and conversely, that epsilon needs to be increased for more extensive ex-
ploration. It is worth noting that if epsilon_ratio larger than zero, it means that there
is at least one perturbation sample that has successfully changed the model’s prediction.
In this case, _best_adv method is called to select the adversarial sample x_adv from the
successfully perturbed samples that is closest to the original sample. Otherwise, there are
no successfully perturbed samples, the best adversarial sample x_adv can only be selected
from all potential adversarial samples.
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Listing 4.13: _orthogonal_perturb method in Boundary Attack.

1

2 def _orthogonal_perturb(self , delta , current_sample ,

original_sample):

3 perturb = torch.randn_like(current_sample)

4 perturb /= torch.norm(perturb)

5 perturb *= delta * torch.norm(original_sample - current_sample

)

6

7 direction = original_sample - current_sample

8 direction_flat = direction.view(-1)

9 perturb_flat = perturb.view(-1)

10

11 direction_flat /= torch.norm(direction_flat)

12 perturb_flat -= torch.dot(perturb_flat , direction_flat) *

direction_flat

13 perturb = perturb_flat.view_as(current_sample)

14

15 hypotenuse = torch.sqrt(torch.tensor (1.0 + delta ** 2))

16 perturb = ((1 - hypotenuse) * (current_sample -

original_sample) + perturb) / hypotenuse

17 return perturb

_orthogonal_perturb method(Listing 4.13) The _orthogonal_perturb method is used
to generate orthogonal perturbations. An orthogonal perturbation is a change between
the original and current samples that is orthogonal to the direction from the original
sample to the current sample. In this way, the effectiveness of the perturbation can be
increased while maintaining the similarity between the current sample and the original
sample. This is achieved by first generating a random tensor perturb with the same
shape as current_sample and normalising it to have a unit norm. Then calculate the
direction vector direction from current_sample to original sample. The direction and
perturb are converted to one-dimensional tensors direction_flat and perturb_flat

for further calculations. The so-called orthogonalised perturbation, in this piece of code,
is to standardise the direction vector direction_flat by subtracting its projection on
direction_flat from perturb_flat so that it is orthogonal to direction_flat, and
then reconvert the orthogonalised perturb_flat back to its original shape. The final
perturbation perturb returned is a magnitude-adjusted and orthogonalised tensor.

Listing 4.14: _best_adv method in Boundary Attack.

1

2 def _best_adv(self , original_sample , potential_advs):

3 shape = potential_advs.shape

4 min_idx = torch.norm(original_sample.flatten () -

potential_advs.view(shape[0], -1), dim=1).argmin ()

5 return potential_advs[min_idx]

_best_adv method (Figure 4.14) This method is used to select the closest adversarial
sample to the original sample from a set of potential adversarial samples. Selecting the



40 CHAPTER 4. DESIGN AND IMPLEMENTATION

nearest adversarial sample ensures that the perturbation is as small as possible while still
achieving the goal of countering the attack. The basic theorem in this implementation
is to find the index min_idx of the sample with the smallest distance by calculating
the Euclidean distance between original_sample and each flattened potential adversary
sample. In the end, the final output(potential_advs[min_idx]) is based on the index
min_idx.

4.3.4 HopSkipJumpAttack(HSJA)

Boundary Attack and HopSkipJumpAttack (HSJA) are both decision-based black-box at-
tack methods. The difference is that Boundary Attack approximates the decision bound-
ary by gradually adding orthogonal perturbations, while HSJA optimises the samples
by computing perturbation updates and binary search. Compared to Boundary Attack,
HSJA adopts a more systematic approach to select the optimal perturbations in each it-
eration, further improving the efficiency and effectiveness of the attack. In the following,
a detailed description of the attack process of HSJA will be presented with each method
used in HSJA.

Listing 4.15: hsja method in HopSkipJumpAttack(HSJA).

1

2 def hsja(self):

3 x_adv_list = []

4 y_list = []

5

6 for batch in self.dataloader:

7

8 x, y = batch

9 x, y = x.to(self.device), y.to(self.device)

10 y_list.append(y)

11

12 if self.theta is None:

13 input_shape = x.shape [1:]

14 if self.norm == 2:

15 self.theta = 0.01 / torch.sqrt(torch.prod(torch.

tensor(input_shape , device=self.device)))

16 else:

17 self.theta = 0.01 / torch.prod(torch.tensor(

input_shape , device=self.device))

18

19 preds = torch.argmax(self.model.forward(x), dim=1)

20

21 init_preds = [None] * len(x)

22 x_adv_init = [None] * len(x)

23 x_adv = x.clone()

24 clip_min , clip_max = torch.min(x), torch.max(x)

25

26 for ind , val in enumerate(x):

27 self.curr_iter = 0
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28

29 x_adv[ind] = self._perturb(x=val ,

30 y_p=preds[ind],

31 init_pred=init_preds[ind],

32 adv_init=x_adv_init[ind],

33 clip_min=clip_min ,

34 clip_max=clip_max)

35

36 x_adv_list.append(x_adv)

37

38 return torch.cat(x_adv_list), torch.cat(y_list)

hsja method (Listing 4.15) The role of this code is similar to the boundary_attack

method in Boundary Attack, which is mainly responsible for iterating through each batch
of data in the data loader and generating the corresponding adversarial samples for each
sample by calling _perturb. In addition, an initial perturbation parameter theta is
computed and set according to the shape and the type of paradigm (l 2 norm or l ∞ norm)
of the input samples. In HopSkipJumpAttack (HSJA), theta is computed differently for
different norms. For l 2 norm, the size of the perturbation is related to the dimension of
the input samples. Therefore, to ensure that the perturbation is within a reasonable range,
theta needs to be divided by the square root of the dimension.The l ∞ paradigm measures
the maximum absolute value of the vector elements, i.e., the maximum perturbation
among all elements is considered. The size of its perturbation is independent of the
dimension of the input sample, as it only considers the maximum perturbation of a single
element. Therefore, theta only need be divided by the product of the dimensions.

Listing 4.16: _perturb method in HopSkipJumpAttack(HSJA).

1

2 def _perturb(self , x, y_p , init_pred , adv_init , clip_min , clip_max

):

3 initial_sample = self._init_sample(x, y_p , init_pred , adv_init

, clip_min , clip_max)

4

5 if initial_sample is None:

6 return x

7

8 x_adv = self._attack(initial_sample [0], x, initial_sample [1],

clip_min , clip_max)

9

10 return x_adv

_perturb method (Listing 4.16) The major purpose of the _perturb method is to gen-
erate an adversarial sample. It first generates an initial perturbation sample through
the _init_sample method. If the generation fails, the original sample is returned. Oth-
erwise, the final adversarial sample is further optimised by the _attack method. The
_init_sample method and the _attack method are explained in detail in the next para-
graphs.
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Listing 4.17: _init_sample method in HopSkipJumpAttack(HSJA).

1

2 def _init_sample(self , x, y_p , init_pred , adv_init , clip_min ,

clip_max):

3 nprd = torch.Generator ().manual_seed (0)

4 initial_sample = None

5

6 if adv_init is not None and init_pred != y_p:

7 return adv_init , y_p

8

9 for _ in range(self.init_size):

10 random_img = torch.empty_like(x).uniform_(clip_min ,

clip_max , generator=nprd)

11 random_class = torch.argmax(self.model.forward(random_img.

unsqueeze (0)), dim=1).item()

12

13 if random_class != y_p:

14 random_img = self._binary_search(random_img , x, y_p ,

self.norm , clip_min , clip_max , threshold =0.001)

15 initial_sample = random_img , y_p

16 break

17

18 return initial_sample

_init_samplemethod (Listing 4.17) Similarly to the _init_samplemethod in Boundary
Attack, the _init_sample method in HSJA aims to finds a valid initial perturbation
sample by generating random images and ensuring that the predicted classes of these
images are different from the predicted classes of the original sample. The difference is
that the initial perturbation sample random_img is further optimised in HSJA by calling
the _binary_search method if the random_class is different from the predicted class
y_p of the original sample.

Listing 4.18: _attack method in HopSkipJumpAttack(HSJA).

