
Design and Implementation of an
Information Metrics-based Anomaly

Model Detector in Decentralized
Federated Learning

Xiao Chen
Zürich, Switzerland

Student ID: 21-742-820

Supervisor: Chao Feng, Dr. Alberto Huertas Celdran
Date of Submission: July 2, 2024

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Federated Learning (FL) remains vulnerable to poisoning attacks, which are malicious
attempts to manipulate the learning process by injecting poisoned data during train-
ing. As a solution to the traditional client-server architecture of FL, Decentralized FL
completes communication without a central server. However, ensuring the security of
the entire system has become more complex since each client has access to the model
parameters. Existing defense mechanisms may lose their effectiveness against poisoning
attacks when the data is non-IID. Therefore, it is necessary to develop an endogenous and
data-independent defense mechanism.

This work proposes a defense approach called “AIDFL” for mitigating untargeted data poi-
soning attacks in Decentralized Federated Learning. AIDFL utilizes information theory-
based metrics, which have the advantage of being independent of the data distribution, to
define a detection defense mechanism consisting of k-means clustering, estimation of mu-
tual information and conditional entropy, and anomaly detection. In addition, AIDFL was
evaluated on different datasets under different configurations of poisoning parameters. It
is verified that AIDFL achieves outstanding results in defending against untargeted data
poisoning (label flipping and sample poisoning), which promotes the research on defense
under non-IID setting in decentralized federated learning. Finally, the results demon-
strate the necessity for further research on defense against model poisoning in the same
settings.

i

Zusammenfassung

Föderiertes Lernen bleibt anfällig für Vergiftungsangriffe, bei denen es sich um böswillige
Versuche handelt, den Lernprozess durch Einspeisung von vergifteten Daten während des
Trainings zu manipulieren. Als Lösung für die traditionelle Client-Server-Architektur
von FL ermöglicht dezentralisiertes FL die Kommunikation ohne einen zentralen Server.
Allerdings ist die Sicherstellung der Sicherheit des gesamten Systems komplizierter gewor-
den, da jeder Client Zugriff auf die Modellparameter hat. Bestehende Abwehrmechanis-
men können ihre Wirksamkeit gegen Vergiftungsangriffe verlieren, wenn die Daten nicht
unabhängig und identisch verteilt (non-IID) sind. Daher ist es notwendig, einen endoge-
nen und datenunabhängigen Abwehrmechanismus zu entwickeln.

Diese Arbeit schlägt einen Verteidigungsansatz namens „AIDFL“ vor, um nicht gezielte
Datenvergiftungsangriffe im dezentralisierten föderierten Lernen zu mildern. AIDFL
nutzt informationstheoretische Metriken, die den Vorteil haben, unabhängig von der
Datenverteilung zu sein, um einen Erkennungsabwehrmechanismus zu definieren, der
aus K-Means Clustering, der Schätzung von wechselseitiger Information und bedingter
Entropie sowie Anomalieerkennung besteht. Darüber hinaus wurde AIDFL auf ver-
schiedenen Datensätzen unter verschiedenen Konfigurationen von Vergiftung Parametern
evaluiert. Es wurde bestätigt, dass AIDFL herausragende Ergebnisse bei der Abwehr von
nicht gezielten Datenvergiftungen (Label-Flippen und Datenvergiftung) erzielt, was die
Forschung zur Abwehr von Vergiftungsangriffen unter nicht-IID-Bedingungen im dezen-
tralisierten föderierten Lernen fördert. Schließlich zeigen die Ergebnisse die Notwendigkeit
weiterer Forschung zur Abwehr von Modellvergiftungen unter den gleichen Bedingungen.

ii

Acknowledgments

First and foremost, I would like to express my gratitude to Chao Feng, a PhD student at
the Communication Systems Group at the University of Zurich, for mentoring my Master
thesis. In our bi-weekly meetings, Chao patiently and promptly resolved any questions I
had, providing guidance to keep me on the right track. I would also like to extend special
thanks to Lisai Cao and Zhuqiang Li from Jilin University for lending me the remote
server to complete my experiments. My appreciation also goes to my friend Shushi Luo,
who inspired the naming of the algorithm, and to my fitness instructor, Mr. Fish, who
helped relieve my stress during tense and anxious times. Lastly, I am grateful to Prof.
Dr. Stiller for allowing me to complete my Master thesis at CSG.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Background 4

2.1 Federated Learning . 4

2.1.1 Federated Optimization Algorithm 4

2.1.2 Decentralized Federated Learning 6

2.1.3 DFL Approaches: non-IID Applications 7

2.2 Poisoning Attacks . 8

2.2.1 Attack Surfaces . 8

2.2.2 Attack Goals . 11

2.3 Information Theory . 12

2.3.1 Entropy . 13

2.3.2 Mutual Information . 13

2.3.3 Information Bottleneck (IB) Method 15

2.3.4 Applications in Machine Learning 15

iv

CONTENTS v

3 Related Work 17

3.1 Robust Aggregation . 17

3.2 Anomaly Detection . 19

3.3 Perturbation Mechanism . 20

3.4 Hybrid Defenses . 21

3.5 Information theory-based Defense Approaches 21

3.6 Research Motivation . 23

4 Design 26

4.1 Evaluation Metrics . 26

4.2 Attack Specification . 28

4.3 Defense Desgin . 28

4.3.1 Pre-Design . 29

4.3.2 AIDFL . 30

5 Implementation 36

6 Evaluation 41

6.1 Experiment Setup . 41

6.1.1 Datasets and Models . 41

6.1.2 Selected Reference Approaches . 43

6.1.3 Threat Models . 44

6.2 Results . 45

6.2.1 Baseline Performance . 45

6.2.2 Untargeted Label Flipping . 49

6.2.3 Untargeted Sample Poisoning . 55

6.2.4 AIDFL: Compare performance between IID and non-IID settings . 65

vi CONTENTS

7 Summary and Conclusions 70

7.1 Conclusions . 70

7.2 Limitations . 71

7.3 Future Work . 71

Bibliography 72

Abbreviations 78

List of Figures 78

List of Tables 81

List of Algorithms 83

Chapter 1

Introduction

Typical Machine Learning (ML) algorithms rely on the centralized processing and analysis
of large amounts of data. When confronted with limited resource access, concerns about
data privacy, and issues related to national policies and regulations [1], these techniques
may face problems such as the leakage of sensitive information and violations of privacy.
This situation is common in a few industries, especially in fields involving sensitive data
such as healthcare, financial sectors, and government departments. Therefore, Federated
learning (FL), a privacy-preserving distributed ML paradigm, is explored and developed
in order to allow multiple participants to collaboratively train ML models on their local
devices and send updates to a central server without sharing data [2].

One of the limitations of FL systems is their vulnerability to poisoning attacks, which are
malicious attempts to manipulate the learning process by injecting poisoned or adversarial
data during training [3] due to the centralized orchestration structure, and they essentially
apply non-independent and identically distributed (non-IID) data in real world cases [4].
Decentralized FL (DFL) has emerged as a solution to the traditional client-server archi-
tecture of FL and data heterogeneity [5]. Nevertheless, ensuring the security of the entire
system has become more complex since each client has access to the model parameters [6].

1.1 Motivation

Existing defense mechanisms against poisoning attacks primarily focus on exogenous fac-
tors [7]. However, these data-driven processes may lead to misidentification of outliers,
potentially overlooking real poisoning attacks due to differences in the training data distri-
bution. Therefore, developing an endogenous and data-independent defense mechanism,
especially under non-IID conditions is crucial.

Previous researches introduced theoretical approaches that use layer-wise information
metrics [8] such as mutual information to generate an information plane, which quantifies
and analyzes DNN performance [9]. Defense Mechanisms utilizing information-theoretic
characteristics to endogenously quantify and explain the orderliness of the model, as well
as interconnections between layers in neural networks. These methods are potential in

1

2 CHAPTER 1. INTRODUCTION

non-IID environments due to their independent of data distribution. This work aims to
analyze, design, and prototype an information theory-based defense mechanism, targeting
a broader range of poisoning attacks and enhancing the adaptability and robustness of
defense systems in DFL environments, particularly under non-IID conditions.

1.2 Description of Work

In the first stage, the state-of-the-art concepts, technologies, and systems involved in the
project are reviewed and documented. During the design phase, this paper proposes an
anomaly detection method named “AIDFL”, presenting a proposal outlining the design
and structure of the novel defense mechanism, improving the ability to detect untargeted
data poisoning attacks under non-IID environments.

AIDFL is defined as a three-phase anomaly detection protocol used to identify potential
malicious updates. After splitting the data in non-IID, gradient descent is performed,
followed by the feature extraction. Next, K-means clustering is applied to the sample
set of each client. After estimating mutual information and conditional entropy, thresh-
olds are set based on the mean and standard deviation for anomalies filtering. Finally,
the normal weights are aggregated and normalized to be updated. The updated model
will reduce the impact of data poisoning attacks. AIDFL combines anomaly detection
and robust aggregation in a hybrid defense mechanism and sets up a series of poisoning
configurations to validate the effectiveness of the defense against poisoning attacks for
subsequent evaluation.

Lastly, the proposed defense mechanism and its implementation have been evaluated, ana-
lyzed, and discussed across various dimensions by measuring a set of metrics to illustrate
the validity of the algorithm in non-IID environments. Currently, there are extensive
experiments on MNIST, FMNIST, and CIFAR10 implemented to evaluate AIFDL. Simu-
lations include different poisoning nodes ratio (PNR), poisoning sample ratio (PSR), and
noise ratio (NR) under untargeted data poisoning attacks. Overall, AIDFL has demon-
strated outstanding performance, advancing the robustness research of DFL in non-IID
environments.

1.3 Thesis Outline

The overview and structure of this thesis are as follows: Chapter 2 provides a detailed
introduction to the basic theories and concepts involved in this thesis. Then it lists related
works, focusing on the classification of defense mechanisms in non-IID environments at
the current stage, with special emphasis on those mechanisms based on information theory
in Chapter 3. Next, Chapter 4 proposes a new defense mechanism based on the summary
and improvement of related work. It also defines two types of data poisoning attacks
and specifies metrics to be used as an evaluation later on. Chapter 5 will outline the
implementation details and technical specifications of the defense strategy. An extensive
evaluation of the defense mechanisms proposed against the poisoning attacks specified in

1.3. THESIS OUTLINE 3

Chapter 4 will be provided in Chapter 6. Finally, Chapter 7 summarizes the results and
observations of the experiments, and presents the limitations during the implementation
process, together with the direction of future work.

Chapter 2

Background

The following sections introduce the background of FL and DFL with their inherent
opportunities and vulnerabilities, as well as taxonomy according to the targets of poisoning
attacks. In practical scenarios, data distribution varies across different clients. The entire
thesis from this chapter forward will focus on studying DFL under non-IID conditions.

2.1 Federated Learning

The conventional centralized data processing workflow involves aggregating data collected
from various sources to a single server or data center [10] for further unified processing
and analysis. This method is widely utilized by researchers for its effectiveness in applying
ML algorithms on large datasets to create predictive models, but it may raise concerns
related to data security and the requirement for substantial computational resources [1].

FL utilizes the concept of edge computing [11], where data processing and model training
only occur on local devices rather than a central server. In FL, each client independently
uses its own data for learning and sends updates to the cloud or central server [10], which
plays a key orchestrating role by collecting and integrating these updates to optimize
and improve the overall global model [6]. FL reduces reliance on centralized processing
methods by allowing multiple devices to collaboratively train models. This approach
reduces data transmission costs and holds significant potential in addressing data privacy
related concerns.

2.1.1 Federated Optimization Algorithm

The server-client architecture in FL allows the server to aggregate model updates trained
locally on clients to optimize the global model. The updated models are then sent back
to the clients for further training [12]. This process does not require central data storage,
thus preserving the privacy of the data. Based on this characteristic, [12] proposed the

4

2.1. FEDERATED LEARNING 5

FederatedAveraging (FedAvg) algorithm, which is regarded as the standard frame-
work of FL and widely applied today. This method builds on the original FL framework
by splitting data into batches and performing stochastic gradient descent (SGD) on each
client. The central server then takes charge of calculating the weighted average of the
parallel model updates.

The detailed process and steps of the FedAvg algorithm typically involve 5 stages [13]:

Figure 2.1: Structure of FedAvg. [14]

• Initialization. The server initializes the global model w0 and distributes it to all
participating clients. Define the number of epochs as E and there are K clients.

• Local Training. Each client k independently trains the model on their local data
using SGD.

• Model Updates. Each client sends their model updates parallelly to the server
after training in each epoch. The updated model is given by:

w ← w − η∇ℓ(w; b) (2.1)

where η is the learning rate.

• Aggregation. After each round, the server aggregate these updates by computing
the weighted average:

mt ←
∑
k∈St

nk (2.2)

wt+1 ←
∑
k∈St

nk

mt

wk
t+1 (2.3)

where nk is the number of data points at client k, and mt is total number of data
points.

• Iteration. The server distributes the updated parameters back to clients and repeat
the above processes round by round until the global model (server) converges or
meets specific performance criteria [12] [13].

6 CHAPTER 2. BACKGROUND

Compared to other Federated optimization algorithms, especially those applying SGD,
FedAvg uses less rounds of communication to train models by effectively combining local
learning with global aggregation, reducing the need for frequent data transmission and
helping to maintain data privacy. Security of the system can still be guaranteed even if
there are sets of clients drop out during training time [12] [15].

However, as the number of clients k and epochs E increases, whether FedAvg directly
drops out the models of clients that cannot complete training on time or then uses un-
finished models for aggregation, it will impact the convergence effect of the final global
model. This also reflects the system heterogeneity of FedAvg, which solves the problem
of non-variable local work due to network scale and system constraints by directly drop-
ping out unfinished models. From the perspective of data heterogeneity, distribution of
data generated by different devices will vary greatly. Therefore, the local models will be
skewed from the original global model under non-IID data settings. [16]

2.1.2 Decentralized Federated Learning

FL, like other client-server systems, can probably face single point of failure issues. To
address this, DFL eliminates central orchestration, reducing overload, enhancing trans-
mission speed, and mitigating the effects of data heterogeneity. DFL operates on a P2P
basis without a central server, positioning all nodes as equals. Each client shares its model
updates with immediate neighbors, who then aggregate these updates locally, leading to a
decentralized model improvement process across the network. This setup is illustrated in
Figure 2.2, showcasing the structural differences between traditional FL and DFL [6] [2].

Figure 2.2: Difference between (Centralized)FL and DFL. [17]

DFL Approaches can generally be classified based on key characteristics such as scalabil-
ity [6] (resilience to node and new participants join failures), communication architecture
(P2P networks capacities), data distribution handling (methods to tackle non-IID data),
and privay & security measures (blockchain integration or secure aggregation protocols),
which reflect the strategies DFL employs to address challenges in decentralized environ-
ments.

2.1. FEDERATED LEARNING 7

2.1.3 DFL Approaches: non-IID Applications

This thesis focuses on creating a defense system for handling non-IID data within DFL,
emphasizing the challenge of data heterogeneity. The main objective is to ensure robust
model performance in distributed environments, addressing the difficulties FL methods
face with non-IID data. The distribution, varying widely across clients, can introduce
model bias and reduce efficiency, underscoring the need for innovative solutions to achieve
robustness in model training and performance in DFL settings. [18].

PENS. As an innovative method in DFL, Performance-Based Neighbor Selection (PENS)
is tailored for enhancing model accuracy in scenarios with non-IID data. It involves clients
selecting neighbors based on performance metrics, indicating similar data characteristics.
This selection enables clients to collaborate effectively by evaluating and sharing train-
ing losses, thus facilitating a model learning process that is better suited to the specific
data distributions of each client. However, this method requires comparing performance
metrics of clients to assess their similarity without compromising data privacy. Addition-
ally, managing dynamic networks, ensuring scalability of PENS, and efficiently addressing
communication overhead are significant challenges. Successfully overcoming these issues
is crucial for PENS to effectively improve model accuracy in non-IID data scenarios [4].

AsyNG. To reduce communication cost, Chen et al. [19] proposed an algorithm which
incorporates asynchronous operations, neighbor selection, and gradient push mechanisms
to improve model training performance. For each edge node, gradients are only pushed to a
subset of neighbors, allowing for dynamic neighbor selection for each node. Theoretically,
AsyNG uses convergence analysis and a priority-based selection algorithm to dynamically
optimize communication and model performance. Its effectiveness and accuracy have been
demonstrated through extensive experimental validation. This innovative approach helps
mitigate the impact of data and system heterogeneity, making a valuable contribution to
DFL research. Since the article does not explicitly mention the implementation challenges
of the method, this section will outline a key challenge that asynchronous methods in DFL
may encounter: managing stale updates resulting from asynchronous communication,
which could potentially slow the convergence of models. This highlights a critical aspect
of asynchronous methods, focusing on the balance between efficiency and the risk of
outdated information affecting learning progress.

Def-KT. [20] Decentralized Federated Learning via Mutual Knowledge Transfer (Def-
KT) is designed to tackle data heterogeneity in DFL within IoT systems, where IoT clients
collaboratively train models for image classification tasks in a structure without a central
server, thereby reducing the risk of privacy data leakage. It consists of two main steps:

(i) Model Updating: Fix number of clients train their models on private data using
SGD and then share their fine-tuned models with another randomly selected client.

8 CHAPTER 2. BACKGROUND

(ii) Model Fusing [21]: Receiving clients integrate knowledge from both their local
model and the received one through Mutual Knowledge Transfer (MKT) rather than
model averaging [22] [23].

