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Abstract

Federated Learning (FL) is a distributed machine learning paradigm in which multiple
clients collaboratively train a global model without sharing their private data. The per-
formance of FL is highly influenced by data heterogeneity, such as the varied statistical
distribution of training data across clients. To address this issue, numerous algorithms
have been introduced. In this paper, we propose a novel FL algorithm, Federated Entropy
Pooling (FedEP). This method mitigates the client-drift problem resulting from data het-
erogeneity while preserving clients’ privacy by incorporating the statistical characteristics
of local distributions instead of any actual data. Prior to training, each client conducts
a local distribution fitting using a Gaussian Mixture Model (GMM) and communicates
the resulting statistical characteristics to a central aggregator in Centralized Federated
Learning (CFL) or throughout the network in Decentralized Federated Learning (DFL).
The aggregator then uses these statistical characteristics to compute Kullback-Leibler
(KL) divergences between the data distributions of clients and the estimated global dis-
tribution to construct a new, optimized aggregation function. FedEP can be considered
a re-parameterization of FedAvg, incorporating the distribution differences across clients.

Our experiments demonstrate that FedEP can achieve a faster convergence rate and higher
accuracy compared to Federated Averaging (FedAvg) and other popular algorithms.
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Zusammenfassung

Federated Learning (FL) ist ein verteiltes maschinelles Lernparadigma, bei dem mehrere
Clients gemeinsam ein globales Modell trainieren, ohne ihre privaten Daten zu teilen.
Die Leistung von FL wird stark durch Datenheterogenität beeinflusst, wie die unter-
schiedliche statistische Verteilung der Trainingsdaten über die Clients hinweg. Um dieses
Problem zu adressieren, wurden zahlreiche Algorithmen eingeführt. In dieser Arbeit schla-
gen wir einen neuartigen FL-Algorithmus vor, Federated Entropy Pooling (FedEP). Diese
Methode mindert das Client-Drift-Problem, das durch Datenheterogenität entsteht, und
bewahrt gleichzeitig die Privatsphäre der Clients, indem die statistischen Eigenschaften
lokaler Verteilungen anstelle der tatsächlichen Daten einbezogen werden. Vor dem Train-
ing führt jeder Client eine lokale Verteilungsanpassung mittels eines Gaussian Mixture
Model (GMM) durch und übermittelt die resultierenden statistischen Eigenschaften an
einen zentralen Aggregator im Centralized Federated Learning (CFL) oder im gesamten
Netzwerk im Decentralized Federated Learning (DFL). Der Aggregator verwendet diese
statistischen Eigenschaften, um Kullback-Leibler (KL)-Divergenzen zwischen den Daten-
verteilungen der Clients und der geschätzten globalen Verteilung zu berechnen und so
eine neue, optimierte Aggregationsfunktion zu konstruieren. FedEP kann als eine Re-
Parametrisierung von FedAvg betrachtet werden, die die Verteilungsunterschiede zwischen
den Clients einbezieht. Unsere Experimente zeigen, dass FedEP eine schnellere Konver-
genzrate und höhere Genauigkeit im Vergleich zu Federated Averaging (FedAvg) und
anderen populären Algorithmen erreichen kann.
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Chapter 1

Introduction

Conventional machine learning tasks typically involves collecting data on a centralized
server. However, this approach faces challenges in real-world applications due to grow-
ing concerns about data privacy, confidentiality, and limitations in computing resources.
Federated Learning (FL) emerges as a distributed machine learning paradigm that ad-
dresses these concerns by allowing data to remain on its owner’s devices, and enabling
collaborative machine learning tasks without direct data sharing.

Compared to distributed machine learning in a data center environment, FL faces three
distinct challenges: (1)Computational Heterogeneity: The various computational capa-
bilities of different devices lead to discrepancies in training times; (2)Communication
Heterogeneity: Devices participate intermittently in FL. Some may be offline or powered
off, potentially losing connection during training; and (3)Data Heterogeneity: FL uses
datasets collected directly from edge devices. In this case, datasets are often heteroge-
neous or non-independent and non-identically distributed (Non-IID), as opposed to the
independent and identically distributed (IID) datasets in data center environment. These
challenges affects the consistency, reliability and performance of FL.

To accommodate machine learning in federated settings, FedAvg[1], the commonly used
optimization method in the federated setting, brings training to local device and reduces
communication frequency. FedAvg first performs E epochs of local stochastic gradient
descent (SGD) on a fraction of client devices in the network each round. The devices
then communicate their model parameters to a central server, where they are averaged
with a weight with respect to the data amount of this clients. FedAvg has demonstrated
empirical effect in mitigating computation and communication heterogeneities, it does not
fully address the data heterogeneity. Since training was performed in local client nodes
with non-IID data distribution, FedAvg is likely to meet a Client Drift(CD) problem, that
the global model is drifted away from its global optimal by other non-IID client. Although
there are works prove that FedAvg can converge in Non-IID data setting[]. In practice,
FedAvg, converges slower in Non-IID data setting, or in worst cases, cannot converge to
the optimal.
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2 CHAPTER 1. INTRODUCTION

1.1 Motivation

The root representative of data heterogeneity, is the various data distributions. The
previous related works either share data, compromising privacy, or add penalties or re-
parameterize the loss function in training based on the weights difference. In this context,
this work aims to quantify the Non-IID data distributions and incorporates this quantity
into the FL algorithm.

1.2 Description of Work

In this work, we introduce a novel Federated Entropy Pooling Algorithm (FedEP), de-
signed to alleviate the client drift issue brought by data heterogeneity in extreme Non-IID
scenarios. FedEP considers the distribution of local data and customizes the attention
allocated to each model. Contrasting with FedAvg, which performs weighted average
aggregation based on the volume of local data, FedEP employs a pooling of the Kullback-
Leibler (KL) divergence[2]. The optimized aggregation function expends the weights of
the models from clients with more unique datasets, while reducing the weights of mod-
els from clients with less distinctive data, thereby enhancing the global model training
process. Conceptually, FedEP can be viewed as a re-parameterization of the widely used
FedAvg algorithm, but with a unique focus on incorporating distribution differences across
clients.

The proposed FedEP algorithm was evaluated on the MNIST, FashionMNIST, and CIFAR-
10 datasets in decentralized FL networks under two different Non-IID settings: Pure
Non-IID and Mixed Non-IID. The performances were compared to those of FedAvg and
SCAFFOLD[3].

Our results have shown that under mixed Non-IID scenarios, such as networks comprising
nodes with varying levels of data heterogeneity, FedEP effectively enhances overall perfor-
mance in classification tasks. Specifically, in a network with some nodes exhibiting lower
heterogeneity and others with higher heterogeneity, FedEP not only increases the overall
accuracy but also significantly aids nodes with heterogeneous data samples in learning
more effectively compared to FedAvg and SCAFFOLD.

The entropy pooling technique employed by FedEP shows its ability to handle mixed
Non-IID scenarios with extreme outliers, suggesting its potential application in future
FL environments characterized by high data variability. This robustness makes FedEP a
valuable tool for improving the reliability and performance of FL systems in real-world
applications, where data heterogeneity is a common challenge.

1.3 Thesis Outline

The structure of this work is outlined as follows. First, Chapter 2 establishes the theoret-
ical background and describes the fundamental concepts used in this work. This includes
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an overview of FL, and a specific focus on Data Heterogeneity.

Chapter 3 delves into RelatedWork, presenting a comprehensive review of existing method-
ologies and approaches in the field. This chapter is structured to first introduce the
problem formation. It then explores common methods to address data heterogeneity
in different categories, highlighting significant contributions like FedProx, FedNova and
SCAFFOLD.

Chapter 4 introduces the FedEP Algorithm, the core contribution of this thesis. This
chapter not only details the algorithm but also includes an Convergence Analysis to
demonstrate its theoretical robustness and efficiency.

In Chapter 5, the focus shifts to Implementation, specifically discussing the adaptations
made to integrate FedEP with the existing Fedstellar framework. This chapter provides
insights into the practical aspects of applying the FedEP algorithm in real-world scenarios.

Chapter 6 is dedicated to Evaluation, where the experimental setup, results, and a com-
prehensive discussion are presented. This chapter aims to empirically validate the effec-
tiveness of the FedEP algorithm through various experiments and comparative analyses.

Finally, Chapter 7 provides a Summary and Conclusions, drawing together the main
findings of the research and discussing the implications of the results. This chapter also
suggests potential avenues for future research, building on the work presented in this
thesis.
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Chapter 2

Background

This sections will summarize the theoretical foundation of FL and elucidate the taxonomy
of common heterogeneity challenges in FL.