1

2 def _attack(self , initial_sample , original_sample , target ,

clip_min , clip_max):

3 current_sample = initial_sample.clone()

4

5 for _ in range(self.max_iter):

6 delta = self._compute_delta(current_sample ,

original_sample , clip_min , clip_max)

7 current_sample = self._binary_search(current_sample ,

original_sample , target , self.norm , clip_min , clip_max)

8 num_eval = min(int(self.init_eval * (self.curr_iter + 1)

** 0.5), self.max_eval)

9

10 update = self._compute_update(current_sample , num_eval ,

delta , target , clip_min , clip_max)

11
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12 if self.norm == 2:

13 dist = torch.norm(original_sample - current_sample)

14 else:

15 dist = torch.max(torch.abs(original_sample -

current_sample))

16

17 epsilon = 2.0 * dist / ((self.curr_iter + 1) ** 0.5)

18 success = False

19

20 while not success:

21 epsilon /= 2.0

22 potential_sample = current_sample + epsilon * update

23 success = self._adversarial_satisfactory(

potential_sample.unsqueeze (0), target , clip_min ,

clip_max)

24

25 current_sample = torch.clamp(potential_sample , clip_min ,

clip_max)

26 self.curr_iter += 1

27

28 if torch.isnan(current_sample).any():

29 return original_sample

30

31 return current_sample

_attack method (Listing 4.18) The method is a continuous process of adding perturba-
tions to current_sample and optimising them. Therefore, the first thing that should be
determined is the size of the perturbation. The range delta of the current perturbation
can be calculated by calling the _compute_delta method. The num_eval determines how
many randomly orientated samples of the perturbation will be generated and evaluated
when generating the potential adversarial samples. The calculated num_eval is passed
into the _compute_update method to calculate the perturbation update for the current
sample. Subsequently, the initial step size epsilon is computed depending on the norm
applied (l2 norm or l∞). With respect to the current_sample optimisation process, ep-
silon is halved at each step, update potential_sample and check whether it satisfies
the condition. Finally, return the valid cropped adversarial sample.

Listing 4.19: _compute_delta method in HopSkipJumpAttack(HSJA).

1

2 def _compute_delta(self , current_sample , original_sample , clip_min

, clip_max):

3 if self.curr_iter == 0:

4 return 0.1 * (clip_max - clip_min)

5

6 if self.norm == 2:

7 dist = torch.norm(original_sample - current_sample).item()

8 delta = (torch.prod(torch.tensor(current_sample.shape [1:],

device=self.device)).sqrt() * self.theta * dist).item

()
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9 else:

10 dist = torch.max(torch.abs(original_sample -

current_sample)).item()

11 delta = (torch.prod(torch.tensor(current_sample.shape [1:],

device=self.device)) * self.theta * dist).item()

12

13 return delta

_compute_delta method (Listing 4.19) _compute_delta method for calculating the per-
turbation size delta in the current iteration. This method dynamically adjusts the per-
turbation size based on the distance between the current sample and the original sam-
ple and the type of paradigm (l2 norm or l∞ norm) to ensure that the perturbation
is within a reasonable range. If this is the first iteration, the initial perturbation size
0.1 × (clipmax − clipmin) is returned directly. The point of this is to provide a baseline
value for the initial perturbation to ensure that there is a sufficient amount of perturba-
tion in the first iteration. The calculation of delta is shown in Equation 4.1 when the
norm is l2 and Equation 4.2 when the norm is l∞.

Listing 4.20: _binary_search method in HopSkipJumpAttack(HSJA).

1

2 def _binary_search(self , current_sample , original_sample , target ,

norm , clip_min , clip_max , threshold=None):

3 if norm == 2:

4 upper_bound , lower_bound = torch.tensor (1.0, device=self.

device), torch.tensor (0.0, device=self.device)

5 if threshold is None:

6 threshold = self.theta

7 else:

8 upper_bound = torch.max(torch.abs(original_sample -

current_sample))

9 lower_bound = torch.tensor (0.0, device=self.device)

10 if threshold is None:

11 threshold = min(upper_bound * self.theta , self.theta)

12

13 while (upper_bound - lower_bound) > threshold:

14 alpha = (upper_bound + lower_bound) / 2.0

15 interpolated_sample = self._interpolate(current_sample ,

original_sample , alpha , norm)

16

17 satisfied = self._adversarial_satisfactory(

interpolated_sample.unsqueeze (0), target , clip_min ,

clip_max)

18 if satisfied:

19 upper_bound = alpha

20 else:

21 lower_bound = alpha

22

23 result = self._interpolate(current_sample , original_sample ,

upper_bound , norm)
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24 return result

_binary_search method (Listing 4.20) _binary_search is used to find an optimal ad-
versarial sample between the current sample and the original sample. The method finds
a valid adversarial sample by adjusting the interpolation coefficient alpha and gradually
approximating the decision boundary. First of all, an upper and lower bound needs to be
determined. For l2 norm, the upper bound is set to 1.0, the lower bound is set to 0.0, and
threshold is set to self.theta, and for l∞ norm, the upper bound is set to the maximum
difference between the original sample and the current sample, the lower bound is set to
0.0, and the threshold is set to the smaller one between upper bound× theta and theta.
This is followed by the core code of _binary_search, it will enter the loops when the
difference between the upper and lower bounds is greater than threshold, and calculates
the interpolation coefficient alpha, which acts as the midpoint between the upper and
lower bounds. Then call the _interpolate method, which interpolates between the cur-
rent sample and the original sample based on alpha, generating an interpolated sample
interpolated_sample. Subsequently, the _adversarial_satisfactory method is used
to check whether the interpolated samples satisfy the adversarial condition, and if so,
the upper bound is updated to alpha, otherwise, the lower bound is updated to alpha.
Finally, an optimal adversarial sample result is found between the current sample and the
original sample.

_interpolate method. The _interpolate method is used to perform an interpolation
operation between the current sample and the original sample. For the l2 norm, the
new sample is computed using linear interpolation, as described in Equation 4.7. For
the l∞ norm, the new sample is computed using a trimming operation that restricts
current_sample to between original sample− alpha and original sample+ alpha.

result = (1− alpha)× original sample+ alpha× current sample (4.7)

Listing 4.21: _compute_update method in HopSkipJumpAttack(HSJA).

1

2 def _compute_update(self , current_sample , num_eval , delta , target ,

clip_min , clip_max):

3 rnd_noise_shape = [num_eval] + list(current_sample.shape)

4 if self.norm == 2:

5 rnd_noise = torch.randn(rnd_noise_shape , device=self.

device)

6 else:

7 rnd_noise = torch.empty(rnd_noise_shape , device=self.

device).uniform_(-1, 1)

8

9 rnd_noise = rnd_noise / torch.sqrt(torch.sum(rnd_noise ** 2,

dim=tuple(range(1, len(rnd_noise_shape))), keepdim=True))

10 eval_samples = torch.clamp(current_sample + delta * rnd_noise ,

clip_min , clip_max)

11 rnd_noise = (eval_samples - current_sample) / delta

12
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13 satisfied = self._adversarial_satisfactory(eval_samples ,

target , clip_min , clip_max)

14 f_val = 2 * satisfied.float().view(-1, 1, 1, 1) - 1

15

16 if torch.mean(f_val) == 1.0:

17 grad = torch.mean(rnd_noise , dim=0)

18 elif torch.mean(f_val) == -1.0:

19 grad = -torch.mean(rnd_noise , dim=0)

20 else:

21 f_val -= torch.mean(f_val)

22 grad = torch.mean(f_val * rnd_noise , dim=0)

23

24 if self.norm == 2:

25 result = grad / torch.norm(grad)

26 else:

27 result = torch.sign(grad)

28

29 return result

_compute_update method (Listing 4.21) The method enables the adversarial samples
to approximate the decision boundary by generating random noise samples, evaluating
their perturbation effects, and calculating the update direction. Firstly, the shape of the
random noise rnd_noise_shape is generated based on the shapes of num_eval and cur-

rent_sample. For the l2 norm, the random noise rnd_noise is generated with a standard
normal distribution, while for the l∞ norm, it is generated with a uniform distribution
between [−1, 1]. The normalised rnd_noise is used to compute the actual perturbation
direction, which is later updated into rnd_noise. Subsequently, the evaluation samples
are checked to ensure that the adversarial condition is fulfilled, and to conveniently per-
form subsequent calculations, satisfied is converted into a tensor (f_val) containing -1
and 1, where a value of 1 indicates a successful attack, and a value of -1 indicates a failed
attack. If all evaluation samples are successful (the mean value of f_val is 1), calculate
the mean value of the random noise as the gradient direction. If all the evaluation samples
failed against it (the mean of f_val is -1), calculate the negative mean of the random
noise as the direction of the gradient. Otherwise, adjust the weighted mean of the random
noise according to the deviation of ‘f_val as the gradient direction. At last, for the l2
norm, the normalised update direction grad is taken, whereas for the l∞ norm, only take
the sign of grad after the update direction as the result.
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Evaluation

5.1 Experimental Setup

The next sections will discuss the datasets and models used to evaluate black-box adver-
sarial attacks and the black-box adversarial attack methods. Furthermore, parameters
used in setting up Fedstellar [27] will also be explained.

5.1.1 Datasets and Models

In this work, three datasets are selected as attack objects to evaluate the performance of
the attack, they are:

• MNIST is a widely used handwritten digit recognition dataset, released in 1998 by
Yann LeCun et al. [33]. It contains 60,000 training images and 10,000 test images,
each of which is a 28× 28 pixel greyscale map representing handwritten digits from
0 to 9. This dataset is widely used in the fields of ML and computer vision, es-
pecially in training and testing various image classification algorithms. Due to its
simplicity and ease of use, MNIST is considered an introductory dataset in the field
of ML and image recognition. Researchers use MNIST to test the effectiveness of
new algorithms and techniques because its preprocessing and labelling are very stan-
dardised, allowing researchers to focus more on the development and optimisation
of the algorithms themselves .

