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Abstract

Federated Learning is a novel approach to Machine Learning, leveraging the multitude of
available edge devices while at the same time o!ering a way to deal with the distributed
datasets available on such devices. Federated Learning also o!ers some privacy, as updates
are only shared in the form of parameters and gradients. While this approach seems
promising, it does not come without its own set of challenges. Nebula is a container-
based platform for simulating such Federated Learning scenarios, with a particular focus
on decentralized federated learning scenarios. In this project, various extensions have been
added to the Nebula platform, including various node selection strategies, data/update
manipulation poisoning attacks, update aggregation mechanisms, as well as shadow model
and metric based membership inference attacks. The works of this thesis highlight the
importance of deploying robust systems, capable of withstanding the impact of malicious
clients through the use of various defense mechanisms.
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Chapter 1

Introduction

In recent years, the rise of Machine Learning (ML) has significantly transformed numer-
ous industries, driving advancements in technologies that were once deemed far out of
reach. However, as ML continues to evolve, so do the challenges it faces, particularly
those related to data privacy and security. In the current era of Big Data, leveraging the
computational potential of millions, or billions even, of edge-devices, together with their
distributed datasets has become a critical focus for research as well as industry. This
project expands on concerns of Federated Learning (FL) by implementing new capabil-
ities into the Nebula framework designed to address these challenges, with a particular
emphasis on Decentralized Federated Learning. By building upon existing platforms and
introducing new features, this work seeks to advance the field of FL through practical
implementation and evaluation.

1.1 Motivation

Machine Learning is growing year by year as everyday technologies and new innovations
are introduced. But as ML grows, so do the large amounts of data, with its privacy and
security challenges. So, how can security be maintained while utilizing all of the data? In
2016, Google introduced Federated Learning (FL) to allow ML models to train their data
in a distributed way and keep their privacy [1]. The most widely adopted method in FL is
Centralized Federated Learning (CFL). In CFL, a central server serves as the aggregator
to merge the participants’ models into one global model. Having only one global model
leads to various challenges with this approach, such as communication bottlenecks or a
single point of failure. To address these issues, Decentralized Federated Learning (DFL)
was introduced. In DFL, there is no central server and the participants can communicate
directly to aggregate their model updates. [1]

Nebula, a platform for DFL, plays the center role in this thesis, serving as the base for
implementing and evaluating new features. The platform Nebula, developed by [2] in
May 2024 as the successor of their platform Fedstellar, is an open-source DFL platform
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2 CHAPTER 1. INTRODUCTION

that allows users to generate and simulate DFL scenarios. It o!ers a modular architec-
ture, a user-friendly interface and robust communication protocols, essential for privacy-
preserving ML models. [3] In the past, many projects/theses from the Communication
Systems Group (CSG) used the Fedstellar platform to perform research in the field of
DFL by introducing new features. Four specific projects were selected to be implemented
in this project: implementation of a node selection strategy [4], poisoning attack behavior
detection [5], mitigating poisoning attacks through moving target defense [6], and im-
plementation of a privacy auditing component [7]. All these projects implemented new
features and were also introduced to the Fedstellar platform, yet they could not be inte-
grated into the latest version nor its successor Nebula, due to the rapid evolution of the
platform and the di!erent versions used for the projects. The architecture of Nebula, in
comparison to Fedstellar, changed a lot, and thus, integrating the various features poses
a challenge. The goal of this Master Project is to redesign these features, reimplement
them and finally merge them into the newest version of Nebula.

1.2 Description of Work

This Master Project is divided into multiple stages. In the first stage, the foundations of
the technologies and concepts involved in the project must be reviewed to gain knowledge
and information for later design decisions. Namely, the foundations, architecture, and
basic concepts of FL, DFL, and the Nebula platform must be understood, as well as the
related work relevant to the project.

In the second stage of this project, it is essential to choose which features will be considered
and to which extent they will be implemented in the current Nebula platform. Potential
problems and the exact scope and implementation e!ort need to be considered.

This leads to the third stage, redefining Nebula’s architecture and deciding on where the
required parts of the new features will need to be implemented.

The fourth stage is to implement the chosen features from the defined scope into the
Nebula platform. In this stage, the integration must happen bug-free to allow the platform
to work correctly after the integration. Additionally, detailed documentation has to be
provided to help understand all the steps. After the implementation, several evaluations
must be provided in the last stage to ensure that all modules and their interconnections
work correctly.

1.3 Thesis Outline

In chapter 2, the background for this project is presented. The background covers the in-
troduction to FL, DFL and the Nebula platform. Chapter 3 summarizes the related work,
where all four relevant theses for this project are outlined. Chapter 4 gives an overview of
the Nebula architecture as well as the specific parts where the new implementations are
done. Chapter 5 shows the implementation of all new features in Nebula. In the sixth
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chapter, these implementations are evaluated. In the last chapter, the work is summarized
and concluded based on the evaluations.
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Chapter 2

Background

In this chapter, some of the main concepts required for this project are introduced. FL
is a new training paradigm that stands in contrast to traditional Machine Learning due
to its distributed nature.

As such, Federated Learning is introduced in both its centralized (CFL) and decentralized
(DFL) formats, with a broad overview of their functionality, as well as the processes that
happens during their application. In the case of DFL, network topology also plays an
important role, which will subsequently be elaborated on.

The chapter concludes with an overview of Nebula, the successor of Fedstellar, a platform
for FL simulations.

2.1 Federated Learning

Federated Learning (FL) is a Machine Learning (ML) technique that trains a shared
model without the need to propagate training data over the network. This is accom-
plished by using nodes to train the model on local data and then distributing only the
updated model parameters. In 2016, [1] introduced FL to address di”culties in traditional
centralized ML, including data protection rules and privacy. By allowing data to remain
locally on the node’s side and sharing only the model updates, FL supports distributed
training across several devices or users while protecting sensitive information. [8]

FL aims to enable shared model training while preserving data privacy and reducing node
communication. Traditional ML approaches require data aggregation at a central location,
which can lead to data privacy breaches and high communication costs. By permitting
each node to train a local model on its own data and share only model parameters with an
aggregator, a node which is chosen to consolidate these updates into a global model, FL
mitigates these issues. Moreover, this decentralized technique allows the usage of much
bigger datasets, distributed across the various nodes. [9], [2]

5



6 CHAPTER 2. BACKGROUND

A typical CFL environment consists of four important entities that work together to
enable a secure and distributed model training: the central server, nodes (or ”parties”),
the communication framework, and the aggregation algorithm. [10]

• Central Server: The central server coordinates the learning process and aggregates
the model updates from the nodes to form the global model.

• Nodes: Nodes are devices that store local data and participate in training the model.

• Communication Framework: This architecture connects the central server and the
nodes.

• Aggregation Algorithm: This algorithm integrates the local model updates from
nodes to build a global model refined with each aggregation cycle.

By working together, these four entities interact and communicate together and form a
typical, iterative CFL process, which can be described in five steps [10]:

1. Model Initialization: The global model is initialized by the central server and is sent
to the selected nodes.

2. Local Training: The received model is trained using local data from the nodes and
the model updates are sent back to the server.

3. Aggregation: In this step, the central server aggregates all received model updates
using an aggregation algorithm to improve the global model.

4. Model Redistribution: After all node updates have been updated in the global
model, they are sent back to the nodes to repeat this process. This step is repeated
until a desired performance is achieved.

Using the distributed local data from the nodes, this iterative training method helps to
constantly develop the global model without requiring storage on a central server. An
illustration of such a CFL training process is shown in Figure 2.1.

CFL is an e!ective and relatively easy method but still has some weaknesses. One of the
weaknesses is the bottleneck the central server can cause when many nodes in a large-
scale environment transmit their model updates simultaneously. Another problem is that
this method can lead to security problems, as the central server might be compromised
by attackers or system failure, leading to data leaks. These problems can be critical in
highly sensitive scenarios like healthcare and national security, where system availability
and data protection are essential. [2]
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Figure 2.1: Centralized Federated Learning Process [10]

2.1.1 Decentralized Federated Learning

DFL is the second primary FL technique. In contrast to CFL, DFL aggregates the
model updates without requiring a central server. Instead, it is based on a peer-to-peer
network in which all the nodes directly communicate and exchange model updates with
each other. The DFL technique has been developed to address CFL’s limitations, which
are mentioned in Section 2.1.

As DFL does not use a central server, the learning process is di!erent than the one from
CFL and looks like the following:

1. Local Model Training: Every node trains the model on local data and updates its
parameters.

2. Parameter Exchange: Each node exchanges the updated model parameters with
neighboring nodes.

3. Local Aggregation: After receiving the updated model parameters, every node ag-
gregates all updates and creates a local version.

4. Parameter Exchange: All the previous steps are repeated until a desired model
performance is achieved.

In DFL, as no central server manages the coordination of the process, a node can have
one or more roles that define the task of the DFL process. In total, there are four roles a
node can have: trainer, aggregator, proxy, and idle. The task of a trainer is to use their
own dataset to train the local model and send the parameters to aggregators. After the
aggregation, the trainer receives the parameters and updates his local model. The task
of an aggregator is to get parameters from neighboring nodes, aggregate them, and send
them back to the nodes. Sometimes, a trainer node cannot reach an aggregator directly
due to a complex network topology (discussed in the next paragraph). For this situation,
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a proxy node is needed. A proxy node forwards the parameters to the aggregator node if
the aggregator is not directly connected with the trainer. The last role for a node is to be
idle. An idle node does not send any parameters or participate in the training process.
[2]

Network topology is the structure in which the nodes communicate and are organized. In
DFL, the network topology is essential as it impacts the model’s performance, robustness,
and e”ciency. Three di!erent network topologies can be distinguished in DFL: fully con-
nected networks, partially connected networks, and node clustering networks.[2]
The fully connected network has all nodes linked together. As each node can reach all
others, the communication cost and management of connections are very high and in-
crease quadratically. However, it is the most robust and reliable topology, and even if a
few nodes fail, this network stays functional.
The partially connected network has two typical structures: the ring and the star struc-
ture. A ring-structured network shows the nodes connected in a ring, so each node has
two neighbors. With that, there is only a linear increase in communication costs. In a ring
structure, it can be distinguished between a bidirectional network, where a node sends its
parameters for update to both neighbors, and a unidirectional network, where it sends the
parameters to only one neighbor. A bidirectional network outperforms a unidirectional
network in reliability and fault tolerance. A star structure can be compared to a CFL
setup, where one central node is like the central server and is connected with all other
nodes. However, as it is similar to a CFL setup, it has the same weaknesses as in CFL.
In node clustering networks, nodes are grouped into hierarchical clusters based on, for
example, similarities. So, nodes with similar local model parameters are grouped into
clusters, which leads to a more stable performance. These connected clusters can be in
di!erent topologies connected with a single node. As there is one linking point between
these clusters, it comes with the weakness of a single-point failure or bottleneck problem.
In Figure 2.2, all the presented network topologies are visualized. [2] [5]

Figure 2.2: Network Topologies Overview [5]

2.2 Nebula

Nebula is a platform for FL that allows users to create and run di!erent CFL, DFL,
and semi-DFL scenarios. Enrique Tomás Mart́ınez Beltrán launched Nebula in May 2024
as the successor of Fedstellar, the earlier version of this platform. In collaboration with
Armasuisse and the universities of Zurich and Murcia, Nebula is now presented as an
open-source project. It aims to help users build and analyze FL applications for virtual
and physical devices. Nebula’s architecture has three main parts: Frontend, Controller,
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and Core. The front end provides a user-friendly interface to set up and run di!erent
FL scenarios. As an operator, the controller manages and ensures e”cient operations on
the platform. The core is the heart of Nebula and handles the whole FL process on each
device. [3]

Nebula has many features to make the FL scenarios more secure and e”cient. Besides
having the features a DFL setup has, like operating without a central server and maintain-
ing data only locally, the platform allows one to choose one of the many aforementioned
topologies for the scenario. Moreover, Nebula is also compatible with many of the tra-
ditional ML libraries. With its e”cient and secure communication between devices and
its trustworthiness, where the completeness of the learning process is ensured, the plat-
form is attractive for projects that seek security. Features like integrated blockchain and
real-time monitoring of the running scenarios complete Nebula’s robust ecosystem. These
features enable Nebula to be used for di!erent use case applications like the healthcare
sector, where medical devices could be used to train models, or the military to enhance
the armed equipment. [3]

The Nebula interface allows the configuration of various di!erent settings, such as:

• Metadata: Name and description

• Federation Type: DFL, CFL or semi-DFL.

• Topology: Custom topology or a predefined topology as shown in Section 2.1.1

• Dataset Type: MNIST, CIFAR10, Custom Dataset

• Dataset Partition Method: How the dataset will be distributed among the nodes

• NN Type: MLP or CNN

• Aggregation Type: FedAvg, Krum, TrimmedMean, Median or BlockchainReputa-
tion

Additionally, the scenario is visualized on the right side of the screen, where the topology
and the single nodes are shown. It is possible to move the nodes, change their role, and
choose which nodes should be malicious. Figure 2.3 shows a ring topology with six nodes,
one being a trainer, one being malicious and the rest being aggregators.

Figure 2.4 shows the advanced settings that appear further down after clicking on the
advanced mode. These settings include participants settings where it is possible to view
every participant and its detailed information. Next, in advanced deployment, the CPU
or GPU can be chosen as the accelerator of the scenario. Then, it is possible to define a
distance between the participants, which simulates some delays between them, as well as
the number of epochs during training. The robustness setting allows defining an attack
type, like label flipping or poisoning model, that will be configured during the simulation.
As a defense, it is possible to decide whether the reputation system will be enabled
or disabled. As a last setting, in mobility, the default location of the participant and
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Figure 2.3: User Mode setting in Nebula Scenario Deployment

the mobility configuration can be chosen: either the participants don’t move during the
simulation, or they can move around geographically and/or in the topology.[3]

In conclusion, Nebula allows scenario simulations to be set up that cover a lot of use cases
and are helpful for many applications.
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Figure 2.4: User Mode setting in Nebula Scenario Deployment
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Chapter 3

Related Work

This part presents all four related works, which are the basis for the implementations in
this work.

3.1 Node Selection Strategy

The node selection strategy used in this work was implemented according to thesis [4],
”Design and Prototypical Implementation of the Node Selection Strategy in Federated
Learning”. This thesis focuses on optimizing the selection of participating nodes during
the training in DFL and CFL environments. The chosen nodes in each training round
significantly influence the overall performance of the global model. While traditional node
selection methods, such as random or default selection, do not consider key factors like
computational power, latency and node reliability, this work introduces a new priority
selection method to address these issues.

The priority selection algorithm is designed to evaluate each node’s characteristics in real
time. It evaluates parameters such as computational power, latency, data tra”c size, loss
metrics, the volume of data, node age, and availability, generating a comprehensive score
for each node. Using a probabilistic selection process to improve model convergence, this
score ensures all nodes can participate while still favoring those with higher capabilities.[4]

This strategy is especially beneficial in DFL environments, where the absence of a central
server complicates the coordination of nodes. Unlike in CFL, where a central server
handles the model updates, DFL requires nodes to directly communicate and aggregate
model updates. The priority selection algorithm supports balancing the computational
load and improving fault tolerance by integrating node performance metrics, specifically
in large, heterogeneous networks with di!erent node capacities.[4]

After integrating and implementing the new algorithm into the Fedstellar platform and
running several scenarios, the evaluations show that it outperforms traditional random or
default selection in several key areas. It enhances system stability in both CFL and DFL
as it optimizes the use of available resources, speeds up model convergence, and ensures a

13
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more balanced workload distribution. Moreover, it enhances the robustness and scalability
of FL systems by addressing the challenges of heterogeneity and decentralization.[4]

In conclusion, thesis [4] contributes to FL by o!ering a dynamic and e”cient node selection
strategy. Integrating the new algorithm into the FedStellar platform provided a valuable
tool for future research to improve the performance and scalability of CFL and DFL
systems.[4]

3.2 Poisoning Attacks

In this thesis, the FedStellar framework was expanded by adding functionality to simulate
various poisoning attacks and defense methods (aggregation rules). The implementation
supports both centralized (CFL) and decentralized (DFL) setups. [5]

The thesis implements two types of attacks: Data Manipulation and Update Manipula-
tion. Data Manipulation attacks change the dataset before the malicious node trains its
local model on it. Update manipulation attacks change the updates that the node sends
to the aggregator (CFL) or to his neighbors (DFL), the training data is not necessarily
manipulated. [5] Two targeted label-flipping attacks were implemented as representatives
of the data manipulation attacks. The attacks change the labels of the local dataset to
another. They do this either unspecifically (a new label is chosen randomly) or specifi-
cally (given by the setup, for example, change 4, 5 to 7). The update manipulation part
implements the attack from [11].

The defense methods (aggregation rules) implemented in this thesis are Krum [12] and
Bulyan [13].

3.3 Moving Target Defense

While the decentralized nature of FL o!ers advantages regarding privacy and scalability,
it also introduces vulnerabilities, especially to poisoning attacks. In thesis [6], ”Miti-
gating Poisoning Attacks in Decentralized Federated Learning through Moving Target
Defense,” a Moving Target Defense (MTD) strategy is proposed to mitigate these weak-
nesses. Poisoning attacks can occur when malicious participants submit fake model up-
dates, compromising the integrity and accuracy of the global model. By introducing a
Dynamic Aggregation Function (DAF) within an MTD framework, this research focuses
on improving the security of DFL systems.

