
Creation of New Datasets for
Decentralized Federated Learning

Jing Han
Zurich, Switzerland

Student ID: 22-738-686
Xi Cheng

Zurich, Switzerland
Student ID: 21-742-945

Zien Zeng
Zurich, Switzerland

Student ID: 21-741-558
Heqing Ren

Zurich, Switzerland
Student ID: 22-736-128

Supervisor: Chao Feng, Dr. Alberto Huertas Celdrán
Date of Submission: January 12, 2024

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

P
R

O
JE

C
T

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Master Project
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Declaration of Independence

We hereby declare that we have composed this work independently and without the use
of any aids other than those declared (including generative AI such as ChatGPT). We
are aware that we take full responsibility for the scientific character of the submitted
text ourselves, even if AI aids were used and declared (after written confirmation by
the supervising professor). All passages taken verbatim or in sense from published or
unpublished writings are identified as such. The work has not yet been submitted in the
same or similar form or in excerpts as part of another examination.

Zürich,
Signature of students

i

ii

Zusammenfassung

Das Internet der Dinge (IoT) erlebt einen rasanten Anstieg der Anzahl von verbundenen
Geräten, die darauf ausgelegt sind, eine enorme Menge an Daten zu verarbeiten und zu
kommunizieren. Diese umfangreiche Datenmenge macht IoT-Geräte jedoch auch anfällig
für Cyberangriffe, was die Sicherheit und Integrität der Daten gefährdet. Daher ist es
entscheidend, die Sicherheit von IoT-Geräten zu priorisieren, um Datenverletzungen zu
verhindern und den Schutz sensibler Informationen zu gewährleisten. Die Verfügbarkeit
großer und öffentlich zugänglicher Datensätze für die Erkennung von IoT-Malware ist
jedoch begrenzt, was eine Herausforderung für Forscher in diesem Bereich darstellt. Dar-
über hinaus hat sich die meiste Forschung in diesem Bereich auf traditionelles maschinelles
Lernen (ML) und zentrales föderiertes Lernen (CFL) verlassen, was Limitationen in der
Anpassung an die dynamischen IoT-Daten und Datenschutzbedenken mit sich bringt. Im
Gegensatz dazu ermöglicht dezentrales föderiertes Lernen (DFL) verteiltes Lernen über
IoT-Geräte, schützt die Datensicherheit und verbessert die Anpassungsfähigkeit des Mo-
dells an die sich entwickelnde Bedrohungslandschaft im IoT-Ökosystem.

Diese Arbeit beinhaltete die Überwachung verschiedener Verhaltensquellen von realen
IoT-Geräten. Ziel war es, einen umfassenden Datensatz zu erstellen, der sowohl normales
Geräteverhalten als auch anomales Verhalten bei Angriffen durch Malware erfasst. Zu-
sätzlich präsentierte diese Arbeit einen ML-basierten Ansatz, der das DFL-Modell nutzt,
um Malware zu erkennen und zu klassifizieren, die auf IoT-Geräte abzielt. Dieses Modell
verspricht, Robustheit zu erhöhen und die Datensicherheit zu wahren. Ferner führte die-
se Arbeit eine gründliche Analyse und Vergleich verschiedener Szenarien durch, um die
Wirksamkeit und Zuverlässigkeit des vorgeschlagenen Modells zu demonstrieren.

iii

iv

Abstract

The Internet of Things (IoT) is witnessing a rapid increase in the number of connected
devices, which are designed to process and communicate an enormous amount of data.
However, this extensive volume of data also makes IoT devices susceptible to cyberattacks,
compromising the security and integrity of data. As a result, it is essential to prioritize
safeguarding the security of IoT devices to prevent data breaches and ensure the protection
of sensitive information. However, the availability of large and publicly accessible datasets
for IoT malware detection is limited, posing a challenge for researchers in this field. In
addition, most of the research in this area has relied on Traditional Machine Learning
(ML) and Centralized Federated Learning (CFL) approaches, which face limitations in
adapting to the dynamic IoT data and privacy concerns. In contrast, Decentralized Fed-
erated Learning (DFL) enables distributed learning across IoT devices, preserves data
privacy, and enhances the model’s adaptability to the evolving threat landscape in the
IoT ecosystem.

This work involved monitoring various sources of behavior from real IoT devices. The
aim was to create a comprehensive dataset capturing both normal device behavior and
anomalous device behavior when under attack by malware. Additionally, this work put
forward a ML-based approach that utilizes the DFL model to detect and classify malware
targeting IoT devices. This model promises to enhance robustness and maintain data
privacy. Furthermore, this work conducted a thorough analysis and comparison of various
scenarios to demonstrate the effectiveness and reliability of the proposed model.

v

vi

Acknowledgments

We would like to express our sincere gratitude to our supervisors, Chao Feng and Dr.
Alberto Huertas Celdrán for their continuous support and guidance throughout our master
project. Their expertise in cybersecurity and data science, coupled with the invaluable
suggestions they provided, have been a great help for this project. We are thankful for
the knowledge and experience gained under their mentorship.

