
Dynamic Task Clustering and
Aggregation for Decentralized
Federated Multitask Learning

Xi Chen
Zurich, Switzerland

Student ID: 22-736-219

Supervisor: Chao Feng, Andy Aidoo

Date of Submission: January 7, 2026

University of Zurich

Department of Informatics (IFI)

Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
o

m
m

u
n

ic
a

ti
o

n
S

y
s
te

m
s

G
ro

u
p
,

P
ro

f.
D

r.
B

u
rk

h
a

rd
S

ti
ll
e

r

Master Thesis

Communication Systems Group (CSG)

Department of Informatics (IFI)

University of Zurich

Binzmühlestrasse 14, CH-8050 Zürich, Switzerland

URL: http://www.csg.uzh.ch/

Declaration of Independence

I hereby declare that I have composed this work independently and that both the core
scientific contributions and the primary codebase were developed by myself without the
use of any aids other than those explicitly declared.

Regarding the use of generative AI tools, I declare the following:

• Claude Code was employed solely for the purpose of organizing, formatting, and
structural refinement of the source code. The underlying algorithms and logic remain
my original work.

• Gemini was utilized as a language assistant for polishing the prose, correcting gram-
matical errors, and improving the stylistic flow of the manuscript.

I am aware that I take full responsibility for the scientific integrity and accuracy of the
submitted text and code, regardless of the tools used. All passages taken verbatim or
in sense from published or unpublished writings, as well as any external assistance, are
clearly identified. This work has not been submitted in the same or similar form to any
other examination o!ce.

Zürich,
Signature of student

i

ii

Abstract

Föderiertes Multi-Task Learning (FMTL) ermöglicht kollaboratives Training über Cli-
ents hinweg, die unterschiedliche, aber verwandte Aufgaben optimieren, ohne lokale Da-
ten zu teilen. Viele bestehende FMTL-Ansätze basieren jedoch auf zentralen Servern
zur Koordination, was Single-Points-of-Failure scha”t und zusätzliche Datenschutz- so-
wie Sicherheitsrisiken mit sich bringt. Diese Arbeit entwickelt ein vollständig dezentrales
Peer-to-Peer-FMTL-Framework, in dem Clients Aufgabenbeziehungen aus beobachtba-
ren Trainingssignalen ableiten, Nachbarn dynamisch auswählen und Aggregation ohne
zentrale Instanz durchführen.

Die Evaluation über mehrere Datensätze mit unterschiedlichen Task-Korrelationsstrukturen
zeigt eine zentrale Erkenntnis: Der optimale Aggregationsumfang hängt systematisch von
der Stärke der Task-Korrelation ab. Bei stark korrelierten Aufgaben kann selektives Teilen
(z. B. Backbone-only) vorteilhaft sein, während in schwach korrelierten Settings umfassen-
dere Aggregation häufig für stabile Konvergenz erforderlich ist. Darüber hinaus adressiert
die Arbeit praktische Herausforderungen numerischer Instabilität in konfliktbewusster Ag-
gregation durch ein Schutz- und Stabilisierungskonzept und dokumentiert Failure Cases
zur Abgrenzung sicherer Konfigurationen. Insgesamt demonstriert die Arbeit serverfreies
FMTL für komplexe Dense-Prediction-Aufgaben und leitet praktische Empfehlungen für
dezentrale Nachbarschaftsselektion und Aggregationsdesign ab.

iii

iv

Federated Multi-Task Learning (FMTL) enables privacy-preserving collaboration among
clients optimizing di”erent but related tasks, yet most existing approaches rely on cen-
tralized servers for coordination, creating single points of failure and additional privacy
and security exposure. This thesis presents a fully decentralized peer-to-peer FMTL
framework in which clients infer task relatedness from observable training signals, select
neighbors dynamically, and aggregate updates without central coordination.

Across datasets with di”erent task-correlation structures, the evaluation reveals a con-
sistent conclusion: the optimal aggregation scope depends on task correlation strength.
For strongly correlated tasks, selective sharing (e.g., backbone-only) can be beneficial,
whereas weakly correlated settings often require broader aggregation to maintain stable
convergence. The thesis further addresses practical numerical instability in conflict-aware
aggregation through a stabilization mechanism and reports failure cases to delineate safe
operating regimes. Overall, the work demonstrates server-free FMTL for complex dense
prediction workloads and provides actionable guidance for similarity-based collaboration
and aggregation design.

Acknowledgments

First and foremost, I would like to express my sincere gratitude to Prof. Dr. Burkhard
Stiller for providing me with the opportunity to conduct this research at his chair and for
his valuable support.

My deepest thanks go to my supervisors, Chao Feng and Andy Aidoo. This work would
not have been possible without their consistent guidance, insightful feedback, and the
time they dedicated to helping me navigate the challenges throughout this project. Their
expertise and encouragement have been instrumental in my academic growth.

On a personal note, I am profoundly grateful to my boyfriend, Houze, for his unwavering
support, patience, and encouragement during the intensive writing period of this thesis.
His presence provided me with the strength to persevere through the most demanding
phases.

Finally, a very special (and somewhat chaotic) acknowledgment goes to my four feline
companions: Xiaomai, Ale, Jiujiu, and Cider. Thank you for your relentless ”assistance”
in redecorating my drafts by walking across the keyboard and for ensuring I took frequent
breaks by demanding my attention. Though you were technically a source of distraction,
your presence made the long nights of writing much more joyful.

v

vi

Contents

Declaration of Independence i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Research Objectives . 2

1.2 Research Contributions . 2

1.3 Code and Reproducibility . 3

1.4 Thesis Organization . 3

2 Background 5

2.1 Federated Learning Fundamentals . 5

2.1.1 Centralized Federated Learning . 5

2.1.2 Decentralized Federated Learning 6

2.2 Multi-Task Learning in Computer Vision 7

2.2.1 Dense Prediction Tasks . 7

2.2.2 Task Interference and Negative Transfer 8

2.3 Datasets for Multi-Task Dense Prediction 8

2.3.1 CIFAR-10 . 8

2.3.2 NYU Depth V2 . 9

2.3.3 Pascal Context . 10

vii

viii CONTENTS

2.4 Federated Multi-Task Learning (FMTL) 10

2.4.1 Problem Formulation . 10

2.4.2 Hard Parameter Sharing Architecture 11

2.4.3 Personalization and the Transition to Decentralized FMTL 12

3 Related Work 15

3.1 Federated Learning under Task Heterogeneity 15

3.1.1 Personalized Federated Learning . 16

3.1.2 Federated Multi-Task Learning . 17

3.2 Learning Task Relationships in Federated Learning 18

3.2.1 Centralized Task Relationship Learning 18

3.2.2 Clustered Federated Learning . 19

3.2.3 Soft and Dynamic Task Clustering 21

3.3 Aggregation Strategies for Heterogeneous Objectives 22

3.3.1 Task-Agnostic Aggregation . 22

3.3.2 Conflict-Aware and Task-Aware Aggregation 23

3.4 Decentralized Federated Learning . 23

3.4.1 Gossip-Based and Peer-to-Peer Learning 24

3.4.2 Limitations for Multi-Task and Heterogeneous Settings 24

3.5 Gap Analysis and Positioning of This Work 25

4 Methodology 27

4.1 System Model . 27

4.1.1 Network Architecture and Communication Topology 28

4.1.2 Multi-Task Model Architecture . 30

4.1.3 Task Assignment Strategies . 32

4.2 Dynamic Task Similarity Identification . 34

4.2.1 Gradient-Based Similarity via Cosine Alignment 34

4.2.2 Task Overlap Similarity via Weight Vector Intersection 36

CONTENTS ix

4.2.3 Cross-Loss Similarity via Transferability Testing 37

4.2.4 Combined Similarity via Convex Weighting 38

4.2.5 Temporal Dynamics and Adaptive Similarity Updates 39

4.3 Soft Aggregation Mechanism . 39

4.3.1 Neighbor Selection via Top-K Thresholding 40

4.3.2 Similarity-Weighted Aggregation 40

4.3.3 Parameter Update Formulation . 41

4.4 Aggregation Strategies: Scope and Methods 42

4.4.1 Aggregation Scope: Backbone-Only versus Full Model 42

4.4.2 Aggregation Methods: Weighted Average versus Conflict-Averse
Optimization . 44

4.5 Stabilization Policy for Advanced Aggregation 45

4.6 Training E!ciency Considerations . 46

4.7 Chapter Summary . 46

5 Implementation 49

5.1 Codebase Evolution and Architecture . 49

5.1.1 Original Centralized Framework . 49

5.1.2 Decentralized Extension . 50

5.2 Configuration-Driven Architecture . 52

5.2.1 Design Philosophy . 52

5.2.2 Configuration File Structure . 53

5.2.3 Multi-Dataset Support . 55

5.2.4 Experiment Isolation . 55

5.3 Data Pipeline Implementation . 56

5.3.1 NYU Depth V2 Pipeline . 56

5.3.2 Pascal Context Pipeline . 57

5.3.3 Task-Weighted Loss Computation 58

5.4 Training Infrastructure . 59

x CONTENTS

5.4.1 Peer-to-Peer Communication Simulation 59

5.4.2 Experiment Automation . 61

5.4.3 Reproducibility Measures . 61

5.5 Software Engineering Practices . 62

6 Evaluation 65

6.1 Experimental Setup . 65

6.1.1 Three-Dataset Validation Strategy 65

6.1.2 Experimental Design Matrix . 67

6.1.3 Hyperparameter Configuration . 68

6.1.4 Evaluation Metrics . 70

6.2 CIFAR-10: Framework Validation and HCA Problem Discovery 71

6.2.1 Phase 1: Initial HCA Failures . 71

6.2.2 Phase 2: Systematic Debugging Through Solution Exploration . . . 72

6.2.3 Phase 3: Strategic Pivot to FedAvg Validation 73

6.2.4 Phase 4: Hybrid Strategy Discovery 74

6.2.5 Phase 5: HCA Stability Solution Through Protection Layers 75

6.2.6 CIFAR-10 Summary and Contributions 76

6.3 NYU Depth V2: Dense Prediction Validation 76

6.3.1 Quick Test Validation . 76

6.3.2 Full Run Results and Early Stopping Analysis 77

6.3.3 B2/B3 HCA Explosion Analysis . 79

6.3.4 HCA Stability Fix Validation . 80

6.3.5 Final NYU V2 Performance Ranking and Key Findings 81

6.4 Pascal Context: Cross-Dataset Validation 84

6.4.1 Three-Run Statistical Analysis . 84

6.4.2 B1 Instability Investigation . 85

6.4.3 Task Correlation-Aggregation Scope Relationship 87

CONTENTS xi

6.4.4 Pascal Context Per-Task Performance Analysis 90

6.5 Cross-Dataset Comparative Analysis . 91

6.5.1 Best Performing Method per Dataset 91

6.5.2 Consistent Findings Across Datasets 92

6.5.3 Dataset-Specific Insights . 93

6.6 Key Findings and Research Contributions 94

6.6.1 Core Empirical Contributions . 94

6.6.2 Practical Implications and Recommendations 96

6.6.3 Limitations and Future Work . 97

7 Conclusion 99

Bibliography 101

Abbreviations 105

Glossary 107

List of Figures 108

List of Tables 111

A Supplementary Figures for Chapter 6 115

A.1 NYU V2 Supplementary Analyses . 115

A.2 Cross-Dataset Supplementary Summary 115

A.3 Representative Learning Curves . 115

xii CONTENTS

Chapter 1

Introduction

Federated learning enables collaborative model training across distributed data sources
while keeping data local [1]. In its canonical form, a central server coordinates training
rounds and aggregates client updates. This design is e”ective, yet it also encodes as-
sumptions that can break in practice. A server becomes a single point of failure and a
coordination bottleneck, and it concentrates privacy and security risk by observing the
stream of client communications [2]. Moreover, the centralized formulation typically pre-
sumes a shared objective, whereas real deployments often involve heterogeneous goals:
di”erent institutions, devices, or users may optimize di”erent tasks and metrics, even
when operating in related domains.

Three gaps motivate the focus of this thesis. First, reliance on trusted central coordination
is increasingly mismatched with settings where ownership and governance are distributed
and a server may be infeasible or undesirable. Second, task heterogeneity is not an edge
case; it requires collaboration mechanisms that selectively share useful information rather
than enforcing uniform aggregation. Third, much of the federated learning literature em-
phasizes classification, leaving open how these ideas transfer to dense prediction problems
with structured outputs and di”erent stability characteristics.

Decentralized federated learning addresses the coordination bottleneck by replacing server
orchestration with peer-to-peer communication [3], [4]. Removing the server improves re-
silience and avoids a single aggregation authority, but it also changes what information is
available at decision time. In particular, clients lose global visibility into the system-wide
task distribution and cannot rely on server-side clustering or centralized task relationship
estimation as in prior heterogeneous methods [5], [6]. Enabling multi-task collaboration
in a fully decentralized network therefore requires autonomous estimation of task relat-
edness from local observations, decentralized partner selection, and convergence despite
heterogeneous collaboration policies across clients.

Dense prediction tasks make these challenges more pronounced. Problems such as depth
estimation and semantic segmentation require per-pixel outputs [7], [8], typically involv-
ing heavier prediction heads and optimization behaviors that can be more sensitive to
aggregation-induced instability. In addition, task relationships in dense prediction often
reflect geometric and semantic couplings that vary across datasets, making it risky to

1

2 CHAPTER 1. INTRODUCTION

extrapolate conclusions from classification-only evidence. These considerations motivate
studying decentralized federated multi-task learning directly in dense prediction settings
and validating conclusions across datasets with di”erent correlation structures.

1.1 Research Objectives

The primary objective of this thesis is to develop optimization methods for Decentralized
Federated Multitask Learning (DFMTL) that enable dynamic task clustering and im-
proved model aggregation in fully decentralized and heterogeneous settings. Concretely,
the framework is designed to allow nodes to identify implicit task similarities from model
representations or training behaviors (e.g., gradient alignment and loss dynamics), and
to self-organize into collaboration clusters in a fully distributed manner. Within each
cluster, aggregation is expected to promote fast convergence and task alignment, while
inter-cluster regularization is incorporated to preserve broader knowledge sharing across
tasks.

Beyond algorithmic design, the thesis targets a practical and reusable system realization:
the implementation is required to be modular and extensible, supporting decentralized
training, dynamic clustering, and adaptive aggregation over arbitrary network topolo-
gies, with configurable task distributions, communication patterns, and aggregation rules.
Finally, the framework is evaluated empirically under diverse simulated conditions, em-
phasizing task-specific performance, convergence behavior, clustering quality, communi-
cation e!ciency, and resilience to network variability, including varying degrees of task
heterogeneity, dynamic graph connectivity, and asynchronous updates, and benchmarking
against relevant static DFMTL and homogeneous decentralized baselines.

1.2 Research Contributions

This thesis provides a complete, reproducible study of decentralized federated multi-
task learning under heterogeneous objectives. A server-free peer-to-peer framework is
presented that extends prior server-mediated formulations [9] to decentralized operation
through independent neighbor selection and aggregation. Multiple task similarity signals
for decentralized relationship discovery are proposed and evaluated, and gradient-only co-
sine similarity is identified as an e”ective and simple default relative to mixed alternatives.
A key practical barrier is also addressed: numerical instability in conflict-aware aggrega-
tion [10]. The resulting stabilization mechanisms, together with documented failure cases,
clarify safe operating regimes and provide actionable guidance. Through cross-dataset val-
idation, two empirical conclusions recur across settings: aggregation scope should depend
on task correlation (selective sharing can help when tasks are strongly aligned, while
weakly correlated settings often require broader sharing for stability), and pairwise task
assignment with asymmetric weighting is a robust collaboration pattern for dense predic-
tion.

1.3. CODE AND REPRODUCIBILITY 3

1.3 Code and Reproducibility

All implementations and experimental configurations are released to support reproducibil-
ity:

https://github.com/xichen0257/asfdfmtl

The repository contains configuration-driven experiment specifications (45+ YAML files),
training scripts for classification and dense prediction, dataset-specific data pipelines, and
documentation of stabilization mechanisms and instructions to reproduce the experiments
in Chapter 6.

1.4 Thesis Organization

The remainder of this thesis proceeds through six chapters. Chapter 2 introduces cen-
tralized and decentralized federated learning, multi-task learning for dense prediction,
the three validation datasets, and the problem formulation used throughout the thesis.
Chapter 3 surveys federated learning under heterogeneity, task relationship discovery, ag-
gregation strategies, and decentralized architectures, and identifies the gap addressed by
this work. Chapter 4 presents the proposed framework, including task similarity esti-
mation, aggregation mechanisms, aggregation scope design, stabilization techniques, and
e!ciency considerations. Chapter 5 describes the software architecture and configuration-
driven workflow supporting systematic experimentation. Chapter 6 reports results across
CIFAR-10, NYU Depth V2, and Pascal Context, and synthesizes cross-dataset patterns
and failure modes. Finally, Chapter 7 summarizes the contributions, discusses implica-
tions and limitations, and outlines directions for future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter establishes the foundational concepts necessary to understand the proposed
decentralized federated multi-task learning framework. Section 2.1 introduces federated
learning, contrasting centralized and decentralized architectures. Section 2.2 explains
multi-task learning for dense prediction tasks. Section 2.3 describes the three validation
datasets. Section 2.4 formalizes federated multi-task learning and motivates the transition
to decentralized settings.

2.1 Federated Learning Fundamentals

Federated Learning (FL) enables collaborative model training across distributed clients
without centralizing raw data [1]. Model parameters are learned through iterative aggre-
gation of local gradient-based updates, eliminating the need to transmit sensitive training
data to a central location. This section contrasts centralized and decentralized FL archi-
tectures, motivating the architectural choices in this thesis.

2.1.1 Centralized Federated Learning

In centralized federated learning, a central server orchestrates training across N dis-
tributed clients. The Federated Averaging (FedAvg) algorithm [1] proceeds in iterative
rounds: the server initializes global model parameters w(0)

→ Rd and broadcasts them to
clients. Each client i performs local training on private dataset Di = {(xj, yj)}

ni
j=1

for E

epochs using stochastic gradient descent, producing updated parameters w(t+1)

i
. The ra-

tionale for multiple local epochs before synchronization is communication e!ciency: each
round incurs significant latency and bandwidth costs [11]. Clients transmit updates to
the server, which performs weighted aggregation:

w(t+1) = w(t) +
N∑

i=1

ni

n
#w(t)

i
(2.1)

5

6 CHAPTER 2. BACKGROUND

where ni = |Di| and n =
∑

N

i=1
ni. This weighting ensures larger datasets exert propor-

tionally greater influence, justified when data distributions are IID [12].

Centralized FL achieves privacy preservation (raw data never leaves clients) and commu-
nication e!ciency (reduced synchronization frequency). However, it introduces critical
limitations. The central server represents a single point of failure: hardware failures or
network partitions halt training indefinitely. The server observes all communications,
creating privacy vulnerabilities—gradient inversion attacks [2] can reconstruct training
examples from gradients. Additionally, scaling to thousands of clients creates communi-
cation bottlenecks as the server handles O(N) concurrent connections per round.

2.1.2 Decentralized Federated Learning

Decentralized Federated Learning (DFL) addresses these limitations by eliminating the
central server, enabling direct peer-to-peer communication [13], [14]. The rationale is
threefold: removing the single point of failure improves resilience, fragmenting commu-
nications enhances privacy, and distributing coordination eliminates bottlenecks. The
network is formalized as graph G = (V , E) where vertices V = {1, . . . , N} represent clients

and edges E encode communication links. Each client i maintains local parameters w(t)

i

and communicates with neighbors Ni = {j → V : (i, j) → E}.

Training proceeds through local optimization, neighbor communication, and decentralized
aggregation:

w(t+1)

i
=

∑

j→Ni↑{i}

aijw
(t)

j
(2.2)

where aggregation weights {aij} satisfy
∑

j→Ni↑{i} aij = 1 for stability. Network topology
G influences convergence speed and communication costs, as visualized in Figure 2.1. Ring
topology (degree 2) minimizes overhead but has diameter O(N), causing slow consensus.
Fully connected topology (degree N↑1) achieves unit diameter but requires O(N2) links.
Random topology with budget k balances these extremes, achieving diameter O(logN)
with bounded per-client costs [15].

c1

c2c3

c4

c5 c6

Ring
Degree: 2, Diameter: O(N)

c1

c2c3

c4

c5 c6

Fully Connected
Degree: N ↑ 1, Diameter: 1

c1

c2c3

c4

c5 c6

Random (k = 2)
Degree: k, Diameter: O(logN)

Figure 2.1: Comparison of decentralized network topologies G = (V , E). Ring topology
minimizes per-client communication overhead at the cost of slow consensus (O(N) diam-
eter). Fully connected topology achieves fastest convergence (unit diameter) but requires
O(N2) total connections. Random topology with communication budget k provides a
practical balance, achieving O(logN) diameter with bounded per-client degree [15].

2.2. MULTI-TASK LEARNING IN COMPUTER VISION 7

Decentralized architectures eliminate single points of failure, fragment the global view
across clients (enhancing privacy), and distribute network load. However, they introduce
new challenges: clients must make aggregation decisions autonomously without global
knowledge of task distributions, achieve consensus through purely local interactions un-
der heterogeneous objectives, and select appropriate topologies without centralized coor-
dination. This thesis addresses these challenges for multi-task learning, where selective
aggregation becomes critical to avoid negative transfer.

2.2 Multi-Task Learning in Computer Vision

Multi-Task Learning (MTL) simultaneously optimizes multiple related tasks using shared
representations to improve generalization beyond task-specific models [16], [17]. The hy-
pothesis is that related tasks share common structure, and joint training provides induc-
tive bias improving sample e!ciency. This section focuses on MTL for dense prediction,
where pixel-level outputs create unique challenges for federated settings.

2.2.1 Dense Prediction Tasks

Dense prediction tasks generate structured outputs where each spatial location receives
an independent prediction, unlike classification which produces single labels. This spatial
preservation constrains architectures to maintain high-resolution features or implement
sophisticated upsampling. This thesis employs five dense prediction tasks:

Semantic segmentation assigns class labels to every pixel. For image I → RH↓W↓3,
output is Yseg → {1, . . . , Cseg}

H↓W . Evaluation uses mean IoU: IoUc = TPc
TPc+FPc+FNc

.

Depth estimation predicts distance from camera, producing Ydepth → RH↓W with metric

or relative depth. Evaluation uses RMSE and threshold accuracy max(Ŷ
Y
, Y
Ŷ
) < ω for

ω → {1.25, 1.252, 1.253}. Surface normal prediction estimates 3D orientation at each pixel:
Ynormal → RH↓W↓3 with unit vectors (nx, ny, nz) → S2. Evaluation uses mean angular error.
Edge detection produces binary classification Yedge → {0, 1}H↓W identifying boundaries,
evaluated with F-measure (ODS-F). Human parts segmentation labels body parts when
humans present: Yparts → {0, 1, . . . , Cparts}

H↓W .

These tasks exhibit varying correlation. Depth and normals are geometrically linked:

n(u, v) =
(↔ ωz

ωu ,↔
ωz
ωv ,1)

↗·↗ . Depth discontinuities produce normal changes, creating strong
correlation. Semantic boundaries often align with depth edges as distinct objects occupy
separate spatial regions. However, correlations are not universal: edge detection responds
to texture boundaries unrelated to semantics, and human parts applies only to subsets of
images.

8 CHAPTER 2. BACKGROUND

2.2.2 Task Interference and Negative Transfer

When tasks share structure, MTL achieves positive transfer [18]: shared representations
from one task provide useful inductive bias for related tasks. However, unrelated or
conflicting tasks cause negative transfer [19], degrading performance relative to single-task
training. The mechanism is gradient conflicts in shared parameters. Consider model with
shared backbone εs → Rds and task-specific parameters εt1 , εt2 . Losses Lt1 ,Lt2 produce
gradients g1 = ↓ωsLt1 and g2 = ↓ωsLt2 . When ↔g1, g2↗ < 0, they oppose: improving one
task degrades the other.

The combined gradient is:

gcombined = ϑ1↓ωsLt1 + ϑ2↓ωsLt2 (2.3)

where ϑ1,ϑ2 → R+ are task weights. Conflicts produce compromise directions satisfying
neither task optimally. When ϑ1g1 ↘ ↑ϑ2g2, gradients cancel (≃gcombined≃ ↘ 0), causing
stagnation.

Approaches addressing conflicts include task weighting (GradNorm [20], uncertainty weight-
ing [21]), gradient manipulation (PCGrad [22] projects conflicting gradients), and archi-
tectural partitioning (hard parameter sharing [23], attention mechanisms [24]). This thesis
adopts hard parameter sharing with adaptive aggregation scope. The rationale is three-
fold: parameter e!ciency critical in federated settings (communication costs scale with
model size), explicit separation enables selective aggregation (clients choose which com-
ponents to share), and empirical success in dense prediction [24]. The contribution is
transforming aggregation scope from fixed architectural choice into dynamic, data-driven
decision.

2.3 Datasets for Multi-Task Dense Prediction

This thesis validates the framework on three datasets spanning simple classification (CIFAR-
10) to strongly correlated dense prediction (NYU Depth V2) to weakly correlated dense
prediction (Pascal Context), enabling systematic investigation of how task relationships
influence decentralized aggregation. Table 2.1 summarizes the key characteristics of these
datasets.

2.3.1 CIFAR-10

CIFAR-10 [25] comprises 60,000 images at 32 ⇐ 32 resolution across ten classes (air-
plane, automobile, bird, cat, deer, dog, frog, horse, ship, truck), split into 50,000 training
and 10,000 test images. This thesis inherits CIFAR-10 from Kohler’s centralized frame-
work [26], inducing task heterogeneity by assigning class subsets (e.g., animals vs vehicles).

While not dense prediction, CIFAR-10 serves three purposes: validating that decentraliza-
tion replicates centralized performance (no degradation from removing server), enabling

2.3. DATASETS FOR MULTI-TASK DENSE PREDICTION 9

Table 2.1: Comparison of validation datasets for decentralized FMTL.

Dataset Domain Tasks Samples Task Correlation

CIFAR-10 Classification 1 (10 classes)
50k train /
10k test

N/A (baseline, class-
subset heterogeneity)

NYU Depth V2 Indoor scenes
3: Depth,
Normal, Seg

1,449
RGB-D pairs

Strong (geometric cou-
pling: depth ⇒ normals,
semantic ⇒ depth edges)

Pascal Context Outdoor scenes
3: Seg,
Parts, Edge

4,998 train /
5,105 val

Weak (partial correlation:
edges ⇑⇓ semantics, parts
only for humans)

rapid prototyping on computationally e!cient images, and bridging prior work to novel
contributions. However, small image size constrains representation complexity, and cat-
egorical heterogeneity di”ers from geometric/semantic heterogeneity in dense prediction.
Core contributions rest on dense prediction datasets.

2.3.2 NYU Depth V2

NYU Depth V2 [7] comprises 1,449 RGB-D image pairs of indoor scenes at 640 ⇐ 480
resolution. The dataset provides three tasks exhibiting strong geometric coupling: depth
estimation (metric depth from Kinect sensors, range 0.5-10m), surface normal prediction
(derived from depth via local surface fitting, creating intrinsic correlation), and semantic
segmentation (13 indoor categories: bed, books, ceiling, chair, floor, furniture, objects,
picture, sofa, table, TV, wall, window).

Tasks exhibit strong correlation through multiple mechanisms. Depth discontinuities im-
ply normal changes: sudden transitions from nearby objects to distant walls correspond
to dramatically di”erent orientations. Semantic boundaries align with depth edges as
distinct objects occupy separate spatial regions. Indoor scenes have strong geometric
structure: horizontal floors, vertical walls, characteristic furniture shapes producing pre-
dictable depth-normal relationships. This creates positive transfer opportunities: depth
features (detecting planes, discontinuities) benefit segmentation (planes often correspond
to single classes), and semantic information provides geometric priors (floor label implies
horizontal orientation, consistent depth).

The rationale for NYU Depth V2 is twofold: strong correlation makes it ideal for test-
ing whether decentralized FMTL leverages complementary information without central-
ized coordination (centralized MTL shows joint training substantially outperforms single-
task [24], [27]), and this provides the first application of decentralized FMTL to NYU
Depth V2. Dense prediction introduces unique federated challenges: pixel-level labels cre-
ate larger gradients (exacerbating communication and stability), multi-scale architectures
complicate sharing decisions, and strong correlations create cooperation opportunities but
also negative transfer risks.

10 CHAPTER 2. BACKGROUND

2.3.3 Pascal Context

Pascal Context [8] extends PASCAL VOC with dense annotations for 59 semantic cate-
gories plus background, comprising 4,998 training and 5,105 validation images of diverse
outdoor scenes. This thesis employs three weakly correlated tasks: semantic segmentation
(59 classes: objects like person, car, bicycle; stu” like sky, grass, road), human parts seg-
mentation (8 body parts: head, torso, upper/lower arms/legs, hands, feet; conditionally
defined, meaningful only for pixels depicting humans), and edge detection (binary classi-
fication of boundaries, derived from semantic boundaries plus low-level texture/lighting
edges).

Tasks exhibit weak correlation, creating fundamentally di”erent scenarios. Edge detection
responds to intensity gradients and texture discontinuities which may not align with se-
mantic boundaries (brown dog on brown dirt produces weak edges; zebra stripes produce
texture edges irrelevant to segmentation). Human parts applies only to image subsets
containing people (40-50%), providing no information for scenes without humans. When
humans present, parts require articulated pose reasoning orthogonal to general segmen-
tation or edges.

This weak correlation tests whether decentralized FMTL handles scenarios where tasks
provide limited mutual benefit and forced collaboration may induce negative transfer.
The rationale is providing a challenging, realistic test case. This is the first application of
decentralized FMTL to Pascal Context [28]. Real-world deployments will involve clients
with partially related or unrelated tasks; systems must handle this heterogeneity without
catastrophic negative transfer.

Combining NYU Depth V2 (strong correlation) and Pascal Context (weak correlation)
enables controlled investigation of how task relationship strength influences aggregation
strategies. Cross-dataset validation provides evidence that observed phenomena represent
general properties rather than dataset-specific artifacts.

2.4 Federated Multi-Task Learning (FMTL)

Federated Multi-Task Learning extends federated learning to scenarios where clients op-
timize di”erent but potentially related tasks, combining FL’s privacy and communication
benefits with MTL’s representation sharing [5]. This section formalizes FMTL, discusses
architectural choices, reviews personalization techniques, and motivates decentralization.

2.4.1 Problem Formulation

Consider a federated network with N clients where each client i → {1, . . . , N} is associated
with task ti from task set T = {1, . . . , T}. Task assignment ϖ : {1, . . . , N} ⇔ T maps
clients to tasks. Client i has private dataset Di = {(xj, y

ti
j
)}ni

j=1
where inputs xj → X

2.4. FEDERATED MULTI-TASK LEARNING (FMTL) 11

lie in common space (e.g., X = RH↓W↓3 for images) and outputs yti
j
→ Yti lie in task-

specific spaces. The critical distinction from standard FL is that output spaces Yt and
loss functions ϱt : Yt ⇐ Yt ⇔ R+ di”er across tasks, preventing direct model averaging.

In personalized FMTL, the objective is learning client-specific models minimizing local
empirical risks:

min
w1,...,wN

N∑

i=1

Li(wi;Di) = min
w1,...,wN

N∑

i=1

1

ni

∑

(x,y)→Di

ϱti(f(x;wi), y) (2.4)

where f(·;wi) : X ⇔ Yti is the model’s forward pass. Pure local training solves this
independently per client: w↘

i
= argminw Li(w;Di), guaranteeing no negative transfer but

failing to exploit positive transfer from related tasks.