The main contribution of this thesis is the design and implementation of Dynamic Ag-
gregation Functions that allow proactively or reactively switching between aggregation
methods in response to a possibly detected anomaly. This approach aims to continu-
ously change the attack surface, making it di”cult for adversaries to predict the system’s
behavior. This method allows to dynamically switch between the aggregation functions
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such as FedAvg, Krum, Median, and TrimmedMean in a randomized way, creating un-
predictability, which is supposed to assist in mitigating poisoning attacks.[6]

The implementation was done within the FL platform FedStellar. For the evaluation,
standard benchmark datasets and various poisoning scenarios, including model and data
poisoning, were used. This dynamic aggregation method was evaluated against reactive
and proactive MTD strategies. The results show the high e!ectiveness of a proactive
MTD strategy for low-level poisoning scenarios, reducing the impact of poisoned updates
on the global model. However, the e”cacy of dynamic aggregation decreased in scenarios
with a high-level poisoning rate, suggesting that more defense methods might be required
in such scenarios.[6]

In conclusion, thesis [6] introduces a novel approach to enhancing the robustness of DFL
systems against adversarial attacks. Using an MTD strategy with dynamic aggregation
functions is a significant step in making DFL environments more secure. Future works
might focus on refining the algorithm to handle more serious poisoning scenarios and
exploring strategies for more complex DFL systems.[6]

3.4 Privacy Auditing Component

Thesis [7] ”Design and Implementation of a Privacy Auditing Component for the Decen-
tralized Federated Learning Framework” analyses the e!ectiveness of Membership Infer-
ence Attacks (MIA) in DFL systems. MIAs pose a significant threat to privacy, allowing
attackers to determine whether a specific data point was used in the training process.
Using a privacy auditing component to measure the risks, this thesis focuses on the vul-
nerability of DFL to these MIAs.[7]

The main part of the research involved implementing binary classifier-based and metric-
based MIAs to evaluate their ability to breach the privacy of DFL systems. The study
reveals that DFL already o!ers some inherent resistance to MIAs due to the absence of
a central aggregation point, which distributes the attack surface across multiple nodes.
However, another finding is that di!erent network topologies, such as fully connected star
and ring structures, a!ect the participants’ vulnerability. [7]

The privacy auditing component implemented in this thesis includes a user-friendly front
end in FedStellar that allows users to select and configure di!erent MIAs. The backend
was expanded with an attack-performing module that runs the MIAs without interfering
with the original training process. This separation allows the system to simulate realistic
attacks in a non-disturbing way. Additionally, a logging module records and visualizes
the attack outcomes, helping the users better understand how the di!erent MIAs impact
the system. [7]

Through evaluations using standard datasets like MNIST or CIFAR-10, the thesis shows
that while metric-based MIAs are simpler but reasonably accurate, binary classifier-based
MIAs are more e!ective in FL. The data distribution and network topology greatly im-
pact the results, as ring topologies o!er more robustness, and star topologies are more
vulnerable due to their central structure.[7]
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However, the research also revealed a significant reduction in the e!ectiveness of MIAs in
FL environments compared to traditional machine learning due to two main factors. FL
mitigates overfitting by continuously aggregating models across nodes, making it more
di”cult for MIAs to distinguish between in-sample and out-sample data. In addition,
the decentralized structure of FL disrupts the assumptions on which MIAs are usually
based, such as the ability to train shadow models that closely mimic the target model.
The decentralized setup limits the attack surface, especially in topologies where no single
node has enough data for accurate inference, further weakening the attack’s success. [7]

In conclusion, this thesis provides valuable insights into the privacy risks of DFL and
highlights the importance of network topology in determining the e!ectiveness of MIAs.
Furthermore, the work states that while DFL reduces the success rate of many traditional
MIAs, it is not immune to privacy breaches. Future works might focus on advanced MIAs
that may overcome the current limitations and o!er potential directions for di!erent
topology defenses. [7]



Chapter 4

Architecture

This chapter details the architecture of the Nebula platform. This includes the various
modules that interact with each other for the Docker Container Frontend, as well as the
application itself. Instead of code snippets, a holistic overview of the Nebula architecture is
given. The chapter begins with the Docker container setup, both in frontend and backend,
after which the dataset and attack modules are introduced. After an introduction to the
training/aggregation and node selection modules, an overview of the available monitoring
and evaluation features is given.

Figure 4.1 depicts an overview of the various Python modules and how they interact with
each other.

4.1 Docker

4.1.1 Frontend Configuration

The Nebula platform’s frontend is implemented as a Docker container. The user interface
allows configuration of various parameters for the simulation of FL scenarios such as:

• Network topologies

• Machine learning models, training epochs, and rounds

• Simulation of attacks and defenses (optional)

• Other parameters required for a specific scenario (dataset distribution, etc.)

The configuration details are passed to an API hosted by the nebula-frontend Docker
container, which dynamically generates Dockerfiles for each node and launches them as
separate Docker containers. The nebula/scenarios.py module receives this information
and populates the node Dockerfiles accordingly.

17
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Figure 4.1: An overview of the Nebula Architecture.

4.1.2 Backend Process Flow

During node initialization, each node fetches its configuration from a JSON file specified
in the Dockerfile.

The configuration is read and instantiated via nebula/node.py, which sets up the node
or malicious node and instantiates the DataModule.

4.2 Dataset Management

DataModule ( nebula/core/datasets/datamodule.py) handles dataset generation and
management for each node.

For malicious nodes, the ChangeableSubset class applies specific attacks to manipulate
the dataset before returning it to the DataModule.
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4.3 Attack Implementation

The nebula/addons/attacks module contains implementations of various attacks, such
as:

• Membership Inference Attacks (MIA)

• Data Poisoning Attacks

• Label Flipping Attacks

• Model Poisoning Attacks

• Update Manipulation Attacks

4.4 Training and Aggregation

Once the configuration is finalized, the Engine ( nebula/core/engine.py) handles the
training process.

Aggregation strategies are selected via the Aggregator superclass ( nebula/core/aggre-
gation/aggregator.py), which supports:

• FedAvg

• Krum

• Median

• TrimmedMean

• Bulyan

• DynamicAggregator

• ReactiveAggregator

4.5 Node Selection

The Selector superclass (nebula/core/selector/selector.py) provides node selection
strategies, including:

• AllSelector

• RandomSelector

• PrioritySelector
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4.6 Monitoring and Evaluation

Users can monitor and evaluate scenarios through the user interface, accessible at /sce-
nario/deployment/. The monitoring tools include:

• TensorBoard for visualizing training progress and performance metrics.

• Logging mechanisms for scenario details and outcomes.

• Additional evaluation metrics, depending on the scenario.

The NebulaLogger and NebulaTensorBoardLogger modules handle logging and visual-
ization during training and evaluation.



Chapter 5

Implementation

In this chapter, the development of the various components that are introduced to Nebula
is documented. The first task comprises the various node selection strategies outlined
in task [4]. An outline of the various features used for the PrioritySelector is also
shown. Moving on, the second task [5] that has been implemented includes the various
Data and Update Manipulation Attacks such as targeted/untargeted labelflipping, the
FANG [14] labeflipping attack, as well as the LIE [11] attack, together with some more
aggregation rules such as Bulyan [13]. In the third task, a moving target defense from [6]
is implemented. More specifically, a dynamic aggregator is implemented. This aggregator
reactively changes the aggregation function when possible anomalies are detected. In
the fourth and final task, a privacy audititing component from [7] is introduced. This
mainly consists of two di!erent membership inference attacks, whose implementations are
outlined in this chapter.

Code snippets are included where deemed relevant, with much of the code being replaced
for brevity’s sake. Instead, there are comments outlining their functionality.

5.1 Node Selection Strategy

This section describes the implementation of the ”Node Selection Strategy” as proposed
by [4] into Nebula.

5.1.1 Feature Extraction

As described in [4], the selection mechanisms require certain features of each node to
decide which nodes to aggregate. This section describes the extraction, the messaging
and the processing of those features in detail.

21
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nebula/core/engine.py

1 def __nss_extract_features(self):
2 """
3 Extract the features necessary for the node selection strategy.
4 """
5 nss_features = {}
6 nss_features["cpu_percent"] = psutil.cpu_percent ()
7 net_io_counters = psutil.net_io_counters ()
8 nss_features["bytes_sent"] = net_io_counters.bytes_sent
9 nss_features["bytes_received"] = net_io_counters.bytes_recv

10 nss_features["loss"] = self.trainer.model.loss
11 nss_features["data_size"] = self.trainer.get_model_weight ()
12 self.nss_features = nss_features

Listing 5.1: NSS Features extraction

CPU Usage

The CPU usage feature is obtained using psutil.cpu_percent, a function that returns ”a float
representing the current system-wide CPU utilization as a percentage” [15]

nebula/core/engine.py

1 psutil.cpu_percent ()

Listing 5.2: NSS Features extraction (CPU)

Networking Bytes Sent / Received

The networking features (bytes sent and bytes received) are extracted using psutil.net_io_counters(),
a function that returns ”system-wide network I/O statistics as a named tuple including the fol-
lowing attributes: bytes sent: number of bytes sent; bytes recv: number of bytes received” [15]

nebula/core/engine.py

1 psutil.net_io_counters ().bytes_sent
2 psutil.net_io_counters ().bytes_recv

Listing 5.3: NSS Features extraction (Networking)

Loss

The loss is an attribute (see listing 5.4) from the trainer (an instance of Lightning, defined in
nebula/core/training/lightning.py)

nebula/core/engine.py

1 self.trainer.model.loss

Listing 5.4: NSS Features extraction (Loss)



5.1. NODE SELECTION STRATEGY 23

Data Size

The data size is retrieved using get_model_weight (see listing 5.5), a function defined in the
instance of the trainer (see listing 5.6).

nebula/core/engine.py

1 self.trainer.get_model_weight ()

Listing 5.5: NSS Features extraction (Data Size)

nebula/core/training/lightning.py

1 class Lightning:
2 ...
3 def get_model_weight(self):
4 return len(self.data.train_dataloader ().dataset)
5 ...

Listing 5.6: NSS Features extraction (Data Size)

Latency

The latency is the only metric not submitted by the neighbor, but measured by the aggregating
node. When the aggregating node receives the message of the neighbor with his features, he
measures the latency from himself to the source of the message using __nss_get_latency (see
exact implementation in listing 5.7 for details). The aggregating node then adds the latency to
the features list of the source node and stores it.

nebula/core/engine.py

1 def __nss_get_latency(self , source):
2 s = socket.socket(socket.AF_INET , socket.SOCK_STREAM)
3 host , port = source.split(":")
4 start = time.time()
5 s.connect ((host , int(port)))
6 s.close()
7 return (time.time() - start) * 1000

Listing 5.7: NSS Features extraction (Latency)

5.1.2 Messaging

In Nebula, nodes exchange information using Protocol Bu!ers (
”
Protobuf“) messages. Protocol

Bu!ers are an extensible mechanism for serializing structured data [16]. The features required
for the Node Selection Strategy are also exchanged through Protobuf messages, specifically using
the NSSFeaturesMessage Type. The definition of the message type can be seen in listing 5.8.
When a node has features to share, it creates an NSSFeaturesMessage containing the required
metrics such as cpu percent, bytes sent, bytes received, loss, and data size (see listing 5.10). It
does so by using generate_nss_features_message as shown in listing 5.11. Note that the
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latency is measured by the receiving node itself and is therefore not included in the message (see
listing 5.7). The NNSSFeaturesMessage is wrapped inside the Wrapper message, which includes
the source node’s identifier (see listing 5.9).

nebula/core/pb/nebula.proto

1 message NSSFeaturesMessage {
2 float cpu_percent = 1;
3 int32 bytes_sent = 2;
4 int32 bytes_received = 3;
5 float loss = 4;
6 int32 data_size = 5;
7 }

Listing 5.8: Protobuf Features Message

nebula/core/pb/nebula.proto

1 message Wrapper {
2 string source = 1;
3 oneof message {
4 ...
5 NSSFeaturesMessage nss_features_message = 8;
6 }
7 }

Listing 5.9: Protobuf Message Wrapper

nebula/core/pb/nebula.proto

1 async def _learning_cycle(self):
2 while self.round is not None and self.round < self.total_rounds:
3 ... ... ...
4 if self.node_selection_strategy_enabled:
5 # Extract Features needed for Node Selection Strategy
6 self.__nss_extract_features ()
7 # Broadcast Features
8 logging.info(f"Broadcasting NSS features to the rest of the

topology ...")
9 message = self.cm.mm.generate_nss_features_message(self.

nss_features)
10 await self.cm.send_message_to_neighbors(message)
11 ... ... ...
12 selected_nodes = self.node_selection_strategy_selector.

node_selection(self)
13 self.nebulalogger.log_text("[NSS] Selected nodes", str(

selected_nodes), step=self.round)

Listing 5.10: Sending and Receiving NSS Features Messages
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nebula/core/pb/nebula.proto

1 def generate_nss_features_message(self , nss_features):
2 message = nebula_pb2.NSSFeaturesMessage(
3 cpu_percent = nss_features["cpu_percent"],
4 bytes_sent = nss_features["bytes_sent"],
5 bytes_received = nss_features["bytes_received"],
6 loss = nss_features["loss"],
7 data_size = nss_features["data_size"],
8 )
9 message_wrapper = nebula_pb2.Wrapper ()

10 message_wrapper.source = self.addr
11 message_wrapper.nss_features_message.CopyFrom(message)
12 data = message_wrapper.SerializeToString ()
13 return data

Listing 5.11: Generating the Protobuf Message

The wrapped message is serialized and sent over the network to his neighboring nodes asyn-
chronously. Upon receiving features messages from neighbors, the receiving node triggers the
__nss_features_message_callback function through the event handler (see listing 5.12 and
5.13). This callback processes the message, extracts the feature metrics, and updates its local
dict with the features of his neighbors (see listing 5.14).

nebula/core/engine.py

1 @event_handler(nebula_pb2.NSSFeaturesMessage , None)
2 async def __nss_features_message_callback(self , source , message):
3 logging.info(f"handle_nss_features_message | Trigger | Received NSS

features message from {source}")
4 if message is not None:
5 latency = self.__nss_get_latency(source)
6 features = {}
7 features["cpu_percent"] = message.cpu_percent
8 features["bytes_sent"] = message.bytes_sent
9 features["bytes_received"] = message.bytes_received

10 features["loss"] = message.loss
11 features["data_size"] = message.data_size
12 features["latency"] = latency
13 self.node_selection_strategy_selector.add_neighbor(source)
14 self.node_selection_strategy_selector.add_node_features(source ,

features)

Listing 5.12: NSS Features Message Handler

nebula/core/network/communications.py

1 async def handle_nss_features_message(self , source , message):
2 try:
3 logging.error(f"handle_nss_features_message | Received

Message from: {source}")
4 await self.engine.event_manager.trigger_event(source ,

message)
5 except Exception as e:
6 logging.error(f"handle_nss_features_message | Error while

processing: {message} | {e}")
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Listing 5.13: NSS Features Message Event Handler

nebula/core/engine.py

1 if self.node_selection_strategy_enabled:
2 # Extract Features needed for Node Selection Strategy
3 self.__nss_extract_features ()
4 # Broadcast Features
5 logging.info(f"Broadcasting NSS features to the rest of the topology

...")
6 message = self.cm.mm.generate_nss_features_message(self.nss_features

)
7 await self.cm.send_message_to_neighbors(message)
8 _nss_features_msg = f"""NSS features for round {self.round}:
9 CPU Usage (%): {self.nss_features[’cpu_percent ’]}%

10 Bytes Sent: {self.nss_features[’bytes_sent ’]}
11 Bytes Received: {self.nss_features[’bytes_received ’]}
12 Loss: {self.nss_features[’loss ’]}
13 Data Size: {self.nss_features[’data_size ’]}"""
14 print_msg_box(msg=_nss_features_msg , indent=2, title="NSS features (

this node)")
15 selected_nodes = self.node_selection_strategy_selector.

node_selection(self)
16 self.nebulalogger.log_text("[NSS] Selected nodes", str(

selected_nodes), step=self.round)

Listing 5.14: NSS Features extraction

5.1.3 Algorithms

Selector (Base Class)

The Selector class serves as the superclass for the di!erent selection strategies designed in [4]. It
handles core functionalities such as maintaining a list of neighbors, tracking their features (e.g.,
CPU usage, bytes sent, bytes recv, latency, data size and loss), and providing basic methods to
add neighbors, reset lists, and manage feature data. It is designed to be extended by subclasses
that implement the selection strategies (RandomSelector, AllSelector, PrioritySelector).
The node_selection method is intended to be overridden by these subclasses, allowing them
to define the custom logic for selecting the nodes for aggregation. The implementation of the
Selector class is shown in listing B.1.

AllSelector

The AllSelector subclass represents the selection strategy where all available neighbors are
selected for aggregation. It copies the list of neighbors, adds the current node itself, and logs
the selected nodes. If no neighbors are available, it defaults to selecting only the current node.
The Implementation is shown in listing B.2.
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RandomSelector

The RandomSelector selects a random subset of neighbors. It ensures that at least one is
chosen but not exceeding a predefined percentage of the total available nodes. The following
implementation di!ers from the one described in [5]. The original implementation, given in
listing B.3, would always choose the maximum possible amount of nodes. For example, in a
scenario with 10 available neighbors and 100% maximum selectable neighbors, it would always
choose all 10 nodes for aggregation. The implementation for Nebula randomly samples the
standard distribution to decide the number of nodes being used for aggregation.

PrioritySelector

The PrioritySelector selects nodes for aggregation based on a weighted scoring system. Each
participant’s score is computed from various features such as CPU usage, data size, bytes sen-
t/received, packet loss, latency, and node age. These features are assigned specific weights to
prioritize certain aspects over others, with the default weights shown in listing B.5. Nodes are
selected randomly (with the weighting applied) according to the calculated scores, with a min-
imum and maximum number of neighbors ensured. The aggregating node adds itself to the
selection made in any case. The full implementation is shown in listing B.5.

5.1.4 Virtual Constraints

The following implementation details outline how resource constraints are applied to simulate
varying node performance in the Dockerized environment where Nebula runs its scenarios. The
constraints concern two aspects: CPU availability (through allocation) and network latency. It
should allow realistic simulation of nodes with di!erent computational capabilities and network
conditions. In Nebula, every scenario is represented by a docker-compose.yml file that contains
the definition of each participant. An example of such a file is given in listing B.7. This example
scenario has two participants, with participant0 being limited to 0.3 CPUs and an additional
50ms delay to all networking operations.