We would like to thank Prof. Dr. Burkhard Stiller for giving us the opportunity to
undertake our master project in an area of our interest. It is a pleasant and rewarding
experience to conduct research at the Communication Systems Group.

vii

viii

Contents

Declaration of Independence i

Abstract iii

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Motivation . 2

1.2 Description of Work . 2

1.3 Thesis Outline . 3

2 Background 5

2.1 Spectrum Sensing Data and ElectroSense 5

2.2 Malware Affecting IoT Devices . 6

2.2.1 Botnets . 6

2.2.2 Backdoors . 7

2.2.3 Rootkits . 8

2.2.4 Coinminer . 8

2.2.5 Ransomware . 8

2.3 Malware Analysis Methods . 9

2.3.1 IoT Anomaly Detection . 9

2.3.2 IoT Malware Classification . 10

ix

x CONTENTS

2.4 Machine Learning and Deep Learning Techniques 11

2.4.1 Overview . 11

2.4.2 Autoencoder . 11

2.4.3 MultiLayer Perceptron . 12

2.5 Federated Learning . 13

2.5.1 Centralized Federated Learning . 14

2.5.2 Decentralized Federated Learning 15

2.6 Fedstellar . 15

2.7 Feature Extraction Techniques . 17

2.7.1 Bag-of-words . 17

2.7.2 Entropy with Relation to Files . 18

3 Related Work 19

3.1 Anomaly Detection and Malware Classification 19

3.2 Federated Learning . 22

3.3 Summary and Insights . 23

4 Architecture 25

4.1 Control Module . 25

4.2 Monitoring Module . 27

4.2.1 Resource Usage Monitoring . 27

4.2.2 Kernel Events Monitoring . 27

4.2.3 System Call Monitoring . 29

4.2.4 Network Monitoring . 29

4.2.5 Input/Output Monitoring . 30

4.2.6 File System Monitoring . 32

4.3 Transmission Module . 33

4.4 Data Processing Module . 34

4.5 Federated Learning Module . 35

4.6 Evaluation Module . 37

CONTENTS xi

5 Implementation 41

5.1 Setup . 41

5.2 Feature Extraction . 42

5.3 Data Integration . 44

5.4 Data Preprocessing . 46

5.5 Feature Selection . 47

5.5.1 Feature Selection for Anomaly Detection 47

5.5.2 Feature Selection for Malware Classification 49

5.6 Model Training . 50

6 Evaluation 53

6.1 Comparison between ML, CFL, and DFL Approaches 53

6.2 Comparison between Different DFL Topologies 58

6.3 Non-IID Scenarios . 61

6.3.1 Non-IID Scenario 1: Training Each Node with Data from a Specific
Physical Device . 61

6.3.2 Non-IID Scenario 2: Training Nodes wherein Some of Them Missing
a Certain Type of Malware Data 63

6.3.3 Non-IID Scenario 3: Training Nodes wherein All of Them Missing
Certain Types of Malware Data . 67

6.4 Resilience Against Attacks . 67

7 Summary, Conclusions and Future Work 71

7.1 Summary and Conclusions . 71

7.2 Future Work . 72

Bibliography 73

Abbreviations 79

List of Figures 80

xii CONTENTS

List of Tables 83

A Installation Guidelines 87

A.1 Data Monitoring . 87

A.1.1 Initial setup . 87

A.1.2 Monitor Controller Installation . 88

A.1.3 Monitoring Scripts . 88

A.1.4 Data Collecting . 89

A.2 Model Development . 90

A.2.1 Data Processing . 90

A.2.2 Model Training and Evaluation . 91

B Contents of the CD 93

Chapter 1

Introduction

In the era of Industry 4.0, the Internet of Things (IoT) is a rapidly evolving technological
field. IoT devices, equipped with sensors, microcontrollers, and other digital components,
are increasingly interconnected via the Internet. While these devices facilitate human
lives, they also increase the likelihood of Radio Frequency (RF) collision. To manage the
RF spectrum effectively, Electorsense, an innovative crowdsensing spectrum monitoring
platform, has been introduced [1]. This platform utilizes devices with limited resources,
like Raspberry Pis, to gather, transmit, and process RF spectrum data. However, the
expansion of these spectrum sensors also introduces new security vulnerabilities, partic-
ularly susceptibility to malware attacks. These concerns are further compounded by the
inherent complexity and diverse nature of IoT devices, making them challenging to secure
effectively.

To address these challenges, researchers have been focusing on developing robust security
solutions. Notably, some studies have made significant strides in creating effective anomaly
detection and malware classification models utilizing Machine Learning (ML) and Deep
Learning (DL). However, these models encounter limitations, especially in scenarios where
sharing IoT device data is restricted due to privacy concerns. Federated Learning (FL)
has emerged as a promising solution to this problem. It offers a way to perform distributed
ML in isolated data environments while maintaining data confidentiality [2]. In the FL
framework, different clients independently train models on their local data. These local
models are then aggregated to form a global model. This approach not only ensures
the privacy of each client’s data but also contributes to improving the generalization
capabilities of the overall model. Through FL, it becomes possible to enhance IoT security
without compromising data privacy.

While FL represents a considerable step forward in ensuring data privacy, it does face
certain challenges, especially in its Centralized FL (CFL) configuration. The CFL model
relies on a central server for the aggregation of the global model, which introduces the risk
of a single point of failure. To mitigate this risk, Decentralized FL (DFL) has emerged
as a promising area of research. DFL eliminates the need for a central server, adopting
a distributed approach for training ML models. This shift from a centralized to a decen-
tralized framework enhances the robustness of the system and further strengthens data
privacy safeguards.

1

2 CHAPTER 1. INTRODUCTION

In light of these considerations, this project aims to develop a DFL-based method for
anomaly detection and malware classification, with the goal of protecting the integrity of
IoT spectrum data while preserving privacy. This chapter outlines the motivation for this
approach, along with a description of the project’s scope and its organizational structure.

1.1 Motivation

Due to the absence of genuine platform data related to device fingerprints for resource-
constrained spectrum sensors, there is a need to establish an extensive and comprehensive
dataset that encompasses various types of device information.

Traditional ML and DL methods typically require centralized collection and storage of
data from all participants, followed by model training on a central server. This can lead
to risks of privacy leakage.

To address these issues, this work has collected a large dataset and integrated device
fingerprinting with FL. FL employs a decentralized approach, which can mitigate the risk
of privacy leakage.

1.2 Description of Work

The main goal of this thesis is to design and implement a framework based on DFL for
the detection and classification of eight types of malware.