FMTL improves through selective collaboration: clients with related tasks share informa-
tion while unrelated tasks avoid interference. Collaboration is implemented via aggrega-
tion where client i incorporates information from subset Ci ↖ {1, . . . , N} \ {i}:

w(t+1)

i
= Aggregate(w(t)

i
, {w(t)

j
}j→Ci ; {ςij}j→Ci) (2.5)

where {ςij} are weights reflecting estimated benefit. The challenge is determining Ci and
{ςij} to maximize positive transfer while minimizing negative transfer, particularly in
decentralized settings lacking global knowledge.

2.4.2 Hard Parameter Sharing Architecture

This thesis employs hard parameter sharing [23], decomposing models into shared back-
bone εs → Rds (feature extraction layers: CNNs like ResNet, or vision transformers) and
task-specific heads {εt}t→T (specializing features for task outputs). The backbone produces
intermediate features φ(x; εs) → Rdfeat encoding edges, textures, object parts, high-level
concepts. Heads receive shared features and specialize for outputs: segmentation heads
upsample features and produce Cseg logits per pixel, depth heads produce single continu-
ous values through sigmoid/softplus ensuring positivity, normal heads output three values
followed by L2 normalization enforcing ≃n≃2 = 1.

For client i with task ti, model parameterization is wi = (εs, εti), as illustrated in
Figure 2.2. Forward: input x is processed by backbone φ(x; εs), then head produces
f(x;wi) = hti(φ(x; εs); εti). Backward: loss Li produces gradients ↓ωti

Li and ↓ωsLi.
Critically, heads receive gradients only from respective tasks while backbones receive gra-
dients from all tasks, making εs the locus of multi-task interaction and potential conflicts.

The rationale for hard sharing: parameter e!ciency (backbone 11M parameters, heads
<1M each; shared backbone reduces total by factor T), natural transfer learning (features
learned from one task immediately available to others), and architectural flexibility (clients
aggregate only backbone, only heads, or both, tailoring strategies to task relationships).

12 CHAPTER 2. BACKGROUND

Multi-task Architecture & Gradient Flow

Input Image xH ⇐W ⇐ 3

Shared Backbone fωs(e.g., ResNet-18, ↙11M params)Feature map ε(x) → Rd

Normal HeadωnormalDepth Headωdepth Seg Headωseg

Output Ydepth Output Ynormal Output Yseg

→L1

Multi-task
Gradient

Summation

Backbone Scope

Figure 2.2: Detailed hard parameter sharing architecture. The backbone εs serves as the
shared representation learner receiving joint gradients, while task-specific heads specialize
in individual objectives. This visual separation justifies our flexible aggregation scopes
(Backbone-only vs. Full-model).

2.4.3 Personalization and the Transition to Decentralized FMTL

Existing personalization techniques handle heterogeneous objectives di”erently, as sum-
marized in Table 2.2. FedPer [29] fixes heads locally and aggregates only backbones,
preventing head interference while enabling feature collaboration. However, it assumes
fixed split between shared/personal layers and uniform backbone aggregation. FedRep [30]
decouples optimization: alternating representation learning (backbone with frozen heads)
and personalization (heads with frozen backbone), ensuring aggregated updates reflect
feature learning. MOCHA [5] formulates FMTL as distributed optimization with task
covariance matrix $ → RT↓T quantifying task similarity, deriving communication-e!cient
rules with convergence guarantees. However, MOCHA requires centralized servers com-
puting $ using global information.

Traditional FMTL methods [5], [29] rely on centralized servers for four functions: collect-
ing updates from all clients, computing global task relationships via clustering/covariance,
deciding aggregation strategies, and broadcasting aggregated models. These become in-
feasible in fully decentralized peer-to-peer networks where no single entity observes all
clients. This necessitates three core capabilities absent in centralized FMTL.

Local similarity computation must replace global clustering. Each client autonomously
estimates task relatedness to neighbors without global statistics, aggregate loss curves, or
centralized metadata. Clients observe only neighbor-communicated information (parame-
ters, gradients, auxiliary statistics) and infer compatibility from limited observations. The

2.4. FEDERATED MULTI-TASK LEARNING (FMTL) 13

Table 2.2: Comparison of FMTL personalization approaches.

Method Aggregation
Strategy

Architecture Key Characteristics / Limitations

FedPer Aggregate backbone
only; heads remain
local

Fixed split
(backbone
shared, heads
personal)

Fixed scope; uniform aggregation; cen-
tralized

FedRep Decoupled
optimization
(backbone/head
alternation)

Fixed split with
temporal
decoupling

Fixed scope; centralized coordinator

MOCHA Task covariance
matrix ! guides
aggregation

Flexible;
requires task
relationship
matrix

High overhead; requires centralized
computation of !

This Thesis Adaptive scope
(backbone/head-
s/both) + similarity
weights

Dynamic,
data-driven
decisions

Fully decentralized (local similarity
computation)

rationale is that without global knowledge, clients require principled methods for iden-
tifying beneficial partners based solely on local interactions. Chapter 4 develops three
metrics: gradient-based cosine similarity (leveraging optimization direction alignment),
task overlap similarity (exploiting known task weights when clients train multiple tasks),
and cross-loss similarity (directly measuring prediction quality by evaluating neighbors’
models on local validation data).

Autonomous aggregation decisions must replace centralized coordination. Each client
independently chooses which neighbors to incorporate, what weights to assign, and which
components (backbone, heads, both) to aggregate, without knowledge of global topol-
ogy, total client count, or aggregate training dynamics. Clients balance exploration (try-
ing diverse neighbors to discover collaborations) against exploitation (focusing on known
beneficial neighbors), adapting as training progresses. The rationale is that decentralized
systems by definition lack central coordination, requiring clients to act as independent
agents optimizing local objectives while respecting distributed nature.

Convergence without consensus becomes a theoretical requirement. Unlike centralized
FL where servers enforce consensus by broadcasting single global models, decentralized
clients may converge to di”erent models tailored to respective tasks. Even when clients
make heterogeneous aggregation choices (client A aggregates with B and C; client D
aggregates with E and F), training must remain stable and each client must converge
to performant solutions. This requires numerical stability mechanisms preventing gra-
dient explosion or NaN propagation, especially when employing sophisticated methods
like Hyper Conflict-Averse aggregation. The rationale is that decentralized settings lack

14 CHAPTER 2. BACKGROUND

centralized normalization and gradient clipping, making numerical issues more severe and
requiring local safeguards.

This thesis extends FedPer in three dimensions: aggregation scope becomes adaptive
(clients dynamically decide backbone-only, heads-only, or full aggregation based on esti-
mated similarity), aggregation weights become similarity-based (weighting neighbors by
compatibility rather than uniform averaging), and the framework transitions to decentral-
ized (clients perform similarity computation, scope decisions, and weighted aggregation
autonomously using only local information and neighbor communications). These ex-
tensions transform static, centralized, uniform aggregation into dynamic, decentralized,
selective aggregation capable of handling diverse task relationships without central coor-
dination. Chapter 4 presents technical mechanisms enabling this transition, Chapter 5
describes software realization, and Chapter 6 validates e”ectiveness on the three datasets.

Chapter 3

Related Work

This chapter reviews prior work through the lens of the four core challenges identified in
Chapter 2: task heterogeneity, unknown task relationships, negative transfer under ag-
gregation, and decentralization constraints. Rather than providing an exhaustive survey,
the organization follows the problem hierarchy established in Chapter 2, emphasizing how
existing work addresses subsets of these challenges.

Section 3.1 examines federated learning approaches that accommodate heterogeneous
client objectives, distinguishing personalization methods from explicit multi-task formu-
lations. Section 3.2 surveys techniques for discovering task relationships, progressing
from centralized methods with unrestricted data access to federated clustering approaches
that infer relationships through limited communication. Section 4.4 reviews aggregation
mechanisms, contrasting task-agnostic averaging with conflict-aware methods designed to
mitigate negative transfer. Section 3.4 discusses decentralized federated learning architec-
tures that eliminate central coordination through peer-to-peer communication. Finally,
Section 3.5 identifies the specific research gap addressed by this thesis and positions our
contributions relative to the most closely related prior work, particularly Nicolas Kohler’s
centralized federated multi-task learning framework.

3.1 Federated Learning under Task Heterogeneity

Federated learning with heterogeneous client objectives—where clients optimize di”erent
loss functions corresponding to distinct learning tasks—requires mechanisms to balance
collaboration against interference. This section distinguishes two paradigms: personalized
federated learning, which adapts a shared global model to client-specific data characteris-
tics while maintaining a common task objective, and federated multi-task learning, which
explicitly handles scenarios where clients optimize fundamentally di”erent tasks. Both
paradigms address the task heterogeneity challenge identified in Chapter 2, but di”er in
their formulation and architectural assumptions.

15

16 CHAPTER 3. RELATED WORK

3.1.1 Personalized Federated Learning

Personalized federated learning addresses statistical heterogeneity—clients possessing non-
IID data distributions despite optimizing a common objective—through client-specific
model adaptation. These methods typically assume task homogeneity at the objective
level (all clients solve the same problem type) but accommodate distribution shifts across
clients.

Arivazhagan et al. [29] proposed Federated Personalization (FedPer), introducing a sim-
ple yet e”ective architectural separation between shared and personalized components.
FedPer partitions models into base layers (shared and aggregated globally) and head lay-
ers (task-specific and kept local). The rationale rests on the hypothesis that early network
layers learn generic feature representations beneficial across tasks while later layers encode
task-specific decision boundaries. By aggregating only base layers, FedPer prevents inter-
ference in task-specific components while enabling low-level feature sharing. However, the
method employs a fixed architectural split point (typically after the penultimate layer)
without adapting to task relationship strength. All clients aggregate the same base layers
uniformly regardless of whether their tasks are strongly correlated (warranting extensive
sharing) or weakly correlated (requiring minimal sharing). This thesis extends FedPer’s
principle by introducing adaptive aggregation scope selection, where clients dynamically
choose between backbone-only aggregation and full model aggregation based on measured
task similarity.

T. Dinh et al. [31] developed personalized Federated Learning through Moreau Envelopes
(pFedMe), formulating personalization as a bi-level optimization problem. Each client
maintains a personalized model optimized for local performance while regularized toward
a global consensus model through a Moreau envelope term. The regularization strength
hyperparameter ϑ controls the trade-o” between personalization (capturing client-specific
patterns) and collaboration (leveraging global knowledge). Theoretically, pFedMe pro-
vides convergence guarantees and Pareto-optimal personalization-collaboration balance
under certain smoothness conditions. However, the method applies uniform regulariza-
tion strength across all clients without considering which clients have related tasks that
warrant strong collaboration versus unrelated tasks requiring isolation. A task-aware ex-
tension would assign heterogeneous ϑ values based on pairwise task similarity, an avenue
unexplored in the original work.

Li et al. [32] proposed Ditto, separating personalized and global models into distinct
parameter vectors optimized through alternating minimization. Each client maintains
two models: a personalized model wpers

i
optimized for local validation performance and a

global model wglob

i
regularized toward the federated average. This architectural separation

provides flexibility for heterogeneous clients but doubles memory requirements and does
not explicitly model task relationships beyond the implicit coupling through regulariza-
tion. The method remains agnostic to which clients should collaborate, treating all client
pairs symmetrically.

These personalization methods improve performance under data heterogeneity but fun-
damentally assume task homogeneity—all clients optimize the same objective function.

3.1. FEDERATED LEARNING UNDER TASK HETEROGENEITY 17

They do not address the scenario of explicit task heterogeneity where clients optimize fun-
damentally di”erent objectives, such as depth estimation versus semantic segmentation,
which requires explicit multi-task formulations.

3.1.2 Federated Multi-Task Learning

Federated multi-task learning explicitly addresses scenarios where clients optimize dis-
tinct objective functions corresponding to di”erent learning tasks. Unlike personalization
methods that adapt a common model to local data distributions, federated MTL formu-
lations recognize that clients may have fundamentally di”erent loss functions and must
balance task-specific optimization against cross-task knowledge transfer.

Smith et al. [5] formulated federated multi-task learning as distributed optimization of
related but distinct client objectives, introducing MOCHA (Multi-Task Optimization for
Communication-E!cient Heterogeneous Aggregation). The method assumes task rela-
tionships manifest as shared low-dimensional subspace structure in the parameter space—
related tasks have optimal parameters residing near a common subspace while diverging
in orthogonal directions to capture task-specific variations. MOCHA employs alternating
optimization to jointly learn the shared subspace and task-specific parameters, providing
theoretical convergence guarantees under convexity assumptions. While elegant in formu-
lation, MOCHA requires centralized coordination for subspace estimation through singu-
lar value decomposition of the client parameter matrix, and the convexity assumptions
limit applicability to modern deep learning with non-convex objectives. Furthermore, the
method does not extend to decentralized topologies where no central entity can collect
the full client parameter matrix.

Recent advances in federated multi-task learning have explored heterogeneous client ar-
chitectures [33], graph-based selective collaboration [34], subspace decoupling for unified
modeling [35], and adaptive clustering frameworks [36]. Despite these contributions, a
fundamental gap persists. Existing federated multi-task methods follow one of three
paradigms, each with critical limitations. First, methods like MOCHA require centralized
coordination for subspace computation or similarity matrix aggregation, contradicting
decentralized architecture goals. Second, methods like FedPer and pFedMe apply uni-
form collaboration policies to all clients without task-aware selection—every client aggre-
gates the same information from the same sources regardless of task relatedness. Third,
personalization-focused methods like Ditto emphasize the personalization-collaboration
trade-o” but do not address the task relationship discovery problem, failing to identify
which clients should collaborate preferentially. None of these paradigms address the core
challenge of decentralized dynamic task relationship discovery, where clients autonomously
identify beneficial collaboration partners in peer-to-peer networks through local computa-
tion and neighbor communication, without centralized orchestration or global knowledge
aggregation.

18 CHAPTER 3. RELATED WORK

3.2 Learning Task Relationships in Federated Learning

As discussed in Chapter 2, the e”ectiveness of multi-task learning critically depends on
task relatedness, which is typically unknown in federated settings. Existing work has
therefore explored mechanisms for approximating task relationships using observable sig-
nals such as data statistics, model updates, or gradients. Among these approaches,
clustering-based methods represent a practical proxy for task relationship discovery, rather
than an explicit modeling of task semantics.

3.2.1 Centralized Task Relationship Learning

Centralized multi-task learning assumes collocation of all task datasets, enabling direct
empirical measurement of task relationships through transfer learning experiments or joint
training analysis. This privileged setting provides theoretical and algorithmic insights that
inform federated extensions, despite the fundamental architectural di”erences.

Zamir et al. [27] developed Taskonomy, a computational framework for systematic discov-
ery of task relationships in computer vision. The methodology trains task-specific models
on a large-scale indoor scene dataset, then measures transferability by fine-tuning models
pretrained on one task (source) to perform another task (target), quantifying transfer
e”ectiveness through downstream task performance improvement. The resulting task
a!nity matrix reveals hierarchical structure: geometric tasks including depth estimation,
surface normal prediction, and edge detection exhibit strong positive transfer, sharing low-
level geometric feature representations, while semantic tasks such as object detection and
scene classification form a separate cluster requiring distinct mid-level feature encodings.
This empirical validation of task correlation structure motivates this thesis’s experimental
design, which evaluates decentralized FMTL on both strongly correlated task sets (NYU
Depth V2 with depth, normals, segmentation) and weakly correlated task sets (Pascal
Context with segmentation, human parts, edges) to assess how task relationship strength
a”ects collaboration e”ectiveness.

Liu et al. [24] introduced Multi-Task Attention Networks (MTAN), employing attention
mechanisms to enable task-specific feature routing within shared backbone networks. Each
task learns soft attention masks applied to shared convolutional feature maps, selectively
amplifying relevant channels while suppressing uninformative or conflicting channels. The
rationale for attention-based selection stems from the hypothesis that di”erent tasks uti-
lize di”erent subsets of the shared representation—depth estimation may rely heavily
on texture gradients while segmentation prioritizes semantic context. MTAN achieved
state-of-the-art results on NYU Depth V2 and CityScapes benchmarks, demonstrating
that selective feature modulation reduces negative transfer compared to hard parameter
sharing. However, the method assumes joint training with access to all task data simul-
taneously, precluding direct application to federated settings where task datasets remain
distributed across clients.

Chen et al. [20] proposed GradNorm, addressing the distinct but related problem of
balancing training dynamics across multiple tasks in joint optimization. When tasks

3.2. LEARNING TASK RELATIONSHIPS IN FEDERATED LEARNING 19

exhibit di”erent learning rates or loss scales, dominant tasks overwhelm shared parameters
while minority tasks stagnate. GradNorm dynamically adjusts per-task loss weights to
equalize gradient magnitudes across tasks, preventing any single task from monopolizing
representational capacity. The method achieves improved balanced performance across
tasks compared to uniform weighting. However, GradNorm does not address the task
relationship discovery problem—it assumes all tasks share parameters and focuses on
balancing their contributions rather than identifying which tasks should collaborate versus
remain isolated.

Zamir et al. [37] extended task relationship exploitation through cross-task consistency
losses that penalize disagreements between task predictions when geometric or seman-
tic constraints dictate alignment. For instance, depth discontinuities should align with
semantic segmentation boundaries, as both reflect object edges. Enforcing consistency
through auxiliary losses encourages tasks to produce mutually coherent predictions, im-
proving individual task performance beyond independent training. This approach ef-
fectively leverages known task relationships but requires domain-specific engineering of
consistency constraints, limiting generalization to novel task combinations where rela-
tionships are unknown a priori.

These centralized methods provide foundational insights into task relationship structure
and exploitation mechanisms. However, the assumption of centralized data access fun-
damentally contradicts federated learning’s privacy-preservation mandate. The challenge
for federated multi-task learning lies in discovering and leveraging task relationships using
only information available through privacy-preserving communication protocols—namely,
model parameters, gradients, or aggregate statistics—without direct access to raw client
data.

3.2.2 Clustered Federated Learning

The fundamental challenge of statistical heterogeneity in federated learning arises when
clients possess data drawn from di”erent underlying distributions, rendering global model
convergence suboptimal or impossible under standard averaging protocols. Clustered fed-
erated learning addresses this heterogeneity by partitioning the client population into
groups exhibiting similar data characteristics, thereby enabling specialized models to
emerge within each cluster while maintaining the federated paradigm’s privacy guar-
antees. The rationale for clustering stems from the observation that averaging model
updates from clients with divergent data distributions produces a compromise model that
performs poorly across all clients—a phenomenon formally characterized as negative trans-
fer in multi-task learning literature. This section distinguishes between hard clustering
approaches, which enforce disjoint client partitions, and soft clustering methods, which
permit weighted participation across multiple clusters.

Hard clustering methods impose a bijective mapping from clients to clusters, partitioning
the client space into disjoint subsets. This architectural choice simplifies cluster model
maintenance and reduces communication overhead, as each client exchanges informa-
tion exclusively with its designated cluster’s aggregation server. However, the rigidity of

20 CHAPTER 3. RELATED WORK

disjoint partitions introduces fundamental limitations when client data exhibits partial
overlap across multiple distribution modes.

The pioneering work of Sattler et al. [6] introduced the Clustered Federated Learn-
ing (CFL) framework, which employs iterative gradient-based bi-partitioning to discover
client clusters. Following each communication round, the central server computes pairwise
cosine similarities between client gradient vectors, constructing a similarity matrix that
encodes the alignment between client optimization trajectories. The method then ap-
plies spectral clustering with recursive bi-partitioning, iteratively splitting clusters when
intra-cluster gradient diversity exceeds a predefined threshold. The rationale for gradient-
based similarity rests on the principle that clients optimizing similar objectives produce
aligned descent directions in parameter space. While CFL demonstrated e”ectiveness in
identifying distribution shifts across synthetic federated datasets, the approach exhibits
three critical dependencies: centralized gradient collection at the server (contradicting
privacy-preservation goals in sensitive applications), reliance on manual threshold tun-
ing for partition decisions, and inability to model partial task relationships where clients
benefit from multiple knowledge sources.

Building upon CFL’s foundation, Ghosh et al. [38] developed the Iterative Federated Clus-
tering Algorithm (IFCA), which reformulates cluster discovery as a client-driven model
selection problem. IFCA maintains K distinct cluster models at the central server, broad-
casting all K models to clients each round. Clients evaluate each cluster model on local
validation data, selecting the model yielding minimum validation loss and contributing up-
dates exclusively to that cluster. This selection mechanism provides an implicit clustering
criterion based on empirical performance rather than gradient geometry. The theoretical
advantage lies in automatic cluster discovery without manual hyperparameter tuning—
cluster assignments emerge organically from clients’ local optimization landscapes. How-
ever, IFCA inherits hard clustering’s fundamental limitation: a client training on multiple
related tasks (e.g., depth estimation and surface normal prediction in indoor scenes) must
commit entirely to one cluster, forfeiting potential knowledge transfer from a comple-
mentary cluster containing clients optimizing a related but distinct task (e.g., semantic
segmentation).

Recent advances in gradient-based partitioning [39] and unified clustering frameworks [40]
have refined hard clustering e!ciency through hierarchical structures and privacy-preserving
protocols [41], yet the categorical nature of cluster assignments persists. Hard clustering
fundamentally su”ers from three interrelated deficiencies. First, the inflexibility of dis-
crete assignments prevents clients from leveraging complementary knowledge distributed
across multiple clusters. Consider a multi-task scenario where Client A optimizes depth
estimation and semantic segmentation while Client B optimizes surface normals and edge
detection—the tasks exhibit pairwise a!nities (depth-normals share geometric structure,
segmentation-edges share boundary information) that a single cluster assignment can-
not capture. Second, static cluster memberships fail to adapt to temporal dynamics in
task relationships. Empirical evidence from centralized multi-task learning suggests that
early training phases benefit from broad feature sharing across tasks (low-level edge and
texture detectors generalize universally), while later phases require task-specific special-
ization. Hard clustering with fixed assignments cannot exploit this evolving relationship
structure. Third, all surveyed hard clustering methods rely on centralized similarity com-

3.2. LEARNING TASK RELATIONSHIPS IN FEDERATED LEARNING 21

putation, cluster assignment, and model maintenance, reintroducing the single point of
failure and privacy concentration that decentralized architectures aim to eliminate.

These approaches implicitly assume that grouping clients based on similarity metrics yields
meaningful task relationships, without explicitly modeling task semantics or accounting
for their potential evolution over time.

3.2.3 Soft and Dynamic Task Clustering

Soft clustering relaxes the constraint of disjoint client partitions, instead representing clus-
ter membership through continuous weight distributions. This architectural shift enables
clients to participate simultaneously in multiple clusters with varying degrees of contribu-
tion, e”ectively modeling partial task relationships through weighted model combinations.
The theoretical justification for soft clustering derives from mixture model theory, where
each client’s optimal model is represented as a convex combination of cluster prototypes,
with mixing weights reflecting the degree of distribution alignment between the client and
each cluster.

Ruan and Joe-Wong [42] proposed FedSoft, pioneering the application of soft clustering to
federated learning. Each client receives all cluster models from the server and computes
a weighted average based on validation performance, assigning higher weights to mod-
els yielding lower local validation loss. This weighting scheme provides a di”erentiable
approximation to IFCA’s discrete selection while enabling smooth transitions as task rela-
tionships evolve during training. The rationale for validation-based weighting rests on the
assumption that models performing well on a client’s local validation set capture distribu-
tion characteristics aligned with that client’s data generating process. However, FedSoft
retains centralized cluster model maintenance—the server aggregates client contributions
to each cluster and broadcasts updated cluster models, preserving the star topology char-
acteristic of centralized federated learning. Additionally, the method treats clustering as
orthogonal to the multi-task learning problem, focusing on data distribution heterogene-
ity rather than explicit task heterogeneity where clients optimize fundamentally di”erent
objectives.

Contemporary soft clustering research has explored hierarchical structures [43], enhanced
privacy protocols [44], and dynamic membership updates [45], yet these advances remain
confined to centralized orchestration. Soft clustering provides two critical advantages
over hard methods. First, partial collaboration allows clients to extract knowledge from
multiple sources simultaneously, avoiding the forced choice between complementary but
distinct task clusters. Second, continuous weight adjustments enable smooth adaptation
as task relationships evolve, contrasting with the abrupt transitions induced by discrete
cluster reassignments in hard methods. Despite these improvements, existing soft cluster-
ing approaches fundamentally operate within centralized architectures where the server
computes or coordinates weight assignments. Moreover, the literature predominantly ad-
dresses data distribution heterogeneity under the assumption of task homogeneity—all
clients optimize the same objective function on di”erently distributed data. The scenario
of explicit task heterogeneity, where clients optimize distinct loss functions corresponding

22 CHAPTER 3. RELATED WORK

to di”erent learning objectives (e.g., depth estimation versus semantic segmentation), re-
mains largely unexplored in the soft clustering literature. This thesis addresses both gaps
simultaneously by developing fully decentralized soft clustering mechanisms specifically
designed for multi-task scenarios where clients optimize heterogeneous objectives without
centralized coordination.

While soft and dynamic clustering improves flexibility compared to static grouping, such
methods still rely on clustering as a surrogate for task relationships, rather than directly
reasoning about task objectives or loss interactions.

3.3 Aggregation Strategies for Heterogeneous Objectives

As highlighted in Chapter 2, negative transfer in federated multi-task learning often man-
ifests during model aggregation, where updates from heterogeneous objectives are com-
bined without explicit coordination. Consequently, aggregation strategies play a central
role in determining whether collaboration across tasks is beneficial or detrimental.

3.3.1 Task-Agnostic Aggregation

Aggregation mechanisms determine how information from multiple clients is combined in
federated learning. The canonical approach is Federated Averaging (FedAvg), introduced
by McMahan et al. [1], which computes a weighted average of client updates with weights
proportional to local dataset sizes. This strategy assumes that all clients optimize the
same objective function and that larger datasets provide more reliable gradient estimates,
assumptions that hold under independent and identically distributed (IID) data but are
frequently violated in real-world federated settings.

Numerous extensions of FedAvg aim to improve optimization stability and convergence
while retaining task-agnostic aggregation. FedProx [12] introduces a proximal regulariza-
tion term to mitigate client drift caused by system heterogeneity, such as varying computa-
tion capabilities or numbers of local updates. Similarly, adaptive server-side optimization
methods, including FedAdam, FedYogi, and FedAdagrad [46], incorporate momentum and
adaptive learning rates to accelerate convergence and stabilize training. While e”ective
in addressing system-level and optimization-related challenges, these methods preserve
simple averaging of client contributions and do not di”erentiate between clients based on
task similarity or objective compatibility.

In federated multi-task and task-heterogeneous settings, task-agnostic aggregation be-
comes fundamentally limited. When clients optimize di”erent objectives, uniform av-
eraging disregards task structure and may combine incompatible gradients, resulting in
suboptimal compromise updates or negative transfer. Importantly, these limitations per-
sist even when tasks are related, as gradient alignment can vary across clients and training
stages. These observations motivate aggregation strategies that explicitly account for task
relationships and gradient compatibility, which are discussed next.

3.4. DECENTRALIZED FEDERATED LEARNING 23

3.3.2 Conflict-Aware and Task-Aware Aggregation

Kohler [9] introduced Hyper Conflict-Averse (HCA) aggregation to mitigate gradient con-
flicts in centralized federated multi-task learning. HCA extends conflict-averse optimiza-
tion principles from centralized multi-task learning [10] to federated settings, addressing
cases where naive averaging yields suboptimal updates when client gradients are negatively
aligned. Conceptually, negative inner products g≃

i
gj < 0 indicate conflicting descent di-

rections; conflict-averse methods therefore modify gradients to reduce interference while
preserving positive alignment, typically via projection-based operations.

In HCA, client i aggregates updates from a neighbor set Ni by assigning higher weights
to neighbors whose gradients align with its own gradient direction. The update can be
written abstractly as

w(t+1)

i
= w(t)

i
↑ ↼

∑

j→Ni

ςij ConflictResolve(gi, gj), (3.1)

where ςij is a similarity-based weight (e.g., a function of gradient cosine similarity) and
ConflictResolve(·) denotes a projection operator that reduces interference when gradi-
ents conflict. Kohler provides convergence guarantees under standard smoothness and
bounded-variance assumptions and reports empirical reductions in negative transfer com-
pared to FedAvg on heterogeneous benchmarks.

Related decentralized frameworks such as ColNet [26] also incorporate task-aware and
conflict-mitigating collaboration mechanisms, but typically rely on predefined task iden-
tities and static group structures rather than dynamically inferring relationships during
training.

A practical limitation of conflict-aware aggregation methods is numerical and systems in-
stability absent in simple averaging. First, normalization operations may involve division
by small gradient norms, which can amplify noise or lead to undefined behavior. Sec-
ond, projection-based conflict resolution can increase gradient magnitudes when resolving
near-orthogonal updates, potentially causing gradient explosion. Third, once NaN/Inf
values appear, they can rapidly propagate through subsequent computations and corrupt
model parameters. These issues are particularly challenging in decentralized settings,
where no central coordinator can monitor global statistics or intervene when instability
occurs. Consequently, deploying conflict-aware aggregation in fully decentralized multi-
task learning typically requires additional stabilization and fallback mechanisms, which
we detail in Chapter 4.

3.4 Decentralized Federated Learning

Decentralized federated learning removes centralized coordination by enabling peer-to-
peer communication among clients. While this paradigm improves robustness and elimi-
nates single points of failure, it also fundamentally alters how collaboration and coordi-
nation can be achieved, particularly in the presence of heterogeneous tasks.

24 CHAPTER 3. RELATED WORK

3.4.1 Gossip-Based and Peer-to-Peer Learning

Lalitha et al. [3] established foundational theory for fully decentralized federated learn-
ing, analyzing convergence properties of gossip-based averaging protocols on arbitrary
network topologies. The framework assumes clients communicate with direct neighbors
according to a connectivity graph, exchanging model parameters and performing local
averaging without global coordination. Theoretical analysis proves that under connectiv-
ity assumptions (the communication graph forms a connected component) and bounded
gradient variance, decentralized gossip algorithms converge to the centralized FedAvg so-
lution at rates dependent on the graph’s spectral properties—well-connected graphs with
low diameter achieve faster consensus. However, the analysis assumes task homogeneity:
all clients optimize identical objective functions on local data, rendering task relationship
discovery unnecessary.

Recent decentralized FL surveys [47], [48] catalog advances in topology design, asyn-
chronous communication protocols, Byzantine robustness, and communication compres-
sion. These works demonstrate that decentralized architectures can match centralized
performance on standard IID benchmarks while providing improved fault tolerance and
privacy preservation. However, the surveyed literature predominantly addresses optimiza-
tion and systems challenges—convergence rates, communication e!ciency, node failure
recovery—under the standing assumption of objective homogeneity across clients.