• Fashion-MNIST [34] is an alternative image dataset to MNIST introduced in 2017
by the Zalando research team to provide a more challenging and realistic benchmark
test dataset. It contains 60,000 training images and 10,000 test images, each of which
is also a 28 × 28 pixel greyscale image, but the image content has been swapped
from handwritten numbers to 10 different categories of fashion products, such as
t-shirts, trousers, shoes, etc. Fashion-MNIST maintains the same image sizes and
data formats as MNIST, and can therefore be used on the same model and code
base. The main goal of this dataset is to advance the field of image classification
beyond simple handwritten numbers to more complex real-world applications.

47
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• CIFAR-10 [35] is a benchmark dataset for image classification released by the Cana-
dian Institute for Advanced Research (CIFAR) in 2009. It contains 60,000 colour
images of 32x32 pixels, of which 50,000 are used for training and 10,000 for testing.
The images are classified into 10 categories including planes, cars, birds, cats, deer,
dogs, frogs, horses, boats, and trucks.CIFAR-10 has a much larger amount of data
and complexity than MNIST and Fashion-MNIST because each image contains rich
colour information and a more complex background, which makes CIFAR-10 one
of the most important datasets for evaluating the performance of DL algorithms,
especially convolutional neural networks (CNNs) .

In the area of ML and DL, the selection of the dataset plays a crucial role in the per-
formance and effectiveness of the model. Therefore, after determining the dataset, the
models used in this work are then introduced.

• Multi-Layer Perceptron (MLP) is a feed-forward artificial neural network consist-
ing of at least three layers of nodes (an input layer, one or more hidden layers,
and an output layer). Each node (also known as a neuron or perceptron) uses
a nonlinear activation function to process inputs and passes information through
weighted connections.The core concept of the MLP stems from the workings of the
perceptron, the basic building block of a neural network, which was proposed by
Rosenblatt [36] in 1957. The MLP is a model of supervised learning and is com-
monly used for classification and regression tasks. During training, the MLP uses
a backpropagation algorithm to adjust the weights so as to minimise the prediction
error. Backpropagation was proposed by Rumelhart, Hinton and Williams [37] in
1986, which optimises the network by calculating the gradient of the loss function
with respect to each of the weights using gradient descent methods. The training of
the MLP can be achieved by optimisation algorithms such as Stochastic Gradient
Descent (SGD), Momentum, and Adaptive Learning Rate Methods (e.g. Adam).

• Convolutional Neural Network (CNN) is a DL model specifically designed to pro-
cess data with a grid structure. The key to CNN is its convolutional and pooling
layers, which are capable of efficiently extracting and processing the spatial and hi-
erarchical features of an image. The concept of CNN was first proposed in 1980 by
Fukushima [38] , who developed the Neocognitron for handwritten digit recognition,
and then LeCun et al. [39] further developed this model for handwritten digit recog-
nition with ”LeNet-5” in 1998. Convolutional layer is the core component of CNN,
which uses a set of convolutional kernels to slide over the input data and extract
features through local connections and shared weights. Each convolutional kernel
applies the same weights at different locations in the image, thus significantly reduc-
ing the number of parameters and computational complexity. Pooling layers (e.g.
maximum pooling or average pooling) further reduce the size of the feature map
by downsampling the local neighbourhood, reducing computation and controlling
overfitting.

In the end, MLP is selected to process the MNIST dataset in this work because of its
simple structure and suitability for low-complexity image tasks. For Fashion-MNIST
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and CIFAR-10 datasets, CNN is selected.Fashion-MNIST data structure though similar
to MNIST, but the image content is more complex and contains details and textures
of various fashion items. The CIFAR-10 dataset is more complex compared to both of
them.The convolution operation of CNN is able to extract multi-level features such as
edges, textures and shapes, which is of great importance especially for dealing with high
dimensional colour images.

5.1.2 Attack Methods

In this work, four attacks were selected and the following six attacks were determined
through the use of different norms and the order of attacks. In the following, the selected
attack methods are briefly described.

• SimBA (Section 4.3.1) is a black-box attack algorithm that optimises the perfor-
mance of the attack by gradually adding small amounts of random noise to the
image and evaluating the changes in the model output. In this work random order
and diagonal order are used for the attacks.

• Square Attack (Section 4.3.2) is based on random search that maximises the mis-
classification probability of the target model by adding square perturbations to the
image.

• Boundary Attack (Section 4.3.3) is a black-box method that uses iterative opti-
mization to minimize perturbations for misclassification by gradually adjusting the
input image along the decision boundary.

• HSJA (Section 4.3.4) is an efficient black-box boundary attack algorithm that
utilises zero-order optimisation techniques to achieve an effective attack on the tar-
get model by jump searching and progressively adjusting the perturbations. In this
attack method, different norms (l2 and l∞) are used.

Meanwhile, the parameters used in the attack have been elaborated in Table 4.1. It is
worth noting that due to the difference in the complexity of the datasets and the mod-
els, the parameters required to achieve the optimal attack state when attacking against
different datasets and trained models are varying. In this work, the parameters identified
in Table 4.1 are used consistently to enable a better comparison of the attack effects of
different attack methods on different models at a macro level.

5.1.3 Fedstellar Configuration

In the next paragraphs, the main focus will be on the selection of parameters other than
the dataset and the model.

In this work, nodes of 5, 10, and 15 are selected to simulate distributed system environ-
ments of different sizes. Fewer nodes (e.g., 5) can reflect the outcome of an attack on a
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small FL System, while more nodes (e.g., 15) can demonstrate the attack behaviour in a
larger system. Also, to test the performance of the attack method in different topologies,
the following four topologies are selected:

1. Full topology: each node is directly connected to all other nodes, reflecting the
optimal communication situation. Figure 5.1 shows the shape of full topology for
different number of nodes.

2. Star topology: the central node is directly connected to all other nodes and other
nodes are not directly connected to each other. Figure 5.2 shows the shape of full
topology for different number of nodes.

3. Random topology: random connections between nodes reflecting a dynamic network
structure closer to practical applications. Figure 5.3 shows the shape of full topology
for different number of nodes.

4. Ring topology: each node is connected to only two of its neighbouring nodes, form-
ing a ring structure. Figure 5.4 shows the shape of full topology for different number
of nodes.

(a) Node = 5 (b) Node = 10 (c) Node = 15

Figure 5.1: Full topologies with different number of nodes.

(a) Node = 5 (b) Node = 10 (c) Node = 15

Figure 5.2: Star topologies with different number of nodes.

In this work, two FL architecture, CFL (Centralised Federated Learning) and DFL (De-
centralized Federated Learning), are chosen for comparing the effectiveness of attacks
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(a) Node = 5 (b) Node = 10 (c) Node = 15

Figure 5.3: Random topologies with different number of nodes. Note that the random
topology generates a topology randomly based on the number of nodes, which has uncer-
tainty. Therefore only one of its possibilities is shown in this figure.

(a) Node = 5 (b) Node = 10 (c) Node = 15

Figure 5.4: Ring topologies with different number of nodes.

under CFL and DFL architectures. In DFL, nodes exchange parameters directly with
each other and there is no central server. Whereas in CFL, all nodes perform parameter
aggregation through a central server. Figure 5.1, Figure 5.2, Figure 5.3 and Figure 5.4
show the case of DFL and in Figure 5.5 will show the topology under CFL with different
number of nodes.

Finally, to ensure the consistency of the experimental results, the duration of the FL
process in all experiments was set to 10 rounds of 3 epochs each.

5.2 Results

In the following, the evaluation of the performance of SimBA, Square attack, Boundary
Attack and HSJA is reported. First, a baseline performance reference under benign set-
tings is established. Subsequently, each attack is discussed individually for all datasets.
Where applicable, mean and the Standard Error Mean (SEM) is reported.
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(a) Node = 5 (b) Node = 10 (c) Node = 15

Figure 5.5: Topologies with different number of nodes in CFL, where the node in green
is Server and the nodes in blue are Trainer.

5.2.1 Baseline Performance

Baseline performance refers to the recorded Accuracy, Precision, Recall and F1 Score of the
current model when the trained model has not yet been attacked.This serves the purpose
of being able to provide a point of reference. By comparing the baseline performance with
the performance after the attack, the impact of the attack on the model performance can
be clearly assessed. And it provides a consistent reference point, which also ensures that
the results are comparable between different experiments.

Table 5.1 shows the baseline Accuracy, Precision, Recall, F1-score performance for MNIST.
As can be seen from the tabular data, the SEM values are relatively small, usually between
0.0007 and 0.017, which suggests that the distribution of data points for these averages
is more concentrated, which is negligible. The data in the table shows that the perfor-
mance of the model in CFL and DFL is significantly affected by the topology and the
number of nodes. For CFL, the model performs best in all metrics when configured with
5 nodes. Whereas, in DFL, with Full,Ring and Star topologies and a configuration of 5
nodes, the model achieves the highest values in Accuracy, Precision, Recall and F1 Score
for this topology, showing its superior performance. And when the number of nodes is the
same, the metrics under different topologies do not differ much. In addition, the Random
topology presents different results, with the best performance at 15 nodes.