2.1 Overview on Federated Learning

Federated Learning represents a distributed machine learning paradigm in which numer-
ous clients(also known as nodes, participants, or entities) work collaboratively to train
a unified global model, while ensuring their private data remains unshared. Consider a
federation with a set of clients, K, and |K| as the total number of clients, for client k ∈ K,
the local dataset Dk = (Xk,yk) ∈ (X,Y). The feature matrix Xk = {x1,x2, ...,xNk

}
where each of the element xn, n ∈ [1, 2, ..., N ] is a feature vector and Nk is the number
of data samples in client k. yk is a label vector {y1, y2, ..., yNk

}. We have X =
⋃K

k=1Xk

and Y =
⋃K

k=1 yk as the theoretical total union of global datasets that are not stored on
a single machine. Especially in a classification case, we define Y as distinct label classes
in the global context and Yk as the distinct label classes in client k.

2.1.1 The Foundational Algorithm

The foundational algorithm in FL, FedAvg, was first proposed by McMahan[1] in 2017.
This algorithm was initially developed for use in centralized federated learning(CFL)
settings that consists of a centralized server responsible for aggregation and |K| clients
undertaking model training with their respective local dataset.

5



6 CHAPTER 2. BACKGROUND

Problem Formulation

The global optimization model of FedAvg is as follows:

min
w
{F (w) =

|K|∑
k=1

pkFk(w)}

where pk = Nk∑|K|
k=1 Nk

is the weight of dataset of client k such that pk ≤ 0 and
∑|K|

k=1 pk =

1. Fk is the local optimization function of client k.

Algorithm Description

FedAvg begins with the server initializing a weight w0. The training process then proceeds
in rounds, each involving three steps:

Step 1: The Server randomly selects a subset of clients, St ⊆ K,and broadcasts the current
weight wt to St;

Step 2: Upon receiving the weight wt from the server, each client k ∈ St performs a Client
Update function in parallel. This involves splitting the local dataset Dk into batches of
size of B. For E epochs, each batch of data ξi,j is used to update wt via stochastic gradient
descent with learning rate η:

wk
t+i+1 = wk

t+i − η▽ Fk(w
k
t+i; ξ

k
i,j), i = 0, 1, ..., E − 1, j = 1, 2, ..., ⌈Nk/B⌉

Step 3: The clients send their updated weights back to the server, which then aggregates
these weights into wt+1 using a weighted average with weights pk =

Nk∑|St|
k=1 Nk

:

wt+1 =

|St|∑
k=1

pkw
k
t+1

The algorithm iterates through these steps until convergence is achieved or a predefined
number of rounds is completed. Through this procedure, the central server obtains a
model, w∗

t , that has been trained on data from the clients without direct access to the
data itself.

Compared with the Distributed SGD[4–6], in which, the gradients instead of the model
weights are communicated and aggregated, FedAvg let the clients to do their own model
updating, and more importantly, updating for E epochs. This greatly reduced the de-
pendency on communication, making collaborate training among large numbers of clients
possible. However, this approach also presents challenges, such as security concerns. Pre-
vious studies have shown that FedAvg is highly vulnerable to poisoning attacks[7, 8] since
this protocol does not account for adversarial participation[9, 10]. Moreover, due to the
heterogeneous nature of clients’ local datasets, local training exacerbates the problem of
client drift.
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Figure 2.1: Federated Average(FedAvg) (St ̸= K).

2.2 Categorization

2.2.1 Centralized FL, Semi-Decentralized FL and Decentralized FL

According to the variations of FL architectures, FL can be divided into Centralized Fed-
erated Learning (CFL), Semi-Decentralized Federated Learning (Semi-DFL), and Decen-
tralized Federated Learning (DFL). In CFL, also referred to as the client-server model,
the aggregator role is fixed to the server. This aggregator collects models sent by the
clients, aggregates them into a global model, and then broadcasts it to other clients. In
Semi-DFL, the role of the aggregator rotates within the network. In DFL, each node in
the network acts both as a client to train the model and broadcast their model into the
network, and as an aggregator to collect models from others to obtain a better global
model.

2.2.2 Horizontal FL (HFL) and Vertical FL (VFL)

Based on differences in data distributions across feature spaces X and sample spaces, FL
can be categorized into Horizontal Federated Learning (HFL), Vertical Federated Learning
(VFL), and Federated Transfer Learning (FTL).

HFL refers to cases where multiple clients share a same or similar feature spaces, but the
data samples are from distinct users. VFL, on the other hand, applies to cases where the
feature spaces do not overlap, but the data samples likely do. In application scenarios,
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Figure 2.2: Simplified client drift of 2 client nodes in FedAvg[[3]].

Figure 2.3: Variations of FL Architectures: CFL, Semi-DFL, and DFL [11]

HFL refers to situations where each client collects similar features from distinct users.
For example, hospitals in different regions collect the a dataset with the same features
from their respective(non-overlapping) local patients. Conversely, VFL refers to situations
where each client collects different features from the same or similar group of users. For
example, the local government, a bank and a hospital collecting data from the same
district are likely to have data on the same group of residents but with different features.
Cases where clients have neither common features nor common data samples are usually
addressed as Federated Transfer Learning (FTL).

In our work, we focus on the Horizonal scenario for single task and identical features.

2.3 Open Challenges

In FL, there are two main challenges that limit its full potential: heterogeneities and
security. Many studies have focused on these two areas[].
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2.3.1 Heterogeneities

Heterogeneities in FL can be grouped into data heterogeneity (also called statistical het-
erogeneity) communication heterogeneity, and computation heterogeneity.

Data Heterogeneity

Data heterogeneity(Statistical Heterogeneity) refers to the differences in data distribu-
tions across clients. Traditional machine learning algorithms assumes that data is IID
(independently and identically distributed). However, this is not the case in FL where
each device collects and stores data independently, leading to non-IID (not independently
and not identically distributed) data.

Consider a federation with a set of clients, K, and |K| as the total number of clients, for
client k ∈ K, the local dataset Dk = (Xk,yk) ∈ (X,Y) and the local data distribution is
Pk(Dk) or Pk(Xk,yk). In a classification case, we define Y as distinct label classes in the
global context and Yk as the distinct label classes in client k.

In a data IID case in FL:

Pk1(y = c) ≍ Pk2(y = c), ∀k1, k2 ∈ K, k1 ̸= k2,∀c ∈ Y

For each class c in a Y , the probabilities of y being in class c in two different clients k1,k2
are asymptotically equal.

The IID assumption is important for traditional machine learning algorithms to achieve
generalization but it is not applicable in FL. Addressing this challenge necessitates the
development of novel techniques and models capable of quantifying the level of non-iidness
within the data and effectively integrating this insight into the training process.

Communication Heterogeneity and Computation Heterogeneity

Communication heterogeneity comes from the different network conditions of the devices
involved. In FL, devices often have varying network speeds and reliability, which can
cause delays and inefficiencies. Some devices may be much slower or frequently discon-
nected. This makes it challenging to design communication methods that can handle
these differences and ensure efficient model updates.

Computation heterogeneity is about the varying computational power of the devices.
Devices in FL range from powerful servers to less capable mobile phones or IoT devices.
This difference means that some devices can process and send data much faster than
others, leading to imbalanced training processes. Managing these differences effectively
requires algorithms that can adjust the workload based on each device’s capabilities.
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2.3.2 Security

Security is a major concern in FL due to its decentralized nature. One key security
challenge is ensuring the robustness of algorithms against Byzantine failures.

Byzantine-Robust Algorithms Byzantine failures refer to situations where some devices
behave incorrectly or maliciously during the FL process. These devices can send incorrect,
corrupted, or even harmful updates to the central server, damaging the global model.
There are several types of attacks that malicious clients might use:

Poisoning Attacks These involve adding fake data to negatively affect the training pro-
cess. This can slow down the training rate or, in the worst case, prevent the model from
converging altogether[7, 8, 13].

Inference Attacks These attacks aim to compromise data privacy by inferring the datasets
of other participants in the training process.[14]

Backdoor Attacks In these attacks, malicious clients insert hidden triggers during train-
ing, allowing them to control the model’s behavior when specific conditions are met.[15,
16]

Developing Byzantine-robust algorithms is essential to address these issues. These algo-
rithms need to detect and mitigate the impact of malicious or faulty updates, ensuring
that the training process remains reliable and secure. Methods such as robust aggrega-
tion, anomaly detection, and secure multi-party computation are being explored to tackle
these challenges.
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Figure 2.4: Horizontal FL, Vertical FL, and Federated Transfer Learning [12]
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Chapter 3

Related Work

Recent literature has extensively explored various approaches to mitigate the influence of
Data Heterogeneity in FL, offering numerous categorization methodologies[17]. A critical
question to consider before categorization is the problem formulation or the underlying
objective. Based on this problem formulation, these methods can be classified into two
main categories within a non-i.i.d. setting: enhancing the generalization of the global
model or improving the personalization of client models.

To enhance the generalization of the global model, the problem formulation is as follows:

min
w

F (w) =
1

k

|K|∑
k=1

Fk(w)

 (3.1)

Under problem formulation (3.1), the primary goal is to optimize the global algorithm to
ensure its generalization across diverse clients’ test sets.

Differently, to improve the personalization of client models, the problem formulation is as
follows:

min
w

F (w) =
1

k

|K|∑
k=1

Fk(w − η▽ Fk(w))

 (3.2)

Under problem formulation (3.2), the goal is to prepare a global algorithm such that clients
can use this global algorithm as an initial point to fine-tune their respective personalized
algorithms. The ultimate focus is on the performance of these personalized algorithms on
their distinctive tasks. This scenario is frequently addressed in the context of a multi-task
learning setting.

