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Abstract

Decentralized Federated Learning (DFL) allows collaborative model training while pre-
serving data privacy, but it is vulnerable to poisoning attacks. This thesis proposes
Dynamic Aggregation Functions, a Moving Target Defense (MTD) strategy, to improve
DFL’s resilience against such attacks. The main contributions are: 1) Providing a com-
prehensive theoretical background on Federated Learning, poisoning attacks, and MTD;
2) Developing a framework for understanding MTD techniques in DFL, exploring im-
plementation perspectives like shuffling, diversity, redundancy and hybrid techniques; 3)
Proposing the novel Dynamic Aggregation mechanism that enables nodes to proactively or
reactively switch aggregation functions. Evaluations on benchmark datasets demonstrate
the effectiveness of proactive MTD in low poisoning scenarios, with limitations in high
poisoning environments. The techniques have negligible overhead on system resources.

This thesis is one of the first to investigate MTD for addressing security issues in DFL.
The proposed Dynamic Aggregation method enhances DFL’s resilience to poisoning at-
tacks. The thesis also acknowledges the limitations and suggests future research directions,
such as evaluating the performance in non-IID data scenarios and integrating Dynamic
Aggregation with other security mechanisms.
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Zusammenfassung

Dezentrales föderiertes Lernen (DFL) ermöglicht kollaboratives Modelltraining unter Wahrung
der Datenprivatsphäre, ist jedoch anfällig für Vergiftungsangriffe (Poisoning Attacks).
Diese Masterarbeit schlägt dynamische Aggregationsfunktionen vor, eine Moving Target
Defense (MTD) Strategie, um die Widerstandsfähigkeit von DFL gegen solche Angriffe
zu verbessern. Die Hauptbeiträge sind: 1) Bereitstellung eines umfassenden theoretischen
Hintergrunds zu föderiertem Lernen, Vergiftungsangriffen und MTD; 2) Entwicklung eines
Frameworks zum Verständnis von MTD-Techniken in DFL, das Implementierungsperspek-
tiven wie Shuffling, Diversity, Redundanz und Hybrid-Techniken untersucht; 3) Vorschlag
des neuartigen Mechanismus der dynamischen Aggregation, der es Knoten ermöglicht, Ag-
gregationsfunktionen proaktiv oder reaktiv zu wechseln. Auswertungen auf Benchmark-
Datensätzen zeigen die Wirksamkeit von proaktivem MTD in Szenarien mit geringer
Vergiftung, mit Einschränkungen in Umgebungen mit hoher Vergiftung. Die Techniken
haben einen vernachlässigbaren Overhead auf Systemressourcen.

Diese Arbeit ist eine der ersten, die MTD zur Lösung von Sicherheitsproblemen in DFL
untersuchen. Die vorgeschlagene Methode der dynamischen Aggregation verbessert die
Widerstandsfähigkeit von DFL gegen Vergiftungsangriffe. Die Arbeit erkennt auch die
Grenzen an und schlägt zukünftige Forschungsrichtungen vor, wie die Bewertung der
Leistung in nicht-IID-Datenszenarien und die Integration der dynamischen Aggregation
mit anderen Sicherheitsmechanismen.
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Chapter 1

Introduction

Federated Learning (FL) is an emerging paradigm in Machine Learning (ML) that en-
ables collaborative training of models across distributed datasets while preserving data
privacy[1]. In FL, instead of sharing raw data, participants share locally trained model
updates, which are then aggregated to obtain a global model. FL can be categorized into
two types: Centralized Federated Learning (CFL)[1] and Decentralized Federated Learn-
ing (DFL)[2]. While CFL relies on a central server for model aggregation, DFL eliminates
this single point of failure by allowing decentralized aggregation among neighboring par-
ticipants[3].

Despite its advantages, DFL is vulnerable to adversarial attacks, particularly poisoning
attacks[4][5]. In poisoning attacks, malicious participants intentionally inject biased or
harmful data to compromise the integrity of the global model[2][6]. These attacks can
prevent model convergence or cause convergence to a flawed model, leading to misclassi-
fications or backdoor vulnerabilities[5].

1.1 Motivation

Federated Learning (FL) is a novel approach in Machine Learning (ML) that enables col-
laborative learning on distributed datasets while preserving user privacy[7]. FL can be
categorized into two types: Centralized Federated Learning (CFL) and Decentralized Fed-
erated Learning (DFL)[1][2]. Although CFL is widely used in various domains, it suffers
from drawbacks such as a single point of failure and bottleneck. DFL was introduced in
2018 to address these issues by allowing decentralized aggregation of model parameters,
eliminating the need for a central server[8]. However, DFL is vulnerable to adversarial
attacks, where malicious clients can manipulate local data or the model to compromise
the accuracy and robustness of the global model[6].

One of the significant threats to DFL is poisoning attacks, where an attacker manipulates
the training data or model updates to degrade the performance of the global model[6].
To tackle this challenge, this thesis proposes the integration of Moving Target Defense
(MTD) techniques to enhance the security and resilience of DFL systems against poisoning
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2 CHAPTER 1. INTRODUCTION

attacks. MTD is a security concept that involves constantly changing the attack surfaces
to impede the ability of adversaries to execute successful attacks[5].

1.2 Description of Work

The Master Thesis aims to design and implement a Moving Target Defense (MTD)-based
defense mechanism to improve the robustness and security of the Decentralized Federated
Learning (DFL) system. The project is divided into four main phases:

Background Research and Problem Understanding: In this phase, this work will ac-
quire the conceptual elements involved in the proposal of the system and understand the
background knowledge of DFL, its challenges, vulnerabilities, and the MTD mechanism.
This includes studying the fundamentals of DFL, identifying the vulnerabilities and chal-
lenges associated with DFL, and understanding the MTD mechanism and its potential to
enhance the security of DFL systems.

Design and Architecture of the MTD-based Defense Mechanism: In this phase, this work
will present a proposal for the design and architecture of the MTD-based defense mecha-
nism for the DFL. This includes identifying the features and configurations that must be
incorporated into the proposed system to enhance the resilience of the DFL framework.
The student must consider factors such as the ability to run on resource-constrained con-
tainers or devices, compatibility with existing DFL frameworks (e.g., FedStellar), and the
ability to support MTD mechanisms (e.g., dynamic topology, dynamic communication
port, or dynamic aggregation function). The proposed approaches must be thoroughly
discussed with the supervisors to determine the most optimal strategy and make informed
design decisions that align with the objectives of the project.

Prototyping and Implementation: In this phase, this work will construct and execute
the MTD-based defense module utilizing the predetermined features and configurations
to safeguard the DFL system against poisoning attacks. The student must take into
account the practicability of implementing such an MTD mechanism in devices with
limited resources. The resulting system must be thoroughly documented in the design and
implementation sections of the report, including the exclusion of alternative approaches
and the rationale behind their exclusion.

Evaluation and Conclusion: In this phase, this work will evaluate and deliberate upon
the proposed system and its implementation from multiple perspectives, utilizing a range
of metrics. These metrics will serve to illustrate the efficacy of the novel approach, specif-
ically in terms of employing the MTD mechanism to mitigate a targeted set of poisoning
attacks. These evaluations must be conducted in coordination with the supervisors during
regular meetings. A final report must include a motivation and problem description, back-
ground information, related work, design decision, implementation details, evaluation, and
conclusions.

In summary, the goal of this Master Thesis is to design and implement a Moving Target
Defense (MTD)-based defense mechanism to improve the robustness and security of the
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Decentralized Federated Learning (DFL) system. The thesis aims to address the vulnera-
bility of DFL to adversarial attacks, where malicious clients can manipulate local data or
the model to compromise the accuracy and robustness of the global model. The proposed
MTD-based defense mechanism will be designed to enhance the resilience of the DFL
framework by constantly changing the attack surfaces to perplex and deceive adversaries,
thereby impeding their ability to execute successful attacks.

1.3 Thesis Outline

The thesis is organized into seven chapters:

Chapter 1: Introduction This chapter provides an overview of the motivation behind
the research, a description of the work to be done, and an outline of the thesis. The
motivation section discusses the importance of securing decentralized federated learn-
ing (DFL) systems against poisoning attacks and the potential of moving target defense
(MTD) mechanisms to address this challenge. The description of work section outlines
the research objectives, methodology, and expected outcomes. The thesis outline section
provides a brief overview of the remaining chapters.

Chapter 2: Background This chapter presents the background knowledge of DFL, chal-
lenges and vulnerabilities of DFL, and the MTD mechanism. The DFL section discusses
the concept of DFL, its advantages and disadvantages, and its applications. The challenges
and vulnerabilities section discusses the security risks associated with DFL, including poi-
soning attacks. The MTD mechanism section discusses the concept of MTD, its benefits,
and its applications in cybersecurity.

Chapter 3: Related Work This chapter reviews the existing literature on MTD-based
defense mechanisms for machine learning (ML), centralized federated learning (CFL),
and DFL. The ML section discusses the use of MTD in securing ML models against
adversarial attacks. The CFL section discusses the use of MTD in securing CFL systems
against poisoning attacks. The DFL section discusses the existing research on MTD-based
defense mechanisms for DFL systems.

Chapter 4: Defense Design This chapter presents the design and architecture of the
proposed MTD-based defense mechanism for DFL. The design section discusses the design
considerations and trade-offs, while the architecture section presents the overall structure
of the proposed defense mechanism. The chapter also discusses the selection of MTD
techniques and their integration into the DFL system.

Chapter 5: Implementation This chapter describes the implementation of the proposed
defense mechanism. The implementation section discusses the technical details of the
implementation, including the programming language, libraries, and tools used. The
chapter also presents the results of the implementation, including the performance and
scalability of the proposed defense mechanism.

Chapter 6: Evaluation This chapter evaluates the proposed system and its implementa-
tion from multiple perspectives. The evaluation section discusses the evaluation method-
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ology, metrics, and results. The chapter also discusses the limitations of the proposed
defense mechanism and potential avenues for future research.

Chapter 7: Summary and Conclusions This chapter summarizes the findings of the thesis
and provides conclusions. The summary section provides a brief overview of the research
objectives, methodology, and outcomes. The conclusions section discusses the implications
of the research findings and their potential impact on the field of DFL security. The
chapter also discusses the limitations of the research and potential avenues for future
work.



Chapter 2

Background

Machine learning (ML) is a rapidly advancing technology that is being widely adopted
for various applications. Unlike traditional model training, which requires storing all
user data in centralized servers, federated learning (FL) has become popular due to its
ability to store data in a distributed manner. By sharing the model parameters instead
of data, Federated Learning (FL) is gaining more popularity in the Artificial Intelligene
(AI) community. FL can be centralized, known as Centralized Federated Learning (CFL),
or decentralized, known as Decentralized Federated Learning (DFL). DFL allows for de-
centralized aggregation of model parameters by neighboring participants, eliminating the
need for a central server. However, DFL systems are vulnerable to adversarial attacks,
particularly poisoning attacks, where malicious participants intentionally inject biased or
harmful data to compromise the integrity of the global model. Moving Target Defense
(MTD) is a security concept that involves constantly changing the attack surfaces to
impede adversaries’ ability to execute successful attacks.

The following sections will delve into the theoretical foundations of FL, its framework
structure, and its two primary branches: Centralized Federated Learning (CFL) and De-
centralized Federated Learning (DFL). However, FL also introduces new attack surfaces.
The challenges and risks that FL encounters in terms of security, as well as the potential
attack methods that adversaries may employ will be introduced next. Afterwards, an
introduction to several defense mechanisms aimed at enhancing the security of FL will be
provided, with particular emphasis on Moving Target Defense (MTD).

2.1 Federated Learning

The widespread adoption of communication technologies and the growing prevalence of
the Internet of Things (IoT) concept have led to a substantial increase in the number
of devices connected to the internet. Most people often carry smart personal devices
equipped with various sensors (such as cameras, microphones, accelerometers, and GPS
chips). Therefore, personal computing devices provide an opportunity to access a large
amount of training data, which is crucial for building reliable machine learning mod-
els. Traditional machine learning requires collecting training data on a single machine or

5



6 CHAPTER 2. BACKGROUND

Figure 2.1: The main process of federal learning [13]

data center. Therefore, technology companies must go through an expensive and time-
consuming process to obtain their users’ data, not to mention the risks and responsibilities
associated with storing data in a centralized location [9], posing new challenges in pro-
cessing and analyzing such data in a privacy-preserving manner. Federated Learning (FL)
is a technique that allows entities to train collaborative models without sharing sensitive
data [10]. Unlike traditional Machine Learning (ML) methods, which require gathering
the training data in a single machine or in a data center, FL allows users to share their
local models instead of the raw data with a central server, preserving data privacy [11].
Federated Learning can help solve data privacy, communication latency, and scalability
issues, as sensitive data does not need to leave its original location [12]. Figure 2.1 de-
picts a conceptual model for federated learning, illustrates how the clients, local models,
global model, and aggregation algorithm interact in a decentralized way to enable col-
laborative model training while keeping the training data private and localized on each
client device.[13]. Federated Learning is particularly applicable in scenarios with high
privacy requirements, such as healthcare and financial services, it can also be applied to
internet of things(IoT), and natural language processing[3]. But Federated Learning also
faces challenges. There are four fundamental challeges in FL: Expensive Communication,
Systems Heterogeneity, Statistical Heterogeneity and Privacy Concerns [14].

2.1.1 Federated Learning Basics

Aggregation in Federated Learning (FL) is a crucial process that involves combining the
learning updates (like model weights or gradients) from multiple distributed nodes (like
devices or servers) to create a global model. This process is central to the federated
learning paradigm, which allows for collaborative learning without sharing raw data among
participants. The aggregation step typically occurs on a central server or aggregator,
and there are various methods for aggregating model updates in Federated Learning.
The choice of aggregation method can impact the performance, privacy, and convergence
properties of the federated learning system.

But how is Federated Learning training actually performed? Stochastic Gradient Descent
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(SGD) has shown excellent results in deep learning. Therefore, as a baseline, researchers
decided to base the training algorithm of federated learning on SGD as well. SGD can
be naively applied to federated optimization problems, that is, only one batch gradient
calculation is performed in each round of communication (for example, on randomly se-
lected clients). This approach is computationally efficient but requires a large number of
training iterations to produce high-quality models. ”FedAvg” or Federated Averaging is
an algorithm which combines local stochastic gradient descent (SGD) on each client with
a server that performs model averaging [10]. It has established itself as the de facto stan-
dard algorithm for FL. Figure 2.2 gives a pseudo-code of Federated Averaging Algorithm.
To understand it, a few terms need to be defined first.