Table 5.2 shows the baseline Accuracy, Precision, Recall, F1-score performance for F-
MNIST. Similarly, the SEM values in the tables are small, which is negligible. For CFL,
as with the results under the MINIST dataset, the model performs best in all metrics
when in the 5-node configuration. Whereas for DFL, Full and Ring topologies, with a
configuration of 5 nodes, the model achieves the highest performance in terms of Accuracy,
Precision, Recall and F1 Score under this topology. While for Star topology, the model
performs better when the number of nodes is 10. When the number of nodes is the same,
there is not much difference in the metrics between Full,Ring and Star topologies, Random
topology outperforms the other topologies and achieves its best performance at 10 nodes.

Table 5.3 shows the baseline Accuracy, Precision, Recall, F1-score performance for CIFAR-
10. The results are similar to those under the MINIST dataset in general. In CFL, the
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Table 5.1: Baseline Accuracy, Precision, Recall, F1-score performance for MNIST after
10 rounds in terms of mean and SEM on the local test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.850±0.003 0.848±0.002 0.85±0.003 0.824±0.002
10 0.751±0.008 0.710±0.009 0.751±0.008 0.697±0.008
15 0.779±0.016 0.798±0.017 0.779±0.018 0.748±0.016

DFL

Full
5 0.972±0.001 0.973±0.001 0.972±0.001 0.968±0.001
10 0.969±0.002 0.969±0.001 0.962±0.001 0.964±0.001
15 0.91±0.016 0.918±0.019 0.855±0.016 0.897±0.019

Ring
5 0.971±0.002 0.972±0.002 0.966±0.001 0.967±0.001
10 0.964±0.005 0.971±0.007 0.964±0.005 0.966±0.013
15 0.953±0.011 0.954±0.011 0.953±0.011 0.947±0.013

Star
5 0.966±0.002 0.961±0.001 0.962±0.001 0.953±0.001
10 0.96±0.006 0.96±0.005 0.96±0.006 0.95±0.005
15 0.943±0.013 0.945±0.018 0.943±0.012 0.936±0.014

Random
5 0.961±0.001 0.96±0.003 0.95±0.001 0.954±0.002
10 0.955±0.005 0.963±0.007 0.955±0.005 0.948±0.005
15 0.962±0.01 0.963±0.016 0.962±0.011 0.956±0.015

best performance is achieved when the number of nodes is 5. And in DFL, despite the
different topologies, the model performs better when the number of nodes is 5 than when
the number of nodes is more. In addition, when the number of nodes is the same, the
metrics do not differ much between the topologies.

Overall, the model performs considerably better under DFL than CFL.In addition, when
the number of nodes is the same, there is a slight difference in the performance of the
model under different topologies. And when the topologies are the same, the performance
of the model does not become better with the increase in the number of nodes.

5.2.2 Attacks Performance

In the following paragraphs, the main focus is on illustrating the changes in terms of their
Accuracy, Precision, Recall and F1 Score under different datasets by comparing them
with the baseline performance when different attack methods are used, thus providing a
better measure of the attack efficiency of different attack methods.

SimBA

When SimBA is used for the MINIST and F-MINIST dataset With MLP model, it is
evident that the attack is not effective, i.e., there is not much difference between the
metrics after being attacked and the baseline performance. Table 5.4 presents the results
under the MINIST dataset after the SimBA attack and Table 5.5 presents the results
under the F-MINIST dataset after the SimBA attack. The reason for this is elaborated
in detail next in Section 5.3.1.
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Table 5.2: Baseline Accuracy, Precision, Recall, F1-score performance for FMNIST after
10 rounds in terms of mean and SEM on the local test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.763±0.006 0.724±0.006 0.763±0.006 0.824±0.008
10 0.724±0.011 0.694±0.013 0.724±0.017 0.697±0.014
15 0.699±0.016 0.672±0.015 0.699±0.015 0.748±0.016

DFL

Full
5 0.891±0.001 0.89±0.002 0.891±0.002 0.968±0.002
10 0.864±0.008 0.854±0.01 0.864±0.007 0.964±0.005
15 0.849±0.016 0.822±0.014 0.849±0.016 0.897±0.015

Ring
5 0.886±0.001 0.872±0.001 0.886±0.001 0.967±0.001
10 0.867±0.003 0.882±0.005 0.867±0.003 0.966±0.003
15 0.836±0.014 0.837±0.012 0.833±0.014 0.947±0.013

Star
5 0.861±0.001 0.858±0.001 0.861±0.001 0.953±0.001
10 0.867±0.002 0.853±0.001 0.862±0.002 0.954±0.002
15 0.832±0.017 0.827±0.019 0.831±0.013 0.936±0.012

Random
5 0.91±0.002 0.894±0.001 0.907±0.001 0.954±0.001
10 0.902±0.006 0.895±0.009 0.897±0.005 0.948±0.005
15 0.873±0.019 0.868±0.017 0.875±0.018 0.956±0.019

Table 5.3: Baseline Accuracy, Precision, Recall, F1-score performance for CIFAR-10 after
10 rounds in terms of mean and SEM on the local test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.6±0.002 0.594±0.002 0.6±0.01 0.597±0.001
10 0.573±0.004 0.576±0.003 0.575±0.005 0.575±0.004
15 0.569±0.01 0.554±0.02 0.565±0.017 0.559±0.013

DFL

Full
5 0.768±0.01 0.767±0.002 0.768±0.001 0.733±0.001
10 0.739±0.002 0.727±0.002 0.737±0.001 0.764±0.001
15 0.687±0.01 0.677±0.016 0.685±0.019 0.681±0.013

Ring
5 0.782±0.005 0.791±0.006 0.784±0.005 0.787±0.006
10 0.773±0.007 0.782±0.005 0.774±0.017 0.778±0.07
15 0.756±0.014 0.761±0.018 0.757±0.016 0.759±0.015

Star
5 0.755±0.001 0.758±0.003 0.755±0.003 0.756±0.002
10 0.732±0.006 0.741±0.007 0.738±0.006 0.739±0.005
15 0.671±0.018 0.687±0.012 0.672±0.017 0.679±0.016

Random
5 0.771±0.003 0.769±0.007 0.77±0.002 0.769±0.002
10 0.773±0.008 0.778±0.007 0.771±0.006 0.774±0.008
15 0.762±0.018 0.759±0.019 0.762±0.017 0.76±0.018
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Table 5.4: Accuracy, Precision, Recall, F1-score performance for MINIST after SimBA in
terms of mean and SEM on the adversarial test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.846±0.002 0.835±0.002 0.836±0.001 0.811±0.001
10 0.759±0.008 0.714±0.02 0.759±0.005 0.721±0.006
15 0.786±0.12 0.834±0.1 0.786±0.08 0.785±0.112

DFL

Full
5 0.92±0.001 0.928±0.002 0.92±0.001 0.921±0.001
10 0.948±0.002 0.949±0.004 0.948±0.002 0.948±0.009
15 0.873±0.011 0.891±0.013 0.873±0.01 0.869±0.015

Ring
5 0.919±0.003 0.925±0.001 0.919±0.002 0.919±0.002
10 0.944±0.002 0.947±0.002 0.944±0.002 0.945±0.002
15 0.93±0.014 0.935±0.021 0.93±0.017 0.931±0.014

Star
5 0.916±0.001 0.917±0.001 0.916±0.02 0.915±0.002
10 0.933±0.005 0.934±0.002 0.933±0.003 0.933±0.003
15 0.922±0.009 0.923±0.01 0.922±0.013 0.926± 0.012

Random
5 0.944±0.001 0.956±0.002 0.934±0.003 0.944±0.002
10 0.948±0.003 0.958±0.001 0.938±0.002 0.948±0.003
15 0.944±0.009 0.954±0.013 0.934±0.009 0.945±0.011

The Accuracy, Precision, Recall and F1 Score of the CIFAR-10 dataset after the attack
with different nodes as well as topologies are recorded in Table 5.6. By comparing with
baseline, the decrease of each metrics is significantly higher with CFL federation architec-
ture than with DFL. This indicates that SimBA is better attacked in the CFL scenario.
In DFL, although it is shown in Table 5.3 that its model performance is better when the
number of nodes is 5 for different topologies. However, in DFL, when the Star and Ran-
dom topology apply, their attack is better than others when the number of nodes is 10.
In addition, combining the different topologies, the Star topology has a slightly worse at-
tack performance than the other three, and the Random topology shows its better attack
efficiency.

Square Attack

The analysis of Square Attack’s attack on MINIST (Table 5.7) shows that the attack on
CFL is slightly better than the attack on DFL, but the difference is not significant in
general. In addition, the attack performance under the same topology shows a tendency
of decreasing with the increase of the number of nodes, except for the Random topology,
where the attack performance basically remains in a stable state. In addition, the overall
attack performance under the same nodes does not differ much despite the use of different
topologies.