Distinguishing between these problem formulations is crucial, as these two objectives can
be contradictory in some methodologies, where a trade-off between the two objectives

13



14 CHAPTER 3. RELATED WORK

might be inevitable. In Federated Meta Learning, an increase in personalization might
come at the expense of reduced generalization[18].

In our study, we will focus on a single-task learning setting and problem formulation (3.1)
to improve the global model.

3.1 Improving Global Model

In the context of problem formulation (3.1), methods for improving the global model
can be categorized into three perspectives: data-based, parameter-based, and algorithm-
based. It should be noted that these categories are not mutually exclusive; an algorithm
may simultaneously employ methods from several categories.

Category Sub-Technique Definition Examples Pros Limitation

Data-based
data sharing communicate

data
FedDF Technique simple

to employ,
does not change
the learning
model

Consume resource
and compromise
privacydata augmenta-

tion
generate fake
data

FEDGEN

data selection randomize data
selection

Parameter-based
Adding/adjusting
parameters in
training

Variation of
FedAvg by adding
or adjusting
parameters

FedProx,
FedMA,
SCAFFOLD,
FedAdagrad,
FedYogi,
FedAdam

Elegantly solve
heterogeneity
problem without
compromising privacy

Higher
computation
complexity

Adding/adjusting
parameters in
Aggregation

Algorithm-based Federated Distillation
Add new tech-
nique to enhance
simulation be-
tween models

FedDF, FED-
GEN

Lift the limita-
tion of model
structure

Compromise
data accuracy
and communica-
tion delay

Federated Per-
sonalization
Learning

Do further per-
sonalization of
global model

One more step of
personalization

Different prob-
lem formation

Table 3.1: Existing Methods in mitigating data heterogeneity

3.1.1 Data-based Methods

Data-based methods primarily focus on enhancing data homogeneity. These methods can
be further categorized into data sharing, data augmentation, and data selection.

Data Sharing

Data sharing is a common method for enhancing data homogeneity. Data sharing might
seem contradictory to the privacy-preserving nature of FL, but this is not necessarily the
case. A fundamental challenge in data sharing is the construction of shared datasets using
generated data instead of real private data.

Zhao[19] propose a data-sharing strategy to improve FedAvg with non-IID data by cre-
ating a small subset of data, DG, which is globally shared by all the edge devices. The
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Figure 3.1: The data-sharing Strategy[19]

initial weights, w0, instead of random initialized, is first trained on DG as a warm-up model
and later each edge devices is given a random portion of DG to aggregate with the local
private data. This method attempts to make less compromise to privacy leak by sharing
a randomized small portion of private data. However the sharing of real private data is
still not ideal in FL. Lin [20] utilized a unlabeled dataset that was shared by clients or by
generation

Data Augmentation

Data augmentation methods utilize generative models to locally generate additional data
samples at client devices, thereby addressing non-IID challenges while considering privacy
and communication overhead constraints. Jeong[21] proposes the FAug algorithm, which
enables devices to acquire missing data sample labels (referred to as target labels) by
leveraging a small number of data samples uploaded by other devices to balance non-
IID data distributions. In the FAug algorithm, the server processes the uploaded small
data samples, training them to form a GAN (Generative Adversarial Network) generator
capable of supplementing target labels for each device. Subsequently, the trained GAN
model is distributed to each client, allowing participants to expand their data by utilizing
their own datasets.

Instead of utilizing generative methods like GAN model, Shin[22] proposed a XorMixFL
framework that introduces a privacy-preserving XOR-based mixup data augmentation
technique called XorMixup. This method aims to mitigate non-IID data challenges by
collecting encoded data samples from other devices and decoding them exclusively using
each device’s own data. The decoding will distort data from other clients to be additional
data. This process gradually transforms the dataset into an IID format suitable for
model training while preserving data privacy through deliberate distortion using XOR
operations.
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Data Selection

Data selection strategies in FL involve methods for identifying and utilizing random se-
lected data subsets for model training, minimizing computational complexity, and opti-
mizing model performance across heterogeneous datasets. Wang [23] intelligently chooses
the client devices to participate in each round to counterbalance the bias introduced by
non-IID data and to speed up convergence is proposed.

3.1.2 Parameter-based Methods

Parameterization methods maintain the traditional FedAvg paradigm and enhance it by
adjusting existing parameters or adding new parameters during training or aggregation.

Li [24] added a penalty term to the local objective function Fk(w). Each client k minimizes
the following objective h(k):

min
w

hk(w;wt) = Fk(w) +
µ

2
∥w − wt∥2

The penalty term added bounds the new weights closer to the global weights to avoid
several client drift. Karimireddy [3] proposed SCAFFOLD that add a control variate
term c in training and aggregation. During the weights update at training at the local
client:

wt = w − η(g(w)− ck + c)

where ck is the client input and c is first initialized and broadcast with the model w and
later a global aggregation of ck. The use of term c,

3.1.3 Algorithm-based Methods

Algorithm-based methods employ approaches that differ from the traditional FedAvg
paradigm.

Federated Distillation

Knowledge Distillation (KD), also known as co-distillation(CD) is a learning paradigm of
transferring knowledge from a teacher model to a student model[25–27]. In knowledge dis-
tillation, the student model updates its weights, not by the discrepancy(usually measured
by cross-entropy) between model prediction and label, but by the discrepancy(usually
measured by relative entropy, or referred as KL divergence) between the logits of student
model and that of a teacher model, where the logits is the last layer output of the neural
network before the activation function.

Federated Distillation[21], the application of Knowledge Distillation in FL, has been a
heated direction due to several main advantages of distillation. First, unlike classical Fe-
dAvg or its adaptation algorithms that aggregates model by weights hence requires all
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models has the same structures which conflicts with the computation capacity hetero-
geneity in real world, Federated Distillation, on the other hand, only ensembles the logits
hence allows heterogeneous model structure as long as with a same output dimension.
Secondly, exchanging only the logits, which size is much smaller than the weights, greatly
reduced communication burdens.

Lin [20] proposes FedDF, an ensemble distillation for model aggregation through unlabeled
data or data generated by GAN[28]. Itahara also[29] proposes a Distillation-Based Semi-
Supervised Federated Learning(DS-FL) algorithm that update parameters with knowledge
distillation from a half private labeled and half shared unlabeled datasets. Typical distil-
lation methods that use a a proxy dataset DP to minimize the KL discrepancy, usually
measured by Kullback-Leibler divergence, between the logits outputs of teacher model T
and the student model S. No matter this DP is real data with labels removed or generated
by GAN. FedGen proposed by Zhu[30] can do data-free knowledge distillation without the
need of the proxy dataset DP by learning a lightweight generator.

As a conclusion, federated distillation reduces communication burdens and lift the strict
restriction of identical model structure by communicating the logits, instead of the whole
models. While by knowledge distillation, the aggregator’s model as a student learns from
the aggregated logits from clients as teachers, such that the heterogeneities among various
clients can be reduced.

3.2 Personalized Federated Learning

In heterogeneous scenario, the FL global model could perform poorly for some of the clients
in the network. For some clients, model solely trained on their local data could perform
better than the global model[18]. This situation is reasonable given the classical FedAvg
and or its adaptation algorithms focused on minimizing the average loss across all clients.
Hence making the global model easier to personalize become very important. Under
this goal, the problem formulation becomes (3.2), and this formulation is also commonly
referred to as Personalized Federated Learning(PFL).In other word, PFL methods do
not study the data heterogeneity under the objective function(3.1), instead they consider
this objective function problematic without the consideration of personalization. To solve
data heterogeneity, they change the objective function to (3.2) . These methods typically
include local fine-tuning[31, 32], meta learning[18, 33, 34],and multi-task learning[35].
These method’s algorithm typically contains training of the global models, then use the
global model as a initial model and fine-tune it for personalization.

3.2.1 Local Fine-tuning

Local fine-tuning in FL involves refining model parameters on individual devices using
after training, following initial training with shared global parameters. This process aims
to adapt the global model to local characteristics and enhance performance without com-
promising data privacy. Wu[36] proposed FedBiOT allowing for resource-efficient Large
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language models (LLMs) fine-tuning with FL. Local fine-tuning helps mitigate issues aris-
ing from non-IID data distributions across devices, ensuring better convergence and model
robustness.

3.2.2 Meta Learning

Meta Learning, or learning to learn, is emerging as a promising approach in FL to im-
prove model adaptation across heterogeneous edge devices. Meta Learning algorithms aim
to leverage meta-knowledge acquired from multiple tasks or domains to facilitate faster
adaptation and better generalization on new tasks. In FL, Meta Learning techniques
can help in initializing models that are more adaptable to diverse local datasets, thereby
accelerating convergence and improving overall model performance.