• wt - Model weights on communication round t

• wk
t - Model weights on communication round t on client k

• C - Fraction of clients performing computations in each round

• E - Number of training passes each client makes over its local dataset on each round

• B - The local minibatch size used for the client updates

• η - The learning rate

• Pk - Set of data points on client k

• nk - Number of data points on client k

• fi(w) - Loss l(xi, yi;w) i.e., loss on example (xi, yi) with model parameters w

The baseline algorithm, FedSGD, short for Federated SGD, sets the parameter C to 1,
which corresponds to a full-batch (non-stochastic) gradient descent. For the current global
model wt, the average gradient on its global model is calculated for each client k.

Fk (w) =
1

nk

∑
i∈Pk

fi (ω) (2.1)

gk = ∇Fk (wt) (2.2)

The central server then aggregates these gradients and applies the update.

wt+1 ⇐ wt − η
k∑

k=1

nk

n
gk (2.3)

In the context of FedAvg, a modification is applied to the update step. Each client does
not only send model parameters, but also runs several local gradient descent steps on the
current model. The server then takes a weighted average of the updated models. This
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Figure 2.2: FedAvg algorithm pseudocode [10]

is the Federated Averaging (FedAvg) algorithm, which puts more computational work on
individual clients.

∀ k, wk
t+1 ⇐ wt − ηgk (2.4)

wt+1 ⇐
K∑
k=1

nk

n
wk

t+1 (2.5)

The reason for making this change is to achieve major speedups in practice by improving
the computation on each client once a minimum level of parallelism over clients is reached.
The amount of computation is controlled by three parameters: C (the fraction of clients
participating in that round), E (the number of training passes each client makes over its
local dataset each round), and B (the local minibatch size used for client updates)

2.1.2 Centralized Federated Learning (CFL)

Federated learning (FL) enables collaborative training of machine learning models without
sharing individual data, addressing privacy concerns in data-rich environments. However,
different FL architectures vary in terms of communication overhead, scalability, and pri-
vacy guarantees.
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The most common FL architecture is centralized federated learning (CFL), where a cen-
tral server coordinates the training process and aggregates the model updates from the
clients[15][3]. In CFL, the server initializes a global model and sends it to the participat-
ing clients. Each client then trains the model on their local data and sends the updated
model parameters back to the server. The server aggregates the updates, typically by av-
eraging, to improve the global model[15][16]. This process is repeated for multiple rounds
until the model converges or a desired performance is reached. CFL algorithms, such as
Federated Averaging (FedAvg)[10], have demonstrated effective performance in various
applications. However, the centralized architecture has some limitations, such as com-
munication bottlenecks, single point of failure, and potential privacy risks at the server
level[17][18].

2.1.3 Decentralized Federated Learning (DFL)

To address the limitations of CFL, decentralized federated learning (DFL) has emerged
as an alternative approach[17][19]. In DFL, the clients communicate directly with each
other in a peer-to-peer manner, without relying on a central server for aggregation. The
clients are connected in a communication network, often represented as a graph, and ex-
change model updates with their neighbors[17][20]. Each client aggregates the received
updates locally and updates its own model accordingly. DFL eliminates the need for
a central coordinator, reducing communication costs and improving robustness against
node failures[19][21]. However, DFL introduces new challenges, such as designing efficient
communication protocols, ensuring convergence, and handling data and system hetero-
geneity[22].

2.1.4 Comparison between CFL and DFL

While CFL and DFL differ in their architectures and workflows, they share the common
goal of enabling collaborative training while preserving data privacy. To better understand
their trade-offs, let’s compare the two approaches across several key aspects Image 2.3
clearly illustrates the key differences between Centralized Federated Learning (CFL) and
Decentralized or Peer-to-Peer Federated Learning (DFL).

In part (a), the diagram shows a centralized model where data is sent to a central server
for training. The process involves the following steps:

1. Local training with local data.

2. Send model updates to the server.

3. Aggregate model updates.

4. Send updated model back to clients.
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Figure 2.3: FL Workflow [23]

The arrows indicate the flow of data and models between the clients and the server.

In part (b), the diagram illustrates a peer-to-peer model where data is exchanged directly
between clients without a central server. The process includes:

1. Local training with local data.

2. Exchange models with other clients.

3. Repeat until convergence.

The arrows in this diagram show the direct exchange of models between clients.

In summary, part (a) depicts the traditional centralized federated learning where a server
orchestrates the training, while part (b) shows the decentralized peer-to-peer federated
learning where nodes collaborate directly without a central coordinator.

To further compare and contrast these two approaches, this work also examines the key
aspects summarized in the following table: 2.1. This table compares the key aspects of
Centralized Federated Learning (CFL) and Decentralized Federated Learning (DFL):

In summary, DFL provides advantages in terms of robustness, communication efficiency,
privacy, and scalability, while CFL has benefits in terms of convergence speed, simpler im-
plementation, and better theoretical understanding. The choice between the two depends
on the specific requirements and constraints of the application scenario.
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Aspect CFL DFL
Architecture Uses a central server to coor-

dinate training and aggregate
model updates from clients

No central server, clients com-
municate directly with each
other to exchange model up-
dates

Robustness Single point of failure at the
central server

More robust, avoids bottle-
necks and failures of a central
server

Communication
Cost

Higher, all updates go through
the central server

Lower, updates exchanged di-
rectly between clients

Privacy Central server has access to
all client updates, potentially
weaker privacy

Stronger privacy, each client
only communicates with a sub-
set of other clients

Scalability Limited by the capacity of the
central server

More scalable, supports larger
number of clients

Convergence
Speed

Generally faster due to global
aggregation at the server

Can be slower, depends on
the peer-to-peer communica-
tion topology

Client Participa-
tion

Suitable for a large number of
clients, e.g. cross-device FL

Supports flexible and ad-hoc
participation of clients

Implementation
Complexity

Simpler to implement and man-
age due to central coordination

More complex, requires care-
fully designed peer-to-peer pro-
tocols

Heterogeneity
Handling

Central server can enforce poli-
cies to handle data and system
heterogeneity

More challenging, needs to
account for variability across
clients

Theoretical Anal-
ysis

Better understood convergence
properties

Active area of research, provid-
ing convergence guarantees is
harder

Table 2.1: Comparison between Centralized Federated Learning (CFL) and Decentralized
Federated Learning (DFL)

2.2 Poisoning Attacks

Although FL is considered effective in protecting the privacy of users during training,
further research shows that FL is also exposed to many security and privacy risks [11][23],
such as poisoning attacks [24][25][26] and privacy leakage [27][28][29].

Poisoning attacks can be generally classified based on the adversary’s goal and technique.
Based on attack goals, there can be three types of attacks: untargeted, targeted, and
backdoor attacks; Based on attack technique, poisoning attacks can be classified into
data poisoning attacks and model poisoning attacks.[30][6][31]. Figure 2.4 provides a
taxonomy of different types of poisoning attacks and highlights various techniques under
each category, providing a comprehensive overview of the different ways machine learning
systems can be compromised through poisoning. The following sections will explain each
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Figure 2.4: Taxonomy for poisoning attacks

types of attacks in detail.

2.2.1 Classification by Attack Goal

Poisoning attacks can be classified based on the attacker’s goals, which include targeted
attacks, untargeted attacks, and backdoor attacks.

Targeted Attacks Targeted attacks aim to manipulate the model’s behavior for specific
inputs without degrading its overall performance [30][32]. The attacker’s goal is to cause
misclassification or targeted misclassification of particular instances while maintaining the
model’s accuracy on other inputs. For example, an attacker might attempt to cause a
facial recognition system to misclassify a specific individual while functioning normally
for others.

Untargeted Attacks Untargeted attacks, also known as Byzantine attacks, aim to degrade
the model’s overall performance by adding noise or irrelevant data points to the training
set [33]. The attacker’s goal is to reduce the model’s accuracy across various inputs
without targeting specific instances. Untargeted attacks can be more difficult to detect
as they do not exhibit a clear pattern of misclassification.

Backdoor Attacks Backdoor attacks involve inserting hidden triggers or patterns into
the model during training, causing it to misbehave when the trigger is present while
functioning normally otherwise [34], [35]. There are two main types of backdoor attacks:

• Semantic Backdoors: In semantic backdoor attacks, the attacker uses semantically
meaningful triggers, such as specific objects or features, to activate the backdoor
[36]. These attacks can be challenging to detect as the triggers blend in with the
legitimate data distribution.

• Artificial Backdoors: Artificial backdoor attacks involve using artificially generated
patterns or noise as triggers [37]. These triggers are not semantically meaningful
but can still cause the model to misbehave when present. Artificial backdoors can
be easier to detect compared to semantic backdoors due to their synthetic nature.
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Figure 2.5: Classes of FL poisoning attacks and their objectives [38]

Figure 2.5 illustrates different types of poisoning attacks that can occur in machine learn-
ing systems, specifically focusing on image classification tasks. The image is divided
into three main columns: Targeted Attacks, Backdoor Attacks, and Untargeted Attacks,
effectively demonstrating the different objectives and characteristics of poisoning attacks,

2.2.2 Classification by Attack Technique

Poisoning attacks can also be classified based on the attack technique employed by the
adversary, which includes data poisoning and model poisoning.

Data Poisoning Data poisoning attacks involve tampering with the training data by
adding noise, flipping labels, or injecting malicious examples [39], [40]. Two common
data poisoning techniques are:

• Label Flipping: In label flipping attacks, the attacker injects mislabeled data into
the training set to bias the model’s decision-making [41]. By strategically flipping
labels, the attacker can manipulate the model’s behavior towards a desired outcome.

• Sample Poisoning: Sample poisoning attacks involve modifying a significant portion
of the training data with misleading or malicious examples [42]. The attacker aims
to influence the model’s learning process by introducing carefully crafted samples
that steer the model towards a specific behavior.

Model Poisoning Model poisoning attacks target the model updates or parameters to
arbitrarily deviate the model from its intended behavior [43][44]. Two common model
poisoning techniques are:

• Random Weights Generation: In random weights generation attacks, malicious par-
ticipants upload arbitrary model updates without contributing meaningful data or
compute resources. These random updates can disrupt the model’s convergence and
degrade its performance.

• Optimized Weights Generation: Optimized weights generation attacks involve craft-
ing model updates that are specifically designed to manipulate the model’s behavior
[35]. The attacker optimizes the weights to achieve a desired outcome, such as tar-
geted misclassification or backdoor insertion.
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2.2.3 Poisoning Attacks in Decentralized Federated Learning

Federated Learning (FL) has shown great potential for enabling collaborative learning
among multiple parties who do not fully trust each other, as it allows them to train
a shared global model without revealing their private data. However, FL systems are
vulnerable to poisoning attacks, where adversarial participants can deliberately submit
manipulated or corrupted model updates during the iterative training process [45]. These
malicious contributions aim to sabotage the performance and utility of the final global
model, for example, by degrading its accuracy or introducing targeted misclassifications.
As a result, poisoning attacks pose a significant threat to the integrity and reliability
of FL, undermining its practical applicability in real-world scenarios involving untrusted
clients.

Decentralized Federated Learning (DFL) is particularly vulnerable to poisoning attacks
due to its distributed nature and the involvement of multiple participants in the training
process [10]. In DFL, participants contribute their local model updates to collaboratively
train a global model without sharing raw data. This setting opens up new attack surfaces
and challenges in detecting and mitigating poisoning attacks.

Malicious participants in DFL can exploit the lack of centralized control and the opacity
of local training to inject poisoned updates into the global model [46]. These poisoned
updates can propagate through the network, compromising the integrity and performance
of the final model. Moreover, the decentralized nature of DFL makes it difficult to identify
and isolate malicious participants, as there is no central authority to monitor and validate
individual contributions.

Figure 2.6 illustrates the concept of poisoning attacks in federated learning (FL). It high-
lights the two main types of poisoning attacks in FL - data poisoning where the training
data is corrupted, and model poisoning where the model updates are directly manipu-
lated by the attacker. By injecting poisoned updates into the aggregation process at the
server, the malicious user can degrade the performance of the global model or potentially
insert backdoors or targeted misclassifications. This poses a significant security threat to
federated learning systems.

Several studies have demonstrated the feasibility and impact of poisoning attacks in DFL.
For example, Bhagoji et al. [43] showed that a single malicious participant can significantly
degrade the accuracy of a federated learning model by injecting poisoned updates. Fang
et al. [47] proposed a model poisoning attack called ”local model poisoning” that allows
an attacker to manipulate the global model without direct access to other participants’
data or models.

The dynamic nature of decentralized FL makes it vulnerable to poisoning attacks. Under-
standing the taxonomy and characteristics of poisoning attacks is crucial for developing
effective defense mechanisms. The nest section will explore Moving Target Defense(MTD)
as a potential mitigation approach against poisoning attacks in Decentralized Federated
Learning, making it harder for attackers to succeed and providing a proactive defense
strategy.
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Figure 2.6: Poisoning Attacks in Federated Learning [30]

2.3 Moving Target Defense

2.3.1 Moving Target Defense Basics

Moving Target Defense (MTD) is an emerging proactive defense approach that aims to
thwart attacks by continuously changing the attack surface[48]. The key idea behind
MTD is to introduce controlled changes to the system configuration over time, thereby
increasing the uncertainty and complexity for attackers[48]. By making the system less
predictable and more dynamic, MTD reduces the window of opportunity for attackers
and increases the cost of their probing and attack efforts[48][49].

The concept of MTD is inspired by the notion of ”moving targets”in military tactics, where
a constantly moving and changing target is more difficult to hit than a static one[48]. In
the cyber domain, MTD techniques can be applied at different layers of the system stack,
such as the network, platform, runtime environment, software, and data layers[48][50].

Figure 2.7 provides a taxonomy of various Moving Target Defense (MTD) techniques
and strategies. This taxonomy provides a comprehensive overview of the various MTD
techniques and strategies, highlighting the key components and approaches involved in
creating a dynamic and unpredictable attack surface. By understanding and combin-
ing these techniques, organizations can develop effective MTD systems tailored to their
specific security requirements and system architectures.