Def-KT mitigates client-drift and enhances model generalization across heterogeneous
datasets by iterating the steps. This approach, while demonstrating outstanding effec-
tiveness in addressing data heterogeneity in DFL, may face certain challenges and op-
portunities for future work. For example, it may involve optimizing process for efficiency
across diverse and dynamic networks, and exploring fault tolerance and scalability in other
larger decentralized networks. Future work might also explore bandwidth utilization [6] of
Def-KT and conduct a theoretical analysis to deepen the understanding of its potential
applications [20].

DFL has presented substantial advantages due to the structural feature of no centralized
server, allowing data to be processed on local devices, which significantly further improves
communication efficiency. Moreover, it also improves system resilience and scalability by
eliminating centralized bottlenecks, which facilitates a more robust and efficient learn-
ing environment across distributed networks. The decentralized structure of DFL, while
offering numerous benefits over FL, also introduces specific challenges. In addition to
budget constraints and peer trust common in classic P2P systems, DFL is particularly
susceptible to poisoning attacks. The complexity of ensuring the security of the entire
system increases since each client has access to the model parameters. Classification of
poisoning attacks, focusing on non-IID data will be introduced in detail in the following
section [2] [6] [24].

2.2 Poisoning Attacks

In FL, poisoning attacks are where attackers intentionally manipulating models or data [25]
during the aggregation process, resulting in wrong updates of the global model [26], de-
grading the overall performance and integrity of the model. Since poisoning attacks occur
during the training phase, in a training environment without a centralized server, some
clients may execute these attacks undetected. It can be inferred that DFL also faces
similar threats [2] [6].

Poisoning attacks can be classified based on the poisoned surfaces or the objectives of
adversaries. The poisoned attack areas refer to malicious interference during the training
process or aggregation phase. The attack goals clarifies if there is a specific target behind
the attack, shaping the strategy and potential impact on the learning system. The fol-
lowing sections will explore the concepts and specific implementation methods for each
category of poisoning attacks.

2.2.1 Attack Surfaces

Based on the area of attack, poisoning attacks can be categorized into two types: data
poisoning attacks and model poisoning attacks. Data poisoning attack involves malicious

2.2. POISONING ATTACKS 9

actors manipulating the training data on their local devices [25] before it is used to update
the global model. FL relies on aggregating updates from many distributed sources, even a
small number of compromised devices can significantly impact the overall model integrity.
Model poisoning attack refers to malicious participants deliberately altering their model
updates before aggregation to corrupt the global model [27]. Recent studies [28] [29]
have indicated that model poisoning attacks can be particularly severe as they directly
manipulate the aggregated model without detection, causing immediate and widespread
degradation in system performance. Compared to model poisoning, data poisoning might
require more effort to impact the model due to aggregation and averaging processes in
FL.

Data Poisoning Attacks. Generally, an attacker manipulates the training data on
their local device to include incorrect or misleading information [26]. This can involve
altering labels, injecting malicious samples, or distorting features within the dataset [30].
The poisoned data, when used for local model training, produces skewed updates that,
once aggregated into the global model. The goal of the attacks is to manipulate the
model into producing incorrect outcomes, leading to inaccurate predictions or decisions
in future tasks. Specific strategies of data poisoning attacks, including label flipping
attacks and poisoning samples attacks, will be detailed later. The attackers exploit the
trust FL systems place in local updates, and the distributed nature of the learning process
to introduce corruption subtly.

• Label-Flipping Attacks: Adversaries with access to training data alter the labels
of certain data points [25]. For example, they might maliciously label multiple
instances of "1" as "7" [31] as shown in Figure 2.3, while keeping the data features
and content intact, to deceive the FL models. Label flipping can be random or
targeted, aiming to compromise the model’s learning process [30].

Figure 2.3: Label-Flipping Attacks: Adversaries alter labels. [31]

• Poisoning Samples Attacks: In this type of attack, adversaries modify the train-
ing data by introducing malicious patterns or adding noise to create poisoned sam-
ples [25] [30]. Unlike label flipping, poisoned samples alter the features of the data
without changing the labels. The majority of methods in recent researches for
generating poisoned samples utilize Generative Adversarial Networks (GANs) [32].
Attackers disguised as honest clients train a GAN to create synthetic data that
closely mimics genuine training samples. They then use this simulated data to gen-
erate poisoned samples, which are subsequently sent during the aggregation phase
to introduce poisoned updates aimed at compromising the global model [30].

10 CHAPTER 2. BACKGROUND

Model Poisoning Attacks. Data poisoning attacks ultimately lead to model poison-
ing, hence they can be regarded as a subset of model poisoning attacks [25]. Model
poisoning attacks methods mentioned in this paper typically manipulate the local model
parameters directly before they are sent for aggregation. The attackers attempt to de-
liberately adjusting the weights or gradients of their model to introduce errors or bi-
ases [25] [26] [30]. As shown in Figure 2.4, the initial global model is defined as ω0. After
completing the kth round of local model training, malicious clients modify the model up-
date δk

i , where δk
i represents the weight difference for each client between rounds k and

k − 1 [27]. When the updates are aggregated, it can reduce efficiency, slow down the
convergence of the global model and make inaccurate predictions. Attackers craft these
manipulations carefully to avoid detection [26]. Especially in non-IID settings, it becomes
difficult for the central server to detect these malicious updates [27].

Figure 2.4: Model poisoning attack directly manipulate the local models in FL. [27]

The model poisoning attacks can be categorized into the following two types through the
different generation methods of the modified parameters:

• Optimization Methods: Optimization methods maximize the impact of the
model poisoning attacks while minimizing the difference between the original model
from the previous round and the poisoned model. This approach significantly en-
hances stealth of the attack mechanisms, making it difficult for the central server
to detect. Therefore, optimization methods are particularly effective in targeted
attacks, especially backdoor attacks, by fine-tuning the attack to evade detection
while achieving the intended malicious outcomes [25] [30] [33].

• Random Weights Generation: In model poisoning attacks, the strategy of gen-
erating random weights involves attackers randomly creating a set of weights that
match the dimension of the original weights of the model [25]. Based on their un-
derstanding of the global model, adversaries deduce a numerical interval [-R, R] and

2.2. POISONING ATTACKS 11

generate input data within this range [30]. When these specially crafted inputs are
incorporated into the training process, it leads to the adoption of randomly assigned
weights, thereby reducing the performance of the global model and compromising
its functionality. [33]

2.2.2 Attack Goals

Poisoning attacks can indeed be categorized based on the attack objectives into targeted
attacks, which aim at manipulating specific model outcomes, backdoor attacks, and un-
targeted attacks, which seek to degrade the overall performance of the model.

Targeted Attacks. In FL, targeted poisoning attacks are designed to are designed to
cause the model to misclassify specific types of inputs. This is achieved by manipulating
the training set or local models, leading to incorrect predictions by the model [25] [34].
Since this type of attacks only generates poisoned updates through the injection of specific
malicious clients and does not affect the overall performance for other inputs, it is harder
to detect compared to untargeted attacks [30]. Most targeted poisoning attacks have
been categorized into data poisoning and model poisoning attacks previously. Besides,
Xingchen et al. proposed a targeted model poisoning attack algorithm [35] based on
capacity of the neural network. Adversaries inject poisoned neurons into the model’s
redundant space After understanding the model capacity. This method has achieved
significant results in terms of stealth and persistence.

Backdoor Attacks. Backdoor attacks typically occur during the training phase, where
adversaries manipulate part of the training dataset by injecting hidden patterns or triggers
to manipulate the model training process [25]. This type of attack causes samples with
triggers to behave anomalously, while other benign clients remain unchanged [36]. These
attacks can be categorized primarily into two types:

1. Semantic attacks: The targeted inputs possess natural properties, such as specific
pixels, striped triggers, or word sequences. The attackers do not modify the original
features of the samples but will flip their labels [37] [38].

2. Artificial attacks: This type within backdoor poisoning attacks specifically refer to
scenarios where attackers artificially insert synthetic triggers into training data to
manipulate the behavior of the trained model. Unlike semantic attacks, artificial
attacks additionally assign patterns to target samples in the testing phase. For
example in the Figure 2.5, comprised clients are artificially added with global triggers
or tuned partial triggers to modify the pictures [37] [38].

12 CHAPTER 2. BACKGROUND

Figure 2.5: Semantic attacks and artificial attacks in backdoor attacks. [37]

In the classification method described in this paper, backdoor attacks are considered as
a subclass of targeted attacks, which means they do not affect the overall performance
of the model. This characteristic makes backdoor attacks difficult to detect because they
are designed to activate only under specific conditions, leaving the general functionality
of the model unaffected for benign clients. [25] [30]

Untargeted Attacks. Different from the two targeted attacks mentioned earlier, untar-
geted attacks aim to degrade the integrity and performance of the learning process [25] [26].
For example, samples are attacked indiscriminately in a classification task, leading to
their incorrect classification across the board. One classic scenario of is the Byzantine
attack [25] [39], where participants maliciously share harmful information by introduc-
ing incorrect updates or gradients. Common untargeted attack methods include noise
injection—introducing random noise into data and model parameters [26], which can
be categorized as model poisoning strategies (discussed in 2.2.1). Another approach is
to influence the convergence of the model by manipulating the weights of the global
model [26] [39]. Additionally, data poisoning techniques like untargeted label flipping
are employed. The purpose of these methods is to reduce the accuracy and reliability of
the model without targeting specific outcomes or classifications. Therefore, untargeted
attacks are easier to detect because it only requires comparing model updates to identify
anomalies [30].

2.3 Information Theory

Information theory, as founded by Claude Shannon in the 1940s, is a mathematical frame-
work for quantifying, storing, and communicating information. Core concepts of informa-
tion theory are entropy, which measures data uncertainty, and mutual information, quan-
tifying the shared information between input variables and resulting outcomes. These
principles have been widely applications, and have been instrumental in advancements
across science domains and technology.

Information theory is considered because the main objective of this paper is to design a
defense strategy using intrinsic model variables, independent of uneven data distribution.

2.3. INFORMATION THEORY 13

Information theory has become a powerful tool for developing defense mechanisms that
do not rely directly on the characteristics of the data, but rather on the underlying
information processing principles of the models themselves.

Information theory can quantify attacks by evaluating the impact on the entropy or the
mutual information. Significant changes in these metrics can reveal the fact that the model
has been tampered with by an attack, as it suggests changes to the information processing
behavior of the model. This approach provides a quantitative framework for detecting and
analyzing the effects of attacks on a model’s performance and reliability. The remaining
sections of this chapter will cover some foundational concepts of information theory and
their application methods in ML.

2.3.1 Entropy

Entropy is a measure of the uncertainty or randomness in a dataset, which is represented
as the expected amount of information [40]. For a discrete random variable X that follows
probability P , the entropy H is given by:

H(X) = −
∑

i

p(xi) log p(xi) (2.4)

where p(xi) is the probability mass function (p.m.f.) of the random variable X for each
discrete outcome xi.

Similarly for continuous random variables X, p(x) is the probability density function
(p.d.f.) of X, then the differential entropy is given by the formula:

H(X) = −
∫ ∞

−∞
p(x) log p(x)dx (2.5)

Negative logarithms and expectations are used in the definition of entropy in information
theory. Logarithm functions are applied because they can convert the product of proba-
bilities into a summation, which is essential for additivity of entropy across independent
random variables.

Typically, it is assumed that frequent events carry less information than rare events be-
cause rare events provide more "surprise" and thus contain more information when they
occur. Therefore, a negative sign is used to establish a decreasing relationship between
the probabilities and their associated information content, ensuring that entropy remains
positive [40]. Entropy is used in ML to quantify the amount of information required to
describe the state of a system or to predict the outcome of a random variable.

2.3.2 Mutual Information

While entropy is used to formulate the quantity of information, mutual information quan-
tifies the amount of information shared between two random variables. It reflects how
much understanding one variable aids in reducing the uncertainty of another, thereby
revealing the mutual dependence or correlation between the two variables.

14 CHAPTER 2. BACKGROUND

• Joint Entropy: Combined with relevant concepts from statistics, joint entropy
indicates the entropy of a joint distribution of two variables X and Y , quantifying
the average amount of information needed to describe their joint outcomes.
Given the joint probability distribution of two discrete randoms X and Y as p(x, y),
the joint entropy H(X, Y) [40] is defined as:

H(X, Y) = −
∑

x

∑
y

p(x, y) log p(x, y) (2.6)

For continuous cases, H(X, Y) will be:

H(X, Y) = −
∫

x

∫
y

p(x, y) log p(x, y)dxdy (2.7)

From the concept of entropy, joint entropy can be inferred to represent the total
uncertainty or the amount of information contained in a pair of random variables.

• Conditional Entropy: To calculate the shared information between two variables,
the amount of information obtained by the two variables has already been deter-
mined in the previous paragraph. Therefore, it is necessary to further calculate the
remaining uncertainty of one variable given the knowledge of another to accurately
measure the degree of information sharing between them. Based on conditional
probability in probability theory, H(Y |X) is the conditional entropy of Y given X,
representing the average uncertainty in Y when X is known [40]:

H(Y |X) = −
∑

x

∑
y

p(x, y) log
(

p(x, y)
p(x)

)
= −

∑
x

∑
y

p(x, y) log p(y|x) (2.8)

for discrete random variables X and Y , and

H(Y |X) = −
∫

x

∫
y

p(x, y) log
(

p(x, y)
p(x)

)
dxdy = −

∫
x

∫
y

p(x, y) log p(y|x)dxdy (2.9)

for continuous random variables. p(x, y) represents the joint probability distribution
of X and Y , and p(x) represents the marginal probability distribution of X. This
formula calculates the expected value of the logarithmic ratio of the joint probability
to the marginal probability, summing or integrating over X and Y .
Therefore, information of Y given X, H(Y |X), is equal to information obtained by
X and Y together subtract information in X, and the same applies to Y as well [40]:

H(Y |X) = H(X, Y)−H(X) (2.10)

H(X|Y) = H(X, Y)−H(Y)

• Mutual Information: Intuitively, the mutual information is defined in terms of
joint entropy H(X, Y) and the individual entropies H(X) and H(Y):

I(X, Y) = H(X) + H(Y)−H(X, Y) (2.11)

2.3. INFORMATION THEORY 15

Figure 2.6: The relationship between mutual information, conditional entropy, and joint
entropy. [40]

Alternatively, as shown in Figure 2.6, mutual information is the intersection of total
information contained in both X and Y . Specifically, it can be expressed as the
sum of information in X and Y minus the information exclusively contained in X
and not in Y , and the information exclusively contained in Y but not in X. This
measures the amount of information shared between X and Y :

I(X, Y) = H(X, Y)−H(X|Y)−H(Y |X) (2.12)

2.3.3 Information Bottleneck (IB) Method

The Information Bottleneck (IB) method is a principle from information theory that seeks
to find a compact representation of an input variable X that preserves as much information
as possible about an output variable Y . Essentially, it is a method for extracting the part
of the input that is most relevant for predicting the output, filtering out irrelevant parts
of the input data.

The IB method formalizes this as an optimization problem:

maxT I(T, Y)− βI(T, X) (2.13)

where T is the transformed variable, representing the compressed version of X, and β is
a Lagrange multiplier that trades off between compression and prediction accuracy.

The goal of IB optimal representation is to compress X by mapping it to T such that T
retains as much information about Y as possible, while also being as small as possible.
The parameter β controls the trade-off between the complexity of the representation and
the amount of information about Y that is preserved. [41] [42] [43]

2.3.4 Applications in Machine Learning

Information theory provides a quantification method for the uncertainties that arise during
the research process. The primary objective of ML is to extract insights from data and

16 CHAPTER 2. BACKGROUND

make critical predictions. As a result, ML models trained with information theory leverage
its principles to optimize data representation and decision processes. For example, the
cross-entropy loss, commonly used in ML models, originates from concepts rooted in
information theory. [40]

Common applications include feature selection, model evaluation, regularization, etc.
With respect to the endogenous characteristics of models, information theory could help
in understanding the intrinsic properties of data and the communication channels through
which data is processed, leading to models that are not only more efficient in learning
from data but also in making more informed predictions.

One of the typical applications is utilizing information theory to understand the learning
dynamics of models. During the training of Deep Neural Networks (DNN), the transition
from disordered to ordered feature extraction plays a crucial role in enabling the network
to understand the meaning and abstract concepts in the data gradually. This eventually
leads to the creation of a structured data representation, which improves the accuracy of
identification tasks. Yu et al. [8] had introduced theoretical approaches that use layer-wise
information metrics to examine the interactions and dynamics between different layers in
DNNs.

Shwartz-Ziv et al. [9] proposed the concept of the information plane, an idea used in
the analysis of DNNs within the context of information theory. It provides a graphical
way to understand how information flows through a network during training. The plane
is typically represented by plotting two quantities for each layer of the network: the
horizontal axis I(X; T), represents the mutual information between the input and the
hidden layers T , and I(Y ; T) on the vertical coordinates, refers to the mutual information
output (decision of the neural network) and the hidden layers. The position on the
information plane reflects how much information about X and Y is preserved by different
hidden layers. This visualization technique is influenced by the idea of IB theory.

In conclusion, this mechanism is based on principles from information theory and the
inherent characteristics of the model, making it independent of data distribution. Con-
sequently, the impact of data features on identification results is not significant. These
methods have the potential to be applied in non-IID environments.

Overall, information theory provides mathematical tools and theoretical foundations for
machine learning, enabling most research to theoretically analyze and optimize the per-
formance of ML algorithms. Particularly in handling large-scale data and complex model
structures, the role of information theory becomes especially important.

Chapter 3

Related Work

This chapter will discuss existing defense mechanisms, specifically their contributions
and gaps in DFL. Existing research primarily focuses on centralized structures as they
are more prone to malicious attacks. The current defense strategies can be classified into
three types: robust aggregation, anomaly detection and perturbation mechanism. Each of
them has unique applications in DFL, effectively addressing different kinds of attacks and
threats. Understanding the strengths and limitations of these defense strategies enables
this research to fill in the gaps in DFL, implementing a more robust and efficient security
mechanism.