3.2.3 Multi-task Learning

Multi-task Learning (MTL) in FL involves jointly training models to perform multiple
related tasks simultaneously. This approach leverages shared representations across tasks
to improve model efficiency and effectiveness, especially in scenarios where tasks share
underlying patterns or dependencies. Lei [37] proposes a Group-based Federated Meta-
Learning framework, called G-FML, which adaptively divides clients into groups based
on the similarity of their data distribution. Personalized models are then obtained using
meta-learning within each group. MTL in FL aims to enhance data efficiency, reduce
computational overhead, and improve privacy preservation by leveraging synergies across
multiple tasks while respecting local data constraints.

In summary, Compared with other previous methods thaqt aims to improve the general-
ization ability of the model, Personalized Federated Learning focus on achieving a higher
performance of algorithm on the individual test set instead of a global one. Methods
like local fine-tunning, meta learning, multi-task learning does not modify the training
itself, however, though operation afterward of the training , these techniques improve the
learning outcome.

In summary, Personalized FL diverges from traditional approaches aimed at enhancing
model generalization by prioritizing heightened algorithmic performance on individual
test sets rather than a global one. Techniques such as local fine-tuning, meta-learning,
and multi-task learning do not fundamentally alter the initial training process. Instead,
they operate post-training to refine model parameters and adapt them to local data char-
acteristics.
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FedEP Algorithm

4.1 Problem Formulation

The global optimization model of Federated Entropy Pooling(FedEP) is as follows:

min
w
{F (w) =

|K|∑
k=1

αkFk(w)}

where Fk is the local optimization function of client k as they are in FedAvg. The attention
coefficient, αk, is the pooled KL-divergence that measures the relative uniqueness of local
data Dk in client k to the global datasets. We have αk ≤ 0 and

∑|K|
k=1 αk = 1.

4.2 Algorithm Description

FedEP is designed to be applied to CFL, Semi-DFL, and DFL frameworks. In the following
description, the term ’Aggregator’ represents a centralized server in the case of CFL, or
every node in Semi-DFL and DFL. FedEP supports both full device participation and
partial device participation, and for simplicity, it can initially be assumed to have full
device participation. FedEP is divided into three phases:

Phase 1 (Pre-train Distribution Fitting): Each clients fits a Gaussian Mixture Model
(GMM) with an Expectation-Maximization (EM) method on its own local distribution
Pk and then sends the resulting GMM parameters θk and its own number of data samples
Nk to the Aggregator(s).

Phase 2 (Global Distribution Estimation and Entropy Pooling): Upon receiving parame-
ters, the Aggregator(s) estimate(s) a global distribution and obtain(s) the corresponding
pooled KL-divergence αk for each client k.

Phase 3 (Training): This phase follows the same procedure as FedAvg, with a modification
in Step 3: The clients send their updated weights back to the Aggregator(s), which then

19
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aggregate(s) these weights into wt+1 using a weighted average with weights being the
pooled KL-divergence αk:

wt+1 =

|St|∑
k=1

αkw
k
t+1

Algorithm 1 Federated Entropy Pooling (FedEP). All K nodes are indexed by k; E is the
number of local epochs; η is the learning rate; M is the number of models in GMM; T is
the training rounds.

1: function AggregatorExecutes(b)
2: Initialize an empty array θk [ ]
3: Initialize i← 0
4: for each client k ∈ K in parallel do
5: θ̂k ← Pre-trainDistributionFitting(yk, ρ = 0.5)
6: θk[i]← θ̂k

7: i← i+ 1
8: end for
9: αk [ ]← EntropyPooling(θk [ ])
10: Initialize w0

11: for each round t = 1, 2, . . . do
12: m← max(C ·K, 1)
13: St ← (random set of m clients)
14: for each client k ∈ St in parallel do
15: wk,t+1 ← ClientUpdate(k, wt)
16: end for
17: wt+1 ←

∑
k∈St

αkwk,t+1

18: end for
19: end function

20: function ClientUpdate(k, w)
21: B ← (split Pk into batches of size b)
22: for each local epoch i from 1 to E do
23: for each batch b ∈ B do
24: w ← w − η∇L(w; b)
25: end for
26: end for
27: return w
28: end function

4.2.1 Pre-Train Distribution Fitting

A Gaussian Mixture Model(GMM) is a parametric probability density function repre-
sented as a weighted sum of Gaussian component densities. Consider this GMM :

P (yk|θk) =
M∑

m=1

πmN (µm, σ
2
m), πm > 0,

M∑
m=1

πm = 1
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Algorithm 2 Pre-train Distribution Fitting Algorithm.The hyper-parameter ρ, represent-
ing the maximum component fraction, is used to determine Mmax, the upper limit for
the number of mixture models. Specifically, Mmax is set as ρ times the total number of
distinct label classes Yk, where ρ ∈ (0, 1].

1: function Pre-trainDistributionFitting(yk, ρ = 0.5)
2: Initialize Mmax = ⌈ρ× |Yk|⌉
3: Initialize M̂k and θ̂k

4: for M in [1,Mmax] do
5: L(θM),θM ← ExpectationMaximization(M,yk)
6: Compute BIC for current model: BICM = −2 ln(L(θM)) + |M | × ln(N)
7: if BIC of current model is lower than previous models then
8: Update M̂k = M and θ̂k = θM

9: end if
10: return θ̂k

11: end for
12: end function

Algorithm 3 Expectation Maximization Algorithm. M is the total number of Gaussian
models used in the GMM.

1: function ExpectationMaximization(M,yk)
2: Initialize θ0 = {π0, µ0, σ2(0)}
3: E-step: with θt, get the latent variable γ̂j,m
4: and Q(θt), s.t.

∑M
n=1 πm = 1

5: M-step: θi+1 ← argmaxθ(Q+ λ(
∑M

n=1 π − 1))
6: Repeat E, M until convergence
7: return L(θ),θ
8: end function
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where yk is the label vector [y1, y2, . . . , yNk
] of client k. P (yk|θ) is the probabilistic

distribution of the labels of client k given θ. θ is a 3 ×M coefficients matrix [π,µ,σ2].
The hyper-parameter M is the total number of used Gaussian Models in the GMM. The
mixture coefficient vector π = [π1, π2, . . . , πM ], with each element as the coefficient of the
m-th Gaussian distribution. The vector µ = [µ1, µ2, . . . , µM ], with each element as the
mean of the m-th Gaussian distribution. The vector σ2 = [σ2

1, σ
2
2, . . . , σ

2
M ], with each

element as the variance of the m-th Gaussian distribution. Note that if some observations
y ∼ N (µm, σ

2
m), their probability density function (PDF) is as follows:

f(y|µm, σ
2
m) =

1

σm

√
2π

e−
1
2(

y−µm
σm

)
2

From a statistical perspective, we can model local data distribution Pk of client k by a
GMM with the Expectation Maximization (EM) Algorithm.

Expectation Maximization (EM) Algorithm

To fit a dataset with N samples to a GMM with M models, we define a latent variable
matrix γ:

γn,m =



γ11 γ12 · · · γ1m · · · γ1M
γ21 γ22 · · · γ2m · · · γ2M
...

...
. . .

...
. . .

...
γn1 γn2 · · · γnm · · · γnM
...

...
. . .

...
. . .

...
γN1 γN2 · · · γNm · · · γNM


N×M

with a height of N and a width of M . Each elements γn,m represents whether the n-th
data sample belongs to the m-th Gaussian Model:

γn,m :=

{
1 if yn ∼ N (µm, σ

2
m),

0 else.

M∑
m=1

γnm = 1, m ∈ [1,M ], n ∈ [1, N ],

Step 1 (Initialization): Initialize the coefficients matrix θ(0) = [π(0),µ(0),σ2(0)].

Step 2 (E-step): Based on θ(t), firstly calculate the estimated latent variables matrix γ̂(t):

γ̂(t) :=



γ̂11 γ̂12 · · · γ̂1m · · · γ̂1M
γ̂21 γ̂22 · · · γ̂2m · · · γ̂2M
...

...
. . .

...
. . .

...
γ̂n1 γ̂n2 · · · γ̂nm · · · γ̂nM
...

...
. . .

...
. . .

...
γ̂N1 γ̂N2 · · · γ̂Nm · · · γ̂NM


N×M

Each elements γ̂nm represents estimated probability of the n-th data sample belongs to
the m-th Gaussian Model:
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γ̂nm := E(γn,m|yn,θ(t))

= 1× P (γn,m = 1|yn,θ(t)) + 0× P (γn,m = 0|yn,θ(t))

= P (γn,m = 1|yn,θ(t))

=
P (yn|γn,m = 1,θ(t))P (γn,m = 1|θ(t))∑M

m=1 P (yn|γn,m = 1,θ(t))P (γn,m = 1|yn,θt)
(by Bayes’ Rule)

=
πmN (yn|µ(t)

m , (σ2)
(t)
m )∑M

m=1 πmN (yn|µ(t)
m , (σ2)

(t)
m )

Secondly, based on θ(t), the log-likelihood function Q(θ(t)) would be:

Q(θ(t)) := ln(L(θ(t)))

=
M∑

m=1

{(
N∑

n=1

γnm)ln(πm) +
N∑

n=1

γnmln(N (yn|µ(t)
m , (σ2)(t)m ))}, s.t.

