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Abstract

Decentralized Federated Learning (DFL), a new paradigm in the field of machine lear-
ning, reaches the goal of collaboratively training advanced models while preserving local
data privacy by allowing multiple participants to forward model parameters to each other.
Due to its decentralized nature, the network topology can be diverse. Different topologies
have a significant impact on the performance and security of DFL. Therefore, this work
proposes a novel topology inference attack specifically for DFL networks. This attack can
be divided into two scenarios based on the level of information the attacker has: (1) In
the first scenario, the attacker has all the node information and some edge information,
and predicts the connection status of unknown edges by training a supervised machine
learning model; (2) In the second scenario, the attacker only has all the node information
and determines whether different nodes in the network are connected by using a cluste-
ring model from unsupervised learning framework. In addition, this work constructs four
effective DFL network node metrics to facilitate these topology inference attacks.

The designed attack methods of this work have been evaluated in various DFL environ-
ments and achieves good performance in most of them, thus providing new insights for
future securiy research in the field of DFL network.
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Zusammenfassung

Dezentrales foderiertes Lernen (DFL), ein neues Paradigma im Bereich des maschinellen
Lernens, erreicht das Ziel, fortgeschrittene Modelle gemeinsam zu trainieren und dabei den
lokalen Datenschutz zu wahren, indem mehrere Teilnehmer Modellparameter aneinander
weitergeben konnen. Aufgrund seines dezentralen Charakters kann die Netzwerktopolo-
gie vielfaltig sein. Unterschiedliche Topologien haben einen erheblichen Einfluss auf die
Leistung und Sicherheit von DFL. Daher wird in dieser Arbeit ein neuartiger Topologie-
Inferenzangriff speziell fiir DFL-Netzwerke vorgeschlagen. Dieser Angriff kann je nach In-
formationsstand des Angreifers in zwei Szenarien unterteilt werden: (1) Im ersten Szenario
verfiigt der Angreifer iiber alle Knoteninformationen und einige Kanteninformationen und
sagt den Verbindungsstatus unbekannter Kanten durch Training eines iiberwachten ma-
schinellen Lernmodells voraus; (2) im zweiten Szenario verfiigt der Angreifer nur iiber alle
Knoteninformationen und bestimmt mithilfe eines Clustering-Modells aus einem Rahmen
fiir uniiberwachtes Lernen, ob verschiedene Knoten im Netzwerk verbunden sind. Dariiber
hinaus werden in dieser Arbeit vier effektive DFL-Netzwerkknotenmetriken erstellt, um
diese Topologie-Inferenzangriffe zu erleichtern.

Die in dieser Arbeit entwickelten Angriffsmethoden wurden in verschiedenen DFL-Umgebungen
evaluiert und erzielen in den meisten von ihnen eine gute Leistung, wodurch neue Erkennt-
nisse fiir die zukiinftige Sicherheitsforschung im Bereich der DFL-Netzwerke gewonnen
werden.
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Chapter 1

Introduction

In recent years, machine learning (ML) has achieved significant progress in various fields.
These successes are largely attributed to the availability of large-scale datasets and pow-
erful computing resources. However, traditional machine learning models usually require
centralized data collection, which means that individual devices or entities must share raw
data with a central server for training purposes. This approach raises several issues, espe-
cially in terms of data privacy, security, and regulatory compliance, especially in industries
such as healthcare and finance that involve sensitive information. These limitations have
prompted the development of new paradigms designed to overcome these challenges.

Federated learning is seen as a potential solution to make up for the shortcomings of tradi-
tional machine learning. It allows multiple devices or nodes to cooperatively train a shared
model without having to share local data, a feature that is achieved by retaining data
on local devices, only model updates are sent to the central server for implementation,
thereby enhancing privacy protection. Traditionally, this federated learning framework,
known as centralized federated learning (CFL) | relies on a central server to orchestrate the
training process, including collecting and distributing updated models to nodes. However,
this centralized architecture has drawbacks such as single point failure and communica-
tion and computing bottlenecks. The proposed decentralized federated learning (DFL)
avoids the dependence on the central server, which makes it possible for the nodes to
communicate and cooperate in a completely decentralized manner. This model not only
reduces the risk of centralization, but also improves the scalability and robustness of the
training process.

1.1 Motivation

The rise of machine learning, particularly in privacy-sensitive domains such as healthcare,
finance, and personal devices, has led to an increased focus on decentralized learning
frameworks. Decentralized Federated Learning (DFL), a variant of FL, allows multiple
participants to collaboratively train models while keeping their data localized. This de-
centralization not only enhances privacy by preventing data from being centralized but
also improves the robustness of the system by distributing model updates across nodes.
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However, DFL systems introduce new vulnerabilities, particularly related to network
topology and communication patterns. While the primary focus of research in FL has
been on protecting the data privacy of participants, less attention has been given to the
privacy of the network structure itself. Topology inference attacks, where adversaries at-
tempt to infer the underlying overlay graph of the DFL network, pose a serious risk. By
mapping out the topology, adversaries can exploit the structure for further attacks, such
as targeting specific nodes or manipulating model updates.

The motivation for this research arises from the need to explore and address this under-
explored vulnerability. Understanding how topology inference attacks can be carried out
in a DFL network is crucial for developing more secure and robust decentralized learning
systems. This work aims to fill this gap by designing a novel topology inference attack
targeting DFL network specifically and evaluates its performance across variaous domains.

1.2 Description of Work

This work designs a topology inference attack applicable to DFL networks, and evaluates
the effectiveness of this attack in different DFL network environments. The reasons for
the success of this attack are also analyzed, providing new insights into DFL network
security.

The work begins by analyzing the different types of topology inference attacks from other
network domains, and learn some successful experience from their topology inference
attacks. Then, the topology inference attacks in DFL are divided into two different
attack scenarios based on the level of knowledge of the attacker. In the first scenario, the
attacker has all the node information and some of the edge information, while in the second
scenario, the attacker is restricted to only having node information. This classification
method is conducive to a specific analysis of the different types of attack methods.

Furthermore, This study also provides a detailed evaluation of the methods in different
DFL network environments under different attack scenarios, and summarizes the lessons
learned from successes and failures to facilitate the improvement of this attack strategy
in the future.

1.3 Thesis Outline

The structure of this thesis is as follows:

e Chapter 2: Background — This chapter provides an overview of Federated Learning
(FL) and Decentralized Federated Learning (DFL), focusing on the key differences
between centralized and decentralized models. At the same time, the background on
inference attacks is also introduced to clarify different inference attacks categories
and the relevant objective and methods
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e Chapter 3: Related Work — This chapter draws on the format by browsing network
topology attacks that exist in other fields and attempts to apply them to the unique
network environment of DFL. The focus is mainly on the node metrics and attack
models used by other fields.

e Chapter 4: Model Information Diffusion Process — This chapter mathematically
models the diffusion of model information from each node in the DFL network using
matrix eigenvalue decomposition. This helps lay the foundation for the next attack
setting.

e Chapter 6: Design of Attack — This chapter first classifies the designed topological
inference attacks into two attack scenarios based on the different levels of knowledge
possessed by the attacker. Second, it studies and proposes four node metrics that
assist in this attack and analyzes their rationality. Finally, specific method strategies
are proposed for different attack scenarios.

e Chapter 6: Evaluation — This chapter evaluates the proposed attack across different
domains.It also provides specific analysis and insights into the performance of attacks
in different environments.

e Chapter 7: Summary and Conclusion — The thesis concludes by summarizing the
key findings, contributions, and limitations of the work. Recommendations for future
research directions are also discussed.
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Chapter 2

Background

2.1 Federated Learning

Federated Learning (FL) has emerged as an effective approach to collaborative machine
learning, allowing multiple participants to jointly train models without sharing raw data.
This technique addresses growing privacy concerns and regulatory constraints in central-
ized data collection by enabling local data processing. Over time, various architectures of
FL have been developed, each offering different trade-offs in terms of scalability, privacy,
and communication efficiency. The following section explores the primary FL architec-
tures, including Centralized Federated Learning (CFL), Decentralized Federated Learning
(DFL), and hybrid approaches such as semi-decentralized FL.

2.1.1 Different Architectures

Federated Learning (FL) can be implemented in a variety of architectural models, each de-
signed to accommodate different privacy, scalability, and communication needs. The three
primary architectures that have been widely studied are Centralized Federated Learning
(CFL), Decentralized Federated Learning (DFL), and semi-decentralized models, which
offer hybrid approaches. Each architecture has distinct advantages and challenges that
influence its applicability across various use cases.

Centralized Federated Learning (CFL) The traditional Centralized Federated Learning
(CFL) model involves a central server that coordinates the training process across multiple
clients[1]. In this architecture, each client trains a local model on its own data and
periodically sends model updates—typically in the form of gradients or parameters—to
the central server. The server then aggregates these updates, usually using algorithms

5
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such as Federated Averaging (FedAvg), and sends the updated global model back to the
clients for the next round of training.

CFL is widely adopted due to its relatively simple coordination mechanism, as the central
server manages synchronization, model aggregation, and communication between nodes.
However, this architecture has significant limitations. The central server represents a
single point of failure, which can compromise the entire system if it becomes overloaded,
compromised, or unavailable. Additionally, while CFL improves data privacy by keeping
raw data on the clients, the server can still be vulnerable to inference attacks that attempt
to reverse-engineer sensitive information from the shared model updates. Moreover, as the
number of clients increases, communication bottlenecks and scalability issues can arise,
further limiting the effectiveness of the CFL model in large-scale systems.