To achieve this goal, the following tasks were completed:

First, research on IoT security, anomaly detection and malware classification, as well as
DFL was conducted. Through these works, necessary background knowledge was ob-
tained, including the existing anomaly detection and malware classification methods, and
whether malware attacks would affect the Network, Input/Output (I/O), File System,
Resource Usage, System Call, and Kernel Events of a Raspberry Pi. This work helped in
choosing the anomaly detection and malware classification methods and the behavioral
data to be collected next.

Next, the experimental work of the project began. A Control Module was created to con-
trol the operation of six monitoring modules, collecting behavioral data from six Raspberry
Pi 3 devices and two Raspberry Pi 4 devices connected to the ElectroSense platform. Each
device collected data under eight malware attacks and in normal state for four hours, to-
taling 288 hours of data and resulting in a dataset of over 50,000 rows. Data cleaning,
feature extraction, and feature normalization were performed to obtain a dataset suitable
for ML, which then underwent further feature selection to avoid model overfitting.

In the third step, this work designed, developed, trained, and evaluated two FL pipelines,
one of which was an Autoencoder, and the other was a Multilayer Perceptron (MLP).

1.3. THESIS OUTLINE 3

Through the integration of the dataset and models to the Fedstellar framework, decen-
tralized training and testing of the distributed learning model were achieved. The Autoen-
coder was used to identify the presence of malware attacks, utilizing 22 features selected
from the feature dataset for training and testing. The MLP was used to classify different
types of malware, utilizing 30 features selected from the feature dataset for training and
testing.

Finally, the results of the Autoencoder and MLP were evaluated. Multiple related ex-
periments were conducted, including those with different topologies of DFL, to assess the
robustness of the experimental results. The performance of the experiment was evalu-
ated and compared using metrics such as precision, recall, and f1-score, confirming the
effectiveness of the ML pipeline.

1.3 Thesis Outline

The remainder of this thesis encompasses the following content: Chapter 2 introduces
background knowledge on spectrum sensing data and ElectroSense, malware affecting
IoT devices, malware analysis methods, ML and DL techniques, FL, Fedstellar, and fea-
ture extraction techniques. This knowledge is instrumental in understanding the design
philosophy of the implementation. Chapter 3 conducts a comparative analysis of research
work related to anomaly detection and malware classification, contrasts traditional DL
models with FL models, and collects and organizes the effects of different types of mal-
ware on behavioral sources. In Chapter 4, the system architecture and its six modules
are elaborated in detail: the control module, monitoring module, transmission module,
data processing module, FL module, and evaluation module. Chapter 5 delineates the
implementation of the experiments, covering steps including setup, feature extraction,
integration, data preprocessing, feature selection, and model training. Chapter 6 designs
related experiments to assess the robustness of the implementation, including a compar-
ison between ML, CFL, and DFL approaches, as well as a comparison between different
DFL topologies, and so on. The final chapter, Chapter 7, concludes the thesis and provides
a prospectus for future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In recent years, the development of IoT technology has led to the integration of IoT devices
into modern society, providing unprecedented convenience, automation, and connectivity
to every aspect of people’s daily lives. This has resulted in an increased use of RF
bands, necessitating solutions for the challenges posed by large-scale spectrum monitoring,
leading to the creation of ElectroSense. Moreover, the significant growth in the number
of IoT devices has also made them increasingly targeted by malicious actors seeking to
exploit vulnerabilities for personal gain.

This chapter provides a brief introduction to spectrum sensing data and ElectroSense and
describes the types of malware that affect IoT devices. It then explains the two phases of
malware analysis: detection and classification. Additionally, it introduces techniques for
anomaly detection and malware classification, including ML-based and DL-based meth-
ods. Furthermore, the Fedstellar framework built for FL is introduced. Lastly, it provides
an introduction to feature extraction methods.

2.1 Spectrum Sensing Data and ElectroSense

The rapid development of IoT, which connects physical devices, vehicles, household items,
and other everyday objects to the internet, has led to improvements in production effi-
ciency and life quality. However, it also presents a challenge due to the increasing use of
RF bands, making spectrum management more important than ever [1].

Spectrum sensing data is crucial for optimizing spectrum resources, as it involves monitor-
ing the use of the radio spectrum to identify which frequencies are being used and which
are not. The extensive use of RF bands has made spectrum monitoring increasingly
difficult, because it requires intensive sampling in time, frequency, and space.

5

6 CHAPTER 2. BACKGROUND

To address the challenges brought by large-scale spectrum monitoring, ElectroSense was
created. It is a crowdsourced network (see Figure 2.1), using low-cost sensors as the
primary devices for sensing the spectrum to collect and analyze spectrum data [3]. Elec-
troSense aims to sense the entire spectrum in different regions of the world and provide
processed spectrum data to any user interested in making research on spectrum. The spec-
trum sensing data from different sensors can be accessed through an open API [4] from
the ElectroSense backend, significantly increasing the accessibility of spectrum sensing
data for the general public.

Figure 2.1: ElectroSense Network Overview

The sensors used in the ElectroSense project are built on software-defined radio (SDR)
technology and cheap embedded platforms, with one example of an embedded platform
being the Raspberry Pi. This reduces the cost for contributors of spectrum data and aids
in the global deployment of ElectroSense. Raspberry Pies are the infrastructure that this
project utilizes.

2.2 Malware Affecting IoT Devices

Malware targeting IoT devices poses a significant threat to user privacy and system secu-
rity. Attackers exploit vulnerabilities to gain unauthorized access, steal sensitive data, or
use device resources for malicious activities. There are five main families of malware af-
fecting IoT devices, including Botnets, Backdoors, Rootkits, Coinminer, and Ransomware
[5]. Each malware family contains multiple types of malware. Here is a brief overview of
malware families and specific types within them.