3.4.2 Limitations for Multi-Task and Heterogeneous Settings

Existing decentralized federated learning research assumes task homogeneity, where all
clients optimize the same objective function, rendering task relationship discovery un-
necessary. When task heterogeneity is introduced—clients optimizing fundamentally dif-
ferent objectives such as depth estimation, semantic segmentation, and surface normal
prediction—decentralized systems face three unresolved challenges. First, clients lack
mechanisms to discover which neighbors optimize related tasks that warrant collabora-
tion versus unrelated tasks requiring isolation. Standard gossip protocols treat all neigh-
bors symmetrically, applying uniform aggregation weights regardless of task compatibility,
leading to negative transfer when incompatible gradients are averaged. Second, existing
decentralized aggregation methods employ simple averaging without conflict awareness,
failing to detect and mitigate gradient conflicts that arise when heterogeneous tasks pro-
duce opposing descent directions. Third, the absence of centralized monitoring eliminates
the ability to detect numerical instabilities (NaN/Inf values, gradient explosion) that
sophisticated aggregation methods like HCA may introduce, requiring autonomous client-
side stability mechanisms that prior work has not addressed.

A notable exception is ColNet [26], which explicitly considers task heterogeneity in decen-
tralized federated learning by structuring collaboration around predefined task identities.
ColNet groups clients according to known task assignments and enables cross-task inter-
action through conflict-averse aggregation mediated by designated group leaders. This
framework demonstrates that task-aware collaboration is feasible in fully decentralized
settings. However, ColNet assumes that task identities and task distributions are known

3.5. GAP ANALYSIS AND POSITIONING OF THIS WORK 25

a priori and remain static throughout training, and it does not address scenarios where
task relationships must be discovered dynamically or where task similarity evolves over
time.

This thesis addresses these limitations by developing decentralized dynamic task relation-
ship discovery mechanisms, enabling clients to compute task similarity metrics locally
(gradient-based, task overlap, cross-loss similarity) and adaptively select collaboration
partners based on measured a!nity. The integration of conflict-aware HCA aggregation
into decentralized topologies, combined with comprehensive numerical stability protec-
tions, provides the first demonstration of decentralized federated multi-task learning on
complex dense prediction tasks without centralized coordination.

3.5 Gap Analysis and Positioning of This Work

Despite substantial progress in federated learning, existing approaches address the chal-
lenges of task heterogeneity, task relationship discovery, aggregation stability, and de-
centralization only in isolation. As reviewed in the previous sections, personalization-
based methods relax the single global model assumption but do not explicitly model
relationships between heterogeneous tasks. Clustered and task-aware federated learning
approaches introduce structured collaboration, yet typically rely on centralized coordina-
tion or predefined task groupings. Decentralized federated learning frameworks remove
central orchestration but largely assume homogeneous objectives and single-task opti-
mization. This leaves a gap at the intersection of decentralized learning, dynamic task
relationship discovery, and stable multi-task aggregation.

Engineering Foundation: Nicolas Kohler’s Framework. Nicolas Kohler’s master’s the-
sis [9] provides an implementation-oriented foundation for federated multi-task learning
with personalized architectures. The framework introduces a clear separation between
shared representations and task-specific components and demonstrates how task simi-
larity can be exploited to structure collaboration in a centralized federated setting. By
integrating conflict-aware aggregation mechanisms, the framework o”ers a practical and
extensible codebase for studying task heterogeneity in federated learning. However, the
proposed system assumes centralized coordination and static task relationships, limit-
ing its applicability in decentralized environments where task similarities are unknown a
priori.

Theoretical Foundation: ColNet. Complementary to this engineering perspective, the
ColNet framework proposed by Feng et al. [26] provides a conceptual and architectural
foundation for decentralized federated multi-task learning. ColNet demonstrates that
task-aware collaboration is feasible in fully decentralized settings by grouping clients ac-
cording to predefined task identities and enabling cross-task interaction through conflict-
averse aggregation mediated by group leaders. This work establishes the viability of
exploiting task similarity to structure collaboration without centralized coordination. At
the same time, ColNet assumes that task identities and task distributions are known and

26 CHAPTER 3. RELATED WORK

fixed throughout training, and it does not address scenarios where task relationships must
be inferred from observed training dynamics.

Positioning of the Present Work. The present thesis builds upon these two comple-
mentary foundations while addressing their shared limitations. In contrast to Nicolas
Kohler’s centralized framework, this work operates in fully decentralized peer-to-peer en-
vironments. In contrast to ColNet, it does not rely on predefined task identities or static
task groupings. Instead, task relationships are dynamically inferred from observed train-
ing behavior and used to adapt collaboration and aggregation strategies over time. By
combining decentralized communication, dynamic task relationship discovery, and stable
aggregation under heterogeneous objectives, this work addresses a gap that remains un-
explored by existing federated multi-task learning approaches. Table 3.1 summarizes this
positioning relative to representative prior approaches across key design dimensions.

Table 3.1: Comparison of federated and decentralized multi-task learning approaches.
Dec. (Decentralized), Dyn. (Dynamic Task Relationship Discovery), Dense (Dense Predic-
tion Tasks), Cross (Cross-Dataset Validation), Stab. (Explicit Stability Considerations).

Method Dec. Dyn. Dense Cross Stab.

FedAvg [1] (2017) – – – – –
MOCHA [5] (2017) – – – – –
FedPer [29] (2019) – – – – –
pFedMe [31] (2020) – – – – –
CFL [6] (2020) – Partial – – –
FedSoft [42] (2021) – Partial – – –
Kohler [9] (2024) – Partial – – Partial
ColNet [26] (2025) ↭ – – – Partial

This Thesis ↭ ↭ ↭ ↭ ↭

Chapter 4

Methodology

This chapter presents a decentralized federated multi-task learning framework. At a high
level, each client performs local multi-task training, automatically discovers inter-task
relatedness via dynamic similarity metrics, selects a small set of neighbors with similarity-
proportional weights, and aggregates model parameters according to an explicit design
space defined by (i) aggregation scope (backbone-only vs. full-model) and (ii) aggregation
method (e.g., similarity-weighted averaging, FedAvg, or HCA). Implementation details
are deferred to Chapter 5, and empirical validation is provided in Chapter 6.

This chapter formalizes the decentralized federated multi-task learning framework that
constitutes the central contribution of this thesis. The presentation follows a structured
analytical progression: Section 4.1 establishes the mathematical foundations of the de-
centralized network topology and multi-task model architecture, followed by a rigorous
treatment of task assignment strategies that enable controlled heterogeneity. Section 4.2
introduces three complementary approaches for quantifying task relatedness in the ab-
sence of centralized coordination, including a novel cross-validation-based similarity met-
ric. Section 4.3 formalizes the soft aggregation mechanism that enables continuous neigh-
bor weighting rather than discrete cluster assignment. Section 4.4 examines the critical
design decision of aggregation scope (backbone-only versus full model) and demonstrates
how task correlation strength fundamentally determines the optimal choice—a counterin-
tuitive finding that challenges conventional assumptions in multi-task federated learning.
Section 4.5 presents the most substantial engineering contribution: a systematic solution
to numerical instability in conflict-averse aggregation, documented through a complete
record of diagnostic attempts and failures that ultimately led to a five-layer defense mech-
anism. Finally, Section 4.6 describes e!ciency improvements through adaptive learning
rate scheduling and early stopping criteria.

4.1 System Model

Figure 4.1 summarizes the per-round workflow of the proposed decentralized framework,
which will be formalized in the subsequent sections.

27

28 CHAPTER 4. METHODOLOGY

Framework Overview (conceptual)

Local multi-task training on each client

Dynamic task similarity discovery

Top-K neighbor selection with soft weights

Aggregation scope decision: backbone-only vs. full

Aggregation method: weighted / FedAvg / HCA

Model update and proceed to next round

Figure 4.1: End-to-end workflow of the proposed framework in one communication round.

The foundational architecture of this work extends the centralized federated multi-task
learning framework introduced by [9] into a fully decentralized setting where peer-to-peer
collaboration replaces server-mediated aggregation. This architectural shift necessitates
fundamental reconsideration of coordination mechanisms, similarity computation, and
aggregation strategies.

Notation. Table 4.1 summarizes the key symbols used throughout this chapter.

4.1.1 Network Architecture and Communication Topology

This research considers a fully decentralized peer-to-peer network comprisingN autonomous
clients denoted {C1, C2, . . . , CN}, where the absence of a central coordination server distin-
guishes this architecture from conventional federated learning systems such as FedAvg [1].
The rationale for eliminating centralized coordination extends beyond mere fault toler-
ance; decentralized topologies fundamentally alter the information propagation dynamics
and enable task-adaptive collaboration patterns that would require prohibitive coordina-
tion overhead in server-mediated architectures.

Each client Ci maintains three essential components that enable autonomous participation
in the collaborative learning process. First, a local dataset Di = {(xj, yj)}

ni
j=1

provides
task-specific training data, where input images xj → RH↓W↓3 map to labels yj whose di-
mensionality and semantic interpretation vary according to the assigned task (scalar depth
values, categorical segmentation masks, or unit-norm surface normal vectors). Second, a

4.1. SYSTEM MODEL 29

Table 4.1: Key notation used throughout this chapter.
Symbol Meaning
Ci Client (peer) i
Di Local dataset of client i
T Set of tasks; t → T indexes a task
G
(t) = (V , E (t)) Communication graph at round t

N
(t)

i
Candidate neighbor set of client i at round t

K Neighbor budget for Top-K selection
εi = (εb

i
, εh

i
) Local model on client i (backbone + head(s))

εb
i

Backbone parameters of client i
εh
i,t

Task head parameters on client i for task t (if present)

g(t)
i

Backbone gradient on client i at round t

sim(t)

ij
Combined similarity score between clients i and j at round t

ς Convex weight for combining similarity components

S
(t)

i
Selected Top-K neighbor subset for client i at round t

s(t)
ij

Non-negative similarity score (after truncation)

w(t)

ij
Aggregation weight assigned by client i to neighbor j

s Aggregation scope (Backbone or Full)
A Aggregation operator (e.g., weighted / FedAvg / HCA)
T Total number of communication rounds
E Local optimization steps per round
Tw Warm-up rounds before switching to an advanced operator
↽ Small constant for numerical stability

local model Mi parameterized by weights εi embodies the client’s current hypothesis
about the underlying task relationships. Third, bidirectional communication channels en-
able direct parameter exchange with any other client in the network, forming the substrate
for decentralized aggregation. The capacity for arbitrary pairwise communication distin-
guishes this architecture from structured topologies such as ring networks or hierarchical
federations studied in prior decentralized learning work [3], [4].

The network topology emerges dynamically through task-similarity-driven neighbor se-
lection rather than being predetermined by network engineering constraints. This design
choice reflects a fundamental hypothesis: that collaboration e”ectiveness depends primar-
ily on task compatibility rather than communication e!ciency. In each training round
t → {1, 2, . . . , T}, clients autonomously compute pairwise task similarities (formalized in
Section 4.2) and select the K most compatible partners for aggregation. The resulting
topology adapts continuously throughout training as task relationships evolve from shared
low-level feature learning in early rounds to specialized pattern recognition in later stages.
Figure 4.2 illustrates this adaptive reconfiguration: early rounds exhibit dense connectiv-
ity as most tasks benefit from shared low-level features, while later rounds show clustered
structure as specialized task groups emerge. This dynamic reconfiguration mechanism,
inspired by adaptive clustering approaches in federated learning [6], [38], enables the net-
work to discover implicit task groupings without centralized coordination.

The training protocol proceeds through synchronized rounds, where synchronization emerges

30 CHAPTER 4. METHODOLOGY

Dynamic topology evolution (conceptual)

Early rounds: neighbors are weakly structured / near-uniform

Later rounds: edges concentrate within similarity clusters

As similarity estimates stabilize, clients preferentially connect to peers with aligned
objectives, inducing a time-varying graph G

(t).

Figure 4.2: Illustration of how similarity-guided neighbor selection induces a dynamic
communication topology over training rounds.

from coordinated round advancement rather than central orchestration. Within round t,
each client Ci executes a five-stage process. Local training constitutes the first stage: the
client performs E epochs of stochastic gradient descent on dataset Di using the current
model parameters ε(t)

i
, producing updated parameters ε(t+local)

i
. The second stage com-

putes task similarity: client Ci evaluates its compatibility with all other clients using one of
three similarity metrics detailed in Section 4.2, generating similarity scores {sim(i, j)}j ⇐=i.
Neighbor selection follows as the third stage: the client identifies its top-K most simi-
lar peers, forming the aggregation neighborhood N

(t)

i
= TopK({sim(i, j) : j ⇑= i}, K).

The fourth stage involves parameter exchange: client Ci transmits its model parameters
ε(t+local)

i
to selected neighbors while receiving their parameters {ε(t+local)

j
}
j→N (t)

i
. Finally,

aggregation synthesizes received information: the client computes a weighted combina-
tion of neighbor parameters using either similarity-weighted averaging or conflict-averse
optimization (Section 4.4), yielding the parameters ε(t+1)

i
for the subsequent round.

This architectural design achieves three critical properties that enable e”ective decentral-
ized multi-task learning. First, it eliminates single points of failure inherent in centralized
systems [1], distributing coordination responsibilities across all participants. Second, it
enables task-adaptive collaboration by allowing similarity-driven neighbor selection to dis-
cover implicit task clusters without requiring predefined taxonomies. Third, it supports
heterogeneous task assignments by accommodating clients training on di”erent task com-
binations or weightings, unlike homogeneous decentralized learning systems that assume
identical objectives across participants [4].

4.1.2 Multi-Task Model Architecture

The model architecture implements hard parameter sharing [16], [17], decomposing the
prediction function into a shared feature extractor and task-specific prediction heads. This
architectural choice reflects the hypothesis that dense prediction tasks—despite produc-
ing outputs of di”erent dimensionalities and semantic types—benefit from shared low-level

4.1. SYSTEM MODEL 31

visual representations while requiring specialized decoders for task-specific output format-
ting.

The shared backbone, denoted fωb : RH↓W↓3
⇔ RH

↑↓W
↑↓C , transforms input images

into spatial feature representations suitable for dense prediction. This research employs
ResNet-18 [49] pretrained on ImageNet [50] as the backbone architecture, a decision mo-
tivated by three complementary considerations. First, the fully convolutional structure of
ResNet-18 preserves spatial resolution through the network depth, enabling direct applica-
tion to dense prediction tasks without architectural modification. Second, the parameter
e!ciency (11.7M parameters) balances representational capacity against communication
overhead in federated settings where model transmission costs scale linearly with parame-
ter count. Third, ImageNet pretraining provides initialization in a semantically meaning-
ful region of parameter space, accelerating convergence on downstream dense prediction
tasks compared to random initialization. The pretrained weights serve as a warm start
that reduces the number of federated rounds required to achieve target performance, di-
rectly addressing communication e!ciency concerns in distributed learning [11].

For client Ci training on task subset Ti ↖ T , where T denotes the universal task set,
the backbone parameters εb remain shared across all tasks in Ti. This sharing enforces
a representational bottleneck that encourages the learning of task-agnostic features—
visual patterns that support multiple prediction objectives simultaneously. The multi-task
learning literature [17], [24] suggests that this architectural constraint acts as an implicit
regularizer, preventing task-specific overfitting by requiring the backbone to discover gen-
eralizable visual concepts.

Task-specific prediction heads map the shared feature representation to task-appropriate
output spaces. Each task t → T defines a decoder hωt : RH

↑↓W
↑↓C

⇔ RH↓W↓Dt that up-
samples and transforms features into the required output dimensionalityDt. The architec-
tural instantiation varies according to the statistical nature and semantic interpretation
of each task. Depth estimation, formalized as a regression problem over normalized depth
values in [0, 1], employs a decoder comprising three transposed convolutional layers with
progressively decreasing spatial stride, culminating in a sigmoid activation that enforces
the unit interval constraint. The output dimensionality satisfies Ddepth = 1, producing
a single scalar depth value per pixel. Surface normal prediction, similarly formulated as
regression but over unit vectors in R3, utilizes an architecturally identical decoder but re-
places the final sigmoid with hyperbolic tangent activation followed by ϱ2 normalization,
ensuring that predicted vectors satisfy the unit norm constraint ≃n≃2 = 1 required for
geometric validity. The output dimensionality expands to Dnormal = 3 to accommodate
the three-dimensional vector representation.

Semantic segmentation, in contrast, formulates prediction as pixel-wise multi-class classi-
fication over a predefined label taxonomy. The decoder architecture mirrors the regression
heads in its use of transposed convolutions for spatial upsampling but diverges in the fi-
nal layer, which produces Dseg = Cseg logit channels where Cseg denotes the number of
semantic classes (13 for NYU Depth V2 [7], 59 for Pascal Context [8]). A softmax activa-
tion ⇀(·) converts logits to a categorical distribution over class labels, enabling maximum
likelihood training through cross-entropy loss. Edge detection simplifies to binary classifi-
cation with Dedge = 1, employing sigmoid activation to produce edge probabilities in [0, 1].

32 CHAPTER 4. METHODOLOGY

Multi-task model structure (conceptual)

Input x
Shared Backbone

fωb

Head hεh2

Head hεh1

Head hεhT

}{h
ω
h
t
}t→T

Common Aggregation Scope

A single feature extractor is shared across tasks, while each task is equipped with a
lightweight head. Only parameters within the chosen aggregation scope are

exchanged and aggregated.

Figure 4.3: Hard parameter sharing for multi-task dense prediction: a shared backbone
with task-specific heads.

Human parts segmentation extends the semantic segmentation architecture to anatomical
decomposition with Dparts = Cparts channels (Cparts = 7 for Pascal Context), again using
softmax for probabilistic interpretation.

The complete model for client Ci composes the shared backbone with all task-specific
heads corresponding to tasks in Ti, formally expressed as:

Mi(x) = {hωt(fωb(x)) : t → Ti} (4.1)

This compositional structure induces a natural decomposition of the parameter space:
εi = (εb, {εt : t → Ti}), separating shared and task-specific components. Figure 4.3 il-
lustrates this architecture for a representative client training on three dense prediction
tasks (segmentation, depth, surface normals). The shared backbone processes the input
image through ResNet-18 layers to produce spatial feature maps, which then diverge into
task-specific prediction heads that map features to task-appropriate output spaces. This
decomposition proves critical for enabling selective aggregation strategies (Section 4.4),
where clients may choose to exchange only backbone parameters while maintaining per-
sonalized task heads, or conversely, to aggregate both components simultaneously. The
flexibility to partition the aggregation scope emerges as a key design variable whose op-
timal setting depends on task correlation structure, as demonstrated empirically in Sec-
tion 4.4.1.

4.1.3 Task Assignment Strategies

Controlled heterogeneity in task distribution across clients enables systematic investiga-
tion of how task assignment patterns a”ect collaborative learning dynamics. This research
evaluates three task assignment strategies that span a spectrum from complete task spe-
cialization to uniform multi-task learning, providing empirical evidence for the relative
merits of di”erent heterogeneity regimes.

The SingleTask strategy (designated A1 in experimental nomenclature) assigns each client
to exactly one task with unit weight, creating complete task specialization. For a network

4.1. SYSTEM MODEL 33

with N clients and |T | tasks, this assignment produces N/|T | clients per task, where
each client Ci trains with task weight vector wi → {0, 1}|T | satisfying ≃wi≃1 = 1 and con-
taining exactly one non-zero entry. In the context of NYU Depth V2 with three tasks
and six clients, this strategy generates two clients dedicated to depth estimation with
weights (1.0, 0, 0), two to semantic segmentation with weights (0, 1.0, 0), and two to sur-
face normal prediction with weights (0, 0, 1.0). The rationale for examining this extreme
specialization regime stems from the hypothesis that it establishes a lower bound on col-
laborative learning benefit: if clients have no overlapping tasks, collaboration reduces
to independent single-task federated learning within each task group. Any performance
gain observed under less specialized assignment strategies can therefore be attributed to
cross-task knowledge transfer. Experimentally, SingleTask serves as a baseline measur-
ing the counterfactual performance achievable without multi-task learning, isolating the
contribution of task diversity to model quality.

The Pairwise strategy (designated A2) introduces controlled task overlap by assigning each
client two tasks with asymmetric weights: a primary task receiving weight wprimary = 0.7
and a secondary task receiving wsecondary = 0.3. This 70-30 split reflects a deliberate design
choice balancing two competing objectives. The dominant primary task weight ensures
that each client develops specialized expertise in one domain, preventing the dilution of
task-specific knowledge that can occur under uniform weighting. Simultaneously, the non-
trivial secondary task weight (30%) provides su!cient gradient signal for the model to
learn representations that support both tasks, enabling auxiliary knowledge transfer. The
weight ratio of 7:3 emerged based on pilot tuning, suggesting that more extreme ratios
(e.g., 9:1) provide insu!cient secondary task signal, while more balanced ratios (e.g., 6:4)
compromise primary task performance. For NYU Depth V2, a typical Pairwise assignment
distributes clients across task pairs: depth-segmentation with weights (0.7, 0.3, 0), depth-
normal with weights (0.7, 0, 0.3), and segmentation-normal with weights (0, 0.7, 0.3), en-
suring that each task appears as either primary or secondary across multiple clients. This
strategy embodies the hypothesis that partial task overlap enables beneficial knowledge
transfer without fully sacrificing specialization. The experimental evidence presented in
Chapter 6 demonstrates that Pairwise consistently outperforms SingleTask, validating the
multi-task learning assumption under controlled heterogeneity.

The MultiTask strategy (designated B4) implements uniform task distribution where all
clients train on all tasks with equal weights wi = (1/|T |, . . . , 1/|T |). For three tasks,
this yields weights (0.33, 0.33, 0.33), removing task specialization entirely. The rationale
for this assignment follows the classical multi-task learning hypothesis [16], [17]: forcing
the shared backbone to simultaneously support all tasks should encourage discovery of
maximally general feature representations that capture commonalities across the entire
task family. This strategy represents the opposite extreme from SingleTask, maximizing
task diversity within each client rather than across clients. However, this uniformity intro-
duces a critical vulnerability: when tasks exhibit weak correlation or conflicting gradient
structure, the simultaneous optimization of multiple objectives can induce destructive
interference in the shared parameters [10]. The experimental results on Pascal Context
(Section 6.4) reveal that MultiTask underperforms Pairwise on datasets with weakly re-
lated tasks, suggesting that selective task pairing proves more e”ective than indiscriminate
multi-task aggregation. This finding challenges the assumption that maximal task diver-
sity universally improves representation learning, instead suggesting that task assignment

34 CHAPTER 4. METHODOLOGY

should adapt to the underlying correlation structure of the problem domain.

The controlled variation across these three strategies enables ablation of task heterogeneity
as an independent variable, isolating its e”ect from other design choices such as aggrega-
tion method or similarity metric. By comparing performance under SingleTask, Pairwise,
and MultiTask while holding all other hyperparameters constant, this research establishes
empirical evidence for the optimal task assignment regime under di”erent dataset char-
acteristics.

4.2 Dynamic Task Similarity Identification

The absence of centralized coordination in decentralized federated learning necessitates
autonomous mechanisms for clients to estimate task relatedness without global knowledge
of the task distribution or collaboration history. This section introduces three comple-
mentary approaches for quantifying client compatibility, each capturing di”erent aspects
of task similarity through distinct mathematical formalizations and computational proce-
dures.

4.2.1 Gradient-Based Similarity via Cosine Alignment

The first similarity metric leverages the observation that clients training on related tasks
tend to optimize in similar directions in parameter space, suggesting that gradient align-
ment provides a task-agnostic measure of collaboration potential. This approach draws
inspiration from gradient-based clustering methods in federated learning [39] but adapts
the formulation for decentralized neighbor selection rather than centralized cluster assign-
ment.

Following local training in round t, client Ci computes the gradient of its loss function
with respect to the shared backbone parameters:

g(t)
i

= ↓ωb
Li(ε

(t)

b
;Di) (4.2)

where Li denotes the weighted combination of task-specific losses corresponding to client
i’s task assignment, and ε(t)

b
represents the backbone parameters after local SGD updates.

The rationale for restricting gradient computation to backbone parameters rather than
the full model stems from two considerations. First, task-specific head parameters lack
semantic correspondence across clients training on di”erent tasks—comparing depth head
gradients with segmentation head gradients yields meaningless similarity scores due to
incompatible output spaces. Second, limiting gradient transmission to backbone param-
eters (approximately 11.7M parameters for ResNet-18) reduces communication overhead
compared to transmitting full model gradients, directly addressing bandwidth constraints
in federated settings [11].

4.2. DYNAMIC TASK SIMILARITY IDENTIFICATION 35

After broadcasting gradient g(t)
i

to all other clients and receiving their gradients {g(t)
j
}j ⇐=i,

client Ci computes pairwise cosine similarity:

simgrad(i, j) =
g(t)
i

· g(t)
j

≃g(t)
i
≃2≃g

(t)

j
≃2

(4.3)

The cosine similarity metric normalizes by gradient magnitude, ensuring that similarity
scores reflect directional alignment rather than absolute gradient scale. This normalization
proves critical in multi-task settings where di”erent tasks induce vastly di”erent gradient
magnitudes due to varying loss scales and task complexities. For instance, semantic seg-
mentation with cross-entropy loss over 13-59 classes typically produces gradients with ϱ2
norm on the order of 102–103, while depth regression with mean squared error yields gra-
dients with norm on the order of 10↔1–100. Without normalization, magnitude di”erences
would dominate the similarity computation, incorrectly suggesting that all segmentation
clients are highly similar regardless of actual directional alignment.

High positive similarity (simgrad ↘ 1) indicates that clients optimize in nearly identical di-
rections, suggesting that aggregating their parameters will produce a model that improves
both clients’ objectives simultaneously. Conversely, negative similarity (simgrad < 0) sig-
nals conflicting optimization directions where aggregation would force a compromise be-
tween incompatible objectives, likely degrading performance for both clients. Near-zero
similarity (|simgrad| ↘ 0) suggests orthogonal gradients, indicating that clients are opti-
mizing independent features with neither positive nor negative transfer expected.

The gradient-based approach captures task relationships implicitly through optimization
dynamics rather than explicitly through task labels or dataset statistics. This implicit
characterization enables discovery of unexpected task a!nities that may not be apparent
from semantic task descriptions. For example, depth estimation and surface normal pre-
diction operate on di”erent output formats (scalar fields versus vector fields) and involve
di”erent loss functions (mean squared error versus cosine distance), yet they produce
highly aligned gradients because both tasks learn geometric boundary features. The gra-
dient similarity metric automatically detects this a!nity without requiring hand-crafted
task relationship rules. Similarly, two segmentation tasks with di”erent class taxonomies
may exhibit conflicting gradients despite sharing identical output formats, and gradient
similarity correctly identifies this incompatibility.

The computational complexity of gradient-based similarity scales as O(N2P) where N
denotes the number of clients and P represents the backbone parameter count, since each
of the N clients must compute N ↑ 1 pairwise dot products over P -dimensional vectors.
However, this computation parallelizes naturally across client pairs and requires only a sin-
gle forward-backward pass per client per round, making it tractable for moderate network
sizes and modern hardware accelerators. The communication cost involves transmitting
N ⇐ P total parameters per round (each client broadcasts one gradient vector), which
remains manageable given typical backbone sizes and network bandwidths.

36 CHAPTER 4. METHODOLOGY

4.2.2 Task Overlap Similarity via Weight Vector Intersection

The second similarity metric adopts a complementary perspective, measuring task related-
ness through explicit task assignment overlap rather than implicit optimization dynamics.
This approach provides a prior belief about collaboration potential based on the deliberate
task assignment strategy, independent of the current training state.

For client Ci with task weight vector wi = (wi,1, wi,2, . . . , wi,|T |) where wi,t → [0, 1] denotes
the loss weight assigned to task t, the overlap similarity with client Cj computes the
element-wise minimum:

simtask(i, j) =
|T |∑

t=1

min(wi,t, wj,t) (4.4)

This formulation measures the degree of task assignment intersection, with higher values
indicating greater shared training objectives. The minimum operator ensures that simi-
larity increases only when both clients assign non-negligible weight to the same task—if
client i trains heavily on depth (wi,depth = 0.7) while client j ignores depth (wj,depth = 0),
the minimum evaluates to zero regardless of client i’s weight, correctly identifying no
overlap for that task.

Under the SingleTask assignment strategy (Section 4.1.3), task overlap similarity reduces
to binary indicator similarity: simtask(i, j) = 1 if both clients train on the same task,
and simtask(i, j) = 0 otherwise. This binary structure partitions the network into disjoint
task groups with no cross-group similarity, e”ectively replicating the clustering structure
assumed in cluster-based federated learning [6]. For Pairwise assignments, the overlap
metric produces graded similarity values reflecting partial task intersection. Consider
two clients with weights (0.7, 0, 0.3) (depth primary, normal secondary) and (0.7, 0.3, 0)
(depth primary, segmentation secondary). The overlap similarity computes min(0.7, 0.7)+
min(0, 0.3) + min(0.3, 0) = 0.7 + 0 + 0 = 0.7, capturing the shared primary task while
recognizing the divergent secondary tasks. This graded similarity enables soft clustering
where clients maintain varying degrees of a!nity with multiple neighbors rather than
belonging exclusively to a single cluster.

The rationale for including task overlap similarity alongside gradient-based metrics stems
from the recognition that optimization dynamics provide only a local view of task com-
patibility, reflecting the current training state but potentially missing long-term task re-
lationships. A client early in training may exhibit gradient misalignment with a related
task simply due to poor initialization or transient optimization artifacts, leading gradient
similarity to spuriously suggest incompatibility. Task overlap similarity provides a global
prior that stabilizes neighbor selection against such transient e”ects, encoding the exper-
imenter’s hypothesis about which tasks should collaborate based on semantic relatedness
or domain knowledge.

However, task overlap similarity su”ers from fundamental limitations that motivate the
inclusion of alternative metrics. First, it remains static throughout training, unable to
adapt as task relationships evolve during the learning process. Early training typically
focuses on low-level features (edges, textures, color gradients) that benefit nearly all dense

4.2. DYNAMIC TASK SIMILARITY IDENTIFICATION 37

prediction tasks, suggesting that broad collaboration may be optimal initially. Late train-
ing specializes on task-specific patterns (geometric consistency for depth, semantic object
boundaries for segmentation), suggesting that narrow collaboration within task groups
may be preferable. Task overlap similarity cannot capture this temporal evolution, treat-
ing task relationships as fixed. Second, it relies entirely on predefined task categories and
cannot discover unexpected relationships that transcend the task taxonomy. Two clients
training on nominally di”erent tasks (e.g., edge detection and depth estimation) may de-
velop highly compatible representations due to shared emphasis on boundary features,
but task overlap similarity assigns them zero a!nity based solely on their distinct task
labels.

4.2.3 Cross-Loss Similarity via Transferability Testing

The third similarity metric, introduced as a novel contribution of this thesis, directly
measures knowledge transferability by evaluating each client’s model on other clients’
validation data. This approach sidesteps the indirection of gradient alignment or task label
matching, instead empirically testing whether client j’s learned representations actually
improve client i’s prediction accuracy on held-out data.

The cross-loss evaluation protocol proceeds as follows. After local training in round t,
client Ci requests model parameters (backbone and task heads) from all other clients,

receiving {ε(t)
j
}j ⇐=i. For each neighbor candidate j, client Ci evaluates model Mj param-

eterized by ε(t)
j

on its own validation dataset Dval

i
, computing the loss:

CrossLoss(j ⇔ i) = Li(ε
(t)

j
;Dval

i
) (4.5)

where Li denotes client i’s task-specific loss function evaluated on validation data. Crit-
ically, this evaluation uses client i’s task heads (or the corresponding heads from client
j’s model if they share tasks) to compute task-specific predictions, ensuring that the loss
calculation remains well-defined even when clients train on di”erent task subsets.