M∑
m=1

πm = 1

Step 3 (M-step): To maximize the log-likelihood function

Q(θ(t)) found in the E-step, differentiate Q(θ(t)) with respect to π,µ,σ2, we have:

π̂m =

∑N
n=1 γ̂nm∑M

m=1

∑N
n=1 γ̂nm

, µ̂m =

∑N
n=1 γ̂nmyn∑N
n=1 γ̂nm

, σ̂2
m =

∑N
n=1 γ̂nm(yn − µ̂m)(yn − µ̂m)

T∑N
n=1 γ̂nm

Step 4 (Iterate until Convergence): Repeat Steps 2 and 3 until convergence: the change
of value of Q(θ(t)) between iterations is below a predetermined threshold. Export θ∗ =
[π̂m, µ̂m, σ̂

2
m] as the result.

Model Selection

In GMM application, the hyper-parameter M , representing the total number of Gaussian
models used in the GMM, significantly influences the fitting result. For each distribution
Pk, to determine the ideal M̂ , we iterate over a range of [1,Mmax] and select the model
with M̂ that yields the lowest Bayesian Information Criterion (BIC) value. A hyper-
parameter ρ, representing the maximum component fraction, is employed to determine
Mmax, the upper limit for the number of mixture models. Specifically, Mmax is set as ρ
times the total number of distinct label classes Yk, where ρ ∈ (0, 1] and ρ is by default
set to be 0.5.

M̂ = argmin
M∈Z

{−2 ln(L(θ∗)) + |M | × ln(N)}, 1 < M < ⌈ρ× |Yk|⌉, ρ ∈ (0, 1]
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The resulting θ∗ would be good summary of the heterogeneous data distributions and
can be easily communicated and later used to estimate a global distribution. Compared
to directly communicating the data or the data distribution, communicating a set of
parameters from a fitted distribution greatly reduces the communication burden while
preserving clients’ privacy.

4.2.2 Local Distribution Estimation and Entropy Pooling

Upon receivingK fitting results θ∗
k, the Aggregator estimates the global model distribution

as:

P (Y |θ∗
1, . . . ,θ

∗
K , N1, . . . , NK) =

K∑
k=1

pk

[
M∑

m=1

πmkN (µmk, σ
2
mk)

]
,

K∑
k=1

pk

M∑
m=1

πmk = 1

where pk = Nk∑K
k=1 Nk

. The global distribution estimation is the weighted average of K

GMMs so we have
∑K

k=1 pk
∑M

m=1 πmk = 1.

To quantifying the difference between two probability distribution, Kullback-Leibler di-
vergence (KL-divergence) and Jensen-Shannon Divergence (JS-divergence) are commonly
used. KL-divergence measures the relative entropy between distributions:

KLDk(P∥Pk) =
∑
y∈Y

P (y) ln

(
P (y)

Pk(y)

)
=

∑
y∈Y

P (y) (ln(P (y))− ln(Pk(y)))

We consider Pk, the distribution of client k, as an approximation of the global distribution
P . After obtaining K KL-divergences, we calculate the pooled KL-divergence for each
client k as the attention coefficient:

αk =
KLDk∑K
k=1 KLDk

=

∑
y∈Y P (y) (ln(P (y))− ln(Pk(y)))∑K

k=1

∑
y∈Y P (y) (ln(P (y))− ln(Pk(y)))

αk =

∑
y∈Y P (y) (ln(P (y))− ln(Pk(y)))∑K

k=1

∑
y∈Y P (y) (ln(P (y))− ln(Pk(y)))

4.3 Convergence Analysis

FedAvg converges to the global optimum at a rate of O(1/T ) for strongly convex and
smooth functions and non-iid data [38]. In this section, we show that FedEP converges
to the global optimum at a rate of O(1/T ) under a similar situation.
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From an intuitive perspective, the aggregation in FedEP uses αk =
KLDk∑|K|

k=1 KLDk

as weights,

instead of using the number of data samples. When heterogeneity in a network increases,
for a node in FedEP, having a higher KL divergence with the global distribution is similar
to having more data samples in FedAvg. The convergence of FedAvg will not be differed
from FedAvg.

4.3.1 Assumptions

Assumption 1 (Smoothness). Each local objective function Fk is Lipschitz smooth:

Fk(y) ≤ Fk(x) +∇Fk(x)
T (y − x) + L∥y − x∥2, ∀k ∈ {1, 2, . . . , K}. (4.1)

or in gradient form:

∥∇Fk(x)−∇Fk(y)∥ ≤ L∥x− y∥, ∀k ∈ {1, 2, . . . , K} (4.2)

Assumption 2 (Convexity). Each local objective function Fk is µ-strongly convex:

Fk(y) ≥ Fk(x) +∇Fk(x)
T (y − x) +

µ

2
∥y − x∥2, ∀k ∈ {1, 2, . . . , K}. (4.3)

or in gradient form:

∥∇Fk(x)−∇Fk(y)∥ ≥
µ

2
∥x− y∥, ∀k ∈ {1, 2, . . . , K}. (4.4)

4.3.2 Full Device Participation

In full device participation scenario, for each round, all clients participates in training
(St = K). We have the global optimization function F (w)

F (w) =

|K|∑
k=1

αkFk(w),

|K|∑
k=1

αk = 1 (4.5)

Now we first prove that given the assumption 1(4.1) and assumption 2(4.3) above, the
global optimization function F (w) is also Lipschitz smooth and µ-strongly convex. From
(4.5) we have the gradient of F (w):

∇F (w) =

|K|∑
k=1

αk∇Fk(w)

∥∇F (w1)−∇F (w2)∥ = ∥
|K|∑
k=1

αk(∇Fk(w1)−∇Fk(w2))∥ ≤
|K|∑
k=1

αk∥∇Fk(w1)−∇Fk(w2)∥
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From assumption 1 (4.1):

|K|∑
k=1

αk∥∇Fk(w1)−∇Fk(w2)∥ ≤
|K|∑
k=1

αkLk∥w1 − w2∥

let L =
∑|K|

k=1 αkLk, we have:

∥∇F (w1)−∇F (w2)∥ ≤ L∥w1 − w2∥

So, the global optimization function F (w) is also Lipschitz smooth with L =
∑|K|

k=1 αkLk.

Similarly, from assumption 2 (4.3) and (4.5), we get:

|K|∑
k=1

αkFk(w1) ≥
|K|∑
k=1

αk

[
Fk(w2) +∇Fk(x)

T (w1 − w2) +
µk

2
∥w1 − w2∥2

]

F (w1) ≥ F (w2) +

|K|∑
k=1

αk∇Fk(w2)
T (w1 − w2) +

|K|∑
k=1

αkµk

2
∥w1 − w2∥2

Let µ =
∑|K|

k=1 αkµk:

F (w1) ≥ F (w2) +∇F (x)T (w1 − w2) +
µ

2
∥w1 − w2∥2

So F (w) is also µ-strongly convex, where µ =
∑|K|

k=1 αkµk.

We have now proved that F (w) is also Lipschitz smooth and µ-strongly convex function
F (w).

Utilizing the Lipschitz smooth properties of F (w),

F (wt+1) ≤ F (wt) +∇F (wt)
T (wt+1 − wt) + L∥wt+1 − wt∥2, ∀k ∈ {1, 2, . . . , K}.

for gradient decent wt+1 = wt − η∇F (wt), we have:

F (wt+1) ≤ F (wt)− η∥∇F (wt)∥2 + L∥ − η∇F (wt)∥2, ∀k ∈ {1, 2, . . . , K}.

then simplify as

F (wt+1) ≤ F (wt)− (η − Lη2)∥∇F (wt)∥2, ∀k ∈ {1, 2, . . . , K}.

To achieve descending , we need (η − Lη2) > 0, so we have 0 < η < 1
L
.
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Implementation

5.1 Adaptions to Fedstellar

Fedstellar [39] was employed as the platform for executing DFL scenarios. Implemented
in Python, Fedstellar offers Docker-based containerized simulations and virtual devices
for FL. Communication among Docker containers is facilitated using the Google Remote
Procedure Call (gRPC) protocol. The platform supports the creation of federations by
allowing customization of parameters such as the number and type of devices training FL
models, the network topology connecting them, the machine and deep learning algorithms
employed, and the datasets utilized by each participant. Fedstellar enables users to ex-
ecute FL in decentralized, semi-decentralized, and centralized configurations, effectively
managing node connectivity and scenario deployment.

5.1.1 Algorithm Implementation

Fedstellar offers a containerized method to simulate real-world FL environments. In this
framework, each client operates as a Docker container, enabling isolated and reproducible
execution. Each container is instantiated and managed by a Node class, which encom-
passes all the necessary configurations for the selected dataset, training algorithms, and
aggregation algorithms.