2.2.1 Botnets

Botnets are networks of computers infected with malware, which are controlled by at-
tackers. These infected computers can perform various tasks without user authorization,

2.2. MALWARE AFFECTING IOT DEVICES 7

such as distributing malware, launching Distributed Denial of Service (DDoS) attacks,
sending spam, etc. Botnets usually infect computers through backdoors, worms, or ma-
licious downloaders. Attackers can remotely manage Botnets through command-and-
control servers and use them to carry out large-scale cyberattacks and illegal activities.

- Bashlite [6]. In 2014, the original version of this program was developed and it
gained immense popularity over the next two years. This botnet comprises of two
files: ”client.c” and ”server.c”. The former file infects a device, while the latter acts
as the command and control system that manages every bot in the network. The
bots can spread the payload to other devices and can also use brute-force attacks
to take advantage of vulnerable telnet credentials. Such actions eventually lead to
the botnet’s growth until it becomes powerful enough to launch a DDoS attack [5].

2.2.2 Backdoors

Backdoors is a security vulnerability that enables unauthorized access to a system by
bypassing normal security mechanisms. Attackers can use the backdoor to gain direct ac-
cess to a compromised system, undetected, and perform malicious actions such as stealing
sensitive data or planting other malware. Backdoors can be created directly by attackers
or planted by other malware.

- HttpBackdoor [7] is a type of backdoor that is known to be the simplest and most
basic among other backdoors. It operates by setting up a Web server on an IoT
spectrum sensor, Raspberry Pi, and then waits for HTTP requests from the at-
tacker, also known as the client. This particular backdoor applies three behaviors,
namely execution, download, and removal, while also showcasing two fundamental
functionalities. The first functionality enables the attacker to retrieve fundamental
system information. This includes the name and version of the operating system, or
saved SSH keys, by simply sending a GET request. The second functionality allows
the attacker to execute command line commands on the Raspberry Pi by sending a
POST request [5].

- Backdoor [8] is made up of two parts - the client and server sides. The server side
sends commands to a specified IP address and port, which the client side (running
on the Raspberry Pi) listens to. This backdoor provides several functionalities like
executing commands, downloading files, removing files, and leaking data. One of
the most remarkable features of this backdoor is its ability to open a shell on the
IoT spectrum sensor. Additionally, the backdoor enables the attacker to retrieve
the contents of a file on the Raspberry Pi and transfer it to their machine [5].

- TheTick [9] is the most comprehensive backdoor among these three types of Back-
doors due to its complex behaviors. It operates through a Command and Control
(C&C) server structure, but with a unique feature - TheTick has the ability to sup-
port multiple clients simultaneously and switch between them without causing any
disruption. To elaborate further, multiple IoT spectrum sensors can be infected and
act as simultaneous clients. Additionally, the attacker has the capability to send
commands to each client individually [5].

8 CHAPTER 2. BACKGROUND

2.2.3 Rootkits

Rootkits is a type of malware that is designed to hide in the operating system. They
give attackers remote access and control without the user’s knowledge. By manipulating
core components or the kernel of the operating system, rootkits make their presence in
the system imperceptible, allowing attackers to steal sensitive information, abuse system
resources, and perform malicious actions.

- Beurk [10]. This particular preload rootkit is specifically designed to prevent detec-
tion and debugging. It comes with a range of features such as concealing processes,
and logins and bypassing various types of analysis such as unhide, lsof, ps, ldd, and
netstat. Additionally, it can hide pseudo-terminal backdoor clients, directories, and
files. It also has a real-time log cleanup feature that operates on utmp/wtmp [5].

- Bdvl [11]. Vlany-based rootkit preloading is aimed at achieving a more efficient and
manageable rootkit that is free from malfunctions. It has a wide range of functions,
including hidden backdoors that enable multiple connection methods, as well as
keylogging and the theft of passwords and files [5].

2.2.4 Coinminer

Coinminer is a type of harmful software that infiltrates a computer system and uses the
device’s processing power, particularly the CPU and RAM, to mine for digital coins such
as Monero or Zcash. The malware is designed to be extremely persistent, often installing
one of several open-source miners without the knowledge or consent of the victim. To
avoid detection, these malicious miners often include timer settings or limit the amount
of CPU usage to remain undetected. Despite their stealthy behavior, these coin miners can
cause significant damage to a victim’s computer system, resulting in slower performance,
overheating, and even hardware failure.

- XMRig [12] is a mining software that is open-source and is most commonly used
for mining Monero, a privacy-focused cryptocurrency. This mining tool is highly
efficient and can be used across multiple platforms including Windows, Linux, and
macOS. It can mine using both CPUs and GPUs and offers a variety of customization
options. However, it is important to note that XMRig may be used for illegal
mining activities by malware, so users should ensure the security of the source when
downloading and using the software.

2.2.5 Ransomware

Ransomware is a type of malware that encrypts a victim’s files or system and demands a
ransom for the decryption key. Victims cannot access their data once files are encrypted.
This can have serious implications for individuals, businesses, and institutions. Ran-
somware typically spreads through email attachments, malicious downloads, or exploits.

2.3. MALWARE ANALYSIS METHODS 9

Attackers exploit victims’ urgency and fear to force them to pay a ransom. Therefore, it
is crucial to protect against ransomware attacks and regularly back up data.

- Ransomware-PoC [13]. The encryption functionality of this particular ransomware
is similar to that of a typical one, with the exception that it doesn’t rely on a C&C
server to operate. Instead, the encryption keys are integrated into the source code.
To encrypt all files present on the Raspberry Pi, Ransomware-PoC uses an AES 256
key. Afterward, the AES 256 key is encrypted using an RSA public key, and the
encryption algorithm scans through the system directories, encrypting the content
of all valid file extensions [5].