Decentralized Federated Learning (DFL) To overcome the inherent limitations of cen-
tralization, Decentralized Federated Learning (DFL) has been proposed as a more robust
and scalable alternative. In DFL, there is no central server; instead, each client, or
node, communicates directly with a subset of other nodes in the network|[2]. These nodes
exchange model updates locally, and the aggregation process occurs in a peer-to-peer
manner, without the need for a global coordinator. The absence of a central server in
DFL significantly enhances the system’s robustness, eliminating the risks associated with
a single point of failure. DFL also improves scalability, as nodes only need to communicate
with a limited number of peers, reducing the overall communication overhead. However,
DFL introduces new challenges. Without centralized coordination, the consistency of the
global model becomes more difficult to maintain, as different nodes may receive updates
asynchronously or at different rates, potentially affecting the convergence of the global
model. Moreover, the decentralized communication patterns expose the system to new
types of security threats, such as topology inference attacks, where adversaries attempt
to infer the network structure by analyzing communication flows between nodes. This
architecture is the primary focus of this research, as it offers both significant advantages
and distinct vulnerabilities in the context of Federated Learning.

Semi-Decentralized Federated Learning A hybrid approach, known as Semi-Decentralized
Federated Learning, seeks to combine the benefits of both centralized and decentralized
models|l]. In this architecture, multiple local servers, or coordinators, manage clusters of
clients, with each local server handling model aggregation for its respective cluster. These
local servers may then communicate with a central server or directly with each other to
perform a second layer of aggregation, depending on the specific design of the system.

Semi-decentralized FL. addresses some of the scalability and coordination issues of fully
decentralized models by reintroducing limited centralization at a local level. It can also
reduce communication costs compared to CFL, as clients within a cluster can exchange
updates locally, minimizing the load on the central server. However, this architecture still
retains some of the centralization risks, as the local servers themselves can become bottle-
necks or targets for attacks. The semi-decentralized model offers a trade-off between the
simplicity of CFL and the flexibility of DFL, making it an attractive option for scenarios
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where full decentralization is not feasible, but improvements in robustness and scalability
are still desired.

2.1.2 DFL Workflow

Decentralized Federated Learning (DFL) differs fundamentally from the centralized ap-
proach by eliminating the need for a central server to coordinate the training process. In
DFL, each node (or client) independently trains a local model on its data and collaborates
with other nodes in a peer-to-peer fashion to update the global model. This decentral-
ized communication architecture brings unique challenges and opportunities. The DFL
workflow can be broken down into several key phases, described as follows:

1. Initialization At the beginning of the training process, each node in the DFL network
initializes a local model. The model architecture is typically the same across all nodes,
but each node’s model parameters are initialized independently. This ensures that each
node starts from the same baseline model structure, although the parameter values may
differ. The number of participating nodes and the communication topology (i.e., which
nodes can exchange updates) are predetermined, and this topology may vary based on
the design of the network (e.g., ring, mesh, or random graph).

2. Local Training FEach node then trains its local model on its private dataset. During
this phase, each node performs multiple iterations of gradient descent (or another opti-
mization algorithm) on its data. Since the data is not shared with any other nodes, the
local models at this point reflect only the knowledge from their respective datasets. The
number of local training steps taken at each node can vary based on computational ca-
pacity or communication constraints, but typically all nodes perform training in parallel
to avoid delays.

3. Peer-to-Peer Communication Once the local training phase is completed, the nodes
engage in communication with their peers. In DFL, this communication happens directly
between nodes rather than through a central server. Each node shares its updated model
parameters (or gradients) with a subset of other nodes in the network, based on the
predefined communication topology. For example, in a ring topology, each node may ex-
change updates only with its immediate neighbors, whereas in a fully connected topology,
each node could communicate with all other nodes. The communication phase is critical
in DFL because the local model updates are aggregated through these peer exchanges.
Depending on the system’s design, aggregation can happen at the node level or through
a more complex, multi-round process where updates propagate gradually through the
network.
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4. Model Aggregation After exchanging model updates with their peers, each node
aggregates the received updates with its own local model. This aggregation can take
different forms, but the most common approach is to compute a weighted average of the
models received from neighboring nodes. The specific weighting can be based on various
factors, such as the number of training samples at each node or the trustworthiness of the
peer. The aggregation process ensures that each node’s model benefits from knowledge
distributed across the network, even though no raw data is exchanged. The aggregation
phase is decentralized, meaning there is no global view of the model at any point during
training. Instead, each node maintains a partial, localized view of the global model, which
gradually becomes more accurate as more communication rounds are completed.

5. Synchronization and Convergence DFL networks often face challenges related to
synchronization, as different nodes may operate at varying speeds or may be temporarily
unavailable. To address this, many DFL systems implement a loose synchronization mech-
anism where nodes wait for a predefined number of peers to complete their local updates
before initiating the next round of communication. This ensures that stragglers do not
unduly delay the training process. Over multiple communication and aggregation rounds,
the models at each node gradually converge toward a globally optimal model. The number
of rounds required for convergence depends on various factors, including the communi-
cation topology, the diversity of the data across nodes, and the aggregation mechanism.
Unlike CFL, where convergence is typically centralized and deterministic, convergence in
DFL is more dynamic and depends on the decentralized interactions between nodes.

2.1.3 Impact of Network Topology on DFL

In Decentralized Federated Learning (DFL), the underlying network topology plays a
crucial role in determining the system’s efficiency, scalability, and security. The peer-
to-peer nature of DFL means that nodes exchange model updates directly with their
neighbors, and the structure of these communication patterns is defined by the network’s
topology. Different topological structures, such as fully connected, ring, mesh, or random
graphs, can have varied effects on the overall performance and robustness of the system.

1. Convergence Speed and Communication Efficiency The communication topology
directly impacts how quickly updates propagate throughout the network, which in turn
affects the convergence rate of the global model. In a fully connected topology, each node
communicates with every other node, ensuring rapid dissemination of updates. However,
this comes at a high communication cost, making it impractical for large-scale networks.
In contrast, a ring topology, where each node communicates only with its immediate
neighbors, reduces communication overhead but significantly slows down the convergence
process due to the slower spread of model updates across the network. Mesh and random
graph topologies offer a balance between these extremes. Mesh networks allow nodes to
connect with multiple peers, increasing the speed of information flow without incurring the
high costs of full connectivity. Random graph topologies introduce some level of unpre-
dictability in communication but often perform efficiently in large networks by connecting
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nodes in a more distributed manner. The choice of topology must therefore consider the
trade-off between communication efficiency and convergence speed, with denser topologies
achieving faster convergence at the cost of higher communication complexity.

2. Scalability and Resource Distribution As DFL networks scale to include more nodes,
the impact of the topology becomes even more pronounced. Sparse topologies, such as
ring or grid structures, scale well in terms of communication load, as each node only needs
to interact with a few peers. However, these structures may introduce heterogeneity in
the performance of different nodes, as some nodes might receive updates more frequently
than others. On the other hand, dense topologies, while ensuring more uniform model
updates, can create communication bottlenecks and increase the computational load on
individual nodes, reducing the system’s overall scalability.

3. Security and Vulnerabilities The network topology also significantly affects the sys-
tem’s security, particularly regarding vulnerabilities such as topology inference attacks.
In topologies with concentrated communication paths (e.g., star or hub-and-spoke struc-
tures), an adversary could target key nodes to disrupt or manipulate the training process.
Additionally, the patterns of communication in sparse topologies may be easier to observe
and exploit, enabling adversaries to infer the underlying network structure by monitor-
ing the flow of information between nodes. DFL’s decentralized nature, while enhancing
privacy in terms of data locality, exposes the system to attacks that exploit the very
communication patterns designed to ensure collaboration. Understanding the impact of
topology on security is therefore critical in designing robust DFL systems that can with-
stand such attacks. In particular, the ability to infer the network topology from observable
communication behaviors poses a significant threat, as it allows adversaries to map the
system and selectively target or compromise key nodes.

2.2 Inference Attack

Inference attacks are adversarial techniques aimed at extracting sensitive information
from machine learning models or systems without direct access to the underlying data.
These attacks exploit the way models process and return predictions, leveraging observable
behaviors, side-channel information, or model outputs to infer properties about the data,
model parameters, or system structure. As Federated Learning (FL) and, specifically,
Decentralized Federated Learning (DFL) systems are increasingly used for their privacy-
preserving capabilities, they are also becoming vulnerable to various forms of inference
attacks. This section examines several common types of inference attacks, their objectives,
and the strategies adversaries use to carry them out.

2.2.1 Different Types of Inference Attacks

Inference attacks can be categorized into several types, each defined by the adversary’s
objective and the methods employed. Below are five common types of inference attacks,
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discussed in terms of their attack objectives and strategies:

Membership Inference Attack

e Attack Objective: A membership inference attack seeks to determine whether a
specific data sample was part of the training dataset used to train the model[3]. This
type of attack is particularly dangerous in scenarios where the inclusion of data in
the training set reveals sensitive information, such as in healthcare or finance, where
merely knowing a data point was used can be highly private.

e Attack Strategy: The adversary uses the model’s outputs—typically the prediction
confidence scores or probabilities—to infer whether a particular data point was in
the training set[4]. By analyzing differences in the model’s behavior on training data
versus unseen data, the attacker can make informed guesses about whether a specific
instance was included. Methods such as thresholding the prediction confidence or
using shadow models trained to mimic the target model’s behavior are commonly
employed to enhance the attack’s accuracy|5].

Model Inversion Attack

e Attack Objective: Model inversion attacks aim to reconstruct input data or infer
certain properties of the input based on the model’s outputs[6]. These attacks
pose a significant privacy risk in applications involving sensitive data, such as facial
recognition or medical data, as they can reveal personal information based on the
model’s learned knowledge.

e Attack Strategy: In this type of attack, the adversary leverages the model’s output
predictions and uses iterative optimization techniques to generate input data that
could have led to the observed outputs. The process involves adjusting candidate
inputs until the predicted outputs from the model match the attacker’s target out-
put[7]. Over several iterations, the attacker can approximate the original input used
during training.