To implement the FedEP algorithm, we extend the base functionality provided by the
Node class. This is achieved through the creation of a specialized subclass namedNodeFedEP.
The NodeFedEP class inherits from the Node class and introduces additional functions
and attributes specific to the FedEP algorithm.

Listing 5.1: NodeFedEP: a class for Node using FedEP(logging.info removed)
1 class NodeFedEP(Node):

2

3 epsilon_prime = 0.1

4

5 def __init__(self ,

6 idx ,

27
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7 experiment_name ,

8 model ,

9 data ,

10 host="127.0.0.1",

11 port=None ,

12 config=Config ,

13 learner=LightningLearner ,

14 encrypt=False ,

15 model_poisoning=False ,

16 poisoned_ratio =0,

17 noise_type= ' gaussian ' ,
18 ):

19 Node.__init__(self , idx , experiment_name , model , data , host , port , config ,

learner , encrypt , model_poisoning , poisoned_ratio , noise_type)

20

21 self._labels = np.array([label for _, label in self.learner.data.train_dataloader

().dataset ])

22 self._distribution_fitting_max_components_fraction = 0.5

23 self._EM_algorithm_max_iterations = 1500

24 self._EM_algorithm_epsilon = 1e-6

25 self._gaussian_epsilon = 1e-2

26 self.theta = None

27

28 # FedEP ' s locks for communicating distribution

29 self._distribution_communication_lock = threading.Lock()

30

31 def distribution_fitting_and_communication(self):

32 """

33 FedEP ' s round of sharing distribution characteristics to learn the aggregation

weights

34 """

35 fitting_thread = threading.Thread(target = self._distribution_fitting)

36 fitting_thread.start()

37 fitting_thread.join()

38

39 broadcast_thread = threading.Thread(target = self._distribution_broadcast)

40 broadcast_thread.start()

41 broadcast_thread.join()

42

43 if self.config.participant["device_args"]["role"] == Role.AGGREGATOR:

44 self.aggregator.pooling(self._labels)

45

46 def _distribution_fitting(self):

47 """

48 FedEP ' s round of fitting local distribution

49 """

50 Y = np.array(np.sort(self._labels))

51 # deciede the maximum number of mixture components

52 Ms = math.ceil(len(set(Y.tolist ())) * self.

_distribution_fitting_max_components_fraction)

53 theta_hs = np.empty(Ms, dtype=object)

54 likelihood_hs = np.zeros(Ms)

55 BICs = np.zeros(Ms)

56 # AICs = np.zeros(Ms)

57 for M in range(0,Ms):

58 theta_hs[M], likelihood_hs[M] = self._expectation_maximum_algorithm(M+1 , Y)

59 BICs[M] = -2* likelihood_hs[M] + M * np.log(len(Y))

60 # AICs[M] = -2* likelihood_hs [M] + 2 * M

61 min_BIC_index = np.argmin(BICs)

62 self.theta = theta_hs[min_BIC_index]

63

64 def _distribution_broadcast(self):

65 """

66 FedEP ' s round of broadcasting the distribution characteristics to the other nodes

67 """

68 self.aggregator._lock_to_start_pooling.acquire ()

69 # gets aggregator ready to accecpt distributions

70 if self.config.participant["device_args"]["role"] == Role.AGGREGATOR:

71 self.aggregator.set_waiting_distribution(True)

72

73 # get neighbors
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74 neighbors = self._neighbors.get_all ()

75 # broadcast distribution

76 try:

77 if self.config.participant["device_args"]["role"] != Role.IDLE:

78 local_distribution = {"".join(self.addr): (self.theta , self.learner.

get_num_samples ()[0])}

79 self.aggregator.add_distribution(

80 theta= self.theta ,

81 addr= self.addr ,

82 weight = self.learner.get_num_samples ()[0],

83 all_neighbors = neighbors

84 )

85 for des in neighbors:

86 if des != self.addr:

87 self.send_distribution(des , local_distribution)

88 except Exception as e:

89 print(f"[NodeFedEP] Error broadcasting distribution: {e}")

90

91 def _expectation_maximum_algorithm(self , M, Y):

92 ' ' '
93 derived theta by EM algorithm

94

95 Args: M: the number of mixture components

96 Y: complete list of lable that is ununique , for example

([0 ,0 ,0 ,.... ,8 ,8 ,8 ,9 ,9 ,9 ,])

97 return:

98 theta: the parameters of the GMMs given M and Y

99 ' ' '
100 theta = self._parameter_initialization(M,Y)

101 likelihood_prev = 0

102 theta_prev = theta

103 iteration = 0

104 while iteration < self._EM_algorithm_max_iterations:

105 gamma_lm , n_m = self._E_step(theta ,Y)

106 theta , likelihood = self._M_step(gamma_lm , n_m , Y)

107 iteration += 1

108 if likelihood == np.NINF or math.isnan(likelihood):

109 return theta_prev , likelihood_prev

110 if abs(likelihood - likelihood_prev) < self._EM_algorithm_epsilon:

111 break

112 likelihood_prev = likelihood

113 theta_prev = theta

114 return theta , likelihood

115

116 def _parameter_initialization(self , M,Y):

117 ' ' '
118 Initialized theta

119

120 Args: M: the number of mixture components

121 Y: complete list of lable that is ununique , for example

([0 ,0 ,0 ,.... ,8 ,8 ,8 ,9 ,9 ,9 ,])

122 ' ' '
123 L=len(Y)

124 pi = np.random.rand(M)

125 pi /= np.sum(pi)

126 mu = Y[np.random.choice(L, M, replace=False)]

127 sigma_squared = [np.var(Y.tolist ())] * M

128 # theta_0

129 return np.column_stack ((pi, mu, sigma_squared))

130

131 def _gaussian(self , Y, mu, sigma_squared):

132 ' ' '
133 probability density function of Gaussian distribution

134 ' ' '
135 return np.exp(-np.square(Y-mu+self._gaussian_epsilon)/(2*( sigma_squared+self.

_gaussian_epsilon)))/(np.sqrt(2 * np.pi * (sigma_squared + self.

_gaussian_epsilon)))

136

137 def _E_step(self , theta ,Y):

138 ' ' '
139 given theta , calculate the latent variable gamma_lm and the number of samples n_m
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for each mixture component m

140 ' ' '
141 M = theta.shape [0]

142 gamma_lm = np.zeros((len(Y),M))

143 n_m = np.zeros(M)

144 sum_gaussians = torch.zeros([len(Y)])

145 for m in range(M):

146 sum_gaussians += theta[m,0] * self._gaussian(Y, theta[m,1], theta[m,2])

147 for m in range(M):

148 gamma_lm[:,m] = theta[m,0] * self._gaussian(Y, theta[m,1], theta[m,2])/

sum_gaussians

149 n_m[m] = np.sum(gamma_lm[:,m])

150 return gamma_lm , n_m

151

152 def _M_step(self , gamma_lm , n_m , Y):

153 ' ' '
154 given gamma and n_m , calculate the new theta

155 ' ' '
156 pi_h = n_m / len(Y)

157 mu_h = np.array([ gamma_lm[:,m] @ Y / n_m[m] for m in range(len(n_m))])

158 sigma_squared_h = np.array([ gamma_lm[:,m] @ ((Y-mu_h[m])**2 + self.

_gaussian_epsilon) / n_m[m] for m in range(len(n_m))])

159 theta_h = np.column_stack ((pi_h , mu_h , sigma_squared_h))

160

161 likelihood = np.sum([n_m[m] * np.log(pi_h[m])+ gamma_lm[:,m] @ np.log(self.

_gaussian(Y, mu_h[m], sigma_squared_h[m])+self._gaussian_epsilon) for m in

range(len(n_m))])

162 return theta_h , likelihood

As shown in Listing 5.1, a Node encompassed FedEP algorithm can be initialized by
NodeFedEP(). Running node.distribution fitting and communication() will initialize a
process that consisting of a fitting phase and a communication phase. The fitting phase
can started as long as the dataset config is set.

The FedEP algorithm inherits from Aggregator, a predefined fundamental aggregation
algorithm class.

Listing 5.2: FedEP: an aggreagtion algorithm class
1

2 class FedEP(Aggregator):

3 """

4

5 """

6

7 def __init__(self , node_name="unknown", config=None):

8 super().__init__(node_name , config)

9 self.config = config

10 self.role = self.config.participant["device_args"]["role"]

11 self._waiting_distribution = False

12 self._distributions = {}

13 self._thetas_with_samples_num = {}

14 self._prediction_precision = 1e-3

15 self._prediction_epsilon = 1e-2

16 self._gaussian_epsilon = 1e-1

17 self._theta_global = None

18 self._prob_global = None

19 self._clients_probs = None

20 self._KL_divergence = None

21 self._labels = None

22 self._labels_unique = None

23 self.alpha_k = None

24 self._lock_to_start_pooling = threading.Lock()

25

26 def set_waiting_distribution(self , TrueOrFalse):

27 self._waiting_distribution = TrueOrFalse

28
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29 def _gaussian(self , Y, mu, sigma_squared):

30 ' ' '
31 probability density function of Gaussian distribution

32 ' ' '
33 return np.exp(-np.square(Y-mu+self._gaussian_epsilon)/(2*( sigma_squared+self.