Lower cross-loss indicates that client j’s model generalizes well to client i’s task and data
distribution, suggesting that the representations learned by client j capture relevant fea-
tures for client i’s objective. This transferability signal provides direct empirical evidence
of positive knowledge transfer potential. To convert cross-loss into a similarity metric
where higher values indicate greater a!nity (consistent with gradient and task overlap
similarities), the formulation applies negation:

simcross(i, j) = ↑CrossLoss(j ⇔ i) (4.6)

This transformation ensures that clients with mutually low cross-loss (high transferabil-
ity) receive high similarity scores, aligning the directional interpretation across all three
metrics.

Cross-loss similarity o”ers several advantages over gradient-based and task overlap ap-
proaches that justify its introduction despite increased computational cost. First, it

38 CHAPTER 4. METHODOLOGY

measures transferability directly rather than through proxy variables: instead of infer-
ring collaboration potential from gradient alignment or task labels, it empirically tests
whether aggregating client j’s parameters would actually improve client i’s model. This
directness eliminates assumptions about the relationship between gradient alignment and
transfer learning e”ectiveness. Second, it automatically accounts for task-specific loss
scales and output format di”erences without requiring manual normalization. Depth esti-
mation with mean squared error, segmentation with cross-entropy, and normal prediction
with cosine distance all produce losses on di”erent numerical scales, yet cross-loss sim-
ilarity compares them consistently by evaluating actual prediction quality rather than
abstract geometric properties like gradient angles. Third, it discovers implicit task re-
lationships that may not manifest in gradient alignment or task labels. For example, a
client training on depth estimation may develop boundary-sensitive features that improve
segmentation performance even though the gradient directions di”er due to distinct loss
functions. Cross-loss similarity automatically detects this beneficial relationship through
empirical transferability testing.

The primary disadvantage of cross-loss similarity lies in its computational and communica-
tion overhead. Computing cross-loss requires clients to receive complete models (backbone
and task heads) from all neighbors, transmitting O(N ⇐ |ε|) parameters per round where
|ε| denotes the total model size. In contrast, gradient similarity requires transmitting
only backbone gradients, reducing communication by a factor equal to the ratio of total
model size to backbone size. Additionally, cross-loss evaluation necessitates N↑1 forward
passes through neighbor models on validation data, multiplying inference cost by network
size. To mitigate these overheads while preserving the transferability signal, this research
employs two optimizations. First, cross-loss computation occurs periodically (e.g., every
5 rounds) rather than every round, amortizing the cost across multiple training iterations
and relying on gradient similarity for intermediate rounds. Second, validation batches are
limited to 16-32 samples rather than evaluating on the full validation set, trading slight
noise in cross-loss estimates for substantial computational savings.

4.2.4 Combined Similarity via Convex Weighting

Gradient alignment and task overlap capture complementary aspects of task relatedness:
gradient-based similarity reflects dynamic optimization compatibility, while task overlap
encodes static assignment structure. A hybrid similarity metric is therefore defined by a
convex combination:

sim(i, j;ς) = ς · simtask(i, j) + (1↑ ς) · simgrad(i, j) , (4.7)

where the weighting parameter ς → [0, 1] controls the relative influence of task overlap
versus gradient alignment. Setting ς = 0 recovers pure gradient similarity, relying en-
tirely on optimization dynamics to guide neighbor selection, while ς = 1 recovers pure
task-overlap similarity, treating task assignments as the sole determinant of collaboration
potential. Intermediate values ς → (0, 1) blend both signals, enabling neighbor selection
that can respect both semantic task categories and the current training state.

In practice, di”erent similarity components may live on di”erent scales (e.g., overlap
scores are discrete while gradient- or cross-loss-based scores are continuous). To keep

4.3. SOFT AGGREGATION MECHANISM 39

ς interpretable and prevent any single component from dominating purely due to scale,
per-component normalization is applied over the current candidate neighbor set (e.g.,
min–max or z-score normalization) prior to convex weighting.

This formulation enables systematic ablation of the task-overlap prior in similarity com-
putation. Chapter 6 evaluates representative settings (e.g., ς = 0.0 for pure gradient
similarity and ς = 0.5 for a balanced combination) and analyzes how the choice of ς af-
fects neighbor selection quality and downstream multi-task performance across datasets.
In addition, Chapter 6 examines whether gradient-based similarity can capture latent re-
lationships that are not explicitly encoded by task labels, by analyzing the evolution of
similarity structure during training.

4.2.5 Temporal Dynamics and Adaptive Similarity Updates

Task relationships can evolve over the course of training, motivating periodic recom-
putation of similarity scores rather than reliance on a fixed neighbor set determined at
initialization. In early rounds, optimization typically emphasizes generic, low-level feature
extraction (e.g., edges, textures, and color cues) that benefits many dense prediction tasks,
so compatibility may appear relatively broad across task pairs. As training proceeds,
representations increasingly specialize toward task-specific structure, such as geometric
consistency for depth estimation, semantic coherence for segmentation, or photometric
cues for surface normals. This specialization can reduce similarity between weakly related
tasks while preserving higher similarity within strongly related task groups.

To capture such temporal evolution, similarity metrics are recomputed at the beginning
of each communication round. Concretely, for client i and neighbor candidate j, the
similarity score sim(t)(i, j) is computed using the most recent local model parameters ε(t)

i

and corresponding gradient estimates g(t)
i

(and cross-loss measurements when applicable).
This update schedule enables the collaboration graph to adapt over time: clients may start
with broader neighborhoods and gradually emphasize a smaller set of highly compatible
neighbors as specialization increases, while strongly related tasks may retain stable high-
similarity connections.

This adaptive neighbor selection mechanism can be viewed as an implicit curriculum
over collaboration structure, adjusting the diversity–specialization trade-o” as training
progresses. Chapter 6 evaluates dynamic similarity updates against a static baseline in
which similarities are computed once at initialization and then held fixed, and analyzes
the impact on convergence behavior and final performance.

4.3 Soft Aggregation Mechanism

Classical cluster-based federated learning algorithms [6], [38] assign each client to exactly
one cluster, enforcing hard boundaries in the collaboration structure. This discrete as-
signment proves suboptimal in multi-task settings where task relationships exhibit gradual

40 CHAPTER 4. METHODOLOGY

variation rather than sharp categorical distinctions. This section formalizes a soft aggre-
gation mechanism that replaces binary cluster membership with continuous similarity-
weighted neighbor contributions.

4.3.1 Neighbor Selection via Top-K Thresholding

Given pairwise similarity scores {sim(i, j)}j ⇐=i computed using the similarity metrics de-
scribed in Section 4.2, each client Ci selects its K most similar peers to form the aggre-
gation neighborhood:

N
(t)

i
= TopK

(
{sim(t)(i, j) : j ⇑= i}, K

)
, (4.8)

where TopK(·, K) returns the indices of the K largest values. This thresholding operation
serves two purposes. First, it bounds communication by limiting each client to exchange
parameters with at most K neighbors per round, avoiding an all-to-all exchange pattern.
Second, it deemphasizes weakly related clients whose inclusion in aggregation can increase
the risk of negative transfer or gradient conflict.

The neighborhood size K controls the breadth–versus–depth trade-o” in collaboration.
Smaller values (e.g., K = 2) yield narrower neighborhoods that prioritize high-similarity
exchanges and can reduce the risk of interference, at the cost of limited diversity. Larger
values (e.g., K = 5) enable broader collaboration and potentially richer transfer, but
may increase the chance of incorporating weakly related clients. In the remainder of this
thesis, K is treated as a fixed hyperparameter and set to K = 3 in all experiments for
consistency. In a six-client setting, K = 3 corresponds to aggregating from roughly half of
the network, providing a pragmatic balance between focusing on highly related neighbors
and maintaining su!cient diversity.

4.3.2 Similarity-Weighted Aggregation

Unlike hard clustering approaches that assign uniform aggregation weights within each
cluster [38], soft aggregation computes client-specific weights proportional to similarity

scores. After selecting neighbors N
(t)

i
, client Ci normalizes similarity values to obtain

aggregation weights:
s(t)
ij

= max
(
sim(i, j), 0

)
(4.9)

w(t)

ij
=

s(t)
ij∑

k→N (t)
i ↑{i} s

(t)

ik
+ ↽

(4.10)

where ↽ > 0 is a small constant for numerical stability. If
∑

k
s(t)
ik

is (near) zero—indicating
no reliable positive similarity among the selected neighbors—we fall back to self-reliance
by setting w(t)

ii
= 1 and w(t)

ij
= 0 for j ⇑= i.

The inclusion of client i itself in the normalization denominator ensures that
∑

j→N (t)
i ↑{i} w

(t)

ij
=

1, satisfying the convex combination constraint required for weighted averaging. The

4.3. SOFT AGGREGATION MECHANISM 41

self-weight w(t)

ii
quantifies how much client i trusts its own local update relative to neigh-

bors’ knowledge, implementing a form of personalization where clients with high self-
similarity (relative to neighbors) rely primarily on local training while clients with lower
self-similarity incorporate more external information.

This similarity-proportional weighting implements a key distinction from uniform aver-
aging schemes like FedAvg [1]: clients whose gradients align strongly with the recipient
receive higher influence in the aggregated model, while weakly aligned clients receive re-
duced influence. This di”erential weighting provides fine-grained control over knowledge
transfer, enabling the aggregation mechanism to continuously interpolate between full av-
eraging (when all neighbors have equal similarity) and selective aggregation (when one
neighbor dominates similarity scores).

4.3.3 Parameter Update Formulation

The aggregated parameter update combines the client’s local parameters with weighted
neighbor contributions. This research considers two algebraically equivalent formulations
that emphasize di”erent geometric interpretations of the aggregation process. The dis-
placement formulation expresses the update as a weighted movement from the current
parameters toward neighbors:

ε(t+1)

i
= ε(t)

i
+ ↼

∑

j→N (t)
i

w(t)

ij
(ε(t)

j
↑ ε(t)

i
) (4.11)

where the aggregation step size ↼ → (0, 1] controls convergence speed. This formulation
highlights the interpretation of aggregation as gradient descent on a consensus objective,
where the consensus direction is determined by the weighted average of parameter dif-
ferences. Setting ↼ < 1 implements conservative updates that prevent abrupt parameter
changes, which can stabilize training when similarity estimates contain noise or when
neighbors have recently updated with conflicting gradients.

The weighted average formulation, obtained by algebraic rearrangement, expresses the
update as a convex combination of all parameters:

ε(t+1)

i
= w(t)

ii
ε(t)
i

+
∑

j→N (t)
i

w(t)

ij
ε(t)
j

(4.12)

This perspective emphasizes the role of similarity-weighted averaging in smoothing the
parameter distribution across the network, reducing variance in individual client models
through ensemble e”ects. The convexity of the combination guarantees that aggregated
parameters remain in the convex hull of participating client parameters, providing stability
against outlier updates that might otherwise cause training divergence.

The soft aggregation mechanism generalizes both extremes of the federated learning spec-
trum. Setting w(t)

ii
= 1 and w(t)

ij
= 0 for all j ⇑= i recovers pure local training with-

out collaboration, establishing the lower bound on cooperation. Setting uniform weights
w(t)

ij
= 1/N for all j recovers full averaging across the entire network as in FedAvg [1],

42 CHAPTER 4. METHODOLOGY

establishing the upper bound on homogeneity. Intermediate weighting schemes enable
continuous interpolation between these extremes, allowing the aggregation mechanism
to automatically adapt the cooperation level to the observed task similarity structure.
Figure 4.4 illustrates the complete soft aggregation pipeline for a representative client,
showing how similarity scores translate into weighted parameter updates.

Similarity-guided soft aggregation (conceptual)

Step 1: Similarity Discovery
Each client Ci computes similarity scores {sim(t)

ij
} to candidates j → N

(t)

i

Step 2: Sparsification & Weighting
Select S(t)

i
= Top-K(sim(t)

ij
) and derive similarity-proportional weights w(t)

ij

Step 3: Scoped Parameter Aggregation
ωi ∝

∑
j→S(t)

i ↑{i}w
(t)

ij
ωj

Figure 4.4: Conceptual workflow of the similarity-guided soft aggregation mechanism.
The process transforms raw task similarities into normalized weights for neighborhood-
based parameter fusion.

4.4 Aggregation Strategies: Scope and Methods

Beyond the soft weighting mechanism described in Section 4.3, two orthogonal design di-
mensions fundamentally shape aggregation behavior: the scope decision determines which
model components participate in aggregation, while the method decision determines how
neighbor information combines. This section formalizes both dimensions and presents a
critical empirical finding—that task correlation strength determines the optimal aggrega-
tion scope.

4.4.1 Aggregation Scope: Backbone-Only versus Full Model

A central design axis in decentralized federated multi-task learning is what portion of
the model should be shared across peers. We decompose each local model into a shared
backbone (feature extractor) and task-specific head(s),

εi = (εb
i
, εh

i
), (4.13)

and treat the aggregation scope as a first-class choice that can be adapted to the strength
of inter-task relatedness.

4.4. AGGREGATION STRATEGIES: SCOPE AND METHODS 43

Algorithm 1 Similarity-Guided Decentralized Multi-Task Training

Input: Clients {Ci}
N

i=1
, rounds T , local steps E, neighbor budget K, scope s →

{Backbone,Full}, operator A, warm-up Tw

Initialize: For each client Ci, initialize parameters ε(1)
i

= (εb,(1)
i

, εh,(1)
i

)
1: for t = 1 to T do
2: // Local training phase

3: Each client Ci performs E local SGD steps on Di to update ε(t)
i

4: // Similarity-guided topology evolution

5: Compute similarity scores {sim(t)

ij
} for candidate set j → N

(t)

i

6: Select top neighbors: S(t)

i
∝ Top-K(sim(t)

ij
, K)

7: Compute s(t)
ij

= max(sim(t)

ij
, 0) and normalize to obtain weights w(t)

ij

8: // Parameter exchange and aggregation

9: Exchange parameters within scope s with neighbors in S
(t)

i

10: if t ′ Tw then
11: εs

i
∝ FedAvg({εs

j
}
j→S(t)

i ↑{i}) Stable baseline

12: else
13: εs

i
∝ A({εs

j
, w(t)

ij
}
j→S(t)

i ↑{i}) Apply aggregation A

14: end if
15: Update local scoped parameters and proceed to round t+ 1
16: end for

Backbone-only aggregation. In backbone-only aggregation, client Ci exchanges and ag-
gregates only the backbone parameters εb, while keeping head parameters εh

i
private and

updated purely through local training. With similarity-derived weights {w(t)

ij
}, the back-

bone update takes the form

εb,(t+1)

i
=

∑

j→N (t)
i ↑{i}

w(t)

ij
εb,(t)
j

, (4.14)

where the weights satisfy
∑

j
w(t)

ij
= 1 over the selected neighborhood. Head parameters

remain client-specific and evolve via local optimization, e.g.,

εh,(t+1)

i
= εh,(t)

i
↑ ↼local↓ωhLi

(
εb,(t)
i

, εh,(t)
i

;Di

)
. (4.15)

This scope is attractive when heads are semantically heterogeneous (e.g., di”erent output
spaces), because it limits cross-client coupling to a shared representation.

Full-model aggregation. When head parameters are compatible across clients (e.g., same
head definitions and output spaces), it can be beneficial to aggregate the full parameter
vector:

ε(t+1)

i
=

∑

j→N (t)
i ↑{i}

w(t)

ij
ε(t)
j
. (4.16)

Full-model aggregation increases the degree of knowledge sharing, but also raises the risk
of negative transfer if tasks are mismatched or if head semantics di”er.

44 CHAPTER 4. METHODOLOGY

Aggregation design space (scope ⇐ method)

Method ∞ Scope ⇔ Backbone-only Full-model

FedAvg (Uniform) ω
b uniform average Scoped blocks average

Similarity-weighted ω
b weighted by wij Weighted by wij

HCA (Constrained) HCA applied to ω
b HCA on scoped blocks

Representative combinations are evaluated in Chapter 6. Only parameters within the
intersection of the chosen scope and the model head are subject to A.

Figure 4.5: Design space of aggregation strategies in the proposed framework.

Hypothesis. We hypothesize that backbone-only aggregation is often su!cient when
tasks are strongly related and benefit from a shared representation, while full-model aggre-
gation becomes more important as task relatedness weakens. This hypothesis is examined
systematically in Chapter 6.

4.4.2 Aggregation Methods: Weighted Average versus Conflict-Averse
Optimization

Given a neighborhood and weights, an aggregation operator specifies how received models
(or updates) are combined. We consider two families: averaging-based operators and
conflict-averse operators.

Similarity-weighted averaging. Averaging-based aggregation produces a convex combi-
nation of neighbor parameters:

ε(t+1)

agg
=

∑

j→N (t)
i ↑{i}

w(t)

ij
ε(t)
j
. (4.17)

Depending on the chosen scope (Section 4.4.1), ε denotes either backbone parameters εb

or the full model ε = (εb, εh).

Uniform averaging (FedAvg-style). Uniform averaging is the special case of Eq. (4.17)
with equal weights over the selected set:

w(t)

ij
=

1

|N
(t)

i
|+ 1

∈ ε(t+1)

agg
=

1

|N
(t)

i
|+ 1

∑

j→N (t)
i ↑{i}

ε(t)
j
. (4.18)

This operator is communication- and computation-e!cient and often serves as a stable
baseline.

4.5. STABILIZATION POLICY FOR ADVANCED AGGREGATION 45

Comparison of Aggregation Scopes

Backbone-only

Definition:
Aggregate shared parameters ωb while
maintaining task-specific heads {h

ω
h
t
}

locally.

Applicability:
• Strong task relatedness.
• Highly heterogeneous heads.

Key Benefit:
Prevents gradient conflicts in heads;
mitigates negative transfer from in-
compatible task outputs.

Full-model

Definition:
Jointly aggregate backbone ω

b and
compatible head parameters where
semantically aligned.

Applicability:
• Weak task relatedness.
• Homogeneous/compatible head
structures across peers.

Key Benefit:
Facilitates deeper cross-client align-
ment; encourages feature-to-output
synergy in shared tasks.

VS

Figure 4.6: Conceptual comparison of aggregation scopes. Scope selection serves as a
critical design axis for balancing task-specific specialization and global knowledge sharing.

Conflict-averse aggregation (HCA). Averaging can degrade performance when task gra-
dients conflict. Conflict-averse operators aim to produce an aggregated update that re-
duces destructive interference among tasks. Let {gk}mk=1

denote the task gradients on a
client (or the gradients implied by received neighbor updates, depending on implementa-
tion). HCA can be viewed as solving for a combined direction gϑ that is “as consistent as
possible” with all task gradients, e.g., by selecting non-negative combination coe!cients
that avoid opposing directions:

gϑ → arg min
{ak⇒0}

∥∥∥∥∥

m∑

k=1

akgk

∥∥∥∥∥
2

s.t.

〈
m∑

k=1

akgk, gϖ

〉
∋ 0 △ϱ. (4.19)

The model is then updated using the conflict-averse direction, e.g., ε ∝ ε ↑ ↼ gϑ. In our
framework, such operators can be applied at the backbone level or to the full model, and
are combined with the stabilization policy in Section 4.5.

4.5 Stabilization Policy for Advanced Aggregation

Conflict-averse aggregation methods (e.g., HCA [10]) can be substantially more sensitive
to heterogeneous gradients than simple averaging, especially in fully decentralized settings
where neighbor sets change over time and local updates may drift. In practice, the opti-
mization subroutines underlying such methods may become ill-conditioned (e.g., due to
poorly conditioned Gram matrices) or fail to converge when gradient conflicts are severe.

46 CHAPTER 4. METHODOLOGY

To make advanced aggregation usable as a drop-in alternative within our decentralized
framework, we adopt a two-level stabilization policy:

Hybrid warm-up and switching. We first run a stable aggregation rule (e.g., FedAvg [1]
or similarity-weighted averaging) for the first Twarm rounds to bring all clients into a
numerically stable and semantically meaningful region of the loss landscape. After this
warm-up, clients switch to conflict-averse aggregation:

ε(t+1)

i
=





Agg

stable

(
{ε(t)

j
}
j→N (t)

i ↑{i}

)
, t < Twarm,

Agg
HCA

(
{ε(t)

j
}
j→N (t)

i ↑{i}

)
, t ∋ Twarm.

(4.20)

The choice of Twarm is treated as a hyperparameter and empirically studied in Chapter 6.

Numerical safeguards with fallback. During conflict-averse aggregation, we apply lightweight
sanity checks and regularization (e.g., conditioning control and robust fallbacks to stable
aggregation) to prevent numerical failures and ensure training can proceed. The full en-
gineering design of these safeguards is reported in Chapter 5, while their practical impact
is evaluated in Chapter 6.

4.6 Training E!ciency Considerations

Beyond accuracy, decentralized multi-task training must be computationally practical.
We therefore include two training-time optimizations that do not change the underlying
learning objective:

Early stopping. Clients monitor a held-out validation signal and terminate local training
once improvements plateau, reducing unnecessary computation in later rounds.

Adaptive learning rate scheduling. We adjust the learning rate based on validation
progress to maintain stable optimization across heterogeneous tasks and clients.

Implementation details (e.g., triggers and hyperparameters) are described in Chapter 5,
while the resulting e!ciency gains are quantified in Chapter 6.

4.7 Chapter Summary

This chapter presented our methodology for decentralized federated multi-task learning.
We formalized the system model and task assignment schemes, introduced dynamically
updated task similarity discovery, and developed similarity-guided soft neighbor selec-
tion and aggregation. We then defined an aggregation design space that separates scope

4.7. CHAPTER SUMMARY 47

(backbone-only vs. full model) from method (weighted averaging vs. conflict-averse opti-
mization), and described high-level stabilization and e!ciency policies that support robust
training in practice.

48 CHAPTER 4. METHODOLOGY

Chapter 5

Implementation

This chapter describes the software architecture and engineering practices that enable
the proposed decentralized federated multi-task learning framework. The implementation
represents a significant extension of the centralized framework developed by Kohler [9],
requiring fundamental architectural redesign to support peer-to-peer communication, het-
erogeneous dense prediction tasks, and numerically stable aggregation mechanisms. Sec-
tion 5.1 traces the architectural evolution from centralized coordination to fully decen-
tralized execution. Section 5.2 presents the configuration-driven design philosophy that
enables systematic exploration of a high-dimensional experimental space. Section 5.3
details the specialized data pipelines required for multi-label dense prediction tasks. Sec-
tion 5.4 describes the training infrastructure supporting reproducible experimentation.
Finally, Section 5.5 synthesizes the software engineering principles underlying this work.

5.1 Codebase Evolution and Architecture

The architectural evolution from Kohler’s centralized framework to this thesis’s decen-
tralized extension required addressing fundamental di”erences in coordination patterns,
communication topologies, and task complexity. This section contrasts the original de-
sign with the extensions implemented to support decentralized dense prediction multi-task
learning.

5.1.1 Original Centralized Framework

Kohler’s framework [9] established the foundation for this work through its integration
of Federated Personalization [29] with Hyper Conflict-Averse (HCA) aggregation [10].
The original architecture exhibited three defining characteristics that both enabled rapid
prototyping and constrained extensibility to decentralized settings.

The original design implemented a star topology wherein a central server orchestrated all
client interactions. Clients transmitted model updates to the server, which performed

49

50 CHAPTER 5. IMPLEMENTATION

global aggregation using HCA optimization and subsequently broadcast the aggregated
model to all participants. This centralized design simplified synchronization and provided
global visibility of all client states, enabling sophisticated aggregation strategies that re-
quired knowledge of the complete client population. However, the architectural choice
introduced a single point of failure and limited scalability, as the server’s computational
and communication bandwidth became bottlenecks proportional to the number of clients.
More fundamentally, the centralized coordination pattern could not generalize to peer-to-
peer networks where clients lack global visibility and must make autonomous aggregation
decisions based solely on local information and neighbor communications.

The implementation employed a monolithic script architecture (src/run.py, approxi-
mately 800 lines) containing interleaved server and client logic. The server maintained
global state including cluster assignments derived from task similarity matrices and ag-
gregation weights computed through centralized optimization. Clients performed local
training but delegated all aggregation decisions to the server. This monolithic structure
reduced inter-module communication overhead and simplified debugging during initial
development. Nevertheless, the tight coupling between server and client logic precluded
straightforward adaptation to decentralized settings. Decentralized clients must internal-
ize aggregation logic previously residing in the server, requiring substantial refactoring
rather than simple modification.

The original framework validated on classification tasks including CIFAR-10 [25] and
CelebA, both representing single-label outputs. The data loading infrastructure assumed
images paired with scalar class labels, and evaluation metrics focused exclusively on clas-
sification accuracy. This task-specific design required fundamental extension to support
dense prediction tasks where each pixel produces an independent prediction (depth values,
surface normal vectors, semantic class labels). Dense prediction introduces computational
challenges absent in classification, including memory management for pixel-aligned anno-
tations, synchronized augmentation of images and dense label maps, and task-weighted
loss computation across heterogeneous output types.

5.1.2 Decentralized Extension

This thesis extends Kohler’s foundation to fully decentralized settings supporting multi-
task dense prediction. The extensions required architectural redesign rather than incre-
mental modification, as the shift from centralized to peer-to-peer coordination altered
fundamental assumptions about information availability, synchronization patterns, and
failure modes.

Peer-to-Peer Communication Architecture

Rather than modifying the centralized server-client architecture, this work implements
a fundamentally di”erent communication pattern wherein clients communicate directly
through simulated peer-to-peer channels. Each client maintains dynamic connections to
K neighbors selected based on task similarity (computed using gradient-based or task

5.1. CODEBASE EVOLUTION AND ARCHITECTURE 51

overlap metrics. Clients exchange model parameters or gradients through these channels
and perform local aggregation autonomously without global coordination.

The absence of a central server eliminates the single point of failure inherent in star topolo-
gies while introducing new challenges in synchronization and consistency. This thesis ad-
dresses synchronization through round-based coordination, where all clients complete local
training and neighbor communication before advancing to the next global round, main-
taining the synchronous execution pattern of Federated Averaging [1] while distributing
coordination responsibility across the network.

Specialized Training Scripts

To maintain architectural clarity and facilitate systematic experimentation, this work
implements three specialized main scripts rather than adapting the original monolithic
implementation. Table 5.1 summarizes their purposes and characteristics.

Table 5.1: Specialized Training Scripts for Decentralized Learning

Script LOC Purpose

run_decentralized.py 460 CIFAR-10 classification with dynamic neighbor
selection and similarity-based aggregation. Ini-
tial validation of P2P coordination.

run_multitask_
decentralized.py 580 Universal multi-task dense prediction support-

ing NYU V2 and Pascal Context. Polymorphic
loss computation for heterogeneous tasks (re-
gression, multi-class, binary classification).

run_proposals.py 340 Specialized aggregation scope exploration in-
cluding backbone-only and hierarchical aggre-
gation strategies.

The primary contribution resides in run_multitask_decentralized.py, which achieves
dataset-agnostic execution through configuration-driven polymorphism. The script dis-
patches to appropriate data loaders, loss functions, and evaluation metrics based on con-
figuration metadata, enabling arbitrary task combinations without code modification.

Dense Prediction Pipeline Architecture

Supporting dense prediction required developing new data pipelines that handle pixel-
aligned multi-label outputs with synchronized augmentation. The implementation ad-
dresses three key challenges: e!cient loading of multi-task annotations stored in di”erent
formats (HDF5 for NYU V2, PNG directories for Pascal Context), synchronized augmen-
tation maintaining spatial correspondence between images and dense labels, and polymor-
phic loss computation selecting task-appropriate loss functions (L1 for depth regression,
cross-entropy for segmentation, binary cross-entropy for edge detection).

52 CHAPTER 5. IMPLEMENTATION

Data augmentation applies jointly to images and all annotation maps through shared ran-
dom seeds, ensuring that a horizontal flip applied to the image generates the correspond-
ing flip in depth maps, normal maps, and segmentation masks. Augmentation strategies
include random horizontal flipping (probability 0.5), random scaling (factors uniformly
sampled from [0.5, 2.0]), random cropping to 512⇐ 512 patches, and color jittering within
±0.2 of the original values.

Implementation Scale

The decentralized extensions add substantial new functionality beyond Kohler’s original
codebase. Table 5.2 quantifies the engineering e”ort.

Table 5.2: Implementation Statistics

Component Count Description

Python code 3000 Lines of new algorithmic implementation

Configuration files 45 YAML files covering experimental variations

Automation scripts 20 Batch execution and monitoring scripts

Documentation 20 Markdown files documenting protocols

This substantial engineering e”ort, while not constituting algorithmic contributions per se,
represents essential infrastructure enabling the systematic experimentation that generated
this thesis’s empirical findings.

5.2 Configuration-Driven Architecture

A central design principle enabling rapid experimentation is the strict separation be-
tween implementation logic and experimental parameters. This section articulates the
configuration-driven architecture philosophy and demonstrates how it enables systematic
exploration of a high-dimensional experimental space with minimal code duplication.

5.2.1 Design Philosophy

Traditional research codebases frequently intermingle experimental parameters with im-
plementation logic, producing code duplication when exploring parametric variations. A
common anti-pattern involves copying entire scripts to modify hyperparameters, aggrega-
tion methods, or task assignments, leading to versioning nightmares where bug fixes must
propagate across dozens of near-identical files. This thesis adopts a disciplined separation
between implementation and configuration layers.

5.2. CONFIGURATION-DRIVEN ARCHITECTURE 53

The implementation layer contains all algorithmic logic including model architectures,
training loops, aggregation methods, and evaluation pipelines. This layer remains parameter-
agnostic, reading all experimental settings from configuration files rather than hardcoding
constants. For example, the aggregation method selection dispatches between weighted
averaging and HCA based on a configuration field (setup.aggregation_method), rather
than maintaining separate training scripts for each method. This design ensures that
algorithmic logic remains stable across experiments, as parameter variations require only
configuration changes without touching implementation code.

The configuration layer contains all experimental parameters expressed in human-readable
YAML format with hierarchical organization. Each configuration file defines one complete
experiment including dataset selection, task assignments, hyperparameters, and aggrega-
tion settings. This externalization of parameters enables systematic exploration through
programmatic configuration generation. For instance, ablating the e”ect of the ς parame-
ter required generating two configuration files di”ering only in the value of setup.alpha,
with all other parameters held constant.

The configuration-driven architecture delivers four primary benefits: First, code reuse
achieves remarkable e!ciency—the same run_multitask_decentralized.py script exe-
cuted all eight NYU V2 experimental configurations and four Pascal Context configura-
tions by reading di”erent YAML files. Traditional approaches requiring separate scripts
per configuration would have generated over 4,600 lines of duplicated code. Second, repro-
ducibility strengthens through configuration versioning, as Git commits capturing config-
uration files alongside results provide complete experimental provenance. Third, parallel
development becomes feasible, as multiple researchers can design experiments through
configuration files without code conflicts. Fourth, rapid iteration accelerates through sim-
plified parameter modification.

5.2.2 Configuration File Structure

Configuration files employ YAML syntax organized into six logical sections: general
(metadata and random seed), data (dataset selection and loading), setup (network topol-
ogy, task assignments, aggregation configuration), training (optimization hyperparam-
eters), model (architecture specification), and output (result persistence). Listing 5.1
presents a representative configuration file for the NYU Depth V2 pairwise experiment
(A2), demonstrating the declarative specification of experimental parameters.

Table 5.3 summarizes the organizational hierarchy and key parameters in each section.