Property Inference Attack

e Attack Objective: The objective of a property inference attack is to infer general
properties about the training data, rather than identifying specific data points.
This attack targets aggregate characteristics of the dataset, such as demographic
distributions or the presence of certain attributes in the data.

e Attack Strategy: Adversaries exploit model outputs or gradients to infer global
properties of the dataset. Attackers often employ auxiliary models that are trained
to detect specific properties by observing how the model behaves. In a DFL context,
adversaries may monitor how model updates from different nodes react to certain
inputs, allowing them to infer shared properties across nodes’ local datasets, such
as the prevalence of certain diseases in healthcare data.
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Attribute Inference Attack

e Attack Objective: A attribute inference attack seeks to compromise the training
process by inserting malicious data into the training set, with the aim of skewing
the model’s behavior or output|8]. Although this attack focuses on degrading the
model’s performance, it can also facilitate inference attacks by making models more
vulnerable to data extraction.

e Attack Strategy: The adversary injects carefully designed malicious data points
into the training process, which are intended to influence the learning process in
specific ways. By modifying the training data, the attacker can induce the model
to produce biased predictions or targeted errors. These manipulated models may
inadvertently leak information about the training data when queried, providing an
opening for further inference attacks.

Each type of inference attack targets different aspects of machine learning systems, from
identifying individual data points (as in membership inference) to uncovering general
dataset properties (as in property inference) or reconstructing the model itself (as in
model extraction). Understanding the objectives and strategies behind these attacks is
essential for analyzing vulnerabilities in DFL systems and developing effective defenses.

2.2.2 Different Knowledge Levels of Attackers

The effectiveness and strategy of an inference attack are significantly influenced by the
level of knowledge the adversary possesses about the target model or system. In general,
attackers can operate under varying levels of knowledge, ranging from minimal information
to complete access. Understanding these different levels helps to classify attacks based
on the assumptions made about the adversary’s access to data, model parameters, and
system configurations. Below are three common knowledge levels that impact the design
and execution of inference attacks.

Black-box Knowledge

e Overview: In a black-box scenario, the attacker has minimal information about the
target model or system. The adversary can interact with the model by submitting
queries and observing the corresponding outputs (e.g., predictions or confidence
scores), but they have no direct access to the model’s parameters, architecture, or
the underlying training data.

e Attack Strategy: Black-box attackers rely on the model’s observable outputs to
gather information about its behavior. By carefully crafting inputs and analyzing the
outputs, they can infer sensitive information indirectly. For example, in membership
inference attacks, black-box attackers might compare the model’s confidence scores
on different inputs to determine if a particular data point was part of the training
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set. In property inference, black-box attacks typically involve using auxiliary models
or shadow models to learn the relationships between outputs and hidden properties
of the training data.

e Limitations: While black-box attacks are practical in many real-world scenarios
where access to model internals is restricted, they are generally less precise and
effective compared to attacks where the adversary has more information. Attackers
in this category must compensate for the lack of direct access by leveraging statistical
and heuristic techniques to derive meaningful inferences.

White-box Knowledge

e Overview: In white-box scenarios, the attacker has full access to the model’s pa-
rameters, architecture, and possibly even the training data. This level of access
allows the attacker to exploit the internal structure of the model to perform highly
targeted attacks.

e Attack Strategy: White-box attackers have a significant advantage, as they can
inspect model gradients, parameters, and other internal properties directly. This
access enables more precise and efficient attacks, such as model inversion and model
extraction. In model inversion attacks, for instance, the attacker can directly opti-
mize the input space to reconstruct sensitive training data using the model’s learned
parameters. Similarly, in model extraction, a white-box attacker can replicate the
target model’s architecture and parameters with high fidelity by leveraging full ac-
cess to the model’s internals.

e Advantages: White-box attacks are often more successful than black-box attacks
due to the wealth of information available to the adversary. This high level of
access makes white-box attacks particularly concerning, especially in scenarios where
the model is deployed in environments where users or external systems can gain
direct access to model files, such as in edge devices or machine learning-as-a-service
platforms.

Gray-box Knowledge

e Overview: A gray-box scenario represents an intermediate level of knowledge, where
the attacker has partial access to the model or system. This could include knowledge
of the model’s architecture or training process but without access to the actual
parameters or raw data used in training.

e Attack Strategy: Gray-box attackers often combine elements of both black-box and
white-box strategies. For example, they might know the general architecture of the
target model (e.g., the number of layers, types of activation functions) and use this
information to train a surrogate model, which they then use to launch black-box-
style attacks. Alternatively, they may have access to some model parameters but
not the entire system, allowing them to refine their attack with partial knowledge
of the model’s inner workings.
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e Use Cases: Gray-box attacks are common in scenarios where the attacker is an
insider with some degree of access to system documentation or implementation de-
tails, or where the model’s general structure is publicly known but its parameters
remain private. These attacks are more targeted and effective than black-box at-
tacks, though less precise than white-box approaches.

Each knowledge level—black-box, white-box, and gray-box—presents different challenges
and opportunities for adversaries carrying out inference attacks. The more knowledge
an attacker has about the system, the more powerful and effective their attack can be.
Understanding the adversary’s knowledge level is critical in designing defenses, as more
sophisticated attacks often require more robust mitigation strategies.

2.2.3 Mechanisms of Attack Success

The success of inference attacks relies on specific mechanisms that exploit vulnerabilities
within machine learning models and systems. These mechanisms stem from the inherent
characteristics of how models are trained, the way data is processed, and the information
exposed through model predictions or updates. Understanding the underlying mechanisms
that enable successful inference attacks is critical for designing more robust defenses.
Below are several key mechanisms that play a pivotal role in the success of these attacks:

1. Overfitting and Model Generalization Overfitting is one of the primary factors that
contribute to the success of inference attacks[9]. When a model overfits to its training data,
it learns not just the general patterns but also the specific details of the training examples,
making it easier for adversaries to infer sensitive information. Overfitted models exhibit
higher confidence when predicting on training data than on unseen data, a vulnerability
that is frequently exploited in membership inference attacks.

In well-generalized models, the gap between the model’s performance on training and
unseen data is smaller, reducing the attack surface. However, in practice, models often
retain subtle details of the training data, which attackers can leverage, particularly in
scenarios where training data is imbalanced or highly representative of certain classes.

2. Model Confidence Scores and Probability Distributions Machine learning models of-
ten output probability distributions over predicted classes, providing detailed information
about the model’s confidence in its predictions. These confidence scores are a major point
of vulnerability, as they expose nuanced differences between how the model responds to
training data versus unseen data.

Adversaries in membership inference and model inversion attacks exploit these differences
by analyzing the probability distributions of model outputs. Higher confidence scores on
training data can signal the presence of that data in the training set, while patterns in these
scores can be used to reconstruct input features, enabling model inversion. The granularity
of the model’s output plays a crucial role—more detailed probability distributions tend
to increase the attack surface.
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3. Model Architecture and Hyperparameters The architecture of a model, including
the number of layers, types of activation functions, and hyperparameters, can inadver-
tently affect the model’s vulnerability to inference attacks. Deep models with large capac-
ity are more likely to memorize training data, increasing the risk of membership inference
and model inversion attacks. Furthermore, hyperparameters such as batch size and learn-
ing rate can influence how much information is leaked through gradients or model outputs.

Attackers can also exploit knowledge of the model’s architecture to conduct model extrac-
tion attacks. By knowing or guessing the architecture, adversaries can tailor their queries
or reconstruction techniques to replicate the target model more accurately, enabling fur-
ther inference attacks.

The success of inference attacks depends on exploiting the vulnerabilities in model train-
ing, data processing, and system design. Factors such as overfitting, confidence scores,
gradients, model architecture, and communication patterns provide adversaries with the
means to infer sensitive information from machine learning systems. Recognizing these
mechanisms is essential for understanding how attacks succeed and for developing strate-
gies to mitigate these vulnerabilities in decentralized learning environments.



Chapter 3

Related Work

This chapter provides an in-depth discussion of various research methods related to net-
work topology inference. While this issue has received relatively little attention within
DFL networks, extensive studies have been conducted in other network fields focusing on
problems like link prediction and graph reconstruction. The chapter begins by summariz-
ing approaches to topology inference in areas such as computer networks, social networks,
and gene regulatory networks, with the aim of extracting insights applicable to the anal-
ysis of DFL networks. In addition, the characteristics of network data from different
domains are also examined, highlighting both the similarities and differences compared to
DFL network data.

3.1 Computer Network Domain

3.1.1 Network Characteristics

A computer network usually refers to a system in which multiple computing devices are
connected to each other through links to transmit and share information[10]. The system
consists of two basic modules: nodes (network devices) and links. Links connect multiple
nodes together by defining how they carry information through communication protocols.
Participants in a computer network can be broadly divided into two categories:

e External nodes: These nodes are located in the external area of the network and
are terminal devices that users can directly control and access, such as personal
computers and servers. External nodes are usually the source or destination of
communication in the network|[11].

e Intermediate nodes: These nodes sit between external nodes and are responsible for
transmitting and relaying network components such as routers, switches, or network
management devices. Intermediate nodes are usually invisible to the user and cannot
be directly controlled or accessed[12].

15
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Topology inference in computer networks generally refers to the inference of the link state
and the number and structure of intermediate nodes under the premise of controlling part
or all of the external nodes|13]. This kind of research is of great significance for improving
the overall performance of the network and diagnosing abnormal nodes.