CPU

Each node’s CPU allocation is controlled via the deploy.resources.limits.cpus attribute. The
attribute ”configures a limit or reservation for how much of the available CPU resources, as
number of cores, a container can use.” [17] As seen in the implementation shown in listing 5.15,
if no CPU constraint is configured for the scenario the maximum number of available CPU’s is
used as the limit. Using os.cpu_count() (a function that returns ”the number of logical CPUs
in the system”[18]), the maximum value is retrieved and later embedded into the docker-compose
file. The example in listing B.7 shows the CPU constraints applied on line 15 and 39.

nebula/scenarios.py

1 if node["resource_args"]["resource_constraint_cpu"] == 0:
2 # If 0, the node shall have no CPU constraints
3 resource_constraint_cpu = os.cpu_count ()
4 logging.info("Node has no Resource Constraint on CPU")
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5 else:
6 resource_constraint_cpu = node["resource_args"]["

resource_constraint_cpu"]
7 logging.info(f"Node has the following Resource Constraint on CPU :{

resource_constraint_cpu}")

Listing 5.15: NSS Resource Constraints Setup (CPU)

Networking (Latency)

Network conditions are manipulated using tcset,
”
a command to add a tra”c control rule to

a network interface“ [19]. As seen in the implementation shown in listing 5.16, the command
tcset eth0 --delay <latency> is used to add a specified delay to the network interface of the
node (eth0 ), simulating a scenario where the a!ected node has higher latency then the others.
The example in listing B.7 shows the networking constraints applied on line 20, line 44 shows
the default without constraints.

nebula/scenarios.py

1 tcset_cmd = ""
2 if node["resource_args"]["resource_constraint_latency"] != 0:
3 tcset_cmd = f"tcset eth0 --delay {node[’resource_args ’][’

resource_constraint_latency ’]} && "

Listing 5.16: NSS Resource Constraints Setup (Network)

5.1.5 Frontend

The scenario setup dashboard was extended by a new section ”Node Selection Strategy” shown
in Figure 5.1. The virtual constraints were implemented in the section, where the details of the
scenario participants are set up (shown in Figure 5.2). After clicking on the ”Details”-Button

Figure 5.1: Choose the Node Selection Strategy

next to each participant, the constraints can be set for each participant individually (shown in
figure 5.3).

5.2 Poisoning Attacks

5.2.1 Attacks

This section describes the implementation of attacks and aggregations rules (described in [5])
into Nebula.
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Figure 5.2: Scenario Participants

Figure 5.3: Add Resource Constraints to Participant

Data Manipulation Attacks

Data manipulation attacks manipulate the training data used by the malicious node. The
behaviour of the node itself is not di!erent to a benign node per se, only the training data is ma-
nipulated. To implement this behaviour in Nebula, the attacks are performed before the training
process launches. When the nodes are being initialized (see nebula/node.py for details), each
node instantiates a dataset (instance of DataModule) that is initalized with di!erent parameters.
They include the information about the dataset itself (splitting into train, test and validation
set, ...) and also information about the attack (for example the specific classes targeted by a
label flipping attack, ...). The DataModule instance then creates the requested sets (training,
test, validation) as an instance of ChangeableSubset which applies the attacks if needed (it
checks whether the configuration contains an attack, and if yes, calls the functions defining the
attack on the dataset). Listing B.10 shows the process of initializing the node, listing B.8 and
B.9 show the creation of the (malicious) dataset through DataModule and ChangeableSubset.
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Labelflipping (from [14])

The first data manipulation attack implemented in this thesis is the Label flipping attack pro-
posed in [14]. The attack flips ”a label l as L-l-1, where L is the number of classes in the
classification problem and l = 0, 1, ···, L-1.” [14]
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nebula/addons/attacks/poisoning/labelflipping fang.py

1 import copy
2 import logging
3 import torch
4

5 def labelflipping_fang(dataset):
6 logging.info("[Attack Labelflipping_fang] running attack on dataset"

)
7

8 new_dataset = copy.copy(dataset)
9 targets = new_dataset.targets.detach ().clone()

10 class_list = new_dataset.class_to_idx.values ()
11

12 for i in range(len(targets.tolist ())):
13 t = targets[i].numpy()
14 targets[i] = torch.tensor(len(class_list) - t - 1)
15

16 new_dataset.targets = targets
17 return new_dataset

Listing 5.17: Labelflipping Attack (Fang)

Labelflipping targeted

The attacks in this section are targeted labelflipping attacks, meaning the attack targets a
specific class. In other words, only the training samples of the dataset that define a specific class
are manipulated. The manipulation itself is done in either a specific or a unspecific manner.
For the specific attack, the scenario explicitly defines which classes the attacked classes are
replaced with. The unspecific attack decides the new class randomly. The implementation of
these attacks are shown in 5.18 resp. 5.19.

nebula/addons/attacks/poisoning/labelflipping targeted.py

1 def labelflipping_targeted_specific(dataset , indices , label_og: Union[
list , int], label_goal: int):

2 logging.info("[Attack Labelflipping_targeted_specific] running
attack on dataset")

3 logging.info(f"received: label_og{label_og}, label_goal{label_goal}"
)

4 new_dataset = copy.copy(dataset)
5 try:
6 targets = new_dataset.targets.detach ().clone()
7 except AttributeError:
8 targets = new_dataset.targets
9 logging.info("[LabelFlipping Attack] Changing labels from {} to {}".

format(label_og , label_goal))
10

11 for i in indices:
12 try:
13 t = targets[i].numpy()
14 except AttributeError:
15 t = targets[i]
16 if (t in label_og) or (str(t) in label_og):
17 targets[i] = label_goal
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18 new_dataset.targets = targets
19 return new_dataset

Listing 5.18: Labelflipping Attack (Targeted, Specific)

nebula/addons/attacks/poisoning/labelflipping targeted.py

1 def labelflipping_targeted_unspecific(dataset , indices , label_og: Union[
list , int]):

2 new_dataset = copy.copy(dataset)
3 targets = new_dataset.targets.detach ().clone()
4 class_list = new_dataset.class_to_idx.values ()
5 logging.info("[LabelFlipping Attack] Changing labels from {}

randomly.".format(label_og))
6

7 for i in indices:
8 t = targets[i]
9 if str(t) in label_og:

10 targets[i] = torch.tensor(
11 random.sample(sorted ([x for x in class_list if x != t]),

1)
12 )
13

14 new_dataset.targets = targets
15 return new_dataset

Listing 5.19: Labelflipping Attack (Targeted, Unspecific)

Labelflipping untargeted

The attack described in this section is an untargeted labelflipping attack, meaning the attack
targets all classes. All (or a percentage of them) training samples of the dataset (regardless of
which class they belong to) are manipulated. The implementation of this attack is shown in
5.20. nebula/addons/attacks/poisoning/labelflipping untargeted.py

1 def labelflipping_untargeted(dataset , indices , flipping_persent):
2 logging.info("[Attack labelflipping_untargeted] running attack on

dataset")
3 logging.info("[Attack labelflipping_untargeted] Received Config:

flipping_percent: {}".format(flipping_persent))
4 sys.set_int_max_str_digits (0)
5 new_dataset = copy.copy(dataset)
6

7 if type(new_dataset.targets) == list:
8 new_dataset.targets = torch.tensor(new_dataset.targets)
9 targets = new_dataset.targets.detach ().clone()

10 num_indices = len(indices)
11 classes = new_dataset.classes
12 class_to_idx = new_dataset.class_to_idx
13 class_list = [class_to_idx[i] for i in classes]
14 num_flipped = int(float(flipping_persent)*0.01 * num_indices)
15 if num_indices == 0:
16 return new_dataset
17 if num_flipped > num_indices:
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18 return new_dataset
19 flipped_indice = random.sample(indices , num_flipped)
20

21 for i in flipped_indice:
22 t = targets[i]
23 flipped = torch.tensor(random.sample(class_list , 1)[0])
24 while t == flipped:
25 flipped = torch.tensor(random.sample(class_list , 1)[0])
26 targets[i] = flipped
27 new_dataset.targets = targets
28

29 return new_dataset

Listing 5.20: Labelflipping Attack (Fang)

Update Manpiulation Attacks

LIE

The update manipulation attack described in this section was introduced by [11]. It is di!erent
from the other attacks mentioned above in that it doesn’t try to inject updates with high
disturbance, but instead applying minimal changes. These changes lead to a lower e!ect when
targeting averaging aggregation rules such as FedAvg, but allow the attack to stay unrecognized
when targeting other aggregation rules such as Trimmed Mean. [5] The attack is described in
more detail in algorithm 1. The actual implementation of function Z(n, f) is shown in listing
5.23. Note that, as the nodes in Nebula don’t have access to the information required to calculate
Z, it is therefore calculated during the setup of the scenario. This approach also allows users to
manipulate the value as desired. The implementation of the attack itself is shown in listing 5.21.
In Nebula, the data manipulation attacks are executed before the node itself starts his learning
process. The update manipulation attacks however, are applied after the training process is
done and the aggregation starts. Listing 5.22 shows how the attack is applied by intercepting
the updates broadcasted for aggregation.
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Algorithm 1 Update Manipulation as seen in [11], taken from [5]
Ubenign: Benign Update
n: total nodes m: smallest m fulfilling m + f < n (amount of byzantine nodes ”missing”
to control median)
f : total byzantine nodes

1: function Z(n, f)
2: m → ↑n

2 + 1↓ ↔ f
3: z → max

x
(ω(x) > n→m

n )

4: return z
5: function PoisonedUpdate(Ubenign, z)
6: for dim in Ubenign do
7: µdim → mean(dim)
8: εdim → std(dim)
9: Ppoisoned → µdim + εdim · z
10: return Dpoisoned

11: ϑ All malicious nodes now send the same Dpoisoned for aggregation. ϖ
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nebula/addons/attacks/poisoning/update manipulation.py

1 import logging
2 import torch
3

4 def update_manipulation_LIE(parameters , z):
5 logging.info("[Attack update_manipulation_LIE] running attack on

model parameters")
6 malicious_parameters = {}
7 for key , value in parameters.items():
8 if key.endswith("bias"):
9 malicious_parameters[key] = value

10 else:
11 new_weights_list = []
12 for weights in value:
13 new_weights = []
14 avg = torch.mean(weights , dim=0)
15 std = torch.std(weights , dim=0)
16 for _ in weights:
17 new_weights.append(avg + z * std)
18 new_weights_list.append(new_weights)
19 malicious_parameters[key] = torch.tensor(new_weights_list)
20 logging.info("[Attack update_manipulation_LIE] finished")
21 return malicious_parameters

Listing 5.21: Update Manipulation Attack (from [11])

nebula/core/engine.py

1 class AggregatorNode(Engine):
2 ...
3 async def _extended_learning_cycle(self):
4 # Define the functionality of the aggregator node
5 logging.info(f"[Testing] Starting ...")
6 self.trainer.test()
7 logging.info(f"[Testing] Finishing ...")
8

9 logging.info(f"[Training] Starting ...")
10 self.trainer.train()
11 logging.info(f"[Training] Finishing ...")
12

13 if self.lie_atk:
14 from nebula.addons.attacks.poisoning.update_manipulation

import update_manipulation_LIE
15 await self.aggregator.include_model_in_buffer(

update_manipulation_LIE(self.trainer.get_model_parameters (),self.
lie_atk_z), self.trainer.get_model_weight (), source=self.addr , round=
self.round)

16 else:
17 await self.aggregator.include_model_in_buffer(self.trainer.

get_model_parameters (), self.trainer.get_model_weight (), source=self.
addr , round=self.round)

18

19 await self.cm.propagator.propagate("stable")
20 await self._waiting_model_updates ()

Listing 5.22: Executing Update Manipulation Attacks
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nebula/frontend/app.py

1 @app.post("/nebula/calc_lie_z")
2 async def calc_lie_z(request: Request):
3 data = await request.json()
4 total_nodes = int(data.get("total_nodes"))
5 percent_malicious = int(data.get("percent_malicious"))
6 malicious_nodes = math.ceil(total_nodes * (percent_malicious / 100))
7 print(percent_malicious , total_nodes , malicious_nodes)
8 if malicious_nodes > total_nodes:
9 # If malicious_nodes > total_nodes , the median is already under

control of the attacker , and convergence of the global model is no
longer possible

10 return "0"
11

12 # Calculate the number of nodes needed to control the median (
majority)

13 nodes_required_for_majority = math.ceil ((( total_nodes / 2) + 1) -
malicious_nodes)

14

15 # Calculate the z_max using the percent point function (ppf)
16 # ppf = Percent point function (inverse of cdf - percentiles)
17 # est_ppf () retrieved from https :// stackoverflow.com/questions

/74817976/ alternative -for -scipy -stats -norm -ppf
18

19 def est_ppf(x):
20 a = -9
21 b = 9
22 v2 = math.sqrt (2)
23 while b - a > 1e-9:
24 c = (a + b) / 2
25 r = 0.5 + 0.5 * math.erf(c / v2)
26 if r > x:
27 b = c
28 else:
29 a = c
30 return c
31

32 z_max = est_ppf (( total_nodes - nodes_required_for_majority) /
total_nodes)

33 return str(math.floor(z_max * 100) / 100.0)

Listing 5.23: Calculation of Z for Update Manipulation Attack from [11]

5.2.2 Aggregation Rules

Bulyan

The aggregation rule Bulyan was introduced in [13]. The concept of Bulyan is the combination
of a byzantine–resilient aggregation rule ([13] propose to use Krum) and TrimmedMean. It first
uses Krum to generate a subset of clients which are (probably) benign. This subset is then
aggregated using TrimmedMean. For more details on the Bulyan algorithm see algorithm 2, for
the implementation in Nebula see listing 5.24.
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Algorithm 2 Bulyan Algorithm (taken from [5]
n: received update vectors
f : amount of malicious clients
A: any (ϱ, f)-Byzantine–resilient aggregation rule, e.g. Krum

1: function Bulyan(ς, n, f)
2: Sn → []
3: while Length(Sn) < (n↔ 2f) do
4: nrest → n \ Sn

5: Sn → Sn +A(nrest)
6: return TrimmedMean(ς, Sn)

nebula/core/aggregation/bulyan.py

1 import logging
2

3 import torch
4 import numpy as np
5 from nebula.core.aggregation.aggregator import Aggregator
6 from nebula.core.aggregation.trimmedmean import TrimmedMean
7

8

9 class Bulyan(Aggregator):
10 def __init__(self , config=None , ** kwargs):
11 super().__init__(config , ** kwargs)
12 self.config = config
13 self.role = self.config.participant["device_args"]["role"]
14 self.KRUM_SELECTION_SET_LEN = 4
15 self.TRM_BETA = 1
16

17

18 def run_aggregation(self , models):
19 if len(models) == 0:
20 logging.error("[Bulyan] Trying to aggregate models when

there is no models")
21 return None
22

23 # Krum Step of Bulyan:
24 # The implementation of the Krum Function is copied from krum.py

[Author: Chao Feng].
25 # This implementation was then modified to return a list of

models ordered by their distance
26 # instead of the single update with the best score to make it

suitable for use in the Bulyan AGR
27

28 models = list(models.values ())
29

30 # initialize zeroed model
31 accum = (models [ -1][0]).copy()
32 for layer in accum:
33 accum[layer] = torch.zeros_like(accum[layer])
34

35 logging.info(
36 "[Bulyan(Krum Step).aggregate] Aggregating models: num={}".

format(
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37 len(models)
38 )
39 )
40

41 # Create model distance list
42 total_models = len(models)
43 distance_list = [0 for i in range(0, total_models)]
44 models_and_distances = []
45

46 # Calculate the L2 Norm between xi and xj
47 for i in range(0, total_models):
48 m1, _ = models[i]
49 for j in range(0, total_models):
50 m2, _ = models[j]
51 distance = 0
52 if i == j:
53 distance = 0
54 else:
55 for layer in m1:
56 l1 = m1[layer]
57 l2 = m2[layer]
58 distance += np.linalg.norm(l1 - l2)
59 distance_list[i] += distance
60

61 # Add the model and its distance to the dictionary
containing all models and their distances

62 models_and_distances.append (( distance_list[i], models[i]))
63

64 # Order the models by distance ascending -> potentially
malicious models are at the end of the list

65 models_and_distances.sort(key = lambda tup: tup [0])
66

67 # remove the potentially malicious models
68 if len(models_and_distances) <= self.KRUM_SELECTION_SET_LEN:
69 logging.error(
70 "[Bulyan(TRMstep)] Trying to aggregate models when there

are less or equal models than the set length of the krum selection
set ..."

71 )
72 return None
73 else:
74 for i in range(self.KRUM_SELECTION_SET_LEN):
75 models_and_distances.pop()
76 # calculate new global model using trimmedmean
77 models = [x[1] for x in models_and_distances]
78 TRM = TrimmedMean(config = self.config , beta = self.TRM_BETA)
79 return TRM.run_aggregation(models)

Listing 5.24: Bulyan Aggregation Rule

5.2.3 Frontend

The configuration of the attacks was integrated into the already existing configuration section
(13: Robustness). Figure 5.4 shows the attacks that are available in Nebula now. After selecting
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Figure 5.4: Frontend Attack Setup

Figure 5.5: Label Flipping Attack (from [14])

the attack the necessary configuration fields are displayed. Figure 5.5 shows the configuration
fields for the label flipping attack from [14], figure 5.7, 5.8 and 5.9 the other label flipping attacks
and figure 5.6 shows the update manipulation attack from [11]. The implemented aggregation
rule, Bulyan, doesn’t need any further configuration and is simply selected (see figure 5.10).
The only di!erence to the other aggregation rules is that, as Bulyan requires 5 nodes to work
properly [5], a message is displayed when the user tries to create a scenario with less nodes using
Bulyan as the aggregation rule.

5.3 Moving Target Defense

This section describes the implementation of the moving target defense strategies (MTD) as
proposed by [6] into Nebula.