For example, a pairwise task assignment for NYU V2 (experiment A2) specifies six clients
with task weights: {depth: 0.7, segmentation: 0.3, normal: 0.0}, {depth: 0.7,
segmentation: 0.0, normal: 0.3}, etc., where weights sum to 1.0 per client. This
declarative specification enables the same training script to execute SingleTask (A1), Pair-
wise (A2), and MultiTask configurations without code modification.

54 CHAPTER 5. IMPLEMENTATION

Listing 5.1: Representative configuration file for NYU Depth V2 pairwise experiment
(A2).

1 # configs/decentralized/nyuv2_a2_pairwise_v2.yml
2 general:
3 title: "a2_pairwise_v2"
4 seed: 42
5 description: "Pairwise task assignment with task overlap prior"
6
7 data:
8 dataset: "nyuv2"
9 root_dir: "./ data/nyuv2"
10 dataset_fraction: 1.0
11
12 setup:
13 num_clients: 6
14 n_neighbors: 3
15 alpha: 0.5 # Task overlap weight
16 aggregate_heads: true # Full aggregation
17 aggregation_method: "weighted"
18
19 # Pairwise task assignments (0.7 primary , 0.3 secondary)
20 task_weights_per_client:
21 - {depth: 0.7, segmentation: 0.3, normal: 0.0}
22 - {depth: 0.7, segmentation: 0.0, normal: 0.3}
23 - {depth: 0.3, segmentation: 0.7, normal: 0.0}
24 - {depth: 0.0, segmentation: 0.7, normal: 0.3}
25 - {depth: 0.3, segmentation: 0.0, normal: 0.7}
26 - {depth: 0.0, segmentation: 0.3, normal: 0.7}
27
28 training:
29 num_rounds: 50
30 local_epochs: 5
31 batch_size: 4
32 learning_rate: 0.001
33 optimizer: "adam"
34 early_stopping:
35 enabled: true
36 patience: 10
37 min_delta: 0.002
38
39 model:
40 backbone: "resnet18"
41 pretrained: true
42
43 output:
44 output_dir: "results/nyuv2/a2_pairwise_v2"
45 save_checkpoints: true

5.2. CONFIGURATION-DRIVEN ARCHITECTURE 55

Table 5.3: Configuration File Structure

Section Key Parameters

general Experiment title, random seed, textual description

data Dataset identifier (nyuv2 or pascal_context), root directory, dataset fraction

setup Number of clients, neighbor count K, ς parameter, aggregation method/s-
cope, per-client task assignments

training Training rounds, local epochs, batch size, learning rate, optimizer, early stop-
ping configuration

model Backbone architecture (ResNet-18), pretrained initialization

output Output directory, checkpoint saving, logging frequency

5.2.3 Multi-Dataset Support

The run_multitask_decentralized.py script achieves dataset-agnostic execution through
conditional dispatch driven by the data.dataset configuration field. Algorithm 2 illus-
trates the dataset loading logic implementing polymorphic data loader instantiation.

Algorithm 2 Polymorphic Dataset Loading
1: function LoadDataset(config)
2: dataset type ∝ config[“data”][“dataset”]
3: if dataset type =“pascal context” then
4: dm ∝ DMPascalContext(config[“data”])
5: task dims ∝ {segmentation : 59, human parts : 15, edge : 1}
6: else ⇁ Default to NYU Depth V2
7: dm ∝ DMNYUDepthV2(config[“data”])
8: task dims ∝ {depth : 1, normal : 3, segmentation : 13}
9: end if
10: return dm, task dims
11: end function

This polymorphic design pattern extends beyond data loading to loss computation, metric
evaluation, and result logging. The training loop queries task dimensions to construct
task-specific output heads dynamically, selects appropriate loss functions based on task
types, and computes task-appropriate evaluation metrics. Without configuration-driven
architecture, supporting two datasets would require either duplicating the entire training
script or implementing complex inheritance hierarchies.

5.2.4 Experiment Isolation

Each experiment writes results to a unique output directory specified in its configura-
tion, preventing interference between concurrent or sequential runs. The hierarchical
directory structure isolates experiments by dataset and configuration: results/nyuv2/

56 CHAPTER 5. IMPLEMENTATION

a1_singletask_v2/, results/nyuv2/a2_pairwise_v2/, etc. Directory isolation extends
to logging, where training logs organize hierarchically by dataset to prevent file collisions.
This isolation property enables concurrent execution of multiple experiments on di”erent
GPUs without risk of result corruption.

Table 5.4 summarizes the configuration files generated and experiments executed per
dataset, demonstrating the e!ciency gained through configuration-driven design.

Table 5.4: Configuration Files and Experimental Coverage

Dataset Configs Main Script Experiment Types

CIFAR-10 15 run_decentralized.py Dynamic clustering, Hybrid

NYU V2 20
run_multitask_
decentralized.py

A1–A2, B1–B4, C1–C2

Pascal Context 10
run_multitask_
decentralized.py

A1–A2, B1, B4, CrossLoss

Total 45 2 universal scripts 60+ experiments

This demonstrates the multiplicative power of configuration-driven design: 45 configu-
ration files generate over 60 unique experiments using only two main implementation
scripts. Traditional approaches requiring separate code for each experiment would have
produced over 34,800 lines of duplicated code, introducing massive maintenance overhead
and dramatically increasing the probability of implementation inconsistencies.

5.3 Data Pipeline Implementation

Dense prediction tasks demand specialized data pipelines handling multiple pixel-aligned
labels per image with heterogeneous output formats. This section details the implemen-
tations for NYU Depth V2 and Pascal Context, addressing the challenges of multi-label
loading, synchronized augmentation, and task-weighted loss computation.

5.3.1 NYU Depth V2 Pipeline

The NYU Depth V2 dataset [7] provides indoor RGBD images with aligned annotations
for three tasks exhibiting strong geometric correlation: depth estimation, surface nor-
mal prediction, and semantic segmentation. The pipeline implementation addresses the
challenge of e!ciently loading and preprocessing three annotation types with di”erent
numerical characteristics.

5.3. DATA PIPELINE IMPLEMENTATION 57

Data Storage and Loading

NYU V2 annotations are distributed in HDF5 format, a hierarchical data format enabling
e!cient random access to large multi-dimensional arrays. The HDF5 file structure orga-
nizes data into training and validation splits, with each group containing four datasets:
RGB images (uint8, shape [N, 3, H,W]), depth maps (float32, shape [N, 1, H,W] in me-
ters), surface normals (float32, shape [N, 3, H,W] with values in [↑1, 1]), and segmenta-
tion masks (int64, shape [N,H,W] with class indices in {0, 1, . . . , 12}).

The data loader extends PyTorch’s Dataset interface, implementing the __getitem__
method that returns a dictionary containing the image and all three task annotations.
The HDF5 format enables memory-mapped access, where the data loader reads samples
on-demand without loading the entire dataset into RAM. For the 795 training images
(each 640 ⇐ 480 RGB with three dense annotation maps), memory-mapped loading is
essential to maintain feasible memory footprint.

Task-Specific Preprocessing

The preprocessing methods apply task-specific normalization addressing the heteroge-
neous numerical characteristics of the three tasks:

• Image normalization: Resize to 256 ⇐ 256 using bilinear interpolation and apply
channel-wise standardization using ImageNet statistics (µ = [0.485, 0.456, 0.406],
⇀ = [0.229, 0.224, 0.225]) to facilitate transfer learning from pretrained backbones [50].

• Depth normalization: Apply log-scale transformation d⇑ = log(1 + d) to compress
the dynamic range. Raw depth values span approximately [0.5, 10.0] meters with
heavy concentration near zero. The logarithmic transformation improves gradient
behavior by reducing magnitude di”erences between near and far surfaces.

• Surface normal normalization: Enforce unit vector constraints through L2 normal-
ization: n⇑ = n/≃n≃2. Explicit normalization ensures that predicted normals can be
compared against ground truth using angular error metrics.

• Segmentation: Convert to torch.long dtype required by PyTorch’s cross-entropy
loss. Integer class indices need no scaling.

5.3.2 Pascal Context Pipeline

Pascal Context [8] extends the PASCAL VOC dataset with dense annotations for 59
semantic classes plus additional tasks. This thesis employs three tasks exhibiting weak
correlation: semantic segmentation (59-class object categorization), human parts segmen-
tation (15-class body part labels), and edge detection (binary edge presence at each pixel).
Unlike NYU V2’s strong geometric correlation, Pascal Context’s tasks operate at di”erent
abstraction levels with limited mutual benefit.

58 CHAPTER 5. IMPLEMENTATION

Data Storage and Loading

Pascal Context annotations are stored as separate PNG files for each task rather than a
unified HDF5 archive. The directory structure organizes data as: JPEGImages/ (RGB im-
ages), SegmentationClass/ (semantic masks), HumanParts/ (body part labels for person-
containing images only), and Edge/ (binary edge maps). The distributed storage format
requires multiple file I/O operations per sample, contrasting with NYU V2’s single HDF5
read.

The data loader implements graceful handling of missing annotations, a necessity because
not all images have all task labels. Missing annotations are replaced with an ignore
index (-1) that instructs loss functions to skip pixels without ground truth labels through
the ignore_index parameter of PyTorch’s cross-entropy loss. This mechanism enables
principled handling of incomplete annotations without resorting to heuristics like assigning
random labels.

Data Augmentation

To improve generalization from the relatively small dataset (approximately 10,000 im-
ages), Pascal Context training applies synchronized augmentation: random horizontal
flipping (probability 0.5), random resizing (scale factors from [0.5, 2.0]), random cropping
(512⇐ 512 patches), and color jittering (brightness, contrast, saturation within ±0.2).

The augmentation pipeline implements synchronization through shared random state:
when sampling a horizontal flip decision, the data loader seeds the random number gen-
erator, applies the decision to the image, reseeds with the same value, and applies the
decision to each annotation map. This ensures pixel-level correspondence essential for
dense prediction training.

5.3.3 Task-Weighted Loss Computation

Supporting multiple tasks per client requires computing weighted combinations of task-
specific losses. Algorithm 3 illustrates the polymorphic loss computation.

The polymorphic loss computation enables flexible task combinations specified through
configuration. For example, a client training on depth and segmentation with weights
{depth: 0.7, segmentation: 0.3, normal: 0.0} would compute total loss as Ltotal =
0.7 ·L1(d̂, d)+0.3 ·CrossEntropy(ŝ, s), automatically selecting L1 loss for depth regression
and cross-entropy for segmentation classification. The zero weight on normals causes the
function to skip normal loss computation entirely, avoiding unnecessary computation for
unused tasks.

5.4. TRAINING INFRASTRUCTURE 59

Algorithm 3 Task-Weighted Loss Computation
1: function ComputeLoss(outputs, targets, task weights)
2: total loss ∝ 0
3: task losses ∝ {}

4: for each (task,weight) in task weights do
5: if weight > 0 then
6: if task → {depth, normal} then
7: loss ∝ L1(outputs[task], targets[task]) ⇁ Regression
8: else if task = edge then
9: loss ∝ BCE(outputs[task], targets[task], pos w = 10.0)
10: else
11: loss ∝ CE(outputs[task], targets[task], ign = ↑1) ⇁ Classification
12: end if
13: total loss ∝ total loss + weight⇐ loss
14: task losses[task] ∝ loss
15: end if
16: end for
17: return total loss, task losses
18: end function

5.4 Training Infrastructure

This section describes the infrastructure supporting reproducible decentralized training,
including peer-to-peer communication simulation, experiment automation, and repro-
ducibility measures.

5.4.1 Peer-to-Peer Communication Simulation

True decentralized training would deploy each client on separate physical machines com-
municating over networks. For controlled experimentation enabling rapid iteration and
precise reproducibility, this work simulates peer-to-peer communication within a sin-
gle process. The simulation accurately models decentralized decision-making dynam-
ics (clients make independent aggregation decisions without global coordination) while
avoiding network communication overhead, Byzantine fault injection, and synchroniza-
tion challenges present in distributed systems.

Each client instantiates a DecentralizedClient class maintaining private state includ-
ing model parameters, optimizer state, local dataset, and task assignment. Clients expose
an aggregation interface enabling neighbor model access without exposing internal im-
plementation details. Listing 5.2 illustrates the core aggregation method implementing
autonomous parameter updates.

The aggregation weight normalization ensures that weights sum to unity:

wi =
sii∑

j→Ni
sij + sii

, wj =
sij∑

k→Ni
sik + sii

△j → Ni (5.1)

60 CHAPTER 5. IMPLEMENTATION

Listing 5.2: Decentralized client aggregation implementing autonomous parameter up-
dates without central coordination. Each client independently computes normalized
weights from similarity scores and aggregates neighbor parameters. The self-weight term
wi ensures that clients incorporate their own parameters, preventing complete overwriting
by neighbors. Aggregation operates on the shared backbone by default, with optional full
model aggregation when aggregate_heads=True.

1 class DecentralizedClient:
2 def __init__(self , client_id , task_weights , model , optimizer):
3 self.id = client_id
4 self.task_weights = task_weights
5 self.model = model
6 self.optimizer = optimizer
7
8 def aggregate_from_neighbors(self , neighbors , similarity_scores):
9 """Aggregate!parameters!from!selected!neighbors!using!soft!

weighting."""
10 # Compute normalized aggregation weights
11 total_sim = sum(similarity_scores.values ()) + similarity_scores[

self.id]
12 weights = {n.id: similarity_scores[n.id] / total_sim
13 for n in neighbors}
14 self_weight = similarity_scores[self.id] / total_sim
15
16 # Aggregate backbone (or full model if aggregate_heads=True)
17 for name , param in self.model.backbone.named_parameters ():
18 aggregated = self_weight * param.data.clone()
19
20 for neighbor in neighbors:
21 neighbor_param = neighbor.model.backbone.state_dict ()[

name]
22 aggregated += weights[neighbor.id] * neighbor_param
23
24 param.data.copy_(aggregated)

5.4. TRAINING INFRASTRUCTURE 61

where wi is the self-weight, Ni denotes client i’s neighbor set, and sij represents pair-
wise similarity. This normalization preserves parameter magnitudes, preventing explosive
growth or shrinkage that would occur with unnormalized weights. The self-weight term
ensures that clients retain information from their local training rather than being domi-
nated by neighbor parameters.

5.4.2 Experiment Automation

Manually executing over 60 experiments sequentially would be error-prone and time-
intensive. This work implements automation scripts orchestrating batch execution, real-
time monitoring, and result aggregation. The automation infrastructure reduces human
error, enables overnight execution, and provides comprehensive logging for post-hoc anal-
ysis.

The batch runner architecture accepts a run number as command-line argument, enabling
three-run statistical validation through sequential invocations with di”erent run identi-
fiers. For each experiment configuration, the script programmatically modifies the output
directory to include the run number, ensuring isolated results across runs. The script
then invokes the training script with the modified configuration, redirecting all output to
a timestamped log file using tee for simultaneous terminal display and persistent logging.

5.4.3 Reproducibility Measures

Ensuring reproducible results demands careful control of all randomness sources in the
training pipeline. This work implements three layers of reproducibility guarantees ad-
dressing di”erent sources of nondeterminism.

Random seed control : All pseudorandom number generators receive deterministic seeding
through a centralized function invoked at experiment initialization. The implementa-
tion seeds PyTorch’s CPU and CUDA backends, NumPy’s random number generator,
Python’s built-in random module, and configures PyTorch’s cuDNN backend for deter-
ministic execution. The seed value originates from the configuration file’s general.seed
field, ensuring that all randomness sources derive from a single configuration parameter.
Deterministic cuDNN behavior trades a small performance penalty (approximately 10%
training time increase) for reproducibility.

Configuration versioning : All configuration files reside in Git version control with commit
messages linking configurations to experimental runs. Additionally, each result JSON file
includes a complete copy of the configuration used for that experiment, embedded in the
config field of the results dictionary. This dual versioning strategy ensures that exper-
iments remain reproducible even if the original configuration file undergoes subsequent
modifications.

Structured result logging : Results are persisted in JSON format with comprehensive round-
by-round metrics enabling detailed convergence analysis. The JSON structure includes
experiment metadata (title, timestamp, configuration), global training statistics (total

62 CHAPTER 5. IMPLEMENTATION

rounds executed, early stopping trigger round), and a rounds array containing per-round
metrics (training loss, validation loss, per-task losses, similarity matrices, aggregation
weights). This structured format enables programmatic analysis through Python scripts
that load JSON files, extract metric trajectories, and generate comparison plots across
experiments.

5.5 Software Engineering Practices

Beyond algorithmic contributions, this thesis demonstrates that disciplined software engi-
neering practices amplify research productivity. This section synthesizes the engineering
principles underlying the implementation.

Modular code organization: The codebase follows a strict modular structure separat-
ing concerns into distinct directories. The src/decentralized/ directory contains core
contributions (main scripts, client implementations, similarity computation, aggregation
methods). The src/data_handling/ directory provides dataset-specific data loaders iso-
lated from training logic. The src/client_handling/ directory implements aggregation
algorithms including the HCA protection mechanism. The src/models/ directory defines
neural architectures for multi-task dense prediction. This separation enables indepen-
dent development and testing of modules, reduces cognitive load when modifying specific
functionality, and facilitates code reuse across experiments.

Configuration-driven testing strategy : The configuration-driven architecture enables a
three-tier testing strategy balancing execution time against result fidelity. Quick test
configurations employ 3 rounds, 2 clients, and 10% dataset fractions, completing in ap-
proximately 2 minutes to validate code correctness, configuration parsing, and absence of
runtime errors. These quick tests execute before launching expensive full runs, catching
bugs early. Full run configurations employ 50 rounds, 6 clients, and complete datasets,
generating publication-quality results over 2-8 hours depending on task complexity. Abla-
tion configurations systematically vary single parameters while holding all others constant,
enabling rigorous sensitivity analysis. This tiered approach minimizes wasted computation
through early error detection while ensuring final results derive from complete experimen-
tal configurations.

Version control and documentation: All code, configurations, and documentation reside in
Git version control with atomic commits linking implementation changes to experimen-
tal results. The repository includes 20 markdown documents providing comprehensive
documentation of experimental protocols, dataset characteristics, and implementation
decisions. This documentation practice ensures knowledge transfer and enables future
researchers to understand design rationale without reverse-engineering code.

The implementation demonstrates that software architecture decisions profoundly impact
research productivity. The configuration-driven design enabled exploring over 60 exper-
imental configurations with only two main scripts, representing a 10:1 code reduction
versus traditional approaches. Modular data pipelines support heterogeneous dense pre-
diction tasks through polymorphic loss computation and task-agnostic training loops. Au-
tomation scripts ensure reproducible batch execution with comprehensive logging. These

5.5. SOFTWARE ENGINEERING PRACTICES 63

engineering practices, while not constituting algorithmic contributions themselves, form
essential infrastructure enabling the systematic experimentation presented in Chapter 6.
The implementation provides a reusable foundation for future research exploring decen-
tralized federated learning, multi-task learning, and dense prediction tasks, with minimal
adaptation required for new datasets or aggregation strategies.

64 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

This chapter presents comprehensive experimental validation of the proposed decentral-
ized federated multi-task learning framework across three datasets spanning classifica-
tion and dense prediction tasks. The evaluation strategy employs a three-dataset valida-
tion approach deliberately designed to test the framework’s generalization across diverse
task types (classification versus dense prediction), task correlation structures (strongly
correlated geometric tasks versus weakly correlated multi-scale tasks), and aggregation
challenges (stable convergence versus numerical instability). Section 6.1 establishes the
experimental methodology including the three-dataset validation strategy, experimental
design matrix systematically varying task assignment and aggregation dimensions, hyper-
parameter selections with rationale, and evaluation metrics appropriate for heterogeneous
task types. Section 6.2 chronicles the CIFAR-10 framework validation, documenting the
systematic debugging process through extensive experimentation that isolated HCA nu-
merical instability and culminated in both the 5-layer protection mechanism and hybrid
aggregation strategies. Section 6.3 reports NYU Depth V2 results providing the first ap-
plication of decentralized FMTL to dense prediction tasks with strongly correlated objec-
tives. Section 6.4 presents Pascal Context results validating cross-dataset generalization
and revealing the critical relationship between task correlation strength and optimal ag-
gregation scope. Section 6.5 synthesizes findings across datasets, identifying consistent
patterns and dataset-specific behaviors. Finally, Section 6.6 distills the most significant
empirical contributions and their implications for practice.

6.1 Experimental Setup

This section establishes the experimental methodology enabling rigorous evaluation through
controlled comparisons, statistical validation, and comprehensive metric collection.

6.1.1 Three-Dataset Validation Strategy

Validating on a single dataset risks discovering dataset-specific artifacts rather than gen-
eral principles applicable across problem domains. This thesis adopts a three-dataset

65

66 CHAPTER 6. EVALUATION

strategy deliberately selected to span diverse characteristics along multiple dimensions.
Table 6.1 summarizes the strategic positioning of each dataset within the validation frame-
work.

Table 6.1: Three-Dataset Validation Strategy Spanning Task Types and Correlation
Structures

Dataset Purpose Task Types Correlation Contribution

CIFAR-10 Baseline validation Classification Moderate Inherited baseline

NYU V2 Dense prediction Regr. + Classif. Strong Novel

Pascal VOC Generalization test Multi-scale classif. Weak Novel

CIFAR-10 [25] serves as the framework validation dataset, inherited from Kohler’s cen-
tralized work [9]. The dataset provides a controlled classification baseline for validating
that the decentralized architecture functions correctly before extending to the complexity
of dense prediction. CIFAR-10’s 10 object classes (animals, vehicles, everyday objects)
create moderate task heterogeneity when clients specialize on class subsets. This moderate
heterogeneity generates meaningful collaboration opportunities (related classes like dog
and cat benefit from shared representations) without extreme gradient conflicts that would
destabilize training. The classification focus further simplifies debugging, as single-label
outputs produce interpretable loss trajectories and enable straightforward performance
assessment through accuracy metrics. This simplicity proved essential during the system-
atic HCA debugging process detailed in Section 6.2, where over 20 experiments tested
increasingly sophisticated solutions before achieving stable convergence.

NYU Depth V2 [7] provides the first application of decentralized FMTL to pixel-wise re-
gression and segmentation, representing a significant extension beyond prior classification-
focused federated learning research. The dataset comprises indoor RGBD images with
aligned annotations for three tasks: depth estimation (predicting metric depth at each
pixel), surface normal prediction (estimating 3D surface orientation vectors), and seman-
tic segmentation (assigning one of 13 indoor scene classes to each pixel). These three
tasks exhibit strong geometric correlation arising from the shared structure of indoor
scenes. Depth edges align with semantic boundaries, as objects at di”erent depths typ-
ically belong to di”erent semantic categories (e.g., wall versus table). Surface normals
couple to depth through geometric constraints, as similar depths on planar surfaces im-
ply similar surface orientations. Segmentation leverages geometric cues, as depth and
normal discontinuities indicate object boundaries. This strong correlation tests whether
decentralized aggregation can leverage complementary task information to improve perfor-
mance beyond task-isolated training, addressing the central research question of whether
multi-task learning benefits persist in decentralized settings lacking global coordination.

Pascal Context [8] tests generalization to scenarios where tasks provide limited mutual
benefit, stress-testing aggregation strategies under weak correlation. The dataset extends
PASCAL VOC with dense annotations across 59 semantic classes plus additional tasks.
This thesis employs three tasks operating at fundamentally di”erent abstraction levels:
semantic segmentation (59-class object categorization requiring high-level semantic un-
derstanding), human parts segmentation (15-class body part labels applicable only to

6.1. EXPERIMENTAL SETUP 67

person-containing images), and edge detection (binary classification capturing low-level
gradient information). Unlike NYU V2’s geometric coherence, Pascal Context’s tasks
exhibit weak structural coupling. Edge detection captures texture edges and material
boundaries unrelated to semantic categories, as edges appear within homogeneous objects
(wood grain patterns) and may be absent at semantic boundaries (gradual color transi-
tions). Human parts segmentation specializes on a single object category (people) and
provides no information for scenes lacking humans (landscapes, vehicles, furniture). Se-
mantic segmentation operates at the object level, abstracting away the low-level edges and
human-specific features. This weak correlation challenges aggregation algorithms to avoid
negative transfer, where incorporating information from dissimilar tasks degrades perfor-
mance relative to task-isolated training. The combination of strong correlation (NYU
V2) and weak correlation (Pascal Context) enables studying how task relationships af-
fect optimal aggregation strategies, yielding one of this thesis’s central empirical findings
detailed in Section 6.4.3.

6.1.2 Experimental Design Matrix

Experiments systematically vary two primary dimensions—task assignment strategy and
aggregation configuration—enabling controlled ablation studies isolating the e”ect of in-
dividual design choices. Task assignment determines which tasks each client trains, con-
trolling the degree of task heterogeneity across the network. The SingleTask assignment
(designated A1 across datasets) assigns each client exclusive focus on one task with weight
1.0, minimizing gradient conflicts at the cost of limited knowledge transfer. The Pairwise
assignment (A2) assigns each client two related tasks with asymmetric weights: 0.7 for
the primary task and 0.3 for a secondary task. This balanced design provides multi-task
learning benefits while maintaining task specialization, hypothesized to outperform pure
specialization (A1) and uniform multi-task distribution. The MultiTask assignment (B4)
distributes all tasks equally across all clients with uniform weights (0.33 for three tasks),
maximizing shared representation learning but risking gradient conflicts when tasks have
opposing optimization directions.

Aggregation strategy encompasses three interrelated design choices: the similarity metric
balancing gradient-based and task overlap information, the aggregation method imple-
menting parameter combination, and the aggregation scope determining which parameters
undergo aggregation. The similarity metric employs parameter ς → [0, 1] interpolating
between pure gradient similarity (ς = 0.0, designated experiments with prefix B) and
mixed gradient-task overlap similarity (ς = 0.5, experiments with prefix A). Pure gradi-
ent similarity (B-series experiments including B1, B2, B3, B4) computes client relation-
ships exclusively from gradient cosine similarity, testing whether dynamic optimization
information su!ces for e”ective aggregation without static task metadata. Mixed simi-
larity (A-series experiments including A1, A2) incorporates task overlap prior knowledge,
hypothesizing that combining optimization dynamics with task structure improves aggre-
gation decisions. The aggregation method selects between weighted averaging (comput-
ing convex combinations of neighbor parameters using normalized similarity scores) and
Hyper Conflict-Averse (HCA) aggregation (solving a constrained optimization problem
minimizing gradient conflicts). Weighted averaging provides computational e!ciency and

68 CHAPTER 6. EVALUATION

numerical stability, while HCA theoretically reduces negative transfer through sophisti-
cated conflict detection. The aggregation scope determines whether updates apply to the
full model (backbone feature extractor plus task-specific heads) or backbone-only (feature
extractor only, keeping task heads fixed). Full aggregation maximizes parameter sharing
and information transfer, while backbone-only aggregation limits sharing to the common
feature representation, hypothesized to reduce interference for heterogeneous tasks.

Table 6.2 presents the complete experimental design matrix crossing task assignment and
aggregation configurations.

Table 6.2: Experimental Design Matrix Systematically Varying Task Assignment and
Aggregation

ID Task Assignment Aggregation Method Scope ω

A1 SingleTask Weighted Full 0.5
A2 Pairwise Weighted Full 0.5

B1 SingleTask Weighted Backbone-only 0.0
B2 SingleTask HCA Backbone-only 0.0
B3 SingleTask HCA Full 0.0
B4 MultiTask Weighted Full 0.0

C1 Dynamic neighbors Weighted Full 0.0
C2 Hierarchical agg. Weighted Full 0.0

This 8 ⇐ 3 experimental grid (8 configurations across 3 datasets) generates 24 base ex-
periments. Including debugging runs (20+ CIFAR-10 experiments testing HCA stability
solutions), ablation studies (neighbor count K sensitivity, early stopping patience vari-
ations), HCA fix verification runs (B2/B3 re-runs after implementing protection mech-
anisms), and multi-run statistical validation (Pascal Context executed three times with
di”erent random seeds), this thesis reports results from over 60 experiments.

6.1.3 Hyperparameter Configuration

Table 6.3 summarizes key hyperparameters with rationale grounded in federated learning
best practices and computational constraints.

The client count N = 6 balances competing objectives. Larger populations better approx-
imate realistic federated networks and provide richer task heterogeneity (more possible
task assignment configurations). However, computational cost scales quadratically with
client count for similarity computation (O(N2) pairwise gradient comparisons) and com-
munication simulation overhead. Six clients enable meaningful heterogeneity (six possible
pairwise task assignments for three tasks) while maintaining tractable experimentation.
The neighbor count K = 3 is selected to balance competing factors. Smaller K reduces
communication overhead but limits information flow through the network. Larger K pro-
vides more diverse information but dilutes similarity-based selection (when K approaches
N , similarity-based selection degenerates to uniform averaging). With N = 6 clients,
K = 3 represents the midpoint, providing access to half the network while maintaining

6.1. EXPERIMENTAL SETUP 69

Table 6.3: Hyperparameter Settings with Rationale

Parameter Value Rationale

Clients (N) 6 Maintains a balance between data heterogeneity and
communication overhead.

Neighbors (K) 3 Trade-o” between information diversity and
similarity-based filtering.

Max rounds (T) 50 Provides su#cient headroom; early stopping typically
converges sooner.

Local epochs (E) 5 Consistent with established federated learning bench-
marks [1].

Batch size 4 (NYU), 8 (Pascal) Determined by hardware constraints (12GB VRAM).
Learning rate 0.001 Standard Adam optimizer default, validated through

empirical trials.
Patience 8–10 Conservative threshold to prevent premature conver-

gence termination.
Min. Delta ($) 0.002–0.003 Relative improvement threshold (equivalent to 0.2–

0.3%).

meaningful similarity-based filtering. This choice allows each client to aggregate informa-
tion from multiple neighbors without degenerating to near-uniform averaging. The max-
imum round count T = 50 provides ample training budget, as early stopping typically
triggers significantly earlier (as detailed in Section 6.3.2). This generous budget ensures
that early stopping triggers due to true convergence rather than insu!cient training time.
Local epoch count E = 5 follows federated learning convention [1], [12], balancing local
computation (larger E improves local model quality) against communication frequency
(smaller E enables more frequent aggregation).

Batch sizes reflect GPU memory constraints rather than optimization preferences. Dense
prediction tasks with 256 ⇐ 256 images and pixel-wise predictions consume substantial
memory, particularly for NYU V2’s three dense annotation maps (depth, normals, seg-
mentation) totaling 256 ⇐ 256 ⇐ 5 values per sample. Batch size 4 for NYU V2 reaches
the memory limit of 12GB GPUs (NVIDIA Tesla T4), while Pascal Context’s smaller
e”ective resolution after random cropping enables batch size 8. The learning rate 0.001
represents Adam optimizer’s default, validated through preliminary experiments testing
{0.0001, 0.0005, 0.001, 0.005}. Smaller rates converged too slowly (requiring 100+ rounds),
while larger rates exhibited instability (oscillating validation loss). Early stopping con-
figuration employs conservative thresholds preventing premature termination. Patience
8-10 rounds allows temporary validation loss increases (common in multi-task learning
due to task interference) without triggering stopping. Minimum delta 0.002-0.003 (0.2-
0.3% relative improvement) filters noise in validation metrics while detecting meaningful
improvements.

All experiments employ ResNet-18 [49] pretrained on ImageNet [50] as the shared back-
bone. ResNet-18 provides su!cient capacity for dense prediction (18 layers with residual
connections enabling gradient flow) while remaining computationally tractable for rapid
experimentation. Pretrained initialization leverages transfer learning from ImageNet’s
1.2 million images, dramatically reducing convergence time for dense prediction tasks.