2.3 Malware Analysis Methods

Malware analysis is divided into two phases. The first is the anomaly detection phase,
in which the system first catches the presence of malware. Next comes the malware
classification phase, where the security system attempts to classify each threat sample
into one of the relevant malware families [14]. The analysis methods used in the anomaly
detection and malware classification phases are described below.

2.3.1 IoT Anomaly Detection

One way to detect IoT anomalies is through behavioral fingerprinting, which captures
unique patterns in device behavior. By analyzing behavioral fingerprinting, deviations
from normal behavior can be identified as potentially malicious. This approach creates
new defense dimensions against the ever-changing threat landscape. According to [15],
there are five primary behavior sources for the anomaly detection scenario.

(1) Network Communications.

One of the core characteristics of IoT devices is that they communicate over a network.
By monitoring the network activity of the device, including incoming and outgoing data
traffic, communication protocols, and connection patterns, it is possible to build a fin-
gerprint of the device’s network behavior. Unusual network traffic patterns can indicate
malicious activities.

(2) Hardware Events.

Hardware events, such as startup, shutdown, and external device connection, are unique
and stable throughout the device’s lifecycle. By monitoring the pattern and frequency
of these events, it is possible to detect unusual activity by capturing a fingerprint of the
device’s hardware behavior.

(3) Resource Usage.

10 CHAPTER 2. BACKGROUND

Malware can cause unusual use of device resources, such as unusual CPU, memory, and
storage usage. By monitoring resource usage, it is possible to create a behavior fingerprint
to detect anomalies.

(4) Software and Processes.

Each device has unique software configurations and processes. By monitoring the software
applications and processes running on the device, it is easy to capture a fingerprint of the
device’s software behavior. Unusual software installation or process activity can mean the
presence of malware activities.

(5) Sensors and Actuators.

IoT devices are often equipped with a variety of sensors and actuators. By observing the
usage patterns of these sensors and actuators, a fingerprint of the sensor-actuator behavior
of the device can be formed to spot behavior that does not match expectations.

Combining these behavioral sources, behavioral fingerprinting provides a multi-dimensional,
comprehensive approach to detecting potential malware activity in IoT devices. By un-
derstanding the normal behavior pattern of the device, it is possible to more accurately
identify abnormal behavior that does not comply with that pattern, thereby strengthening
the IoT security strategy.

2.3.2 IoT Malware Classification

Malware classification is a complex task that involves various steps, one of which is the
selection of feature vectors. Feature vector selection is a critical process that entails
picking out the most relevant attributes from raw data for more efficient analysis and
pattern recognition. The goal is to improve the accuracy and efficiency of classification
algorithms, which in turn helps in detecting and preventing malware attacks. Feature
vector selection methods can be categorized into two types: static and dynamic analysis
[14].

The dynamic analysis method involves executing malware samples and monitoring their
behavior while observing any changes in the execution environment. However, due to
the high complexity of the environment setup, it takes longer to perform a complete
execution of all malware samples and observe their results. Nevertheless, this approach
provides the safest, most efficient, and most reliable analysis results that provide insight
into the behavioral characteristics of malware.

Static analysis involves detecting and analyzing malware by examining its executable
metadata, assembly code instructions, and binary content. It is less expensive and faster
than dynamic analysis, and it can reveal malware’s structure, attack characteristics, and
possible functionality.

In summary, dynamic analysis provides detailed information on malware behavior but
takes longer, while static analysis offers quick detection and preliminary analysis, provid-
ing critical information in a shorter time frame.

2.4. MACHINE LEARNING AND DEEP LEARNING TECHNIQUES 11

2.4 Machine Learning and Deep Learning Techniques

2.4.1 Overview

ML and DL algorithms are highly advanced and sophisticated techniques that offer supe-
rior capabilities in various domains. They are particularly useful in complex tasks such as
anomaly detection and malware classification, where traditional methods may fall short.

ML/DL algorithms fall under two categories: supervised and unsupervised learning. Su-
pervised learning aims to predict output labels or values based on input data and includes
classification and regression techniques. Classification algorithms like Decision Tree (DT),
Random Forest (RF), Logistic Regression (LR), Näıve Bayes (NB), and Support Vector
Machines (SVM) classify unknown data based on training data. Regression algorithms
like linear and polynomial regression predict continuous numeric outputs [15].

Unsupervised learning algorithms are used to discover patterns, structures, and features
in unlabeled data. Some common tasks include clustering (dividing data into similar
groups), dimensionality reduction (reducing the dimensionality of the data while retain-
ing important information), and anomaly detection. Three popular anomaly detection
algorithms are One-Class SVM (OC-SVM), Local Outlier Factor (LOF), and Isolation
Forest (IF) [15].

From a DL perspective, Recurrent Neural Networks (RNNs) like Long Short-Term Mem-
ory (LSTMs) networks andGated Recurrent Unit (GRU) networks are popular for anomaly
detection and malware classification. Along with RNNs, Artificial Neural Networks (ANNs)
are also widely used. For instance, Autoencoders are useful for detecting anomalous be-
havior and reducing dimensionality, while MLP can be used for malware classification
[15].

2.4.2 Autoencoder

In this project, the methodology from [16] is adopted, which involves utilizing Autoencoder
as the model for anomaly detection. This choice is based on its optimal balance between
simplicity and effectiveness.

The architecture of an Autoencoder, depicted in Figure 2.2, comprises two main compo-
nents: an encoder and a decoder. The encoder’s role is to transform the input data into a
condensed, low-dimensional representation in the latent space. Conversely, the decoder’s
function is to reconstruct the input from this encoded format.