In addition, another important feature of computer networks is the ability to conduct
directional communication between different external nodes. For example, an external
device can send signals to reach another target external device and collect network perfor-
mance measurement data through these signals (such as pinging a remote server through a
personal computer). This directional communication feature is significantly different from
many network types in other fields and has a profound impact on the topology inference
methods unique to computer networks.

Therefore, in order to facilitate the analysis of topology inference problem, the most
important characteristics of computer network data can be summarized as follows:

e Hierarchical Nature of Node Roles: The distinction between external nodes and in-
termediate nodes determines the scope and goal of topology inference, which usually
relies on controllable information from external nodes to infer the overlay structure
of the entire network;

e Controllability of Directional Communication: Directed communication between
external nodes makes it possible to obtain network performance data between spec-
ified nodes through signal exchange. This feature provides an important basis for
inferring network topology.

3.1.2 Inference Methods

Traceroute-Based Approach Traceroute is a widely used network diagnostic tool to
detect the nodes on the route between a pair of source and destination nodes and measure
the traffic delay from the source node to each intermediate relay node on the route[14].
It detects the network path from the source node to the destination node hop by hop by
sending ICMP packets with increasing TTL (time to live), and obtains the IP address of
the intermediate router. Each detection packet is sent by the source node, stops when
it reaches the destination node, and relies on the intermediate nodes on the path for
forwarding. Through this hop-by-hop detection mechanism, the internal path structure
connecting these two external nodes can be estimated effectively.

In order to improve the performance of Traceroute in complex networks, researchers have
proposed many improvement schemes, especially in the application of network topology
inference. For example, the Rocketfuel method proposed by Spring et al.[15] greatly
improves the accuracy and efficiency of inferring physical topology in Internet service
provider (ISP) networks by optimizing Traceroute measurement paths and filtering un-
necessary path information. In addition, Luckie|16] developed the Scamper tool, which
can perform various types of active detection tasks in large-scale networks and expand
the application of Traceroute in Internet topology measurement. These improvements not
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only enhance the applicability of Traceroute in large-scale complex networks, but also lay
the foundation for more accurate network topology inference.

Compared to tomography-based approach, Traceroute’s advantage are its simplicity and
low-cost. However, its disadvantage is that when some routers do not respond to ICMP
detection packets or when anonymous routers are included in the path, Traceroute’s infer-
ence ability will be greatly limited[17]. In addition, it requires nodes to actively intervene
in the communication within the network to obtain additional information, which is not
feasible in many other types of networks, therefore it lacks portability in cross-domain
applications.

Tomography-Based Approach The tomography-based method is a technology that re-
lies on end-to-end measurement results to infer network topology[18]. It is often used in
situations where it is impossible to directly obtain information about intermediate nodes,
such as anonymous routers. This method collects link quality information (such as la-
tency, packet loss rate, etc.) by sending probe packets, and infers the logical topology of
the network based on statistical analysis. Unlike the Traceroute method, the Tomogra-
phy method does not rely on the router’s feedback on ICMP probe packets, but instead
infers the relative distance between nodes and the routing tree structure by analyzing the
communication measurement data between multiple terminal nodes.

In a typical tomography framework, the source node sends probe packets to multiple target
nodes, which record the link quality (such as latency or packet loss rate) of the multi-hop
path and return that information to the source node. Based on this information, the
source node calculates the relative distances between each terminal node and uses these
distances to build the logical tree structure of the network. The key challenge of the
Tomography method is to choose the right distance metric to better reflect the relative
distance between paths and meet the certain additivity requirements.

In order to improve the accuracy of tomography inference, researchers have proposed a
variety of inference methods based on different distance metrics. The following are some
of the more well-known methods:

1. Sandwich Probe-based Metric: This method estimates the length of the common
segment on the path by sending three back-to-back packets, with a larger packet
sandwiched between two smaller packets, using the extra delay difference caused by
the larger packet. This technique is particularly suitable for measuring the longest
common route (LCR) between two target nodes, thus helping to reconstruct the
network topology. Delay differences between small packets reflect differences in
path structure.

2. Loss Rate-based Metric[19]: The quality of the path is inferred by measuring the
packet loss rate of the probe packet. The packet loss rate is estimated by sending
small data packets and observing whether they are successfully received.The higher
the packet loss rate, the longer or more congested the path. By comparing the
packet loss rates between paths, it is possible to infer which paths share the same
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segments. The mathematical relationship between packet loss rate and distance
between nodes is as follows:

4D, D;) = log <Pr(XZ- = )> log <Pr(Xi =1,X; = 1))

PT’(X]:]_) PT’(Xz:X]:]_)

where Pr(X; = 1) is the probability that the packet is successfully received at
node D; and Pr(X; = X; = 1) is the joint probability that both nodes D; and D;
successfully receive the packet.

3. Delay Cumulant-based Metric: Delay cumulants are used to estimate the length
of a path based on the high-order statistical properties of the delay. By sending
packets with timestamps and recording the delay at each destination node, high-
order cumulants of the delay distribution are calculated. These cumulants reflect
the shape of the delay distribution and are applicable to networks with large delay
variations. The r-order cumulant of the delay K (X) is defined as:

0 log E ()

0=0

where:

e K(X): The r-order cumulant of the measured delay.
e X: The measured delay.
o E(e%X): The expected value of the exponent of delay.

Compared with the traceroute method, the advantage of the tomography-based approach
is that it does not rely on the cooperation of intermediate nodes to forward detection
packets[20]. Its end-to-end measurement data generally conforms to the normal behav-
ior of network communication protocols and can therefore be used in a wider range of
computer networks. However, the Tomography method also has two significant draw-
backs. First, it can only infer the logical topology, not physical ones, which may lead to
information loss, such as failure to recognize multiple nodes located on the same branch.
Secondly, the method assumes that the whole network has a tree-like structure. If there
exists loops in the network, the connections between nodes will be more diverse, and the
analysis cannot be carried out simply by the longest common branch (LCR) method, and
the complexity of topology inference will increase significantly. Although the assumption
of a tree structure is reasonable in many modern computer networks, the applicability of
this approach may be limited greatly when generalized to other domains.



Chapter 4

Node Information Diffusion on DFL
Network

1. Problem Context

Decentralized Federated Learning (DFL) involves multiple nodes (clients) collaboratively
training models by performing local updates and sharing these updates with their neigh-
bors. Unlike traditional federated learning, there is no central server to aggregate the
model parameters. Each node communicates directly with its neighbors and aggregates
their updates in a decentralized manner.

The goal of this mathematical modeling is to analyze the convergence properties of this
DFL process under a synchronized setup, where all nodes perform aggregation and local
updates simultaneously in discrete rounds.

2. Network Representation
The network is represented as a graph G = (V, E), where:

e V is the set of nodes (clients).
e [ is the set of edges representing direct communication links between nodes.

e The adjacency matrix A encodes the network structure, with A;; = 1 if nodes ¢ and
jJ are connected, and A;; = 0 otherwise.

e The degree matrix D is a diagonal matrix where D;; = degree(i) + 1 (including
self-loops).

19
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3. Aggregation Matrix P

The aggregation matrix P is defined as:
P=DYA+1I)
where:
e A+ [ includes self-loops, allowing nodes to incorporate their own model parameters
during aggregation.

e D~! normalizes by the degree, ensuring that the sum of each row in P is 1, making
it a stochastic matrix.

4. Model Parameter Representation

The model parameters at each node are represented as a matrix M; at round ¢, where
each row ef represents the model parameters of node ¢ at round t:

6\
9(75)
Mt = 2

6\

5. DFL Process Over Multiple Rounds

The DFL process over T rounds is described by the following update equations:

1. Initial State: Each node starts with its own initial model parameters:

2. Aggregation Step: At each round ¢, each node aggregates model parameters from
its neighbors:
My = PM;—y

where M, represents the aggregated model parameters before local updates.
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4.1

4.2

Local Update Step: Each node then updates its aggregated model parameters using
its local dataset: .
Mt:Mt+5t:PMt—1+5t

where d; represents the vector of local updates for each node in round t¢.

General Update Equation: Recursively, the model parameters at each round can
be written as:

Mrp = PTMy+ P16, + P15y + -+« + Pop

This equation captures the cumulative effect of the initial model parameters M, and
the local updates d; over T rounds of aggregation and local training.

Key Assumptions

. Network Connectivity: The graph G is connected, ensuring that information can

propagate across the entire network.

Stochastic Matrix: The matrix P is row-stochastic, meaning that each row sums to
1. This ensures that the influence of neighboring nodes is appropriately normalized.

Spectral Radius: The spectral radius p(P) < 1. This ensures that P? decays as T
increases, indicating diminishing influence of initial model parameters over time.

. Bounded Local Updates: The local updates 5§t) are bounded, i.e., there exists a

constant C' > 0 such that for all ¢t and nodes i:
167 < .

This condition ensures that local updates do not dominate the aggregation term in
the long run.

Dominance of the Aggregation Matrix

This section aims to show that the terms involving P in the DFL update equation play a
dominant role in determining M.

4.2.1 Initial Model Influence

The term P M, represents the influence of the initial model parameters after 7' rounds
of aggregation. Given the spectral radius p(P) < 1, the norm || PT|| decays exponentially:

| PT M| < |[|PT||||Mo]| =0 as T — oo.

This implies that the effect of the initial model parameters diminishes over time. However,
in the initial rounds, PT M, can still have a significant influence due to the dominant
eigenvalue of P.
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4.2.2 Local Update Influence

The cumulative effect of local updates is given by the series:

T
Z pr-tis,.
t=1

Each term || PT~%"1§;|| is bounded by:
[P < 1P 0

Since ||0¢]| < C and ||PT="*|| — 0 as T — oo, the influence of each individual local
update diminishes over time.