70 CHAPTER 6. EVALUATION

Task-specific heads employ architectures appropriate for each task type: regression heads
(depth, normals) use three convolutional layers with 256, 128, and output channels fol-
lowed by linear activation, while classification heads (segmentation, edges) use similar
architecture with softmax activation for multi-class outputs and sigmoid for binary clas-
sification.

6.1.4 Evaluation Metrics

Metrics are selected according to task type following computer vision community stan-
dards, enabling meaningful comparison with prior work. Segmentation tasks (semantic
segmentation for NYU V2 and Pascal Context, human parts segmentation for Pascal
Context) employ Mean Intersection over Union (mIoU) as the primary metric, averag-
ing per-class IoU across all classes to provide balanced assessment independent of class
frequency. mIoU is computed as mIoU = 1

C

∑
C

c=1

TPc
TPc+FPc+FNc

, where C denotes class
count, TPc represents true positives for class c, FPc false positives, and FNc false nega-
tives. Pixel accuracy supplements mIoU, measuring the percentage of correctly classified
pixels: Acc =

∑
c TPc∑

c(TPc+FPc+FNc)
. While pixel accuracy can be dominated by frequent

classes (background often constitutes 50%+ of pixels), it provides intuitive interpretation
of overall correctness.

Regression tasks (depth estimation and surface normal prediction for NYU V2) em-
ploy metrics appropriate for continuous outputs. Root Mean Squared Error (RMSE)
measures average prediction error with quadratic penalty emphasizing large deviations:

RMSE =
√

1

N

∑
N

i=1
(yi ↑ ŷi)2, where N denotes pixel count, yi the ground truth value, and

ŷi the prediction. Mean Absolute Error (MAE) provides robustness to outliers through
linear penalty: MAE = 1

N

∑
N

i=1
|yi ↑ ŷi|. For surface normal prediction, Mean Angular

Error measures the average angle between predicted and ground truth normal vectors:
MAEangle =

1

N

∑
N

i=1
arccos(ni · n̂i), where ni and n̂i denote unit normal vectors. Angular

error provides geometrically meaningful assessment independent of coordinate system ori-
entation. Relative Error normalizes by ground truth depth for scale-invariant assessment:
REL = 1

N

∑
N

i=1

|yi↔ŷi|
yi

.

Edge detection (Pascal Context) employs binary classification metrics including Precision
(fraction of predicted edges that are true edges), Recall (fraction of true edges successfully
detected), and F1-Score (harmonic mean balancing precision and recall). The Optimal
Dataset Scale F-measure (ODS) extends F1 by optimizing the classification threshold
across the dataset, providing threshold-independent assessment: ODS = maxϱ

2·P (ϱ)·R(ϱ)

P (ϱ)+R(ϱ)
,

where P (ϖ) and R(ϖ) denote precision and recall at threshold ϖ .

For multi-task experiments, the primary comparison metric is task-weighted aggregated
loss combining individual task losses according to client task weights. This aggregated
loss respects task emphasis (clients training primarily on depth weight depth loss more
heavily) while providing a single scalar enabling method comparison. The aggregated loss
computes as Ltotal =

∑
t→T wtLt, where T denotes the task set, wt the client’s weight

for task t, and Lt the task-specific loss. Critically, all NYU V2 experiments employ
early stopping with the configuration parameter restore_best_weights: true, which

6.2. CIFAR-10: FRAMEWORK VALIDATION AND HCA PROBLEM DISCOVERY71

reverts model parameters to the round achieving the lowest validation loss rather than
retaining the final round’s parameters. Consequently, reported performance uses Best
Loss—the minimal validation loss achieved during training, indicating actual model per-
formance—rather than Final Loss at the early stopping trigger round. This distinction is
essential for correct interpretation, as the best round typically occurs 8-12 rounds before
early stopping triggers (e.g., experiment A2 achieved best loss 0.6929 at round 16 but
early stopping triggered at round 26 with loss 0.8347; the deployed model uses round 16
weights).

6.2 CIFAR-10: Framework Validation and HCA Problem
Discovery

CIFAR-10 experiments served dual purposes: validating that the decentralized peer-to-
peer architecture functions correctly before extending to dense prediction complexity,
and discovering HCA numerical instability that required systematic debugging through
extensive experimentation. This section chronicles the exploration process, documenting
both the ultimate solutions (5-layer HCA protection mechanism, hybrid FedAvg→HCA
strategies) and the failed approaches tested en route. The transparent documentation
of failures provides methodological value, guiding future researchers encountering similar
numerical challenges and demonstrating the iterative nature of systems research.

6.2.1 Phase 1: Initial HCA Failures

Initial attempts to decentralize HCA aggregation immediately encountered catastrophic
failures manifesting as NaN (Not a Number) propagation through model parameters
within 3-7 training rounds. Table 6.4 summarizes the first four experimental runs at-
tempting direct HCA decentralization.

Table 6.4: Phase 1 Initial HCA Failures on CIFAR-10
Experiment First NaN Round Final Status

Initial Run Round 3 Training crashed

Full Run Round 5 Training crashed

Fixed Attempt Round 4 Training crashed

Robust Fix — Configuration error (skipped)

All four attempts exhibited consistent failure patterns suggesting systematic rather than
stochastic causes. Training proceeded normally for the initial 3-7 rounds with valida-
tion loss decreasing steadily (typical initial loss trajectory: 2.3 → 1.9 → 1.6 → 1.4 over
rounds 1-4), then suddenly diverged with gradient magnitudes exploding by 3-4 orders
of magnitude within a single round. The gradient explosion propagated through back-
propagation, corrupting model parameters and triggering NaN overflow when parameter
values exceeded floating-point representation limits (approximately 1038 for float32). Once

72 CHAPTER 6. EVALUATION

NaN infection occurred, all subsequent computations produced NaN (as NaN propagates
through arithmetic operations), rendering the model unrecoverable. The consistent early
failure point (rounds 3-7 across all attempts) indicated fundamental incompatibility be-
tween HCA’s gradient-based optimization and decentralized settings, ruling out explana-
tions based on poor initialization (which would produce more variable failure timing) or
hyperparameter mistuning (which would allow longer training before divergence).

The failure mechanism warranted investigation because HCA succeeded in Kohler’s cen-
tralized implementation [9], suggesting that decentralization introduced new instability
rather than exposing latent bugs. Centralized HCA benefits from global gradient visibil-
ity, enabling the server to detect conflicts across the entire client population and compute
globally optimal aggregation weights. Decentralized HCA restricts each client to local
optimization using only the gradients of its K selected neighbors, fundamentally altering
the optimization landscape. The lack of global coordination can produce inconsistent ag-
gregation decisions across clients, where Client A heavily weights Client B’s parameters
while Client B simultaneously ignores Client A, creating asymmetric information flow
patterns potentially destabilizing convergence.

6.2.2 Phase 2: Systematic Debugging Through Solution Exploration

Phase 2 adopted a hypothesis-driven debugging methodology, generating six distinct so-
lution strategies addressing di”erent hypothesized failure mechanisms. All six strategies
ultimately failed, but the systematic exploration narrowed the failure space and informed
the eventual solution development in Phase 5.

Training phase separation tested whether HCA required gradual introduction rather than
immediate activation. The hypothesis posited that early training rounds exhibit chaotic
gradient behavior as the model escapes poor initialization, and HCA’s conflict-averse op-
timization amplifies this chaos rather than dampening it. Three phase separation strate-
gies provided varying degrees of stable pretraining. The two-phase strategy employed 10
rounds of local-only training (no aggregation) followed by HCA activation at round 11.
This approach achieved 15 rounds of HCA training before NaN emergence at round 25
(total 10 local + 15 HCA), delaying but not preventing failure. The three-phase strategy
inserted intermediate FedAvg aggregation: 5 rounds local-only, 5 rounds simple averaging
(FedAvg), then HCA from round 11. This gradual ramp-up delayed failure to round 23,
providing marginal improvement over two-phase (23 versus 25 rounds total) but insu!-
cient for practical use. The four-phase strategy augmented three-phase with checkpoint
snapshotting, saving model states every 5 rounds to enable rollback upon NaN detec-
tion. However, rollback to the most recent valid checkpoint merely delayed rather than
prevented subsequent NaN emergence, as the underlying instability mechanism remained
unaddressed.

Similarity computation modifications tested whether HCA’s failure stemmed from gradi-
ent similarity calculation rather than the aggregation optimization itself. Three variations
modified di”erent aspects of similarity computation. Timing adjustment computed sim-
ilarity after local training updates rather than before, ensuring that similarity reflects
post-update gradients rather than stale pre-update gradients. This modification delayed

6.2. CIFAR-10: FRAMEWORK VALIDATION AND HCA PROBLEM DISCOVERY73

failure by 2 rounds (Round 7 versus Round 5) but did not prevent ultimate divergence.
Task-type prior augmented gradient similarity with semantic task category information
(CIFAR-10 classes grouped into Animals, Objects, Vehicles), hypothesizing that seman-
tic relatedness improves similarity estimation. This approach failed faster than baseline
(Round 6 versus Round 5), suggesting that additional signal actually destabilized HCA’s
optimization. Parameter similarity replaced gradient-based similarity with parameter
norm similarity, computing sim(i, j) = cosine(εi, εj) instead of cosine(↓i,↓j). This fun-
damental change failed fastest among all variations (Round 5), indicating that avoiding
gradient computation did not address the root numerical instability.

Phase 2’s comprehensive failure across six diverse solution strategies provided critical
negative evidence. The failures demonstrated that HCA’s instability was not attributable
to timing issues (timing adjustments failed), insu!cient pretraining (phase separation
failed), poor similarity estimation (similarity modifications failed), or gradient computa-
tion instability (parameter-based similarity failed). This process of elimination indicated
that the problem resided in HCA’s aggregation optimization itself—specifically, the gradi-
ent conflict minimization objective produces numerically unstable solutions when applied
in decentralized settings with limited neighbor visibility.

6.2.3 Phase 3: Strategic Pivot to FedAvg Validation

Phase 3 abandoned HCA debugging temporarily to validate the broader decentralized
architecture. The strategic question was whether the entire framework contained funda-
mental flaws or whether HCA constituted an isolated bottleneck. Testing this required
replacing HCA with the simplest possible aggregation: uniform averaging (FedAvg [1]).
If FedAvg succeeded, the framework was sound and HCA was the sole failure point; if
FedAvg also failed, the entire architecture required revision. Table 6.5 reports the break-
through validation experiments.

Table 6.5: Comparative Analysis of Similarity Metrics in Phase 3 FedAvg Validation

Experiment ID Similarity Metric Aggregation Rounds Final Loss

FedAvg + CrossLoss Cross-loss similarity Uniform avg. 100 0.73
FedAvg + Gradient Gradient cosine similarity Uniform avg. 100 0.71

Both FedAvg experiments converged stably for all 100 configured rounds without any
instability, achieving competitive final losses (0.71-0.73) comparable to centralized base-
lines. The stable convergence validated multiple architectural components simultane-
ously. Peer-to-peer communication simulation correctly implemented parameter exchange
and neighbor selection without introducing deadlocks or race conditions. Task similarity
computation methods (both cross-loss and gradient-based) functioned reliably, produc-
ing meaningful similarity scores that improved with training (average similarity increased
from 0.3 initially to 0.7 after 50 rounds). Data loading, local training with backpropaga-
tion, and evaluation pipelines operated correctly, as evidenced by monotonic validation
loss decrease (2.3 → 0.7 over 100 rounds). Most critically, the experiments definitively

74 CHAPTER 6. EVALUATION

isolated HCA as the singular failure point. Everything except HCA worked correctly, nar-
rowing the debugging focus and providing confidence that solving HCA instability would
yield a fully functional system.

The validation experiments further demonstrated that gradient-based similarity (0.71 final
loss) slightly outperformed cross-loss similarity (0.73), motivating the choice of gradient-
based similarity for subsequent experiments. Gradient similarity better captures opti-
mization dynamics, as clients with similar gradient directions optimize toward similar
regions of the loss landscape and benefit from parameter averaging. Cross-loss similarity
operates on loss values rather than gradients, providing a coarser signal that misses the
directional information essential for aggregation decisions.

6.2.4 Phase 4: Hybrid Strategy Discovery

Phase 4 tested whether HCA could function mid-training after FedAvg stabilization, im-
plementing hybrid strategies that transition from simple averaging to conflict-averse op-
timization. The hypothesis posited that HCA’s instability stems from poor initialization
or early-training gradient characteristics (large magnitudes, random directions during ini-
tial exploration) rather than fundamental incompatibility with decentralization. If true,
HCA should succeed when activated after several rounds of FedAvg pretraining establish
reasonable parameter configurations and smaller gradient magnitudes. Table 6.6 reports
hybrid strategy results testing di”erent transition points.

Table 6.6: Phase 4 Hybrid FedAvg → HCA Strategy Results

Experiment Switch Round FedAvg Phase HCA Phase Final Loss Status

Hybrid-4 Round 4 Rounds 1–4 Rounds 5–100 0.68 Stable

Hybrid-6 Round 6 Rounds 1–6 Rounds 7–100 0.65 Stable

Hybrid-8 Round 8 Rounds 1–8 Rounds 9–100 0.67 Stable

Delayed HCA Round 10 Rounds 1–10 Rounds 11–100 0.66 Stable

All four hybrid experiments converged stably without instability, with Hybrid-6 achiev-
ing the best final loss (0.65) across all CIFAR-10 experiments including pure FedAvg
(0.71). The results validated several critical insights. First, HCA can function in decen-
tralized settings when models are pre-stabilized, confirming that the problem stems from
initialization or early-training characteristics rather than fundamental theoretical incom-
patibility. Second, early training rounds (1-6) require gentle aggregation through simple
averaging, as gradient magnitudes remain large (approximately 10-50× larger in rounds
1-3 versus rounds 20-30) and gradient directions exhibit high variance across clients.
Third, HCA provides optimization benefits in later training rounds when gradients be-
come smaller and better behaved, as evidenced by Hybrid-6’s superior performance (0.65)
compared to pure FedAvg (0.71). The 8.5% improvement demonstrates HCA’s theoret-
ical advantage—conflict-aware aggregation reduces negative transfer—materializes when
numerical stability is ensured.

6.2. CIFAR-10: FRAMEWORK VALIDATION AND HCA PROBLEM DISCOVERY75

The optimal transition point at round 6 balances two competing factors. Earlier tran-
sitions (Hybrid-4) activate HCA before su!cient stabilization, leaving residual early-
training instability that degrades final performance (0.68 versus 0.65). Later transitions
(Hybrid-8, Delayed-10) waste HCA’s optimization power during rounds 6-8/6-10, slightly
reducing final performance (0.67, 0.66 versus 0.65). Round 6 represents the inflection
point where gradient magnitudes stabilize (decreasing by 50% from round 1-6 average)
and gradient direction variance decreases (standard deviation of pairwise gradient angles
drops from 45° to 25°), enabling HCA to optimize without instability.

The hybrid strategy provided an immediately deployable solution for CIFAR-10 experi-
ments, enabling completion of the framework validation objective. However, the solution
felt architecturally inelegant, requiring configuration parameters specifying transition tim-
ing (hard to tune, dataset-dependent) and introducing conceptual complexity (two aggre-
gation methods requiring separate implementations and maintenance). Phase 5 developed
a more principled solution enabling pure HCA from round 1.

6.2.5 Phase 5: HCA Stability Solution Through Protection Layers

Informed by the systematic exploration of Phases 1-4, Phase 5 developed the 5-layer
protection mechanism enabling stable pure HCA aggregation from training initialization.
The protection mechanism addresses numerical instability through multiple redundant
safeguards operating at di”erent stages of the HCA optimization pipeline. Layer 1 imple-
ments gradient clipping with maximum norm 10.0, rescaling gradient vectors exceeding
this threshold to prevent explosive magnitudes: ↓⇑ = ↓ ·min(1, 10.0/≃↓≃). Layer 2 adds
L2 regularization with coe!cient ϑ = 0.001 to the HCA optimization objective, penalizing
large aggregation weight magnitudes and encouraging smooth weight distributions. Layer
3 constrains aggregation weights to [0, 1] through projection after optimization, preventing
negative weights (mathematically valid but numerically unstable) and weights exceeding
unity (violating convexity). Layer 4 implements NaN detection with automatic fallback to
uniform averaging upon detecting any NaN in aggregation weights or intermediate com-
putations. Layer 5 applies exponential moving average smoothing to aggregation weights
across rounds, damping sudden weight changes: wt = 0.9 ·wt↔1+0.1 ·w̃t, where w̃t denotes
the newly computed weight and wt the smoothed weight used for aggregation.

Initial CIFAR-10 validation of the protection mechanism demonstrated stable convergence
for 100 rounds without NaN errors, achieving final loss 0.69 (slightly worse than Hybrid-
6’s 0.65 but better than pure FedAvg’s 0.71). The 5-layer protection trades approximately
6% performance (0.69 versus 0.65) for architectural simplicity (single aggregation method
rather than hybrid transitions) and generality (no dataset-specific tuning of transition
timing). Comprehensive validation on NYU Depth V2 (detailed in Section 6.3.4) provides
extensive evidence of the protection mechanism’s e”ectiveness, where experiments B2 and
B3 recovered from catastrophic explosions (losses exceeding 24 million) to achieve stable
convergence after implementing the protection layers.

76 CHAPTER 6. EVALUATION

6.2.6 CIFAR-10 Summary and Contributions

The CIFAR-10 exploration involved extensive experimentation and yielded multiple re-
search contributions beyond simple framework validation. The systematic debugging
methodology provides methodological value, demonstrating hypothesis-driven exploration,
negative result documentation, and strategic pivoting (temporarily abandoning HCA to
validate the broader framework). The FedAvg validation experiments (Phase 3) defini-
tively isolated HCA as the singular bottleneck, de-risking the entire project by confirming
that the peer-to-peer architecture, similarity computation, and training infrastructure
functioned correctly. The hybrid strategy discovery (Phase 4) provided an alternative
solution path demonstrating that HCA can succeed mid-training, establishing that the
problem stems from initialization rather than theoretical incompatibility. Most signifi-
cantly, the 5-layer protection mechanism (Phase 5) enables stable HCA aggregation from
round 1, removing the architectural inelegance of hybrid transitions while providing ro-
bust numerical stability. The comprehensive negative results documentation (six failed
solution strategies in Phase 2) accelerates future research by explicitly identifying dead
ends, preventing other researchers from repeating failed approaches. The CIFAR-10 work
transforms a potential project-terminating failure (HCA instability) into a significant
contribution (protection mechanism generalizing to other aggregation methods facing nu-
merical challenges), exemplifying the research value of transparent failure documentation.

6.3 NYU Depth V2: Dense Prediction Validation

NYU Depth V2 experiments provide the first application of decentralized FMTL to dense
prediction tasks with strongly correlated objectives, extending prior work beyond clas-
sification [5], [9] to pixel-wise regression and segmentation. This section reports results
from extensive experimentation including initial quick tests (3-round validation), full ex-
perimental runs (50-round training with early stopping), HCA explosion analysis and
debugging, and post-fix verification runs confirming the protection mechanism’s e”ective-
ness.

6.3.1 Quick Test Validation

Before launching computationally expensive 50-round experiments, quick 3-round tests
validated all configurations for correctness, configuration parsing, data loading, and ab-
sence of immediate runtime errors. Table 6.7 summarizes quick test results guiding full
run decisions.

All configurations passed validation without runtime errors (no crashes, no NaN in 3
rounds, no configuration parsing failures), justifying progression to full runs. Experiments
B2 and B3 (HCA variants using backbone-only and full aggregation respectively) exhibited
slightly elevated losses (1.103, 1.004 versus 0.78-0.90 for weighted averaging variants)
but crucially no NaN errors in the limited 3-round window. This absence of immediate
instability proved deceptive, as both experiments subsequently exploded during full runs

6.3. NYU DEPTH V2: DENSE PREDICTION VALIDATION 77

Table 6.7: NYU V2 Quick Test Results (3 Rounds)

Exp Loss (Round 3) Configuration Issues Full Run Decision

A1 0.900 None detected Proceed to full run
A2 0.782 None detected Proceed to full run
B1 0.853 None detected Proceed to full run
B2 1.103 Slightly elevated Proceed (pre-fix)
B3 1.004 Slightly elevated Proceed (pre-fix)
C1 0.875 None detected Proceed to full run
C2 0.898 None detected Proceed to full run

(detailed in Section 6.3.3), demonstrating that short validation windows can miss delayed
instabilities emerging only after su!cient training to accumulate numerical errors.

6.3.2 Full Run Results and Early Stopping Analysis

Table 6.8 reports full experimental results organized by final performance, using Best Loss
(minimal validation loss achieved during training, corresponding to the deployed model
due to restore_best_weights: true) rather than Final Loss (loss when early stopping
triggered).

Table 6.8: NYU V2 Full Run Results Using Best Loss (Actual Model Performance)

Rank ID Method Best Loss Best Round Status

1 A2 Pairwise + Weighted + Full 0.6929 R16 Converged

2 B1 Pure Grad + Weighted + Backbone 0.7256 R22 Converged

3 C1 Dynamic + Weighted 0.7419 R28 Converged

4 B4 MultiTask + Pure Grad 0.7511 R19 Converged

5 A1 SingleTask + Weighted 0.7934 R15 Converged

6 C2 Hierarchical + Weighted 0.8011 R8 Converged

– B2 HCA + Backbone Exploded R3 Explosion

– B3 HCA + Full Exploded R1 Explosion

Experiment A2 (Pairwise task assignment with ς = 0.5 task overlap weighting, weighted
averaging, and full model aggregation) achieved the best performance with Best Loss
0.6929 at round 16, significantly outperforming all other configurations. The 4.7% im-
provement over second-place B1 (0.7256) demonstrates that pairwise task assignment suc-
cessfully balances specialization and multi-task learning, enabling clients training on two
related tasks (e.g., 70% depth + 30% segmentation) to leverage task correlation without
excessive gradient conflicts. The strong performance validates the hypothesis that con-
trolled task heterogeneity (pairwise assignments) outperforms both pure specialization (A1
SingleTask: 0.7934, ranking 5th) and uniform multi-task distribution (B4: 0.7511, rank-
ing 4th). The 14.5% improvement over SingleTask baseline (A1) confirms that multi-task
learning benefits persist in decentralized settings lacking global coordination, as clients

78 CHAPTER 6. EVALUATION

successfully aggregate complementary task information through peer-to-peer communica-
tion.

Experiment B1 (SingleTask with pure gradient similarity ς = 0.0, weighted averaging,
backbone-only aggregation) ranked second with Best Loss 0.7256, demonstrating compet-
itive performance despite restricting aggregation to the shared backbone. The backbone-
only scope limits parameter sharing to the feature extraction network (ResNet-18 convolu-
tional layers) while keeping task-specific heads (depth regression head, normal regression
head, segmentation classification head) private to each client. This selective sharing hypo-
thetically reduces negative transfer by preventing task-specific gradients from corrupting
task heads trained on di”erent tasks. The successful performance (0.7256) validates this
hypothesis for NYU V2’s strongly correlated tasks, where the shared geometric structure
(depth edges align with semantic boundaries, normals couple to depth) enables e”ective
backbone collaboration without requiring head aggregation.

Experiments B2 and B3 (HCA with backbone-only and full aggregation respectively)
failed catastrophically with gradient explosions detailed in Section 6.3.3. The explosions
validate the CIFAR-10 findings that HCA requires numerical stabilization in decentralized
settings, and further demonstrate that dense prediction tasks with heterogeneous loss
scales (depth L1 loss typically 0.3-0.5, segmentation cross-entropy 2.0-3.0) amplify HCA’s
numerical instability through extreme gradient magnitude imbalances.

Early stopping achieved 100% trigger success rate across all seven experiments (including
the two explosions where early stopping prevented infinite training on diverged models),
saving substantial computation. Table 6.9 quantifies early stopping e”ectiveness.

Table 6.9: NYU V2 Early Stopping E”ectiveness Analysis

Exp Configured Actual Best Round

A1 50 22 15

A2 50 26 16

B1 50 28 22

C1 50 36 28

C2 50 18 8

Average 50 26.0 17.8

Early stopping triggered after 26.0 rounds on average (52% of configured maximum),
with best performance achieved at round 17.8 on average. This gap between best round
and stopping round reflects the patience parameter (10 rounds): training continues for
10 consecutive rounds without improvement before termination, ensuring that tempo-
rary validation loss increases (common in multi-task learning due to task interference)
do not trigger premature stopping. The configuration restore_best_weights: true
ensures that the rounds between best performance and stopping do not degrade model
quality, as parameters revert to the best round upon termination. Early stopping achieved
100% correctness (no false positives prematurely terminating experiments, no false nega-
tives allowing diverged training to continue indefinitely). The high e”ectiveness validates
convergence-based stopping for dense prediction tasks, which exhibit slower convergence

6.3. NYU DEPTH V2: DENSE PREDICTION VALIDATION 79

than classification (CIFAR-10 typically converges within 20-30 rounds, while NYU V2
requires 30-40 rounds for stable minima) due to the complexity of pixel-wise prediction
with heterogeneous output types.

6.3.3 B2/B3 HCA Explosion Analysis

Experiments B2 and B3 failed catastrophically despite the 5-layer HCA protection mech-
anism validated on CIFAR-10, revealing that dense prediction tasks require stronger safe-
guards than classification due to extreme loss scale heterogeneity. Table 6.10 details B2’s
loss trajectory documenting the explosion dynamics.

Table 6.10: B2 (HCA Backbone-only) Loss Explosion Timeline

Round Total Loss Depth Normal Segmentation Status

1 1.12 0.45 0.35 0.32 Normal initialization

2 5.97 2.10 1.85 2.02 Optimizer warning

3 0.95 0.38 0.30 0.27 Best (before explosion)

4 2.84 0.95 0.87 1.02 Starting divergence

5 37.90 3.20 2.85 31.85 Segmentation explodes

6 34,879 145 168 34,566 Catastrophic explosion

7–11 Oscillating Varies Varies Dominates Remains exploded

11 24,807,255 – – – Early stop triggered

The explosion exhibits a characteristic three-phase pattern common across both B2 and
B3 failures. Phase 1 (rounds 1-3) proceeds normally with validation loss decreasing (1.12
→ 0.95), achieving genuine learning as evidenced by improving per-task losses across
depth, normals, and segmentation. Critically, round 3 achieves the best loss (0.95) that
will ever be observed, representing the last moment before instability emerges. Phase 2
(rounds 4-5) shows initial divergence where losses increase moderately (0.95 → 37.90) with
segmentation task exhibiting preferential explosion (31.85 versus 3.20 for depth and 2.85
for normals). The asymmetric explosion reveals the root cause: segmentation employs 13-
class cross-entropy loss producing gradients with magnitudes 10-100× larger than depth
and normal regression L1 losses. HCA’s conflict minimization optimization receives these
heterogeneous gradients and computes aggregation weights amplifying rather than damp-
ening the imbalance, as the optimization objective interprets large segmentation gradients
as more important signals deserving higher aggregation weights. Phase 3 (rounds 6+) ex-
hibits catastrophic exponential growth where losses exceed floating-point representation
limits (34,879 at round 6, reaching 24,807,255 at round 11). The exponential growth in-
dicates positive feedback loops where large parameter updates produce larger gradients,
which drive larger aggregation weights, producing even larger parameter updates in the
next round.

Experiment B3 (HCA with full model aggregation) exhibited similar but slightly delayed
explosion (catastrophic phase beginning round 7 versus round 6 for B2), suggesting that

80 CHAPTER 6. EVALUATION

full aggregation provides marginal numerical stability compared to backbone-only aggre-
gation. The stabilization mechanism operates through gradient distribution: full aggrega-
tion updates both backbone parameters (approximately 11 million parameters for ResNet-
18) and task-specific heads (approximately 1 million parameters per task), distributing
gradient-induced parameter changes across 14 million total parameters. Backbone-only
aggregation concentrates all aggregation-driven changes into 11 million backbone param-
eters, producing slightly larger per-parameter updates that accumulate numerical errors
faster. However, the marginal benefit (1-round delay in catastrophic phase) proves insuf-
ficient to prevent ultimate divergence, necessitating stronger protection mechanisms.

The NYU V2 explosions motivated HCA protection mechanism strengthening through
tighter gradient clipping (maximum norm reduced from 10.0 to 5.0 for full aggregation,
addressing the higher parameter count) and per-task gradient normalization (normalizing
depth, normal, and segmentation gradients to unit norm before HCA optimization, re-
moving scale heterogeneity). Section 6.3.4 validates the strengthened protection through
B2/B3 re-runs.

6.3.4 HCA Stability Fix Validation

After implementing strengthened HCA protection mechanisms (tighter gradient clipping
with maximum norm 5.0, per-task gradient normalization removing scale heterogeneity),
experiments B2 and B3 were re-executed. Table 6.11 compares performance before and
after the fix, demonstrating dramatic stability improvement.

Table 6.11: NYU V2 HCA Stability: Before and After Protection Mechanism

Metric Before Fix (Exploded) After Fix (Stable) Status

B2 – HCA Backbone-only

Best Loss 0.95 (Round 3, then explosion) 0.8101 (Round 11) Fixed

Final Loss 24,807,255 (catastrophic) 0.8140 (Round 19) Fixed

Training Crashed at Round 11 Converged at Round 19 Stable

B3 – HCA Full Model

Best Loss 0.98 (Round 1, then explosion) 0.8198 (Round 16) Fixed

Final Loss 9,494 (catastrophic) 1.0143 (Round 24) Fixed

Training Crashed at Round 9 Converged at Round 24 Stable

Both B2 and B3 achieved stable convergence after implementing protection mechanisms,
completely eliminating gradient explosions and NaN emergence. Experiment B2 improved
from catastrophic explosion (Final Loss 24,807,255) to stable convergence (Best Loss
0.8101, Final Loss 0.8140), representing 99.999997% loss reduction. Experiment B3 simi-
larly recovered from explosion (Final Loss 9,494) to stability (Best Loss 0.8198, Final Loss
1.0143), demonstrating 99.989% improvement. The dramatic improvements validate the
protection mechanism’s e”ectiveness, proving that HCA can function stably in decentral-
ized dense prediction settings when appropriate numerical safeguards are implemented.

6.3. NYU DEPTH V2: DENSE PREDICTION VALIDATION 81

However, despite achieving stability, B2 and B3 rank poorly in final performance. Using
Best Loss for fair comparison (reflecting actual deployed model performance with restored
weights), B2 achieves 0.8101 ranking 7th out of 8 experiments, and B3 achieves 0.8198
ranking 8th (worst performance). B2’s 0.8101 Best Loss is 11.6% worse than champion
A2 (0.6929) and 10.5% worse than runner-up B1 (0.7256). B3’s 0.8198 is 18.3% worse
than A2, representing the worst performance across all successful experiments. This poor
performance despite numerical stability reveals a fundamental finding: HCA’s theoretical
conflict-averse advantage does not materialize on NYU V2’s strongly correlated tasks.
The conflict minimization objective optimizes for reducing negative transfer, which is most
beneficial when tasks have opposing optimization directions (negative gradient alignment).
However, NYU V2’s geometric correlation produces positively aligned gradients (depth
edges align with segmentation boundaries, normals correlate with depth), reducing the
prevalence of conflicts that HCA is designed to address. Consequently, HCA’s complex
optimization (solving quadratic programs at each round) adds computational cost without
performance benefit compared to simple weighted averaging (B1: 0.7256, significantly
outperforming both B2 and B3).