The training process of the Autoencoder is exclusively conducted using normal data.
During this phase, the model learns to identify the common patterns found in normal
data. The training objective is to minimize the reconstruction error, which is the difference
between the original input and the reconstructed output. In an ideal scenario, a well-
trained Autoencoder is adept at reconstructing inputs that resemble its training data,
thereby exhibiting low reconstruction errors for normal instances. When it encounters

12 CHAPTER 2. BACKGROUND

data that deviates from the training data. Such unfamiliar, anomalous inputs are not
reconstructed accurately, resulting in significantly higher reconstruction errors. By setting
an appropriate threshold for these errors, the model can effectively detect anomalies.

Figure 2.2: Architecture of Autoencoder [17]

2.4.3 MultiLayer Perceptron

For malware classification, this project employs a MLP, aligning with the approach used
in [18], due to its powerful and flexible capabilities.

The MLP model can be adapted for a variety of complex problems by adjusting the net-
work structure, including the number of layers and neurons. The architecture of the MLP
as shown in Figure 2.3, consists of an input layer, some hidden layers, and an output
layer. Hidden layers enable the MLP to learn complex patterns and non-linear relation-
ships in the data. Applying the activation function after the hidden layers introduces
non-linearity, enhancing the MLP’s ability to process complex data.

MLP training utilizes a dataset comprising data under malware attacks and in a normal
state. Throughout the training process, the MLP model adjusts its weights and biases to
reduce the value of the CrossEntropyLoss, which reflects the difference between predicted
and actual labels. Therefore, the MLP model gradually learns to recognize patterns and
features in the data. Upon completion of training, the model has minimized the difference
between predicted and actual labels, enabling it to distinguish among different malware
attacks and normal state.

2.5. FEDERATED LEARNING 13

Figure 2.3: Architecture of MLP

2.5 Federated Learning

ML/DL excels in anomaly detection and malware classification tasks by extracting latent
patterns from supervised or unsupervised data. However, the traditional ML models
discussed in previous section are centralized, implying that they collect, store, process
and train data in a single location.

In the traditional ML/DL pipeline, as shown in Figure 2.4, data are collected by individual
devices and then upload to a central sever for model training and evaluation. This cen-
tralized approach raises substantial privacy and security concerns, especially when dealing
with sensitive data.

Figure 2.4: Traditional ML (left) and FL (right)

On the other hand, traditional ML/DL techniques face scalability problem with the rapid

14 CHAPTER 2. BACKGROUND

development of IoT where enormous amount of data generated. It becomes increasingly
difficult for users to collect and analyse tons of executables and trace data at a centralized
site.

These limitations of ML/DL techniques, mainly privacy and scalability concerns, have
prompted the emergence of innovative solutions such as FL. In FL, as shown in Figure 2.4,
each node does not upload data to the central server, but stores data and trains the model
locally. This decentralized approach mitigates privacy risks associated with centralizing
sensitive data, and it efficiently scales with the growing volume of data generated by the
IoT.

In the following, FL, including CFL and DFL, is briefly introduced, explaining the ratio-
nale behind adopting DFL as the preferred approach in this project.

2.5.1 Centralized Federated Learning

CFL is a type of FL where a central server orchestrates several steps of the algorithms
and coordinates all the participating nodes throughout the learning process. Compared
to traditional ML, CFL enables collaborative model training across decentralized devices
while keeping data localized.

As depicted in Figure 2.5, each participating node collects data and trains its model locally
and sends its model parameters to the central server, which aggregates and updates the
global model. Subsequently, the updated model parameters are transmitted back to the
individual nodes. After multiple iterations of training and aggregation, a converged global
model is integrated by the central sever.

Figure 2.5: CFL (left) and DFL (right) [19]

2.6. FEDSTELLAR 15

Due to its centralized nature, CFL still may encounter challenges related to data privacy,
as all local updates are transmitted to the central server. Additionally, because of its
reliance on a central sever, CFL is exposed to single point of failure and communication
bottlenecks. To solve these issues introduced by centralization, researchers proposed DFL.

2.5.2 Decentralized Federated Learning

DFL, another type of FL, characterized by the absence of a central server. In DFL,
participating nodes coordinate themselves to obtain the global model.

As depicted in Figure 2.5, each node taking part in the learning process collects and
processes data independently. Every node trains its model using its data and sends the
model updates or gradients directly to other interconnected nodes, without involving any
central server. The DFL approach is highly flexible and accommodates various network
topologies including fully connected, ring, star, and random topology. Each topology may
have a different impact on the performance of the learning process.

DFL offers numerous advantages over traditional approaches like ML, DL, and CFL. One
of the most notable benefits of DFL is that the raw data is not transmitted during model
training and updates, which greatly mitigates the risks of data breaches. Moreover, DFL
eliminates the single-point-of-failure issue that is inherent in centralized models. This
is because model updates are exchanged only between interconnected nodes without the
need for orchestration by a central server. Due to its enhanced security, privacy, and
resilience, this project used DFL for model training.

2.6 Fedstellar

Fedstellar is an open-source platform for training FL models in a decentralized, semi-
decentralized, and centralized fashion across many physical and virtualized devices. Pro-
vided with user-friendly frontend (see Figure 2.6), users can setup their experiments eas-
ily. With this interactive platform, users are allowed to create federations by customizing
parameters such as the number and type of devices engaged in training FL models, the
network topology connecting them, the specific ML algorithms employed, and the datasets
that participants train on.

Except for these basic functionality, Fedstellar provides an advanced mode, where users
can test their model’s robustness. As shown in Figure 2.7, users can apply predefined
attacks such as label flipping, sample poisoning, and model poisoning.

16 CHAPTER 2. BACKGROUND

Figure 2.6: Fedstellar User Interface

Figure 2.7: Fedstellar Advanced Mode

Moreover, Fedstellar provides real-time monitoring capabilities, allowing users to track
both model and network performance through a range of informative metrics (see Fig-
ure 2.8). This facilitates comprehensive insights into the ongoing training process.