4.2.3 Comparative Dominance

In the initial rounds, the aggregation term PT M, dominates because the local updates
have not accumulated significantly. As T increases, the terms ||PT7'"!|| decay, causing
the local updates to have a limited impact. The series converges if:

T
D P < oo
t=1

This convergence condition is met due to the spectral radius condition p(P) < 1.

4.3 Mathematical Conclusion

The aggregation matrix P and its powers P dictate the model evolution, especially in the
initial rounds. The decaying influence of P! over time ensures that the model parameters
converge to a consensus value. This is largely influenced by the network topology.

As the local updates are bounded and diminish in influence due to the decaying powers of
P, the final model parameters at all nodes will be determined by the weighted average of
initial parameters, expressed by the network topology. Thus, the network structure plays
a dominant role in the convergence behavior of the DFL process.
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Attack Design

Building on the understanding of topology inference methods from other network domains
and the information diffusion process in DFL networks, this chapter proposes attack meth-
ods specifically targeting the topology of DFL networks. First, different attack scenarios
are defined based on the level of information available to the attacker. Next, a series of
node metrics are selected as the foundation for the attack, considering the characteris-
tics of DFL networks, and their effectiveness is preliminarily assessed. Finally, detailed
strategies are developed for each attack scenario, along with the necessary models and
algorithms to facilitate implementation and evaluation.

5.1 Attack Specification

Although the specific operation of DFL is thoroughly explained in Chapter 2, a graph
model is still adopted to provide a concise representation of the DFL network, aiming to
clearly illustrate the various elements of the attack. Assume that the network is repre-
sented as G = (V, E), where Y denotes the adjacency matrix of size |V| x |V|. Based on
the characteristics of the DFL network, the following assumptions are made for G:

1. Undirected: Since data transmission between nodes is bidirectional during the
model aggregation process, GG is treated as an undirected graph.

2. Unweighted: Given that the data distribution between nodes is independent and
identically distributed (IID), G is considered an unweighted graph. Consequently,
Y is a binary matrix.

3. Static: Before all rounds are completed, the connections between nodes remain

unchanged, so G is regarded as a static graph.

For the vertex information in GG, there exists a set of node metrics related to the network
system, which is denoted as x = (xy,... ,m|V|)T. As for the edge information, binary
indicators y = [y;;]1<i<j<|v| represent entries in the adjacency matrix Y. With this setting,

23
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the attacker’s goal in a topological inference attack can be defined as follows: Given x
and y, find an inferred adjacency matrix Y’ as close as to the Y.

Attacker Capability: The attacker is assumed not to actively interfere with the default
communication protocols and methods of DFL network . In other words, the attacker
is prohibited from sending non-compliant signals such as probe packets from controlled
nodes to probe the location of other nodes.

Attack Scenarios: Depending on the amount of information the attacker has about the
nodes and edges, the topological inference attacks in DFL networks can be divided into
the following three scenarios. In these three scenarios, the a priori knowledge the attacker
has is gradually reduced, making the attack more difficult and more realistic. Considering
that for node metrics x and edge information y, it is often not easy for an attacker to obtain

all the information, the two are split into @ = [g*mown, gmissing] =y — [yknown missing]

1. Full Node Knowledge with Partial Edge Information In this case, the attacker by
default has all the relevant information about the nodes in the DFL network, such
as model parameters, training datasets, etc., and thus can also get the node metrics
of each node. In addition to this, the attacker also knows information about some
of the edges in the network, i.e., the connectivity of some of the nodes. Therefore,
the attacker’s attack in this scenario can be understood as reasoning through all the
node metrics and partial edge information to derive the missing links.

This attack scenario is a more white box situation because the level of knowledge
possessed by the attacker is quite broad and the difficulty of inference is not very
high - only a portion of edge information.

2. Partial Node Knowledge with No Edge Information The attacker in this case is
considered to have only information about all the nodes and no longer has any
knowledge about the edges in the network. In this case, the attacker’s knowledge
is further limited, approaching the gray-box state described in nearly half of the
inference attacks.

3. Partial Node Knowledge with Partial Edge Information This is the most stringent
attack scenario under our definition. Although the attacker has partial information
about the edges, he cannot construct the known node-edge correspondence due to
the lack of information about some nodes. This is very different from the attack
method in the first scenario. Therefore, it is considered to be the most recent attack
scenario for black boxes.

In this work, the main considerations are the first two scenarios, and some methodological
assumptions are made for the third scenario as appropriate. Figure provides a vivid
visualization of the different knowledge information possessed by attackers under different
attack scenarios. Among them, the edges with blue edges represent the edge set in the
real network topology, while the green ones represent the non-edge set; the solid edges
represent the information about the known edges, while the dashed edges represent the
information about the unknown edges; the red nodes represent the nodes that the attacker
knows, while the pink ones represent the nodes that cannot be controlled.
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(b) Attack Scenario 2

(c) Attack Scenario 3

Figure 5.1: Visualization of the Known and Unknown Information of Different Attack
Scenarios

5.2 Node Metrics of DFL Network

Since the level of knowledge possessed by the attacker varies in different scenarios of DFL
topology inference attacks, it is a reasonable choice to design different attack strategies
fro each scenario. However, in either scenario, the attacker’s control over the node metric
information is indispensable. Therefore, the first step in designing a topology inference
attack should be to find appropriate node metrics that matches the characteristics of
the DFL network.

5.2.1 Potential Node Metrics

The quality of node metrics plays a vital role in the success of topology inference attacks
in networks. They not only reflect the attributes and roles of each node in the network,
providing essential data for developing attack strategies but also capture the relationships
between the relative positions of nodes, serving as a bridge between the known node
information and the inference of the unknown edges that the attacker seeks to uncover.
A high-quality node metric should satisfy the following two conditions:

1. First, the feature data it represents should be easy to obtain and compute so as to
avoid adding extra complexity to the attack method.
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2. Second, the node metric should be able to effectively reflect the structural charac-
teristics of the network, making it easy to infer the connectivity between nodes.

For example, in social networks, commonly used node metrics include the number of mu-
tual friends and the frequency of interactions, which can help reveal underlying connec-
tivity relationships, while in computer networks, communication packet loss and latency
are classic topology inference metrics. In DFL network domain, since it is essentially a
process in which multiple participants jointly train machine learning models under a de-
centralized structure, the choice of node metrics should focus on the relevant information
about the models trained by each node.

Based on this logic, this work proposes four unique node metrics applicable to DFL
networks and defines their specific calculation methods:

e Relative Loss. This metric measures the difference in loss when a locally trained
model on one node is tested on the dataset of another node. It aims to reflect the
generalizability of models trained on different nodes to other nodes. In general,
the closer the relative position of two nodes in the DFL network, the higher the
aggregation frequency between them, which makes the generizability of these two
models better. A high relative loss indicates poor generalization and high overfitting
level. It is computed by the following expression:

Relative Loss; ; = L(f;, D;) (5.1)

where D; represents the training dataset of node ¢ and f; represents local model
trained on node i. L(f, D) is the loss function used by trained model.

e Relative Entropy. Like relative loss, it is defined as the entropy from one node’s lo-
cal model to another node’s training set. It measures the uncertainty in the model’s
predictions, providing insight into how confident the model is when predicting across
different nodes’ datasets. This node metric also tries to reflect the relative position
relationship between nodes in the whole network from the perspective of their model
generizability. However, unlike loss, entropy captures the confidence of the model
but does not necessarily reflect accuracy. A model can be highly confident (low en-
tropy) of its predictions but still perform poorly on other node’s dataset. Therefore,
it mainly plays a supplementary role to relative loss metric. The following is how
it’s calculated:

Relative Entropyi’j |D | Z Zyk ) log(fik(x)) (5.2)

z€D;

where D; represents the training dataset of node ¢ and f; represents local model
trained on node i. L(f, D) is the loss function used by trained model.

Both of these node metrics aim to explore the connectivity between different pairs of
nodes by analyzing the difference in performance of a node’s model on its own training

set compared to other nodes’ datasets. As shown in Equation (5.1) and (5.2)), whether
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for Relative Loss or Entropy, both require knowledge of the local models and training
datasets of different nodes for calculation. In addition, due to the inherent randomness of
machine learning model training, the values of these two metrics calculated from node i to
node j are not equal to those calculated from node j to node 7. In other words, these two
pairwise node metrics are asymmetric. This asymmetry is particularly important when
building attack strategies based on these metrics next.

The remaining two proposed node metrics focus on building connections based on the
similarity relation of different node models. The relationship is defined from different
vector space perspectives:

e Cosine Similarity. Cosine similarity measures the angular distance between the
parameter vectors (weights) of two models|21]. In model comparison, it is mainly
used to assess whether the parameter vectors are pointing in the same direction,
regardless of their actual sizes. In the DFL network, when the models of two nodes
have a large cosine similarity, it means that the two nodes aggregate with each
other’s model more frequently, thus showing a relatively close relationship between
the two in terms of position. The formula for calculating this metric is as follows:

a-b

Cosine Similarity(a,b) = Talllbll (5.3)

where a and b represent two models from different nodes

e Euclidean Distance. Unlike Cosine Similarity, Euclidean Distance measures the
straight-line distance between two vectors in multi-dimensional space, which reflects
the numerical difference between the parameter vectors of the two models[22]. It is
defined as follows:

Euclidean Distance(a,b) = ||]a — b|| = (5.4)

where a and b represent two models from different nodes

Unlike relative loss and entropy, these two model similarity metrics—cosine similarity and
Euclidean distance—only require knowledge of the model parameters between nodes for
calculation. In comparison, they do not depend on the training datasets of individual
nodes, making them easier to obtain and use for constructing more potent topology infer-
ence attacks. Furthermore, these pairwise metrics are symmetric, as the model parameter
vectors remain fixed during calculation. This symmetry simplifies the development of
corresponding attack strategies.