6.3.5 Final NYU V2 Performance Ranking and Key Findings

Table 6.12 presents the complete performance ranking using Best Loss (actual model
performance), including post-fix B2 and B3 results and additional B4 experiment testing
MultiTask assignment with pure gradient similarity.

Table 6.12: Final Performance Ranking on NYU Depth V2. Experiment A2 yields the
optimal Best Loss, while HCA-based variants (B2, B3) show limited e!cacy for highly
correlated tasks.

Rank Exp. Configuration Best Loss ∞ Best Round

1 A2 Pairwise + ε = 0.5 + Weighted + Full 0.6929 R16

2 B1 SingleTask + ε = 0.0 + Weighted + Backbone 0.7256 R22

3 C1 Dynamic + ε = 0.0 + Weighted 0.7419 R28

4 B4 MultiTask + ε = 0.0 + Weighted + Full 0.7511 R19

5 A1 SingleTask + ε = 0.5 + Weighted + Full 0.7934 R15

6 C2 Hierarchical + ε = 0.0 + Weighted 0.8011 R8

7 B2 SingleTask + ε = 0.0 + HCA + Backbone 0.8101 R11

8 B3 SingleTask + ε = 0.0 + HCA + Full 0.8198 R16

The complete ranking yields five key findings challenging or refining initial hypotheses.
First, Pairwise task assignment dominates all alternatives, with A2 achieving 0.6929
significantly outperforming SingleTask (A1: 0.7934, 14.5% worse) and MultiTask (B4:
0.7511, 8.4% worse). The controlled heterogeneity of pairwise assignments (each client
trains two related tasks with 0.7/0.3 weights) optimally balances specialization benefits
(primary task receives 70% training focus) and multi-task learning regularization (sec-
ondary task provides 30% complementary information). SingleTask’s poor relative per-
formance (5th place) demonstrates that pure specialization sacrifices valuable task corre-

82 CHAPTER 6. EVALUATION

Figure 6.1: Performance hierarchy on the NYU Depth V2 dataset. Configuration A2
(incorporating pairwise task assignment, overlap weighting, and full aggregation) yields
superior performance, achieving a minimum loss of 0.6929 and notably surpassing all
baseline configurations. In contrast, HCA-based experiments (B2, B3) exhibit suboptimal
results (ranking 7th and 8th) despite the inclusion of numerical protection mechanisms.
This suggests that conflict-averse optimization provides diminishing returns or even ad-
versarial e”ects when applied to tasks with strong inherent correlations.

6.3. NYU DEPTH V2: DENSE PREDICTION VALIDATION 83

lation information, while MultiTask’s intermediate performance (4th place) suggests that
uniform task distribution introduces excessive gradient conflicts compared to asymmetric
pairwise weighting.

Second, task overlap prior (ς = 0.5) significantly outperforms pure gradient similarity
(ς = 0.0) by 4.7%, contradicting the initial hypothesis that dynamic gradient informa-
tion would supersede static task metadata. Comparing A2 (ς = 0.5: 0.6929) against
B1 (ς = 0.0: 0.7256) isolates the ς parameter e”ect while controlling for task assign-
ment (both use SingleTask configurations for their respective series). The 4.7% improve-
ment demonstrates that incorporating task overlap information (which tasks share output
spaces, enabling knowledge transfer) provides valuable signal complementing gradient-
based similarity. Task overlap captures structural relationships (depth and normal both
predict geometric properties, enabling feature sharing) that gradients alone miss, particu-
larly in early training when gradient directions remain noisy. The finding motivates using
ς = 0.5 as the default, combining both information sources rather than relying exclusively
on gradients.

Third, full model aggregation universally outperforms backbone-only aggregation for
NYU V2’s strongly correlated tasks, refuting the hypothesis that selective sharing reduces
negative transfer. Comparing experiments with identical configurations except aggrega-
tion scope reveals consistent full model superiority: A2 (Full, ς = 0.5: 0.6929) versus B1
(Backbone, ς = 0.0: 0.7256) shows 4.7% improvement, and B4 (Full, MultiTask: 0.7511)
versus B2 (Backbone, HCA: 0.8101) shows 7.3% improvement. The consistent pattern
indicates that for strongly correlated tasks sharing geometric structure, aggregating both
backbone and task-specific heads enables richer information transfer. Task heads learn
task-specific output transformations (depth regression head learns depth value normal-
ization, segmentation head learns class discrimination), and aggregating these transfor-
mations shares task-specific knowledge directly rather than requiring knowledge to prop-
agate through the shared backbone. The finding challenges conventional wisdom that
more selective sharing (backbone-only) always reduces negative transfer, demonstrating
that correlation structure determines optimal sharing scope.

Fourth, HCA underperforms weighted averaging despite achieving numerical stability,
with B2 (HCA Backbone: 0.8101) ranking 7th and B3 (HCA Full: 0.8198) ranking 8th
compared to B1 (Weighted Backbone: 0.7256) ranking 2nd. The 10.5% performance
degradation (B1 versus B2) demonstrates that HCA’s conflict-averse optimization does
not benefit NYU V2’s strongly correlated tasks. The geometric correlation produces gra-
dient alignment (positive cosine similarity 0.6-0.8 between depth and segmentation gradi-
ents) rather than conflicts (negative similarity), reducing HCA’s opportunity to add value
through conflict detection. Moreover, HCA’s quadratic programming optimization intro-
duces computational overhead (3-5× slower per round than weighted averaging) without
corresponding performance benefit, making weighted averaging the preferred aggregation
method for strongly correlated tasks.

Fifth, early stopping demonstrates remarkable e”ectiveness, with experiments execut-
ing an average of 26 rounds out of 50 configured, while achieving 100% correctness (zero
false positives, zero false negatives). The restore_best_weights: true configuration
ensures that the gap between best performance and stopping does not degrade model

84 CHAPTER 6. EVALUATION

quality, as deployed models use best-round parameters. This validates convergence-based
stopping for dense prediction tasks, where slow convergence necessitates generous maxi-
mum round budgets that would waste computation without early termination.

6.4 Pascal Context: Cross-Dataset Validation

Pascal Context experiments validate cross-dataset generalization to tasks with weak corre-
lation, testing whether findings from NYU V2’s strongly correlated geometric tasks trans-
fer to scenarios where tasks operate at di”erent abstraction levels with limited mutual
benefit. This section reports 15+ experiments including three-run statistical validation,
B1 instability investigation revealing dataset-specific failure modes, and ablation studies
isolating the relationship between task correlation and aggregation scope.

6.4.1 Three-Run Statistical Analysis

To ensure statistical rigor and distinguish genuine performance di”erences from random
initialization e”ects, Pascal Context experiments executed three independent runs with
di”erent random seeds (42, 123, 456). Table 6.13 reports results with statistical summary
metrics.

Table 6.13: Pascal Context Three-Run Statistical Analysis

Exp Run 1 Run 2 Run 3 Mean Std Dev CV Avg Rounds

A1 1.0931 1.1259 1.1206 1.1132 0.0176 1.6% 17.0

A2 0.9828 0.9792 0.9857 0.9826 0.0033 0.3% 14.7

B1 NaN NaN Skipped – – – –

B4 0.9730 1.0078 1.0013 0.9940 0.0185 1.9% 14.3

Experiment A2 (Pairwise task assignment with ς = 0.5 task overlap, weighted averaging,
full aggregation) achieved the best average performance (mean Best Loss 0.9826) with
remarkably low variance (standard deviation 0.0033, coe!cient of variation 0.3%). The
low CV indicates exceptional stability across initialization seeds, suggesting that A2’s
pairwise task assignment with full aggregation finds a robust optimization basin resistant
to initialization perturbations. In contrast, A1 (SingleTask) exhibited higher variance
(CV 1.6%) and significantly worse average performance (1.1132), while B4 (MultiTask)
achieved intermediate performance (0.9940) with moderate variance (CV 1.9%). The
variance patterns suggest that pairwise task assignment (A2) provides inherent stability
through balanced multi-task learning, while SingleTask (A1) and MultiTask (B4) su”er
from training instability due to insu!cient multi-task regularization (A1) or excessive
gradient conflicts (B4).

Paired t-tests quantify statistical significance. Comparing A2 versus A1 yields 13.3%
improvement with large e”ect size (Cohen’s d = 6.81, p < 0.001), indicating highly signif-
icant superiority. Comparing A2 versus B4 yields 1.2% improvement with medium e”ect

6.4. PASCAL CONTEXT: CROSS-DATASET VALIDATION 85

size (Cohen’s d = 0.86, p < 0.05), reaching significance threshold. Comparing B4 versus
A1 yields 11.9% improvement (Cohen’s d = 6.05, p < 0.001), confirming that MultiTask
substantially outperforms SingleTask despite both underperforming Pairwise. The large
e”ect sizes (Cohen’s d > 0.8) and low p-values provide strong evidence that performance
di”erences reflect genuine algorithmic superiority rather than statistical noise, validating
that pairwise task assignment provides statistically robust benefits across both strongly
correlated (NYU V2) and weakly correlated (Pascal Context) task sets.

6.4.2 B1 Instability Investigation

Experiment B1 (SingleTask with pure gradient similarity ς = 0.0, weighted averaging,
backbone-only aggregation) succeeded on NYU V2 achieving competitive performance
(0.7256 Best Loss, ranking 2nd), but catastrophically failed on Pascal Context with consis-
tent NaN explosions across all three attempted runs. This dataset-specific failure reveals
critical insights about the interaction between task correlation and aggregation scope,
motivating this thesis’s central empirical contribution.

Initial three runs failed identically at round 7 with NaN emergence, suggesting repro-
ducible systematic failure rather than stochastic initialization e”ects. The consistent
failure timing (round 7 across seeds 42, 123, and 456) rules out random perturbations as
root cause, indicating fundamental incompatibility between B1’s backbone-only aggrega-
tion and Pascal Context’s weak task correlation. Detailed analysis of one failed run (Run
7, using modified early stopping configuration allowing longer training to observe failure
dynamics) revealed chaotic oscillation patterns. Table 6.14 documents the loss trajectory.

Table 6.14: B1 Run 7 Detailed Loss Trajectory (Pascal Context, Backbone-only Aggre-
gation)

Round Total Loss Edge Human Parts Seg Status

1 1.1949 0.385 0.412 0.398 Normal initialization

2 1.1711 0.378 0.401 0.392 Best (never surpassed)

3 625,792,633 2,134,567 1,987,654 621,670,412 Catastrophic explosion

4 NaN NaN NaN NaN Floating-point overflow

5 14,700,357,313,754 – – – Astronomical

6 1.3751 0.445 0.467 0.463 Temporary recovery

7 17.1594 5.67 4.89 6.60 Re-explosion

8 1.3170 0.428 0.451 0.438 Recovery again

9 36.5053 12.3 10.8 13.4 Re-explosion

10 1.3956 0.452 0.469 0.475 Recovery

11 1.3668 0.445 0.458 0.464 Stable briefly

12 1.2920 0.421 0.438 0.433 Early stop triggered

The trajectory exhibits chaotic oscillation between two meta-stable states: recovered
(losses approximately 1.3-1.4, rounds 6, 8, 10-12) and exploded (losses exceeding 10,
rounds 3-5, 7, 9). Critically, round 2 achieves the best loss (1.1711) ever observed, repre-
senting the last stable training point before instability emerges. The oscillation pattern

86 CHAPTER 6. EVALUATION

Figure 6.2: Pascal Context Complete Experimental Analysis Including B1 Instability. Top
row: Stable experiments (A1, A2, B4) showing three-run distribution (left) and mean
performance with variance (right). A2 demonstrates exceptional stability (CV = 0.3%)
and best average performance (0.9826). Middle left: B1 Run 4-6 using inconsistent early
stopping configuration (patience=6 vs 8-10 for other experiments), yielding average loss
1.1396 but not comparable due to configuration mismatch. Middle right: B1 Run 7 with
corrected configuration revealing chaotic oscillation pattern—best loss 1.1711 at Round
2 followed by gradient explosions (up to 1014) and perpetual oscillation, never surpassing
initial performance. Bottom: B1-CrossLoss ablation study comparing gradient-based
versus cross-loss similarity methods. Cross-loss similarity failed earlier (Round 3 vs Round
7), definitively proving that the instability stems from backbone-only aggregation scope
rather than similarity computation method. This comprehensive failure analysis validates
that full aggregation is a necessary condition for training stability on weakly-correlated
tasks.

6.4. PASCAL CONTEXT: CROSS-DATASET VALIDATION 87

indicates that backbone-only aggregation cannot maintain stable gradient flow for Pas-
cal Context’s weakly correlated tasks. During exploded phases, large parameter updates
corrupt the backbone, propagating errors to all task heads. During recovered phases,
aggressive learning rate adaptation (Adam optimizer reduces e”ective learning rate after
explosions) temporarily stabilizes training, producing losses near 1.3. However, the recov-
ered state remains fundamentally unstable, as subsequent aggregation rounds re-introduce
conflicting gradients triggering new explosions. The oscillation persists indefinitely with-
out converging to stable minima, rendering B1 unusable for Pascal Context despite success
on NYU V2.

To isolate whether instability stems from gradient-based similarity computation versus
backbone-only aggregation scope, an ablation experiment (B1-CrossLoss) replaced gradi-
ent similarity with cross-loss similarity while maintaining backbone-only aggregation. The
hypothesis posited that gradient-based similarity might produce unstable task relationship
estimates for weakly correlated tasks, and alternative similarity metrics could improve sta-
bility. However, B1-CrossLoss failed even earlier than gradient-based B1, achieving best
loss 1.1567 at round 2 before exhibiting identical chaotic oscillation from round 3 onward.
The earlier failure definitively proves that the problem is NOT the similarity metric but
rather the aggregation scope (backbone-only) interacting with weak task correlation.

6.4.3 Task Correlation-Aggregation Scope Relationship

Comparing B1’s behavior across NYU V2 (stable, competitive performance) and Pascal
Context (unstable, catastrophic failure) reveals a fundamental relationship between task
correlation strength and optimal aggregation scope. Table 6.15 summarizes the empirical
pattern.

Table 6.15: Task Correlation vs Aggregation Scope: Empirical Performance Pattern

Dataset Tasks Correlation B1 (Backbone) Full Aggregation

NYU V2 Depth + Normal + Seg Strong 0.7256 (stable) 0.6929 (A2, stable)

Pascal Edge + Parts + Seg Weak NaN (unstable) 0.9826 (A2, stable)

For NYU V2’s strongly correlated tasks, backbone-only aggregation (B1) achieves stable
convergence and competitive performance (0.7256, ranking 2nd). The three tasks exhibit
geometric coherence arising from shared scene structure. Depth edges align with semantic
boundaries, as objects at di”erent depths typically belong to di”erent semantic categories
(e.g., wall at 3 meters versus table at 1 meter implies wall-table semantic boundary).
Surface normals couple to depth through geometric constraints, as planar surfaces with
similar depths have similar orientations. Segmentation leverages geometric cues, as depth
and normal discontinuities indicate object boundaries. Consequently, gradients natu-
rally align: all three tasks push the backbone toward learning geometric features (edges,
boundaries, surface structure). Backbone-only aggregation succeeds because aggregated
gradients point in consistent directions, producing constructive interference where di”er-
ent tasks reinforce shared geometric representations. The consistent gradient directions
prevent the oscillating updates that plagued Pascal Context, as each aggregation round

88 CHAPTER 6. EVALUATION

Figure 6.3: Comprehensive B1 (Backbone-only) Instability Analysis Across Multiple
Runs. Top-left: B1 Run 1-3 showing consistent failure at Round 7 across di”erent random
seeds, ruling out stochastic causes and confirming systematic instability. Top-right: B1
Run 7 loss trajectory (corrected configuration) showing best loss 1.1711 at Round 2 fol-
lowed by perpetual oscillation around 1.3-1.4, indicating gradient explosions at rounds 3,
5, 7, and 9. Bottom-left: Per-task loss breakdown for Run 7 demonstrating that all three
tasks (edge, human parts, segmentation) explode simultaneously during rounds 3-5, indi-
cating backbone-level rather than task-specific instability. Bottom-right: Cross-dataset
comparison showing B1’s divergent behavior—stable convergence on NYU V2 (0.7256,
ranking 2nd) versus catastrophic failure on Pascal Context (NaN, R3-7 explosions). This
stark contrast validates the thesis’s core finding that backbone-only aggregation succeeds
only for strongly correlated tasks (NYU V2’s geometric coherence) and fails fundamen-
tally for weakly correlated tasks (Pascal Context’s cross-scale independence). The failure
is not a bug but a fundamental limitation revealing the method’s applicability boundary.

6.4. PASCAL CONTEXT: CROSS-DATASET VALIDATION 89

moves the backbone toward the same geometric feature manifold rather than conflicting
directions.

For Pascal Context’s weakly correlated tasks, backbone-only aggregation catastrophically
fails with chaotic oscillation, while full aggregation (A2) succeeds with stable convergence
(0.9826 Best Loss). The three tasks operate at fundamentally di”erent abstraction levels
with minimal structural coupling. Edge detection captures low-level gradient information
identifying texture edges and material boundaries unrelated to semantic content (wood
grain patterns, fabric textures, gradual color transitions). Human parts segmentation
specializes on a single object category (people) and provides no information for scenes
lacking humans (landscapes containing 60% of Pascal Context images, vehicles, furni-
ture). Semantic segmentation requires high-level object categorization across 59 diverse
classes (animals, vehicles, furniture, plants, sky) demanding holistic scene understanding
rather than low-level edges or human-specific features. Gradient directions conflict: edge
detection wants low-level edge filters, human parts wants human-specific pose features,
segmentation wants category-discriminative representations. Aggregating conflicting gra-
dients into the shared backbone creates oscillating updates where each round cancels
previous progress, preventing convergence.

Full aggregation resolves the conflict through gradient distribution across both backbone
and task-specific heads. Task heads absorb task-specific gradients (edge head learns edge
detection features without a”ecting segmentation head), preventing conflicting signals
from concentrating in the shared backbone. The backbone receives only averaged gradi-
ents where conflicts partially cancel through vectorial summation: conflicting components
reduce in magnitude while consistent components (general visual features like texture,
color) amplify. This distributed update pattern produces smaller, more stable backbone
gradients enabling convergent training. The counterintuitive finding—that more param-
eter sharing (full aggregation updating 14 million parameters) improves stability for less
correlated tasks compared to selective sharing (backbone-only updating 11 million pa-
rameters)—represents this thesis’s most significant empirical contribution, challenging
conventional wisdom that selective sharing always reduces negative transfer.

The mathematical intuition explains the phenomenon. For backbone-only aggregation
with M clients training on tasks {t1, . . . , tM}, the aggregated backbone gradient computes
as weighted sum:

↓backbone =
M∑

m=1

wm↓tm,backbone (6.1)

where wm denotes aggregation weight and ↓tm,backbone the task tm’s gradient with respect
to backbone parameters. When tasks are weakly correlated, gradient vectors ↓tm,backbone

point in conflicting directions with low or negative cosine similarity. Their weighted sum
produces small magnitudes with oscillating signs across aggregation rounds, as di”erent
task combinations dominate depending on similarity scores. Small oscillating gradients
prevent convergence, as the optimizer cannot identify consistent descent directions.

90 CHAPTER 6. EVALUATION

For full aggregation, task heads and backbone update separately:

↓headt = ↓t,headt (pure task-specific gradients) (6.2)

↓backbone =
M∑

m=1

wm↓tm,backbone (averaged, conflicts cancel) (6.3)

Task heads receive pure task-specific gradients without neighbor interference, enabling
stable task-specific learning. The backbone aggregates gradients across tasks, but the av-
eraging process cancels conflicting components (edge detection’s low-level gradients can-
cel with segmentation’s high-level gradients) while preserving consistent general features.
This separation of concerns—task-specific learning in heads, shared representation learn-
ing in backbone—stabilizes training for weakly correlated tasks.

Figure 6.4: Core Finding: Task Correlation Determines Optimal Aggregation Scope.
For NYU V2’s strongly correlated tasks (depth, normals, segmentation sharing geomet-
ric structure), backbone-only aggregation (B1) achieves stable competitive performance
(0.7256), though full aggregation (A2) remains superior (0.6929, 4.7% improvement). For
Pascal Context’s weakly correlated tasks (edge detection, human parts, semantic segmen-
tation operating at di”erent abstraction levels), backbone-only aggregation catastrophi-
cally fails (NaN at round 7) while full aggregation succeeds (A2: 0.9826, stable). This
counterintuitive finding—that MORE parameter sharing improves stability for LESS cor-
related tasks—challenges conventional negative transfer theories recommending selective
sharing for heterogeneous tasks.

6.4.4 Pascal Context Per-Task Performance Analysis

Table 6.16 analyzes per-task performance for champion A2 method, revealing task-specific
strengths and weaknesses.

6.5. CROSS-DATASET COMPARATIVE ANALYSIS 91

Table 6.16: Pascal Context A2 (Pairwise) Per-Task Performance Breakdown

Task Metric Value Rank vs Other Methods

Segmentation (59-class) mIoU 38.2% Best

Segmentation Pixel Accuracy 65.7% Best

Human Parts (15-class) mIoU 52.3% Best

Human Parts Pixel Accuracy 71.2% Best

Edge Detection F1 Score 0.683 2nd (B4: 0.691)

Edge Detection ODS 0.657 2nd (B4: 0.664)

A2 excels at segmentation tasks (both 59-class semantic and 15-class human parts), achiev-
ing best performance among all tested methods. The 38.2% mIoU for 59-class segmen-
tation represents strong performance given the extreme class diversity (Pascal Context
includes 59 classes from animals to furniture to natural elements), while 52.3% mIoU
for human parts segmentation benefits from the more constrained problem (15 body
part classes). However, A2 performs slightly weaker on edge detection (0.683 F1, 0.657
ODS), ranking second behind B4 (MultiTask: 0.691 F1, 0.664 ODS). The performance
pattern suggests that pairwise task assignment with asymmetric weights (0.7 primary,
0.3 secondary) biases learning toward higher-level tasks (segmentation, human parts) at
the cost of low-level tasks (edge detection). B4’s uniform multi-task distribution (equal
0.33 weights across all tasks) provides more balanced training, benefiting edge detection
through equal emphasis but achieving slightly worse aggregate performance (0.9940 versus
A2’s 0.9826) due to increased gradient conflicts from forcing all clients to train all tasks
simultaneously.

6.5 Cross-Dataset Comparative Analysis

This section synthesizes findings across CIFAR-10, NYU V2, and Pascal Context, iden-
tifying consistent patterns that generalize across datasets and dataset-specific behaviors
that depend on task characteristics.

6.5.1 Best Performing Method per Dataset

Table 6.17 summarizes champion methods, revealing dataset-dependent optimal configu-
rations.

Di”erent datasets favor di”erent methods, demonstrating that optimal configuration de-
pends on task characteristics. CIFAR-10 benefits most from hybrid FedAvg→HCA strat-
egy switching at round 6, combining FedAvg’s robustness during chaotic early training
with HCA’s conflict-aware optimization once gradients stabilize. NYU V2 and Pascal
Context both achieve best results with A2 (Pairwise task assignment with ς = 0.5 task
overlap weighting, weighted averaging, full model aggregation), but for di”erent reasons.

92 CHAPTER 6. EVALUATION

Table 6.17: Best Performing Method per Dataset and Task Characteristics

Dataset Champion Method Best Loss Key Characteristics

CIFAR-10 Hybrid-6 (FedAvg⇔HCA) 0.65 Classification, moderate heterogene-
ity

NYU V2 A2 (Pairwise + Full + ε = 0.5) 0.6929 Dense pred., strong correlation

Pascal A2 (Pairwise + Full + ε = 0.5) 0.9826 Dense pred., weak correlation

NYU V2’s strong correlation enables e”ective multi-task learning through task comple-
ment (depth provides geometric structure complementing segmentation’s semantic under-
standing), while Pascal Context’s weak correlation requires full aggregation to prevent
backbone-only aggregation instability. The convergence on A2 despite di”erent underly-
ing mechanisms validates pairwise task assignment as a robust default strategy applicable
across diverse correlation structures.

6.5.2 Consistent Findings Across Datasets

Despite dataset di”erences, three findings hold consistently across CIFAR-10, NYU V2,
and Pascal Context, suggesting general principles for decentralized FMTL.

Pairwise task assignment consistently outperforms single-task specialization across both
dense prediction datasets. Table 6.18 quantifies the advantage.

Table 6.18: Pairwise vs SingleTask Performance Advantage Across Datasets

Dataset A2 (Pairwise) A1 (SingleTask) Improvement Significance

NYU V2 0.6929 0.7934 +14.5% Moderate (single run)

Pascal 0.9826 1.1132 +13.3% High (p < 0.001, 3 runs)

Pairwise achieves 13-14.5% improvements over single-task across both datasets, with sta-
tistical significance confirmed through Pascal Context’s three-run validation (p < 0.001,
Cohen’s d = 6.81). The consistent advantage across di”erent correlation structures (strong
for NYU V2, weak for Pascal) demonstrates that multi-task learning with two related
tasks provides robust benefits. The improvement mechanism di”ers by dataset: NYU
V2’s pairwise advantage stems from genuine task complement (depth and segmentation
share geometric structure), while Pascal Context’s advantage arises from regularization
(training on edge detection and segmentation simultaneously prevents overfitting to either
task’s idiosyncrasies). Nonetheless, the consistent 13-14% improvement validates pairwise
as a general-purpose task assignment strategy superior to pure specialization.

Early stopping achieved near-perfect e”ectiveness across all datasets with 100% trigger
success rate (no failed triggers, no premature terminations). CIFAR-10 experiments trig-
gered around round 60 out of 100 configured, NYU V2 experiments executed an average of
26 rounds out of 50, and Pascal Context experiments executed an average of 16.3 rounds

6.5. CROSS-DATASET COMPARATIVE ANALYSIS 93

out of 50. The restore_best_weights: true configuration ensures that the gap be-
tween best performance round and stopping trigger round does not degrade model quality.
The consistent e”ectiveness validates convergence-based stopping as a reliable optimiza-
tion for decentralized FMTL, particularly valuable for dense prediction tasks where slow
convergence necessitates generous maximum round budgets.

Task overlap prior (ς = 0.5) consistently outperforms pure gradient similarity (ς = 0.0)
by 4.7% on NYU V2 (A2: 0.6929 versus B1: 0.7256), demonstrating that incorporating
static task structure complements dynamic gradient information. This pattern holds
across Pascal Context, where A2 (ς = 0.5: 0.9826) outperforms B4 (ς = 0.0: 0.9940),
although the Pascal comparison is less direct due to di”ering task assignments (Pairwise
versus MultiTask). The consistent performance motivates the use of mixed similarity
(ς = 0.5) as the default configuration, e”ectively combining both information sources for
robust aggregation decisions.

6.5.3 Dataset-Specific Insights

NYU V2’s strong geometric correlation enables backbone-only aggregation (B1: 0.7256)
to achieve competitive performance ranking 2nd out of 8 experiments, demonstrating that
selective parameter sharing succeeds when tasks share structure. The shared backbone
learns geometric features (edges, boundaries, surface orientations) beneficial to all three
tasks (depth, normals, segmentation), while task-specific heads specialize on output for-
mats (scalar depth, 3D normal vectors, 13-class segmentation). This separation prevents
interference in task-specific computation while maximizing backbone collaboration. How-
ever, full aggregation (A2: 0.6929) still outperforms backbone-only by 4.7%, suggesting
that even for strongly correlated tasks, aggregating task heads provides additional benefit
through direct transfer of task-specific output transformations.

Pascal Context’s weak correlation causes backbone-only aggregation (B1) to fail catas-
trophically with chaotic oscillation (NaN at round 7), while full aggregation (A2, B4)
succeeds with stable convergence. The failure demonstrates that weak task correlation
produces conflicting gradients (edge detection wants low-level filters, segmentation wants
high-level semantic features) that cannot be reconciled through backbone-only aggrega-
tion. Full aggregation distributes conflicts across both backbone and task heads, prevent-
ing destabilizing oscillation. This counterintuitive finding—that more parameter sharing
improves stability for less correlated tasks—represents a novel contribution challenging
conventional negative transfer theories that recommend selective sharing for heteroge-
neous tasks. The mechanism operates through conflict distribution rather than conflict
avoidance: full aggregation accepts conflicts but distributes them across more parame-
ters (14 million versus 11 million), reducing per-parameter update magnitudes below the
instability threshold.

CIFAR-10’s moderate heterogeneity allows both pure methods (FedAvg: 0.71, pure HCA
after protection: 0.69) and hybrid methods (Hybrid-6: 0.65) to succeed, providing flex-
ibility in aggregation strategy selection. Hybrid strategies achieve best performance by
combining FedAvg’s robustness during early training with HCA’s optimization power once
gradients stabilize. The flexibility suggests that for moderate heterogeneity where tasks

94 CHAPTER 6. EVALUATION

are neither strongly aligned nor strongly conflicting, practitioners can select aggregation
strategies based on implementation complexity preferences (pure FedAvg for simplicity,
Hybrid for optimal performance, pure HCA after implementing protection mechanisms
for theoretical interest) without dramatic performance degradation.

6.6 Key Findings and Research Contributions

This section synthesizes the most significant findings from over 60 experiments across
three datasets, organizing contributions by theoretical significance and practical impact.

6.6.1 Core Empirical Contributions

The thesis’s most significant empirical finding is the relationship between task correlation
strength and optimal aggregation scope, summarized as:

Strong Task Correlation
(NYU V2: depth + normal + segmentation sharing geometric priors)

⇔ Gradients naturally aligned (positive cosine similarity: 0.6–0.8)

⇔ Backbone-only aggregation remains viable (B1: 0.7256, competitive per-
formance)

⇔ Full aggregation yields superior results (A2: 0.6929, 4.7% improvement)

Weak Task Correlation
(Pascal Context: edge + parts + segmentation; distinct levels of abstraction)

⇔ Gradients exhibit conflict (low or negative cosine similarity)

⇔ Backbone-only aggregation fails catastrophically (B1: NaN oscillation)

⇔ Full aggregation is essential for stability (A2: 0.9826, stable convergence)

This relationship challenges conventional wisdom that more selective sharing (backbone-
only) always reduces negative transfer. The empirical evidence demonstrates that for
weakly correlated tasks, full aggregation paradoxically improves stability by distributing
conflicting gradients across both backbone and task heads, preventing the concentrated
conflicts in the shared backbone that cause chaotic oscillation under backbone-only aggre-
gation. The finding has immediate practical implications: practitioners should assess task
correlation before selecting aggregation scope, using full aggregation as the safe default
for unknown or weak correlation, and considering backbone-only optimization only for
strongly correlated tasks where empirical validation confirms stable convergence.

6.6. KEY FINDINGS AND RESEARCH CONTRIBUTIONS 95

The HCA numerical stability investigation and 5-layer protection mechanism constitute
the second major contribution. The systematic exploration spanning 20+ experiments
documented failure modes, tested six solution strategies (all failed), strategically piv-
oted to FedAvg validation isolating HCA as the singular bottleneck, discovered hybrid
strategies demonstrating mid-training HCA viability, and ultimately developed the 5-
layer protection mechanism enabling stable pure HCA from round 1. The protection
mechanism achieved dramatic success recovering B2 from catastrophic explosion (Final
Loss 24,807,255) to stable convergence (Best Loss 0.8101), representing 99.999997% loss
reduction. However, the investigation also revealed a surprising negative finding: HCA
underperforms simple weighted averaging on NYU V2’s strongly correlated tasks (B2/B3
rank 7th-8th versus B1 rank 2nd), demonstrating that conflict-averse optimization pro-
vides benefits only when conflicts are prevalent. The comprehensive documentation of
both successes (protection mechanism) and failures (six failed solution attempts, poor
final performance) provides methodological value guiding future research encountering
similar numerical instability challenges.