Figure 5.6: Update Manipulation Attack (from [11])
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Figure 5.7: Label Flipping Attack (targeted, specific)

Figure 5.8: Label Flipping Attack (targeted, unspecific)

Figure 5.9: Label Flipping Attack (untargeted)

Figure 5.10: Selection of Bulyan in the Fronend
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Dynamic Aggregator

The DynamicAggregator dynamically changes the aggregation rule used after every round. It
does so in any case, not taking any information of the scenario and the other participants into
consideration (proactively). The DynamicAggregator is implemented into Nebula as a subclass
of Aggregator, meaning it behaves as a regular aggregation rule and the random selection of
the aggregator is implemented in run_aggregation. Listing 5.25 shows the implementation.
Note that in [6], the dynamic aggregation is implemented di!erently. After the end of each
round, the proposed implementation checks via a configuration value if the dynamic aggregation
is requested. If it is, the configured aggregation function is overwritten with a randomly chosen
one just before aggregation. The integration into Nebula uses the subclass-approach mentioned
earlier, mainly for the sake of simplicity and consistency.

nebula/core/aggregation/dynamicAggregator.py

1 class DynamicAggregator(Aggregator):
2 def __init__(self , config = None , ** kwargs):
3 super().__init__(config , ** kwargs)
4

5 def run_aggregation(self , models , tensorboard_log=True):
6 logging.info(f"[DynamicAggregator] Initializing Aggregation")
7 ...
8 super().run_aggregation(models)
9 available_aggregators = [FedAvg , Krum , Median , TrimmedMean ,

Bulyan]
10 chosen_aggregator_cls = random.choice(available_aggregators)
11 logging.info(f"[DynamicAggregator] Chosen Aggregator: {

chosen_aggregator_cls}")
12 if tensorboard_log:
13 self.engine.nebulalogger.log_text(tag="[DynamicAggregator]

Chosen Aggregator", text=chosen_aggregator_cls.__name__ , step=self.
engine.round)

14 chosen_aggregator = chosen_aggregator_cls(config=self.config)
15 return chosen_aggregator.run_aggregation(models)

Listing 5.25: MTD DynamicAggregator
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Reactive Aggregator

The ReactiveAggregator dynamically changes the aggregation rule if malicious model updates
have been detected by the participant. To do so, it uses reputation_calculation to calculate
the cossim-metric score for each received model. A cuto! (0.5) is then used to decide whether a
model is malicious or not. If a malicious model was received, the aggregation rule is changed by
invoking the DynamicAggregator. If no malicious model was detected, the default Aggregator
configured in the frontend is used. The full implementation is shown in listing 5.26.

nebula/core/aggregation/reactiveAggregator.py

1 from nebula.core.aggregation.dynamicAggregator import DynamicAggregator
2

3 class ReactiveAggregator(Aggregator):
4 def __init__(self , config = None , ** kwargs):
5 super().__init__(config , ** kwargs)
6

7 def run_aggregation(self , models):
8 logging.info(f"[ReactiveAggregator] Initializing Aggregation")
9 super().run_aggregation(models)

10 malicious_nodes , reputation_score = self.engine.
reputation_calculation(models)

11 if len(malicious_nodes) > 0:
12 # ...
13 # log notifications
14 dynamic_aggregator = DynamicAggregator(config=self.config ,

engine = self.engine)
15 return dynamic_aggregator.run_aggregation(models ,

reactive_aggregator = True)
16 else:
17 default_aggregator = self.config.participant["

aggregator_args"]["reactive_aggregator_default"]
18 # ...
19 # various logging
20 ALGORITHM_MAP = {
21 # ...
22 # Map various algorithms such as FedAvg , Krum , Median ,

TrimmedMean , Bulyan , BlockReputation and DynamicAggregator
23 }
24 if default_aggregator not in ALGORITHM_MAP:
25 logging.error(f"[ReactiveAggregator] Invalid default

aggregator {default_aggregator}, falling back to FedAvg")
26 default_aggregator = "FedAvg"
27 default_aggregator_cls = ALGORITHM_MAP[default_aggregator]
28 default_aggregator = default_aggregator_cls(config=self.

config)
29 return default_aggregator.run_aggregation(models)

Listing 5.26: MTD ReactiveAggregator

5.3.1 Frontend

The configuration of the aggregators is shown in figure 5.11. As proposed by [5] can only be
configured when the reputation system is enabled, as the ReactiveAggregator depends on the
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DynamicAggregator Configuration
ReactiveAggregator Configuration

Figure 5.11: Frontend Configuration of the MTD Aggregators

reputation system for information about the other participants.

5.4 Privacy Auditing Component

This section describes the implementation of the Membership Inference Attacks as described in
[7] into Nebula.

MIA Base Class

The MembershipInferenceAttack class serves as the foundation for the implemented attacks
in nebula. All MIAs inherit from it, and override some of the methods with their specific imple-
mentation. The MembershipInferenceAttack class is initialized with a model to be attacked,
a global dataset, two DataLoader objects for in-sample and out-sample evaluations, and an in-
dex mapping that enables decomposition of the in-sample dataset into subsets corresponding to
specific nodes. The function execute_attack is the placeholder designed to be overridden by
specific attack implementations. evaluate_tp_for_each_node provides the evaluation of true
positives at the node level. Using the index mapping provided during initialization, the method
iterates through each node’s subset of in-sample data and calculates the number of true positives
for that node. evaluate_metrics calculates key metrics (precision, recall, the false positive rate
(FPR), and the F1 score) for assessing the e!ectiveness of an attack. The implementation of
the MembershipInferenceAttack class is shown in listing 5.27.
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nebula/addons/attacks/mia/base MIA.py

1

2 import torch
3

4 class MembershipInferenceAttack:
5 def __init__(self , model , global_dataset , in_eval , out_eval ,

indexing_map):
6 self.model = model
7 # ...
8 # various initializations , including predictions and index mapping

etc.
9 def _compute_predictions(self , model , dataloader):

10 model.eval()
11 predictions = []
12 labels = []
13

14 with torch.no_grad ():
15 for inputs , label in dataloader:
16 # ...
17 # perform inference and append predictions and labels
18 predictions = torch.cat(predictions , dim=0)
19 labels = torch.cat(labels , dim=0)
20 return predictions , labels
21

22 def execute_attack(self):
23 raise NotImplementedError("Must override execute_attack")
24

25 def evaluate_metrics(self , true_p , false_p):
26 size = len(self.in_eval_pre [0])
27

28 total_positives = true_p + false_p
29

30 precision = true_p / total_positives if total_positives > 0 else
0

31 recall = true_p / size
32 fpr = false_p / size
33 f1 = 2 * precision * recall / (precision + recall) if (precision

+ recall) > 0 else 0
34

35 return precision , recall , f1
36

37 def evaluate_tp_for_each_node(self , in_predictions):
38 nodes_tp_dict = {}
39

40 for key , index in self.index_mapping.items():
41 node_tp = in_predictions[index].sum().item()
42 nodes_tp_dict[key] = node_tp
43

44 return nodes_tp_dict

Listing 5.27: ”Base Class MembershipInferenceAttack”
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Shadow Model Based Attack

The ShadowModelBasedAttack class extends the base MembershipInferenceAttack to imple-
ment a shadow model-based membership inference attack. This approach uses multiple shadow
models, which mimic the behavior of the target model, to generate a labeled attack dataset.
Using the predictions from these shadow models, an attack model is trained to infer whether
specific data samples belong to the target model’s training set. _generate_attack_dataset

generates the attack dataset by training multiple shadow models and collecting their predictions
and labels. The shadow models mimic the target model’s behavior and are trained on subsets
of the data. For each shadow model, the method instantiates a new model of the same class as
the target model and trains it using the corresponding data loader from shadow_train. Once
trained, the shadow model’s predictions and labels are computed for both its training and test
datasets using the _compute_predictions method inherited from the base class. Then, predic-
tions and labels for all shadow models are concatenated to form the testing and training set that
are used as the input for the attack model training. The MIA_shadow_model_attack method
executes the membership inference attack. It builds an attack dataset, trains an attack model,
and evaluates the attack’s e!ectiveness (see in_out_samples_check, which evaluates whether
each sample in a dataset is classified as a member of the training set by the attack model). The
implementation of this attack is shown in listing 5.28
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nebula/addons/attacks/mia/base MIA.py

1 class ShadowModelBasedAttack(MembershipInferenceAttack):
2 def __init__(self , model , global_dataset , in_eval , out_eval ,

indexing_map , max_epochs , shadow_train ,
3 shadow_test , num_s , attack_model_type):
4 super().__init__(model , global_dataset , in_eval , out_eval ,

indexing_map)
5 self._generate_attack_dataset ()
6 # ...
7 # various initializations , including training hyperparameters ,

the number of shadows and the dataloaders
8

9 def _generate_attack_dataset(self):
10 model_class = type(self.model)
11

12 # ...
13 # create empty datasets
14 for i in range(self.num_shadow):
15 # ...
16 # create a shadow model and trainer , fit shadow model i,

compute and store predictions in the empty datasets
17 self.shadow_train_res = (torch.cat(s_tr_pre , dim=0), torch.cat(

s_tr_label , dim=0))
18 self.shadow_test_res = (torch.cat(s_te_pre , dim=0), torch.cat(

s_te_label , dim=0))
19

20 def MIA_shadow_model_attack(self):
21 # ...
22 # init models , datasets and dataloaders for attack dataset
23 if self.attack_model_type == "Neural Network":
24 attack_model = SoftmaxMLPClassifier (10, 64)
25 else:
26 pass
27 # ...
28 # create trainer and fit model
29 def in_out_samples_check(model , dataset):
30 # ...
31 # Load predictions from dataset and create dataloader
32 # Create empty dataset for labels
33

34 with torch.no_grad ():
35 for batch in dataloader:
36 # ...
37 # perform predictions and take the max value
38 # append prediction labels to empty dataset
39 predicted_label = torch.cat(predicted_label , dim=0)
40 return predicted_label
41

42 # ...
43 # use in_out_samples_check and calculate f1, precision , recall f

rom true and false positives
44 return precision , recall , f1

Listing 5.28: ”Shadow Model Based Attack”
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Class Metric Based Attack

The ClassMetricBasedAttack is a subclass of the ShadowModelBasedAttack class and imple-
ments a specific type of membership inference attack that utilizes class-based metrics. This
approach uses a single shadow model to derive thresholds based on metrics like confidence, en-
tropy, and modified entropy. These thresholds are then applied to the target model to infer
membership. The implementation of this attack is shown in listing 5.29
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nebula/addons/attacks/mia/ClassMetricMIA.py

1 import numpy as np
2 import torch
3 from nebula.addons.attacks.mia.ShadowModelMIA import

ShadowModelBasedAttack
4 class ClassMetricBasedAttack(ShadowModelBasedAttack):
5 def __init__ (...):
6 super().__init__ (...)
7 self.num_classes = 10
8 # Compute confidences for shadow and target datasets
9 # Includes self.s_in_conf , self.s_out_conf , self.t_in_conf , self

.t_out_conf
10 # Compute entropies and modified entropies for all datasets
11 # Includes self.s_in_entr , self.s_out_entr , self.t_in_entr , self

.t_out_entr ,
12 # and their modified versions
13 self._compute_entropies ()
14 # ...
15 def _log_value(self , probs , small_value =1e-30):
16 return -np.log(np.maximum(probs , small_value))
17 def _entr_comp(self , probs):
18 # Compute prediction entropy for given probabilities
19 return np.sum(np.multiply(probs , self._log_value(probs)), axis

=1)
20 def _m_entr_comp(self , probs , true_labels):
21 # Compute modified entropy for given probabilities and true

labels
22 # Modifies log probabilities for true labels to reverse

probabilities
23 # ...
24 def _thre_setting(self , tr_values , te_values):
25 # Determine optimal threshold for membership inference using

accuracy
26 # ...
27 def _mem_inf_thre(self , s_tr_values , s_te_values , t_tr_values ,

t_te_values):
28 # Perform membership inference attack by thresholding feature

values
29 # ...
30 def mem_inf_benchmarks(self):
31 # Select method for attack based on method_name and perform

membership inference
32 # Perform membership inference attack using confidence , entropy ,

or modified entropy based on the selected method.
33 # ...
34 def _compute_confidences(self):
35 # Compute class confidence for shadow and target datasets
36 ...
37 def _compute_entropies(self):
38 # Compute entropy and modified entropy for shadow and target

datasets
39 ...

Listing 5.29: ”MIA Class Metric Based”
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Metric Based Attack

The MetricBasedAttack class extends the MembershipInferenceAttack base class and imple-
ments several metric-based membership inference attack strategies. These attacks use prop-
erties like correctness, loss, maximal confidence, entropy, and sensitivity of model predictions.
The MIA_correctness_attack-method determines membership based on prediction correct-
ness. If the predicted label matches the true label, the sample is classified as part of the
training set. The MIA_loss_attack-method infers membership based on the prediction loss.
Samples with loss below a precomputed training threshold are classified as training samples.
The MIA_maximal_confidence_attack-method evaluates membership based on maximal pre-
diction confidence. It determines thresholds that maximize the F1 score to distinguish between
training and non-training samples. The MIA_entropy_attack evaluates membership based on
prediction entropy. Thresholds are applied to minimize uncertainty and maximize the F1 score
for membership inference. The MIA_sensitivity_attack-method evaluates membership based
on prediction sensitivity. It clusters samples using the L2 norm of the Jacobian matrix (the
partial derivatives from the model’s prediction function) and infers membership based on the
clustering results. The implementation of these attacks is shown in listing B.14.
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5.4.1 Frontend

The configuration interface for the MIAs in Nebula was added as suggested in [7]. Figure 5.12
showcases the extended frontend configuration options. By default, when no attack is selected,
the configuration screen remains minimal, as shown in the first subfigure. Upon enabling the
”Shadow Model Based Attack,” additional fields become visible, allowing users to configure
parameters such as the number of shadow models, node data samples, attack model type, and
defense methods as illustrated in the second subfigure. Similarly, selecting the ”Metric Based
Attack” option reveals configuration fields for specifying node data sample size, and metric
details relevant to these methods, as shown in the third subfigure.
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Configuration without Attack

Configuration with Shadow Model Based Attack

Configuration with Metric Based Attack

Figure 5.12: Frontend Configuration of MIAs
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Chapter 6

Evaluation

For all evaluations, the participant names correspond to the IP addresses as shown in table 6.1.

Participant Name IP:Port

participant 0 192.168.50.2:45000

participant 1 192.168.50.3:45000

participant 2 192.168.50.4:45000

participant 3 192.168.50.5:45000

participant 4 192.168.50.6:45000

participant 5 192.168.50.7:45000

participant 6 192.168.50.8:45000

participant 7 192.168.50.9:45000

participant 8 192.168.50.10:45000

participant 9 192.168.50.11:45000
...

...

Table 6.1: Mapping of participant name to IP-Address

6.1 Node Selection Strategy

AllSelector

To evaluate whether the AllSelector works as expected, a scenario with 5 nodes training for
5 rounds was used. For this evaluation, the other settings (model, dataset, ...) are irrelevant.
According to [4], AllSelector should select all available neighbors as well as himself for aggrega-
tion. Figure 6.1 shows the TensorBoard logs indicating that AllSelector behaves as intended.

53
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Figure 6.1: TensorBoard Logs AllSelector

RandomSelector

To evaluate whether the RandomSelector works as expected, a scenario with 10 nodes training
for 5 rounds was used. For this evaluation, the other settings (model, dataset, ...) are irrelevant.
According to the mechanism of RandomSelector shown in section 5, it should select a random
amount of nodes indiscriminately. The only node always included should be itself. Figure 6.2
shows the TensorBoard logs indicating that RandomSelector behaves as intended. We can see
that the nodes selected in each round change randomly, and only the initial node is included in
every selection. The amount of nodes selected also varies, as intended.
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Participant 1

Participant 2

Figure 6.2: TensorBoard Logs RandomSelector

PrioritySelector

As mentioned in section 5, the PrioritySelector uses the features submitted by each node to
calculate a score. This score is then used to calculate weights. These weights then define the
probability of each node being chosen for aggregation. While this approach certainly has its
benefits, it makes checking the correctness of the implementation di”cult due to the inherent
randomness of the results. To make the evaluation more deterministic, the weighting of the
features and the algorithm was changed. The latency feature is weighted much more than the
others, as this feature can be manipulated reliably through Nebula (see subsection 5.1.4). Also,
the random weighting was replaced by selecting the nodes with the best features. Listing 6.1
shows the specific changes applied.
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The scenario used in this evaluation consists of 10 nodes training for 5 rounds. The nodes
participant 8 and participant 9 have a network delay of 150ms. The TensorBoard logs of the
nodes without latency constraints are shown in figure 6.3, the ones with latency constraints are
shown in figure 6.4. We can see that the participants 0 and 1 always choose nodes 0-7, excluding
the nodes with latency constraints. The TensorBoard logs of the nodes 8 and 9 (the nodes with
added constraints) show that they never contain each other, but do contain themselves. This
behaviour is expected, as each node always adds itself to the aggregation set.
The features of the participants (as extracted by participant 2 in round 2) can be seen in listing
B.11, it also shows the the weights and scores calculated.

nebula/core/selectors/priority selector.py

1 ...
2 # Original Feature Weights provided in Report / Thesis
3 # FEATURE_WEIGHTS = [1.0, 1.0, 1.0, 0.5, 0.5, 10.0, 3.0]
4 # Feature Weights for Testing (Latency can be changed reliably by

virtual constraints)
5 FEATURE_WEIGHTS = [0, 0, 0, 0, 0, 100, 0]
6 ...
7 # Select nodes according to thesis (weighted probability)
8 # selected_nodes = np.random.choice(
9 # neighbors , num_selected , replace = False , p = p[0]

10 # ).tolist ()
11 # Select num_selected nodes with the highest score (or the derived

probability) for easier evaluation
12 selected_nodes = [neighbors[i] for i in np.argsort(scores)[-num_selected

:]]
13 ...

Listing 6.1: Changes to PrioritySelector for Evaluations
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Participant 0

Participant 1

Figure 6.3: TensorBoard Logs PrioritySelector (Nodes without latency constraint)
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Participant 8

Participant 9

Figure 6.4: TensorBoard Logs PrioritySelector (Nodes with latency constraint)

6.2 Poisoning Attacks

In this section, the various poisoning attacks that have been implemented are evaluated and
scrutinized. This includes targeted labelflipping, both with a specific target to flip to and
without, as well as untargeted labelflipping and the fang labeflipping attack [14]. Finally, an
update manipulation attack is also evaluated.

The summaries of the models (defined by Nebula) used in this evaluation are available in the
Appendix. If not stated otherwise, n refers to the total amount of nodes (benign + malicious)
and f to the amount of malicious nodes.