There are three elements for an MTD technique: WHAT to move, HOW to move, and
WHEN to move.

WHAT to move refers to the system components that are vulnerable to exploitation, such
as IP addresses, software, data, and system configurations[51]. By dynamically changing
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Figure 2.7: Taxonomy of Moving Target Defense Techniques

these components, MTD reduces the attack surface and makes it harder for attackers to
target specific vulnerabilities[48], [51].

HOW to move involves techniques like randomization, diversity, and adaptation[48], [51].
Randomization introduces unpredictability, while diversity creates heterogeneity in the
system components, making it more difficult for attackers to develop generic exploits[48].
Adaptation allows the system to respond to detected threats or changes in the environ-
ment[51].

WHEN to move concerns the strategic timing of changes, balancing security with oper-
ational impact[51]. MTD techniques can be triggered at fixed intervals, randomly, or in
response to specific events or threat.

Key elements of MTD techniques[51][52]

1. WHAT to move: The configuration set (C) [51]

(a) Data (encryption, representation, storage)

(b) Software (versions, implementations)

(c) Network configurations (IP addresses, ports, protocols)

(d) Platform configurations (OS, hardware, VMs)

(e) Runtime environments (memory layout, instruction sets)
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2. HOW to move: The movement function (M) [53][48]

(a) Shuffling

(b) Diversity

(c) Redundancy

(d) Randomization

3. WHEN to move: The timing function (T) [51]

(a) Time-based (fixed intervals, random intervals)

(b) Event-triggered (security alerts, system changes)

2.3.2 Types of Moving Target Defense

MTD techniques can be applied to various aspects of a system, including data, software,
network configurations, platform configurations, runtime environments, and hybrid ap-
proaches[48], [51], [52], [54].

Data Data-level MTD techniques focus on protecting the confidentiality, integrity, and
availability of data through methods such as encryption, data representation, and stor-
age[51], [52]. Encryption can be applied to data at rest and in transit, using dynamic
encryption keys and algorithms to create a moving target for attackers[51]. Data repre-
sentation techniques involve changing the format, encoding, or structure of data to make
it harder for attackers to understand and manipulate[52]. Dynamic data storage tech-
niques, such as data fragmentation and distributed storage, can be used to spread data
across multiple locations, making it more difficult for attackers to compromise the entire
dataset[51].

Software Software-level MTD techniques introduce diversity and unpredictability into the
software components of a system[48], [54]. This can involve using different software ver-
sions, implementations, or configurations to create a heterogeneous environment that is
more resistant to generic exploits[48]. Techniques such as N-version programming, where
multiple functionally equivalent software versions are deployed simultaneously, can be
used to create a moving target for attackers[54]. Additionally, dynamic software composi-
tion and adaptation techniques can be employed to automatically update and reconfigure
software components in response to detected threats or changes in the environment[48].

Network configurations Network-level MTD techniques focus on dynamically changing
network configurations, such as IP addresses, port numbers, and communication pro-
tocols[48], [51]. IP hopping involves periodically changing the IP addresses of network
nodes, making it harder for attackers to identify and target specific systems[48]. Port
hopping techniques dynamically change the port numbers used for communication, while
protocol hopping switches between different communication protocols to create a moving
target[51]. Software-Defined Networking (SDN) can be leveraged to create a more flexible
and dynamic network infrastructure, enabling the implementation of various network-level
MTD techniques[54].
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Platform configurations Platform-level MTD techniques target the underlying infrastruc-
ture of a system, including the operating system, hardware, and virtual machines[51],
[52]. Dynamic platform composition techniques involve creating a heterogeneous environ-
ment with multiple operating systems, hardware architectures, and virtualization tech-
nologies[52]. This diversity makes it harder for attackers to develop exploits that can
compromise the entire system[51]. Additionally, techniques such as live migration of vir-
tual machines and dynamic resource allocation can be used to create a moving target for
attackers, making it harder to locate and exploit critical system components[51].

Runtime environments Runtime-level MTD techniques focus on creating unpredictabil-
ity and diversity in the runtime environment of a system, such as memory layout and
instruction sets[48], [54]. Address Space Layout Randomization (ASLR) is a commonly
used technique that randomizes the memory locations of key system components, making
it harder for attackers to exploit memory corruption vulnerabilities[48]. Instruction set
randomization techniques involve dynamically changing the instruction set architecture
or introducing new instructions to create a moving target for attackers[54]. These tech-
niques can be combined with other runtime-level MTD approaches, such as dynamic code
generation and execution, to further increase the unpredictability and diversity of the
system[48].

Hybrid Hybrid MTD techniques combine multiple types of MTD approaches to create a
more comprehensive and adaptable defense strategy[52], [54]. By leveraging the strengths
of different MTD techniques across various system components, hybrid approaches can
provide a more robust and effective defense against a wide range of threats[52]. For
example, a hybrid MTD system might combine data-level techniques, such as encryption
and data fragmentation, with network-level techniques, such as IP hopping and SDN-based
reconfiguration, to protect both the data and the communication channels[54]. The choice
of techniques in a hybrid MTD system depends on the specific security requirements,
performance constraints, and system architecture of the protected environment[52].

2.3.3 Key Techniques in Moving Target Defense

MTD techniques can be categorized into several main approaches, including shuffling,
diversity, redundancy, randomization, and hybrid techniques[48], [51], [52].

Shuffling techniques involve dynamically changing the mapping between system resources
and their logical identities, such as IP addresses, port numbers, and memory locations[48],
[52]. This creates a moving target for attackers, making it harder to identify and exploit
specific resources[48].

Diversity techniques introduce heterogeneity into the system components, such as using
different operating systems, software implementations, or hardware architectures[48], [51].
This reduces the effectiveness of generic exploits and forces attackers to develop multiple
attack vectors, increasing the cost and complexity of attacks[48].

Redundancy techniques involve creating multiple instances of critical system components,
such as servers, network paths, or data storage[52]. This allows the system to maintain
availability and functionality even if some instances are compromised or disrupted[52].
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Randomization techniques introduce unpredictability into the system, such as randomiz-
ing the memory layout, instruction sets, or communication channels[48], [51]. This makes
it harder for attackers to rely on deterministic exploitation methods and increases the
uncertainty in the attack process[48].

Hybrid techniques combine multiple MTD approaches to create a more comprehensive
and adaptable defense strategy[52]. For example, a hybrid technique might use shuffling
to dynamically change network configurations, diversity to introduce heterogeneity in
software components, and redundancy to maintain system availability[52]. By leveraging
the strengths of different techniques, hybrid approaches can provide a more robust and
effective MTD solution[52].

The choice of MTD technique depends on various factors, such as the system architecture,
performance requirements, and security objectives[51]. Each technique has its own advan-
tages and challenges, and the most effective MTD strategy often involves a combination
of techniques tailored to the specific needs of the system[48], [51], [52].

2.3.4 Timing Function of MTD Techniques

In addition to the various types of MTD techniques, the timing of when to apply these
techniques is a critical consideration in designing an effective MTD system[48], [51]. The
timing function of MTD techniques can be broadly categorized into time-based and event-
triggered approaches[48], [52]. Time-based Time-based MTD techniques involve applying
dynamic changes to the system at predetermined time intervals[48], [51]. These intervals
can be fixed, where the changes occur at regular, static intervals, or random, where the
intervals between changes vary according to a specified probability distribution[48]. Fixed-
interval time-based MTD techniques are simple to implement and can provide a consistent
level of protection over time[51]. However, they may be predictable, allowing attackers
to synchronize their attacks with the known intervals between changes[52]. Random-
interval time-based MTD techniques introduce an element of unpredictability, making it
harder for attackers to anticipate and exploit the timing of changes[48]. However, the
effectiveness of these techniques depends on the chosen probability distribution and the
trade-off between security and system performance[51]. Event-triggered Event-triggered
MTD techniques initiate dynamic changes in response to specific events or conditions
within the system or its environment[48], [52]. These events can include security alerts,
such as the detection of an attack or anomalous behavior, or system changes, such as the
addition or removal of components[51]. Security alert-triggered MTD techniques allow
the system to adapt its defense posture in real-time based on the detected threats[48].
For example, if an intrusion detection system (IDS) detects a potential attack, the MTD
system can automatically reconfigure the network topology, update firewall rules, or de-
ploy deceptive assets to mitigate the threat[52]. System change-triggered MTD techniques
ensure that the system maintains a consistent level of protection as its components and
configurations evolve[51]. For instance, when a new device is added to the network, the
MTD system can automatically assign it a random IP address and configure its security
settings to match the current defense posture[48]. Event-triggered MTD techniques can
provide a more adaptive and responsive defense compared to time-based techniques[52].
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However, they require accurate and timely detection of relevant events, as well as careful
design to avoid excessive overhead or instability due to frequent changes[51]. In practice,
MTD systems often employ a combination of time-based and event-triggered techniques to
achieve a balance between security, performance, and adaptability[48], [52]. Hybrid-based
The hybrid-based approach combines elements of both time-based and event-based tech-
niques[52]. In this approach, the system can be configured to perform regular, scheduled
movements (time-based) while also responding to specific events or conditions (event-
based). This hybrid approach aims to provide a balance between proactive and reactive
defense mechanisms, leveraging the strengths of both techniques. The choice of timing
function depends on various factors, such as the system’s requirements, the nature of the
threats, and the desired level of unpredictability and adaptability. In some cases, a com-
bination of different timing functions may be employed to create a more comprehensive
and effective MTD strategy.

2.3.5 Benefits and Challenges of MTD

This section outlines the key advantages and drawbacks of implementing Moving Target
Defense (MTD) strategies. The benefits. The benefits of implementing Moving Target
Defense (MTD) strategies include increased attack complexity for adversaries, resilience
against zero-day exploits, disruption of the cyber kill chain, reduced attack surface, and
an asymmetric advantage for defenders. However, MTD also presents challenges such as
potential performance impact, management complexity, the need for robust evaluation
frameworks, compatibility issues with legacy systems, and the risk of false positives.

Benefits

• Increased attack complexity and cost for adversaries[48], [51]–[54]

– By continuously changing the attack surface, MTD forces attackers to invest
more time and resources in reconnaissance and attack development, reducing
the overall success rate of attacks[48].

– It reduces the window of opportunity for attackers to exploit vulnerabilities
before they become obsolete[48], [51].

• Resilience against zero-day exploits[55][48], [53], [56]

– The dynamic nature of MTD makes it harder for attackers to rely on previously
unknown vulnerabilities (zero-days)[48].

– It provides proactive defense against new and emerging threats[56].

• Disruption of the cyber kill chain[51], [54], [57]

– MTD disrupts the attacker’s ability to gain a foothold, maintain persistence,
and progress through the stages of an attack[51].

– It forces attackers to deal with a constantly evolving and compromised target.
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• Reduced attack surface and opportunities[48], [51], [58], [59]

– By dynamically changing system configurations, MTD reduces the overall at-
tack surface and potential entry points for attackers[48], [51].

• Asymmetric advantage for defenders[51], [56], [60], [61]

– MTD reverses the traditional asymmetric advantage held by attackers in static
environments[56].

– It introduces uncertainty and complexity for attackers while providing defend-
ers with a proactive approach[51].

Challenges

• Performance impact and overhead[48], [51], [52]

– Certain MTD techniques, like continuous randomization and diversity, can in-
troduce overhead and latency, potentially affecting system performance[51].

• Management complexity[48], [51], [52]

– Coordinating and managing dynamic changes across multiple systems and net-
works can be challenging, requiring specialized tools and processes[51].

– Increased complexity may lead to unintended vulnerabilities if not properly
managed[52].

• Need for robust evaluation frameworks[48], [51], [52]

– Measuring the effectiveness of MTD techniques and comparing different ap-
proaches can be difficult due to the dynamic nature of the systems[51].

– Establishing baseline metrics and performance indicators is challenging[52].

• Compatibility issues[52]

– MTD may not be compatible with legacy systems or applications that are not
designed to support dynamic configurations or changes.

• Potential for false positives[52]

– MTD may generate false positives, such as legitimate users being blocked from
accessing the system, leading to user frustration and decreased productivity[52].
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Chapter 3

Related Work

This chapter provides an overview of the related work in the field of Moving Target De-
fense (MTD) and its applications in Federated Learning (FL), Machine Learning (ML),
and Blockchain. The chapter begins by discussing various security techniques employed in
FL, followed by a detailed analysis of MTD in Centralized Federated Learning (CFL) and
Decentralized Federated Learning (DFL). Furthermore, the chapter explores the applica-
tions of MTD in other domains, such as ML and Blockchain, highlighting the versatility
and potential of MTD techniques in enhancing security and resilience against adversarial
attacks.

3.1 Security Techniques in Federated Learning

Federated Learning (FL) has emerged as a promising approach for collaborative learning
while preserving data privacy. However, FL systems face various security challenges,
making it crucial to employ robust security techniques to protect the privacy and integrity
of the learning process.

3.1.1 Homomorphic Encryption (HE)

HE allows computations to be performed directly on encrypted data without requiring
access to the decryption key. In the context of federated learning, HE enables multi-
ple parties to collaboratively train a machine learning model while keeping their raw
training data private and encrypted. FedML-HE [62] introduces an optimized system
for federated learning that utilizes homomorphic encryption (HE) to provide strong pri-
vacy guarantees during training. The authors demonstrate that their system significantly
reduces the computational overhead associated with HE, especially for large foundation
models like ResNet-50 and BERT, achieving up to 10x and 40x reduction in overhead
respectively[1]. These optimizations make FedML-HE a promising solution for scalable
and privacy-preserving federated learning deployments.

23
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3.1.2 Differential Privacy (DP)

DP involves adding carefully calibrated noise to the model updates to mask the contribu-
tion of any individual client’s data. When DP is applied to FL, it ensures that the trained
model does not memorize or reveal private data of individual clients, even in the presence
of adversarial attacks. [63] proposes a differentially private federated learning frame-
work that provides theoretical privacy guarantees for client data while maintaining high
model performance. The authors introduce two algorithms, Distributed Stochastic Gradi-
ent Descent with Differential Privacy (DSGD-DP) and Distributed Adam with Differential
Privacy (DAdam-DP), which leverage differential privacy techniques like gradient clipping
and random noise addition to prevent leakage of sensitive information during federated
training. Through extensive experiments on benchmark datasets, they demonstrate that
their approach achieves comparable accuracy to non-private federated learning while pro-
viding strong privacy protection, paving the way for more secure and privacy-preserving
collaborative learning systems.