3.1 Robust Aggregation

In FL, robust aggregation is one type of the defense strategies that can mitigate poisoning
attacks by altering the aggregation method of the global model during the training phase.
The main objective of this approach is to ensure that the training of the entire model is not
compromised by anomalous or malicious attacks. Most robust aggregations are mainly
implemented through geometric methods or regularization. This chapter will provide a
detailed introduction to several aggregations designed by geometric methods, which can be
specifically divided into vector-wise and dimension-wise filtering. The following two mean-
based methods utilize dimension filtering, by excluding extreme clients. Unlikely, Krum,
which applies vector filtering to select vectors that are close to the majority [25] [26] [38].
Current robust aggregations could more effectively defend against untargeted attacks.
Future research will focus on the targeted attacks which are hard to detect.

TrimmedMean. This method [44] is calculated by removing certain percentage of the
highest and lowest updates before calculating the mean. Specifically, suppose there are
values a1 < a2 < a3 < ... < an, and 2β < n. Then the β-trimmed mean mβ of parameters
a1, a2, a3, ..., an is defined as:

mβ =
∑n−β

i=β+1 ai

n− 2β
(3.1)

17

18 CHAPTER 3. RELATED WORK

Median. Median (Coordinate-wise) is another Byzantine-robust aggregation defense
strategy that applies dimension-wise filtering [45]. For the jth global model parameter,
the server sorts the jth parameter from m computing nodes and takes the median as the
jth parameter for the global model. For the even cases, median is the average of the
two middle parameters. Due to its insensitivity to skewed distributions [46], this robust
aggregation is verified to be effective in model replacement attacks.

Similar to TrimmedMean, Median aggregation arrives to the optimal order error rate when
the objective function is strongly convex. Furthermore, a common assumption under these
two robust algorithms is that most clients are benign [38]. In addition to algorithms for
dimension-based filtering, the following will continue with vector-wise filtering aggregation
defenses: Krum and Bulyan, a variant of Krum and TrimmedMean combined approach.

Krum. Krum is a well-known aggregation method in FL for preventing malicious at-
tackers from influencing the global model by manipulating the local model weights and
it is robust against Byzantine attacks. The algorithm was first proposed by Blanchard
et al. in 2017 [47]. The core idea of the Krum algorithm is to perform a special rank-
ing and selection of participants’ local model weights at the end of each training round.
Specifically, Krum follows the steps below:

1. Calculate the distance between model weights: for each pair of participants i and
j, calculate the Euclidean distance between their local model weight vectors.

2. Calculate the sum of distance for each participant: there are n participants in
total, and for each participant i, assuming that there are f attackers, then calculate
the sum between the participant’s model weights and the other nearest n − f − 1
participants.

3. Select the model with the smallest sum of distance as the aggregated model.

In this way, Krum is able to build a consensus among the participants, filtering out
abnormal weights that may be influenced by malicious attacks, and thus preserving the
robustness of the global model.

Overall, Krum can be applied to various types of FL scenarios. However, the limitations
are that it has a high computational complexity: Krum needs to calculate the distance
between each pair of participants with a computational complexity of O(n2), where n
is the number of participants. Besides, in the case of a large number of participants,
the computational burden may be heavier, while Krum leads to higher communication
overhead: Krum needs to transmit model weights and distance measures between partic-
ipants, which may lead to larger communication overhead. In environments with limited
network bandwidth or unstable communication, the efficiency of FL may be affected.

Bulyan. Mhadi et al. [48] combined the mechanisms of Krum and TrimmedMean to
propose an algorithm called Bulyan, which has significant advantages in ensuring model
robustness and stability. Firstly, Bulyan iteratively applies Krum to select θ < n − 2f

3.2. ANOMALY DETECTION 19

model parameter updates, where n is the number of clients and f is the number of Byzan-
tine clients. Then TrimmedMean is applied to these candidate parameters, removing the
largest and smallest β values and calculating the corrected mean for the remaining pa-
rameters to produce the global aggregated model. Bulyan performs Krum multiple times
in each iteration and use it to calculate pairwise distances (nearest neighbors) between
the node data. Overall, Bulyan eliminates the effect of a portion of anomalous parameters
in Krum.

The assumption in Krum that honest client updates are closer, while distance bias exists
in malicious attacks does not hold in the non-IID setting of this thesis, as the unbalanced
distribution of the data can lead to a large deviation in benign updates as well. Research
has shown that implementing Krum in non-IID environment would lead to a degradation
of model performance. The above results have been validated in FL [31] [49] [50], and it
can be inferred that in DFL, relying only on the communication between clients further
decreasing model performance due to the absence of a central server. This is due to the
fact that in DFL, the communication between clients is more complex and unstable, and
malicious participants are more likely to influence the global model.

3.2 Anomaly Detection

Defense methods for anomaly detection are typically independent of the aggregation pro-
cess and have no dependency on the aggregation rules themselves. By analyzing updates
or data from each client, the algorithms identify and remove anomalous results to main-
tain system stability. The next chapters will mention mechanisms that combine anomaly
detection and robust aggregation to make the defense process more complete [25] [30].

LoMar. In LoMar[51], the authors argue that existing studies only considered malicious
updates as global anomalies in FL, and have not analyzed the local feature patterns of
malicious remote updates. This method first uses Kernel Density Estimation (KDE) to
measure the distribution among neighboring clients, then calculates the malicious score
using dynamic thresholds and transforms it into a Boolean vector to classify benign and
malicious clients. It has been validated that LoMar shows strong robustness when dealing
with non-IID scenarios. Furthermore, since this method does not rely on the distribution
of training data, it inherently preserves the privacy characteristics of FL.

FoolsGold. As one of the defense mechanisms against security threats, Fung et al. [31]
proposed an algorithm called FoolsGold that identifies Sybil attacks by monitoring and
adjusting the weights of participants’ contributions. First of all, FoolsGold assumes that
benign participants produce more diverse updates, whereas updates from malicious par-
ticipants tend to be similar. The method measures the similarity of participants’ con-
tributions by calculating the cosine similarity between the updates. When the updates
are too similar, malicious Sybil groups are recognized. Overall, experiments have shown
that FoolsGold performs stably and robustly against multiple attack patterns and works
effectively with non-IID data distributions [30] [38] [52].

20 CHAPTER 3. RELATED WORK

Spectral Anomaly Detection. Since FL architectures are vulnerable to be attacked
by malicious clients, which can lead to an overall degradation of model performance,
Li et al. proposed an approach that uses spectral anomaly detection [53] to identify
malicious client updates. The framework creates an encoder-decoder architecture that
embeds model updates into a low-dimensional space where normal and abnormal updates
can be clearly identified based on their essential features, and the decoder is thus used
to reconstruct model updates [38]. In addition, spectral anomaly detection applies dy-
namic thresholds to distinguish between benign and malicious updates. After considering
all client updates in training rounds and excluding updates above the threshold from
aggregation ensures that the negative impact of these updates is minimized, maintain-
ing the integrity and performance of the global model. In the experimental phase, the
method effectively mitigates both untargeted and targeted (artificial backdoor) attacks
under non-IID condition [53] [52].

3.3 Perturbation Mechanism

Perturbation mechanisms apply privacy-preserving techniques, especially when dealing
with shared model parameters or the local dataset of each client, to ensure that the
privacy will not be comprised during training phase. The core of this type of mechanism
is to add a certain amount of perturbation (noise) to the data or model to reduce useful
information that can be extracted by an attacker, thus protecting the user’s privacy while
maintaining the utility of the data [25] [30] [54].

Differential Privacy. One of the most common method in perturbation mechanism is
differential privacy, which is based on rigorous mathematical theory. In recent researches,
it has been widely applied in different areas of data privacy protection [55].

Du et al. presents a method to improve the performance of anomaly detection and back-
door attack detection using differential privacy techniques [56]. The authors show how to
enhance the detection capabilities to recognize abnormal data samples by adding random
noise to the data or to the aggregation process. [25] [54]

FLAME. Existing differential privacy methods may degrade the performance of be-
nign clients, therefore FLAME [57] has been proposed to utilize model clustering and
weight-clipping methods to minimize the amount of noise required to eliminate backdoor
attacks [25]. Specifically, FLAME identifies potentially poisoned updates through clus-
tering analysis and eliminates outliers in participant updates by limiting the maximum
threshold for the weights. Additionally, FLAME injects estimated noise into the weights
to further reduce potential backdoor effects. Compared to conventional differential pri-
vacy methods, FLAME effectively eliminates backdoor while minimizing the impact on
benign participants [38] [57].

3.4. HYBRID DEFENSES 21

3.4 Hybrid Defenses

The Hybrid Mechanisms, by combining robust aggregation and anomaly detection tech-
niques, can enhance the overall performance and security of systems more effectively in
certain scenarios than using a single technique alone. This combination leverages the
strengths of both techniques to more effectively confront data tampering and malicious
attacks [38].

Anomaly detection identifies unusual patterns in data or model updates, while robust
aggregation reduces the impact of these outliers on the final global model. However, ap-
plying anomaly detection alone may ignore subtle anomalies, while robust aggregation
may not be sufficient to handle large-scale coordinated attacks. Overall, in combined
algorithms, robust aggregation can keep model performance when facing malicious at-
tacks, and potential threats can be identified and responded to earlier by implementing
anomaly detection, thus intervening earlier to prevent malicious data from affecting the
model training process. [25] [30]

Trusted DFL. According to the research proposed by Gholami et al., Trusted DFL [58]
discusses enhancing security and trust relationships in DFL by implementing a trust met-
ric. Each node in this framework is evaluated based on their behaviour scores, which
reflects performance contribution and update consistency of each client [38]. The score of
each node is computed based on the distance metric and in the framework of DFL, the
client can compute the global trust score by broadcasting the local trust score to commu-
nicate with its neighbors. After the training phase, the global trust scores of the neighbors
are served as weighting factors in the aggregation. Trusted DFL performs well against
untargeted modeling attacks in non-IID scenarios, especially when dealing with random
weight generation. For future directions of work, this includes continuing to evaluate the
effectiveness of the defense mechanism against targeted backdoor attacks [38] [58].

3.5 Information theory-based Defense Approaches

After discussing three types of poisoning attack defense mechanisms in the previous sec-
tions, this section will introduce the information theory-based defense approaches. In-
formation theory is the core concept of the algorithm design in this paper, hence the
following two methods will involve metrics related to information theory and serve as the
foundation of the design in this thesis.

VFedAD. The method presented in the article involves the Information Bottleneck (IB)
principle (Section 2.3.3). Specifically, the paper addresses the challenge of data poisoning
attacks in Vertical Federated Learning (VFL). To defend against these attacks, Lai et
al. proposed a method called VFedAD [59], which is based on the information-theoretic
mechanisms issuing vertical federated data poisoning attacks.

22 CHAPTER 3. RELATED WORK

VFedAD uses an unsupervised learning approach to learn semantic client data repre-
sentations. It does this through contrastive learning and cross-client prediction tasks,
which are designed to maximize mutual information between representations of different
clients while simultaneously minimizing conditional entropy to discard irrelevant infor-
mation [59]. This aligns with the core concept of the IB method, which aims to retain
as much relevant information about a target variable as possible while compressing the
input variable.

For contrastive learning, the optimization objective is represented as [59]:

LCL =
∑
k ̸=l

1
N

N∑
i=1

log esim(Zk
i ,Zl

i)∑N
j=1 esim(Zk

i ,Zl
i) (3.2)

By minimizing the contrastive loss, VFedAD seeks to capture essential semantic informa-
tion that is useful for detecting anomalies generated by data poisoning attacks, ensuring
that the information relevant for making correct predictions is retained.

While discarding irrelevant information, the authors introduce cross-client prediction
tasks, which is to minimize conditional entropy between representations of client k and
client l, Zk and Z l. Therefore, minimizing cross-client prediction loss function for multiple
clients is equivalent to [59]:

LCP =
∑
k ̸=l

Lk|l
CP = 1

N

N∑
i=1

∑
k ̸=l

∥∥∥Zk
i − gl→k(Z l

i)
∥∥∥2

2
(3.3)

Overall, optimizing the combination of the two loss functions will capture the most amount
of information [59]:

L = LCL + λLCP (3.4)

Although VFedAD utilizes mutual information and conditional entropy to filter informa-
tion, it is essentially categorized as an anomaly detection mechanism. Therefore, after the
loss function converges, the algorithm designs an anomaly scoring function that calculates
the neighbor consistency score SNC(i) and client consistency score SCC(i) to identify and
remove anomalous samples with higher scores, effectively defending against data poisoning
in VFL [59].

Sageflow. The authors of Sageflow argue that existing defenses are insufficient to ad-
dress stragglers and malicious attacks. Therefore, SageFlow is proposed to solve both
issues simultaneously. The approach includes strategies such as staleness-aware grouping,
entropy-based filtering, and loss-weighted averaging. By integrating these methods, ma-
licious and honest clients are effectively distinguished, and the losses caused by malicious
attacks are minimized [30] [60].

For staleness-aware grouping, SageFlow allows results sent from stragglers to be aggre-
gated in later global rounds. This not only minimizes the effect of the delay, but also
provides a good platform to counter the adversaries.

3.6. RESEARCH MOTIVATION 23

1. Entropy-based filtering: The Shannon entropy of client k is computed using a
portion of the public data collected in the server after the it receives updates from
each device [60]:

E(k) = 1
npub

npub∑
j=1

Expub,j
(k) (3.5)

which represents the average of the Shannon entropy of sample xpub,j in the kth

client. Figure 3.1, shows that there is a gap between entropy of malicious clients
and benign ones when confronting model poisoning attacks, a threshold Eth thus
can easily be set and filter out anomalous models.

2. Loss weighted averaging: Sageflow performs loss weighted averaging by replacing
the FedAvg in aggregation, compensating for the fact that entropy filtering does not
work well in data poisoning [60].
The global model weight wt+1 for the next round t + 1 is computed by aggregating
the model weights wt of all clients k in the current round t. wt is weighted by
its corresponding weighting factor β

(k)
t (δ). In loss weighted averaging, β

(k)
t (δ) is

inversely proportional to the performance of each client model on the public dataset,
and the sum of all weights will be normalized to 1. The averaging algorithm can be
computed as the following expressions [60]:

wt+1 =
∑
k∈St

β
(k)
t (δ)w(k)

t (3.6)

For data poisoning attacks, Sageflow reduces impact of adversaries via loss:

Figure 3.1: According to the type of attacks, two methods are used separately to filter
out malicious models and mitigate the damage. [60]

Defending against both stragglers and adversaries by applying the above two approaches
at different stages creates a hybrid defense mechanism that can deal with different types
of poisoning attacks [30] [60].

3.6 Research Motivation

Most of the current researches focus on CFL, while relatively little has been explored
on defense mechanisms in DFL, which removes the central server and transmits model

24 CHAPTER 3. RELATED WORK

updates only through direct communication between clients, making the structure more
vulnerable to malicious attackers. Despite the widespread interest in the prospects of
DFL, there is still a lack of relevant research in this area. Therefore, it is particularly
important to develop a decentralized algorithm that does not rely on a central server,
especially one that can operate effectively in non-IID environment, which is much closer
to practical application scenarios. This will be of great significance to promote the research
progress of DFL in security and privacy protection.

The information-theoretic characteristics can endogenously quantify and explain the or-
derliness of the model and are independent of the data distribution, making it more
suitable for application in non-IID environment. The thesis will use this idea to design a
defense mechanism.

The Table 3.1 below summarize the previous work in CFL and DFL. It highlights the gaps
in DFL research, strongly demonstrating the current need for new defense algorithms.
In addition, the table outlines the method proposed in this paper, which is based on
information theory and investigate defense mechanisms against data poisoning attacks in
DFL under non-IID settings.

3.6. RESEARCH MOTIVATION 25

Table 3.1: Classification of defense approaches against poisoning attacks. For each defense
listed, the type of attack (targeted/untargeted) and the scope (data/model) are indicated.
The technique describes the main methods applied by each approach. This table primarily
summarizes the defense strategies for DFL environment, with the information-theoretic
defenses being based on VFL. Adopted from [25] [30].

Category Method Objective Technique Architecture

Current Poisoning Attack

Defense Mechanisms

Robust Aggregation

Krum D;M Untargeted Euclidean distance CFL

TrimmedMean D;M Untargeted Filtered mean CFL

Median D;M Untargeted Coordinate-wise median CFL

Bulyan D;M Untargeted Krum and TrimmedMean CFL (non-IID)

Anomaly Detection

LoMar D/M Targeted Kernel density estimation CFL (non-IID)

FoolsGold Model U/T Cosine similarity CFL (non-IID)

Li et al. D/M U/T Spectral Anomaly Detection CFL (non-IID)

Perturbation Mechanism
Du et al. Data Untargeted Differential Privacy CFL

FLAME Data Targeted Clustering; CFL

Adaptive clipping

Hybrid Defenses Trusted DFL Model Untargeted Trusted aggregation DFL (non-IID)

Defenses Based on

Information Theory

Anomaly Detection VFedAD Data Untargeted Mutual information; VFL

Conditional entropy

Robust Aggregation Sageflow D/M Untargeted Entropy filtering; CFL

Loss weighted averaging

This work (Hybrid) AIDFL Data Untargeted Information theory; DFL (non-IID)

k-nearest neighbors

Chapter 4

Design

The previous chapters have provided a detailed introduction and summary of the current
situation faced by DFL and the existing defense strategies. Based on the current research
gaps, the theoretical foundation and baseline methods for this work are established. This
chapter will discuss the design framework for the mechanism and simulated poisoning
attack patterns, starting by selecting several types of poisoning attacks as the standard
for evaluating the effectiveness of the algorithms, followed by an introduction to the
algorithm processes and related concepts.