5.2.2 From Node to Edge Information

Having identified a range of alternative node metrics that can be used in topology inference
attacks on DFL networks, the next critical step is to establish how these node metrics
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relate to the topology, i.e., the information about the edges. There are many kinds of
considerations for information about edges in a network, such as the distance, the number
of paths between two nodes, or more intuitively whether two nodes are directly connected.

Distance is an inference objective that is often used in other network topology domains.
It represents the number of edges in a shortest path connecting them. In general, when
the distance between two nodes is smaller, these two nodes will be closer in the network.
Using the distance between two nodes as the object that the node metrics speculate about
seems to be a reasonable choice. For example, when the Relative Loss between node ¢ and
node j is very low, the distance between these two nodes is considered to be very short.
But this correspondence between metrics faces two serious flaws:

1. Distance metric is a continuous positive integer variable. The distance value be-
tween two nodes can range from 0 to the diameter of this network. This provides
a great challenge for inferring the number of distances between nodes undoubtedly,
especially in the second attack scenario where only node information is available.
Even if an attacker finds that some of node metrics exhibit similar characteristics,
they still cannot be effectively labeled because of the large number potential distance
results.

2. Distance may not be accurately determined in networks with loops. In a net-
work like DFL with potential loops, the distance information between nodes may
not be accurately reflected only by the partial edge information. In this case, the
attacker’s basis for issuing topology inference often lies in learning the relation-
ship between node metrics and known edge information. However, having partial
connectivity information does not always provide an accurate representation of the
distance between nodes. For instance, nodes in a long chain may have shortcuts
that significantly reduce the distance between them. Consequently, the adversary

may infer incorrect patterns, which may deviate from the expected results of missing
links.

Due to the influence of the two factors mentioned above, the distance between nodes is not
suitable for establishing node metrics and topology (edge) information in DFL networks.
Similarly, other commonly used metrics from different fields, such as centrality and the
number of common neighbors, are also excluded. An ideal metric for representing edge
information should have as few distinct values as possible while still being accurately
calculable in various scenarios. Therefore, based on this requirement whether nodes are
directly connected is proposed as an indicator variable, Iy; ;1, as shown below to fulfill this
requirement.

1, if node 7 and node j are directly connected
Ly = :
0, otherwise

Compared to other metrics, Iy; j; has the following advantages: First, it is a binary iden-
tifier with only two elements in its value range, 0 and 1, which divides all nodes into two
categories: direct link group and non direct link group. This greatly reduces the difficulty
of the topology inference attack, transforming the inference task into a binary classifica-
tion task. Second, This variable can also be obtained correctly with only partial edge
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information, and is not potentially misleading as distance can be. Finally, after knowing
the value of the variable, it is easy to get the information about the edge that needs to be
inferred, without having to perform a heuristic inference process like the distance does.
This greatly facilitates the implementation of the attack.

5.2.3 Metrics Validation

Although the process of determining whether the two nodes are directly connected through
alternative node metrics seems to be convincing and convenient, it still requires prelimi-
nary validation to assess its rationality and determine whether it can be used as the main
basis for DFL network topology inference attack. An intuitive way to verify this process
is to show whether there is a difference in the node metrics of directly connected node
pairs and indirectly connected node pairs in the DFL network. If there is a significant
difference in the node metrics between these two groups, it means that this classification
method can be used to study and analyze the relationship between node metrics and
network topology. On the contrary, if the node metrics of the two groups are very simi-
lar, it means that in the DFL network, there is no significant difference between directly
connected node pairs and non-directly connected node pairs, which further indicates that
it is impossible or more difficult to use this binary classification method to determine the
edge relationship between nodes.

For this reason, the node metric distribution plot for these distinct two groups is selected
as an effective visualization method to present this preliminary validation results. Based
on Figur and Figur the following preliminary conclusions can be drawn: (1) For
the two metircs related to model generizability, the difference between the two different
groups is greater than the similarity metrics; (2) The cosine similarity values of the nodes
are the closest, which indicates that the similarity between the models of the nodes is very
high; (3) According to this preliminary distribution verification plot, the node metric -
Relative Loss is expected to be an indicator of the best attack results.

5.3 Attack Strategies

After verifying the effectiveness of the proposed node metrics for distinguishing whether
there is a direct connection between pairs of nodes, specific attack strategies for topology
inference attacks in DFL networks can be formulated based on this logic. A general frame-
work for different attack scenarios is proposed and then based on this framework, some
derivations of algorithms are also listed aiming at obtaining a comprehensive assessment
of the effectiveness of the attack strategy.

5.3.1 General Process for Different Attack Scenario

Considering that topology inference attacks in DFL are categorized into two main attack
scenarios, it is a reasonable move to set up a specific attack strategy for each scenario.
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Attack Scenario 1: Full Node Information with Partial Edge Information In this case,
the attacker is considered to be in control of all the nodes’ node metrics and a portion
of the edges’ information. The goal of the attacker is to speculate the information of
the unknown part of the edges. Considering that both kinds of information are acquired,
one reasonable attack strategy is to utilize training a supervised machine learning model
based on the known node information and edge information, and then use this trained
model to predict the information of the unknown edges. For the model to be trained,
X in its input is the node metrics, while Y is the known information about the edges,
labelled as 0 and 1. The process of model training can be thought of as learning the
corresponding features of the known node metrics and edge information, which can be
further applied to predict the connectivity between unknown pairs of nodes.

The general process of this attack strategy consists of three main phases: (1) Prepare
training and test datasets, (2) Initialize Machine Learning Model, and (3) Predict missing
results. The specific process is shown in the following Algd20]

Attack Scenario 2: Full Node Information with No Edge Information In this case,
the attacker is assumed to have all the information about the nodes and none about
the edges. Unlike the first attack scenario, because of the lack of edge information to
be used as Y-values, it is not possible to construct a supervised model in order to learn
features with known information. Therefore, the attack strategy for this scenario is to
use the clustering model in unsupervised learning to take the node metric of all nodes
as input and divide them into two disjoint groups that are directly connected or not.The
advantage of this is that there are only two possible connectivity relationships between
the nodes, so the attacker can explicitly go ahead and build two clusters to house different
pairs of nodes respectively.

The general process of this attack strategy consists of three main phases: (1) Initialize
unsupervised clustering model, (2)Fit the model to node metrics and get clusters, and (3)
Mark each cluster with directly connected or not label based on the specific node metrics.
The specific process is shown in the following Algd38|



5.3. ATTACK STRATEGIES 33

Algorithm 1 Topology Inference Attack using Supervised Learning

Require: X: Node metrics, Y**%": Known edges, Y™*"9: Missing edges

Ensure: Y': Predicted adjacency matrix
1: function TOPOLOGYINFERENCE(X, Yknown ymissing)
2: Dirain + EXTRACTNODEPAIRSANDLABELS(X, Yknown) > Training data
3 Dyest < EXTRACTNODEPAIRS(X, Y™ssin9) > Test data (missing edges)
4 model < InitializeSupervisedModel() > Initialize the ML model
5: model.train(Dyyqin) > Train model on known edges
6 y'missing < model.predict( Dyest ) > Predict missing edges
7 Y’ <~ COMBINE(Y krown 'y/missing) > Form the complete adjacency matrix
8 return Y’
9: end function

10: function EXTRACTNODEPAIRSANDLABELS(X, Ynown)

11: Diyain < |]

12 for each edge (i,7) in Y*"u" do

13: node_metrics <— Get NodeMetrics(X[i], X[j]) > Retrieve node metrics for

pair (4, j)

14: label < Y*Frown[j 4] > Use known edge information as label
15: Dy gin-append((node_metrics, label))

16: end for

17: return D;,qin

18: end function

19: function EXTRACTNODEPAIRS (X, Y™5519)

20: Diest < |

21: for each node pair (i, 7) in Y59 do

22: node_metrics <— Get NodeMetrics(X[i], X[j]) > Retrieve node metrics for

pair (i, )

23: Dyesi-append(node_metrics)

24: end for

25: return D,

26: end function
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Algorithm 2 Topology Inference Attack using Unsupervised Clustering

Require: X: Node metrics, number of clusters K = 2 (Edge group and Non-edge group)
Ensure: Y': Predicted adjacency matrix

1:
2:

10:
11:
12:
13:

14:
15:

16:
17:

18:
19:
20:

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

32

33:
34:
35:
36:
37:
38:

function TOPOLOGYINFERENCE(X)
clusters <— CLUSTERNODEMETRICS(X, K = 2) > Cluster node metrics into two
groups (edge, non-edge)
groupy, groups <— SEPARATECLUSTERS(clusters) > Separate node pairs into two
clusters
avgy <~ CALCULATEMEAN(group;) > Calculate mean value of node metrics in
group 1
avgs < CALCULATEMEAN(group,) > Calculate mean value of node metrics in
group 2
if avg; < avg, then
EdgeGroup < group;
NonFEdgeGroup < groups
else
EdgeGroup < groups,
NonFEdgeGroup < group;
end if
Y’ <~ CONSTRUCTADJACENCYMATRIX(EdgeGroup, NonEdgeGroup) > Build
adjacency matrix based on the groups
return Y’
end function

function CLUSTERNODEMETRICS(X, K)
model < InitializeClusteringModel(K') > Initialize unsupervised clustering model
(e.g., K-means)
clusters < model. fit(X) > Fit the model to node metrics and get clusters
return clusters
end function

function SEPARATECLUSTERS(clusters)
groupy <[], group; < |
for each (i, j) in node pairs do

if clustersli, j| = 1 then
group; .append(node_metrics(i, 7))
else
groups.append(node_metrics(i, j))
end if
end for

return group;, groups
end function

function CONSTRUCTADJACENCYMATRIX(EdgeGroup, NonEdgeGroup)
Initialize adjacency matrix Y’ with all entries as 0
for each (7, j) in EdgeGroup do
Y'i, 5] <1 > Mark edge group pairs as connected
end for
return Y’
end function