3.1.3 Byzantine-Robust Aggregation Methods

Byzantine-Robust Aggregation refers to a class of techniques used in federated learning to
ensure that the global model can be trained correctly even in the presence of Byzantine
clients, i.e., clients that behave arbitrarily or maliciously. These techniques aim to make
the aggregation of model updates from clients robust to outliers, noise, and adversarial
attacks.

Krum [64] is a popular Byzantine-robust aggregation rule used in federated learning to
mitigate the impact of adversarial or faulty clients (workers). In each round of federated
learning, the central server receives local model updates from the clients. Krum aims to
select the most reliable update to update the global model, while filtering out outliers
or malicious updates. The key idea of Krum is to compute a score for each local model
update based on its Euclidean distances to the other updates. For each update vector,
Krum calculates the sum of the squared Euclidean distances to its n−f−2 closest vectors,
where n is the total number of clients and f is the maximum number of Byzantine clients
tolerated. The update with the lowest score is then selected to update the global model.
Krum provides theoretical guarantees for convergence under certain assumptions on the
number of Byzantine clients (f) and the total number of clients (n), requiring n ≥ 2f +3
[65].

Coordinate-wise Median and Coordinate-wise Trimmed Mean [66] are two robust aggre-
gation methods for distributed learning. The coordinate-wise median is computed by
selecting the median value for each coordinate independently across all vectors, while the
coordinate-wise β-trimmed mean removes the largest and smallest β fraction of values for
each coordinate before computing the average. The paper proves that distributed gradient
descent algorithms using these aggregation methods can achieve optimal statistical error
rates under Byzantine attacks. The key difference is that median is more robust to ex-
treme outliers but less efficient, while trimmed mean is more efficient but assumes evenly
distributed outliers. The trimming parameter β allows for a trade-off between robustness
and efficiency.
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3.1.4 Blockchain Integration

Blockchain technology can be integrated with federated learning to enhance security and
privacy. The key idea is to leverage the decentralized, immutable, and transparent nature
of blockchain to address some of the challenges and vulnerabilities in traditional federated
learning systems. In terms of DFL, Blockchain is a natural fit, as it aligns with the goal
of creating a fully decentralized and secure learning environment.

[67] proposes a novel approach called FL-Block that integrates blockchain technology with
federated learning to enhance privacy and security in fog computing environments. FL-
Block leverages a distributed hash table and a proof-of-stake consensus mechanism to
ensure efficient block generation and validation in the blockchain network. The authors
present a system architecture and a detailed algorithm for FL-Block, which enables de-
centralized and privacy-preserving model training without relying on a central authority.
The proposed approach is evaluated through simulations, demonstrating its effectiveness
in terms of model accuracy, convergence speed, and resistance to various attacks.

[68] proposes a novel approach for generating synthetic data using federated learning. The
authors argue that while deep learning algorithms require massive datasets for training,
the diversity and expressiveness of the generated synthetic data are limited by the sta-
tistical properties of the available dataset within a single organization. To address this
challenge, they introduce FedSyn, a framework that leverages federated learning to en-
able the generation of more diverse and generic synthetic data by utilizing datasets from
multiple organizations without compromising data privacy. The proposed approach is
evaluated through experiments, demonstrating its effectiveness in generating high-quality
synthetic data while preserving the privacy of the underlying real data.

3.2 Moving Target Defense (MTD) in Federated Learning

Moving Target Defense (MTD) is a proactive defense strategy that introduces randomness
and unpredictability into the system to thwart adversarial attacks. MTD techniques have
shown potential in enhancing the security of FL systems.

3.2.1 MTD in Centralized Federated Learning (CFL)

In CFL, MTD techniques can be applied at the server level to protect the aggregation pro-
cess and the global model. Examples of MTD techniques in CFL include dynamic aggrega-
tion algorithms, secure aggregation with MTD, and adaptive client selection. These tech-
niques introduce randomness and diversity in the aggregation process, making it harder
for attackers to manipulate the global model.

[8] proposes a novel approach to enhance the security of federated learning systems by
applying the concept of MTD. The authors introduce an augmented dual-shuffle mech-
anism that dynamically changes the attack surface by shuffling both the client selection
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and the model aggregation process. This MTD strategy aims to ensure the confidential-
ity, integrity, and availability (CIA-triad) of the federated learning system by making it
more difficult for attackers to target specific clients or manipulate the global model. The
proposed approach is evaluated through simulations and compared with existing meth-
ods, demonstrating its effectiveness in improving the security and robustness of federated
learning against various attacks.

3.2.2 MTD in Decentralized Federated Learning (DFL)

In DFL, MTD techniques are implemented at the client level to protect the communica-
tion between clients and prevent malicious clients from disrupting the learning process.
Examples of MTD techniques in DFL include random neighbor selection, dynamic com-
munication channels, consensus protocols with MTD, and decentralized data storage with
MTD.

[2] introduces an innovative solution to strengthen the security of decentralized feder-
ated learning (DFL) systems against communication threats, including eavesdropping
and eclipse attacks. The authors leverage the concept of Moving Target Defense (MTD)
to dynamically alter the communication patterns and network configurations in DFL, in-
creasing the difficulty for attackers to target specific nodes or intercept sensitive informa-
tion. The proposed security module employs both symmetric and asymmetric encryption
techniques to safeguard the data and metadata of the participants. Additionally, it in-
corporates MTD techniques, such as random neighbor selection and IP/port switching,
to enhance the unpredictability and resilience of the network. The experimental results
demonstrate that the security module achieves an impressive average F1 score of 95% for
the federated model while effectively mitigating the risks of eavesdropping, Man in the
Middle attacks, network mapping, and eclipse attacks. However, the implementation of
the security module does introduce moderate increases in CPU usage, network traffic, and
RAM usage.

Voyager [31] proposes a novel aggregation protocol that uses a reactive MTD-based mech-
anism to mitigate poisoning attacks by dynamically changing the network topology. The
paper analyzes the impact of network topology on the security risk of DFL, and designs
a three-stage MTD mechanism that consists of an anomaly detector, a topology explorer,
and a connection deployer. The paper evaluates Voyager on various datasets, network
topologies, and attack scenarios, and compares it with other aggregation algorithms. The
results show that Voyager is effective in reducing the impact of poisoning attacks without
increasing the network overhead and resource consumption. However, this paper only
focused on analyzing datasets in an IID setting. In the future, Voyager’s performance is
intended to be evaluated in non-IID scenarios through various experiments and proactive
strategies for MTD will be also considered and implemented.

Both CFL and DFL can benefit from MTD techniques to enhance their security and
robustness against various attacks, such as poisoning attacks, inference attacks, and com-
munication threats. While the core principles of MTD remain the same, the decentralized
nature of DFL introduces additional challenges in coordinating the MTD strategies across
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the network. The specific implementation details and the trade-offs between security, per-
formance, and complexity may differ based on the centralized or decentralized architecture
of the federated learning system.

MTD for DFL and CFL is still a relatively new field, to gain additional insights and iden-
tify potential defensive techniques, this work expands the scope of analysis to examine how
MTD has been applied successfully in other domains such as in Machine Learning(ML)
and Internet of Things(IoT).

3.3 Moving Target Defense (MTD) in Other Domains

MTD techniques have found applications beyond federated learning, showcasing their
versatility and potential in enhancing security and resilience against adversarial attacks
in various domains.

3.3.1 MTD in Machine Learning

MTD is a proactive defense strategy that has been applied in the field of Machine Learning
(ML) to enhance the security and robustness of ML systems against various attacks. The
goal of MTD in ML is to create a dynamic and unpredictable environment for attackers
by continuously changing the attack surface of the ML model or the training process.

[69] proposes a novel approach to enhance the robustness of neural networks against ad-
versarial attacks by leveraging the concept of MTD. The authors introduce a dynamic
strategy that continuously changes the model’s architecture and parameters during infer-
ence, making it harder for attackers to craft effective adversarial examples. The proposed
MTD technique is evaluated on various datasets and compared with existing defense
mechanisms, demonstrating its effectiveness in improving the model’s resilience against
both white-box and black-box attacks. The results show that the MTD approach can
significantly reduce the success rate of adversarial attacks while maintaining the model’s
performance on benign inputs, providing a promising direction for enhancing the security
of machine learning systems.

[70] proposes a novel Moving Target Defense (MTD) strategy called Morphence to en-
hance the robustness of deep learning models against adversarial attacks. The key idea
of Morphence is to generate a diverse set of student models by applying random pertur-
bations to the weights of a base model, and then randomly selecting one of the student
models for each inference request. The authors evaluate the effectiveness of Morphence
on two datasets, CIFAR-10 and MNIST, and demonstrate that it significantly reduces
the success rate of adversarial attacks while maintaining high accuracy on benign inputs.
The results also show that increasing the noise scale used for weight perturbations leads
to a decrease in the transferability rate of adversarial examples across student models,
indicating the generation of more diverse models.



28 CHAPTER 3. RELATED WORK

[71] proposes EI-MTD, which is a dynamic defense mechanism proposed by the paper to
address the challenges of limited resources, transferability, and static models in Edge Intel-
ligence (EI) settings. Edge intelligence is the application of deep learning models on edge
nodes, such as edge devices and edge servers, to provide real-time and intelligent services.
[72] The paper proposes a three-stage framework that includes a knowledge distillation
stage, a Bayesian Stackelberg game stage, and a dynamic defense stage. The frame-
work aims to prevent the adversary from finding a proper substitute model, reduce the
transferability of adversarial attacks without compromising accuracy, and defend against
adversarial examples with limited resources on edge nodes.

[73] proposes MT-MTD, a moving target defense framework to protect deep neural net-
works (DNNs) against backdoor/Trojaning attacks in edge AI environments. MT-MTD
divides the training data into multiple dimensions, has an untrusted attacker train each
dimension which may contain backdoors, and has the defender randomly select dimensions
and reach consensus on the output. Through repeated retraining rounds and adjusting
dimension weights based on a signaling game between the attacker and defender, MT-
MTD increases the attack cost and unpredictability for the attacker, while maintaining
high accuracy for the defender. Experiments on GTSRB and ImageNet datasets show
MT-MTD can quickly converge to 90% accuracy even under strong attacks, by using a
random dimension selection probability. Overall, MT-MTD provides an active, dynamic
defense against backdoor attacks in edge AI systems, significantly increasing attacker cost
and difficulty.

[74] proposes a novel approach called MTDeep to enhance the robustness of neural net-
works against adversarial attacks by leveraging the concept of Moving Target Defense
(MTD). The authors introduce a dynamic strategy that continuously changes the model’s
architecture and parameters during inference, making it harder for attackers to craft effec-
tive adversarial examples. The proposed MTD technique is evaluated on various datasets
and compared with existing defense mechanisms, demonstrating its effectiveness in im-
proving the model’s resilience against both white-box and black-box attacks. The results
show that the MTD approach can significantly reduce the success rate of adversarial at-
tacks while maintaining the model’s performance on benign inputs, providing a promising
direction for enhancing the security of machine learning systems.

3.3.2 MTD in Internet of Things

[75] provides a comprehensive review of Moving Target Defense (MTD) techniques specif-
ically designed for the Internet of Things (IoT) domain, offering valuable insights into the
current landscape of MTD techniques for IoT, highlighting the progress made so far and
the areas that require further research and improvement.

[76] proposes a novel lightweight MTD technique called µM6TD to enhance the security
of IoT devices against network-based attacks . Micro-MTD leverages the vast address
space of IPv6 to frequently rotate the network addresses of IoT devices, making it harder
for attackers to target specific devices or maintain a persistent presence in the network.
The authors present the design and implementation of Micro-MTD, which includes a
lightweight address rotation mechanism and a secure communication protocol for IoT
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devices. The evaluation results demonstrate that Micro-MTD effectively mitigates various
network-based attacks, such as scanning, sniffing, and DoS attacks, while introducing
minimal overhead on the resource-constrained IoT devices.

[77] introduce 6HOP, which exploits the vast address space of IPv6 to defend against
reconnaissance attacks, address-based correlation, and denial-of-service attacks. 6HOP
is designed to be lightweight in operation and requires minimal administration overhead,
making it suitable for resource-constrained IoT devices. By frequently changing the IPv6
addresses of IoT devices, 6HOP makes it harder for attackers to locate and target specific
devices, thus providing an effective protection mechanism for the IoT ecosystem.

[78] presents FeDef, a federated and cooperative framework for deploying Moving Target
Defense (MTD) techniques on resource-constrained IoT devices affected by command and
control-based malware. FeDef combines reactive and proactive MTD approaches, where
an infected device reactively changes its IP address to disrupt communication with the
command and control server, while also proactively notifying other devices to change
their Telnet service port to prevent malware spreading. The performance of FeDef was
evaluated in a simulated environment with devices infected by the Bashlite malware,
demonstrating improvements in overall infection time, service disruption, and resource
consumption compared to purely reactive or proactive non-cooperative scenarios. The
results show FeDef can be implemented on resource-constrained devices with minimal
impact on network and service availability.

3.4 Motivation

This chapter provided a comprehensive overview of the related work in the field of MTD
and its applications in FL, ML, and IoT. The chapter discussed various security techniques
employed in FL, followed by a detailed analysis of MTD in CFL and DFL. Furthermore,
the chapter explored the applications of MTD in other domains, highlighting the versatility
and potential of MTD techniques in enhancing security and resilience against adversarial
attacks. Table 3.1 compares various MTD techniques implemented in different domains,
including CFL, DFL, ML and IoT, highlighting the specific methods used, whether they
are proactive or reactive, and the types of attacks they defend against.