4.1 Evaluation Metrics

The following metrics are used to evaluate the effect of the defense, including three attack
parameters and one measure of model performance [61]:

• Poisoned Node Ratio (PNR) is defined as the ratio of the number of poisoned
nodes to the total number of clients participating in the network.

PNR(%) = number of poisoned nodes
number of total clients (4.1)

Understanding the PNR is crucial for assessing the threat level in a distributed
system. It is an essential parameter for simulating attack scenarios and testing
defense strategies under different levels of system compromise.

• Poisoned Sample Ratio (PSR) refers to the number of maliciously modified
sample data or labels as a percentage of the total number of samples. This metric
is used to assess the extent to which a dataset has been altered and is often used to
analyze the impact of data poisoning attacks.

PSR(%) = number of poisoned samples
number of total samples (4.2)

26

4.1. EVALUATION METRICS 27

• Noise Ratio (NR) used in data poisoning attacks is to control the degree or pro-
portion of noise added, which reflects the noise intensity or coverage of the tampered
samples in the dataset. There will be tree noise types simulated in this algorithm
design:

1. Salt Noise: It randomly sets the values of certain pixel points in an image to
white (usually 255), simulating the highest brightness interfering pixels. For
each pixel point (x, y) in the image, the probability p = NR is set to 255,
keeping the original pixel value with the probability of 1− p.

2. Gaussian Noise: The amplitude of Gaussian noise follows normal distribution.
The larger the variance, the stronger the noise and the blurrier or more dis-
torted the image. The adversary completes the attacks by adding to each pixel
in the image a normally distributed random variable n with n ∼ N(0, σ2),
where σ2 = NR. The new pixel point will be:

I ′(x, y) = I(x, y) + n (4.3)

3. Salt & Pepper Noise: Salt and pepper noise while randomly selecting pixels in
the image and setting their values to the lowest (0) or highest (255):

I ′(x, y) =

0 p = NR

2
255 p = NR

2
I(x, y) otherwise

(4.4)

• Accuracy is a measure of the performance of a model, indicating the proportion of
true results (both True Positives (TP) and True Negatives (TN)) among the total
number of cases tested, as shown in Figure 4.1a:

Figure 4.1: Classification Accuracy with MNIST Digit Samples

(a) Understanding Accuracy in Binary Classi-
fication [62].

(b) (Multi-classes) Image Classification on
MNIST Dataset [63].

Specifically, in the case of multi-class classification such as image classification tasks
(Figure 4.1b) under poisoning attacks, accuracy indicates the proportion of labels
that the model predicts correctly, that is, the number of images the model are
classified correctly out of the total number of images. The formula for calculating
accuracy is:

Accuracy(%) = number of correct predictions
total number of predictions (4.5)

28 CHAPTER 4. DESIGN

In scenarios involving data poisoning, accuracy is particularly important because it helps
evaluate whether the attack has successfully degraded the model’s performance. There-
fore, on the other hand, the effectiveness of the defense mechanism can be reasonably
examined by observing the change in the accuracy rate of the unattacked clients.

4.2 Attack Specification

The research background of this paper is based on data with non-IID distributions, which
makes the data more susceptible to attacks. Therefore, the mechanism proposed in this
paper are specifically designed to defend against data poisoning. Two types of poison-
ing attacks are chosen to analyze and compare current state of research and the novel
approach.

Untargeted Label Flipping. Targeted label-flipping attacks are mentioned in Section
2.2.1 that several instances of a label is replaced by another certain label. In the context
of this work, poisoning attacks are introduced by simulating untargeted label-flipping,
where adversaries change the label of any data to a random label. Both original and new
labels are in the set of all labels known to the attackers [38]. The number of flipped labels
can be represented by PSR∈ [0, 100], where 0 indicates no labels are flipped, and 100
indicates all labels are attacked. In a distributed network, the number of compromised
nodes is represented by the PNR, also ranging from 0 to 100. By combining these two
metrics, poisoning attack is introduced and the impact of the untargeted label flipping
attacks on benign clients is evaluated using accuracy.

Untargeted Sample Poisoning. Another type of data poisoning attacks is poisoning
samples attacks, under the taxonomy in Section 2.2.1. Untargeted Sample Poisoning are
implemented mainly by randomly adding different types of noise to a certain percentage
of samples in the dataset. The term "untargeted" here means that the attack does not
target specific categories or labels, but randomly selects data samples to add noise to.
PSR∈ [0, 100] in untargeted sample poisoning indicates the percentage of data samples to
be tampered with, and NR∈ [0, 100] is used to show the proportion and degree of noise
addition.

4.3 Defense Desgin

The main structure of CFL consists of a server and multiple clients, where the server re-
ceives updates from participants in each round, which can be classified into benign updates
and malicious updates. However, DFL does not have a fixed centralized server. Instead,
updates are shared among distributed nodes which can both send and receive updates,
making the system potentially more vulnerable to various security threats by malicious
updates. The research background of this work is based on a unbalanced distributed

4.3. DEFENSE DESGIN 29

setting, that is to distribute the dataset in a non-IID manner across multiple clients.
Data is predominantly non-iid distributed in reality, and with the dynamic and diverse
network structures characteristic of DFL, traditional defense methods that rely on data
distribution are often inadequate. This highlights the necessity for a mechanism that is
independent of data distribution. Information theory provides a robust framework to de-
velop such a mechanism. By leveraging intrinsic metrics derived from information theory,
it is possible to devise a defense strategy that remains effective regardless of the under-
lying data distribution. This approach allows for a more adaptable and resilient defense
mechanism in the face of the complex and variable environments typical of distributed
networks. In the following sections, a defense mechanism called AIDFL(Anomalous Infor-
mation Metrics-based Detection in DFL) will be proposed that adopts the aforementioned
properties of DFL. [38]

Table 4.1: Configuration overview for the two selected attacks. NR is not applicable to
the label flipping attacks.

Attack Type Parameter Metric
PNR [%] PSR [%] NR [%]

Untargeted Label Flipping [0, 100] [0, 100] - Accuracy
Untargeted Sample Poisoning [0, 100] [0, 100] [0, 100] Accuracy

4.3.1 Pre-Design

The design begins by grouping the data according to class, then randomly shuffling the
indices within each class, and evenly distributing these indices to each client. This alloca-
tion strategy ensures that each client may receive samples that are highly concentrated in
one or a few categories, rather than a representative sample of the entire dataset. Finally,
a dataloader is created for each client’s subset of indices, which is used for loading data
during model training. This non-IID distribution of data simulates real-world scenarios
where different devices or users might only have access to a subset of the data, helping to
study and understand how models train and generalize under such conditions.

An experimental evaluation is conducted prior to the introduction of the network structure
of DFL with the aim of demonstrating that the entropy of the poisoning model is higher
than that of benign. As shown in the Figure 4.2, the entropy of the model parameters
increases as the PSR grows, indicating that the data is getting more disordered. It also
side-steps the fact that attacks will disrupt the intrinsic information of the model.

30 CHAPTER 4. DESIGN

Figure 4.2: Relationship between entropy and PSR.

4.3.2 AIDFL

AIDFL is a defense mechanism that can adapt to the dynamic connectivity network of
DFL. It does not require a central server to receive model updates, and it utilizes infor-
mation theory metrics, which do not depend on data distribution, thus it will not affected
by non-IID data. Each client, integrating their local data, employs K-means clustering
and information theoretic metrics to obtain as much shared information as possible from
its neighbors and discard irrelevant information [59]. Algorithm 1 defines three-phase
anomaly detection approach consisting of (1) K-means clustering, (2) Mutual informa-
tion / Conditional Entropy Estimation, (3) Anomaly detection. The following paragraphs
will provide detailed explanations for each step. Figure 4.3 indicates an overview of the
detection process in AIDFL.

Find k-nearest
neighbors

estimate_MI
estimate_CE
Aggregation

Client k

neighbor client

neighbor client

Gradient descent

Feature extraction
Euclidean dist.
for neighbor n Threshold

poisoned

Aggregation

Normalization

Figure 4.3: High-level overview of the detection process in AIDFL.

4.3. DEFENSE DESGIN 31

(1) K-means Clustering. Each client independently trains their local model on their
dataset without sharing any raw data, conducts gradient descent during training, and ex-
tracts feature representations from local data using the intermediate layers of the models.
Then it comes to the first step of AIDFL. As shown in Algorithm 2, K-means clustering
is initialized with a specified number of clusters K. For each sample x in client k, the
algorithm tries to find cluster centers that minimize the variance between the data points
and their respective cluster centers.

Algorithm 1 AIDFL Aggregation Algorithm

1: Input: Initialized model w
(k)
0

2: Output: Aggregated weights w
(k)
t

3: for t = 0 to T − 1 do
4: for each client k in parallel do
5: w

(k)
t = w

(k)
t−1 − η∇L(w(k)

t−1, D(k)) ▷ Gradient descent
6: F (k) = w

(k)
t ∗D(k) ▷ Feature extraction

7: for each sample x in D(k) do
8: KmeansClustering(x, K) ▷ (1) K-means Clustering
9: MutualInformationEstimation(xnp, A) ▷ (2.1) MI Estimation

10: ConditionalEntropyEstimation(xnp, A) ▷ (2.2) CE Estimation
11: end for
12: MI(k) = 1

|D(k)|
∑

x∈D(k) MI(k)
x ▷ Aggregate estimations for client k

13: CE(k) = 1
|D(k)|

∑
x∈D(k) CE(k)

x

14:
15: for each sample x in D(k) do
16: AnomalyDetection(I(k; A), H(k|A), γ) ▷ (3) Anomaly Detection
17: agg_weights += w

(k)
t ∗ wx ▷ Aggregation

18: weights_sum += wx

19:
20: end for
21: end for
22:
23: if weights_sum > 0 then ▷ Normalization
24: for i = 1 to length(agg_weights) do
25: agg_weights[i] = agg_weights / weights_sum
26: end for
27: end if
28:
29: for each client k do ▷ Update local models
30: w

(k)
t = agg_weights

31: end for
32: end for

32 CHAPTER 4. DESIGN

Algorithm 2 K-means Clustering
Require: Sample data x in D(k), K (number of clusters)
Ensure: cluster_labels assignments A

1: Feature data xnp ← detach x and convert to NumPy array
2: Initialize KMeans with n_clusters = K
3: cluster_labels ← KMeans.fit_predict(xnp)

Finally, each data point is assigned a cluster label which is returned and stored in cluster
labels assignments A, based on the nearest cluster center. In summary, each data point
(or feature vector) is assigned to a cluster. The result of clustering is the cluster label to
which each data point belongs. The first step can also be regarded as a type of similarity
evaluation, in order to be aware of potential malicious updates. Anomalous models (which
may be manipulated or attacked) might form separate clusters or outlier points far from
the main clusters.

(2) Mutual Information/Conditional Entropy Estimation. It then estimates mu-
tual information by analyzing the distributional differences between each sample in a
cluster. Simultaneously, estimating conditional entropy based on the uncertainty in the
conditional distribution derived from the K-means clustering results.

After clustering, inspired by VFedAD [59], simultaneously maximizing mutual information
and minimizing conditional entropy can further help identify anomalous models. Mutual
information measures dependencies between different features or clusters, while condi-
tional entropy shows the randomness or unpredictability within a cluster given certain
data points.

This set of pseudocode is used for estimating the von Neumann entropy, mutual informa-
tion, and conditional entropy of feature data, based on the cluster labels determined by
the previous algorithm. The calculation of von Neumann entropy involves constructing
the log of the Gram matrix, multiplying it back with the original matrix, and obtaining
the entropy value by taking the trace.

The mutual information is then calculated by deriving the joint matrix of two matrices,
A and B, and computing the entropy for each of them and the joint matrix, with mutual
information being the sum of the individual entropy H(A)+H(B) minus the joint entropy
H(A, B), formula has been mentioned in Section 2.3.2. If the result is not a number (NaN),
the mutual information is set to zero.

Finally, the conditional entropy is calculated via mutual information by assessing the
mutual information between the feature matrix and its cluster labels I(F ; A), then sub-
tracting this value from the entropy of the feature matrix H(F).

4.3. DEFENSE DESGIN 33

Algorithm 3 Von Neumann Entropy
Require: gram_matrix
Ensure: Entropy H

1: ϵ ← 1e-10
2: log_matrix ← log2(gram_matrix + ϵ)
3: H = -trace(log_matrix ∗ (gram_matrix + ϵ))

Algorithm 4 Mutual Information
Require: Matrices A and B
Ensure: Mutual Information I(A; B)

1: Joint_Matrix ← AT /10 ·BT

2: H(A)← V onNeumannEntropy(A)
3: H(B)← V onNeumannEntropy(B)
4: H(A, B)← V onNeumannEntropy(Joint_Matrix)
5: I(A; B)← H(A) + H(B)−H(A, B)
6: if I(A; B) is NaN then
7: I(A; B)← 0 ▷ Handle NaN values
8: end if
9: return I(A, B)

Algorithm 5 Mutual Information Estimation (for feature data)
Require: Feature data xnp, KmeansClustering(xnp) : A
Ensure: Mutual Information I(k, A)

1: Atensor ← Unsqueeze(Tensor(A), 1) ▷ Add a dimension
2: I(F ; A)←MutualInformation(Atensor, F T)
3: return I(F ; A)

Algorithm 6 Conditional Entropy Estimation
Require: Feature matrix F , Cluster assignments KmeansClustering(xnp) : A
Ensure: Conditional Entropy H(F |A)

1: H(F)← V onNeumannEntropy(F)
2: Reshape assignments A to have the same shape as the feature set F
3: A← unsqueeze(torch.tensor(A), 1)
4: I(F ; A)← MutualInformation(A.float(), F .t())
5: H(F |A)← H(F)− I(F ; A)
6: return H(F |A)

34 CHAPTER 4. DESIGN

For each cluster, the conditional entropy of the model features within it can be calculated.
If entropy of a cluster is unusually higher than others, this might indicate a high degree
of inconsistency in the model features within the cluster, which is possibly due to data
manipulation. By analyzing these metrics, abnormal models who deviate from the norm
can be detected, which may indicate that the data has been tampered with or attacked.

(3) Anomaly Detection. At the final stage of AIDFL, The anomaly detection al-
gorithm operates by first calculating the mean (µ) and standard deviation (σ) of the
data tensor, which have contained computed metrics such as mutual information and
conditional entropy. These metrics provide insights into the statistical relationships and
variability within the data. The algorithm then establishes lower and upper thresholds
for anomaly detection, which are defined as [µ − γσ, µ + γσ] respectively, where γ is a
predefined threshold multiplier. By evaluating the Euclidean distance between each data
point and the mean µ, the algorithm identifies anomalies as data points that fall outside
of the thresholds.

Algorithm 7 Anomaly Detection
Require: Data_tensor (mutual information I(k; A), conditional entropy H(k|A)),

threshold multiplier γ
1: µ← mean(data_tensor)
2: σ← std(data_tensor)
3: lower_threshold ← µ−γσ
4: upper_threshold ← µ+γσ
5: dist ← ||items in data_tensor - mean||
6: anomalies ← {x|dist not in [lower_threshold, upper_threshold]}
7: Return D(k)\{anomalies}

Finally, the algorithm returns the subset of the original dataset excluding these anomalies,
effectively isolating and removing potential malicious data points to ensure data quality
and consistency for further aggregation.

After the last step that anomalies have been detected and eliminated, weights of the
benign clients are aggregated to the global model. Furthermore, normalization is necessary
if sum of the weights is more than zero. Specifically, during the aggregation process
weights from each clients k are collected and stored in a queue and overall average of
the weight sums (total weight sums from all training rounds divided by the number of
items) are calculated. Next, it retrieves all current weight items from the aggregated
weights queue and compute the average of these weights. Then AIDFL normalizes the
weights by dividing each weight layer by the average weight sum only when their sum
is positive. Finally, each client updates the local model weights to the new aggregated
weights. This method helps maintain stability and consistency in the global model across
multiple training rounds, preventing any single data from disproportionately influencing
the overall learning process.

4.3. DEFENSE DESGIN 35

The detailed computation of AIDFL will be exhibited in the following algorithm.

Algorithm 8 Proposed AIDFL Algorithm (Detailed)

1: Input: Initialized model w
(k)
0

2: Output: Aggregated weights w
(k)
t

3: for t = 0 to T − 1 do
4: for each client k in parallel do
5: w

(k)
t = w

(k)
t−1 − η∇L(w(k)

t−1, D(k)) ▷ Gradient descent
6: F (k) = w

(k)
t ∗D(k) ▷ Feature extraction

7: for each sample x in D(k) do
8: cluster_labels ← K-means Clustering
9: MI(k)

x = estimate_MI(Nk(x), F (k)) ▷ estimate MI and CE
10: CE(k)

x = estimate_CE(Nk(x), F (k))
11: end for
12: MI(k) = 1

|D(k)|
∑

x∈D(k) MI(k)
x ▷ Aggregate estimations for client k

13: CE(k) = 1
|D(k)|

∑
x∈D(k) CE(k)

x

14:
15: L = αMI(k)− βCE(k) ▷ Define and compute optimization objective
16: w

(k)
t ← w

(k)
t + ∆L ▷ Adjust weights based on optimization objective

17:
18: for each sample x in D(k) do ▷ Anomaly Detection
19: MI_dist(k)

x = ||(MI(k)
x −MIn)|| ▷ Calculate Euclidean distances

20: CE_dist(k)
x = ||(CE(k)

x − CEn)||
21: if (MI_dist(k)

x > MI_th(k)) or (CE_dist(k)
x <CE_th(k)) then

22: x is an anomaly
23: else
24: agg_weights += w

(k)
t ∗ wx

25: weights_sum += wx

26: end if
27: end for
28: end for
29:
30: if weights_sum > 0 then
31: for i = 1 to length(agg_weights) do
32: agg_weights[i] = agg_weights / weights_sum
33: end for
34: end if
35:
36: for each client k do ▷ Update local models with the aggregated weights
37: w

(k)
t = agg_weights

38: end for
39: end for

Chapter 5

Implementation

The definition of AIDFL given in Algorithm 1 is implemented in Python. The main
functions involved in the anomaly detection and aggregation processes are listed be-
low: cluster_data(), mutual_information(), get_conditional_entropy(), imple-
ment steps (1), (2.1), (2.2), and and detect_outliers() implements (3) of the algo-
rithm, respectively. The remaining steps of AIDFL, such as initial feature extraction,
the aggregation and normalization after excluding anomalies, are also implemented in the
code below.