2.7. FEATURE EXTRACTION TECHNIQUES 17

Figure 2.8: Fedstellar Real-time Monitoring Metrics

2.7 Feature Extraction Techniques

2.7.1 Bag-of-words

Bag-of-words (BoW) is a feature extraction technique widely applied in text classification.
The core idea of this method is to transform text (for instance, system call data) into a
set of tokens (or “words”) and to count the frequency of each token within the text. As a
result, each text can be represented as a vector, where each dimension corresponds to a
specific token, and its value is the occurrence frequency of that token in the text.

Suppose there is a situation where need to analyze the system call logs. If there are two
files, each containing ten system call entries, then it is possible to use the BoW method
to convert the system call data from each file into a feature vector. This will result in two
distinct feature vectors, each representing the system call data of one file.

For instance, suppose the first file contains the following sequence of system calls:

- open, read, write, close, open, read, write, open, read, close.

The second file contains:

- read, write, open, read, write, close, read, write, open, read.

Applying the BoW method, the first step is to identify all distinct system calls, such as
open, read, write, and close, and then count how many times each call occurs in each file.
Therefore, the feature vectors for the two files look like the following:

18 CHAPTER 2. BACKGROUND

- File 1: [open: 3, read: 3, write: 2, close: 2]

- File 2: [open: 2, read: 4, write: 3, close: 1]

The numbers in each vector represent the count of the respective system calls in that file.
This representation allows us to quantify system call data without considering the order
of calls. As can be seen from the above example, the BoW method is advantageous for
its simplicity and effectiveness in feature extraction and data representation.

2.7.2 Entropy with Relation to Files

Entropy is a measurement of randomness in a given set of data. There are different ways
to calculate entropy, among which, Shannon Entropy is one of the commonly used. The
Shannon Entropy is defined by the following formula:

H(X) = −
m∑
i=1

pi log2(pi) (2.1)

The resulting Shannon Entropy value ranges between zero and eight. The closer the value
is to zero, the more orderly or non-random the data is. The closer the value is to eight,
the more random or non-uniform the data is.

The focus of this project lies in the entropy value of files, which serves as a metric for
determining the degree of randomness in a file. As encryption algorithms’ output usually
consists of random data, entropy value of a file is a useful metric in detecting whether
the file has been encrypted or not. However, certain file types inherently have high
entropy values. Therefore, relying solely on entropy may not be adequate for encrypted
file detection. To address this, one approach could be comparing the entropy of a specific
file to the average entropy of its file type.

Chapter 3

Related Work

This chapter offers a thorough review of the literature in the fields of anomaly detec-
tion and malware classification. Additionally, it encompasses an in-depth examination
of related works that address these tasks through the implementation of FL approaches.
Concluding this chapter, this work presents the key insights obtained from the compre-
hensive literature review. These insights serve as the foundational inspiration guiding the
methodology and approach of the research.

3.1 Anomaly Detection and Malware Classification

Anomaly detection and malware classification methods can generally be divided into two
main categories: static and dynamic. Table 3.1 provides a summary of these solutions,
with more detailed explanations given below.

Static detection methods operate without executing the potentially malicious executable
files. They rely on extracting various file attributes such as text strings, byte sequences,
and imports of dynamically linked libraries (DLLs), among others. By comparing these
attributes against known malicious signatures, malware can be identified. In previous
research, different approaches have been explored to enhance the accuracy of static de-
tection. For instance, [20] extracted consecutive printable characters and byte sequences
from binary files. They employed three distinct data mining algorithms to effectively dis-
tinguish between malicious executables and clean programs. Drawing inspirations from
text categorization, [21] identified malicious code based on character n-grams. A more
comprehensive method, presented in [22], integrated multiple features, including byte en-
tropy, import address table, printable strings, and portable executable (PE) metadata.
By utilizing these combined features, they built deep neural network classifiers to effec-
tively detect malware. In the field of Android mobile, [23] applied a similar methodology
by extracting various attributes such as strings, method opcodes, method application pro-
gramming interface (API), shared library function opcode, permission, component, and
environmental attributes. Using those features, a DL model was trained to effectively iden-
tify Android mobile malware. In an IoT scenario, [24] stored operational code sequences

19

20 CHAPTER 3. RELATED WORK

Table 3.1: Comparison of Related Work Regarding Anomaly Detection and Malware
Classification

Method
type

Work Scenario Feature type Post-
processing

Algorithm Performance

Static [20] (2000) Computer Printable characters, byte
sequences

ML RIPPER, NB,
Multi-Classifier

Acc: 0.97

Static [21] (2004) Computer Character n-grams ML KNN Acc: 0.98
Static [22] (2015) Computer Byte entropy, import

address table, printable
strings, PE metadata

DL DNN TPR: 0.95

Static [23] (2018) Mobile
phones

Strings, method opcodes,
method API, shared library
function opcode, permis-
sion, component, environ-
mental attributes

DL Multimodal
Neural Networks

Acc: 0.98

Static [24] (2018) IoT Operational code sequences DL CNN Acc: 0.98
Static [25] (2020) IoT Operational code sequences DL Hybrid Neural

Networks
Acc: 0.97

Dynamic [26] (2016) Computer System calls DL Hybrid Neural
Networks

Acc: 0.89

Dynamic [27] (2017) Mobile
phones

System call logs ML NB, RF F1-score:
0.98

Dynamic [28] (2019) Computer System call sequences, byte
sequences

DL Hybrid Neural
Networks

TPR: 0.96

Dynamic [29] (2020) IoT Network traffic DL LAE, BLSTM Acc: 0.99
Dynamic [30] (2020) IoT Memory, network, system

calls, virtual file system,
process

DL CNN Acc: 0.99

Dynamic [5] (2022) IoT CPU, virtual memory, net-
work, file system, sched-
uler, device drivers, random
number generation