Chapter 6

Evaluation

6.1 Experiment Setup

6.1.1 Dataset and Models

All experiments are conducted on the following three datasets: MNIST, Fashion-MNIST,
and CIFAR-10. These datasets are not only used as benchmarks in the field of model
training but are also widely referenced in Inference Attack-related literature. Figure
shows the grayscale and RGB visualizations of these datasets.

e MNIST|23] is the standard dataset for handwritten digit classification and contains
60,000 training set images and 10,000 test set images. Each image has a resolution
of 28x28 pixels and is in grey scale, with ten classes of digits ranging from 0 to 9.
A Multilayer Perceptron (MLP) is employed for this dataset’s training task, which
consists of two fully connected hidden layers with dimensions of 256 and 128 neurons
respectively. The model is optimized using the Adam optimizer with a learning rate
of 1le-3

e FMNIST[24] is a variant of MNIST dataset, consisting of Zalando’s clothing images,
with 60,000 training images and 10,000 test images of the same size as MNIST. The
images are also 28x28 pixel greyscale maps, but the categories are more complex,
covering 10 different clothing styles. The model used for FMNIST is a Convolutional
Neural Network (CNN) with two convolutional layers and two fully connected layers.
The first convolutional layer consists of 32 filters with a kernel size of 3x3, followed
by a ReLU activation function. The second convolutional layer contains 64 filters
of the same size, followed by RelLU and max-pooling with a kernel size of 2x2.

e CIFAR-10[25] dataset contains 60,000 colour images with an image size of 32x32
pixels, divided into 10 categories covering aircraft, cars, birds, cats, deer, dogs, frogs,
horses, boats and trucks. Each category contains 6,000 images and the complex-
ity of the dataset is reflected in its RGB structure. In particular, the CIFAR10
dataset is divided into two different variants in order to compare the impact of data
augmentation on model performance:

35
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— CIFAR-10 without Data Augmentation. In this version, the training set is only
treated with basic image normalization. The image pixel values are normalized
to keep the original image content unchanged.

— CIFAR-10 with Data Augmentation. This version of the training set ap-
plies data augmentation techniques, including random cropping and horizontal
flipping, to increase the diversity of the data with the aim of improving the
generalization ability of the model. Specific augmentation operations include
random cropping (with 4-pixel padding) on a 32 x 32 pixel image, and random
horizontal flipping[26].

The use of two different treatments of the CIFAR-10 dataset is a common practice
when evaluating inference attacks. The logic behind this lies in artificially creating
a situation of high model overfitting levels by deliberately not applying data aug-
mentation techniques to complex datasets, thus facilitating the assessment of the
extreme performance of inference attacks. The model used for both data versions is
a simplified MobileNet, using depthwise separable convolutions to reduce the num-
ber of parameters. Its architecture includes a series of convolutional layers followed
by batch normalization and ReLLU activations and a fully connected layer for 10
classes classification task.

6.1.2 Topology Setting
The DFL network involved in all the experiments consists of the following five topologies:

e Ring Graph: A ring topology consists of network nodes connected in a closed loop
along a fixed direction, with each node connected to its left and right neighboring
nodes in a point-to-point closed structure. This topology allows each node to have
the same degree and makes the communication inside follow a circular path.

e Star Graph: In a star topology, the nodes of a network are connected to a central
node in a point-to-point manner. This topology is a typical asymmetric structure.

e ER Graph (p=0.3): ER graph represents Erd6s-Rényi graph|27], which is a famous
type of random graph. In this topology, a fixed number of nodes are connected by
edges based on a probability p. Each edge’s probability is independent from every
other edge. Here the probability is set as 0.3.

e ER Graph (p=0.5): Erdds-Rényi random graph with the edge probability setting
as 0.5.

e ER Graph (p=0.7): Erdds-Rényi random graph with the edge probability setting
as 0.7.

These five evaluated topologies cover three main types of topologies: cyclic graphs, asym-
metric graphs, and random graphs, and also range from sparse graphs to dense graphs.
Therefore, these topologies can provide a comprehensive evaluation basis for attacks and
help analyze performance under different network structures.
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6.1.3 Federated Learning Configuration

The configuration of Decentralized Federated Learning involoved in all experiments are
summarized as follows:

e Number of Nodes: The total number of nodes in DFL is set to 10, 20, and 30,
representing small, medium, and large networks respectively. However, the total
number of training datasets involved in the whole federated learning is fixed at 25,000
for any network size, and this setting also applies to different types of datasets.

In other words, the size of the training dataset held by each node is 2500, 1250,
and 834 for networks of size 10, 20, and 30, respectively. This method of data
partitioning helps control the impact of data size on the level of overfitting of the
model in the federation.

e Total Rounds: Considering the different efficiencies of node model information dif-
fusion in networks of different sizes, the total number of DFL rounds is set to 10,
30, and 40 for networks with 10, 20, and 30 nodes, respectively.

e Local Epochs: For networks of different sizes, the local epochs are set to 3 and 10
in two separate scenarios. By setting different local epochs, it is possible to study
the impact of different levels of local overfitting on the effectiveness of the attack.

e Data Distribution: The training dataset between each node is always set to comply
with the independent and identical distribution hypothesis.

6.1.4 Attack Models

The attack models involved in the experiments of topology inference attacks are divided
into two categories according to different attack scenarios:

1. Attack Scenario 1 (Full Node Information and Partial Edge Information): As
described in Section 5.3, the attack model in this attack scenario belongs to the type
of supervised machine learning model. Therefore, the following types of models are
tested separately for their effectiveness:

e Logistic Regression[28]: Logistic regression is a linear classification model. It
can predict the connections between nodes by learning the relationship between
node metrics and edge information. Despite its simple model, it has robust
performance when dealing with binary classification problems. It also trains
faster and is more suitable for dealing with sparse graph structures.

e Support Vector Machine (SVM)[29]: SVM is a widely used classification
model. It distinguishes between connected and unconnected nodes by searching
for an optimal hyperplane in high-dimensional space. SVM excels at handling
complex, non-linear boundaries, especially when the data is high-dimensional.
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e Random Forest (RF)[30]: Random forest is an ensemble learning method based
on decision trees. It improves the generalization ability of the model by con-
structing multiple decision trees and combining their prediction results. Ran-
dom forest can effectively handle non-linear relationships in node metrics and
are robust in the face of data noise.

2. Attack Scenario 2 (Only Full Node Information): Similarly, the attack model used
in this attack scenario belongs to the type of clustering models in the category of
unsupervised machine learning. The following clustering models are selected for
evaluation:

e K-Means|25]: K-Means is a distance-based clustering algorithm. It infers the
connection between nodes by dividing the node features into multiple clusters.
It then ensures that nodes within the same cluster are more similar by mini-
mizing the variance of the node features within the cluster. It is often used to
process large data sets because of its advantage of fast calculation.

e Gaussian Mixture Model (GMM)[31]: GMM is a probabilistic clustering al-
gorithm. It first assumes that the data consists of multiple Gaussian distribu-
tions, and then infers the probability that the nodes belong to different clusters
by maximizing the likelihood estimation. Compared to K-Means, GMM can
handle complex data distributions more flexibly. At the same time, it is also
suitable for capturing the potential probabilistic relationships between features.

e Spectral Clustering[32]: Spectral clustering is an algorithm that uses the
Laplacian matrix of a graph to perform eigenvalue decomposition of the sim-
ilarity matrix between nodes, and then maps the nodes to a low-dimensional
space before clustering. It often performs better when processing data based
on a graph structure.

The attack models for the different attack scenarios above are all combined with the dif-
ferent data processing algorithms mentioned in Section 5.3 during evaluation to determine
which method poses the greatest attack threat.

6.1.5 Evaluation Metric

For either attack scenario, the designed attack strategy is to obtain a complete or partial
inferred adjacency matrix that is as plausible as possible, so in order to evaluate the final
performance of attacks, it is essentially a matter of comparing the similarity of the inferred
adjacency matrix to the original one. This transforms this issue into evaluating a binary
classification problem. Therefore, it is a reasonable choice to adopt the F1-Score as the
final attack performance evaluation metric.

The F1-Score is the harmonic mean of classification precision and recall[33], providing a
single metric that balances both concerns. The F1-Score is defined as:

Precision x Recall
F1-S =2 6.1
core % Precision + Recall (6.1)
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Attack Dataset Topol Nu;n Threat Total | Evaluated
Scenario atase OPOloBYy ° Model | Rounds | Metric
Nodes
LR,
Scenario 1 MNIST, Ring, SVM,
FMNIST Star, 10, RF 10,
’ ER_0.3, 20, 30, F1-Score
CIFAR10no,
CIFAR10 ER_0.5, 30 Kmeans, 40
Scenario 2 ER_0.7 GMM,
Spectral

Table 6.1: Overall Experiment Setup.

A higher F1-Score indicates a better balance between precision and recall, making it a
comprehensive metric for overall attack performance.

In summary, all the experimental details available for evaluating topology inference attacks
are summarized in the TabldG.1l

6.2 Experiment Results

This section presents the evaluation results of the performance of topology inference at-
tacks in two attack scenarios in different environments. First, the impact of different
data processing methods and node metrics on the effectiveness of the attack is shown.
The results are compared to determine the best data processing method when using the
clustering model for attacks and the most effective node metrics in both attack scenarios.
Second, the performance of topology inference attacks is evaluated for different datasets
and network topologies. Finally, the difference of the attack performance is analyzed for
different number of DFL local training epochs, number of nodes and number of global
rounds. Based on this comprehensive experimental results, it helps to analyze in depth
the endogenous and exogenous factors affecting the effectiveness of topology inference
attacks in DFL network.