1 # Feature Extraction
2 def get_weight_x_data (client , batched_data):
3 raw_data = batched_data .view (-1, 784)
4 for name , param in client .model. named_parameters ():
5 if 'bias ' not in name:
6 raw_data = raw_data @ param.t()
7

8 mean = raw_data .mean(dim =0, keepdim =True)
9 std = raw_data .std(dim =0, keepdim =True)

10

11 # normalization
12 raw_normalized = (raw_data - mean) / (std + 1e -10)
13

14 return raw_normalized
15

16 # 1. K-means Clustering
17 def cluster_data (feature_data , raw_data):
18 kmeans = KMeans (n_clusters = cluster_sum)
19 assignments = kmeans . fit_predict (feature_data . detach ().numpy ())
20 return assignments

36

37

1 def get_gram_matrix (matrix : torch. Tensor):
2 matrix = matrix / matrix .shape [0]
3 gram_matrix = torch.mm(matrix , matrix .t())
4 gram_matrix = torch.pow(gram_matrix ,2)
5 return gram_matrix
6

7 def von_neumann_entropy (matrix : torch. Tensor):
8 epsilon = 1e -10
9 gram_matrix = get_gram_matrix (matrix)+ epsilon

10

11 new_p = gram_matrix * torch.log2(gram_matrix)
12 sp = torch.trace(new_p)
13 return -sp
14

15 # 2.1 Mutual Information Estimation
16 def get_mutual_information (feature_data , assignments):
17 assignments =torch. tensor (assignments)
18 assignments =torch. unsqueeze (assignments ,1)
19 return mutual_information (assignments .float (),feature_data .t())
20

21 def mutual_information (matrixA : torch.Tensor , matrixB : torch. Tensor)
:

22 # I(A,B) = H(A) + H(B) - H(A, B)
23 joint_matrix = torch.mm(matrixA .t()/10, matrixB .t())
24 ha = von_neumann_entropy (matrixA)
25 hb = von_neumann_entropy (matrixB)
26 hab = von_neumann_entropy (joint_matrix)
27 im = ha + hb - hab
28 if torch.isnan(im):
29 return torch. tensor (0)
30 return im
31

32 # 2.2 Conditional Entropy Estimation
33 def get_conditional_entropy (feature_data , assignments):
34 H_F = von_neumann_entropy (feature_data)
35 assignments = torch. tensor (assignments)
36 assignments = torch. unsqueeze (assignments , 1)
37

38 I_FA = mutual_information (assignments .float (), feature_data .t())
39

40 H_F_given_A = H_F - I_FA
41

42 return H_F_given_A

38 CHAPTER 5. IMPLEMENTATION

1 # 3. Anomaly Detection
2 def get_threshold_mi_or_ce (data_tensor , threshold =3):
3

4 mean = torch.mean(torch.stack(data_tensor))
5 std = torch.std(torch.stack(data_tensor))
6

7 lower_threshold = mean - threshold * std
8 upper_threshold = mean + threshold * std
9

10 return lower_threshold , upper_threshold
11

12 def detect_outliers (data_tensor , lower_threshold , upper_threshold):
13 data_tensor = torch.stack(data_tensor)
14 outliers = torch.where ((data_tensor < lower_threshold) | (

data_tensor > upper_threshold))[0]
15

16 return outliers
17

18 def get_normal_samples (full_length ,mi_anomaly , ce_anomaly):
19

20 mi=[mi.numpy () for mi in mi_anomaly]
21 ce=[ce.numpy () for ce in ce_anomaly]
22 mi_or_ce =set(mi).union(set(ce))
23 full_set = np. arange (0, full_length)
24 normal_samples =set(full_set)-mi_or_ce
25 return normal_samples

39

1 # Aggregation and Normalization
2 def get_sample_weight_x_model_weight (sample_weight , normal_samples_id

, client):
3

4 agg_weights_temp =[]
5 normal_samples_number = len(normal_samples_id)
6 for name , param in client .model. named_parameters ():
7 if 'bias ' not in name:
8 agg_param_weight =torch. zeros_like (param)
9

10 for id in list(normal_samples_id):
11 temp= sample_weight [id]* param
12 agg_param_weight += temp
13 agg_weights_temp . append (agg_param_weight)
14

15 return agg_weights_temp
16

17 def get_acclumated_sample_weight (sample_weight , normal_samples_id):
18 selected_elements = [sample_weight [i] for i in normal_samples_id

]
19 sum_result = torch.sum(torch.stack(selected_elements))
20 return sum_result
21

22 def append_client_agg_weights (ID ,data):
23 selected_queue =eval(f" client_agg_weights_queue_0 {ID}")
24 selected_queue .put(data)
25

26 def append_client_weights_sum (ID ,data):
27

28 selected_queue = eval(f" client_weights_sum_queue_0 {ID}")
29 selected_queue .put(data)
30

31 def get_average_weight_from_queue (current_items):
32 if len(current_items) >0:
33 param_temp_list =[]
34 param_temp =[]
35 flattened_c = [item for sublist in current_items for item in

sublist]
36 for item in current_items [0]:
37 temp =[tensor for tensor in flattened_c if tensor .shape

== item.shape]
38 param_temp_list . append (temp)
39 for i in range(len(param_temp_list)):
40 temp =torch.mean(torch.stack(param_temp_list [i]),dim =0)
41 param_temp . append (temp)
42 return param_temp
43 return []

40 CHAPTER 5. IMPLEMENTATION

1 # Adjust the weights
2 def adjust_weight (ID):
3 client_weights_sum_queue = eval(f" client_weights_sum_queue_0 {ID}

")
4 client_agg_weights_queue = eval(f" client_agg_weights_queue_0 {ID}

")
5 average_weights_sum =torch.sum(torch.stack(

client_weights_sum_queue . current_items ()))/len(
client_weights_sum_queue)

6

7 param_ =[]
8 if average_weights_sum > 0:
9 all_item = client_agg_weights_queue . current_items ()

10 param_temp = get_average_weight_from_queue (all_item)
11 if len(param_temp) > 0:
12 for item in param_temp :
13 temp=item / average_weights_sum
14 param_ . append (temp)
15 return param_
16

17 adjust_coef =0.1
18

19 # Update the weights
20 def update_weight (ID , ajusted_param):
21

22 model= clients [ID]. model
23 i=0
24 with torch. no_grad ():
25 for name , param in model. named_parameters ():
26 if 'bias ' not in name:
27 param.data = param.data+ ajusted_param [i] *

adjust_coef
28 i+=1
29 return None

Chapter 6

Evaluation

In this chapter, the AIDFL defense mechanism is evaluated, and a comparison is made
with other state-of-the-art defense methods. For this purpose, the aggregation phase of
AIDFL is replaced with various existing aggregation algorithms to assess their impact on
the effectiveness of anomaly detection. The subsequent sections state the details of the
experimental setup, present the results, and discuss the findings and observations derived
from these experiments.

6.1 Experiment Setup

Three datasets are employed to evaluate the performance of AIDFL: MNIST, FashionM-
NIST, and CIFAR10. This section will introduce each dataset, the corresponding models
selected, and the reference algorithms combined with AIDFL for evaluation. Additionally,
to explore the effects of poisoning attacks on the baseline models, the threat model and
associated metrics will be outlined later in this section.

6.1.1 Datasets and Models

The evaluation of image classification is conducted using three image datasets: MNIST,
FashionMNIST, and CIFAR10. Each dataset will be introduced along with the corre-
sponding deep learning models tailored for the characteristics of each dataset. It is im-
portant to note that the distribution of all three datasets is considered non-IID. Details
regarding the methodology for splitting the data into non-IID distributions are elaborated
in Section 4.3.1.

MNIST [64] which is short for "Modified National Institute of Standards and Technol-
ogy" dataset, represents a large collection of handwritten digits commonly used for training
image classification tasks. MNIST consists of 60,000 images for training and 10,000 test

41

42 CHAPTER 6. EVALUATION

images of handwritten digits from 0 to 9. Each image is a 28×28 pixel grayscale repre-
sentation of a digit, making it simple enough for straightforward image processing tasks
yet complex enough to test the efficacy of various algorithms.

The chosen model to learn from the MNIST dataset is a multilayer perceptron (MLP)
with a linear input layer of size 28 × 28 × 256, followed by a ReLU activation function.
The second layer is a hidden layer, which is also a linear laye rtransforming the 256
outputs from the first layer to 128 neurons, with another ReLU activation applied. Finally,
the output layer is a linear layer that maps these 128 neurons to 10 output neurons
corresponding to the 10 categories of the classification task. This architecture is a example
of a typical neural network commonly used for basic classification tasks. The optimizer
and the learning rate of the model are set to stochastic gradient descent (SGD) and 0.01,
respectively. Moreover, cross-entropy is applied as the loss function in the training loop to
compute the loss between the predicted outputs and the true labels. This MLP is trained
for 15 epochs per round, 10 rounds in total. There are 10 clients in the DFL network.

FashionMNIST [65] was designed as a more challenging replacement for the tradi-
tional MNIST dataset by Zalando. FashionMNIST consists of a set of 28×28 grayscale
images, each representing an article of clothing from one of 10 categories, including T-
shirts/tops, trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle
boots, as shown in Figure 6.1.

Figure 6.1: The class names and part of the example images in FashionMNIST
dataset. [65]

The dataset contains 60,000 training images and 10,000 testing images. Its structure
mimics the original MNIST dataset in terms of the size of the images and the split of

6.1. EXPERIMENT SETUP 43

training and testing sets, making it a direct drop-in replacement. For the FashionMNIST
dataset, the same MLP model as for MNIST is used, and the model is trained for 15
epochs per round, 10 rounds in total. There are 10 clients in the DFL network.

CIFAR10 [66] is a standard dataset widely used in computer vision research. It con-
tains 60,000 color images of 32×32 pixels, divided into 10 categories. These categories
include airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks.
The dataset is divided into 50,000 training images and 10,000 test images for training and
evaluating the performance of machine learning models. Moreover, due to its moderate
size and fast processing speed, CIFAR10 is suitable for validating new algorithms. To
reduce computational overhead, the current work temporarily sets the number of clients
in the CIFAR10 experiment to 5.

Figure 6.2: The class names and part of the example images in CIFAR10 dataset. [65]

Instead of MLP, a pretrain Resnet18 model is chosen as the model and it has been adapted
for CIFAR10 dataset to better suit its characteristics. ResNet18 is part of the Residual
Network (ResNet) family proposed by Kaiming He et ai. [67], and "18" represents 18 layers
deep with learned weights.

Originally designed for 224×224 pixel images, the initial convolutional layer of ResNet18
for CIFAR10 has been modified to have a kernel size of 3, stride of 1, and padding of 1,
with no bias. This adjustment maintains the spatial dimensions of the input and output,
making it suitable for the smaller 32×32 pixel images of CIFAR10. Additionally, the final
fully connected layer has been adjusted from 1000 output classes, which corresponds to
number of classes in ImageNet, to 10 to match the number of classes in CIFAR10. These
modifications ensure that ResNet18 can effectively process smaller images and adapt to
datasets with fewer classes. Optimizer is SGD and learning rate is set to 1e-3.

6.1.2 Selected Reference Approaches

To evaluate the defense techniques in this work, three state-of-the-art defense methods
have been selected as reference algorithms: Krum, Median, and TrimmedMean. These

44 CHAPTER 6. EVALUATION

methods gained attention for their robustness when facing outliers and potential malicious
attacks. Krum and TrimmedMean are specifically designed to defend against malicious
attacks. Krum resists attackers by selecting a single model that is closest in distance
to the others, while TrimmedMean reduces the impact of attackers on the aggregation
results by removing extreme values. Relatively, Median is particularly effective for extreme
updates that may not be malicious but are due to data quality issues. Each methods and
configurations of all aggregators will be briefly introduced below.

• Krum (Section 3.1) selects the single model of m local models that is closest to all
other models based on Euclidean distance, considering it as the least likely to be
manipulated. This method does not require any configuration parameters.

• Median (Section 3.1) aggregator operates by calculating the coordinate-wise median
of model parameters. This method performs predominant resistance to outliers in
the data because the median is not easily affected by extreme changes in individual
values. This approach is especially suitable for mitigating the impact of outliers.

• TrimmedMean (Section 3.1) aggregates by removing the largest and smallest β
parameters in each coordinate and calculating the average of the remaining m− 2β
parameters. β defines the number of elements removed from both ends of each
parameter list. In this paper, with β = 1, the maximum and minimum values of
each list are excluded from the average computation, thus reducing the impact of
malicious participants on the global model.

• AIDFL (Section 4.3.2) aggregates according to Algorithm 1. For the experiments
in this work, AIDFL is configured with K = 5 and γ = 3.

6.1.3 Threat Models

The aggregation defense strategies mentioned earlier in last paragraph will be tested
against the attack specifications discussed in Section 4.2 under different parameter con-
figurations to evaluate the performance of these algorithms in poisoning attacks. Two
types of data poisoning attacks have been selected for testing: untargeted label-flipping
and untargeted sample poisoning attacks. Technical details can be reviewed in Section
4.2.

In the untargeted label-flipping attack, for a selected subset of the training data, the
attacker randomly changes the original label l to a different label l. For MNIST, both
l and l′ are within the set 0, 1, 2, ..., 9. During the attack, any label can be randomly
replaced with a digit, excluding itself. For the FashionMNIST dataset, the labels belong to
the category set T-shirts/tops, trousers, pullovers, dresses, coats, sandals, shirts, sneakers,
bags, ankle boots. For example, adversaries might change a category like “T-shirts/tops”
randomly to “trousers” or one of the other categories. Similarly, for CIFAR10, labels from
the set airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, trucks can be
randomly changed to another category within the set.

6.2. RESULTS 45

In the context of data poisoning attacks, the attackers select a subset of data samples
and add noise to them. Several types of noise are introduced in Section 4.1. This paper
chooses salt noise for testing because salt noise randomly introduces sharp white pixels
into images. This type of noise is very apparent and can significantly interfere with
machine learning models used for accurate predictions. Additionally, salt noise is harder to
filter out through preprocessing steps such as smoothing, whereas the effects of uniformly
distributed noise are easier to mitigate.

In this study, PNR settings reflect different intensities of data poisoning attacks, used to
evaluate the impact on model performance. PNR is set at 0, 10%, 30%, 50%, and 70%,
covering levels from low to high attacking environment, where PNR = 0 represents the
benign case without any attacks. Additionally, attackers also executed intensity attacks,
with the PSR set at 0 and 100%. This means that in the attack scenario, either no
samples are affected (PSR = 0) or all selected samples are subjected to noise addition
(PSR=100%). For untargeted sample poisoning attacks, a 100% salt noise is chosen
because lower noise ratio are insufficient to significantly impact model performance.

Table 6.1: Configuration overview for the two selected attacks. NR is not applicable to
the label flipping attacks.

Attack Type Parameter Metric
PNR [%] PSR [%] NR [%]

Untargeted Label Flipping (0, 10, 30, 50, 70) 100 - Accuracy
Untargeted Sample Poisoning (0, 10, 30, 50, 70) 100 100 Accuracy

6.2 Results

The following sections will provide a performance evaluation of AIDFL compared to a
modified version of AIDFL that retains its anomaly detection capabilities but incorporates
different aggregation protocols. The metrics are evaluated on the test datasets. First, the
baseline performance of each method is established on three datasets under benign settings
(i.e., without any poisoning attacks). Subsequently, the performance of the models under
different parameter settings for each attack is discussed.

6.2.1 Baseline Performance

The baseline performance serves as a reference for experiments introduced later in the
text that involve poisoning attacks. This baseline establishes the expected performance
metrics without the influence of adversarial manipulations, providing a further direction
for point to evaluate the impact and effectiveness of the poisoning strategies tested.

Table 6.2 summarizes the performance of the selected aggregation algorithms in an envi-
ronment without poisoning attacks. The mean accuracy was calculated based on the aver-
age metrics from participants after the final round of training. Specifically, for MNIST and

46 CHAPTER 6. EVALUATION

FashionMNIST, the calculations included 10 participants, while for CIFAR10, 5 clients
were considered, based on the experimental setting. In terms of accuracy, AIDFL + Krum
performed best on MNIST, AIDFL itself achieved the highest accuracy on FashionMNIST,
and AIDFL + Median performed best on CIFAR10.

The accuracy difference between the lowest and highest algorithms for MNIST is 0.28%,
for FashionMNIST it is 0.29, and for CIFAR10 it is 1.42. The accuracy differences for
MNIST and FashionMNIST are very small and can be considered negligible, indicating
that the choice of aggregation algorithms does not significantly affect model performance
on these datasets. This suggests that the aggregation algorithms have similar effects when
processing this specific type of data. While the higher difference in CIFAR10 may still be
considered small in practical applications, it is more significant compared to MNIST and
FashionMNIST. This difference may indeed be related to the complexity of the dataset, or
reduce of the number of clients and training rounds. CIFAR10 is typically more complex
than MNIST and FashionMNIST. Therefore, different aggregation algorithms may show
more performance differences in complex setting.