It’s important to note that the field of MTD in FL is still evolving, especially DFL. While
a few studies have explored the application of MTD in DFL to mitigate communication
threats and improve model robustness, there is still a significant lack of comprehensive
frameworks and practical implementations that effectively integrate MTD strategies into
DFL architectures to mitigate poisoning attacks. To fill the gap, this work aims to provide
a comprehensive framework for the MTD method of DFL by exploring its implementation
from multiple perspectives. This will be followed by the design of an adaptive MTD mech-
anism and the evaluation of its performance against diverse poisoning attack scenarios,
thereby promoting the development and innovation of this field.
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Table 3.1: Comparison of MTD techniques in various domains

Reference Domain Year Method When Attack Defended
Against

[8] CFL 2021 Hybrid: Shuffling
(dual-shuffle), encryp-
tion

Proactive Label Flip-
ping; Additive
Gaussian noise;
Back-door At-
tacks

[2] DFL 2023 Hybrid: Shuffling (IP,
port), encryption,
random neighbor
selection

Both Eavesdropping;
Man in the Mid-
dle; Network
mapping; Eclipse
attacks

[31] DFL 2024 Hybrid: Shuffling
(network topology),
anomaly detection

Reactive Untargeted label
flipping; Model
poisoning

[69] ML 2019 Diversity: Ensemble
of models

Proactive Adversarial at-
tacks

[70] ML 2021 Diversity: Model pool
generation, detection

Reactive Adversarial at-
tacks

[71] ML
(Edge)

2020 Hybrid: Shuffling
(model parameters),
detection

Proactive Adversarial at-
tacks

[73] ML
(Edge)

2021 Hybrid: Multi-
training, model
selection

Proactive Trojaning attacks

[74] ML
(Deep
Learn-
ing)

2017 Diversity: Ensemble
of models

Proactive Adversarial at-
tacks

[76] IoT 2017 Shuffling: IPv6 ad-
dress hopping

Proactive Network-based
attacks

[77] IoT 2017 Shuffling: IPv6 ad-
dress hopping

Proactive Network-based
attacks

[78] IoT 2023 Hybrid: Shuffling (IP,
port), diversity (net-
work, data, runtime
environment)

Both Command and
control-based
malware

This
work

DFL 2024 Shuffling: Random-
ized Aggregation
Functions

Both Model Poisoning



Chapter 4

Defense Design

This chapter presents the design and architecture of the proposed MTD-based defense
mechanism for DFL.

4.1 MTD Techniques in FL

Figure 2.7 provides a taxonomy of various MTD techniques, including attacking surfaces,
types and the timeliness. Following the taxonomy, this work aims to create a compre-
hensive framework for understanding the MTD method of DFL. This framework will be
developed by exploring various implementation perspectives, including shuffling, diversity,
redundancy, hybrid techniques and possible attacking surfaces in DFL.

4.1.1 Shuffling

Shuffling techniques introduce dynamism into system and network configurations through
rearrangement or randomization. This section delves into the specific ways these config-
urations can be altered. Table 4.1 shows different types of shuffling techniques that can
be used as moving target defense strategies in DFL. The table also highlights the three
fundamental questions in MTD: WHAT, HOW and WHEN to move.

1. IP/port Shuffling: This technique involves randomly changing the IP addresses and
ports used for communication between nodes in the DFL network. It helps introduce
unpredictability in the communication patterns, making it harder for adversaries to
launch attacks.

2. Network Topology Shuffling: This shuffling method dynamically modifies the net-
work topology by changing the connections between nodes over time. It prevents
adversaries from exploiting static network topologies and communication patterns.

31
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Figure 4.1: A Summary of Pros and Cons of MTD Techniques-Shuffling

3. Aggregator Randomization: In this technique, different nodes are randomly selected
to act as aggregators for model parameter aggregation during each round of the
federated learning process. This randomization makes it difficult for adversaries to
target specific aggregator nodes.

4. Randomized Aggregation Functions: Instead of using a fixed aggregation function
(e.g., FedAvg, Krum, Median, TrimmedMean) for combining model parameters from
different nodes, this technique employs different randomized functions for aggrega-
tion. This unpredictability in the aggregation process enhances security.

5. Node Role Shuffling: The roles of nodes (trainer, aggregator, proxy, idle) are dy-
namically changed during the learning process. This shuffling prevents adversaries
from exploiting vulnerabilities associated with specific node roles.

6. Encryption Key Shuffling: This technique periodically changes the encryption keys
used for secure communication between nodes, making it harder for adversaries to
decrypt intercepted messages.

7. VM Instances Migration: In this shuffling method, the virtual machine instances
hosting the nodes are moved to different physical machines over time, introducing
unpredictability in the physical infrastructure.

8. Communication Link Shuffling: The communication links between nodes are changed
dynamically, preventing adversaries from exploiting static communication patterns.

Pros and Cons: On the positive side, shuffling techniques can introduce unpredictability
and increase the complexity for adversaries to launch successful attacks against the DFL
system. By dynamically changing the attack surface, these techniques can invalidate the
intelligence gathered by attackers and deplete their resources. By dynamically changing
the attack surface, these techniques can invalidate the intelligence gathered by attackers
and deplete their resources. The shuffling techniques are jighly compatible with legacy
devices and technologies, allowing immediate applicability. They can also work with
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Figure 4.2: A Summary of Pros and Cons of MTD Techniques-Diversity

existing technologies without developing a new security mechanism, reducing development
costs and resources.

However, the main drawback is the potential high communication cost or service in-
terruption if not executed adaptively. Frequent shuffling can lead to increased network
overhead, latency, and potential disruptions in the learning process, especially in resource-
constrained or bandwidth-limited DFL scenarios. Therefore, a careful balance must be
struck between the security benefits of shuffling and the associated performance trade-offs
to ensure efficient and reliable DFL operations. Further, the security achieved is limited
by the vulnerabilities of the existing legacy devices/technologies that shuffling relies on.
If those technologies are not robust enough against attacks, the shuffling technique’s ef-
fectiveness is diminished. The size of the shuffling spaces (e.g., number of virtual IPs
that can be assigned to a real IP) is also critical for enhancing security. Limited shuffling
spaces can reduce the technique’s effectiveness.

CFL or DFL: Most of the shuffling techniques listed can be applied to both CFL and Dfl
except for two techniques: Aggregator Randomization and Node Role Shuffling. In Aggre-
gator Randomization, the technique is specific to DFL scenarios, as it involves randomly
selecting different nodes to act as aggregators for model parameter aggregation, which
is a characteristic of decentralized architectures. Similar to Aggregator Randomization,
Node Role Shuffling is specific to DFL scenarios, as it involves dynamically changing the
roles (trainer, aggregator, proxy, idle) of nodes during the learning process, which is a
characteristic of decentralized architectures.

4.1.2 Diversity

Table 4.2 shows different types of diversity techniques that can be used as moving target
defense strategies in DFL.

1. Programming Diversity refers to leveraging legacy devices or technologies and work-
ing well with shuffling-based MTD techniques to enhance the effect. However, the
PDF does not provide specific examples of programming diversity techniques.

2. Model Diversity involves using different types of machine learning models (e.g. MLP,
CNN, neural networks, decision trees) across the nodes in the federation. The idea is
that having diverse model architectures across nodes can improve robustness against
attacks.
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3. Data Diversity aims to partition the training data in different ways across nodes,
such as using horizontal federated learning (different samples), vertical federated
learning (different features), or transfer federated learning (limited shared sam-
ples/features). Having diverse data distributions makes it harder for an attacker
to exploit.

4. Node Type Diversity refers to having a heterogeneous mix of hardware configurations
(Virtual participants, Real devices or External datacenter). The diversity of node
types increases complexity for potential attackers.

Pros and Cons: On the positive side, diversity MTD techniques can increase the complex-
ity and unpredictability for potential attackers, making it harder to exploit vulnerabilities
or launch successful attacks against the DFL system. This added diversity introduces un-
certainty and dynamism, disrupting the attacker’s asymmetric advantage. By leveraging
existing technologies can make implementation easier and more cost-effective compared
to developing entirely new systems. Combining diversity-based and shuffling-based MTD
techniques can potentially ”double the effectiveness” by introducing multiple layers of
moving targets and unpredictability for attackers.

However, a key con is that leveraging legacy devices or technologies with diverse config-
urations could be limited by the inherent vulnerabilities or constraints of those existing
systems, potentially introducing new attack surfaces or compatibility issues within the
federated environment. Maintaining and orchestrating such diversity across participants
may also increase management overhead and complexity for the DFL implementation.
Further, if the underlying existing technologies themselves have high vulnerabilities, sim-
ply adding an MTD layer on top may not provide significantly better security, despite the
additional defense costs incurred. Like the shuffling techniques, the degree of diversity
available is also a limiting factor. If there are not many diverse alternatives or versions
to choose from, the potential security enhancement will be inherently limited.

CFL or DFL: In principle, the core concepts of data, model, node, and device diversity
seem applicable to both CFL and DFL. However, the specific implementation details and
considerations for applying these diversity techniques may differ between CFL and DFL
due to their architectural differences in terms of communication patterns, aggregation
mechanisms, etc.

4.1.3 Redundancy

By implementing redundancy techniques, DFL systems can enhance their overall reliabil-
ity, fault tolerance, and resilience against various types of failures, such as node failures,
communication disruptions, or malicious attacks. Table 4.2 shows different types of re-
dundancy techniques that can be used as moving target defense strategies in DFL.

1. Data Redundancy: This technique involves creating and maintaining multiple copies
or replicas of the same data across different nodes or locations within the DFL
system. By having redundant data copies, the system can continue operating even
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Figure 4.3: A Summary of Pros and Cons of MTD Techniques-Redundancy

if one or more nodes fail or become unavailable, as the data can be accessed from
the remaining replicas.

2. Model Redundancy: In this approach, multiple instances or replicas of the same
machine learning model are trained and maintained across different nodes in the DFL
network. This redundancy ensures that if one model instance fails or is compromised,
the system can rely on the other replicated models to continue providing the required
functionality.

3. Redundant Aggregation Nodes: This technique involves having multiple nodes des-
ignated as aggregators within the DFL system. These redundant aggregation nodes
are responsible for collecting and aggregating the local model updates from other
nodes during the federated learning process. If one aggregation node fails, the others
can take over the aggregation task, ensuring continuity of the learning process.

4. Redundant Communicant Paths: In this case, redundancy is introduced at the com-
munication level by establishing multiple communication paths or routes between
nodes in the DFL network. If one communication path fails or is disrupted, the
nodes can switch to alternative redundant paths to maintain connectivity and con-
tinue exchanging model updates or other data.

5. Federated Controller Redundancy: This technique involves having multiple feder-
ated controllers or coordinating nodes within the DL system. These redundant
controllers are responsible for managing and orchestrating the federated learning
process, including tasks such as node selection, model aggregation, and synchro-
nization. If one controller fails, the others can take over its responsibilities, ensuring
the overall system’s resilience.

6. Redundant Local Updates: In this approach, each node in the DFL system maintains
redundant copies or versions of its local model updates before sharing them with
other nodes or the aggregator. This redundancy helps mitigate the risk of data loss
or corruption during the communication or aggregation process.

Pros and Cons: Redundancy MTD techniques provide multiple replicas of system or
network components offering the same functionality at the network or application layer.
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The key pros are higher reliability and service availability, as the system can continue
operating even if one or more nodes fail or become unavailable due to the redundant
replicas. It also can also be combined with shuffling or diversity to significantly secure a
system and ensure service availability.

However, the cons include additional costs to move or setup additional system compo-
nents like servers or routing paths. If not properly executed, it increases the attack surface.
There is also a risk that if not implemented correctly, redundancy can lead to inconsis-
tencies across different network segments, negatively impacting the accuracy of federated
models for certain participant groups

CFL or DFL: While most redundancy techniques can be applied to both DFL and CFL,
they may have different levels of importance and impact depending on the architecture.

Data Redundancy, Model Redundancy, Redundant Aggregation Nodes, and Redundant
Local Updates can be applied to both DFL and CFL architectures. These techniques aim
to create redundant copies or replicas of data, models, aggregation nodes, or local updates
to enhance reliability, fault tolerance, and resilience against failures or attacks.

Redundant Communicant Paths may be more relevant and beneficial in DFL architectures
compared to CFL. In DFL, there is no central server, and nodes communicate directly
with each other. Having redundant communication paths can help maintain connectivity
and ensure model parameter exchanges even if some paths or nodes fail. In CFL, the
communication is primarily between clients and the central server, so redundant paths
may not be as crucial. Federated Controller Redundancy is more applicable to CFL
architectures, where there is a central coordinating entity (the server). Having redundant
federated controllers can prevent single points of failure and ensure continuity of the
federated learning process. In DFL, there is no central controller, and the coordination is
decentralized among the nodes, so this technique may not be as relevant.

4.1.4 Hybrid

Hybrid MTD coordinates the use of multiple MTD techniques (shuffling, diversity, and
redundancy) to provide a more comprehensive defense. Figure 4.4 illustrates the re-
lationships between three key principles of MTD techniques: shuffling, diversity, and
redundancy.

”Shuffling” aims to improve performance and efficiency by continuously changing the at-
tack surface, making it harder for attackers to exploit vulnerabilities. ”Diversity” con-
tributes to resilience and robustness by introducing heterogeneity into the system com-
ponents, reducing the risk of widespread compromise from a single vulnerability. ”Re-
dundancy” enhances reliability and availability by providing redundant components or
resources, allowing the system to continue operating even if some parts are compromised.
Their combined application can improve the performance and efficiency of cybersecurity
systems by increasing complexity and unpredictability for attackers.

Hybrid MTD approaches that integrate multiple techniques can provide enhanced secu-
rity benefits compared to single-technique solutions. Combining diversity or redundancy
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Figure 4.4: Relationships between Shuffling, Diversity and Redundancy

with shuffling significantly improves protection while potentially reducing defense costs
and service disruptions. For instance, MTD that incorporates both shuffling and diversity
may require less frequent shuffling compared to a shuffling-only approach, as the diver-
sity of system components increases the difficulty for attackers to identify vulnerabilities.
Additionally, redundancy improves system availability, resulting in higher service quality
and fewer interruptions for users. However, hybrid MTD may introduce a larger attack
surface compared to a single MTD technique. It also involves additional overhead and
complexity in integrating multiple techniques into a unified solution, leading to a complex,
multi-objective optimization problem with various operational constraints

4.2 Defense Design

Having explored the range of MTD techniques in DFL, this work will now design a MTD
technique to strengthen the security and resilience of DFL systems against poisoning
attacks. Randomized Aggregation Functions from Shuffling MTD techniques can serve as
a good starting point as they introduce unpredictability in the aggregation process, making
it harder for adversaries to predict and manipulate the aggregated model updates.