As for Square Attack under the F-MINIST dataset (Table 5.8), the attack performance
under CFL and DFL is basically the same, and its attack effect is accompanied by slight
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Table 5.5: Accuracy, Precision, Recall, F1-score performance for F-MINIST after SimBA
in terms of mean and SEM on the adversarial test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.752±0.002 0.725±0.001 0.752±0.001 0.741±0.002
10 0.732±0.002 0.664±0.005 0.712±0.003 0.758±0.004
15 0.743±0.012 0.689±0.013 0.733±0.012 0.776±0.009

DFL

Full
5 0.875±0.002 0.8654±0.003 0.895±0.002 0.904±0.002
10 0.891±0.005 0.882±0.008 0.881±0.009 0.922±0.007
15 0.864±0.013 0.811±0.019 0.874±0.011 0.878±0.015

Ring
5 0.878±0.001 0.886±0.002 0.877±0.001 0.907±0.002
10 0.887±0.002 0.888±0.005 0.877±0.001 0.928±0.002
15 0.89±0.016 0.889±0.015 0.9096±0.018 0.949±0.016

Star
5 0.855±0.002 0.805±0.003 0.835±0.002 0.905±0.002
10 0.831±0.009 0.832±0.004 0.831±0.009 0.932±0.013
15 0.846±0.014 0.865±0.013 0.866±0.016 0.966±0.018

Random
5 0.905±0.001 0.905±0.002 0.905±0.001 0.905±0.003
10 0.911±0.007 0.908±0.004 0.911±0.009 0.909±0.008
15 0.904±0.016 0.905±0.017 0.905±0.016 0.904±0.018

Table 5.6: Accuracy, Precision, Recall, F1-score performance for CIFAR-10 after SimBA
in terms of mean and SEM on the adversarial test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.309±0.002 0.433±0.002 0.309±0.001 0.219±0.001
10 0.288±0.002 0.401±0.004 0.289±0.002 0.336±0.003
15 0.33±0.017 0.452±0.014 0.33±0.019 0.382±0.017

DFL

Full
5 0.679±0.001 0.696±0.004 0.679±0.002 0.678± 0.001
10 0.71±0.002 0.734±0.001 0.714±0.002 0.724±0.006
15 0.686±0.015 0.684±0.012 0.686±0.017 0.685±0.02

Ring
5 0.67±0.006 0.681±0.004 0.679±0.007 0.68±0.007
10 0.679±0.012 0.684±0.009 0.679±0.005 0.682±0.006
15 0.708±0.015 0.713±0.014 0.708±0.003 0.711±0.02

Star
5 0.702±0.001 0.713±0.002 0.702±0.001 0.708±0.001
10 0.691±0.002 0.7± 0.002 0.691±0.001 0.696±0.002
15 0.731±0.008 0.751±0.014 0.731±0.008 0.741±0.011

Random
5 0.679±0.002 0.696±0.001 0.679±0.005 0.687±0.003
10 0.64±0.002 0.657±0.002 0.64±0.002 0.649±0.001
15 0.667±0.017 0.679±0.021 0.668±0.013 0.673±0.019
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Table 5.7: Accuracy, Precision, Recall, F1-score performance for MINIST after Square
Attack in terms of mean and SEM on the adversarial test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.096±0.003 0.096±0.002 0.096±0.003 0.096±0.001
10 0.1± 0.001 0.108±0.004 0.1±0.001 0.104±0.001
15 0.112±0.016 0.12±0.011 0.116±0.012 0.118±0.008

DFL

Full
5 0.093±0.001 0.12±0.002 0.094±0.001 0.105±0.002
10 0.112±0.003 0.093±0.006 0.112±0.005 0.102±0.006
15 0.101±0.011 0.11±0.014 0.101±0.018 0.105±0.012

Ring
5 0.1±0.002 0.122±0.001 0.1±0.002 0.11±0.005
10 0.105±0.004 0.097±0.001 0.105±0.003 0.101±0.003
15 0.125±0.014 0.125±0.001 0.125±0.001 0.125±0.001

Star
5 0.12±0.001 0.12±0.011 0.12±0.007 0.119±0.006
10 0.114±0.005 0.114±0.003 0.114±0.005 0.114±0.005
15 0.123±0.012 0.125±0.011 0.123±0.013 0.124±0.009

Random
5 0.123±0.001 0.124±0.002 0.123±0.001 0.123±0.002
10 0.123±0.003 0.118±0.002 0.123±0.003 0.12±0.003
15 0.114±0.009 0.104±0.003 0.114±0.011 0.109±0.012

ups and downs as the number of nodes increases. Similarly, there is no massive difference
in the attack performance for the same number of nodes under different topologies.

Table 5.9 shows the Accuracy, Precision, Recall, and F1 Score of the CIFAR-10 dataset
after Square Attack.Similar to the Square Attack attack on MINIST, the CFL presents
a better attack, and the success rate of its attack is significantly lower than that on
the remaining two datasets. In the same topology, the attack performance decreases
slightly with the increase of the number of nodes. Apart from the Random topology, the
attack performance remains almost the same when the same nodes are used in different
topologies.

Boundary Attack

When using Boundary Attack to attack the MINIST dataset (Table 5.10), it can be
concluded that the performance of the attack under DFL is significantly better than that
of CFL, and this difference grows as the number of nodes increases, and the difference
between the number of nodes is 15 and the number of nodes is 10 is much larger than the
difference between the number of nodes and the number of nodes is 10 and the number of
nodes is 5. In DFL, however, in general there is little difference between the topologies, and
they also all show a tendency of decreasing their Accuracy, Precision, Recall and F1 Score
as the number of nodes increases. It is worth mentioning that the results of Boundary
Attack on F-MINIST (Table 5.11) and CIFAR (5.12) are the same as the above discussed
conclusion. This implies that Boundary Attack is a stable attack method, i.e., the attack
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Table 5.8: Accuracy, Precision, Recall, F1-score performance for F-MINIST after Square
Attack in terms of mean and SEM on the adversarial test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.092±0.002 0.121±0.004 0.092±0.005 0.105±0.004
10 0.112±0.005 0.1±0.006 0.112±0.009 0.106±0.004
15 0.123±0.008 0.121±0.013 0.123±0.013 0.122±0.013

DFL

Full
5 0.099±0.006 0.097±0.013 0.099±0.001 0.098±0.013
10 0.091±0.006 0.091±0.003 0.091±0.013 0.091±0.01
15 0.093±0.011 0.103±0.012 0.093±0.003 0.098±0.008

Ring
5 0.109±0.001 0.1±0.003 0.109±0.001 0.104±0.001
10 0.11±0.003 0.109±0.004 0.11±0.003 0.11±0.005
15 0.108±0.004 0.115±0.003 0.108±0.003 0.111±0.003

Star
5 0.097±0.007 0.111±0.001 0.097±0.005 0.104±0.009
10 0.104±0.005 0.109±0.003 0.104±0.006 0.106±0.004
15 0.101±0.004 0.103±0.007 0.101±0.009 0.102±0.006

Random
5 0.092±0.004 0.107±0.004 0.092±0.004 0.114±0.013
10 0.123±0.006 0.109±0.005 0.123±0.005 0.104±0.006
15 0.114±0.007 0.116±0.007 0.114±0.009 0.107±0.008

Table 5.9: Accuracy, Precision, Recall, F1-score performance for CIFAR-10 after Square
Attack in terms of mean and SEM on the adversarial test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.1912±0.012 0.232±0.01 0.192±0.002 0.21±0.008
10 0.195±0.02 0.234±0.008 0.195±0.012 0.213±0.002
15 0.198±0.007 0.197±0.008 0.198±0.013 0.198±0.011

DFL

Full
5 0.192±0.01 0.194±0.007 0.192±0.009 0.193±0.001
10 0.214±0.012 0.219±0.007 0.214±0.001 0.217±0.008
15 0.222±0.002 0.236±0.005 0.222±0.008 0.231±0.013

Ring
5 0.192±0.002 0.222±0.008 0.192±0.006 0.206±0.002
10 0.214±0.006 0.222±0.003 0.214±0.011 0.218±0.008
15 0.205±0.001 0.212±0.002 0.205±0.013 0.209±0.014

Star
5 0.195±0.002 0.205±0.005 0.195±0.002 0.2± 0.003
10 0.191±0.008 0.214±0.011 0.191±0.011 0.202±0.006
15 0.215±0.012 0.198±0.017 0.215±0.011 0.206±0.013

Random
5 0.21±0.001 0.22±0.001 0.21±0.002 0.215±0.001
10 0.233±0.001 0.229±0.003 0.233±0.002 0.231±0.003
15 0.211±0.008 0.227±0.014 0.211±0.012 0.219±0.011
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Table 5.10: Accuracy, Precision, Recall, F1-score performance for Minist after Boundary
Attack in terms of mean and SEM on the adversarial test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.047±0.001 0.184±0.001 0.047±0.001 0.066±0.006
10 0.047±0.001 0.17±0.003 0.047±0.004 0.049±0.007
15 0.076±0.003 0.03±0.006 0.076±0.003 0.086±0.005

DFL

Full
5 0.014±0.002 0.054±0.001 0.014±0.001 0.019±0.001
10 0.015±0.002 0.035±0.003 0.016±0.004 0.016±0.006
15 0.038±0.008 0.119±0.008 0.038±0.008 0.041±0.006

Ring
5 0.013±0.002 0.046±0.003 0.013±0.002 0.016±0.003
10 0.014±0.001 0.059±0.002 0.014±0.001 0.01±0.002
15 0.021±0.008 0.065±0.009 0.021±0.009 0.021±0.007

Star
5 0.019±0.004 0.013±0.002 0.019±0.002 0.025±0.003
10 0.019±0.003 0.057±0.002 0.019± 0.005 0.019±0.005
15 0.022±0.004 0.113±0.007 0.022±0.006 0.026±0.007

Random
5 0.019±0.003 0.097±0.005 0.019±0.007 0.025±0.002
10 0.018±0.005 0.056±0.004 0.018±0.005 0.019±0.006
15 0.017±0.006 0.062±0.006 0.017±0.008 0.02±0.006

performance and success rate do not fluctuate much when the attack is performed on
different datasets.