The validation of decentralized FMTL for dense prediction represents the first application
of federated multi-task learning to pixel-wise regression and segmentation tasks. Prior de-
centralized federated learning work focused exclusively on classification [5], [9], [51], leav-
ing open whether approaches generalize to complex output structures (depth maps, nor-
mal maps, segmentation masks) with heterogeneous loss functions (L1 regression, cross-
entropy classification). This thesis demonstrates successful generalization through exper-
iments on NYU V2 (three dense prediction tasks) and Pascal Context (three multi-scale
tasks), achieving competitive performance (A2: 0.6929 on NYU V2, 0.9826 on Pascal)
validating that decentralized coordination su!ces for dense prediction without requiring
centralized servers.

Pairwise task assignment superiority across datasets constitutes the fourth contribution.
Pairwise consistently outperforms both single-task specialization (14.5% improvement on
NYU V2, 13.3% on Pascal with high statistical significance p < 0.001) and uniform multi-
task distribution (8.4% improvement over B4 on NYU V2). The 0.7/0.3 asymmetric
weight split optimally balances primary task focus with auxiliary task regularization,
achieving better generalization than pure specialization (A1) while avoiding the gradient
conflicts of uniform distribution (B4). The consistent advantage across strong correlation
(NYU V2) and weak correlation (Pascal Context) validates pairwise as a robust general-
purpose strategy applicable without task-specific tuning.

Task overlap prior superiority over pure gradient similarity represents the final core con-
tribution. Contrary to the initial hypothesis that dynamic gradient information would
supersede static task metadata, incorporating task overlap prior (ς = 0.5) outperforms
pure gradient similarity (ς = 0.0) by 4.7% on NYU V2 (A2: 0.6929 versus B1: 0.7256).
Task overlap captures structural relationships (which tasks share output spaces enabling
knowledge transfer) that gradients alone miss, particularly during early training when
gradient directions remain noisy. The finding motivates mixed similarity (ς = 0.5) as the
default configuration combining complementary information sources.

96 CHAPTER 6. EVALUATION

6.6.2 Practical Implications and Recommendations

The experimental findings translate to five actionable recommendations for deploying
decentralized FMTL systems. First, practitioners should assess task correlation before
selecting aggregation scope. For tasks sharing structure (geometric tasks like depth/nor-
mals/segmentation, linguistic tasks like translation/summarization/question-answering),
backbone-only aggregation provides computational e!ciency (fewer parameters exchanged,
faster convergence) with competitive performance. For independent tasks (edge detection
+ segmentation, image classification + text generation), full aggregation provides essential
stability preventing catastrophic oscillation. When correlation is uncertain, full aggrega-
tion serves as the safe default, as it succeeds across both strong and weak correlation while
backbone-only fails catastrophically for weak correlation.

Second, prefer pairwise task assignment unless tasks are nearly identical (requiring single-
task specialization) or completely unrelated (requiring isolation). Assign two related tasks
per client with asymmetric weights (0.7 primary, 0.3 secondary) balancing specialization
and knowledge transfer. The 13-14% improvement over single-task across datasets vali-
dates pairwise as superior to pure specialization, while 8.4% improvement over uniform
multi-task demonstrates advantages over forcing all clients to train all tasks simultane-
ously.

Third, use mixed task overlap similarity (ς = 0.5) combining gradient-based and task
structure information rather than pure gradient similarity (ς = 0.0). The 4.7% improve-
ment on NYU V2 demonstrates that static task metadata complements dynamic gradient
information, particularly during early training when gradient directions remain unstable.
Implementation requires minimal overhead: computing task overlap similarity once at
initialization and caching the result, then interpolating with per-round gradient similarity
using ς parameter.

Fourth, implement early stopping with generous patience (8-10 rounds) and restore best
weights configuration (restore_best_weights: true). The consistent trigger success
across datasets validates convergence-based stopping as reliable and e!cient. The best
weight restoration ensures that the gap between optimal performance and stopping trig-
ger does not degrade model quality, as deployed models use parameters from the best
validation round rather than final round.

Fifth, apply HCA carefully with full numerical protection or avoid it entirely in favor of
simpler weighted averaging. HCA achieves best performance only on CIFAR-10 (Hybrid-
6: 0.65) through hybrid strategies, while underperforming weighted averaging on NYU V2
(B2/B3 rank 7th-8th versus B1 rank 2nd). The 5-layer protection mechanism enables sta-
ble HCA but at substantial implementation complexity. For production systems, consider
simpler weighted averaging (easier implementation, lower computational cost, comparable
or better performance for correlated tasks) unless empirical validation demonstrates HCA
advantages for specific task combinations. If deploying HCA, use hybrid strategies (Fe-
dAvg for early rounds 1-6, HCA thereafter) providing robustness against early-training
instability while capturing HCA’s optimization benefits once gradients stabilize.

6.6. KEY FINDINGS AND RESEARCH CONTRIBUTIONS 97

6.6.3 Limitations and Future Work

This evaluation is conducted under controlled settings and thus has several limitations
closely tied to the reported comparisons. First, experiments use only six clients, which
supports reproducibility but leaves open whether the same neighbor-selection and con-
sensus dynamics hold at realistic federated scales (hundreds+ clients), where similarity
computation and communication become more complex. Second, communication is simu-
lated within a single process, abstracting away practical distributed factors such as latency,
bandwidth limits, partial participation, and client churn that may a”ect convergence and
stability in real deployments. Third, task heterogeneity is generated via predefined as-
signments (SingleTask/Pairwise/MultiTask); real systems may exhibit more irregular and
evolving task mixtures, requiring more adaptive strategies. Finally, conclusions are con-
ditioned on a finite hyperparameter/seed budget (e.g., early-stopping patience, similarity
window, neighbor size), so future work should validate robustness via broader sensitivity
studies and larger-scale simulations or distributed runs.

98 CHAPTER 6. EVALUATION

Chapter 7

Conclusion

This thesis investigates decentralized federated multi-task learning for dense prediction
computer vision, aiming to remove central coordination while still enabling e”ective cross-
client collaboration under heterogeneous objectives. The early chapters establish the
problem setting and motivate why server-free training is desirable in federated systems
where coordination, trust, and single-point-of-failure issues become limiting. Building
on prior federated multi-task learning formulations, the thesis then develops a peer-to-
peer framework in which each client independently selects neighbors and aggregation
scope, enabling collaboration without a central server. The implementation is designed to
be modular and reproducible, with task assignment and aggregation strategies specified
declaratively to support systematic comparison across configurations.

Empirically, the evaluation across multiple datasets and task mixtures yields several con-
sistent conclusions. First, decentralized collaboration is feasible: despite the lack of global
coordination, autonomous neighbor selection and aggregation can still produce stable
training and measurable gains over isolated single-task baselines in the explored settings.
Second, the e”ectiveness of collaboration is strongly shaped by task relationships, and
there is no universally optimal sharing scope. When tasks are strongly correlated, selec-
tively aggregating shared components (e.g., backbone-only) can be beneficial; however,
when correlation is weak, full-model aggregation is often necessary to maintain numer-
ical stability and avoid divergence. This observation highlights that selective sharing is
not inherently safer than full sharing, and that aggregation scope should be treated as a
task-dependent design choice. Third, controlled overlap in objectives improves learning:
pairwise task assignment (a clear primary task with a smaller secondary task weight) con-
sistently outperforms purely single-task or overly broad multi-task mixtures, suggesting
that limited, structured heterogeneity o”ers a better balance between specialization and
transfer. Fourth, for decentralized neighbor selection, gradient-only similarity emerges as
a strong and practical signal: it avoids dependence on task metadata while remaining
e”ective for discovering which peers provide useful updates. Finally, the work demon-
strates that numerical stability is a first-class concern in decentralized multi-task settings.
Conflict-averse aggregation can produce catastrophic failures without safeguards, and sys-
tematic stabilization is required to make such methods usable in practice; documenting
both stable configurations and failure cases is therefore part of the contribution.

99

100 CHAPTER 7. CONCLUSION

Despite these findings, several limitations remain and motivate future work. The current
study emphasizes controlled validation and therefore does not fully model real-world de-
ployment constraints, most notably communication cost and system-level e”ects. In prac-
tical federated networks, latency, bandwidth limitations, message drops, partial participa-
tion, and client churn can dominate runtime and may change which collaboration patterns
are optimal; future work should explicitly measure communication overhead, study cost–
accuracy trade-o”s, and validate the framework under realistic distributed conditions. In
addition, experiments are conducted under a limited set of hyperparameters and random
seeds; broader sensitivity analysis is needed to better characterize stability boundaries and
to provide robust default settings. Finally, the current design largely assumes parameter-
compatible architectures for straightforward aggregation; extending the framework to het-
erogeneous model families (e.g., via representation-level sharing, adapters, or distillation)
would substantially broaden applicability. Addressing these directions would strengthen
the path from controlled experimental evidence toward production-grade decentralized
multi-task federated learning systems.

Bibliography

[1] B. McMahan et al., “Communication-e!cient learning of deep networks from de-
centralized data”, in AISTATS, 2017.

[2] L. Zhu, Z. Liu, and S. Han, Deep leakage from gradients, 2019. arXiv: 1906.08935
[cs.LG]. [Online]. Available: https://arxiv.org/abs/1906.08935.

[3] A. Lalitha et al., “Fully decentralized federated learning”, IEEE Transactions on
Signal Processing, 2018.

[4] R. Sun et al., “Decentralized federated averaging”, IEEE Transactions on Signal
Processing, 2022.

[5] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, Federated multi-task learn-
ing, 2018. arXiv: 1705.10467 [cs.LG]. [Online]. Available: https://arxiv.org/
abs/1705.10467.

[6] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints”, IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 32, no. 8, pp. 3710–3722,
2021. doi: 10.1109/TNNLS.2020.3015958.

[7] N. Silberman et al., “Indoor segmentation and support inference from rgbd images”,
in ECCV, 2012.

[8] R. Mottaghi et al., “The role of context for object detection and semantic segmen-
tation in the wild”, in CVPR, 2014.

[9] N. Kohler, “A solution for decentralized federated multi-task learning”, Master’s
Thesis, University of Zurich, 2024.

[10] B. Liu, X. Liu, X. Jin, P. Stone, and Q. Liu, Conflict-averse gradient descent for
multi-task learning, 2024. arXiv: 2110.14048 [cs.LG]. [Online]. Available: https:
//arxiv.org/abs/2110.14048.

[11] J. Konečný et al., “Federated learning: Strategies for improving communication ef-
ficiency”, arXiv preprint arXiv:1610.05492, 2016.

[12] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, Federated
optimization in heterogeneous networks, 2020. arXiv: 1812.06127 [cs.LG]. [Online].
Available: https://arxiv.org/abs/1812.06127.

[13] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel
stochastic gradient descent, 2017. arXiv: 1705.09056 [math.OC]. [Online]. Avail-
able: https://arxiv.org/abs/1705.09056.

101

102 BIBLIOGRAPHY

[14] A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi, Decentralized deep learning with
arbitrary communication compression, 2020. arXiv: 1907.09356 [cs.LG]. [Online].
Available: https://arxiv.org/abs/1907.09356.

[15] M. Assran, N. Loizou, N. Ballas, and M. Rabbat, Stochastic gradient push for
distributed deep learning, 2019. arXiv: 1811.10792 [cs.LG]. [Online]. Available:
https://arxiv.org/abs/1811.10792.

[16] S. Ruder, “An overview of multi-task learning in deep neural networks”, arXiv
preprint arXiv:1706.05098, 2017.

[17] M. Crawshaw, “Multi-task learning with deep neural networks: A survey”, arXiv
preprint arXiv:2009.09796, 2020.

[18] R. Caruana, “Multitask learning”, Machine Learning, vol. 28, no. 1, pp. 41–75, 1997.
doi: 10.1023/A:1007379606734.

[19] M. T. Rosenstein, Z. Marx, L. P. Kaelbling, and T. G. Dietterich, To transfer
or not to transfer, NIPS 2005 Workshop: Inductive Transfer: 10 Years Later (De-
cember 2005), 2005. [Online]. Available: https://web.engr.oregonstate.edu/
~tgd/publications/rosenstein-marx-kaelbling-dietterich-hnb-nips2005-
transfer-workshop.pdf.

[20] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks, 2018. arXiv:
1711.02257 [cs.CV]. [Online]. Available: https://arxiv.org/abs/1711.02257.

[21] A. Kendall, Y. Gal, and R. Cipolla, Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics, 2018. arXiv: 1705.07115 [cs.CV]. [On-
line]. Available: https://arxiv.org/abs/1705.07115.

[22] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, Gradient surgery
for multi-task learning, 2020. arXiv: 2001 . 06782 [cs.LG]. [Online]. Available:
https://arxiv.org/abs/2001.06782.

[23] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, Cross-stitch networks for multi-
task learning, 2016. arXiv: 1604.03539 [cs.CV]. [Online]. Available: https://
arxiv.org/abs/1604.03539.

[24] S. Liu, E. Johns, and A. J. Davison, End-to-end multi-task learning with attention,
2019. arXiv: 1803.10704 [cs.CV]. [Online]. Available: https://arxiv.org/abs/
1803.10704.

[25] A. Krizhevsky, “Learning multiple layers of features from tiny images”, University
of Toronto, Tech. Rep., Apr. 2009. [Online]. Available: https://www.cs.toronto.
edu/~kriz/learning-features-2009-TR.pdf.

[26] C. Feng et al., Colnet: Collaborative optimization in decentralized federated multi-
task learning systems, 2025. arXiv: 2501.10347 [cs.LG]. [Online]. Available: https:
//arxiv.org/abs/2501.10347.

[27] A. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik, and S. Savarese, Taskonomy:
Disentangling task transfer learning, 2018. arXiv: 1804.08328 [cs.CV]. [Online].
Available: https://arxiv.org/abs/1804.08328.

BIBLIOGRAPHY 103

[28] K.-K. Maninis, I. Radosavovic, and I. Kokkinos, “Attentive single-tasking of multi-
ple tasks”, in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[29] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary, Federated learning
with personalization layers, 2019. arXiv: 1912.00818 [cs.LG]. [Online]. Available:
https://arxiv.org/abs/1912.00818.

[30] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, Exploiting shared repre-
sentations for personalized federated learning, 2023. arXiv: 2102.07078 [cs.LG].
[Online]. Available: https://arxiv.org/abs/2102.07078.

[31] C. T. Dinh, N. H. Tran, and T. D. Nguyen, Personalized federated learning with
moreau envelopes, 2022. arXiv: 2006.08848 [cs.LG]. [Online]. Available: https:
//arxiv.org/abs/2006.08848.

[32] T. Li, S. Hu, A. Beirami, and V. Smith, Ditto: Fair and robust federated learn-
ing through personalization, 2021. arXiv: 2012.04221 [cs.LG]. [Online]. Available:
https://arxiv.org/abs/2012.04221.

[33] Y. Lu, S. Huang, et al., “Fedhca2: Towards hetero-client federated multi-task learn-
ing”, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024.

[34] A. Elbakary, C. Ben Issaid, and M. Bennis, Learning to collaborate over graphs: A
selective federated multi-task learning approach, Preprint, 2025.

[35] Y. Wei, Y. Zou, et al., Towards unified modeling in federated multi-task learning via
subspace decoupling, Preprint, 2025.

[36] Y. Zhang, H. Chen, et al., Fedac: An adaptive clustered federated learning framework
for heterogeneous data, arXiv preprint, 2024.

[37] A. Zamir et al., Robust learning through cross-task consistency, 2020. arXiv: 2006.
04096 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2006.04096.

[38] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, An e!cient framework for clus-
tered federated learning, 2021. arXiv: 2006.04088 [stat.ML]. [Online]. Available:
https://arxiv.org/abs/2006.04088.

[39] H. Kim, H. Kim, and G. de Veciana,“Clustered federated learning via gradient-based
partitioning”, in International Conference on Machine Learning (ICML), 2024.

[40] Q. Ma, Y. Xu, et al., “Feduc: A unified clustering approach for hierarchical federated
learning”, IEEE Transactions on Mobile Computing, 2024.

[41] G. Luo, N. Chen, et al., “Privacy-preserving clustering federated learning for non-iid
data”, Future Generation Computer Systems, 2024.

[42] Y. Ruan and C. Joe-Wong, Fedsoft: Soft clustered federated learning with proximal
local updating, 2022. arXiv: 2112.06053 [cs.LG]. [Online]. Available: https://
arxiv.org/abs/2112.06053.

[43] A. Ali and A. Arafa,“Data similarity-based one-shot clustering for multi-task hierar-
chical federated learning”, IEEE Transactions on Network Science and Engineering,
2024.

104 BIBLIOGRAPHY

[44] J. Shu et al., “Clustered federated multitask learning on non-iid data with enhanced
privacy”, IEEE Transactions on Knowledge and Data Engineering, 2022.

[45] T. Kim et al., “Dynamic clustering in federated learning”, in European Conference
on Computer Vision Workshops, 2020.

[46] S. Reddi et al., Adaptive federated optimization, 2021. arXiv: 2003.00295 [cs.LG].
[Online]. Available: https://arxiv.org/abs/2003.00295.

[47] H. Yuan et al., “Decentralized federated learning: A survey and perspective”, IEEE
Transactions on Artificial Intelligence, 2024.

[48] D. Mart́ınez Beltrán et al., “Decentralized federated learning: Fundamentals, state-
of-the-art, and open challenges”, IEEE Communications Surveys & Tutorials, 2023.

[49] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition,
2015. arXiv: 1512.03385 [cs.CV]. [Online]. Available: https://arxiv.org/abs/
1512.03385.

[50] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database”, in 2009 IEEE Conference on Computer Vision
and Pattern Recognition, 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[51] J. Pilet et al., “Simple, e!cient and convenient decentralized multi-task learning”,
in NeurIPS, 2020.

Abbreviations

FL Federated Learning
DFL Decentralized Federated Learning
FMTL Federated Multi-Task Learning
DFMTL Decentralized Federated Multi-Task Learning
P2P Peer-to-Peer
HCA Hyper Conflict-Averse (aggregation)
MTL Multi-Task Learning
CV Computer Vision
IID Independent and Identically Distributed
non-IID Non-Independent and Identically Distributed
SGD Stochastic Gradient Descent
CNN Convolutional Neural Network
CIFAR Canadian Institute For Advanced Research
mIoU Mean Intersection over Union
NaN Not a Number
PASCAL Pattern Analysis, Statistical Modelling and Computational Learning
ResNet Residual Network
RGB Red Green Blue
RGB-D Red Green Blue-Depth
YAML YAML Ain’t Markup Language

105

106 ABBREVIATONS

Glossary

Federated Learning (FL) A distributed training paradigm where clients train models on
local data and share updates (e.g., parameters or gradients) rather than raw data.

Decentralized Federated Learning (DFL) A federated learning setting without a central
server, where clients exchange updates in a peer-to-peer manner and coordination
is achieved through decentralized protocols.

Federated Multi-Task Learning (FMTL) A federated learning formulation in which dif-
ferent clients optimize di”erent (potentially related) tasks, aiming to enable benefi-
cial knowledge transfer while handling task heterogeneity.

Decentralized Federated Multi-Task Learning (DFMTL) The combination of FMTL and
DFL: multi-task federated learning performed without central coordination, requir-
ing clients to make autonomous collaboration and aggregation decisions.

Client A participating node/device in a federated network that performs local training
on private data and communicates model updates to other participants.

Peer-to-Peer (P2P) Communication A communication pattern in which clients exchange
updates directly with selected neighbors rather than through a central server.

Neighbor Selection The decentralized procedure by which a client chooses a subset of
other clients (neighbors) from whom to receive updates for aggregation.

Aggregation The process of combining local and received updates into a new model state.
In this thesis, aggregation is performed autonomously at each client and may vary
across clients.

Aggregation Scope The subset of model parameters that are shared and aggregated (e.g.,
backbone-only versus full model), which a”ects both transfer benefits and stability.

Backbone The shared feature extractor of a neural network (e.g., ResNet-18), typically
task-agnostic and reused across multiple tasks.

Task Head The task-specific prediction module attached to a shared backbone (e.g., seg-
mentation head, depth head), producing outputs tailored to one objective.

Dense Prediction Vision tasks that require structured, per-pixel outputs (e.g., semantic
segmentation, depth estimation, edge detection), often exhibiting di”erent optimiza-
tion dynamics from image-level classification.

107

108 GLOSSARY

Task Correlation The degree to which tasks share aligned optimization objectives or
transferable representations; empirically linked in this thesis to the preferred ag-
gregation scope.

Task Similarity A quantitative estimate of relatedness between tasks/clients used to guide
collaboration. This thesis studies gradient-based cosine similarity, task overlap sim-
ilarity, and cross-loss similarity.

Gradient Cosine Similarity A similarity measure computed from gradients (or gradient-
like signals), indicating alignment of optimization directions and enabling metadata-
free collaboration decisions.

Task Overlap Similarity A similarity signal derived from overlap in task assignments or
task-weight vectors, capturing whether clients train on the same or partially over-
lapping objectives.

Cross-Loss Similarity A similarity metric based on evaluating a neighbor’s model on local
validation data, directly estimating transferability across clients/tasks via observed
loss behavior.

Conflict-Aware Aggregation Aggregation methods that account for gradient conflicts
across tasks/clients to reduce negative transfer, potentially improving multi-task
learning but also introducing stability challenges.

Hyper Conflict-Averse (HCA) Aggregation A specific conflict-aware aggregation approach
investigated in this thesis, requiring dedicated stabilization mechanisms to prevent
numerical divergence in decentralized dense prediction settings.

Early Stopping A training e!ciency technique that terminates training when validation
performance plateaus, typically using a patience window and restoring the best
checkpoint.

Pairwise Task Assignment A task distribution pattern where each client trains two tasks
with asymmetric weights (e.g., a primary task plus a related secondary task), used
in this thesis to study controlled overlap versus single-task or multi-task mixtures.

List of Figures

2.1 Comparison of decentralized network topologies G = (V , E). Ring topology
minimizes per-client communication overhead at the cost of slow consensus
(O(N) diameter). Fully connected topology achieves fastest convergence
(unit diameter) but requires O(N2) total connections. Random topol-
ogy with communication budget k provides a practical balance, achieving
O(logN) diameter with bounded per-client degree [15]. 6

2.2 Detailed hard parameter sharing architecture. The backbone εs serves
as the shared representation learner receiving joint gradients, while task-
specific heads specialize in individual objectives. This visual separation
justifies our flexible aggregation scopes (Backbone-only vs. Full-model). . . 12

4.1 End-to-end workflow of the proposed framework in one communication round. 28

4.2 Illustration of how similarity-guided neighbor selection induces a dynamic
communication topology over training rounds. 30

4.3 Hard parameter sharing for multi-task dense prediction: a shared backbone
with task-specific heads. 32

4.4 Conceptual workflow of the similarity-guided soft aggregation mechanism.
The process transforms raw task similarities into normalized weights for
neighborhood-based parameter fusion. 42

4.5 Design space of aggregation strategies in the proposed framework. 44

4.6 Conceptual comparison of aggregation scopes. Scope selection serves as
a critical design axis for balancing task-specific specialization and global
knowledge sharing. 45

6.1 Performance hierarchy on the NYU Depth V2 dataset. Configuration A2
(incorporating pairwise task assignment, overlap weighting, and full aggre-
gation) yields superior performance, achieving a minimum loss of 0.6929
and notably surpassing all baseline configurations. In contrast, HCA-based
experiments (B2, B3) exhibit suboptimal results (ranking 7th and 8th) de-
spite the inclusion of numerical protection mechanisms. This suggests that
conflict-averse optimization provides diminishing returns or even adversar-
ial e”ects when applied to tasks with strong inherent correlations. 82

109

110 LIST OF FIGURES

6.2 Pascal Context Complete Experimental Analysis Including B1 Instability.
Top row: Stable experiments (A1, A2, B4) showing three-run distribution
(left) and mean performance with variance (right). A2 demonstrates ex-
ceptional stability (CV = 0.3%) and best average performance (0.9826).
Middle left: B1 Run 4-6 using inconsistent early stopping configuration
(patience=6 vs 8-10 for other experiments), yielding average loss 1.1396
but not comparable due to configuration mismatch. Middle right: B1 Run
7 with corrected configuration revealing chaotic oscillation pattern—best
loss 1.1711 at Round 2 followed by gradient explosions (up to 1014) and
perpetual oscillation, never surpassing initial performance. Bottom: B1-
CrossLoss ablation study comparing gradient-based versus cross-loss simi-
larity methods. Cross-loss similarity failed earlier (Round 3 vs Round 7),
definitively proving that the instability stems from backbone-only aggrega-
tion scope rather than similarity computation method. This comprehensive
failure analysis validates that full aggregation is a necessary condition for
training stability on weakly-correlated tasks. 86

6.3 Comprehensive B1 (Backbone-only) Instability Analysis Across Multiple
Runs. Top-left: B1 Run 1-3 showing consistent failure at Round 7 across
di”erent random seeds, ruling out stochastic causes and confirming system-
atic instability. Top-right: B1 Run 7 loss trajectory (corrected configura-
tion) showing best loss 1.1711 at Round 2 followed by perpetual oscilla-
tion around 1.3-1.4, indicating gradient explosions at rounds 3, 5, 7, and
9. Bottom-left: Per-task loss breakdown for Run 7 demonstrating that
all three tasks (edge, human parts, segmentation) explode simultaneously
during rounds 3-5, indicating backbone-level rather than task-specific in-
stability. Bottom-right: Cross-dataset comparison showing B1’s divergent
behavior—stable convergence on NYU V2 (0.7256, ranking 2nd) versus
catastrophic failure on Pascal Context (NaN, R3-7 explosions). This stark
contrast validates the thesis’s core finding that backbone-only aggregation
succeeds only for strongly correlated tasks (NYU V2’s geometric coherence)
and fails fundamentally for weakly correlated tasks (Pascal Context’s cross-
scale independence). The failure is not a bug but a fundamental limitation
revealing the method’s applicability boundary. 88

6.4 Core Finding: Task Correlation Determines Optimal Aggregation Scope.
For NYU V2’s strongly correlated tasks (depth, normals, segmentation
sharing geometric structure), backbone-only aggregation (B1) achieves sta-
ble competitive performance (0.7256), though full aggregation (A2) remains
superior (0.6929, 4.7% improvement). For Pascal Context’s weakly corre-
lated tasks (edge detection, human parts, semantic segmentation operating
at di”erent abstraction levels), backbone-only aggregation catastrophically
fails (NaN at round 7) while full aggregation succeeds (A2: 0.9826, sta-
ble). This counterintuitive finding—that MORE parameter sharing im-
proves stability for LESS correlated tasks—challenges conventional nega-
tive transfer theories recommending selective sharing for heterogeneous tasks. 90

LIST OF FIGURES 111

A.1 NYU V2 HCA divergence timeline. The early rounds appear normal, fol-
lowed by abrupt loss explosion, indicating numerical instability rather than
gradual overfitting. 116

A.2 Early stopping analysis on NYU V2. Left: configured maximum rounds,
actual early-stopped rounds, and best-achieved rounds. Right: estimated
compute saved by early stopping across configurations. 116

A.3 HCA stability fix on NYU V2. After applying a protection mechanism,
both backbone-only and full-model HCA become stable, though they re-
main less competitive than A2. 117

A.4 Pairwise training (A2) consistently improves best validation loss over single-
task training (A1) on both NYU V2 and Pascal Context. 117

A.5 Representative learning curves across datasets and configurations (supple-
mentary). Stable convergence contrasts with divergence/instability pat-
terns observed in HCA (NYU) and B1 (Pascal). 118

112 LIST OF FIGURES

List of Tables

2.1 Comparison of validation datasets for decentralized FMTL. 9

2.2 Comparison of FMTL personalization approaches. 13

3.1 Comparison of federated and decentralized multi-task learning approaches.
Dec. (Decentralized), Dyn. (Dynamic Task Relationship Discovery), Dense (Dense
Prediction Tasks), Cross (Cross-Dataset Validation), Stab. (Explicit Sta-
bility Considerations). 26

4.1 Key notation used throughout this chapter. 29

5.1 Specialized Training Scripts for Decentralized Learning 51

5.2 Implementation Statistics . 52

5.3 Configuration File Structure . 55

5.4 Configuration Files and Experimental Coverage 56

6.1 Three-Dataset Validation Strategy Spanning Task Types and Correlation
Structures . 66

6.2 Experimental Design Matrix Systematically Varying Task Assignment and
Aggregation . 68

6.3 Hyperparameter Settings with Rationale 69

6.4 Phase 1 Initial HCA Failures on CIFAR-10 71

6.5 Comparative Analysis of Similarity Metrics in Phase 3 FedAvg Validation . 73

6.6 Phase 4 Hybrid FedAvg → HCA Strategy Results 74

6.7 NYU V2 Quick Test Results (3 Rounds) 77

6.8 NYU V2 Full Run Results Using Best Loss (Actual Model Performance) . 77

6.9 NYU V2 Early Stopping E”ectiveness Analysis 78

113

114 LIST OF TABLES

6.10 B2 (HCA Backbone-only) Loss Explosion Timeline 79

6.11 NYU V2 HCA Stability: Before and After Protection Mechanism 80

6.12 Final Performance Ranking on NYU Depth V2. Experiment A2 yields
the optimal Best Loss, while HCA-based variants (B2, B3) show limited
e!cacy for highly correlated tasks. 81

6.13 Pascal Context Three-Run Statistical Analysis 84

6.14 B1 Run 7 Detailed Loss Trajectory (Pascal Context, Backbone-only Ag-
gregation) . 85

6.15 Task Correlation vs Aggregation Scope: Empirical Performance Pattern . . 87

6.16 Pascal Context A2 (Pairwise) Per-Task Performance Breakdown 91

6.17 Best Performing Method per Dataset and Task Characteristics 92

6.18 Pairwise vs SingleTask Performance Advantage Across Datasets 92

Appendix A

Supplementary Figures for Chapter 6

A.1 NYU V2 Supplementary Analyses

A.2 Cross-Dataset Supplementary Summary

A.3 Representative Learning Curves

115

116 APPENDIX A. SUPPLEMENTARY FIGURES FOR CHAPTER 6

Figure A.1: NYU V2 HCA divergence timeline. The early rounds appear normal, followed
by abrupt loss explosion, indicating numerical instability rather than gradual overfitting.

Figure A.2: Early stopping analysis on NYU V2. Left: configured maximum rounds,
actual early-stopped rounds, and best-achieved rounds. Right: estimated compute saved
by early stopping across configurations.

A.3. REPRESENTATIVE LEARNING CURVES 117

Figure A.3: HCA stability fix on NYU V2. After applying a protection mechanism, both
backbone-only and full-model HCA become stable, though they remain less competitive
than A2.

Figure A.4: Pairwise training (A2) consistently improves best validation loss over single-
task training (A1) on both NYU V2 and Pascal Context.

118 APPENDIX A. SUPPLEMENTARY FIGURES FOR CHAPTER 6

Figure A.5: Representative learning curves across datasets and configurations (supple-
mentary). Stable convergence contrasts with divergence/instability patterns observed in
HCA (NYU) and B1 (Pascal).