Labelflipping targeted (specific)

In the targeted specific label-flipping attack, the malicious nodes swap specific label pairs (e.g.
flipping label 1 to 7). The evaluation scenarios are defined as follows:

• n = 5 nodes.
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# Global Accuracy

LTS 0 0.9542

LTS 1 0.9567

LTS 2 0.9350

LTS 3 0.8586

LTS 4 0.8588

LTS 5 0.8586

Table 6.2: Global model accuracy in a targeted label flipping attack with specific target,
depending on the number of malicious nodes.

# Setup n f AGR Rounds Changed Labels

LTS 0 DFL 5 0 FedAvg 5 0% (No Attack, Baseline)

LTS 1 DFL 5 1 FedAvg 5 100%

LTS 2 DFL 5 2 FedAvg 5 100%

LTS 3 DFL 5 3 FedAvg 5 100%

LTS 4 DFL 5 4 FedAvg 5 100%

LTS 5 DFL 5 5 FedAvg 5 100%

Table 6.3: Evaluation Scenarios Label Flipping Attack (targeted, specific)

• LTS 0: baseline without attack for comparison purposes

• LTS 1 to LTS 5: The number of malicious nodes (‘f’) gradually increases from 1 to 5, with
all malicious nodes executing the attack.

Expected results:

• No degradation in LTS 0 (all nodes are benign).

• Increasing degradation in accuracy of the targeted class as the number of malicious nodes
increases.

• At LTS 5, no node classifies the targeted class correctly at all, accuracy should be 0 for
this class (Confusion matrix shows 0 in the intersection of predicted/correct).

• The global accuracy should be not impacted in LTS 0, with the accuracy drop rising
sharply after the percentage of malicious nodes exceeds 50%. With 10 classes, accuracy
should eventually drop to 10% (random guessing) at LTS 5

Table ?? shows the achieved global accuracies depending on the number of malicious clients. As
expected, accuracy drops sharply after 3 malicious nodes, as a majority of the participants have
turned malicious.
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LTS 0 LTS 1 LTS 2

LTS 3 LTS 4 LTS 5

Figure 6.5: Confusion Matrices Label Flipping Attack (targeted, specific)

LTS 0 LTS 1 LTS 2

LTS 3 LTS 4 LTS 5

Figure 6.6: Local Accuracies Label Flipping Attack (targeted, specific)
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# Global Accuracy

LTU 0 0.9528

LTU 1 0.9532

LTU 2 0.9397

LTU 3 0.8578

LTU 4 0.8549

LTU 5 0.8554

Table 6.4: Global model accuracy in a targeted label flipping attack without a specific
target (unspecific), depending on the number of malicious nodes.

Labelflipping targeted (unspecific)

In the targeted unspecific labelflipping attack, the malicious nodes swap a specific label to a
randomly selected other label (e.g., flipping label 1 to x ↗ all classes). The evaluation scenarios
are defined as follows:

• n = 5 nodes

• LTU 0: baseline without attack for comparison purposes.

• LTU 1 to LTU 5: The number of malicious nodes (‘f’) gradually increases from 1 to 5,
with all malicious nodes executing the attack.

Expected results:

• No degradation in LTU 0 (all nodes are benign).

• Increasing degradation in accuracy of the specific class as the number of malicious nodes
increases.

• At LTU 5 no node classifies the targeted class correctly at all, so accuracy of this class
should be 0 (Confusion matrix shows 0 in the intersection of predicted/correct).

• The global accuracy should be not impacted in LTU 0, with the accuracy drop rising
sharply after k exceeds 50%. With 10 classes, accuracy should eventually drop by 10%
(random guessing of 1 of 10 classes) at LTU 5

Table ?? shows global model accuracy as the number of malicious nodes increases. As expected,
the accuracy decreases steadily, with a sharp drop as the malicious nodes enter into majority.

Labelflipping, untargeted

In the untargeted labelflipping attack, the malicious nodes swap the labels of a certain percentage
(k) of the training data to a random label. The evaluation scenarios are defined as follows:
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# Setup n f AGR Rounds Changed Labels

LTU 0 DFL 5 0 FedAvg 5 0% (No Attack, Baseline)

LTU 1 DFL 5 1 FedAvg 5 100%

LTU 2 DFL 5 2 FedAvg 5 100%

LTU 3 DFL 5 3 FedAvg 5 100%

LTU 4 DFL 5 4 FedAvg 5 100%

LTU 5 DFL 5 5 FedAvg 5 100%

Table 6.5: Evaluation Scenarios Label Flipping Attack (targeted, unspecific)

LTU 0 LTU 1 LTU 2

LTU 3 LTU 4 LTU 5

Figure 6.7: Confusion Matrices Label Flipping Attack (targeted, unspecific)
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LTU 0 LTU 1 LTU 2

LTU 3 LTU 4 LTU 5

Figure 6.8: Local Accuracies Label Flipping Attack (targeted, unspecific)

• LU 0: baseline without attack for comparison purposes

• LU 1 to LU 5: The number of malicious nodes (‘f’) gradually increases from 1 to 5, with
all malicious nodes executing the attack. (k = 20)

• LU 6 to LU 9: The number of malicious nodes (‘f’) gradually increases from 1 (LU 6) to
5 (LU 9), with all malicious nodes executing the attack. (k = 80)

Expected results:

• No degradation in LU 0 (all nodes are benign)

• Increasing degradation in accuracy of the specific class as the number of malicious nodes
increases.

• The global accuracy should not be impacted in LU 0 and gradually decrease towards 10%
(random guess, given 10 classes) as the number of malicious nodes and k increase. The
decrease should be sharper with a higher k.

6.6 shows the global model accuracy both for k = 20 (LU 0 to LU 5) and k = 80 (LU 6 to
LU 11). As expected, the global model accuracy declines in both cases, while k = 20 drops
significantly less than k = 80. In both cases, the drop is most significant when the malicious
nodes enter majority.

FANG Label Flipping Attack

In the FANG [14] label flipping attack, the malicious nodes swap the labels to a di!erent one
with the following logic for classes 1-9:
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Table 6.6: Global model accuracy in a targeted labelflipping attack without a specific
target (unspecific), depending on the number of malicious nodes.

# Global Accuracy
LU 0 0.9539
LU 1 0.9537
LU 2 0.9508
LU 3 0.9424
LU 4 0.9369
LU 5 0.9336
LU 6 0.9686
LU 7 0.9512
LU 8 0.9203
LU 9 0.7999
LU 10 0.6918
LU 11 0.5365

# Setup n f AGR Rounds Changed Labels

LU 0 DFL 5 0 FedAvg 5 0% (No Attack, Baseline)

LU 1 DFL 5 1 FedAvg 5 20%

LU 2 DFL 5 2 FedAvg 5 20%

LU 3 DFL 5 3 FedAvg 5 20%

LU 4 DFL 5 4 FedAvg 5 20%

LU 5 DFL 5 5 FedAvg 5 20%

LU 6 DFL 5 0 FedAvg 5 0% (No Attack, Baseline)

LU 7 DFL 5 1 FedAvg 5 80%

LU 8 DFL 5 2 FedAvg 5 80%

LU 9 DFL 5 3 FedAvg 5 80%

LU 10 DFL 5 4 FedAvg 5 80%

LU 11 DFL 5 5 FedAvg 5 80%

Table 6.7: Evaluation Scenarios Label Flipping Attack (untargeted)
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LU 0 LU 1 LU 2

LU 3 LU 4 LU 5

Figure 6.9: Confusion Matrices Label Flipping Attack (untargeted, scenario 0-5)
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LU 6 LU 7 LU 8

LU 9 LU 10 LU 11

Figure 6.10: Confusion Matrices Label Flipping Attack (untargeted, scenario 5-11)

LU 0 LU 1 LU 2

LU 3 LU 4 LU 5

Figure 6.11: Local Accuracies Label Flipping Attack (untargeted, scenario 0-5)
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LU 6 LU 7 LU 8

LU 9 LU 10 LU 11

Figure 6.12: Local Accuracies Label Flipping Attack (untargeted, scenario 5-11)

• 1 -> 9

• 2 -> 7

• ...

The evaluation scenarios are defined as follows:

• LF 0: baseline without attack for comparison purposes

• LF 1 to LF 5: The number of malicious nodes (‘f’) gradually increases from 1 to 5, with
all malicious nodes executing the attack.

Expected result:

• The accuracy drop should be substantial initially and increase sharply after majority is
reached.

• The confusion matrix will get inverted.

As table 6.8 shows, the accuracy sharply drops once majority is reached, while the confusion
matrix begins showing signs of disturbance with two malicious nodes already. By the time
majority is reached, the inversion of the confusion matrix is clearly visible. These results match
expectations.
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Table 6.8: Global model accuracy in a FANG [14] labelflipping attack, depending on the
number of malicious nodes.

# Global Accuracy Confusion Matrix Status
LF 0 0.9516 OK
LF 1 0.9358 OK
LF 2 0.7406 partly disturbed
LF 3 0.1648 disturbed
LF 4 0.0063235 inverted
LF 5 0.004025 inverted

# Setup n f AGR Rounds

LF 0 DFL 5 0 FedAvg 5

LF 1 DFL 5 1 FedAvg 5

LF 2 DFL 5 2 FedAvg 5

LF 3 DFL 5 3 FedAvg 5

LF 4 DFL 5 4 FedAvg 5

LF 5 DFL 5 5 FedAvg 5

Table 6.9: Evaluation Scenarios Label Flipping Attack (by [14])

LF 0 LF 1 LF 2

LF 3 LF 4 LF 5

Figure 6.13: Confusion Matrices Label Flipping Attack (by [14])
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LF 0 LF 1 LF 2

LF 3 LF 4 LF 5

Figure 6.14: Local Accuracies Label Flipping Attack (by [14])

Update Manipulation

To evaluate the calculation of z, we use the example from section 3.3 in [11]. For the given
scenario with 26 benign nodes and 24 malicious nodes (50 nodes in total) [11] calculates z as
1.75. Entering the same scenario in Nebula (50 nodes with 37.9% malicious) gives the correct
value.

6.3 Moving Target Defense

Dynamic Aggregator (Proactive)

As mentioned in section 5.3, every round DynamicAggregator randomly selects one of the avail-
able Aggregators for use. However, all seeds are set to a fixed value in Nebula. For the
DynamicAggregator to work as intended, the seed needs to be reset to a random value dif-
ferent in each node (otherwise they will all select the same nodes. To do this, the code snippet
shown on the lines 4 and 5 of listing 6.2 was inserted into run_aggregation before the call
to random.choice. The scenario used to evaluate the correctness of the implementation has 3
nodes training 4 rounds. Figure 6.15 shows the TensorBoard logs of the scenario, where each
node logs the Aggregator selected. Note that without the change to the code (listing 6.2) all
nodes would choose the same aggregator each round due to the fixed seed.

nebula/core/aggregation/dynamicAggregator.py

1 ...
2 available_aggregators = [FedAvg , Krum , Median , TrimmedMean , Bulyan]
3

4 import time
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Participant 0 Participant 1 Participant 2

Figure 6.15: TensorBoard Logs of DynamicAggregator Scenario

5 random.seed(int(str(time.time_ns ())[-8:]))
6

7 chosen_aggregator_cls = random.choice(available_aggregators)
8 ...

Listing 6.2: Labelflipping Attack: targeted; unspecific

Dynamic Aggregator (Reactive)

As ReactiveAggregator creates an instance of DynamicAggregator (if a malicious node is
detected), the remarks in the section above regarding the random seed also apply.

The scenario used to evaluate the correctness of the implementation has 5 nodes training 5
rounds, with one malicious node (participant 3). Figure 6.16 shows the TensorBoard logs of the
scenario of participant 0 and 3. As we can see, the participant 0 correctly identifies participant 3
as a malicious node. We also see that participant 3 identifies all other participants as malicious,
which is intended behaviour (see section 5.3 for details). The logs of the scenario (see listing
B.12 for participant 0 and B.13 for participant 3), also show that the DynamicAggregator is
instantiated correctly and changes the Aggregator as intended.

6.4 Privacy Auditing Component

To evaluate the correct implementation of the membership inference attacks, we designed a sce-
nario that allows the membership inference attack to work successfully. As mentioned in [20],
membership inference attacks benefit from scenarios where overfitting occurs. Overfitting may
happen when a machine learning model memorizes the training data instead of learning gener-
alizable patterns. This typically occurs when the model is excessively complex for the amount
of training data or, in our case, only little training data is available. In our scenario, we inten-
tionally induced overfitting by running a scenario with 15 nodes. In the default configuration of
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Participant 0 Participant 3

Figure 6.16: TensorBoard Logs of ReactiveAggregator Scenario

Table 6.10: Comparison of F1 scores, recall and precision for a well-configured scenario
and a scenario in which overfitting is occuring.

Setup F1 Score Recall Precision
3 Nodes Reference, MNIST, 1 epoch, 10 rounds 0.21 0.86 0.12
15 Nodes Overfitting, MNIST, 50 epochs, 5 rounds 0.73 0.93 0.60

Nebula, the training data is split between the nodes. Therefore, it would be possible to decrease
the available training data even more through setting up a scenario with more nodes, however,
evaluation of such a scenario was not feasible due to lack of computational resources. [20]

This setup is aligned to the findings in [20], where the likelihood of successful attacks increases in
overfitted models. To measure the e!ectiveness of the attack, we used the collected metrics of the
attack: F1-Score, Precision and Recall. These metrics are available in the TensorBoard-frontend.

Shadow Model Based Attacks

Reference scenario:

Metric Based Attacks

As table 6.10 shows, the F1 score and precision increase dramatically in case of overfitting. The
reference scenario shows poor generalization (low F1 score and precision), making it easier to
exploit classification errors. Meanwhile, the overfitting scenario demonstrates improved precision
and recall but introduces overfitting risks, which attackers can exploit by introducing adversarial
inputs that resemble the training data.
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6.5 Usability

In this section, the usability of the Nebula front end will be evaluated. For that, a person
with average computer knowledge and no experience with the Nebula platform must perform a
specific task: run a particular scenario on Nebula’s ”scenario deployment” page. Before the task,
as a small tutorial to the Nebula platform, the person is asked to read the section 2. After the
task, the person has to answer specific questions about the user experience and the di”culty
encountered. The user has been given a Nebula running environment with all of this project’s
new implementations as a prerequisite.

Scenario Task

The exact scenario task is: Run a DFL scenario, five rounds, with five nodes in a fully con-
nected topology, use the MLP model, the MNIST IID distributed dataset, run an untargeted
label flipping attack on 40% of the nodes, change all labels, and use the TrimmedMean as the
aggregation rule. After running the scenario, find a way to check if this attack has any impact on
performance. As a given information, the local accuracy of the nodes of such a scenario without
the attack lies between 0.94 and 0.96.

Questions to User Experience

This section summarizes the persons’ answers to each question. The detailed transcribed answers
are in Appendix C.

How easy was it to understand and find the specific parameters for the given scenario on the
”scenario deployment” page?

For the first-time user, finding the specific settings to set up the scenario task took a bit of e!ort.
Some specific settings, like the aggregation rule ”TrimmedMean”, were confusing for the user, as
there was no information on what this setting is about, but as it was given, he just chose it. And
it was also confusing for the user that some setting can be chosen in two di!erent places, for
example, the topology and number of nodes can be defined in the ”Network Topology” setting
but also by clicking ”scenario generation”.

Did you find the background information (provided in Section 2) clear and easy to follow? Were
there any parts that felt ambiguous or confusing?

The background section was good to give the user an overview of the topic in general, however,
some terms like ”IID distributed dataset”given in the task description were not clearly explained
in the background section. This confused the user a bit as he did not understand the meaning
of it and went to look it up di!erently.

Did you face any challenges during setting up and executing the scenario? If yes, what kind of
challenges?

One of the challenges that the user faced is as mentioned before in question one, that it was
not always clear where to set up the specific settings, as it is possible in more than one place.
Another challenge the user faced was that after running the scenario, one could not look up the
settings again, so it was di”cult to know if the right settings were applied. As a last challenge,
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the user mentioned, that by waiting for the scenario to end it is not clear how long it will take,
there is no specific information about the running scenario.

How confident were you that the configuration is correct after running the task?

The user was only about 70% sure that the right settings were applied as there is no confirmation
step after running the scenario that shows all the important settings in a summary.

How straightforward was it to analyze the impact of the label-flipping attack on the model’s
performance? Was it straightforward where to find the performance metrics?

Finding the model’s performance was easy for the user. But by first clicking on the model’s
performances during the scenario, it was confusing that, at the beginning, there was no data.
It would have been helpful for the user to have some information about the scenario’s status.
Understanding the attack’s impact on the model’s accuracy took more e!ort for the user, as it
was di”cult to determine which metric to take. There was more than one metric for the model.
Also, the final result of reading the exact accuracy of the graph was not easy, as it was not fully
readable.

How would you rate the overall user experience of the Nebula platform on a scale of 1 to 5 (1
being very poor and 5 being excellent)?

The user would rate the user experience of the Nebula Platform as a 3.5. It has potential and
a lot of options, but it is not very straightforward for a beginner to use as, at some points, it
lacks proper communication with the user.

Based on your first interaction, do you have any suggestions for improving the Nebula platform
to make tasks like this easier for new users?

The user mentioned multiple suggestions to improve the platform’s usability. One suggestion
is to add tooltips or short explanations for all parameters on the development page to make
things more straightforward. Another is adding a confirmation or summary step after clicking
the button to run the scenario. Moreover, the user mentioned that adding a real-time progress
indicator during the run would make it easier to follow the scenario run.

Usability Conclusion

The Nebula platform has strong potential as a tool for decentralized federated learning. However,
evaluating its usability for first-time users revealed some challenges. The current front-end
settings to set up a scenario lack user guidance in several areas. Overlapping configuration
options, the absence of a confirmation step after running the scenario and the lack of a real-time
progress indicator during the scenario run a!ect the user experience. Moreover, interpreting the
label-flipping attacks’ performance and understanding the impact requires extra e!ort and is
not straightforward.

For improvement, the parameter descriptions on the scenario development page can be expanded
and completed, a confirmation summarizing screen can be implemented after running the sce-
nario, and a real-time progressing bar during scenario execution can be added.