_gaussian_epsilon)))/(np.sqrt(2 * np.pi * (sigma_squared + self.

_gaussian_epsilon)))

34

35 def aggregate(self , models):

36 """

37 Ponderated average of the models.

38

39 Args:

40 models: Dictionary with the models (node: model , num_samples ).

41 model : {layer: tensor , ...}

42 """

43 # Check if there are models to aggregate

44 if len(models) == 0:

45 logging.error(

46 "[FedEP] Trying to aggregate models when there is no models"

47 )

48 return None

49

50 # Create a shape of the weights use by all nodes

51 accum = {layer: torch.zeros_like(param) for layer , param in list(models.values ())

[ -1][0]. items()}

52

53 # Add weighted models

54

55 for address , model in models.items():

56 for layer in accum:

57 accum[layer] += model [0][ layer] * self.alpha_k[address]

58 return accum

59

60

61 def _predict_likelihood(self , theta , precision =4):

62 ' ' '
63 given theta and labels , calculate the likelihood of the labels

64 ' ' '
65 prob = np.zeros(len(self._labels_unique))

66 for i in range(len(prob)):

67 prob[i] = np.round(np.sum(theta [:,0] * self._gaussian(self._labels_unique[i],

theta[:,1], theta [:,2])), precision)

68 return prob

69

70 def pooling(self ,labels):

71

72 self._lock_to_start_pooling.acquire ()

73

74 self._labels = labels

75 self._labels_unique = np.unique(labels)

76 # Total Samples

77 total_samples = sum([ weight for _, weight in self._thetas_with_samples_num.values

()])

78

79 q_k = {[k][0]: v[1]/ total_samples for k, v in self._thetas_with_samples_num.items

()}

80

81 self._theta_global = {

82 address: np.array([

83 [round(param [0] * (weight / total_samples), 5), param[1], param [2]]

84 for param in theta

85 ])

86 for address , (theta , weight) in self._thetas_with_samples_num.items()

87 }

88

89 # Calculate global probability of labels

90 ' ' '
91 self. _prob_global = [] with a length equals number of labels space and summing up

to 1

92 ' ' '
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93 prob_global = []

94 for label in self._labels_unique:

95 prob_label = 0

96 for theta in self._theta_global.values ():

97 for g in theta:

98 prob_label += g[0] * self._gaussian(label , g[1], g[2])

99 prob_global.append(prob_label)

100 self._prob_global = prob_global

101

102 # Calculate client probabilities

103 self._clients_probs = {

104 address : self._predict_likelihood(theta)

105 for address ,theta in self._theta_global.items()

106 }

107

108 # Calculate KL divergences

109 self._KL_divergence = {

110 address: np.sum([self._prob_global[i] * np.log2((self._prob_global[i] + self.

_prediction_epsilon) / (probs[i] + self._prediction_epsilon)) for i in

range(len(self._prob_global))])

111 for address ,probs in self._clients_probs.items()

112 }

113

114 # Calculate alpha_k

115 kl_sum = np.sum([ kl_div for kl_div in self._KL_divergence.values ()])

116 self.alpha_k = {

117 address: kl_div / kl_sum

118 for address , kl_div in self._KL_divergence.items()

119 }

120

121

122 def add_distribution(self , theta , addr , weight , all_neighbors):

123

124 self._thetas_with_samples_num["".join(addr)] = (theta , weight)

125

126 # all distributions recieved

127 if len(self._thetas_with_samples_num) > len(all_neighbors):

128 # self. set_waiting_distribution (False)

129 self._lock_to_start_pooling.release ()

130 else:

131 print(f"({self.node_name }) waiting for more distributions ({len(self.

_thetas_with_samples_num)}/{len(all_neighbors)+1})")

132 pass

133

134 return self._thetas_with_samples_num

As shown in Listing 5.2, The FedEP class encapsulates functionality for distributed
aggregation and pooling in a collaborative learning context. It manages distributions
thetas with samples num, calculates probabilities prob global and clients probs, and
uses Gaussian functions for likelihood predictions. The use of locks lock to start pooling
ensures thread-safe operations during aggregation and pooling phases.

5.1.2 Communication Implementation

In the Fedstellar platform, gRPC is used as the communciation protocals among dockers.
Besides implemented the algorithm, modifying the communciation is also necesscary.

Listing 5.3: GRPC Remote Services
1 def send_distribution(self , des , distribution):

2 try:

3 # Initialize channel and stub

4 channel = grpc.insecure_channel(des)
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5 stub = node_pb2_grpc.NodeServicesStub(channel)

6 # Encode the distribution using the learner ' s encode_parameters method

7 encoded_distribution = self.learner.encode_parameters(params=distribution)

8 # Send the encoded distribution to the destination

9 res = stub.add_distribution(

10 node_pb2.Distributions(

11 source=self.addr ,

12 distribution=encoded_distribution ,

13 ),

14 timeout =10,

15 )

16 # Handling errors

17 if res.error:

18 print(f"[{self.addr}] Error while sending a model: {res.error}")

19 # Close the channel after sending the distribution

20 channel.close()

21

22 except Exception as e:

23 print(f"({self.addr}) Cannot send model to {des}. Error: {str(e)}")

24

25 def add_distribution(self , request , context):

26 """

27 Adds a distribution to the aggregator

28 """

29 try:

30 distribution = self.learner.decode_parameters(request.distribution)

31 print(f"[NodeFedEP] Received distribution: {distribution}")

32 received_theta , received_weight = next(iter(distribution.values ()))

33 self.aggregator.add_distribution(

34 theta=received_theta ,

35 addr=[ request.source],

36 weight=received_weight ,

37 all_neighbors = self._neighbors.get_all ()

38 )

39 return node_pb2.ResponseMessage(error="")

40 except Exception as e:

41 return node_pb2.ResponseMessage(error=str(e))

In Listing 5.3, send distribution and add distribution is written to facilitate the com-
munication of distributions between nodes in a distributed system. They leverage GRPC
for efficient, cross-platform communication and employ encoding/decoding mechanisms
to serialize/deserialize distributions.
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Chapter 6

Evaluation

6.1 Experiment Setup

In this section, we compare FedEP against FedAvg, the baseline algorithm, and SCAF-
FOLD[3] across three datasets: MNIST, FashionMNIST, and CIFAR-10. To model non-
IID (non-independent and identically distributed) data, we utilize the Dirichlet distribu-
tion to generate distribution for data of each classes.

The Dirichlet distribution is a family of continuous multivariate probability distributions
parameterized by a vector α of positive reals. It is often denoted as Dir(α).

The probability density function (pdf) of the Dirichlet distribution is given by:

f(p;α) =
1

B(α)

K∏
i=1

pαi−1
i , B(α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

)
where p = (p1, p2, . . . , pk) is a point in the probability simplex (pi ≥ 0 and

∑k
i=1 pi = 1),

The variance of pi is dependent on the concentration parameter α:

Var(pi) =
αi(

∑k
j=1 αj − αi)

(
∑k

j=1 αj)2(
∑k

j=1 αj + 1)

As the parameter α increases in the Dirichlet distribution, the term αi(
∑k

j=1 αj −αi) will
increase albeit at a slower rate compared to the denominator, leading to a decreases of
Var(pi) and a pi closer to E[pi]. The Dirichlet distribution is therefore adept at modeling
data heterogeneity through varying alpha values, which serve as priors influencing the
shape of distribution of the dataset samples.

We examine two scenarios: Pure Non-IID and Mixed Non-IID. We examine two scenarios:
Pure Non-IID and Mixed Non-IID. Pure Non-IID considers cases where all nodes in the
network contain the same degree of heterogeneity, while Mixed Non-IID explores networks

35
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where two different levels of heterogeneity exist. Comprehensive evaluation over two
scenarios allows for rigorously assess the robustness and efficacy of FedEP compared to
FedAvg and SCAFFOLD under varying degrees of data heterogeneity in real-world FL
environments.

6.1.1 Pure Non-IID Scenario

For the Pure Non-IID scenario, we generate datasets with alpha values of 20, 5, 1, 0.5,
and 0.1. Experiments are conducted using FedAvg, FedEP, and SCAFFOLD algorithms
across these datasets to assess performance under multiple degrees of non-IID conditions.