HSJA

In this work, two norms, l2 and l∞, are used to examine the effectiveness of HSJA with
different datasets. When the l2 norm is used, the recording of the attack on MINIST,
F-MINIST and CIFAR-10 is shown in Table 5.13, Table 5.14 and Table 5.15. When the
l∞ norm is used, the record for the attack on MINIST, F-MINIST and CIFAR-10 is in
Table 5.16, Table 5.17 and Table 5.18. By comparison, it can be seen that no matter which
norm is used, the attack effect is better under DFL than CFL. In CFL, the performance
of the attack decreases with the number of nodes increase, but the decrease is much lower
than that of the Boundary Attack. While when using the DFL federation structure, it can
be found that when attacking with the l2 norm, the Ring topology is more effective better
than the other attacks, while the Full topology performs better when attacking using l∞.
However, in general, there is little difference between each topology. Meanwhile, similar
to other attack methods, in HSJA, when the topology is certain, the performance of the
attack is not positively correlated with the number of nodes. In addition, by comparing
HSJA using both l2 and l∞ norms, it can be seen that there is a slight difference in the
effectiveness of their attacks, for example, in different datasets, HSJA using l∞ norm
performs better in Full topology, while HSJA using l2 norm shows better performance in
the remaining three topologies.
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Table 5.11: Accuracy, Precision, Recall, F1-score performance for F-Minist after Boundary
Attack in terms of mean and SEM on the adversarial test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.072±0.001 0.631±0.011 0.072±0.001 0.124±0.002
10 0.098±0.008 0.707±0.012 0.098±0.002 0.172±0.005
15 0.111±0.011 0.776±0.011 0.115±0.018 0.21±0.008

DFL

Full
5 0.051±0.001 0.114±0.017 0.051±0.004 0.045±0.001
10 0.052±0.019 0.139±0.016 0.052±0.007 0.076±0.005
15 0.073±0.005 0.152±0.01 0.073±0.006 0.099±0.007

Ring
5 0.047±0.007 0.102±0.008 0.047±0.003 0.065±0.003
10 0.049±0.001 0.099±0.018 0.049±0.002 0.066±0.002
15 0.061±0.007 0.104±0.013 0.061±0.005 0.077± 0.007

Star
5 0.057±0.014 0.133±0.017 0.048±0.008 0.07±0.001
10 0.061±0.002 0.142±0.001 0.06±0.009 0.085±0.006
15 0.073±0.005 0.173±0.007 0.073±0.008 0.103±0.012

Random
5 0.059±0.004 0.142±0.009 0.059±0.006 0.083±0.001
10 0.057±0.007 0.139±0.013 0.057±0.006 0.081±0.003
15 0.061±0.006 0.145±0.01 0.061±0.005 0.086±0.006

Table 5.12: Accuracy, Precision, Recall, F1-score performance for CIFAR-10 after Bound-
ary Attack in terms of mean and SEM on the adversarial test dataset.

Architecture Topology Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.184±0.002 0.261±0.032 0.184±0.012 0.074±0.004
10 0.235±0.016 0.258±0.002 0.235±0.013 0.076±0.003
15 0.256±0.004 0.372±0.009 0.256±0.009 0.167±0.004

DFL

Full
5 0.173±0.003 0.21±0.001 0.173±0.014 0.12±0.002
10 0.202±0.006 0.21±0.002 0.202±0.013 0.206±0.009
15 0.359±0.003 0.384±0.007 0.359±0.015 0.371±0.013

Ring
5 0.167±0.01 0.228±0.001 0.167±0.003 0.193±0.004
10 0.203±0.018 0.275±0.003 0.184±0.011 0.221±0.007
15 0.251±0.008 0.388±0.007 0.252±0.01 0.305±0.008

Star
5 0.186±0.012 0.242±0.007 0.186±0.011 0.21±0.004
10 0.212±0.003 0.251±0.001 0.212±0.011 0.23±0.008
15 0.384±0.008 0.361±0.013 0.384±0.016 0.372±0.007

Random
5 0.201±0.017 0.252±0.012 0.201±0.001 0.2235±0.002
10 0.197±0.007 0.244±0.008 0.197±0.002 0.218±0.01
15 0.331±0.013 0.322±0.012 0.331±0.005 0.326±0.016
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Table 5.13: Accuracy, Precision, Recall, F1-score performance for MINIST after HSJA
with l2 norm in terms of mean and SEM on the adversarial test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.049±0.002 0.182±0.005 0.049±0.005 0.067±0.006
10 0.065±0.002 0.1673±0.009 0.065±0.002 0.07±0.005
15 0.107±0.008 0.293±0.01 0.107±0.006 0.133±0.007

DFL

Full
5 0.015±0.001 0.04±0.007 0.015±0.001 0.018±0.002
10 0.017±0.003 0.03±0.007 0.017±0.003 0.016±0.006
15 0.037±0.007 0.103±0.011 0.0373±0.008 0.04±0.009

Ring
5 0.015±0.002 0.039± 0.007 0.015±0.004 0.017±0.004
10 0.014±0.001 0.044±0.009 0.014±0.006 0.015±0.007
15 0.022±0.006 0.06±0.011 0.022±0.008 0.022±0.006

Star
5 0.011±0.003 0.027±0.006 0.011±0.003 0.029±0.003
10 0.023±0.006 0.048±0.006 0.022±0.006 0.022±0.008
15 0.028±0.008 0.094±0.008 0.028±0.004 0.0292±0.009

Random
5 0.022±0.004 0.085±0.003 0.022±0.002 0.029±0.004
10 0.021±0.004 0.04±0.001 0.021±0.004 0.021±0.003
15 0.019±0.007 0.049±0.006 0.019±0.006 0.021±0.005

Table 5.14: Accuracy, Precision, Recall, F1-score performance for F-MINIST after HSJA
with l2 norm in terms of mean and SEM on the adversarial test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.067±0.001 0.2755±0.005 0.067±0.003 0.081±0.002
10 0.071±0.003 0.269±0.004 0.071±0.004 0.113±0.007
15 0.143±0.005 0.367±0.005 0.143±0.008 0.206±0.007

DFL

Full
5 0.061±0.002 0.113±0.001 0.061±0.002 0.053±0.003
10 0.069±0.004 0.109±0.002 0.069±0.003 0.085±0.004
15 0.091±0.007 0.234±0.003 0.091±0.008 0.131±0.006

Ring
5 0.063±0.001 0.099±0.004 0.063±0.006 0.077±0.005
10 0.073±0.003 0.113±0.003 0.073±0.009 0.089±0.007
15 0.137±0.005 0.263±0.008 0.137±0.006 0.18±0.009

Star
5 0.084±0.003 0.125±0.003 0.084±0.004 0.101±0.005
10 0.093±0.003 0.154±0.004 0.093±0.003 0.116±0.005
15 0.143±0.006 0.231±0.008 0.143± 0.006 0.177±0.007

Random
5 0.06±0.004 0.108±0.006 0.06±0.004 0.077±0.004
10 0.065±0.003 0.129±0.005 0.065±0.003 0.086±0.006
15 0.134±0.006 0.369±0.007 0.134±0.005 0.196±0.008
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Table 5.15: Accuracy, Precision, Recall, F1-score performance for CIFAR-10 after HSJA
with l2 norm in terms of mean and SEM on the adversarial test dataset.