These challenges and improvements show what areas the Nebula platform can develop to improve
user usability for beginners and advanced users. While the platform’s backend is the main focus
of improvements and developments, this user feedback shows that a user-centric design as a
future work should also be considered to complete the platform.
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Chapter 7

Summary and Conclusions

Federated Learning (FL) has emerged as a promising paradigm for collaborative machine learn-
ing, where multiple devices or nodes train a global model while keeping their data decentralized.
This approach addresses critical challenges such as data privacy, regulatory compliance, and
bandwidth constraints. However, FL is not without its unique challenges, including issues of
communication e”ciency, model heterogeneity, and vulnerability to adversarial attacks.

7.1 Summary

In this thesis, various parts of the Nebula framework[3] have been extended upon. This is divided
into parts of 4 di!erent authors.

For the first task, a number of node selection strategies from [4] have been implemented. Here,
various selectors such as selecting all available neighbors (AllSelector), a random subset of
neighbors always including itself (RandomSelector), a selector that chooses based on various
telemetry data such as CPU usage, data size, bytes I/O, packet loss, latency and node age
(PrioritySelector) have been implemented. This includes the evaluation and confirmation of
correctness of said selectors.

In the second task, various poisoning attacks from [5] were introduced to Nebula. These poi-
soning attacks are broadly categorized into two kinds, data manipulation attacks and update
manipulation attacks. In the data manipulation category are attacks such as labelflipping (both
untargeted and targeted - with a specific target and without (unspecific)), as well as the FANG
[14] labelflipping attack. In the update manipulation category falls the LIE [11] attack, which
applies minimal updates instead of big changes. This is particularly useful in large-scale sys-
tems, where promille of accuracy often make a commercial di!erence. Some more aggregation
rules were also implemented, such as Bulyan (a method that combines a byzantine-resilient
aggregation rule with TrimmedMean.

Next in the third task, a moving target defense given by [6] was implemented. This includes a
dynamic aggregator, which dynamically changes the aggregation rule each round. Another ag-
gregator that has been implemented is the reactive aggregator, which dynamically and reactively
changes the aggregation rule if malicious model updates have been detected.

75
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Finally, in the fourth and final task, a privacy auditing component from [7] is introduced to
Nebula. To analyze a scenario in which the Shadow Model Based and Metric Based Attacks
work best, overfitting has been induced by increasing the number of nodes by a factor of 5, thus
leading to less training data for each node.

7.1.1 Key Insights

• Using a di!erent selection strategy is a valid choice and may be useful in increasing the
system’s e”ciency by selecting nodes that have good performance metrics, such as com-
putational power, latency, availability, etc.

• Most data manipulation attack gradually impact the model’s performance, up until the
amount of malicious nodes exceeds majority, in which case the global model accuracy
drops significantly. However, despite not having a larger impact on global accuracy overall,
targeting single classes is more e!ective with less malicious nodes. Other patterns such
as the inverted confusion matrix in the FANG attack also appear once the majority is
malicious.

• Minimal resource setups may lead to less-than-ideal precision, as seen in the Reference
Scenario.

• Overfitting in high-resource setups improves precision and recall but increases vulnerability
to targeted adversarial attacks and especially Membership Inference Attacks.

Vulnerability to Attacks

• Targeted and Untargeted Labelflipping Attacks: Models are mostly robust against both
attacks until malicious nodes reach majority share. In this case, the global accuracy drops
sharply and bottoms out at random choice once all nodes are malicious. When targeting
just a single class, the accuracy on this class is reduced noticeably even before reaching
majority.

• FANG Labelflipping Attack: The global model again exhibits the same behaviour, slightly
decreasing in accuracy until the majority is malicious. Then, the confusion matrix also
begins inverting.

• Metric-Based Attacks: These exploit inconsistencies in the model’s precision and recall.
For example, a high recall but low precision model is more prone to adversarial perturba-
tions, where false positives can be easily induced.

• Shadow Model-Based Attacks: Shadow models mimic the behavior of the target model
to infer sensitive information or to develop attack strategies. Such attacks are especially
e!ective in overfitted models that rely too heavily on specific patterns from the training
data.

• Overfitting and Generalization: Overfitting, while improving certain metrics, poses a
significant threat to model robustness in FL. Generalization remains a key challenge in
ensuring that FL models perform well across diverse and unseen data distributions.
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Practical Challenges

• Communication overhead due to frequent updates between nodes.

• Node heterogeneity, where di!erences in computation power or data distribution among
nodes can hinder convergence.

• Ensuring model robustness against adversarial samples and attacks.

7.2 Conclusion

Federated Learning represents a transformative approach to distributed machine learning, en-
abling collaborative intelligence while safeguarding data privacy. However, this paradigm also
brings to light critical challenges that must be addressed to unlock its full potential.

With Federated Learning, many of the benefits of all the available edge devices available may
be reaped, enabling collaborative intelligence while safeguarding data privacy. Yet this new
paradigm does not come without its own set of challenges.

7.2.1 Key Takeaways

• E!ective deployment of FL systems requires careful tuning of model configurations to
achieve a balance between performance metrics like precision, recall, and F1 score.

• Robustness against adversarial and metric-based attacks should be a cornerstone of FL
model development. Strategies like adversarial training, di!erential privacy, and regular-
ization techniques are essential.

• Addressing practical challenges such as communication e”ciency, node heterogeneity, and
data imbalance will enhance the scalability and e!ectiveness of FL.

7.2.2 Future Directions

• Improved Defense Mechanisms: Develop adaptive strategies to counter metric-based and
shadow model-based attacks.

• Add additional, more complex attacks

• Fairness and Generalization: Ensuring FL models are equitable and robust across diverse
node environments and data distributions.

In summary, while Federated Learning holds significant promise, addressing its inherent chal-
lenges will determine its success in real-world applications. Through continued research and
development, FL has the potential to redefine the boundaries of privacy-preserving collabora-
tive intelligence. This thesis extends the Nebula platform, a cornerstone of DFL research by
introducing various selection mechanisms, data and update manipulation attacks as well as ag-
gregators, metric and shadow model based attacks. These components have been evaluated for
correctness and are all valid.
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Appendix A

Model Summaries

Table A.1: Model Summary (MNIST, MLP)

MNIST: MLP
Name Type Output Shape Params

0 metric MulticlassAccuracy [1, 10]
1 l1 Linear [1, 256] 200’960
2 l2 Linear [1, 128] 32’896
3 l3 Linear [1, 10] 1’290

235146 (235146) Total (Trainable) params
0.95 MB Model params size (estimate)
Optimizer: Adam
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Appendix B

Additional Resources

nebula/core/selectors/selector.py

1 class Selector ():
2 def __init__(self , config = None):
3 self.config = config
4 self.neighbors_list = []
5 self.selected_nodes = []
6 self.features = {}
7 self.ages = {}
8

9 def add_node_features(self , node , features):
10 self.features[node] = features
11 self.features[node]["availability"] = 1
12 # ... (logging omitted for brevity)
13

14 def get_neighbors(self):
15 return self.neighbors_list
16

17 def add_neighbor(self , neighbor):
18 logging.info("[Selector] Adding Neighbor: {}".format(neighbor))
19 if neighbor not in self.neighbors_list:
20 self.neighbors_list.append(neighbor)
21

22 def reset_neighbors(self):
23 self.neighbors_list = []
24

25 def node_selection(self , node):
26 """To be overridden by the subclasses (selectors)"""
27 pass
28

29 def clear_selector_features(self):
30 self.features = {}
31

32 def init_age(self):
33 for i in self.neighbors_list:
34 self.ages[i] = 1

Listing B.1: NSS Selector (Superclass)
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nebula/core/selectors/all selector.py

1 class AllSelector(Selector):
2 def __init__(self , config = None):
3 super().__init__(config)
4 self.config = config
5 logging.info("[AllSelector] Initialized")
6

7 def node_selection(self , node):
8 neighbors = self.neighbors_list.copy()
9 logging.info(f"[AllSelector] available neighbors: {neighbors}")

10 if len(neighbors) == 0:
11 logging.error(
12 "[AllSelector] Trying to select neighbors when there are

no neighbors - aggregating itself only"
13 )
14 self.selected_nodes = [node.addr]
15 else:
16 self.selected_nodes = neighbors + [node.addr]
17 logging.info(f"[AllSelector] selection finished -

selected_nodes: {self.selected_nodes}")
18 return self.selected_nodes

Listing B.2: NSS AllSelector

1 class RandomSelector(Selector):
2 def __init__(self , node_name="unknown", config=None):
3 super().__init__(node_name , config)
4 self.config = config
5 self.role = self.config.participant["device_args"]["role"]
6

7 def node_selection(self , node):
8 neighbors = self.neighbors_list.copy()
9 if len(neighbors) == 0:

10 return None
11 num_selected = max(1, int(len(neighbors) * 0.8 // 1))
12 selected_nodes = np.random.choice(
13 neighbors , num_selected , replace=False
14 ).tolist ()
15 selected_nodes.append(self.node_name)
16 return selected_nodes

Listing B.3: NSS RandomSelector Implementation from [5]

nebula/core/selectors/random selector.py

1 class RandomSelector(Selector):
2 MIN_AMOUNT_OF_SELECTED_NEIGHBORS = 1
3 MAX_PERCENT_SELECTABLE_NEIGHBORS = 0.7
4

5 def __init__(self , config = None):
6 super().__init__(config)
7 self.config = config
8 logging.info("[RandomSelector] Initialized")
9

10 def node_selection(self , node):
11 neighbors = self.neighbors_list.copy()
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12 if len(neighbors) == 0:
13 logging.error(
14 "[RandomSelector] Trying to select neighbors when there

are no neighbors - aggregating itself only"
15 )
16 self.selected_nodes = [node.addr]
17 return self.selected_nodes
18 logging.info(f"[RandomSelector] available neighbors: {neighbors}

")
19 max_selectable = math.floor(len(neighbors) * self.

MAX_PERCENT_SELECTABLE_NEIGHBORS)
20 num_selected = np.random.randint(
21 self.MIN_AMOUNT_OF_SELECTED_NEIGHBORS ,
22 max(max_selectable , self.MIN_AMOUNT_OF_SELECTED_NEIGHBORS) +

1
23 )
24

25 selected_nodes = np.random.choice(neighbors , num_selected ,
replace = False).tolist ()

26 self.selected_nodes = selected_nodes + [node.addr]
27 logging.info(f"[RandomSelector] selection finished ,

selected_nodes: {self.selected_nodes}")
28 return self.selected_nodes

Listing B.4: NSS RandomSelector

nebula/core/selectors/priority selector.py

1 class PrioritySelector(Selector):
2 MIN_AMOUNT_OF_SELECTED_NEIGHBORS = 1
3 MAX_PERCENT_SELECTABLE_NEIGHBORS = 0.8
4 # Original Feature Weights provided in Report / Thesis
5 FEATURE_WEIGHTS = [1.0, 1.0, 1.0, 0.5, 0.5, 10.0, 3.0]
6 # Feature Weights for Testing (Latency can be changed reliably by

virtual constraints)
7 #FEATURE_WEIGHTS = [0, 0, 0, 0, 0, 100, 0]
8

9 def __init__(self , config = None):
10 super().__init__(config)
11 self.config = config
12 FeatureWeights = namedtuple(
13 ’FeatureWeights ’,
14 [’loss’, ’cpu_percent ’, ’data_size ’, ’bytes_received ’, ’

bytes_sent ’, ’latency ’, ’age’]
15 )
16 self.feature_weights = FeatureWeights (*self.FEATURE_WEIGHTS)
17 logging.info("[PrioritySelector] Initialized")
18

19 def node_selection(self , node):
20 neighbors = self.neighbors_list.copy()
21

22 if len(neighbors) == 0:
23 logging.error(
24 "[PrioritySelector] Trying to select neighbors when

there are no neighbors - aggregating itself only"
25 )
26 self.selected_nodes = [node.addr]
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27 return self.selected_nodes
28

29 num_selected = max(
30 self.MIN_AMOUNT_OF_SELECTED_NEIGHBORS ,
31 math.floor(len(neighbors) * self.

MAX_PERCENT_SELECTABLE_NEIGHBORS)
32 )
33

34 availability = []
35 feature_array = np.empty((7, 0))
36

37 for neighbor in neighbors:
38 if neighbor not in self.ages.keys():
39 self.ages[neighbor] = 1
40

41 # Invert CPU Percent/Latency , 0.000001 is added to avoid
division by zero

42 feature_list = list((self.features[neighbor ]["loss"],
43 1/( self.features[neighbor ]["cpu_percent

"] + 0.000001) ,
44 self.features[neighbor ]["data_size"],
45 self.features[neighbor ]["bytes_received

"],
46 self.features[neighbor ]["bytes_sent"],
47 1/( self.features[neighbor ]["latency"] +

0.000001) ,
48 self.ages[neighbor ]))
49

50 # Set loss to 100 if loss metric is unavailable
51 if feature_list [0] == -1:
52 feature_list [0] = 100
53

54 logging.info(f"[PrioritySelector] Features for node {
neighbor }: {feature_list}")

55

56 availability.append(self.features[neighbor ]["availability"])
57

58 feature = np.array(feature_list).reshape(-1, 1).astype(np.
float64)

59 feature_array = np.append(feature_array , feature , axis = 1)
60

61 # Normalized features
62 feature_array_normed = normalize(feature_array , axis = 1, norm =

’l1’)
63

64 # Add weight to features
65 weight = np.array(self.FEATURE_WEIGHTS).reshape(-1, 1)
66 feature_array_weighted = np.multiply(feature_array_normed ,

weight)
67

68 # Before availability
69 scores = np.sum(feature_array_weighted , axis = 0)
70

71 print_msg_box(msg=f"Scores: {dict(zip(neighbors , scores))}",
title="Final NSS Scores")

72
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73 # Add availability
74 final_scores = np.multiply(scores , np.array(availability))
75

76 # Probability selection
77 p = normalize ([ final_scores], axis = 1, norm = ’l1’)
78

79 logging.info(f"[PrioritySelector] scores: {scores}")
80

81 # Select nodes according to thesis (weighted probability)
82 selected_nodes = np.random.choice(
83 neighbors , num_selected , replace = False , p = p[0]
84 ).tolist ()
85

86 # Select num_selected nodes with the highest score (or the
derived probability) for easier evaluation

87 #selected_nodes = [neighbors[i] for i in np.argsort(scores)[-
num_selected :]]

88

89 # Update ages
90 for neighbor in neighbors:
91 if neighbor not in selected_nodes:
92 self.ages[neighbor] = self.ages[neighbor] + 2
93

94 # Add own node
95 self.selected_nodes = selected_nodes + [node.addr]
96

97 logging.info(f"[PrioritySelector] selection finished ,
selected_nodes: {self.selected_nodes}")

98

99 return self.selected_nodes

Listing B.5: NSS PrioritySelector

nebula/scenarios.py

1 participant_template = textwrap.dedent(
2 """
3 participant {}:
4 image: nebula -core
5 restart: no
6 volumes:
7 - {}:/ nebula
8 - /var/run/docker.sock:/var/run/docker.sock
9 extra_hosts:

10 - "host.docker.internal:host -gateway"
11 ipc: host
12 privileged: true
13 deploy:
14 resources:
15 limits:
16 cpus: ’{}’
17 command:
18 - /bin/bash
19 - -c
20 - |
21 ifconfig && echo ’{} host.docker.internal ’ >> /

etc/hosts {} && python3 .11 /nebula/nebula/node.py {}
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22 networks:
23 nebula -net -scenario:
24 ipv4_address: {}
25 nebula -net -base:
26 {}
27 """
28 )
29 participant_template = textwrap.indent(participant_template , " "

* 4)
30 network_template = textwrap.dedent(
31 """
32 networks:
33 nebula -net -scenario:
34 name: nebula -net -scenario
35 driver: bridge
36 ipam:
37 config:
38 - subnet: {}
39 gateway: {}
40 nebula -net -base:
41 name: nebula -net -base
42 external: true
43 {}
44 {}
45 {}
46 """
47 )
48 ...
49 # Generate the Docker Compose file dynamically
50 services = ""
51 self.config.participants.sort(key=lambda x: x["device_args"]["

idx"])
52 for node in self.config.participants:
53 idx = node["device_args"]["idx"]
54 path = f"/nebula/app/config /{self.scenario_name }/

participant_{idx}.json"
55

56 tcset_cmd = ""
57 if node["resource_args"]["resource_constraint_latency"] !=

0:
58 tcset_cmd = f"&& tcset eth1 --delay {node[’resource_args

’][’ resource_constraint_latency ’]} && sleep 2"
59 if node["resource_args"]["resource_constraint_cpu"] == 0:
60 # If 0, the node shall have no CPU constraints
61 resource_constraint_cpu = os.cpu_count ()
62 logging.info("Node has no Resource Constraint on CPU")
63 else:
64 resource_constraint_cpu = node["resource_args"]["

resource_constraint_cpu"]
65 logging.info(f"Node has the following Resource

Constraint on CPU :{ resource_constraint_cpu}")
66

67 logging.info("Starting node {} with configuration {}".format
(idx , path))

68 logging.info("Node {} is listening on ip {}".format(idx ,
node["network_args"]["ip"]))
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69 # Add one service for each participant
70 if node["device_args"]["accelerator"] == "gpu":
71 ...
72 else:
73 logging.info("Node {} is using CPU".format(idx))
74 services += participant_template.format(
75 idx ,
76 self.root_path ,
77 resource_constraint_cpu ,
78 self.scenario.network_gateway ,
79 tcset_cmd ,
80 path ,
81 node["network_args"]["ip"],
82 "proxy:" if self.scenario.simulation and self.

use_blockchain else "",
83 )
84 docker_compose_file = docker_compose_template.format(services)
85 docker_compose_file += network_template.format(
86 self.scenario.network_subnet , self.scenario.network_gateway ,

"proxy:" if self.scenario.simulation and self.use_blockchain else ""
, "name: chainnet" if self.scenario.simulation and self.
use_blockchain else "", "external: true" if self.scenario.simulation
and self.use_blockchain else ""

87 )
88 # Write the Docker Compose file in config directory
89 with open(f"{self.config_dir }/docker -compose.yml", "w") as f:
90 f.write(docker_compose_file)

Listing B.6: Resource Constraints in Dockerfile

1 services:
2 participant0:
3 image: nebula -core
4 restart: no
5 volumes:
6 - /Users/user/Software/nebula :/ nebula
7 - /var/run/docker.sock:/var/run/docker.sock
8 extra_hosts:
9 - "host.docker.internal:host -gateway"