6.2. RESULTS 47

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

(c) CIFAR10 Accuracy.

Figure 6.3: Baseline performance for MNIST, FashionMNIST and CIFAR10 for 10 rounds
implementing 4 algorithms, with the accuracy on the y-axis and the round progression on
the x-axis.

48 CHAPTER 6. EVALUATION

In particular, for the MNIST dataset where AIDFL + Krum achieved the highest ac-
curacy, the SEM was 3.59, which is higher compared to the SEM for CIFAR10 where
the lowest accuracies were reported, and the Standard error mean (SEM)s were generally
lower. For example, AIDFL + TrimmedMean on CIFAR10 had an SEM of 0.40. This pat-
tern suggests that higher accuracy are associated with higher SEMs across the datasets.
Furthermore, Krum shows competitive results especially when combined with AIDFL, as
seen in its MNIST performance. For all datasets, the combination of AIDFL with differ-
ent aggregation methods did not necessarily lead to the lowest accuracies. Instead, these
combinations showed varied effects on performance, with no single method consistently
underperforming or always performing better than others. This indicates that while task
complexity affects performance, the impact of aggregation strategy varies depending on
the dataset and the specific characteristics of the task.

Figure 6.3 shows the complete process of DFL network training. For MNIST and Fash-
ionMNIST, almost all nodes reached their final accuracy results after the first round. For
CIFAR10, the performance was almost stable from the beginning which was close to the
final accuracy level. That might because a pretrained model was used, which has already
undergone initial learning on a large amount of data, possessing certain generalization
capabilities. Thus only minor adjustments are needed when applied to a similar task.
In this case, the model performance during benign DFL is relatively stable, and high
accuracy can be maintained without too many rounds of training. This demonstrates
the advantages of pretrained models in handling more complex datasets, especially in a
distributed learning environment.

Table 6.2: Mean Accuracy after round 10.

MNIST FashionMNIST CIFAR10
AIDFL 93.87 84.02 85.93
AIDFL + Krum 93.94 83.96 87.21
AIDFL + Median 93.66 83.73 87.35
AIDFL + TrimmedMean 93.84 83.91 87.25

Table 6.3: Mean Accuracy after round 10 (with SEM).

MNIST FashionMNIST CIFAR10
AIDFL 93.87±3.76 84.02±2.34 85.93±0.50
AIDFL + Krum 93.94±3.59 83.96±2.27 87.21±0.52
AIDFL + Median 93.66±3.97 83.73±2.26 87.35±0.41
AIDFL + TrimmedMean 93.84±3.73 83.91±2.42 87.25±0.40

6.2. RESULTS 49

6.2.2 Untargeted Label Flipping

In untargeted label flipping attacks, malicious clients randomly change the labels of sam-
ples within the dataset. This type of attack does not target specific classes or outcomes.
Instead, it aims to degrade the overall performance of the model According to the results
observed by Feng et al. [38], under low PSR conditions, regardless of the PNR configura-
tion, most aggregators are unaffected by adversarial label flipping. In this paper, PSR is
set to 100, and PNR configurations are 10, 30, 50, and 70 for MNIST and FashionMNIST,
and PNR = 20 and 60 for CIFAR10. Tables 6.4 and Figure 6.4 summarize the effects of
untargeted label flipping with a PNR of 10.

Almost all aggregation strategies were unaffected by the attack from one malicious node,
except for the AIDFL and TrimmedMean algorithms. Their accuracy suddenly dropped
in the final round, resulting in an average decrease to 64.18%, shown in Figure 6.4.

50 CHAPTER 6. EVALUATION

Table 6.4: Accuracy performance in terms of mean and SEM under untargeted label
flipping for MNIST, FashionMNIST and CIFAR10 after round 10 when PNR = 10 for
MNIST and FashionMNIST and PNR = 20 for CIFAR10, and PSR = 100 for all datasets.

MNIST FashionMNIST CIFAR10
AIDFL 93.76±3.21 84.01±1.76 86.57±0.37
AIDFL + Krum 93.81±3.43 83.37±1.75 87.12±0.44
AIDFL + Median 93.70±3.24 83.97±1.76 87.43±0.37
AIDFL + TrimmedMean 93.91±3.32 64.18±2.36 87.40±0.39

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

(c) CIFAR10 Accuracy.

Figure 6.4: PNR = 10 performance under untargeted label flipping for MNIST, Fashion-
MNIST and PNR = 20 for CIFAR10 in 10 rounds implementing 4 algorithms, with the
accuracy on the y-axis and the round progression on the x-axis.

6.2. RESULTS 51

Next, PNR is set to 30 for MNIST and PNR = 60 for CIFAR10, with PSR = 100 un-
changed. Overall, all defense mechanisms are robust, and the accuracy of honest nodes is
almost unaffected by label flipping attacks. However, as can be seen from the Table 6.5,
the combination of AIDFL + Median has the lowest accuracy among the four strategies,
possibly due to the median aggregation method, which calculates the coordinate-wise me-
dian (Section 3.1) of model updates. This method is intrinsically robust against outliers,
provided that these outliers only account for a small portion of entire data. However,
as the number of malicious nodes (PNR) increases, particularly when there are three or
more, adversarial inputs may become significant enough to directly affect the calculation
of the median. Therefore, as the proportion of malicious inputs approaches half of the
total inputs, the effectiveness of the aggregator will be undermined, which can explain
why performance drops when 3 malicious clients are presented.

Table 6.5: Accuracy performance in terms of mean and SEM under untargeted label
flipping for MNIST, FashionMNIST and CIFAR10 after round 10 when PNR = 30 for
MNIST and FashionMNIST and PNR = 60 for CIFAR10, and PSR = 100 for all datasets.

MNIST FashionMNIST CIFAR10
AIDFL 93.93±3.17 83.98±1.68 87.02±0.49
AIDFL + Krum 94.19±3.36 83.92±1.71 87.05±0.36
AIDFL + Median 93.88±3.42 83.41±1.63 86.94±0.44
AIDFL + TrimmedMean 94.12±3.89 83.89±1.68 87.27±0.41

52 CHAPTER 6. EVALUATION

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

(c) CIFAR10 Accuracy.

Figure 6.5: PNR = 30 performance under untargeted label flipping for MNIST, Fashion-
MNIST and PNR = 60 for CIFAR10 in 10 rounds implementing 4 algorithms, with the
accuracy on the y-axis and the round progression on the x-axis.

6.2. RESULTS 53

For PNR = 50, this work will only investigate the performance on MNIST and Fashion-
MNIST because the initial setup in DFL network on CIFAR10 consists of only 5 clients.
Scenarios with 10 clients, including more than 5 poisoned clients, could be considered
for future research directions. AIDFL alone and combined with different aggregation
strategies (Krum, Median, and TrimmedMean) shows minor variations in accuracy across
MNIST and FashionMNIST. The Median strategy slightly performs better than other
strategies on MNIST with an accuracy of 94.06%, while the variations on FashionMNIST
are minimal, hovering around 83.8%.

Table 6.6: Accuracy performance in terms of mean and SEM under untargeted label
flipping for MNIST, FashionMNIST after round 10 when PNR = 50, and PSR = 100 for
all datasets.

MNIST FashionMNIST
AIDFL 93.68±3.62 83.88±2.06
AIDFL + Krum 93.80±3.34 83.95±2.06
AIDFL + Median 94.06±3.37 83.75±1.91
AIDFL + TrimmedMean 93.79±3.24 83.87±1.80

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

Figure 6.6: PNR = 50 performance under untargeted label flipping for MNIST and Fash-
ionMNIST in 10 rounds implementing 4 algorithms, with the accuracy on the y-axis and
the round progression on the x-axis.

54 CHAPTER 6. EVALUATION

Similar to the case when PNR = 50, PNR = 70 is set only for MNIST and FashionMNIST.
Figure 6.7 demonstrates that all four algorithms maintain relatively stable performance
throughout all training rounds. This indicates that on the MNIST and FashionMNIST
datasets, despite a PNR of 70, various aggregation methods can effectively resist untar-
geted label flipping attacks and maintain high model accuracy. Among the Table 6.7,
AIDFL + Median showed the highest average accuracy on both datasets, reflecting the
robustness ofMedian aggregation strategy when handling data with malicious attacks.
This may be because Median can better filter out extreme values, thereby maintaining
more stable model performance in highly poisoned environments. The graph also shows a
significant drop in accuracy for AIDFL + Median in the 8th round. However, the recovery
of accuracy in the final round and reaching the highest performance indicates that Median
effectively mitigated the impact of any adversarial data introduced in the early rounds.

Table 6.7: Accuracy performance in terms of mean and SEM under untargeted label
flipping for MNIST, FashionMNIST after round 10 when PNR = 70, and PSR = 100 for
all datasets.

MNIST FashionMNIST
AIDFL 93.63±4.10 83.67±2.33
AIDFL + Krum 93.89±3.46 83.13±2.12
AIDFL + Median 94.33±3.32 83.85±2.58
AIDFL + TrimmedMean 94.30±3.66 83.25±2.33

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

Figure 6.7: PNR = 70 performance under untargeted label flipping for MNIST and Fash-
ionMNIST in 10 rounds implementing 4 algorithms, with the accuracy on the y-axis and
the round progression on the x-axis.

6.2. RESULTS 55

6.2.3 Untargeted Sample Poisoning

In this section, the effectiveness of untargeted sample poisoning will be discussed. In this
attack, malicious participants randomly modify parts of features of samples in the dataset
by injecting salt noise into the samples. This work evaluates the impact of these modifi-
cations across different DFL scenarios. Tables and figures will illustrate the outcomes of
these experiments using various combination of aggregation algorithms and attack config-
urations. The effectiveness of the attacks is measured by the degradation in model perfor-
mance on the test dataset, where the samples have been manipulated. The Table 6.8 and
Figure 6.8 illustrate the accuracy performance of various aggregation algorithms under
an untargeted sample poisoning scenario for the MNIST, FashionMNIST, and CIFAR10
datasets after 10 rounds of training, where the PNR is set at 10 for MNIST and Fash-
ionMNIST, and 20 for CIFAR10, with all datasets having a PSR of 100, assuming that
lower PSR will not influence the model performance [38]. AIDFL + Krum again shows
slightly higher performance on MNIST and FashionMNIST, emphasizing the effectiveness
of Krum in mitigating the effects of untargeted sample poisoning. AIDFL performs best
on CIFAR10, which suggests that AIDFL works better with Diverse and complex data

When dealing with data poisoning attacks, especially when the attacks are not extremely
significant or large-scale, Krum is able to identify and ignore anomalous updates, thus
protecting the global models from these malicious updates. However, if the number of
malicious updates is large enough to occupy a significant portion of the models involved in
the aggregation, the effectiveness of Krum may be compromised, as the malicious models
may no longer appear to be too "anomalous" to be identified and excluded.

56 CHAPTER 6. EVALUATION

Table 6.8: Accuracy performance in terms of mean and SEM under untargeted sample
poisoning for MNIST, FashionMNIST and CIFAR10 after round 10 when PNR = 10 for
MNIST and FashionMNIST and PNR = 20 for CIFAR10, and PSR = 100 for all datasets.

MNIST FashionMNIST CIFAR10
AIDFL 93.88±3.20 83.80±1.86 87.80±0.42
AIDFL + Krum 94.02±3.43 84.01±1.84 86.98±0.48
AIDFL + Median 93.92±3.34 83.53±1.81 86.59±0.30
AIDFL + TrimmedMean 93.59±3.37 83.45±1.83 87.28±0.40

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

(c) CIFAR10 Accuracy.

Figure 6.8: PNR = 10 performance under untargeted sample poisoning for MNIST, Fash-
ionMNIST and PNR = 20 for CIFAR10 in 10 rounds implementing 4 algorithms, with
the accuracy on the y-axis and the round progression on the x-axis.

6.2. RESULTS 57

Figure 6.9 and Table 6.9 show the accuracy performance of the different algorithms after
10 rounds under conditions of untargeted sample poisoning (PNR = 30 for MNIST and
FashionMNIST, and PNR = 60 for CIFAR10).

It can be inferred that in the CIFAR10 dataset experiments, AIDFL has the highest ac-
curacy when there are only a few malicious nodes (PNR = 20) and the worst performance
when the malicious nodes are increased to the majority (PNR = 60). This suggests that
the model design of AIDFL on CIFAR10 performs well for situations containing a small
number of malicious nodes, as it may have some mechanism to moderate the impact of
minor malicious updates, thus maintaining a higher accuracy rate. However, when the
number of malicious nodes increases and becomes dominant in the network, AIDFL may
not be sufficient to resist such widespread poisoned attacks. In this case, the malicious
data may affect most of the model updates during the aggregation process, resulting
in that AIDFL becomes unable to effectively distinguish and filter out the anomalous
updates, which will ultimately affect the overall model performance and accuracy.

The combination with Median aggregation significantly improves AIDFL to defend against
outliers and potential poisoning attacks. The reason that AIDFL + Median performs
well in both FashionMNIST and CIFAR10 experiments is that this approach is naturally
resistant to extreme values, as the median is less susceptible to a few extreme updates.
When malicious updates or outliers appear, they would not become medians. Therefore,
quality of the model updates can be guaranteed.

Table 6.9: Accuracy performance in terms of mean and SEM under untargeted sample
poisoning for MNIST, FashionMNIST and CIFAR10 after round 10 when PNR = 30 for
MNIST and FashionMNIST and PNR = 60 for CIFAR10, and PSR = 100 for all datasets.

MNIST FashionMNIST CIFAR10
AIDFL 93.90±3.32 83.48±1.73 86.94±0.47
AIDFL + Krum 93.70±2.95 83.88±1.73 86.92±0.57
AIDFL + Median 93.81±3.37 83.89±1.66 87.78±0.47
AIDFL + TrimmedMean 94.15±3.33 83.61±1.74 87.66±0.45

58 CHAPTER 6. EVALUATION

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

(c) CIFAR10 Accuracy.

Figure 6.9: PNR = 30 performance under untargeted sample poisoning for MNIST, FM-
NIST and PNR = 60 for CIFAR10 in 10 rounds implementing 4 algorithms, with the
accuracy on the y-axis and the round progression on the x-axis.

6.2. RESULTS 59

The chart and table illustrate the performance of 4 aggregation strategies on the MNIST
and FashionMNIST datasets under untargeted sample poisoning attacks with a PNR of
50. The accuracy for all aggregation strategies on MNIST ranges between 92% to 94%,
with the AIDFL + Krum combination showing the best performance, with an accuracy
of 93.98±3.43. Accuracy across all strategies also shows high stability on FashionMNIST,
ranging between 83% and 84%, with AIDFL + TrimmedMean is slightly better than other
algorithms, with the accuracy of around 83.89±1.97.

Indeed, the performance of AIDFL under attacks involving multiple malicious clients sug-
gests that it may perform adequately in environments with fewer adversarial participants,
its effectiveness will diminish as the number of malicious updates increases. Decline in
the performance could be attributed to the susceptibility of the aggregation to skewed
data inputs, which become more obvious with more adversaries.

Table 6.10: Accuracy performance in terms of mean and SEM under untargeted sample
poisoning for MNIST, FashionMNIST after round 10 when PNR = 50, and PSR = 100
for all datasets.

MNIST FashionMNIST
AIDFL 92.99±3.79 83.76±1.94
AIDFL + Krum 93.98±3.43 83.71±1.87
AIDFL + Median 93.92±3.63 83.69±2.01
AIDFL + TrimmedMean 93.73±3.60 83.89±1.97

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

Figure 6.10: PNR = 50 performance under untargeted sample poisoning for MNIST and
FashionMNIST in 10 rounds implementing 4 algorithms, with the accuracy on the y-axis
and the round progression on the x-axis.

60 CHAPTER 6. EVALUATION

Table 6.11 and Figure 6.11 present the accuracy performance of different aggregation
strategies under untargeted sample poisoning conditions with PNR = 70 and a PSR =
100 across the MNIST and FashionMNIST datasets.

For AIDFL, the performance on the MNIST dataset is outstanding, achieving the highest
accuracy of 94.13% despite multiple clients carrying out untargeted sample poisoning at-
tacks. This demonstrates exceptional defending capability of AIDFL against such attacks.
However, the contrast in its performance on the FashionMNIST dataset is strong. The
accuracy dramatically drops to 59.07% in the final round, indicating that the presence
of 7 malicious attacking clients significantly impacts the accuracy of the model on Fash-
ionMNIST. This highlights limitations of AIDFL in handling different datasets and its
varying capability to defend against sample poisoning attacks.

Table 6.11: Accuracy performance in terms of mean and SEM under untargeted sample
poisoning for MNIST, FashionMNIST after round 10 when PNR = 70, and PSR = 100
for all datasets.

MNIST FashionMNIST
AIDFL 94.13±3.41 59.07±3.14
AIDFL + Krum 93.60±4.23 83.73±2.24
AIDFL + Median 93.74±4.73 83.12±2.22
AIDFL + TrimmedMean 94.01±4.32 83.90±2.39

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

Figure 6.11: PNR = 70 performance under untargeted sample for MNIST and Fashion-
MNIST in 10 rounds implementing 4 algorithms, with the accuracy on the y-axis and the
round progression on the x-axis.