4.2.1 Dynamic Aggregation Functions

The idea for Randomized Aggregation Functions, or Dynamic Aggregation Functions can
be summarized as below:

1. The system maintains a pool of aggregation functions, including FedAvg, Krum,
Median, and Trimmed Mean. The node can dynamically switch between these
functions during the federated learning process.
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2. Dynamic aggregation is triggered in two modes:

• Proactive mode: At the start of each training round, if the node itself is not
malicious, then the node randomly selects a new aggregation function from the
pool to use for this round.

• Reactive mode: If malicious nodes are detected and the node itself is not
malicious, it takes the following actions:

– First, it broadcasts the list of detected malicious nodes to other nodes in
the network.

– Second, it switches to a randomly selected aggregation function (excluding
the current one) and excludes the malicious nodes from the aggregation
process.

If a non-malicious node receives messages about malicious nodes in the network,
it will:

– Randomly select a new aggregation function (excluding the current one)
and exclude the malicious nodes from the aggregation process.

In summary, dynamic aggregation allows the node to adaptively switch the aggregation
function during the federated learning process, either proactively to improve robustness
and adaptability or reactively in response to detected malicious nodes. This enhances
the overall security and resilience of the federated learning system. This flowchart 4.5
illustrates the dynamic aggregation process. It shows the steps involved in determin-
ing whether to use proactive or reactive dynamic aggregation, and how the aggregation
function is dynamically changed based on the selected mode.

4.2.2 Key Components

1. Aggregation Function Pool: To enable dynamic adaptation during federated learn-
ing, the system maintains a pool of aggregation functions (FedAvg, Krum, Median,
Trimmed Mean). The node can randomly select and switch between these functions
at runtime. The specific function selection algorithm is detailed in Algorithm 1.

2. Malicious Nodes Detection: To find out which nodes are malicious, [31] proposes
a Anomaly Detector module to identify any abnormality within these models by
using reputation. Reputation plays a key role in determining the influence of nodes’
contributions during aggregation. Nodes with a good reputation have their inputs
weighted more heavily, giving more importance to reputable participants. While
those with higher performance have their reputation increase, nodes with lower
performance have their reputation decrease. The Anomaly Detector computes the
layer-wise cosine similarity(reputation) between the local model mi and the received
models mj in the shared models M′ in the DFL network. If any of these similarity
scores exceeds the threshold κs, the process of reactive dynamic aggregation is trig-
gered. The Anomaly Detector Algorithm is depicted in Algorithm 2 and Layer-wise
Cosine Similarity in Algorithm 3
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Figure 4.5: Dynamic Aggregation Flowchart
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Algorithm 1 Random Aggregation Function Selection

Require: A: aggregation functions pool, f : Current aggregation function of the node, f ′:
Selected aggregation function

Ensure: f ′ ̸= f
1: A ← ”Krum”, ”Median”, ”TrimmedMean” ▷ Set of aggregation functions
2: if ∄ self.aggregator then
3: f ← ∅ ▷ Current aggregation function
4: else
5: f ← self.aggregator
6: end if
7: f ′ ← f
8: while f ′ = f do
9: f ′ ← random choice(A)
10: end while
11: return f ′

Algorithm 2 Anomaly Detector Algorithm [31]

Require: M′
i: Neighbor models, mi: Local model, κs: Similarity threshold

1: Initialize Triggering message t← 0
2: for mj in M′

i do
3: sij ← CosSim(mi,mj)
4: if sij ≥ rs then
5: t← 1
6: end if
7: end for
8: return t

Algorithm 3 Layer-wise Cosine Similarity [31]

Require: mi: Local model, mj: Neighbor model.
1: for li, lj in mi,mj do

2: sij ← sij +
li·lj

∥li∥∥lj∥
3: end for
4: return sij
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3. Dynamic Aggregator: The Dynamic Aggregator is a core component that enables
adaptability and security by randomly selecting a new aggregation function from
the Aggregation Function Pool, updating the node’s aggregator, and filtering out
models from malicious nodes. The algorithm is explained in Algorithm 4

Algorithm 4 Dynamic Aggregator

Require: Aggregated models and weights M, Malicious nodes Nm

Ensure: Updated Aggregator
1: Atarget ← Random Aggregation Function Selection ▷ New Aggregation Function
2: Acurrent ← Atarget ▷ Change the aggregator
3: Acurrent.set nodes to aggregate(self. train set) ▷ Set Nodes
4: Acurrent.set round(self.round) ▷ Set Round
5: for s ∈M.keys() do ▷ Iterate over aggregated models (keys of M)
6: sublist← s.split() ▷ Split nodes in string s
7: (ms, ws)←M [s] ▷ Get model and weights
8: for n ∈ sublist do ▷ Iterate over nodes in sublist
9: if n /∈ Nm then ▷ Not in malicious nodes
10: Acurrent.add model(ms, {n}, ws) ▷ Add Model
11: end if
12: end for
13: end for
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Chapter 5

Implementation

5.1 Fedstellar Framework

Fedstellar[79] is an innovative, open-source platform1 implemented in Python that enables
the creation of centralized and decentralized FL architectures. It provides a standardized
approach for developing, deploying, and managing FL applications while offering features
for data management, model management, and performance monitoring. The architecture
of Fedstellar consists of three main components:

• Frontend: A user-friendly frontend that allows for easy experiment setup and mon-
itoring. It provides an intuitive interface for users to design and oversee learning
scenarios.

• Controller: The controller serves as the orchestration center of the platform. It
interprets user commands from the frontend, manages the entire federated scenario,
assigns learning algorithms and datasets, and configures network topologies to en-
sure an efficient federated learning process.

• Core: The core component is deployed on each device participating in the federation.
It is responsible for executing the federated learning tasks, including model train-
ing, data preprocessing, secure communication among devices, and storage of the
federated models. The core also supervises the calculation of performance metrics
and conveys this information back to the frontend for monitoring.

Docker is used to manage the various components of Fedstellar, including the frontend,
controller, and participants. In the learning process, the user first defines the scenario
configuration through the frontend, including parameters such as the number of rounds.
The controller then loads this configuration and starts all participating nodes. Fedstellar
assigns one of three roles to each node: Aggregators, which train local models on their
own data and aggregate model updates from other nodes; Trainers, which only train local
models and distribute updates without performing aggregation; and Proxies, which simply

1https://github.com/enriquetomasmb/fedstellar
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relay model updates between nodes.Docker is used to manage the various components of
Fedstellar, including the frontend, controller, and participants. After deployment, each
node operates independently, training on its local dataset. Upon completing a training
round, nodes send their updated parameters to their neighbors and wait to receive updates
in return or until a timeout occurs. The process then moves to the aggregation phase and
the next round, iterating until the specified number of rounds is completed.

Fedstellar also brings monitoring and analysis features. Fedstellar employs a customized
implementation of TensorBoard, optimized for handling simultaneous metric updates from
numerous devices, providing real-time insights into model performance, resource utiliza-
tion, and communication status across the federated network. The platform also maintains
log files for troubleshooting and replicating scenarios.

Worth to mention is that the latest version of Fedstellar, Fedstellar 2.0.0 introduces no-
table features for simulating and mitigating security threats in federated learning. The
platform now allows users to add attack and defense mechanisms to the learning process.
In the Frontend, users have the option to include malicious participants and simulate
various poisoning attacks, such as targeted and untargeted data poisoning (e.g., label
flipping, sample poisoning) and model poisoning. To counter these threats, [31] adds a
reactive MTD mechanism. This approach dynamically alters the topology of the nodes
to mitigate the impact of poisoning attacks. To achieve this, [31] incorporates a reputa-
tion system that calculates a reputation score for each node, aiding in the detection of
malicious participants, as described in Algorithm 2 and 3.

5.2 Adaption of Dynamic Aggregation Functions

To adapt the design of Dynamic Aggregation Functions to Fedstellar Framework, this work
adds a module to Fedstellar. In the Frontend, additional MTD selection and definition
options to define MTD strategies are offered. Then the Controller receives instructions
from the Frontend and deploys the entire federated scenario according to configuration.
The Core encompasses the MTD Module. The MTD Module5.1 consists of the following
sub-components:

• Reputation System: This utilises the Reputation System implemented by [31] in Fed-
stellar. It calculates and maintains reputation scores for the participating nodes/de-
vices in the federated learning system. The reputation scores help identify and
mitigate the impact of malicious or underperforming nodes during the model aggre-
gation process. In this work, the threshold of cossim is set to 0.95 and the avgloss
threshold is set to 0.4.

• Aggregation Function Pool: This is the implementation of Algorithm 1. The system
maintains a pool of aggregation functions (FedAvg, Krum, Median, Trimmed Mean).
The node can randomly select and switch between these functions at runtime.
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Figure 5.1: Architecture of the MTD Module in Fedstellar

• Dynamic Aggregator: This is the implementation of Algorithm 4. This is a core
component that enables adaptability and security by randomly selecting a new ag-
gregation function from the Aggregation Function Pool, updating the node’s aggre-
gator, and filtering out models from malicious nodes.

5.2.1 Adaption of Frontend and Controller

5.2 shows the user interface for deploying and configuring scenarios in the Fedstellar
platform. When ”Advanced mode” button, the user will have more configuration options
such as ”Advanced Topology”, ”Robustness” and ”Defense”, etc.

This work adds more options in the ”Defense” configuration. Figure 5.3. The codes are
implemented in file deployment.html, participant.json.example and app.py.
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Figure 5.2: Fedstellar Frontend Interface

Figure 5.3: Fedstellar MTD Configuration
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deployment.html modifies the frontend webpage.

1 data["is_dynamic_aggregation"] = document.getElementById("

dynamic -aggregation -btn").checked ? true : false

2 data["dynamic_aggregation_mode"] = document.getElementById("

dynamic -aggregation -btn").checked ? document.

getElementById("dynamicAggregationModeSelect").value :

false

3 document.getElementById("dynamic -aggregation -btn").checked =

data["is_dynamic_aggregation"];

4 document.getElementById("dynamicAggregationModeSelect").value

= data["dynamic_aggregation_mode"];

5
6 <div id="dynamic -aggregation -mode" style="display:␣none;␣

margin -left:␣20px">

7 <h5>Dynamic Aggregation Mode </h5 >

8 <select class="form -control" id="

dynamicAggregationModeSelect" name="

dynamicAggregationMode"

9 style="display:␣inline;␣width:␣20%">

10 <option selected >Proactive </option >

11 <option >Reactive </option >

12 </select >

13 <small id="dynamicAggHelp" class="form -text␣text -muted">

14 <i id="dynamicAggHelpIcon" class="fa␣fa-info -circle"

></i>

15 </small >

16 </div >

Listing 5.1: deployment.html

participant.json.example parses paramaters from the frontend.

1 "defense_args": {

2 "with_reputation": false ,

3 "is_dynamic_topology": false ,

4 "is_dynamic_aggregation": false ,

5 "target_aggregation": false ,

6 "dynamic_aggregation_mode": false

7 }

Listing 5.2: participant.json.example

app.py handles the scenario deployment with parameters from the frontend.

1 def fedstellar_scenario_deployment_run ():

2 ...

3 participant_config["defense_args"]["

is_dynamic_aggregation"] = data["

is_dynamic_aggregation"]
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4 participant_config["defense_args"]["

dynamic_aggregation_mode"] = data["

dynamic_aggregation_mode"]

Listing 5.3: app.py

5.2.2 Adaption of Controller

To implement Algorithm 1 and 4, node.py has been modified.

__randomly_select_aggregation_function() Randomly selects an aggregation func-
tion from a pool of aggregation functions. Krum, Median, and TrimmedMean are se-
lected as candidate aggregation functions in the pool. These are common choices for
Byzantine-Robust Aggregation, which aims to ensure accurate data aggregation even in
the presence of faulty or malicious nodes (Byzantine faults) in distributed systems like
federated learning. 3.1.3

1 def __randomly_select_aggregation_function(self):

2 # Define the pool of aggregation functions

3 aggregation_functions = ["Krum","Median", "TrimmedMean"]

4 # Get the current aggregation function

5 if not hasattr(self , ’aggregator ’):

6 current_aggregation_function_name = None

7 else:

8 current_aggregation_function_name = self.

aggregator_name

9 # Randomly select an aggregation function other than the

current one

10 selected_aggregation_function_name =

current_aggregation_function_name

11 while selected_aggregation_function_name ==

current_aggregation_function_name:

12 selected_aggregation_function_name = random.choice(

aggregation_functions)

13 # Create the aggregation function based on the randomly

chosen name

14 if selected_aggregation_function_name == "Krum":

15 selected_aggregation_function = Krum(node_name=self.

get_name (), config=self.config)

16 self.aggregator_name = "Krum"

17 elif selected_aggregation_function_name == "Median":

18 selected_aggregation_function = Median(node_name=self

.get_name (), config=self.config)

19 self.aggregator_name = "Median"

20 elif selected_aggregation_function_name == "TrimmedMean":

21 selected_aggregation_function = TrimmedMean(node_name

=self.get_name (), config=self.config)
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22 self.aggregator_name = "TrimmedMean"

23 return selected_aggregation_function

Listing 5.4: randomly select aggregation function()

__dynamic_aggregator() Dynamically selects an aggregation function, updates the ag-
gregator, and adds models to the aggregator.

1 def __dynamic_aggregator(self , aggregated_models_weights ,

malicious_nodes):

2 """

3 Args:

4 aggregated_models_weights (dict): A dictionary

containing the aggregated models and their

corresponding weights.

5 malicious_nodes (list): A list of nodes that are

considered malicious.

6 """

7 # Select a random aggregation function

8 self.target_aggregation = self.

__randomly_select_aggregation_function ()

9 # Change the aggregator to the target aggregation

function

10 self.aggregator = self.target_aggregation

11 self.aggregator.set_nodes_to_aggregate(self.__train_set)

12 # Set the round of the aggregator to the current round

13 self.aggregator.set_round(self.round)

14 # Add the models to the aggregator

15 for subnodes in aggregated_models_weights.keys():

16 sublist = subnodes.split ()

17 (submodel , weights) = aggregated_models_weights[

subnodes]

18 # Add the model to the aggregator if the node is not

in the list of malicious nodes

19 for node in sublist:

20 if node not in malicious_nodes:

21 self.aggregator.add_model(

22 submodel , [node], weights , source=self.

get_name (), round=self.round

23 )

Listing 5.5: dynamic aggregator()

In __train_step(self), the proactive mode and the first case in reactive mode is imple-
mented: In proactive mode, at the start of each training round, if the node itself is not
malicious, then the node randomly selects a new aggregation function from the pool to
use for this round. In reactive mode, if malicious nodes are detected and the node itself is
not malicious, it will broadcast the list of detected malicious nodes to other nodes in the
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network, then changes to a new aggregation function, and excludes the malicious from
the aggregation function.