6.2.1 Node Metrics and Data Processing Method Selection

Figurdb.1] to show the impact of the three different data processing methods on the
attack performance in the second attack scenario, where a clustering model is used as the
attack model. Here, all cases use the Relative Loss node metric as the guidance of attack.
From these three figures, it is clear to see the impact of these three data processing methods
on the attack effectiveness. Among them, the results obtained by Algol are significantly
worse than the other two methods, especially in the context of the star graph. Algo2 and
Algo3 perform more or less equally. Therefore, it is feasible to choose either of these two
as the data processing method for the next evaluation of the performance of the cluster
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attack. Algo3 is selected here because it classifies by constructing a two-dimensional data
group, which can show more data relationships.

The reason for the poor results of Algol is also relatively easy to identify.The reason is
that it performs clustering of objects by constantly analyzing each row of the node metric
matrix to obtain the final inference result. Although this approach to data processing
reduces the complexity of running clustering algorithms on large network datasets, it is
very susceptible to biased estimation because it considers fewer samples each time (only
1/|V| compared to the other two approaches).

As for the effects of different node metrics on the attack performance, they are clearly
shown in Figurd6.4] to Figurd6.6l The performance of the results in these plots shows
that the attack constructed via Relative Loss performs the best, with Euclidean Distance
and Relative Entropy next in line, and the Cosine Similarity metric being the worst.
Such attack results are in line with the previous metric validation results, where the
distribution distinction between the edge group and non-edge group for the Relative Loss
was the largest in the validation results above, thus indicating the most potential to
perform threatening attacks. The cosine similarity, on the other hand, is too high due to
the overlap between the two groups, indicating that the cosine similarity between each
node model is very close, making it less suitable as a successful node metric for topology
inference. Here, the evaluation results also corresponds to this argument.

6.2.2 Performance Comparison on Dataset and Topology Aspects

After determining the optimal data processing method and node metrics, the performance
of the attack can be analyzed under different datasets and topologies. This result is clearly
presented in Figurd6.3] Firstly, analyzing under the perspective of the dataset, it can be
found that the CIFAR10-no dataset presents the best attack, both for which clustering
method. The absolute value level of the overall F1-Score is basically close to 1, indicating
that the topology inference attack is excellent for this approach. Next, the attack perfor-
mance on the CIFAR10 dataset stays second overall while the MNIST dataset is the least
effective. This trend is also similar to the performance of other kinds of inference attacks.
As mentioned earlier, an important mechanism for the success of inference attacks lies in
the level of overfitting of the machine learning model. Inference attacks work better on
relatively complex datasets such as CIFAR-10, and worse on datasets such as MNIST.

As for the differentiation of the effectiveness of the attack between different topology
levels, its manifestation can be shown as a decrease in the effectiveness of the attack
when the overall density of the network rises. For example, the attack shows very good
performance in both like star and ring graphs, while the effect suffers a reduction in ER
graphs with high edge connection probability. This performance can be understood as
when the density of the overall network rises, the average distance of the network gets
decreased and thus the frequency of information exchange between individual nodes gets
elevated. As a result, the generalization ability and similarity of the models between the
nodes become better, which makes the topology inference attack based on this mechanism
performance reduced.
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6.2.3 Performance Comparison on DFL Configuration Aspects

Different DFL parameter settings also have a large impact on the performance of topology
inference attacks. The three main elements considered here are local epochs, number of
nodes and number of rounds.

First, Figured6.3| and Figurd6.7] show the difference in the performance of the attack with
local epoch set to 3 and 10. Here it is clear that the performance of the attack with local
epochs of 10 is much better than the case with epochs of 3. The reason for this difference
should come from the fact that when the number of local epochs increases, the overfitting
level of the model increases accordingly, leading to better attack performance.

Secondly, Figurd6.3 Figurd6.8) and Figure6.10] show the difference in the effectiveness of
the attack with different number of nodes. It can be clearly seen that when the overall
number of nodes in the network rises, the overall trend of attack effectiveness is decreasing.
The reason for this phenomenon comes from two aspects: (1) With the expansion of the
network size, the difficulty of topology inference itself has been greatly improved, and
the decline in attack performance is also in accordance with logic; (2) When the number
of nodes in the DFL network continues to rise, the density and average distance of the
overall network are also greatly improved, and this change in topology makes the model
between the nodes become more similar, thus making the inference attack perform poorly.

Last, Figurd6.9 and Figurd6.8show the difference in the performance of the attack under
round 9 and round 29 in a DFL network with 20 nodes. Here it can be seen that the overall
level of the two attacks does not change much, which suggests that in DFL networks, the
individual node models tend to propagate faster than the preset rounds, which may allow
the attacks to get better within the earlier rounds of the overall run.
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with 10 local epochs.
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Figure 6.5: Attack Performance based on Relative Entropy under 10 Nodes DFL Network

with 10 local epochs.



6.2. EXPERIMENT RESULTS 47

1.00 Attack Models
mmm Kmeans
. GMM
0.80 B Spectral
IS
S 0.60
w0
—
W 0.40
0.20
0.00
ER_ 0.3 star ring ER_0.5 ER_0.7
Topologies
(a) CIFAR-10no
1.00 Attack Models
B Kmeans
= GMM
0.80 B Spectral
o
S 0.60 1
v}
—~
L= 0.40 4
0.20 4
0.00
ER_0.3 star ring ER_0.5 ER_0.7
Topologies
(b) CIFAR-10
1.00 Attack Models
I Kmeans
= GMM
0.80 B Spectral
o
S 0.60 1
[}
—~
Y- 0.40 A
0.20 4
0.00
ER_0.3 star ring ER_0.5 ER_0.7
Topologies
(¢) MNIST
1.00 Attack Models
I Kmeans
mE GMM
0.80 B Spectral
<
S 0.60
%)
~
L 0.40 A
0.20 4
0.00 -
ER_0.3 star ring ER_0.5 ER_0.7
Topologies
(d) FMNIST

Figure 6.6: Attack Performance based on Euclidean Distance under 10 Nodes DFL Net-
work with 10 local epochs.
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Figure 6.7: Attack Performance based on Relative Loss under 10 Nodes DFL Network

with 3 local epochs.
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Figure 6.8: Attack Performance based on Relative Loss under 20 Nodes DFL Network
with 10 local epochs and 29 Global Rounds.
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Figure 6.9: Attack Performance based on Relative Loss under 20 Nodes DFL Network

with 10 local epochs and 9 Global Rounds.
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Figure 6.10: Attack Performance based on Relative Loss under 30 Nodes DFL Network
with 10 local epochs and 39 Global Rounds.
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Chapter 7

Summary and Conclusions

This work focuses on designing a topology inference attack specifically for DFL networks.
This attack obtains the topology of a DFL network by innovatively utilizing information
about the nodes suitable for that DFL network. Since this type of attack has never been
proposed before in the field of DFL research, the first step is to learn similar methods
from other well-known network fields such as computer networks and social networks and
extend them to the DFL area. Meanwhile, in order to better analyze the different scenarios
of attacks in DFL networks, two different attack scenarios are hypothesized based on the
status of the information the attacker has about the nodes.

The first attack scenario assumes that the attacker has information about all the nodes
as well as some of the edges. In this case, the attacker can try to construct links from the
existing edge information and the corresponding node information by training a supervised
machine learning model, and predict the unknown edge connectivity through such model.
This approach is justified by the fact that the correspondence between edges and nodes
applies to all individuals under the same network. Therefore generalizing to unknown
predictions by capturing features from known parts is a more reasonable means. The
second attack scenario assumes that the attacker only has information about all the nodes
and does not know any information about the edges. In this scenario, an approach that
utilizes clustering models under unsupervised learning is introduced. Based on all the
node metrics, the clustering model is used to classify the nodes into distinct two categories-
edge group and non-edge group, so that the connectivity between pairs of nodes can be
constructed. This method of attack is similar to autonomously demarcating boundaries
from an existing dataset. However, since the number of delineated categories is fixed and
clear, two nodes are either directly connected or not, making the overall approach highly
generalizable.

Although the type and level of knowledge that can be utilized by an attacker differs
in the two different attack scenarios, the node metric is a required element in either
case. Therefore, this work proposes and constructs four valid node metrics suitable for
use in DFL networks-Relative Loss, Relative Entropy, Relative Entropy, and Euclidean
Distance. The first two of these address the generizability between node local models,
while the latter two address the similarity of the model between nodes. This study then
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presents a comprehensive evaluation of attack methods across various scenarios, driven
by four different node metrics in diverse DFL network settings.

The evaluation results regarding the designed attack can be summarized as follows:(1)
The impact of different datasets on the effectiveness of the attack is large. The topology
inference attack tends to achieve better performance when facing more complex datasets
such as CIFAR-10, etc.; (2) The topology of the DFL network also deeply affects the
effectiveness of the attack. This effect is manifested in two main ways: when the network
size increases, the attack performance decreases significantly as well as when the network
becomes denser. The reason for this phenomenon can be attributed to the change in the
level of overfitting of the overall network model; (3) Among the alternative four node
metrics, Relative Loss achieve the best performance level. This suggests that even in a
DFL network that has been trained for many rounds, the mutual generizability between
the nodes models can still perform poorly, thus providing a window for some attacks to
target.

Overall, the topology inference attack designed in this work for DFL networks has achieved
good results in most of the DFL networks, and at the same time, it serves as a very
innovative attack and will provide a new way of thinking for research in the field of DFL
network security afterwards.
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