10 ipc: host
11 privileged: true
12 deploy:
13 resources:
14 limits:
15 cpus: ’0.3’
16 command:
17 - /bin/bash
18 - -c
19 - |
20 ifconfig && echo ’192.168.50.1 host.docker.internal ’ >>

/etc/hosts && tcset eth1 --delay 50 && sleep 2 && python3 .11 /nebula/
nebula/node.py /nebula/app/config/nebula_DFL_02_11_2024_18_01_21/
participant_9.json

21 networks:
22 nebula -net -scenario:
23 ipv4_address: 192.168.50.2
24 nebula -net -base:
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25

26 participant1:
27 image: nebula -core
28 restart: no
29 volumes:
30 - /Users/user/Software/nebula :/ nebula
31 - /var/run/docker.sock:/var/run/docker.sock
32 extra_hosts:
33 - "host.docker.internal:host -gateway"
34 ipc: host
35 privileged: true
36 deploy:
37 resources:
38 limits:
39 cpus: ’10’
40 command:
41 - /bin/bash
42 - -c
43 - |
44 ifconfig && echo ’192.168.50.1 host.docker.internal ’ >>

/etc/hosts && python3 .11 /nebula/nebula/node.py /nebula/app/config/
nebula_demo_scenario_dir/participant_1.json

45 networks:
46 nebula -net -scenario:
47 ipv4_address: 192.168.50.3
48 nebula -net -base:
49

50 networks:
51 nebula -net -scenario:
52 name: nebula -net -scenario
53 driver: bridge
54 ipam:
55 config:
56 - subnet: 192.168.50.0/24
57 gateway: 192.168.50.1
58 nebula -net -base:
59 name: nebula -net -base
60 external: true

Listing B.7: Dockerfile with CPU / Network constraints (example)

nebula/core/datasets/datamodule.py

1 class DataModule(LightningDataModule):
2 def __init__(
3 self ,
4 train_set ,
5 train_set_indices ,
6 test_set ,
7 test_set_indices ,
8 local_test_set_indices ,
9 partition_id =0,

10 partitions_number =1,
11 batch_size =32,
12 num_workers =0,
13 val_percent =0.1,
14 label_flipping=False ,



99

15 label_flipping_config=None ,
16 data_poisoning=False ,
17 poisoned_persent =0,
18 poisoned_ratio =0,
19 targeted=False ,
20 target_label =0,
21 target_changed_label =0,
22 noise_type="salt",
23 ):
24 ...
25

26 # Training / validation set
27 tr_subset = ChangeableSubset(
28 train_set ,
29 train_set_indices ,
30 label_flipping=self.label_flipping ,
31 label_flipping_config = self.label_flipping_config ,
32 data_poisoning=self.data_poisoning ,
33 poisoned_persent=self.poisoned_percent ,
34 poisoned_ratio=self.poisoned_ratio ,
35 targeted=self.targeted ,
36 target_label=self.target_label ,
37 target_changed_label=self.target_changed_label ,
38 noise_type=self.noise_type ,
39 )
40

41 train_size = round(len(tr_subset) * (1 - self.val_percent))
42 val_size = len(tr_subset) - train_size
43

44 data_train , data_val = random_split(
45 tr_subset ,
46 [
47 train_size ,
48 val_size ,
49 ],
50 )
51

52 # Test set
53 global_te_subset = ChangeableSubset(test_set , test_set_indices)
54

55 # Local test set
56 local_te_subset = ChangeableSubset(test_set ,

local_test_set_indices)

Listing B.8: DataModule

nebula/core/datasets/changeablesubset.py

1 class ChangeableSubset(Subset):
2 def __init__(self ,
3 dataset ,
4 indices ,
5 label_flipping=False ,
6 label_flipping_config=None ,
7 data_poisoning=False ,
8 poisoned_persent =0,
9 poisoned_ratio =0,
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10 targeted=False ,
11 target_label =0,
12 target_changed_label =0,
13 noise_type="salt"):
14 super().__init__(dataset , indices)
15 new_dataset = copy.copy(dataset)
16 ...
17 if self.label_flipping:
18 logging.info("[Labelflipping] Received attack: {}".format(

self.label_flipping_config["attack"]))
19 if self.label_flipping_config["attack"] == "

label_flipping_targeted_specific":
20 self.dataset = labelflipping_targeted_specific(
21 self.dataset ,
22 self.indices ,
23 self.label_flipping_config["label_og"],
24 self.label_flipping_config["label_goal"]
25 )
26 elif self.label_flipping_config["attack"] == "

label_flipping_targeted_unspecific":
27 self.dataset = labelflipping_targeted_unspecific(
28 self.dataset ,
29 self.indices ,
30 self.label_flipping_config["label_og"]
31 )
32 elif self.label_flipping_config["attack"] == "

label_flipping_untargeted":
33 self.dataset = labelflipping_untargeted(
34 self.dataset ,
35 self.indices ,
36 self.label_flipping_config["sample_percent"]
37 )
38 elif self.label_flipping_config["attack"] == "

label_flipping_fang":
39 self.dataset = labelflipping_fang(self.dataset)
40 logging.info("[Labelflipping] Dataset manipulated (attack:

{})".format(self.label_flipping_config["attack"]))
41

42 if self.data_poisoning:
43 self.dataset = datapoison(self.dataset , self.indices , self.

poisoned_persent , self.poisoned_ratio , self.targeted , self.
target_label , self.noise_type)

44

45 def __getitem__(self , idx):
46 if isinstance(idx , list):
47 return self.dataset [[self.indices[i] for i in idx]]
48 return self.dataset[self.indices[idx]]
49

50 def __len__(self):
51 return len(self.indices)

Listing B.9: ChangeableSubset

nebula/nebula.py

1 async def main():
2 config_path = str(sys.argv [1])
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3 config = Config(entity="participant", participant_config_file=
config_path)

4

5 n_nodes = config.participant["scenario_args"]["n_nodes"]
6 model_name = config.participant["model_args"]["model"]
7 idx = config.participant["device_args"]["idx"]
8

9 additional_node_status = config.participant["mobility_args"]["
additional_node"]["status"]

10 additional_node_round = config.participant["mobility_args"]["
additional_node"]["round_start"]

11

12 attacks = config.participant["adversarial_args"]["attacks"]
13 label_flipping_config = config.participant["adversarial_args"]["

label_flipping_config"]
14 poisoned_persent = config.participant["adversarial_args"]["

poisoned_sample_percent"]
15 poisoned_ratio = config.participant["adversarial_args"]["

poisoned_ratio"]
16 targeted = str(config.participant["adversarial_args"]["targeted"])
17 target_label = config.participant["adversarial_args"]["target_label"

]
18 target_changed_label = config.participant["adversarial_args"]["

target_changed_label"]
19 noise_type = config.participant["adversarial_args"]["noise_type"]
20 iid = config.participant["data_args"]["iid"]
21 partition_selection = config.participant["data_args"]["

partition_selection"]
22 partition_parameter = np.array(config.participant["data_args"]["

partition_parameter"], dtype=np.float64)
23 label_flipping = False
24 data_poisoning = False
25 model_poisoning = False
26 if "label_flipping" in attacks:
27 label_flipping = True
28 poisoned_ratio = 0
29 if "_targeted" in attacks:
30 targeted = True
31 else:
32 targeted = False
33 elif attacks == "Sample Poisoning":
34 data_poisoning = True
35 if targeted == "true" or targeted == "True":
36 targeted = True
37 else:
38 targeted = False
39 elif attacks == "Model Poisoning":
40 model_poisoning = True
41 else:
42 label_flipping = False
43 data_poisoning = False
44 targeted = False
45 poisoned_persent = 0
46 poisoned_ratio = 0
47 ...
48 dataset = DataModule(
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49 train_set=dataset.train_set ,
50 train_set_indices=dataset.train_indices_map ,
51 test_set=dataset.test_set ,
52 test_set_indices=dataset.test_indices_map ,
53 local_test_set_indices=dataset.local_test_indices_map ,
54 num_workers=num_workers ,
55 partition_id=idx ,
56 partitions_number=n_nodes ,
57 batch_size=dataset.batch_size ,
58 label_flipping=label_flipping ,
59 label_flipping_config=label_flipping_config ,
60 data_poisoning=data_poisoning ,
61 poisoned_persent=poisoned_persent ,
62 poisoned_ratio=poisoned_ratio ,
63 targeted=targeted ,
64 target_label=target_label ,
65 target_changed_label=target_changed_label ,
66 noise_type=noise_type ,
67 )
68 ...

Listing B.10: Node

1 18:05:02 ,342 - participant_2_192 .168.50.4 _45000 - [functions.py:22]
2 Selector: Received NSS Features
3 -------------------------------
4 Node: 192.168.50.2:45000
5 CPU Usage (%): 13.6%
6 Bytes Sent: 23810006
7 Bytes Received: 16007398
8 Loss: 0.209886372089386
9 Data Size: 4878

10 Latency (ms): 0.13
11 Availability: 1
12

13 ...
14

15 18:05:02 ,441 - participant_2_192 .168.50.4 _45000 - [functions.py:22]
16 Selector: Received NSS Features
17 -------------------------------
18 Node: 192.168.50.3:45000
19 CPU Usage (%): 17.0%
20 Bytes Sent: 22898942
21 Bytes Received: 23751658
22 Loss: 0.3206459879875183
23 Data Size: 4878
24 Latency (ms): 0.12
25 Availability: 1
26

27 ...
28

29 18:05:01 ,953 - participant_2_192 .168.50.4 _45000 - [functions.py:22]
30 Selector: Received NSS Features
31 -------------------------------
32 Node: 192.168.50.5:45000
33 CPU Usage (%): 12.2%
34 Bytes Sent: 22911453
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35 Bytes Received: 23805963
36 Loss: 0.5052706003189087
37 Data Size: 4878
38 Latency (ms): 0.48
39 Availability: 1
40

41 ...
42

43 18:05:01 ,947 - participant_2_192 .168.50.4 _45000 - [functions.py:22]
44 Selector: Received NSS Features
45 -------------------------------
46 Node: 192.168.50.6:45000
47 CPU Usage (%): 11.8%
48 Bytes Sent: 22896745
49 Bytes Received: 23766526
50 Loss: 0.7437791228294373
51 Data Size: 4878
52 Latency (ms): 0.05
53 Availability: 1
54

55 ...
56

57 18:05:02 ,175 - participant_2_192 .168.50.4 _45000 - [functions.py:22]
58 Selector: Received NSS Features
59 -------------------------------
60 Node: 192.168.50.7:45000
61 CPU Usage (%): 12.6%
62 Bytes Sent: 22932623
63 Bytes Received: 23796569
64 Loss: 0.32877373695373535
65 Data Size: 4878
66 Latency (ms): 0.06
67 Availability: 1
68

69 ...
70

71 18:05:02 ,249 - participant_2_192 .168.50.4 _45000 - [functions.py:22]
72 Selector: Received NSS Features
73 -------------------------------
74 Node: 192.168.50.8:45000
75 CPU Usage (%): 17.1%
76 Bytes Sent: 14066905
77 Bytes Received: 14040679
78 Loss: 0.253036767244339
79 Data Size: 4878
80 Latency (ms): 0.08
81 Availability: 1
82

83 ...
84

85 18:05:01 ,950 - participant_2_192 .168.50.4 _45000 - [functions.py:22]
86 Selector: Received NSS Features
87 -------------------------------
88 Node: 192.168.50.9:45000
89 CPU Usage (%): 12.1%
90 Bytes Sent: 22909055
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91 Bytes Received: 23745516
92 Loss: 0.06718137860298157
93 Data Size: 4878
94 Latency (ms): 0.16
95 Availability: 1
96

97 ...
98

99 18:05:06 ,027 - participant_2_192 .168.50.4 _45000 - [functions.py:22]
100 Selector: Received NSS Features
101 -------------------------------
102 Node: 192.168.50.10:45000
103 CPU Usage (%): 57.5%
104 Bytes Sent: 23658203
105 Bytes Received: 24223180
106 Loss: 0.19160529971122742
107 Data Size: 4878
108 Latency (ms): 151.17
109 Availability: 1
110

111 ...
112

113 18:05:21 ,530 - participant_2_192 .168.50.4 _45000 - [functions.py:22]
114 Selector: Received NSS Features
115 -------------------------------
116 Node: 192.168.50.11:45000
117 CPU Usage (%): 74.6%
118 Bytes Sent: 23149186
119 Bytes Received: 24229371
120 Loss: 0.3143141269683838
121 Data Size: 4878
122 Latency (ms): 154.56
123 Availability: 1
124

125 ...
126

127 18:05:22 ,268 - participant_2_192 .168.50.4 _45000 - [functions.py:22]
128 NSS features (this node)
129 ------------------------
130 NSS features for round 2:
131 CPU Usage (%): 12.3%
132 Bytes Sent: 22905109
133 Bytes Received: 23749291
134 Loss: 0.42930173873901367
135 Data Size: 4878
136

137 ...
138 18:05:22 ,271 - participant_2_192 .168.50.4 _45000 - [functions.py:22]
139 Final NSS Scores
140 ----------------
141 Scores: { ’192.168.50.2:45000 ’: np.float64 (10.073334904398028) ,
142 ’192.168.50.9:45000 ’: np.float64 (8.122686362567519) ,
143 ’192.168.50.5:45000 ’: np.float64 (2.661932865501917) ,
144 ’192.168.50.7:45000 ’: np.float64 (20.49253359831065) ,
145 ’192.168.50.3:45000 ’: np.float64 (10.507016996183202) ,
146 ’192.168.50.6:45000 ’: np.float64 (25.56677390405228) ,
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147 ’192.168.50.8:45000 ’: np.float64 (22.558971157521302) ,
148 ’192.168.50.10:45000 ’: np.float64 (0.008468057817907913) ,
149 ’192.168.50.11:45000 ’: np.float64 (0.008282153647183474)}
150

151 ...
152

153 18:05:22 ,271 - participant_2_192 .168.50.4 _45000 - [priority_selector.py
:102]

154 [PrioritySelector] scores:
155 [2.24023557e+01 4.99629637e+00 1.04959398e+01
156 1.41730363e+01 2.68827056e+01 7.89185422e+00
157 1.31447224e+01 6.58050248e-03 6.50901092e-03]
158

159 ...
160

161 18:05:22 ,271 - participant_2_192 .168.50.4 _45000 - [priority_selector.py
:120]

162 [PrioritySelector] selection finished , selected_nodes:
163 [ ’192.168.50.9:45000 ’ , ’192.168.50.6:45000 ’ , ’192.168.50.5:45000 ’ ,

’192.168.50.8:45000 ’ , ’192.168.50.7:45000 ’ , ’192.168.50.2:45000 ’ ,
’192.168.50.3:45000 ’ , ’192.168.50.4:45000 ’]

Listing B.11: Logs of PrioritySelector Evaluation Scenario

1 ...
2 Scenario information
3 --------------------
4 Trainer: Lightning
5 Dataset: MNIST
6 IID: True
7 Model: MNISTModelMLP
8 Aggregation algorithm: ReactiveAggregator
9 Node behavior: benign

10 ...
11 Defense information
12 -------------------
13 Reputation system: True
14 Dynamic topology: False
15 Dynamic aggregation: True
16 Target aggregation: FedAvg
17 ...
18 [aggregator.py:205] get_aggregation | All models accounted for ,

proceeding with aggregation.
19 [aggregator.py:213] get_aggregation | Final nodes for aggregation:

dict_keys ([ ’192.168.50.2:45000 ’ , ’192.168.50.5:45000 ’ ,
’192.168.50.4:45000 ’ , ’192.168.50.6:45000 ’ , ’192.168.50.3:45000 ’])

20 [reactiveAggregator.py:12] [ReactiveAggregator] Initializing Aggregation
21 [engine.py:544] reputation_calculation untrusted_nodes at round 0:

[ ’192.168.50.2:45000 ’ , ’192.168.50.5:45000 ’ , ’192.168.50.4:45000 ’ ,
’192.168.50.6:45000 ’ , ’192.168.50.3:45000 ’]

22 [engine.py:547] reputation_calculation untrusted_node at round 0:
192.168.50.2:45000

23 [engine.py:552] reputation_calculation cossim at round 0:
192.168.50.2:45000: 1.0

24 [lightning.py:100] Computed neighbor loss over 361 data samples
25 [engine.py:556] reputation_calculation avg_loss at round 0

192.168.50.2:45000: 0.45945800716678303



106 APPENDIX B. ADDITIONAL RESOURCES

26 [engine.py:547] reputation_calculation untrusted_node at round 0:
192.168.50.5:45000

27 [engine.py:552] reputation_calculation cossim at round 0:
192.168.50.5:45000: 0.8904288411140442

28 [lightning.py:100] Computed neighbor loss over 361 data samples
29 [engine.py:556] reputation_calculation avg_loss at round 0

192.168.50.5:45000: 8.382751703262329
30 [engine.py:547] reputation_calculation untrusted_node at round 0:

192.168.50.4:45000
31 [engine.py:552] reputation_calculation cossim at round 0:

192.168.50.4:45000: 0.8922047019004822
32 [lightning.py:100] Computed neighbor loss over 361 data samples
33 [engine.py:556] reputation_calculation avg_loss at round 0

192.168.50.4:45000: 0.4201909552017848
34 [engine.py:547] reputation_calculation untrusted_node at round 0:

192.168.50.6:45000
35 [engine.py:552] reputation_calculation cossim at round 0:

192.168.50.6:45000: 0.9497191309928894
36 [lightning.py:100] Computed neighbor loss over 361 data samples
37 [engine.py:556] reputation_calculation avg_loss at round 0

192.168.50.6:45000: 0.36382036035259563
38 [engine.py:547] reputation_calculation untrusted_node at round 0:

192.168.50.3:45000
39 [engine.py:552] reputation_calculation cossim at round 0:

192.168.50.3:45000: 0.9434241652488708
40 [lightning.py:100] Computed neighbor loss over 361 data samples
41 [engine.py:556] reputation_calculation avg_loss at round 0

192.168.50.3:45000: 0.43781481434901554
42 [reactiveAggregator.py:16] [ReactiveAggregator] Detected Malicious Nodes

: [ ’192.168.50.5:45000 ’]
43 [reactiveAggregator.py:19] [ReactiveAggregator] Malicious Node - Using

Dynamic Aggregator
44 [aggregator.py:73] [DynamicAggregator] Starting Aggregator
45 [dynamicAggregator.py:11] [DynamicAggregator] Initializing Aggregation
46 [dynamicAggregator.py:24] [DynamicAggregator] Chosen Aggregator: <class

’nebula.core.aggregation.fedavg.FedAvg ’>
47 [aggregator.py:73] [FedAvg] Starting Aggregator
48 [engine.py:454] _waiting_model_updates | Aggregation done for round 1,

including parameters in local model.
49 ...