1 def __train_step(self):

2 ...

3 # dynamic aggregation function

4 if self.with_reputation and not self.__is_malicious:

5 malicious_nodes = []

6 # Proactive dynamic aggregation function

7 if self.round > 0:

8 if (self.is_dynamic_aggregation) and (self.

dynamic_aggregation_mode == "Proactive"):

9 self.__dynamic_aggregator(self.aggregator.

get_aggregated_models_weights (), malicious_nodes)

10 # Reactive dynamic aggregation function

11 if self.round > 2:

12 if (self.is_dynamic_aggregation) and (self.

dynamic_aggregation_mode == "Reactive"):

13 # Calculate the malicious nodes and reputation score

14 malicious_nodes , reputation = self.

reputation_calculation(self.aggregator.

get_aggregated_models_weights ())

15
16 if len(malicious_nodes) > 0:

17 # Send reputation message to other nodes

18 self.send_reputation(malicious_nodes)

19
20 # Call the dynamic aggregator function , change the

aggregator to the target_aggregation

21 self.__dynamic_aggregator(self.aggregator.

get_aggregated_models_weights (), malicious_nodes

)

Listing 5.6: train step()

__reputation_callback() defines the second case in the reactive mode: if a non-malicious
node receives messages about malicious nodes in the network, it will randomly select a
new aggregation function and exclude the malicious nodes from the aggregation process.

1 def __reputation_callback(self , msg):

2 # Receive malicious nodes information from neighbors (

broadcast REPUTATION message)

3 malicious_nodes = msg.args # List of malicious nodes

4 if self.with_reputation:

5 if len(malicious_nodes) > 0 and not self.__is_malicious

and self.get_name () not in malicious_nodes:

6 # Check if dynamic aggregation with Reactive mode is

enabled
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7 if (self.is_dynamic_aggregation) and (self.

dynamic_aggregation_mode == "Reactive"):

8 # Call the dynamic aggregator function , change

the aggregator to the target aggregation

function

9 self.__dynamic_aggregator(self.aggregator.

get_aggregated_models_weights (),

malicious_nodes)

Listing 5.7: reputation callback()
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Chapter 6

Evaluation

This chapter focuses on evaluating Moving Target Defense (MTD) mechanisms that utilize
dynamic aggregation functions, including both proactive and reactive approaches. This
work will compare their performance against baseline performance on various datasets.
The chapter will first outline the experimental setup, followed by the results, and conclude
with a discussion of the observations.

6.1 Experiment Setup

The following sections will cover the datasets, their corresponding models, the threat
model, and the configuration for implementing MTD in Fedstellar.

6.1.1 Datasets and Models

This work selected three datasets with IID (Independent and Identically Distributed) char-
acteristics and corresponding deep learning models to evaluate the MTD-based defense
mechanism implemented within Fedstella.

• MNIST[80] is a widely used benchmark dataset for neural networks, containing
60,000 training images and 10,000 test images of handwritten digits (0-9), each
represented as a 28x28 grayscale image. A Multilayer Perceptron (MLP) with a
specific architecture is used to learn this dataset. The MLP consists of an input
layer with 28*28 neurons feeding into a 256-neuron linear layer, a hidden layer with
256 ReLU activated neurons feeding into a 128-neuron linear layer, and an output
layer with 10 softmax activated neurons for classification [81], [82]. The model is
trained using the Adam optimizer [83] with a learning rate of 1e-3 and cross-entropy
loss, with 3 epochs per federated round.

53
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Figure 6.1: Model Poisoning Configuration in Fedstellar

• FashionMNIST (FMNIST)[84] is a dataset designed as a more challenging replace-
ment for the classic MNIST dataset. It consists of 60,000 training and 10,000 test
images of fashion items across 10 classes (e.g., t-shirt, trouser, dress). Like MNIST,
each image is a 28x28 grayscale image. The increased complexity of FMNIST pro-
vides a more robust benchmark for evaluating image classification algorithms. The
same MLP architecture used for MNIST is also applied to the FMNIST dataset,
with a training duration of 3 epochs per round.

• CIFAR10 [85] is another popular benchmark in computer vision. It comprises 60,000
color images (32x32 pixels) across 10 classes (e.g., airplane, bird, cat, truck), with
50,000 training images and 10,000 test images. The complexity of color images
and the variety of object classes make CIFAR10 a more challenging dataset for im-
age classification compared to MNIST or FMNIST. Convolutional Neural Networks
(CNNs) [86] are a specialized type of neural network designed to excel in image-
related tasks. CNNs use convolutional layers to extract and learn features from
image data. These layers use kernels (filters) that slide over the image to detect
patterns like edges, textures, and shapes. CNNs typically include pooling layers
to reduce computation and introduce some translation invariance, along with fully
connected layers for final classification.

6.1.2 Model Poisoning Configuration

This work selects Model Poisoning attacks to evaluate the performance of newly proposed
MTD defense mechanism. In this attack scenario, a malicious participant intentionally
corrupts the integrity of the model by injecting a noise into the local model updates. To
characterize the model poisoning attacks, the following key parameters are introduced,
just like the configurations of Fedstellar in Figure6.1:

• Poisoned Node Ratio (PNR): The percentage of malicious participants in the feder-
ated learning network

• Poisoned Sample Ratio (PSR): The percentage of data samples or labels that an
attacker modifies

• Noise Ratio (NR): How much noise an attacker injects into the local data or model

The PNR was set to three different levels: 10%, 50%, and 80%, representing low, medium,
and high poisoning environments, respectively. This allows for the evaluation of the
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defense mechanisms under varying degrees of malicious participation in the network. For
model poisoning attacks, the PSR is not applicable since the attacker directly manipulates
the local model parameters instead of tampering with the training data or labels. A salt
NR of 30% is chosen for the model poisoning attacks. This level of salt noise is sufficient
to degrade the model’s performance. The malicious nodes were randomly selected from
the pool of participants. Once selected, these nodes launched model poisoning attacks by
injecting 30% salt noise into their local model updates before sending them to the central
server for aggregation.

In the context of defending against poisoning attacks in federated learning, both proactive
and reactive dynamic aggregation techniques are employed.

6.1.3 Fedstellar Configuration

The following paragraphs explain how Fedstellar is configured internally. The experiment
utilized a small network of 10 nodes. The topology was fully connected, meaning each
node was directly connected to all other nodes. In other words, each node had 9 neigh-
bors, as shown in Figure 6.2. The neighbor assignments remained fixed throughout the
experiment. The malicious nodes were randomly placed, with a maximum of 80% of the
nodes potentially being malicious. Importantly, all nodes in the network acted as aggre-
gators, participating in both the aggregation process and model training. There were no
dedicated proxy nodes.

This work distributed data equally among all nodes using an IID (Independent and Identi-
cally Distributed) approach. For MNIST and FMNIST, each node received 6,000 training
samples and 1,000 test samples. With CIFAR-10, each node had 5,000 training samples
and 1,000 test samples. A 10% validation set was created from the training data for all
experiments. Regarding the aggregation algorithm, FedAvg is set as the default aggre-
gation algorithm for all nodes. Benign nodes employ different algorithms later based on
whether the reputation system is enabled and its configuration (proactive or reactive).

For all experiments, the federated learning (FL) process was configured to run for 10
rounds. Note that Fedstellar performs a model diffusion at round 0, resulting in a total
of 11 rounds. However, local training only takes place during the final 10 rounds. This
duration allows sufficient time for attackers to potentially poison the models of benign
participants. A complete list of Fedstellar-specific configuration parameters is provided
in Table.

All experiments were conducted using Fedstellar’s Docker simulation capabilities. The ex-
periments were run on a remote Ubuntu server. For the MNIST, FMNIST, and CIFAR10
datasets, a GPU environment was utilized to accelerate the training process. GPU envi-
ronment: (2) NVIDIA NVIDIA Tesla T4, CUDA Version: 12.3, Driver Version: 545.23.08,
16 GB Memory, AMD EPYC 7702 64-Core Processor CPU @ 2.0GHz, 16 Sockets, 3-level
cache hierarchy, 61 GB RAM, OS: Ubuntu 20.04.6 LTS.

To summarize the experiment setting, for each dataset(MNIST, FMNIST, CIFAR-10),
conduct experiments with varying PNR of model poisoning: 0%, 10%, 50%, and 80% and
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Figure 6.2: A fully connected network of 10 nodes was used as the Fedstellar network
configuration for all experiments
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a fixed salt NR of 30%. In all poisoning scenarios, three defense configurations were tested:
No defense; Proactive MTD defense only; Reactive MTD defense only; The no-defense
serves as a baseline. Experimental configurations are detailed in Table 6.1

6.1.4 Evaluation metrics

Two main categories of evaluation metrics are employed to assess the performance and
efficiency of the system.

• Resource-related Metrics:

These metrics focus on measuring the resource consumption and utilization during
the federated learning process. They provide insights into the computational and
communication overhead associated with the decentralized learning approach. The
resource-related metrics include:

– Communication between Nodes (in bytes): This metric quantifies the amount
of data exchanged between the nodes participating in the federated learning
process. It measures the volume of information transmitted over the network,
which can impact the overall communication efficiency and bandwidth require-
ments.

– CPU Usage (in percent): This metric monitors the utilization of the Central
Processing Unit (CPU) resources on each node during the learning process.
It indicates the computational intensity and the percentage of CPU capacity
being used by the federated learning algorithms.

– Disk Usage (in percent): This metric tracks the utilization of disk storage on
each node. It measures the percentage of disk space being consumed by the
federated learning system, including data storage, intermediate results, and
model checkpoints.

– RAM Usage (in percent): This metric gauges the utilization of Random Access
Memory (RAM) on each node during the learning process. It reflects the
memory requirements and the percentage of available RAM being used by the
federated learning algorithms.

• Performance-related Metrics: These metrics assess the effectiveness and quality
of the federated learning models in terms of their predictive capabilities and over-
all performance. They provide a quantitative measure of how well the models are
learning and generalizing from the distributed data. The performance-related met-
rics include:

– Accuracy: This metric measures the proportion of correct predictions made
by the federated learning model compared to the total number of predictions.
It indicates the overall correctness and effectiveness of the model in making
accurate classifications or predictions.
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Table 6.1: Experimental setup for evaluating the impact of model poisoning attacks and
dynamic aggregation on Fedstellar. MP stands for Model Poisoning

id Nodes Topology Dataset Model Attack PNR PSR NR MTD
1 10 Fully MNIST MLP - - - - -
2 10 Fully MNIST MLP MP 10 - 30 -
3 10 Fully MNIST MLP MP 50 - 30 -
4 10 Fully MNIST MLP MP 80 - 30 -
5 10 Fully MNIST MLP - - - - Proactive
6 10 Fully MNIST MLP MP 10 - 30 Proactive
7 10 Fully MNIST MLP MP 50 - 30 Proactive
8 10 Fully MNIST MLP MP 80 - 30 Proactive
9 10 Fully MNIST MLP - - - - Reactive
10 10 Fully MNIST MLP MP 10 - 30 Reactive
11 10 Fully MNIST MLP MP 50 - 30 Reactive
12 10 Fully MNIST MLP MP 80 - 30 Reactive
13 10 Fully FashionMNIST MLP - - - - -
14 10 Fully FashionMNIST MLP MP 10 - 30 -
15 10 Fully FashionMNIST MLP MP 50 - 30 -
16 10 Fully FashionMNIST MLP MP 80 - 30 -
17 10 Fully FashionMNIST MLP - - - - Proactive
18 10 Fully FashionMNIST MLP MP 10 - 30 Proactive
19 10 Fully FashionMNIST MLP MP 50 - 30 Proactive
20 10 Fully FashionMNIST MLP MP 80 - 30 Proactive
21 10 Fully FashionMNIST MLP - - - - Reactive
22 10 Fully FashionMNIST MLP MP 10 - 30 Reactive
23 10 Fully FashionMNIST MLP MP 50 - 30 Reactive
24 10 Fully FashionMNIST MLP MP 80 - 30 Reactive
25 10 Fully CIFAR10 CNN - - - - -
26 10 Fully CIFAR10 CNN MP 10 - 30 -
27 10 Fully CIFAR10 CNN MP 50 - 30 -
28 10 Fully CIFAR10 CNN MP 80 - 30 -
29 10 Fully CIFAR10 CNN - - - - Proactive
30 10 Fully CIFAR10 CNN MP 10 - 30 Proactive
31 10 Fully CIFAR10 CNN MP 50 - 30 Proactive
32 10 Fully CIFAR10 CNN MP 80 - 30 Proactive
33 10 Fully CIFAR10 CNN - - - - Reactive
34 10 Fully CIFAR10 CNN MP 10 - 30 Reactive
35 10 Fully CIFAR10 CNN MP 50 - 30 Reactive
36 10 Fully CIFAR10 CNN MP 80 - 30 Reactive
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– Loss: This metric quantifies the discrepancy between the predicted values and
the actual values. It represents the error or cost associated with the model’s
predictions. Lower loss values indicate better model performance and closer
alignment with the ground truth.

– Precision: This metric calculates the proportion of true positive predictions
among all positive predictions made by the model. It focuses on the model’s
ability to correctly identify positive instances while minimizing false positives.

Precision =
TP

TP + FP
(6.1)

– Recall: This metric measures the proportion of true positive predictions among
all actual positive instances in the dataset. It assesses the model’s ability to
correctly identify positive instances while minimizing false negatives.

Recall =
TP

TP + FN
(6.2)

– F1-Score: This metric combines precision and recall into a single value, provid-
ing a balanced measure of the model’s performance. It is the harmonic mean
of precision and recall and offers a comprehensive evaluation of the model’s
accuracy, considering both false positives and false negatives.

F1-Score = 2 · Precision · Recall
Precision + Recall

(6.3)

By employing these two categories of evaluation metrics, Fedstellar can comprehensively
assess the resource efficiency and predictive performance of the models. The resource-
related metrics help optimize the utilization of computational resources and communica-
tion bandwidth, while the performance-related metrics enable the evaluation and com-
parison of the MTD defense mechanism in terms of their effectiveness and generalization
capabilities.