Algorithms α values Dataset Metrics

FedEP (20, 5, 1, 0.5, 0.1)

MNIST

accuracy*,
precision*,
recall*,

F1-Score*,
Converge Speed**

FMNIST

CIFAR-10

FedAvg (20, 5, 1, 0.5, 0.1)

MNIST

FMNIST

CIFAR-10

SCAFFOLD (20, 5, 1, 0.5, 0.1)

MNIST

FMNIST

CIFAR-10

Table 6.1: Experiment Setup of Pure Non-IID Scenario

6.1.2 Mixed Non-IID Scenario

In the Mixed Non-IID scenario, we explore three mixed cases: 20%:80%, 50%:50%, and
80%:20%. Here, the notation represents the proportion of IID to non-IID clients. Specif-
ically, in the 2:8 case, 20% of clients are IID while 80% are non-IID. We generate 2 IID
clients with an alpha value of 50, and 8 non-IID clients with alpha values of 5, 1, and
0.5. Similarly, in the 5:5 case, 5 clients are generated with an alpha value of 50, and the
remaining 5 with alpha values of 5, 1, and 0.5. In the 8:2 case, 8 clients are generated with
an alpha value of 50, and 2 with alpha values of 5, 1, and 0.5. Experiments in this scenario
are also conducted using FedAvg, FedEP, and SCAFFOLD to evaluate the algorithms’
performance under mixed IID and non-IID conditions.
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6.2 Results on one dataset

We utilize experiments on the CIFAR-10 dataset as an example to illustrate performance.
For comprehensive results on the other two datasets, MNIST and Fashion-MNIST (FM-
NIST), please refer to the appendix.

Figure 6.1: Experiments with α1 = 50(50%), α2 = 1(50%), Cifar-10, 10 clients
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Figure 6.2: Experiments with α1 = 50(50%), α2 = 0.5(50%), Cifar-10, 10 clients

6.3 Discussion

After testing the performance of FedEP, FedAvg, and SCAFFOLD, we found that FedEP
outperforms the other algorithms under a mixed non-IID scenario. As shown in Figure
B.1, considering the average accuracy, recall, and F1 score across the 10 nodes, FedEP
consistently achieves the most stable and highest outcomes, surpassing both FedAvg and
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Figure 6.3: Experiments with α1 = 50(50%), α2 = 1(50%), Cifar-10, 10 clients

SCAFFOLD in most cases.

To examine the performance of individual nodes before averaging6.10, it becomes evi-
dent that when the network includes nodes with multiple classes of data and nodes with
highly heterogeneous data, FedAvg struggles to manage these variances. In our exper-
iments, these nodes often appear as outliers, adversely affecting the overall accuracy of
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Figure 6.4: Experiments with α1 = 50(20%), α2 = 0.5(80%), Cifar-10, 10 clients

the system. In contrast, FedEP assigns smaller weights to these outliers, allowing them
to converge more quickly by leveraging the influence of other nodes. Consequently, the
average performance of the system improves significantly.

By effectively mitigating the impact of outliers, FedEP demonstrates its robustness and
adaptability in diverse and heterogeneous FL environments. This highlights the potential
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Figure 6.5: Experiments with α1 = 50(20%), α2 = 1(80%), Cifar-10, 10 clients

of FedEP as a superior algorithm for achieving reliable and high-performing FL outcomes,
particularly in scenarios characterized by significant data heterogeneity.
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Figure 6.6: Experiments with α1 = 50(20%), α2 = 5(80%), Cifar-10, 10 clients
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Algo Dataset Num(G1)* Num(G2)* α(G1)* α(G2)* Metrics

FedEP

MNIST

5 5 50 (5, 1, 0.5)

test accuracy,
train accuracy,

precision,
recall,

F1-Score,
Converge Speed

2 8 50 (5, 1, 0.5)

8 2 50 (5, 1, 0.5)

FMNIST

5 5 50 (5, 1, 0.5)

2 8 50 (5, 1, 0.5)

8 2 50 (5, 1, 0.5)

Cifar-10

5 5 50 (5, 1, 0.5)

2 8 50 (5, 1, 0.5)

8 2 50 (5, 1, 0.5)

FedAvg

MNIST

5 5 50 (5, 1, 0.5)

2 8 50 (5, 1, 0.5)

8 2 50 (5, 1, 0.5)

FMNIST

5 5 50 (5, 1, 0.5)

2 8 50 (5, 1, 0.5)

8 2 50 (5, 1, 0.5)

Cifar-10

5 5 50 (5, 1, 0.5)

2 8 50 (5, 1, 0.5)

8 2 50 (5, 1, 0.5)

SCAFFOLD

MNIST

5 5 50 (5, 1, 0.5)

2 8 50 (5, 1, 0.5)

8 2 50 (5, 1, 0.5)

FMNIST

5 5 50 (5, 1, 0.5)

2 8 50 (5, 1, 0.5)

8 2 50 (5, 1, 0.5)

Cifar-10

5 5 50 (5, 1, 0.5)

2 8 50 (5, 1, 0.5)

8 2 50 (5, 1, 0.5)

Table 6.2: Experiment Setup of Mixed Non-IID Scenario
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Figure 6.7: Experiments with α1 = 50(80%), α2 = 0.5(20%), Cifar-10, 10 clients
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Figure 6.8: Experiments with α1 = 50(80%), α2 = 1(20%), Cifar-10, 10 clients
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Figure 6.9: Experiments with α1 = 50(80%), α2 = 5(20%), Cifar-10, 10 clients
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Figure 6.10: Experiments with α1 = 50(50%), α2 = 1(50%), Cifar-10, 10 clients
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Chapter 7

Summary and Conclusions

In this work, we introduced a novel Federated Entropy Pooling Algorithm (FedEP), specif-
ically designed to address the client drift issue caused by data heterogeneity in extreme
Non-IID scenarios. Unlike traditional methods such as FedAvg, which aggregate model
updates based on the volume of local data, FedEP incorporates the distribution of local
data into the aggregation process. By leveraging the Kullback-Leibler (KL) divergence,
FedEP adjusts the attention allocated to each model, expanding the weights for clients
with more unique datasets and reducing the weights for those with less distinctive data.
This optimized aggregation function enhances the global model training process by miti-
gating the adverse effects of data heterogeneity.

FedEP can be conceptually viewed as a re-parameterization of the widely used Federated
Averaging (FedAvg) algorithm, with a distinctive focus on incorporating distributional
differences across clients. This approach ensures a more balanced and robust model train-
ing process, particularly in environments with significant data variability.

To evaluate the efficacy of FedEP, we conducted experiments on the MNIST, FMNIST,
and CIFAR-10 datasets within both CFL and DFL networks. These experiments were
performed under two different degrees of Non-IID settings: Moderate Non-IID and Ex-
treme Non-IID. The results of our experiments were compared against the performance
of FedAvg and SCAFFOLD algorithms.

Our comprehensive evaluation demonstrates that FedEP outperforms FedAvg and SCAF-
FOLD in scenarios with high data heterogeneity, providing a more effective solution for
FL environments. This highlights the practical applicability and robustness of FedEP in
real-world FL settings, where data privacy, computational constraints, and non-IID data
distributions are prevalent challenges.

49
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Abbreviations

ML Machine Learning

SGD Stochastic Gradient Descent

FL Federated Learning

CFL Centralized Federated Learning

DFL Decentralized Federated Learning

IID Independent and Identically Distributed

HFL Horizontal Federated Learning

VFL Vertical Federated Learning

EM Expectation Maximization

GMM Gaussian Mixture Model

CD Client Drift

EP Entropy Pooling

KL Kullback-Leibler
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62 APPENDIX A. PERFORMANCE COMPARISON ON MNIST

Figure A.1: Experiments with α1 = 50(50%), α2 = 1(50%), MNIST, 10 clients
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Figure A.2: Experiments with α1 = 50(50%), α2 = 0.5(50%), MNIST, 10 clients
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Figure A.3: Experiments with α1 = 50(50%), α2 = 1(50%), MNIST, 10 clients
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Figure A.4: Experiments with α1 = 50(20%), α2 = 0.5(80%), MNIST, 10 clients
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Figure A.5: Experiments with α1 = 50(20%), α2 = 1(80%), MNIST, 10 clients
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Figure A.6: Experiments with α1 = 50(20%), α2 = 5(80%), MNIST, 10 clients
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Figure A.7: Experiments with α1 = 50(80%), α2 = 0.5(20%), MNIST, 10 clients
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Figure A.8: Experiments with α1 = 50(80%), α2 = 1(20%), MNIST, 10 clients
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Figure A.9: Experiments with α1 = 50(80%), α2 = 5(20%), MNIST, 10 clients
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Figure B.1: Experiments with α1 = 50(50%), α2 = 1(50%), FashsionMNIST, 10 clients
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Figure B.2: Experiments with α1 = 50(50%), α2 = 0.5(50%), FashsionMNIST, 10 clients
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Figure B.3: Experiments with α1 = 50(50%), α2 = 1(50%), FashsionMNIST, 10 clients
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Figure B.4: Experiments with α1 = 50(20%), α2 = 0.5(80%), FashsionMNIST, 10 clients
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Figure B.5: Experiments with α1 = 50(20%), α2 = 1(80%), FashsionMNIST, 10 clients
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Figure B.6: Experiments with α1 = 50(20%), α2 = 5(80%), FashsionMNIST, 10 clients
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Figure B.7: Experiments with α1 = 50(80%), α2 = 0.5(20%), FashsionMNIST, 10 clients
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Figure B.8: Experiments with α1 = 50(80%), α2 = 1(20%), FashsionMNIST, 10 clients
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Figure B.9: Experiments with α1 = 50(80%), α2 = 5(20%), FashsionMNIST, 10 clients