6.2. RESULTS 61

In addition to compare different algorithms horizontally, the data also provides a vertical
overview of performance of AIDFL under different PNR settings for untargeted label
flipping attacks across MNIST, FashionMNIST and CIFAR10. It can be concluded from
Table 6.12 that for MNIST and FashionMNIST, accuracy of AIDFL gradually decreases as
PNR increases. However, the declines are marginal at only 0.24% and 0.35% respectively,
suggesting that the algorithm remains robust against untargeted label flipping.

In contrast, accuracy increases with higher PNR on CIFAR10. This could be attributed
to the higher complexity and greater diversity of the CIFAR10 dataset, which may en-
hance the generalization capability of the model, allowing it to maintain or even improve
performance despite there is an increase on adversarial nodes.

Table 6.12: Accuracy of AIDFL after round 10 across different PNR values (with SEM),
where ’-’ means the PNR is not applicable to corresponding dataset.

AIDFL MNIST FashionMNIST CIFAR10
PNR = 0 93.87±3.76 84.02±2.34 85.93±0.50
PNR = 10 93.76±3.21 84.01±1.76 -
PNR = 20 - - 86.56±0.37
PNR = 30 93.93±3.17 83.98±1.68 -
PNR = 50 93.68±3.62 83.88±2.06 -
PNR = 60 - - 87.02±0.49
PNR = 70 93.63±4.10 83.67±2.33 -

62 CHAPTER 6. EVALUATION

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

(c) CIFAR10 Accuracy.

Figure 6.12: AIDFL performance under untargeted label-flipping attacks where PNR=10,
30, 50, 70 for MNIST, FashionMNIST and PNR=0, 20, 60 for CIFAR10 in 10 rounds,
with the accuracy on the y-axis and the round progression on the x-axis.

6.2. RESULTS 63

The implementation of adversarial training within a DFL framework has effectively en-
hanced robustness of the model to noise and malicious manipulations. AIDFL, by incor-
porating noise and perturbations during the training phase, enables the model to better
adapt to unseen data scenarios, thereby improving generalization capabilities in practical
applications. As shown in Figure 6.13, although different degrees of sample poisoning (dif-
ferent PNR values) are illustrated, AIDFL maintains high accuracy levels, demonstrating
superior noise resistance. Therefore, combining FL with adversarial training not only
improves data security, but also ensures model performance and reliability in unstable
data environments.

For the MNIST and CIFAR10 datasets, the results demonstrate robust defense capabili-
ties. However, significant performance degradation of the FMNIST dataset has shown in
the DFL environment when PNR increases to 70. In this scenario, the majority of clients
are malicious, and their adverse influence is sufficient to reshape the entire learning pro-
cess of the model, thus mitigating the response speed of the model to honest updates.
This is distinctly illustrated by the significant drop in accuracy to 59.07% for the AIDFL
algorithm at high PNR settings, indicating that AIDFL is inadequate to defend against
large-scale sample poisoning attacks under such high-threat conditions.

Table 6.13: Accuracy of AIDFL after round 10 across different PNR values (with SEM),
where ’-’ means the PNR is not applicable to corresponding dataset.

AIDFL MNIST FashionMNIST CIFAR10
PNR = 0 93.87±3.76 84.02±2.34 85.93±0.50
PNR = 10 93.88±3.20 83.80±1.86 -
PNR = 20 - - 86.80±0.42
PNR = 30 93.90±3.32 83.48±1.73 -
PNR = 50 92.98±3.79 83.76±1.94 -
PNR = 60 - - 86.94±0.47
PNR = 70 94.13±3.41 59.07±3.14 -

64 CHAPTER 6. EVALUATION

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

(c) CIFAR10 Accuracy.

Figure 6.13: AIDFL performance under untargeted sample poisoning attacks where PNR
= 0, 10, 30, 50, 70 for MNIST, FashionMNIST and PNR = 0, 20, 60 for CIFAR10 in
10 rounds implementing 4 algorithms, with the accuracy on the y-axis and the round
progression on the x-axis.

6.2. RESULTS 65

6.2.4 AIDFL: Compare performance between IID and non-IID
settings

In order to demonstrate the motivation of this thesis that the performance of the anomaly
detection algorithm designed based on information-theoretic metrics is mainly dependent
on factors endogenous to the model and independent of the distribution of the data, het-
erogeneous data is not considered to have a significant impact on the algorithm. To this
end, this chapter conducts additional experiments on the MNIST and FMNIST datasets
to compare the difference in model performance between AIDFL in non-IID vs. IID envi-
ronment in both a benign environment and an environment with multiple configurations
of data poisoning attacks. These comparisons will be shown in detail through subsequent
graphs to visually confirm the theoretical assumptions.

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

Figure 6.14: Comparing differences in baseline model performance in IID and non-IID
environments.

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

Figure 6.15: Compare the performance differences of untargeted label flipping attacks
with PNR = 10 in IID and non-IID settings.

66 CHAPTER 6. EVALUATION

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

Figure 6.16: Compare the performance differences of untargeted label flipping attacks
with PNR = 30 in IID and non-IID settings.

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

Figure 6.17: Compare the performance differences of untargeted label flipping attacks
with PNR = 50 in IID and non-IID settings.

6.2. RESULTS 67

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

Figure 6.18: Compare the performance differences of untargeted label flipping attacks
with PNR = 70 in IID and non-IID settings.

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

Figure 6.19: Compare the performance differences of untargeted sample poisoning attacks
with PNR = 10 in IID and non-IID settings.

68 CHAPTER 6. EVALUATION

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

Figure 6.20: Compare the performance differences of untargeted sample poisoning attacks
with PNR = 30 in IID and non-IID settings.

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

Figure 6.21: Compare the performance differences of untargeted sample poisoning attacks
with PNR = 50 in IID and non-IID settings.

6.2. RESULTS 69

(a) MNIST Accuracy. (b) FashionMNIST Accuracy.

Figure 6.22: Compare the performance differences of untargeted sample poisoning attacks
with PNR = 70 in IID and non-IID settings.

From the previous figures, it can be inferred that non-IID settings require more rounds to
achieve convergence compared to IID settings. Furthermore, as the PNR increases, the
number of rounds needed for non-IID to approach the accuracy of IID also increases, yet
the accuracy after 10 rounds is almost identical in both environments. However, in the
scenario of untargeted sample poisoning with a high PNR = 70, the accuracy significantly
decreases in non-IID settings within the FMNIST dataset (59.07), while IID settings
remain unaffected (84.16). This suggests that, besides the impact of sample poisoning
attacks outlined previously, the heterogeneity of data can also affect model performance.

Overall, the use of information-theoretic metrics helps prevent the model from being
significantly affected by uneven data distribution. AIDFL could handle sample poisoning
attacks except in the case of more than a few attackers, which will drastically reduce
the accuracy of the model, and the results are less robust compared to the results of
untargeted label flipping attacks.

Chapter 7

Summary and Conclusions

In this chapter, the previous work will be summarized and all limitations in any of the
design, implementation, and evaluation process will be pointed out. Based on those,
future work will be anticipated and envisioned.

7.1 Conclusions

In this work, a defense strategy using information theory-based metrics to combine anomaly
detection with robust aggregation is proposed: AIDFL. AIDFL mitigates the untargeted
data poisoning attacks by employing a multi-level defense protocol consisting of k-means
clustering, filtering of anomalies by mutual information and conditional entropy estima-
tions, and normalization. The convergence of AIDFL in non-IID scenarios is verified after
extensive heterogeneous experimental evaluations. By comparing the model performance
in non-IID and IID settings, the effectiveness of information-theoretic metrics designed to
filter anomalies was confirmed, demonstrating that these metrics are independent of data
distribution and that model performance depends on endogeneous model factors.

Furthermore, during the evaluation phase, the effectiveness of AIDFL is also demonstrated
by the extensive evaluation of various attack configurations on the datasets MNIST, Fash-
ionMNIST and CIFAR10 chosen for this thesis. At present, AIDFL proves its capability
in anomaly detection by changing the aggregation part to other state-of-the-art robust
aggregations, making AIDFL comparable to other algorithm combinations.

Test results show that AIDFL is more difficult to defend against untargeted sample poi-
soning attacks. As the number of poisoned clients increases, the defense performance
of AIDFL is greatly weakened. Relatively, AIDFL works better in defending untargeted
label flipping attacks. Improvements to AIDFL may include incorporating perturbation
mechanisms (Section 3.3), such as adding a weak differential privacy defense layer or
adding new defense strategies specifically for sample poisoning attacks. These could be
steps to further enhance the effect of AIDFL.

70

7.2. LIMITATIONS 71

7.2 Limitations

In the process of testing the defending effect of AIDFL, replacing only the part of aggrega-
tion will result in an insufficiently obvious comparison of the advantages between AIDFL
and the other algorithms. Improvements could include a comparison between AIDFL as
a whole and other algorithms to better represent the effectiveness of AIDFL defense and
the differences between algorithms.

AIDFL did not analyze resource consumption. Resource-efficient aggregation mechanisms
are crucial for the scalability of DFL [38]. The choice of aggregator directly affects the
computational resource usage required for each FL scenario. Therefore, in order to fully
assess the applicability and practicality of AIDFL, future work includes analysis of the
computational resources used by the corresponding aggregator in each DFL scenario, to
ensure its efficient operation in dealing with large-scale networks.

7.3 Future Work

Current experiments have validated the feasibility of AIDFL, which integrates anomaly
detection with robust aggregation. In the future, AIDFL could be treated as a comprehen-
sive hybrid defense mechanism and directly compared with other aggregation protocols.
This would allow for a more distinct comparison of these algorithms under poisoning
attacks.

The existing work has only investigated the effectiveness of AIDFL defense against data
poisoning attacks, and these defenses are limited to untargeted attacks. In the future,
further division of the dataset could be considered to simulate targeted data poisoning
attacks. For example, formulating specific label categories to introduce targeted label
flipping or targeted sample poisoning (backdoor attacks). Additionally, the effectiveness
of the defense against model poisoning attacks also needs to be evaluated.

To reduce computational costs, the fully connected network tested on CIFAR10 utilized
only 5 clients, whereas the networks for MNIST and FashionMNIST used 10 clients each.
Future work could consider increasing the number of clients for CIFAR10 to 10 and
running the experiments on GPUs to enhance performance and efficiency. Additionally,
transferring and running these experiments on a user-friendly platform like Fedstellar
could simplify the evaluation process and facilitate more comprehensive testing and de-
velopment.

Bibliography

[1] M. Alazab, S. P. RM, P. M, P. K. R. Maddikunta, T. R. Gadekallu, and Q.-V. Pham,
“Federated learning for cybersecurity: Concepts, challenges, and future directions”,
IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3501–3509, 2022.
doi: 10.1109/TII.2021.3119038.

[2] E. T. Martínez Beltrán, M. Q. Pérez, P. M. S. Sánchez, et al., “Decentralized
federated learning: Fundamentals, state of the art, frameworks, trends, and chal-
lenges”, IEEE Communications Surveys; Tutorials, vol. 25, no. 4, pp. 2983–3013,
2023, issn: 2373-745X. doi: 10.1109/comst.2023.3315746. [Online]. Available:
http://dx.doi.org/10.1109/COMST.2023.3315746.

[3] Y. Li, D. Yuan, A. S. Sani, and W. Bao, “Enhancing federated learning robustness in
adversarial environment through clustering non-iid features”, Computers & Security,
vol. 132, p. 103 319, 2023, issn: 0167-4048. doi: https://doi.org/10.1016/
j.cose.2023.103319. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167404823002298.

[4] N. Onoszko, G. Karlsson, O. Mogren, and E. L. Zec, Decentralized federated learning
of deep neural networks on non-iid data, 2021. arXiv: 2107.08517 [cs.LG].

[5] S. Augenstein, A. Hard, K. Partridge, and R. Mathews, Jointly learning from decen-
tralized (federated) and centralized data to mitigate distribution shift, 2021. arXiv:
2111.12150 [cs.LG].

[6] E. Gabrielli, G. Pica, and G. Tolomei, A survey on decentralized federated learning,
2023. arXiv: 2308.04604 [cs.LG].

[7] S. Li, Y. Cheng, Y. Liu, W. Wang, and T. Chen, Abnormal client behavior detection
in federated learning, 2019. arXiv: 1910.09933 [cs.LG].

[8] S. Yu and J. C. Principe, Understanding autoencoders with information theoretic
concepts, 2019. arXiv: 1804.00057 [cs.LG].

[9] R. Shwartz-Ziv and N. Tishby, Opening the black box of deep neural networks via
information, 2017. arXiv: 1703.00810 [cs.LG].

[10] T. R. Gadekallu, Q.-V. Pham, T. Huynh-The, S. Bhattacharya, P. K. R. Mad-
dikunta, and M. Liyanage, Federated learning for big data: A survey on opportuni-
ties, applications, and future directions, 2021. arXiv: 2110.04160 [cs.LG].

[11] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,
methods, and future directions”, IEEE Signal Processing Magazine, vol. 37, no. 3,
pp. 50–60, May 2020, issn: 1558-0792. doi: 10.1109/msp.2020.2975749. [Online].
Available: http://dx.doi.org/10.1109/MSP.2020.2975749.

72

BIBLIOGRAPHY 73

[12] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, Communication-
efficient learning of deep networks from decentralized data, 2023. arXiv: 1602.05629
[cs.LG].

[13] J. C. Jiang, B. Kantarci, S. Oktug, and T. Soyata, “Federated learning in smart city
sensing: Challenges and opportunities”, Sensors, vol. 20, no. 21, 2020, issn: 1424-
8220. doi: 10.3390/s20216230. [Online]. Available: https://www.mdpi.com/1424-
8220/20/21/6230.

[14] Y. Ye, S. Li, F. Liu, Y. Tang, and W. Hu, “Edgefed: Optimized federated learning
based on edge computing”, IEEE Access, vol. 8, pp. 209 191–209 198, Jan. 2020.
doi: 10.1109/ACCESS.2020.3038287.

[15] M. Moshawrab, M. Adda, A. Bouzouane, H. Ibrahim, and A. Raad, “Reviewing
federated learning aggregation algorithms; strategies, contributions, limitations and
future perspectives”, Electronics, vol. 12, no. 10, 2023, issn: 2079-9292. doi: 10.
3390/electronics12102287. [Online]. Available: https://www.mdpi.com/2079-
9292/12/10/2287.

[16] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, Federated
optimization in heterogeneous networks, 2020. arXiv: 1812.06127 [cs.LG].

[17] Z. Chen, W. Liao, P. Tian, Q. Wang, and W. Yu, “A fairness-aware peer-to-peer de-
centralized learning framework with heterogeneous devices”, Future Internet, vol. 14,
no. 5, 2022, issn: 1999-5903. doi: 10.3390/fi14050138. [Online]. Available: https:
//www.mdpi.com/1999-5903/14/5/138.

[18] H. Reguieg, M. E. Hanjri, M. E. Kamili, and A. Kobbane, A comparative evaluation
of fedavg and per-fedavg algorithms for dirichlet distributed heterogeneous data, 2023.
arXiv: 2309.01275 [cs.LG].

[19] M. Chen, Y. Xu, H. Xu, and L. Huang, “Enhancing decentralized federated learning
for non-iid data on heterogeneous devices”, in 2023 IEEE 39th International Confer-
ence on Data Engineering (ICDE), 2023, pp. 2289–2302. doi: 10.1109/ICDE55515.
2023.00177.

[20] C. Li, G. Li, and P. K. Varshney, “Decentralized federated learning via mutual
knowledge transfer”, IEEE Internet of Things Journal, vol. 9, no. 2, pp. 1136–1147,
Jan. 2022, issn: 2372-2541. doi: 10.1109/jiot.2021.3078543. [Online]. Available:
http://dx.doi.org/10.1109/JIOT.2021.3078543.

[21] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, Deep mutual learning, 2017.
arXiv: 1706.00384 [cs.CV].

[22] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger, Braintorrent: A
peer-to-peer environment for decentralized federated learning, 2019. arXiv: 1905.
06731 [cs.LG].

[23] S. Savazzi, M. Nicoli, V. Rampa, and S. Kianoush, “Federated learning with mu-
tually cooperating devices: A consensus approach towards server-less model opti-
mization”, in ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020, pp. 3937–3941. doi: 10 . 1109 /
ICASSP40776.2020.9054055.

74 BIBLIOGRAPHY

[24] M. Roussopoulos, M. Baker, D. S. H. Rosenthal, T. J. Giuli, P. Maniatis, and J.
Mogul, “2 p2p or not 2 p2p?”, in Peer-to-Peer Systems III, G. M. Voelker and
S. Shenker, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 33–43,
isbn: 978-3-540-30183-7.

[25] S. Sagar, C.-S. Li, S. W. Loke, and J. Choi, Poisoning attacks and defenses in
federated learning: A survey, 2023. arXiv: 2301.05795 [cs.CR].

[26] G. Xia, J. Chen, C. Yu, and J. Ma, “Poisoning attacks in federated learning: A
survey”, IEEE Access, vol. 11, pp. 10 708–10 722, 2023. doi: 10.1109/ACCESS.
2023.3238823.

[27] Z. Wang, Q. Kang, X. Zhang, and Q. Hu, Defense strategies toward model poisoning
attacks in federated learning: A survey, 2022. arXiv: 2202.06414 [cs.CR].

[28] X. Cao, M. Fang, J. Liu, and N. Z. Gong, Fltrust: Byzantine-robust federated learning
via trust bootstrapping, 2022. arXiv: 2012.13995 [cs.CR].

[29] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, Analyzing federated learning
through an adversarial lens, 2019. arXiv: 1811.12470 [cs.LG].