Listing B.12: Logs of DynamicAggregator (Reactive) Evaluation Scenario Participant 0

1 ...
2 Scenario information
3 --------------------
4 Trainer: Lightning
5 Dataset: MNIST
6 IID: True
7 Model: MNISTModelMLP
8 Aggregation algorithm: ReactiveAggregator
9 Node behavior: malicious

10 ...
11 Defense information
12 -------------------
13 Reputation system: True
14 Dynamic topology: False
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15 Dynamic aggregation: True
16 Target aggregation: FedAvg
17 ...
18 [aggregator.py:205] get_aggregation | All models accounted for ,

proceeding with aggregation.
19 [aggregator.py:213] get_aggregation | Final nodes for aggregation:

dict_keys ([ ’192.168.50.5:45000 ’ , ’192.168.50.2:45000 ’ ,
’192.168.50.4:45000 ’ , ’192.168.50.6:45000 ’ , ’192.168.50.3:45000 ’])

20 [reactiveAggregator.py:12] [ReactiveAggregator] Initializing Aggregation
21 [engine.py:544] reputation_calculation untrusted_nodes at round 0:

[ ’192.168.50.5:45000 ’ , ’192.168.50.2:45000 ’ , ’192.168.50.4:45000 ’ ,
’192.168.50.6:45000 ’ , ’192.168.50.3:45000 ’]

22 [engine.py:547] reputation_calculation untrusted_node at round 0:
192.168.50.5:45000

23 [engine.py:552] reputation_calculation cossim at round 0:
192.168.50.5:45000: 1.0

24 [lightning.py:100] Computed neighbor loss over 361 data samples
25 [engine.py:556] reputation_calculation avg_loss at round 0

192.168.50.5:45000: 0.3141826655094822
26 [engine.py:547] reputation_calculation untrusted_node at round 0:

192.168.50.2:45000
27 [engine.py:552] reputation_calculation cossim at round 0:

192.168.50.2:45000: 0.8904288411140442
28 [lightning.py:100] Computed neighbor loss over 361 data samples
29 [engine.py:556] reputation_calculation avg_loss at round 0

192.168.50.2:45000: 8.77032987276713
30 [engine.py:547] reputation_calculation untrusted_node at round 0:

192.168.50.4:45000
31 [engine.py:552] reputation_calculation cossim at round 0:

192.168.50.4:45000: 0.9467437863349915
32 [lightning.py:100] Computed neighbor loss over 361 data samples
33 [engine.py:556] reputation_calculation avg_loss at round 0

192.168.50.4:45000: 9.669642527898153
34 [engine.py:547] reputation_calculation untrusted_node at round 0:

192.168.50.6:45000
35 [engine.py:552] reputation_calculation cossim at round 0:

192.168.50.6:45000: 0.9497191309928894
36 [lightning.py:100] Computed neighbor loss over 361 data samples
37 [engine.py:556] reputation_calculation avg_loss at round 0

192.168.50.6:45000: 8.483981172243753
38 [engine.py:547] reputation_calculation untrusted_node at round 0:

192.168.50.3:45000
39 [engine.py:552] reputation_calculation cossim at round 0:

192.168.50.3:45000: 0.9434241652488708
40 [lightning.py:100] Computed neighbor loss over 361 data samples
41 [engine.py:556] reputation_calculation avg_loss at round 0

192.168.50.3:45000: 8.887668450673422
42 [reactiveAggregator.py:16] [ReactiveAggregator] Detected Malicious Nodes

: [ ’192.168.50.2:45000 ’ , ’192.168.50.4:45000 ’ , ’192.168.50.6:45000 ’ ,
’192.168.50.3:45000 ’]

43 [reactiveAggregator.py:19] [ReactiveAggregator] Malicious Node - Using
Dynamic Aggregator

44 [aggregator.py:73] [DynamicAggregator] Starting Aggregator
45 [dynamicAggregator.py:11] [DynamicAggregator] Initializing Aggregation
46 [dynamicAggregator.py:24] [DynamicAggregator] Chosen Aggregator: <class

’nebula.core.aggregation.fedavg.FedAvg ’>
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47 [aggregator.py:73] [FedAvg] Starting Aggregator
48 [engine.py:454] _waiting_model_updates | Aggregation done for round 0,

including parameters in local model.
49 ...

Listing B.13: Logs of DynamicAggregator (Reactive) Evaluation Scenario Participant 3

nebula/addons/attacks/mia/MetricMIA.py

1 class MetricBasedAttack(MembershipInferenceAttack):
2 def __init__(self , model , global_dataset , in_eval , out_eval ,

indexing_map , train_result , method_name):
3 super().__init__(model , global_dataset , in_eval , out_eval ,

indexing_map)
4 self.train_result = train_result
5 self.method_name = method_name
6

7 def execute_all_attack(self):
8 for attr_name in dir(self):
9 if attr_name.startswith("MIA") and callable(getattr(self ,

attr_name)):
10 method = getattr(self , attr_name)
11 method ()
12

13 def execute_specific_attack(self):
14 if self.method_name == "Prediction Correctness":
15 return self.MIA_correctness_attack ()
16 elif self.method_name == "Prediction Loss":
17 return self.MIA_loss_attack ()
18 elif self.method_name == "Prediction Maximal Confidence":
19 return self.MIA_maximal_confidence_attack ()
20 elif self.method_name == "Prediction Entropy":
21 return self.MIA_entropy_attack ()
22 elif self.method_name == "Prediction Sensitivity (Jacobian

Matrix)":
23 return self.MIA_sensitivity_attack ()
24 else:
25 raise NotImplementedError("This kind of attack is still not

implemented.")
26

27 def MIA_correctness_attack(self):
28 def correctness_check(dataset):
29 predictions , labels = dataset
30 _, predicted_labels = torch.max(predictions , dim=1)
31 correct_predictions = predicted_labels == labels
32

33 return correct_predictions
34

35 in_predictions = correctness_check(self.in_eval_pre)
36 out_predictions = correctness_check(self.out_eval_pre)
37

38 true_positives = in_predictions.sum().item()
39 false_positives = out_predictions.sum().item()
40

41 print(true_positives)
42 print(false_positives)
43
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44 precision , recall , f1 = self.evaluate_metrics(true_positives ,
false_positives)

45

46 # If you want to get a micro view of in evaluation group:
47 # nodes_tp_dict = self.evaluate_tp_for_each_node(in_predictions)
48

49 return precision , recall , f1
50

51 def MIA_loss_attack(self):
52 loss_threshold = self.train_result
53

54 self.model.eval()
55 with torch.no_grad ():
56 for inputs , labels in self.in_eval:
57 inputs = inputs.to(self.device)
58 labels = labels.to(self.device)
59

60 logits = self.model(inputs)
61 losses = F.cross_entropy(logits , labels , reduction=’none

’)
62 in_predictions = losses < loss_threshold
63

64 for inputs , labels in self.out_eval:
65 inputs = inputs.to(self.device)
66 labels = labels.to(self.device)
67

68 logits = self.model(inputs)
69 losses = F.cross_entropy(logits , labels , reduction=’none

’)
70 out_predictions = losses < loss_threshold
71

72 true_positives = in_predictions.sum().item()
73 false_positives = out_predictions.sum().item()
74

75 precision , recall , f1 = self.evaluate_metrics(true_positives ,
false_positives)

76

77 # If you want to get a micro view of in evaluation group:
78 # nodes_tp_dict = self.evaluate_tp_for_each_node(in_predictions)
79

80 return precision , recall , f1
81

82 def _generate_random_images(self , batch_size):
83 images = []
84 data_shape = self.global_dataset.train_set [0][0]. shape
85

86 if data_shape == (3, 32, 32): # CIFAR -10 case
87 height , width , channels = 32, 32, 3
88 mean , std = [0.4914 , 0.4822 , 0.4465] , [0.2471 , 0.2435 ,

0.2616]
89

90 transform = T.Compose ([
91 T.RandomCrop (32, padding =4),
92 T.RandomHorizontalFlip (),
93 T.ToTensor (),
94 T.Normalize(mean=mean , std=std),



110 APPENDIX B. ADDITIONAL RESOURCES

95 ])
96 else: # gray scale images (FMNIST and MNIST)
97 height , width , channels = 28, 28, 1
98 transform = T.Compose ([
99 T.ToTensor (),

100 T.Normalize ((0.5 ,), (0.5,))
101 ])
102

103 # Generate random images
104 for _ in range(batch_size):
105 data = np.random.randint(0, 256, (height , width , channels),

dtype=np.uint8)
106 img = Image.fromarray(data.squeeze () if channels == 1 else

data)
107 images.append(img)
108

109 # Apply transformations
110 transformed_images = [transform(img) for img in images]
111

112 return torch.stack(transformed_images)
113

114 def _threshold_choosing(self , m_name):
115 random_images = self._generate_random_images(batch_size=len(self

.out_eval_pre [0]))
116 random_dataloader = DataLoader(TensorDataset(random_images),

batch_size =128, shuffle=False , num_workers =0)
117

118 threshold = []
119

120 self.model.eval()
121 with torch.no_grad ():
122 for batch in random_dataloader:
123 inputs = batch [0].to(self.device)
124

125 outputs = self.model(inputs)
126 probs = torch.softmax(outputs , dim=1)
127

128 if m_name == "confidence":
129 confidences , _ = torch.max(probs , dim=1)
130 threshold.append(confidences)
131 else:
132 entropies = self._compute_entropy(probs)
133 threshold.append(entropies)
134

135 threshold_tensor = torch.cat(threshold)
136

137 sequence = list(range(10, 100, 10)) + [95]
138 threshold_percentiles = [np.percentile(threshold_tensor.cpu().

detach ().numpy (), i) for i in sequence]
139

140 return threshold_percentiles # it contains 10 percentiles as
the backup thresholds

141

142 def MIA_maximal_confidence_attack(self):
143 threshold = self._threshold_choosing("confidence")
144
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145 def maximal_confidence_check(dataset):
146 predictions , labels = dataset
147

148 confidences , _ = torch.max(predictions , dim=1)
149

150 return confidences
151

152 best_f1 = 0
153 final_precison = 0
154 final_recall = 0
155

156 in_confidences = maximal_confidence_check(self.in_eval_pre)
157 out_confidences = maximal_confidence_check(self.out_eval_pre)
158

159 for i, thre in enumerate(threshold):
160 in_predictions = in_confidences >= thre
161 true_positives = in_predictions.sum().item()
162

163 out_predictions = out_confidences >= thre
164 false_positives = out_predictions.sum().item()
165

166 precision , recall , f1 = self.evaluate_metrics(true_positives
, false_positives)

167

168 # Update the best threshold based on F1 score
169 if f1 > best_f1:
170 best_f1 = f1
171 final_precison = precision
172 final_recall = recall
173

174 return final_precison , final_recall , best_f1
175

176 def _compute_entropy(self , probs):
177 log_probs = torch.log(probs + 1e-6) # Correctly use log on

probabilities
178 entropy = -(probs * log_probs).sum(dim=1)
179 return entropy
180

181 def MIA_entropy_attack(self):
182 threshold = self._threshold_choosing("entropy")
183

184 def entropy_check(dataset):
185 predictions , labels = dataset
186

187 entropies = self._compute_entropy(predictions)
188

189 return entropies
190

191 best_f1 = 0
192 final_precison = 0
193 final_recall = 0
194

195 in_entropies = entropy_check(self.in_eval_pre)
196 out_entropies = entropy_check(self.out_eval_pre)
197

198 for i, thre in enumerate(threshold):
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199 in_predictions = in_entropies <= thre
200 true_positives = in_predictions.sum().item()
201

202 out_predictions = out_entropies <= thre
203 false_positives = out_predictions.sum().item()
204

205 precision , recall , f1 = self.evaluate_metrics(true_positives
, false_positives)

206

207 # Update the best threshold based on F1 score
208 if f1 > best_f1:
209 best_f1 = f1
210 final_precison = precision
211 final_recall = recall
212

213 return final_precison , final_recall , best_f1
214

215 def _compute_jacobian_and_norm_white_box(self , inputs):
216 inputs = inputs.to(self.device)
217 inputs.requires_grad_(True)
218

219 jacobian_matrix = jacobian(lambda x: self.model(x), inputs)
220

221 jacobian_reshaped = jacobian_matrix.squeeze ().reshape(inputs.
size (1), -1) # Reshape to 2D

222 l2_norm = torch.norm(jacobian_reshaped , p=2)
223 return l2_norm.item()
224

225 def _compute_jacobian_and_norm_black_box(self , inputs , epsilon =1e-5)
:

226 self.model.eval()
227 inputs = inputs.clone().detach ().requires_grad_(True).to(
228 self.device) # Ensure the inputs require gradients and move

to device
229

230 outputs = self.model(inputs)
231 num_outputs = outputs.size (1)
232 num_inputs = inputs.size (1)
233

234 jacobian = torch.zeros(num_outputs , num_inputs).to(self.device)
235

236 for i in range(num_inputs):
237 inputs_pos = inputs.clone().detach ()
238 inputs_neg = inputs.clone().detach ()
239

240 inputs_pos [:, i] += epsilon
241 inputs_neg [:, i] -= epsilon
242

243 outputs_pos = self.model(inputs_pos)
244 outputs_neg = self.model(inputs_neg)
245

246 jacobian[:, i] = (outputs_pos - outputs_neg) / (2 * epsilon)
247

248 l2_norm = torch.norm(jacobian , p=2)
249 return l2_norm
250
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251 def MIA_sensitivity_attack(self):
252 norms = []
253

254 # Compute norms for in_eval_group
255 for inputs , _ in self.in_eval:
256 l2_norm = self._compute_jacobian_and_norm_black_box(inputs)
257 norms.append(l2_norm.cpu().item())
258

259 # Compute norms for out_eval_group
260 for inputs , _ in self.out_eval:
261 l2_norm = self._compute_jacobian_and_norm_black_box(inputs)
262 norms.append(l2_norm.cpu().item())
263

264 norm_array = np.array(norms)
265

266 attack_cluster = SpectralClustering(n_clusters =6, n_jobs=-1,
affinity=’nearest_neighbors ’, n_neighbors =19)

267 y_attack_pred = attack_cluster.fit_predict(norm_array.reshape
(-1, 1))

268 split = 1
269

270 cluster_1 = np.where(y_attack_pred >= split)[0]
271 cluster_0 = np.where(y_attack_pred < split)[0]
272

273 y_attack_pred[cluster_1] = 1
274 y_attack_pred[cluster_0] = 0
275 cluster_1_mean_norm = norm_array[cluster_1 ].mean()
276 cluster_0_mean_norm = norm_array[cluster_0 ].mean()
277 if cluster_1_mean_norm > cluster_0_mean_norm:
278 y_attack_pred = np.abs(y_attack_pred - 1)
279

280 size = len(self.in_eval_pre [0])
281

282 true_positives = np.sum(y_attack_pred [:size] == 1)
283 false_positives = np.sum(y_attack_pred[size:] == 1)
284

285 precision , recall , f1 = self.evaluate_metrics(true_positives ,
false_positives)

286

287 return precision , recall , f1

Listing B.14: ”MIA Class Metric Based”
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Appendix C

Usability Evaluation Questions and
Answers

How easy was it to understand and find the specific parameters for the given scenario on the
”scenario deployment” page?

It wasn’t too hard to find the settings, but some of them were a bit confusing. Like the ’Trimmed-
Mean’ aggregation rule—I had no idea what it was, but I just picked it because it was in the in-
structions. And it was weird that you could set the topology and number of nodes in two di!erent
places. I wasn’t sure if I had to do both or just one.

Did you find the background information (provided in Section 2) clear and easy to follow? Were
there any parts that felt ambiguous or confusing?

The background was helpful for understanding the overall idea, but some terms weren’t explained
well. For example, ’Partition Method: Dirichlet’ didn’t make much sense to me, so I had to look
it up online. A quick explanation in the section would’ve been nice.

Did you face any challenges during setting up and executing the scenario? If yes, what kind of
challenges?

Yeah, I did. Like I said earlier, it wasn’t clear where to set some of the settings since you could
do it in more than one place. After running the scenario, I also couldn’t go back to check what I
had set up, which was frustrating. And while the scenario was running, I had no idea how long
it would take—there wasn’t any progress bar or timer, so I was just guessing.

How confident were you that the configuration is correct after running the task?

I’d say about 70% sure. There’s no confirmation step or anything to show you what you’ve set
up before it runs, so I just hoped everything was right. A summary of the settings before running
would’ve been really helpful.

How straightforward was it to analyze the impact of the label-flipping attack on the model’s
performance? Was it straightforward where to find the performance metrics?

Finding the metrics was easy enough, but when I first clicked on it, there was no data showing
yet. I didn’t know if something was wrong or if I just needed to wait. It would’ve been helpful to

115
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have a message saying the scenario was still running. Also, figuring out how the attack a!ected
the model wasn’t very clear—there were multiple metrics, and I wasn’t sure which one to use.
And reading the graph to get the accuracy wasn’t easy either; it was hard to see the exact value.

How would you rate the overall user experience of the Nebula platform on a scale of 1 to 5 (1
being very poor and 5 being excellent)?

I’d give it a 3.5. The platform has a lot of cool features, but it’s not very beginner-friendly. It’s
missing some things, like explanations and feedback, that would make it easier to use.

Based on your first interaction, do you have any suggestions for improving the Nebula platform
to make tasks like this easier for new users?

Yeah, definitely. Add tooltips or little explanations for the settings—that would help a lot. Also,
a summary screen before running the scenario would make it easier to check if everything is
correct. And having a progress bar or some kind of status update while the scenario is running
would be really useful.
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