Architecture Topology Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.174±0.003 0.278±0.005 0.174±0.002 0.117±0.001
10 0.201±0.005 0.389±0.004 0.2012±0.006 0.265±0.005
15 0.358±0.006 0.398±0.008 0.3582±0.006 0.377±0.003

DFL

Full
5 0.2± 0.01 0.206±0.01 0.1997±0.0091 0.155±0.007
10 0.238±0.006 0.199±0.007 0.238±0.006 0.217±0.005
15 0.342±0.008 0.31±0.009 0.3417±0.004 0.325±0.011

Ring
5 0.195±0.01 0.204±0.006 0.195±0.01 0.199±0.009
10 0.194±0.005 0.232±0.008 0.194±0.011 0.211±0.004
15 0.247±0.004 0.308±0.011 0.2467±0.006 0.274±0.009

Star
5 0.232±0.003 0.263±0.006 0.232±0.009 0.247±0.004
10 0.259±0.011 0.284±0.007 0.259±0.006 0.271±0.003
15 0.375±0.006 0.389±0.004 0.375±0.009 0.382±0.008

Random
5 0.255±0.005 0.315±0.006 0.255±0.008 0.282±0.005
10 0.258±0.006 0.309±0.006 0.258±0.01 0.281±0.008
15 0.371±0.011 0.382±0.01 0.367±0.009 0.377±0.009

Table 5.16: Accuracy, Precision, Recall, F1-score performance for MINIST after HSJA
with l∞ norm in terms of mean and SEM on the adversarial test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.057±0.001 0.178±0.003 0.057±0.001 0.076±0.002
10 0.068±0.002 0.174±0.005 0.068±0.003 0.075±0.004
15 0.116±0.006 0.292±0.009 0.116±0.008 0.147±0.007

DFL

Full
5 0.015±0.003 0.034±0.002 0.015±0.002 0.017±0.004
10 0.016±0.002 0.028±0.005 0.016±0.005 0.015±0.006
15 0.038±0.007 0.091±0.008 0.038±0.007 0.042±0.005

Ring
5 0.015±0.001 0.037±0.001 0.015±0.002 0.018±0.001
10 0.014±0.003 0.04±0.006 0.014±0.005 0.015±0.007
15 0.023±0.008 0.048±0.009 0.023±0.006 0.023±0.005

Star
5 0.024±0.002 0.094±0.003 0.024±0.002 0.032±0.002
10 0.023±0.003 0.041±0.005 0.025±0.003 0.022±0.003
15 0.028±0.004 0.09±0.004 0.029±0.004 0.03±0.004

Random
5 0.022±0.003 0.073±0.004 0.022±0.002 0.029±0.003
10 0.02±0.005 0.033±0.003 0.02±0.004 0.021±0.004
15 0.021±0.006 0.044±0.004 0.021±0.004 0.023±0.006
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Table 5.17: Accuracy, Precision, Recall, F1-score performance for F-MINIST after HSJA
with l∞ norm in terms of mean and SEM on the adversarial test dataset.

Architecture Topol. Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.064±0.001 0.264±0.002 0.064±0.001 0.072±0.004
10 0.071±0.005 0.298±0.004 0.071±0.005 0.103±0.007
15 0.138±0.007 0.37±0.008 0.138±0.006 0.176±0.008

DFL

Full
5 0.06±0.001 0.111±0.003 0.06±0.001 0.05±0.001
10 0.062±0.002 0.11±0.004 0.123±0.003 0.162±0.003
15 0.131±0.007 0.311±0.004 0.131±0.008 0.165±0.009

Ring
5 0.06±0.001 0.111±0.002 0.06±0.003 0.07±0.002
10 0.061±0.003 0.112±0.007 0.061±0.003 0.071±0.004
15 0.162±0.006 0.137±0.009 0.162±0.005 0.156±0.005

Star
5 0.06±0.001 0.111±0.002 0.06± 0.001 0.07±0.001
10 0.059±0.005 0.097±0.008 0.059±0.005 0.067±0.005
15 0.07±0.008 0.173±0.011 0.07±0.008 0.089±0.003

Random
5 0.06±0.002 0.111±0.003 0.06±0.004 0.07±0.003
10 0.059±0.007 0.082±0.007 0.059±0.005 0.064±0.006
15 0.073±0.011 0.128±0.009 0.073±0.01 0.085±0.008

Table 5.18: Accuracy, Precision, Recall, F1-score performance for CIFAR-10 after HSJA
with l∞ norm in terms of mean and SEM on the adversarial test dataset.

Federation Architecture Topology Nodes Accuracy Precision Recall F1 Score

CFL Star
5 0.169±0.002 0.26±0.003 0.169±0.002 0.112±0.002
10 0.219±0.004 0.299±0.002 0.219±0.004 0.253±0.004
15 0.322±0.009 0.3512 ± 0.008 0.322±0.01 0.336±0.008

DFL

Full
5 0.192±0.001 0.203±0.001 0.192±0.002 0.146±0.001
10 0.251±0.001 0.279± 0.002 0.251±0.001 0.264±0.001
15 0.343±0.011 0.367±0.006 0.343±0.009 0.354±0.008

Ring
5 0.201±0.001 0.204±0.002 0.201±0.001 0.203±0.002
10 0.274±0.002 0.284±0.003 0.274±0.008 0.279±0.01
15 0.371±0.007 0.369±0.008 0.371±0.007 0.37± 0.011

Star
5 0.252±0.002 0.283±0.003 0.252±0.002 0.267±0.002
10 0.298±0.002 0.31±0.004 0.299±0.002 0.304±0.003
15 0.369±0.016 0.378±0.011 0.369±0.017 0.374±0.014

Random
5 0.192±0.003 0.203±0.004 0.182±0.003 0.197±0.008
10 0.19±0.004 0.189±0.006 0.189±0.004 0.189±0.005
15 0.299±0.011 0.34±0.006 0.299±0.009 0.319±0.01
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Figure 5.6: An illustration of accessible components for different attack methods. [26]

5.3 Discussion

5.3.1 SimBA witn MINIST and F-MINIST

When attacking the MINIST and F-MINIST datasets with SimBA, the Accuracy, Pre-
cision, Recall, and F1 Score metrics decrease by a minimal amount, in other words, it
is difficult to trick the model into making incorrect predictions with the perturbations
generated by SimBA. Possible reasons for this situation are:

1. In this work, the attack against pixels in SimBA is used, which also dictates that the
range of each perturbation is particularly small, which in turn has a limited ability
to affect the model’s predictions, and therefore it is difficult to have a large impact
on the model’s predictions in a limited number of iterations.

2. Also when selecting the pixels to be perturbed, there are many ways to pick them.
In this work, a random order is used, i.e. the order of the pixels in the original
sample is disturbed and the attack is performed according to this random order,
which makes the uncertainty of the attack higher. For example, an attack on a
pixel in an iteration of SimBA decreases the probability of the model’s prediction
being successful, and in the next iteration, instead of attacking along the vertical,
horizontal, or diagonal direction of the pixel, the attack is relocated to a new and
random pixel to perturb. In this way, the latest attack position may not reduce the
probability of correct model prediction, which on one hand makes the attack less
efficient and on the other hand affects the final attack.

3. SimBA is a score-based attack method. Score-based attacks use the model’s output
scores (e.g., probability distributions or logits) to guide the generation of adversarial
samples, whereas decision-based attacks use only the model’s final decisions (i.e.,
predicted abels) to generate adversarial samples. Figure 5.6 illustrates of accessible
components of the target model for each, from which it can be seen that score-based
attack assumes access to the output layer and a decision-based attack assumes ac-
cess to the predicted label alone. As can be seen from Table 5.1 and Table 5.2, when
trained for 10 rounds, the accuracy is as high as 97% for the MINIST dataset using
MLP, and almost 90% for F-MINIST using CNN, which indicate that the probabil-
ity of successful model prediction is extremely high. Meanwhile, to further figure
out the probability of the model predicting different labels, the y_pred after using
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the softmax method for logits is recorded, and the following is an example of
one of them: y_pred = [4.9019e-03, 9.5949e-05, 6.0425e-03, 5.5782e-03,

1.2769e-04, 1.8458e-03, 8.0444e-06, 9.6489e-01, 1.3356e-03, 1.5170e-02].
In this case, the probability of success of the model in predicting correct labels is
96.489%, while the maximum of the probability of predicting incorrect labels is only
1.517%. Therefore, trying to make the probability of predicting wrong labels larger
than the probability of correct labels through pixel perturbation is not a simple task.
In addition, in order to record whether SimBA is really successful in attacking, i.e.,
whether it has made the model reduce the probability of predicting correct labels,
by recording the probability y_init at the beginning of the attack and the probabil-
ity last_prob after the completion of the attack, and by calculating the difference
between the them, the average probability of the decrease is 0.00581, which also
means that SimBA is successful in attacking, but this level of attack can hardly
make the model make wrong classification.

5.3.2 Attack Methods

In a comprehensive adversarial attack experiment on MNIST, F-MNIST and CIFAR-10
datasets, several different methods, namely SimBA, Square Attack, Boundary Attack and
HSJA (including l2 and l∞ norms), are used in this work and different FL parameters are
set for testing. The following are the findings by analysing the experimental data:

SimBA

SimBA method performs poorly on the MNIST and F-MNIST datasets. This suggests
that the method may lack effectiveness when dealing with these simpler image datasets
with high contrast. On the contrary, SimBA performs moderately well on the CIFAR-10
dataset, which may be due to the higher complexity of the CIFAR-10 images, and SimBA
is able to find more adversarial samples on the more complex images.