6.2 Results

This section investigates how dynamic aggregation techniques resist model poisoning at-
tacks. First, establishe a performance benchmark by measuring the system’s performance
under normal conditions (no attacks). Then, analyze the impact of model poisoning at-
tacks on the federated learning system across all datasets (MNIST, FMNIST, CIFAR-10).
Finally, introduce proactive and reactive dynamic aggregation defenses, evaluating their
effectiveness in mitigating these attacks. By examining how attacks affect each dataset,
this work assesses the robustness of the dynamic aggregation techniques
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6.2.1 Baseline Performance

A baseline performance measurement enables the evaluation of a defense mechanism’s
effectiveness under attack conditions. Figure 6.3 establish the baseline performance of
federated learning models on these datasets under benign conditions, without any at-
tacks or defenses applied. the baseline performance of federated learning models on three
different datasets: MNIST, Fashion-MNIST (FMNIST), and CIFAR-10, over the course
of 10 training rounds. The performance is evaluated using two metrics: F1-Score and
Loss. This baseline serves as a reference for evaluating the impact of attacks and the
effectiveness of defense mechanisms in subsequent experiments.

For MNIST dataset, the F1-score starts around 0.2 and increases to around 0.8 at round
1, then steadily increases to around 0.9 by the end of learning. The loss starts around
2.2 and dereases to around 0.6 by round 10, reflecting the reduction in error as the model
learns. In Fashion-MNIST, the F1-score and loss follows a similar trend as MNIST. The
CIFAR-10 F1-Score starts lower, around 0.1, but increases to around 0.7 by round 10,
suggesting a more challenging dataset. The CIFAR-10 Loss starts higher, around 2.5, and
decreases to around 1.0 by round 10, indicating a higher error rate compared to the other
datasets.

Figure 6.4 show the resources usage during a time period of 10 minutes. It contains three
line charts labeled (a) Network Baseline, (b) CPU Baseline, and (c) RAM Baseline. Each
chart displays the resource usage over time for datasets: MNIST, FMNIST, and CIFAR10.

In Network usage, MNIST has the lowest network usage, followed by FMNIST, with
CIFAR10 requiring the highest network resources. The network usage increases gradually
for all datasets as training progresses, with CIFAR10 showing the steepest increase. In
CPU usage, the lines show oscillating CPU usage over time for each dataset, with CIFAR10
again requiring the highest CPU resources on average, representing the iterative training
process with varying computational demands in each iteration. Similar to network usage,
in RAM usage, the memory requirements increase gradually over time for all datasets,
with CIFAR10 again consuming the most RAM. In summary, the more complex CIFAR10
dataset demands significantly more resources across all metrics compared to the simpler
MNIST and FMNIST datasets.
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(a) MNIST F1-Score (b) MNIST Loss

(c) FMNIST F1-Score (d) FMNIST Loss

(e) CIFAR10 F1-Score (f) CIFAR10 Loss

Figure 6.3: Baseline F1-Score and Loss performance on MNIST, FMNIST, and
CIFAR10 over 10 rounds.
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(a) Network Baseline (b) CPU Baseline

(c) RAM Baseline

Figure 6.4: Baseline Resources on MNIST, FMNIST, and CIFAR10 over 10 rounds.

6.2.2 Model Poisoning

In a model poisoning attack, a malicious participant deliberately corrupts the model’s
weights with noise during local training, while leaving the training data untouched. This
corrupted model is then shared with neighbors during communication rounds. In this
work’s experiments, a fixed salt Noise Ration(NR) of 30% is selected. The Poisoned Node
Ration(PNR) is set to three different levels: 10%, 50% and 80%.

F1-Score

The set of graphs (a), (b), and (c) in Figure6.5 show the F1-Score plotted against the
PNR for three different datasets: MNIST, Fashion-MNIST (FMNIST), and CIFAR-10,
respectively. In each graph, the x-axis represents the percentage of poisoned nodes in the
training data, while the y-axis represents the F1-Score achieved by the model. In all three
graphs, the F1-Score decreases as the Poisoned Node Ratio increases, indicating that the
presence of malicious nodes degrades the model’s performance. The rate of decrease varies
across datasets, with CIFAR-10 (c) showing a steeper decline compared to MNIST (a)
and Fashion-MNIST (b).
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(a) MNIST F1-Score(without defense) (b) FMNIST F1-Score(without defense)

(c) CIFAR10 F1-Score(without defense)

Figure 6.5: F1-score(Without Defense) in three topologies for MNIST (a),
FashionMNIST (b), and Cifar10 (c) Datasets with Model Poisoning Attack

Resource

Figure 6.6 shows the network, cpu and ram usage for different datasets under different
PNR ratios. There is a drop of network traffic on MNIST dataset. The FMNIST dataset
experiences a great increase in RAM usage. But overall, adding model poisoning attacks
to training does not significantly increase resource consumption.
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(a) MNIST Network (b) MNIST CPU (c) MNIST RAM

(d) FMNIST Network (e) FMNIST CPU (f) FMNIST RAM

(g) CIFAR Network (h) CIFAR CPU (i) CIFAR RAM

Figure 6.6: Resource usage(without defense) of different datasets under varied PNR.

6.2.3 Proactive MTD

The Moving Target Defense mechanism implemented here is dynamic aggregation. In its
proactive mode, non-malicious nodes randomly choose a new aggregation function from
the pool at the beginning of each training round.

F1-Score

Figure 6.7 demonstrates the impact of increasing Poisoned Node Ratio (PNR) on F1-Score
within a proactive MTD setting. Across MNIST, FMNIST, and CIFAR10 datasets, F1-
Scores decline as PNR rises. The MNIST dataset experiences a severe F1-Score drop even
at 10% PNR, while FMNIST and CIFAR10 exhibit a more gradual decline at the same
level. While proactive MTD offers some mitigation in low poisoning environments, its
effectiveness diminishes at higher PNRs. This highlights that proactive MTD can lessen
the impact of model poisoning attacks but doesn’t provide complete immunity.
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(a) MNIST F1-Score(proactive) (b) FMNIST F1-Score(proactive)

(c) CIFAR10 F1-Score(proactive)

Figure 6.7: F1-score(Proactive MTD) in three topologies for MNIST (a), FashionMNIST
(b), and Cifar10 (c) Datasets with Model Poisoning Attack

Resource

Figure 6.8 indicates that proactive MTD does not significantly increase resource con-
sumption (network, CPU, RAM) across different datasets and PNR ratios. The MNIST
dataset exhibits lower traffic overhead while the RAM usage on FMNIST dataset increases
significantly.
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(a) MNIST Network (b) MNIST CPU (c) MNIST RAM

(d) FMNIST Network (e) FMNIST CPU (f) FMNIST RAM

(g) CIFAR Network (h) CIFAR CPU (i) CIFAR RAM

Figure 6.8: Resource usage(proactive) of different datasets under varied PNR.

6.2.4 Reactive MTD

In reactive MTD settings, benign nodes randomly chooses a new aggregation function if
malicious nodes are detected.

F1-Score

Figure 6.9 demonstrates the impact of increasing Poisoned Node Ratio (PNR) on F1-Score
within a reactive MTD setting. Like in the proactive settings, for all three datasets, the
F1-Score goes down as the percentage of poisoned data goes up. The graphs also show
that the F1-Score is higher for some datasets than others.Reactive MTD demonstrates
good performance on the FashionMNIST dataset at 10% PNR, but its effectiveness is low
for MNIST and CIFAR-10 datasets.
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(a) MNIST F1-Score(reactive) (b) FMNIST F1-Score(reactive)

(c) CIFAR10 F1-Score(reactive)

Figure 6.9: F1-score(Reactive MTD) in three topologies for MNIST (a), FashionMNIST
(b), and Cifar10 (c) Datasets with Model Poisoning Attack

Resources

Figure 6.8 indicates that reactive MTD does not significantly increase resource consump-
tion (network, CPU, RAM) across different datasets and PNR ratios. Like in the previous
charts, FMNIST experiences a higher RAM usage.
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(a) MNIST Network (b) MNIST CPU (c) MNIST RAM

(d) FMNIST Network (e) FMNIST CPU (f) FMNIST RAM

(g) CIFAR Network (h) CIFAR CPU (i) CIFAR RAM

Figure 6.10: Resource usage(reactive) of different datasets under varied PNR.

6.3 Discussion

Figure 6.11 compares the F1-Score performance of different defense strategies against
model poisoning attacks. There are three lines plotted:

1. Without Defense (red line) - This serves as the baseline. As expected, without any
defense, the model’s F1-score decreases significantly as the proportion of poisoned
nodes (PNR) increases.

2. Proactive MTD (green line) - Proactive Moving Target Defense (MTD) attempts to
make attacks harder by continuously changing aspects of the system. It shows im-
proved resilience, maintaining a higher F1-score than ’no defense’. It’s particularly
effective in cases of low PNR, as evident in the FMNIST graph. However, in higher
PNR, the effect of proactive MTD diminishes.

3. Reactive MTD (blue line) - Reactive MTD responds to detected attacks. Its per-
formance varies. In the FMNIST dataset, it shows some improvement, but in other
cases, it’s less effective compared to proactive MTD.
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To summarize, for the MNIST dataset, the MTD mechanisms have minimal impact in
mitigating the effects of poisoned data on the F1-score performance. However, for the
FashionMNIST and CIFAR10 datasets, the MTD mechanisms are more effective, espe-
cially in low poisoning environments with smaller percentages of poisoned training data.
Among the different MTD approaches, the proactive MTD strategy generally provides the
most robust defense against poisoned node attacks, particularly when the proportion of
poisoned data is relatively low. Across most poisoned node ratios (PNRs), the proactive
MTD outperforms the other defense mechanisms. The reactive MTD approach can offer
some improvement over no defense, but its reliability may vary across different scenarios
and poisoning levels. While the implementation of dynamic aggregation techniques can
help reduce the impact of model poisoning attacks, it does not provide complete immunity.
The effects of the poisoning attacks are still observed, albeit to a lesser degree compared
to having no defense mechanism.

In terms of resources, model poisoning can lead to a decrease in network traffic on MNIST
and a significant increase in RAM usage on FashionMNIST. Incorporating proactive and
reactive MTD techniques has a negligible additional impact on network, CPU, and RAM
usage.

(a) MNIST F1-Score (b) FMNIST F1-Score

(c) CIFAR10 F1-Score

Figure 6.11: F1-score in three topologies for MNIST (a), FashionMNIST (b), and
Cifar10 (c) Datasets with Model Poisoning Attack
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Chapter 7

Summary and Conclusions

7.1 Conclusion

The purpose of this project is to develop and implement a mitigation strategy utilizing
MTD techniques to strengthen the security and resilience of Decentralized Federated
Learning systems against poisoning attacks. By dynamically changing the aggregation
functions used by participants, this approach seeks to strengthen system resilience against
model poisoning, particularly in low-poisoning scenarios across selected datasets, while
minimizing additional resource consumption. Current research on the MTD method for
DFL is relatively scarce and lacks a systematic summary and analysis of existing work.
The work fills a gap in current research by exploration and development of MTD methods
tailored for the unique challenges of DFL systems.

The theoretical background served as an introduction to on Federated Learning, poisoning
attacks, and Moving Target Defense. This establishes the foundation for understanding
the security challenges in DFL and the potential of MTD techniques. With the back-
ground knowledge this thesis develops a comprehensive framework for understanding and
categorizing MTD techniques in DFL. The framework explores various implementation
perspectives, including shuffling, diversity, redundancy, and hybrid techniques, as well as
possible attack surfaces in DFL. The usage, advantages, and disadvantages of each tech-
nique are analyzed and discussed. With the framework, this thesis proposes a novel MTD
mechanism called Dynamic Aggregation Functions, also known as Randomized Aggrega-
tion Functions, to mitigate poisoning attacks in DFL. Dynamic Aggregation empowers
nodes to proactively or reactively switch aggregation functions during the federated learn-
ing process. This introduces flexibility and unpredictability, improving the robustness,
adaptability, and overall security of the system against malicious behavior.

The design of the Dynamic Aggregation Functions MTD technique was adapted and
implemented on Fedstellar, an open-source platform for training decentralized federated
learning models across diverse physical and virtualized devices. Extensive evaluations
were then conducted on the MNIST, FashionMNIST (FMNIST), and CIFAR10 datasets
to assess the effectiveness of the proposed Dynamic Aggregation Functions against model
poisoning attacks under various configurations. The experiments results show that this
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MTD technique demonstrates effectiveness in mitigating the impact of model poisoning
attacks, particularly in low poisoning environments and when using the proactive ap-
proach. However, the technique’s performance varied across datasets and did not provide
complete protection against attacks. The incorporation of MTD had minimal overhead
in terms of resource consumption.

7.2 Limitations and Future Work

As for now, while the proposed dynamic aggregation functions demonstrates effectiveness
in mitigating the impact of model poisoning attacks in DFL,it has several limits. First, the
performance of the technique varies across datasets and does not provide complete pro-
tection against attacks, especially in high poisoning scenarios. Second, this work focused
only on model poisoning attacks, while other types of poisoning attacks, such as data
poisoning(targeted/untargeted label flipping, sample poisoning), backdoor attacks, were
not investigated. Further experiments should be conducted to access the effectiveness of
the proposed MTD techniques against a broader range of poisoning attacks. Further, the
experiments only analyzed datasets with Independent and Identically Distributed(IID)
settings. Using an IID setting ensures that each node has access to data samples that
are representative of the overall data distribution. This promotes fairness and prevents
any single node from having an outsized influence due to having substantially different
data compared to others. As future findings improve the convergence of DFL in non-
IID scenarios, the defense techniques should also be evaluated im more heterogeneous
environments. Moreover, the experiments were conducted in a fully connected network
topology with ten nodes, representing a worst-case scenario for DFL security. Future re-
search should explore the performance of the proposed defense technique in other network
topologies such as Ring, Star, Random. Lastly, while the work proposed dynamic aggre-
gation functions as an MTD technique, it did not extensively explore other MTD design
dimensions, such as shuffling, diversity, or hybrid approaches. Investigating the potential
of combining different MTD techniques could lead to more robust and adaptive defense
strategies.
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