[30] N. Rodríguez-Barroso, D. Jiménez-López, M. V. Luzón, F. Herrera, and E. Martínez-
Cámara, “Survey on federated learning threats: Concepts, taxonomy on attacks and
defences, experimental study and challenges”, Information Fusion, vol. 90, pp. 148–
173, Feb. 2023, issn: 1566-2535. doi: 10.1016/j.inffus.2022.09.011. [Online].
Available: http://dx.doi.org/10.1016/j.inffus.2022.09.011.

[31] C. Fung, C. J. M. Yoon, and I. Beschastnikh, Mitigating sybils in federated learning
poisoning, 2020. arXiv: 1808.04866 [cs.LG].

[32] J. Zhang, J. Chen, D. Wu, B. Chen, and S. Yu, “Poisoning attack in federated learn-
ing using generative adversarial nets”, in 2019 18th IEEE International Conference
On Trust, Security And Privacy In Computing And Communications/13th IEEE
International Conference On Big Data Science And Engineering (TrustCom/Big-
DataSE), 2019, pp. 374–380. doi: 10.1109/TrustCom/BigDataSE.2019.00057.

[33] M. S. Jere, T. Farnan, and F. Koushanfar, “A taxonomy of attacks on federated
learning”, IEEE Security & Privacy, vol. 19, no. 2, pp. 20–28, 2021. doi: 10.1109/
MSEC.2020.3039941.

[34] V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ramage, Back to the drawing
board: A critical evaluation of poisoning attacks on production federated learning,
2021. arXiv: 2108.10241 [cs.LG].

[35] X. Zhou, M. Xu, Y. Wu, and N. Zheng, “Deep model poisoning attack on federated
learning”, Future Internet, vol. 13, no. 3, 2021, issn: 1999-5903. doi: 10.3390/
fi13030073. [Online]. Available: https://www.mdpi.com/1999-5903/13/3/73.

[36] X. Gong, Y. Chen, Q. Wang, and W. Kong, “Backdoor attacks and defenses in
federated learning: State-of-the-art, taxonomy, and future directions”, IEEE Wire-
less Communications, vol. 30, no. 2, pp. 114–121, 2023. doi: 10.1109/MWC.017.
2100714.

[37] T. D. Nguyen, T. Nguyen, P. L. Nguyen, H. H. Pham, K. Doan, and K.-S. Wong,
Backdoor attacks and defenses in federated learning: Survey, challenges and future
research directions, 2023. arXiv: 2303.02213 [cs.LG].

BIBLIOGRAPHY 75

[38] C. Feng, A. H. Celdran, J. Baltensperger, E. T. M. Beltran, G. Bovet, and B. Stiller,
Sentinel: An aggregation function to secure decentralized federated learning, 2023.
arXiv: 2310.08097 [cs.DC].

[39] R. A. Mallah, D. Lopez, G. B. Marfo, and B. Farooq, Untargeted poisoning attack
detection in federated learning via behavior attestation, 2022. arXiv: 2101.10904
[cs.CR].

[40] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into deep learning. Cambridge
University Press, 2023.

[41] Z. Goldfeld and Y. Polyanskiy, “The information bottleneck problem and its ap-
plications in machine learning”, IEEE Journal on Selected Areas in Information
Theory, vol. 1, no. 1, pp. 19–38, 2020. doi: 10.1109/JSAIT.2020.2991561.

[42] K. Kawaguchi, Z. Deng, X. Ji, and J. Huang, How does information bottleneck help
deep learning?, 2023. arXiv: 2305.18887 [cs.LG].

[43] A. M. Saxe, Y. Bansal, J. Dapello, et al., “On the information bottleneck theory
of deep learning”, in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=ry_WPG-A-.

[44] D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett, Byzantine-robust distributed
learning: Towards optimal statistical rates, 2021. arXiv: 1803.01498 [cs.LG].

[45] J. Yin, X. Cui, and K. Li, “A reputation-based resilient and recoverable p2p bot-
net”, in 2017 IEEE Second International Conference on Data Science in Cyberspace
(DSC), 2017, pp. 275–282. doi: 10.1109/DSC.2017.20.

[46] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, How to backdoor
federated learning, 2019. arXiv: 1807.00459.

[47] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine learning
with adversaries: Byzantine tolerant gradient descent”, in Advances in Neural Infor-
mation Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, et al., Eds., vol. 30,
Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.
cc / paper _ files / paper / 2017 / file / f4b9ec30ad9f68f89b29639786cb62ef -
Paper.pdf.

[48] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, The hidden vulnerability of dis-
tributed learning in byzantium, 2018. arXiv: 1802.07927.

[49] C. Fung, C. J. M. Yoon, and I. Beschastnikh, “The limitations of federated learning
in sybil settings”, in 23rd International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID 2020), San Sebastian: USENIX Association, Oct. 2020,
pp. 301–316, isbn: 978-1-939133-18-2. [Online]. Available: https://www.usenix.
org/conference/raid2020/presentation/fung.

[50] P. Rieger, T. D. Nguyen, M. Miettinen, and A.-R. Sadeghi, “Deepsight: Mitigating
backdoor attacks in federated learning through deep model inspection”, in Proceed-
ings 2022 Network and Distributed System Security Symposium, ser. NDSS 2022,
Internet Society, 2022. doi: 10 . 14722 / ndss . 2022 . 23156. [Online]. Available:
http://dx.doi.org/10.14722/ndss.2022.23156.

[51] X. Li, Z. Qu, S. Zhao, B. Tang, Z. Lu, and Y. Liu, Lomar: A local defense against
poisoning attack on federated learning, 2022. arXiv: 2201.02873.

76 BIBLIOGRAPHY

[52] C. Zhang, S. Yang, L. Mao, et al., “Anomaly detection and defense techniques in
federated learning: A comprehensive review”, Artificial Intelligence Review, vol. 57,
p. 150, 2024. doi: 10.1007/s10462-024-10796-1.

[53] S. Li, Y. Cheng, W. Wang, Y. Liu, and T. Chen, Learning to detect malicious clients
for robust federated learning, 2020. arXiv: 2002.00211.

[54] J. Lianga, R. Wang, C. Feng, and C.-C. Chang, A survey on federated learning
poisoning attacks and defenses, 2023. arXiv: 2306.03397.

[55] K. Wei, J. Li, M. Ding, et al., Federated learning with differential privacy: Algorithms
and performance analysis, 2019. arXiv: 1911.00222.

[56] M. Du, R. Jia, and D. Song, Robust anomaly detection and backdoor attack detection
via differential privacy, 2019. arXiv: 1911.07116.

[57] T. D. Nguyen, P. Rieger, H. Chen, et al., “FLAME: Taming backdoors in federated
learning”, in 31st USENIX Security Symposium (USENIX Security 22), Boston,
MA: USENIX Association, Aug. 2022, pp. 1415–1432, isbn: 978-1-939133-31-1. [On-
line]. Available: https : / / www . usenix . org / conference / usenixsecurity22 /
presentation/nguyen.

[58] A. Gholami, N. Torkzaban, and J. S. Baras, “Trusted decentralized federated learn-
ing”, in 2022 IEEE 19th Annual Consumer Communications & Networking Confer-
ence (CCNC), 2022, pp. 1–6. doi: 10.1109/CCNC49033.2022.9700624.

[59] J. Lai, T. Wang, C. Chen, Y. Li, and Z. Zheng, “Vfedad: A defense method based
on the information mechanism behind the vertical federated data poisoning at-
tack”, in Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management, ser. CIKM ’23, , Birmingham, United Kingdom, As-
sociation for Computing Machinery, 2023, pp. 1148–1157, isbn: 9798400701245.
doi: 10.1145/3583780.3615106. [Online]. Available: https://doi.org/10.1145/
3583780.3615106.

[60] J. Park, D.-J. Han, M. Choi, and J. Moon, “Sageflow: Robust federated learning
against both stragglers and adversaries”, in Advances in Neural Information Pro-
cessing Systems, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds.,
2021. [Online]. Available: https://openreview.net/forum?id=rA9HFxFT7th.

[61] Coursesteach, Computer vision (part 14)-common types of noise, Accessed: Jun
22, 2024, Dec. 2023. [Online]. Available: https://medium.com/@Coursesteach/
computer-vision-part-14-common-types-of-noise-7e6507cc763c.

[62] E. A. Team, How to interpret a confusion matrix for a machine learning model,
Accessed: Jun 25, 2024, 2024. [Online]. Available: https://www.evidentlyai.com/
classification-metrics/confusion-matrix.

[63] A. Panchal, Machine learning: Improving classification accuracy on mnist using
data augmentation - an easy way to grow the training data set, Accessed: Jun 25,
2024, 2020. [Online]. Available: https://towardsdatascience.com/improving-
accuracy-on-mnist-using-data-augmentation-b5c38eb5a903.

[64] Y. LeCun and C. Cortes, MNIST handwritten digit database, http://yann.lecun.
com/exdb/mnist/, Accessed: Jun 28, 2024, 2010.

BIBLIOGRAPHY 77

[65] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-mnist: A novel image dataset for bench-
marking machine learning algorithms, 2017. arXiv: 1708.07747 [cs.LG]. [Online].
Available: https://arxiv.org/abs/1708.07747.

[66] A. Krizhevsky, “Learning multiple layers of features from tiny images”, University
of Toronto, May 2012.

[67] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition,
2015. arXiv: 1512.03385 [cs.CV]. [Online]. Available: https://arxiv.org/abs/
1512.03385.

Abbreviations

ML Machine Learning
FL Federated Learning
non-IID non-independent and identically distributed
CFL Centralized Federated Learning
FL Decentralized Federated Learning
SGD Stochastic Gradient Descent
PENS Performance-Based Neighbor Selection
MKT Mutual Knowledge Transfer
GAN Generative Adversarial Network
MI Mutual Information
CE Conditional Entropy
IB Information Bottleneck
DNN Deep Neural Networks
KDE Kernel Density Estimation
VFL Vertical Federated Learning
PNR Poisoned Node Ratio
PSR Poisoned Sample Ratio
NR Noise Ratio
TP True Positives
TN True Negatives
AIDFL Anomalous Information theory-based Detection in DFL
MLP Multilayer Perceptron
ResNet Residual Network

78

List of Figures

2.1 Structure of FedAvg. [14] . 5

2.2 Difference between (Centralized)FL and DFL. [17] 6

2.3 Label-Flipping Attacks: Adversaries alter labels. [31] 9

2.4 Model poisoning attack directly manipulate the local models in FL. [27] . . 10

2.5 Semantic attacks and artificial attacks in backdoor attacks. [37] 12

2.6 The relationship between mutual information, conditional entropy, and
joint entropy. [40] . 15

3.1 According to the type of attacks, two methods are used separately to filter
out malicious models and mitigate the damage. [60] 23

4.1 Classification Accuracy with MNIST Digit Samples 27

4.2 Relationship between entropy and PSR. 30

4.3 High-level overview of the detection process in AIDFL. 30

6.1 The class names and part of the example images in FashionMNIST dataset. [65] 42

6.2 The class names and part of the example images in CIFAR10 dataset. [65] 43

6.3 Baseline performance for MNIST, FashionMNIST and CIFAR10 for 10
rounds implementing 4 algorithms, with the accuracy on the y-axis and
the round progression on the x-axis. 47

6.4 PNR = 10 performance under untargeted label flipping for MNIST, Fash-
ionMNIST and PNR = 20 for CIFAR10 in 10 rounds implementing 4 algo-
rithms, with the accuracy on the y-axis and the round progression on the
x-axis. 50

6.5 PNR = 30 performance under untargeted label flipping for MNIST, Fash-
ionMNIST and PNR = 60 for CIFAR10 in 10 rounds implementing 4 algo-
rithms, with the accuracy on the y-axis and the round progression on the
x-axis. 52

79

80 LIST OF FIGURES

6.6 PNR = 50 performance under untargeted label flipping for MNIST and
FashionMNIST in 10 rounds implementing 4 algorithms, with the accuracy
on the y-axis and the round progression on the x-axis. 53

6.7 PNR = 70 performance under untargeted label flipping for MNIST and
FashionMNIST in 10 rounds implementing 4 algorithms, with the accuracy
on the y-axis and the round progression on the x-axis. 54

6.8 PNR = 10 performance under untargeted sample poisoning for MNIST,
FashionMNIST and PNR = 20 for CIFAR10 in 10 rounds implementing 4
algorithms, with the accuracy on the y-axis and the round progression on
the x-axis. 56

6.9 PNR = 30 performance under untargeted sample poisoning for MNIST,
FM- NIST and PNR = 60 for CIFAR10 in 10 rounds implementing 4 algo-
rithms, with the accuracy on the y-axis and the round progression on the
x-axis. 58

6.10 PNR = 50 performance under untargeted sample poisoning for MNIST and
FashionMNIST in 10 rounds implementing 4 algorithms, with the accuracy
on the y-axis and the round progression on the x-axis. 59

6.11 PNR = 70 performance under untargeted sample for MNIST and Fashion-
MNIST in 10 rounds implementing 4 algorithms, with the accuracy on the
y-axis and the round progression on the x-axis. 60

6.12 AIDFL performance under untargeted label-flipping attacks where PNR=10,
30, 50, 70 for MNIST, FashionMNIST and PNR=0, 20, 60 for CIFAR10 in
10 rounds, with the accuracy on the y-axis and the round progression on
the x-axis. 62

6.13 AIDFL performance under untargeted sample poisoning attacks where PNR
= 0, 10, 30, 50, 70 for MNIST, FashionMNIST and PNR = 0, 20, 60 for
CIFAR10 in 10 rounds implementing 4 algorithms, with the accuracy on
the y-axis and the round progression on the x-axis. 64

6.14 Comparing differences in baseline model performance in IID and non-IID
environments. 65

6.15 Compare the performance differences of untargeted label flipping attacks
with PNR = 10 in IID and non-IID settings. 65

6.16 Compare the performance differences of untargeted label flipping attacks
with PNR = 30 in IID and non-IID settings. 66

6.17 Compare the performance differences of untargeted label flipping attacks
with PNR = 50 in IID and non-IID settings. 66

6.18 Compare the performance differences of untargeted label flipping attacks
with PNR = 70 in IID and non-IID settings. 67

LIST OF FIGURES 81

6.19 Compare the performance differences of untargeted sample poisoning at-
tacks with PNR = 10 in IID and non-IID settings. 67

6.20 Compare the performance differences of untargeted sample poisoning at-
tacks with PNR = 30 in IID and non-IID settings. 68

6.21 Compare the performance differences of untargeted sample poisoning at-
tacks with PNR = 50 in IID and non-IID settings. 68

6.22 Compare the performance differences of untargeted sample poisoning at-
tacks with PNR = 70 in IID and non-IID settings. 69

List of Tables

3.1 Classification of defense approaches against poisoning attacks. For each de-
fense listed, the type of attack (targeted/untargeted) and the scope (data/-
model) are indicated. The technique describes the main methods applied
by each approach. This table primarily summarizes the defense strategies
for DFL environment, with the information-theoretic defenses being based
on VFL. Adopted from [25] [30]. 25

4.1 Configuration overview for the two selected attacks. NR is not applicable
to the label flipping attacks. 29

6.1 Configuration overview for the two selected attacks. NR is not applicable
to the label flipping attacks. 45

6.2 Mean Accuracy after round 10. 48

6.3 Mean Accuracy after round 10 (with SEM). 48

6.4 Accuracy performance in terms of mean and SEM under untargeted label
flipping for MNIST, FashionMNIST and CIFAR10 after round 10 when
PNR = 10 for MNIST and FashionMNIST and PNR = 20 for CIFAR10,
and PSR = 100 for all datasets. 50

6.5 Accuracy performance in terms of mean and SEM under untargeted label
flipping for MNIST, FashionMNIST and CIFAR10 after round 10 when
PNR = 30 for MNIST and FashionMNIST and PNR = 60 for CIFAR10,
and PSR = 100 for all datasets. 51

6.6 Accuracy performance in terms of mean and SEM under untargeted label
flipping for MNIST, FashionMNIST after round 10 when PNR = 50, and
PSR = 100 for all datasets. 53

6.7 Accuracy performance in terms of mean and SEM under untargeted label
flipping for MNIST, FashionMNIST after round 10 when PNR = 70, and
PSR = 100 for all datasets. 54

82

LIST OF TABLES 83

6.8 Accuracy performance in terms of mean and SEM under untargeted sample
poisoning for MNIST, FashionMNIST and CIFAR10 after round 10 when
PNR = 10 for MNIST and FashionMNIST and PNR = 20 for CIFAR10,
and PSR = 100 for all datasets. 56

6.9 Accuracy performance in terms of mean and SEM under untargeted sample
poisoning for MNIST, FashionMNIST and CIFAR10 after round 10 when
PNR = 30 for MNIST and FashionMNIST and PNR = 60 for CIFAR10,
and PSR = 100 for all datasets. 57

6.10 Accuracy performance in terms of mean and SEM under untargeted sample
poisoning for MNIST, FashionMNIST after round 10 when PNR = 50, and
PSR = 100 for all datasets. 59

6.11 Accuracy performance in terms of mean and SEM under untargeted sample
poisoning for MNIST, FashionMNIST after round 10 when PNR = 70, and
PSR = 100 for all datasets. 60

6.12 Accuracy of AIDFL after round 10 across different PNR values (with SEM),
where ’-’ means the PNR is not applicable to corresponding dataset. 61

6.13 Accuracy of AIDFL after round 10 across different PNR values (with SEM),
where ’-’ means the PNR is not applicable to corresponding dataset. 63

List of Algorithms

1 AIDFL Aggregation Algorithm . 31
2 K-means Clustering . 32
3 Von Neumann Entropy . 33
4 Mutual Information . 33
5 Mutual Information Estimation (for feature data) 33
6 Conditional Entropy Estimation . 33
7 Anomaly Detection . 34
8 Proposed AIDFL Algorithm (Detailed) . 35

84