Square Attack

Square Attack’s performance on all three datasets is relatively stable, showing its strong
adaptability and consistency. It implies that Square Attack is able to execute its attacks
with roughly the same success rate on both the relatively simple MNIST and F-MNIST
datasets, as well as the more complex CIFAR-10 dataset. This stability indicates that
Square Attack is able to keep its attack effectiveness against datasets of different types and
complexity without significant fluctuations due to changes in the dataset [40]. Therefore,
Square Attack is considered to be a very reliable adversarial attack method, especially
suitable for scenarios that require adversarial testing on multiple datasets. Whether in
academic research or in real-world applications, Square Attack provides consistent and
credible attack effects, enabling researchers and practitioners to better evaluate and im-
prove the robustness of ML models.
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Boundary Attack and HSJA

Among all the attack methods tested, Boundary Attack and HSJA perform outstandingly
well, especially HSJA, which has a higher success rate. This suggests that HSJA is more
effective in generating adversarial samples, benefiting from its more efficient search strat-
egy (_binary_search method) and optimisation mechanism (_compute_update method).
Specifically, HSJA is able to find better adversarial samples in a shorter period of time,
which also can help improve the success rate of the attack. Boundary Attack, despite its
excellent performance, is slightly inferior to HSJA.

A noteworthy phenomenon is that there is only little difference in the metrics of HSJA
when attacking using different norms (l2 and l∞). This indicates that HSJA maintains
a consistently high level of attack effectiveness whether the l2 norm or the l∞ norm
is used. The insensitivity of the norms shows the robustness and versatility of HSJA,
which means that it is able to adapt to different constraints and still maintain excellent
performance. Regardless of the paradigm constraints, HSJA is able to generate adversarial
samples efficiently, thus demonstrating powerful attack capabilities in different application
scenarios. This feature is essential for adversarial testing in real-world applications, as it
ensures HSJA operates stably under various conditions, thus serving as a valuable tool
for assessing and enhancing the security of ML models.

5.3.3 Fedstellar Configuration

In the Fedstellar Configuration, aside from the fixed training rounds and epochs, this work
also sets different datasets and models, number of nodes, and topologies. The following
paragraph details how each parameter impacts black-box adversarial attacks.

Datasets

A comparative analysis of the accuracy of different attack methods across various datasets
reveals that the effectiveness of black-box attacks varies significantly across datasets. With
the exception of SimBA (see Section 1), Square Attack, Boundary Attack and HSJA
demonstrate the most effective attack performance on MNIST, followed by F-MNIST,
and the least effective on CIFAR-10.

The discrepancies in the efficacy of black-box adversarial attacks across disparate datasets
can be attributed to the inherent complexity of the datasets, the resolution and diversity
of the images, and the specifics of model training. The MNIST dataset, with its low
complexity and high contrast, facilitates the recognition of handwritten digits by models,
resulting in a higher success rate of adversarial attacks. Despite the F-MNIST dataset
having the same resolution, it comprises a wider range of objects and more intricate tex-
tures, which renders the generation of adversarial examples more challenging and results
in a slightly lower attack success rate. The CIFAR-10 dataset, with its more diverse image
content, including a greater variety of colours and details, improves the model’s ability to
generalise, but also increases the difficulty of adversarial attacks.
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Topology

The results of the analysis indicate that, with the exception of the Random topology
structure, there is not a significant difference in the effectiveness of the attack when
models trained with the same number of nodes are utilised on the same dataset. This
may be attributed to the timing of the black-box attacks.

In general, there are many potential points in time at which a black-box attack may
be conducted. For example, the attacks may be conducted after each training round,
with the attacked model then employed in subsequent training epochs. Alternatively, the
attacks may be conducted on the model once training is complete. In this work, the latter
method is employed. In light of these considerations, it becomes evident that a crucial
factor influencing the subsequent attack effectiveness is the performance of the model
prior to the attack. To verify this, an investigation was conducted using the Boundary
Attack as a case study. A comparison was made between the baseline performance and
post-attack metrics under different parameter settings, as Figure 5.7 shows, which led to
the conclusion that the effectiveness of the attack method is positively correlated with
the performance of the attacked model. In other words, an increase in the performance
of the attacked model will result in a greater likelihood of the model making incorrect
classifications as a consequence of the attack.

Accordingly, under the experimental settings of 10 rounds and 3 epoches, the performance
of the models trained with the same number of nodes but different topologies does not dif-
fer significantly, resulting in minimal differences in attack performance. However, Random
topology is inherently unpredictable due to the random generation process. Consequently,
even when the number of nodes is held constant, the performance of the trained models
can vary significantly when a random topology structure is employed.

(a) MINIST dataset (b) F-MINIST dataset (c) CIFAR-10 dataset

Figure 5.7: Relationship between Baseline Performance and Attack Success Rate across
Different Datasets in Boundary Attack. The horizontal axis represents the Accuracy
metric from Table 5.1, Table 5.2 and Table 5.3 respectively, and the vertical axis represents
the corresponding Accuracy values from Table 5.10, Table 5.11, and Table 5.12, using 1 -
Accuracy as the Attack Success Rate.
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Number of Nodes

Similarly, the reduction in attack performance with an increase in the number of nodes
may also be attributed to a decline in the model’s training effectiveness. The potential
reasons for this situation include the significant increase in communication overhead as the
number of nodes grows. As the number of nodes increases, the communication process,
whereby each node sends its local model updates to other nodes, may become more
frequent. This may result in network delays and communication bottlenecks, which could
affect training efficiency and effectiveness [41].

Furthermore, in a distributed environment, there may be discrepancies in communication
and computational capabilities among nodes. This asynchrony can result in some nodes
updating at a slower rate, which in turn affects the timely updates of the global model and
the overall convergence speed [42]. An increase in the number of nodes serves to exacerbate
the issue of synchronisation, which in turn affects the effectiveness of the training process.
Also, it should be noted that each node may have limited computational resources. As
the number of nodes increases, the computational resources allocated to each node may
become more constrained. The lack of sufficient computational resources may impede the
implementation of high-frequency model updates, consequently resulting in suboptimal
training processes.

Federation approach

The choice of different federation approaches has a significant impact on the effectiveness
of attacks. Attacks on models trained using the CFL method are less effective compared
to those trained using the DFL method. The primary reason for this is likely the poorer
performance of models trained using the CFL method.

In CFL, all nodes need to communicate with a central server, which can lead to communi-
cation bottlenecks, especially when there are many nodes. DFL, on the other hand, avoids
the single point of communication with the central server, allowing nodes to exchange in-
formation directly with each other, reducing the communication burden and improving
training efficiency [43]. Furthermore, CFL does not allow nodes to exchange update in-
formation directly, which may result in over-reliance on the central server, potentially
causing model overfitting issues [44].



Chapter 6

Summary and Conclusions

In this work, five attack methods were integrated into the FL platform Fedstellar. These
methods are: SimBA, Square Attack, Boundary Attack, and HSJA. SimBA is a simple
black-box adversarial attack method that evaluates the effectiveness of adversarial exam-
ples by adding noise pixel by pixel until the model’s prediction is successfully disrupted.
Square Attack is an efficient black-box adversarial attack method that generates adversar-
ial examples by randomly selecting and perturbing square regions within the image. This
method uses a random search strategy, offering high stability, query efficiency and attack
success rate. Boundary Attack is based on decision boundaries, it starts from the original
sample and gradually moves towards the decision boundary to find the smallest perturba-
tion that causes the sample to be misclassified. HSJA is an efficient black-box adversarial
attack method that uses geometric structures and randomization strategies to generate
adversarial examples. It is suitable for both l2 norm and l∞ norm, and it can successfully
generate adversarial examples with fewer queries, exhibiting excellent performance and
broad applicability.

Meanwhile, to evaluate the performance of these attack methods, different parameters
were set in Fedstellar. These parameters include the dataset (MNIST, F-MNIST, and
CIFAR-10), model (MLP and CNN), number of nodes (5, 10 and 15), and topology (Full
topology, Star topology, Ring topology, and Random topology). By analyzing the metrics
(Accuracy, Precision, Recall, and F1 Score) of different attacks under these parameters,
the following conclusions were drawn: (1) Attacks on models trained using DFL are more
effective than those trained using CFL, (2) When the number of nodes is the same, there
is little difference in the attack methods under different topologies, (3) The performance
of the attack methods decreases as the number of nodes increases, (4) The attack methods
(except SimBA) are most effective on MNIST, followed by F-MNIST, and least effective
on CIFAR-10.

In addition, there are some limitations and areas for improvement in this work. Firstly,
the overall number of experimental rounds is relatively low, resulting in some randomness
and uncertainty in the experimental results. More experimental rounds are needed in the
future to obtain more accurate results. Secondly, this work primarily focuses on attacking
models after training is completed. In future work, it would be beneficial to introduce
attacks after each training round, using the attacked model for subsequent training and
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final evaluation. Future work could also include white-box attacks or other attack methods
to more comprehensively evaluate the robustness of Fedstellar from multiple perspectives.
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