ML OC-SVM, IF,
LOF

Average
TNR&TPR:
0.90

Dynamic [31] (2022) Computer Memory ML NB, RF, DT, LR Acc: 0.99
Dynamic [32] (2023) IoT System calls ML KNN, DT, RF,

SVM
Acc: 0.98

Dynamic [33] (2023) Computer API calls DL ResNet50v2,
MobileNetV2

F1-score:
0.98

Acc: accuracy; TPR: true positive rate; FPR: false positive rate; TNR: true negative rate.

in a vector space to generate a graph. Subsequently, they applied a deep Eigenspace
learning method to classify applications as either malicious or benign. Extending this
approach, [25] introduced a method for cross-architecture IoT malware detection. In this
framework, operational code sequences were extracted from multi-architecture samples
and a large hybrid neural network consisting of two sub-networks was trained to detect
malware. While these static detection methods have proven effective, they can be vul-
nerable to obfuscation techniques. These techniques can modify file attributes, enabling
them to bypass conventional detection methods.

In contrast, dynamic detection methods involve executing the malware to observe its be-
havior and determine whether the code is malicious. This behavior can be scrutinized from
various perspectives, such as system calls, network traffic, and file activities, among oth-
ers. [26] recorded system call sequences to form binary vector sequences and employed a
deep neural network with both convolutional and recurrent layers to classify malware into
predefined virus families. Similarly, [27] analyzed system call logs of Android applications
and developed a NB model and a RF model to identify malicious apps. [28] expanded

3.1. ANOMALY DETECTION AND MALWARE CLASSIFICATION 21

the concept of n-gram from byte sequences to system call sequences. The researchers
trained multiple DL models (CNN and RNN) and organized the models in a cluster tree
to make the final decision. [29] reduced the feature dimensionality of large-scale network
traffic data using the encoding phase of long short-term memory autoencoder (LAE).
Subsequently, they trained a deep bidirectional long short-term memory (BLSTM) model
to achieve efficient botnet detection. Another research [30] focused on IoT malware, se-
lecting representative features such as memory, network, system call, virtual file system,
and process. These were analyzed using a CNN model for malware detection. A differ-
ent approach was adopted in [5], where a detection framework was designed using device
behavioral fingerprinting and ML to identify anomalies and classify a variety of malware
types, including botnets, rootkits, backdoors, ransomware, and cryptojackers. This frame-
work monitored kernel events across seven different data sources: cpu, memory, network
interface, file system, scheduler, random number generation, and device drivers. In terms
of feature extraction, research [31] extracted features from memory dumps and employed
a stacked ensemble ML model for malware detection. Meanwhile, a study [34] proposed
an association IoT malware detection model which includes a process of extracting the
dynamic feature (system call) and feeding the feature into traditional ML models to de-
tect IoT malware. A recent approach proposed in [33] converted sequences of API calls
into images, subsequently employing convolutional network architectures for the purpose
of malware identification. Unlike static methods, dynamic approaches are less vulnerable
to obfuscation techniques.

To delve deeper into the characteristics of different malware types, particularly those
targeting IoT devices as discussed in Section 2.2, this work conducted an analysis to
understand how specific behaviors are influenced by various malware categories. The
findings are summarized in Table 3.2, which has been instrumental in guiding the research
to determine the types of data sources that are critical to monitor and collect in the IoT
context.

Table 3.2: Behavioral sources affected by different types of malware

Malware type Network I/O File system Resource usage System call Kernel events
Botnets [35] [36] [37] [38] [39] [40] [41] [35] [40]
Backdoors [42] [5] [5] [5] [43] [5]
Rootkits [44] [45] [46] [47] [48] [48] [49] [48] [50]
Ransomware [51] [51] [51] [51] [40] [51] [40] [51]
Coinminer [52] [53] [52] [53] [53] [5]

As shown in the table, Botnets affect behavioral sources including network [35] [36] [37],
resources usage [38], system call [39] [40] [41], and kernel events [35] [40]; Backdoors affect
behavioral sources including network [42] [5], file system [5], resources usage [5], system
call [43], and kernel events [5]; Rootkits affect behavioral sources including network [44],
input or output of block [45], file system [46] [47], resources usage [48], system call [48] [49],
and kernel events [48] [50]; Ransomware affect behavioral sources including network [51],
input or output of block [51], file system [51], resources usage [51], system call [40] [51],
and kernel events [40] [51]; Coinminer affect behavioral sources including network [52]
[53], resources usage [52] [53], system call [53], and kernel events [5].

Based on these insights, this work proposes a more generalized approach that encompasses

22 CHAPTER 3. RELATED WORK

all six identified dimensions. The objective is to collect as comprehensive a dataset as
possible.

3.2 Federated Learning

While anomaly detection and malware classification techniques continue to evolve, most
methods have been designed for computers and devices with relatively high computational
power. The main contribution of this work is to propose an effective anomaly detection
and malware classification strategy for IoT spectrum sensors, which are typically resource-
limited. Furthermore, there is a critical need for solutions that prioritize user security and
privacy, a key motivating factor for the present work.

The foregoing discussion has introduced the use of ML and DL methods for detecting
malicious software. Building upon this, this project will next explore the employment of
FL methods for anomaly detection and malware classification, as detailed in Table 3.3.
Compared to ML and DL approaches, FL methods are decentralized, thereby offering
protection for user privacy. Notably, in the use case of federated anomaly detection and
malware classification, dynamic device behavioral fingerprints have been employed to a
lesser extent than static device fingerprints.

[18] employs a dynamic detection approach. This method observes device behaviors such
as CPU usage, memory utilization, network interactions, and file system activities during
non-infected states. In a subsequent stage, it identifies deviations caused by Subtle System
Design Flaws (SSDF) attacks, including delays, confusion, freezes, and five other types of
SSDF attacks. [16], [54], and [55] all employ static detection methods. Among them, [16]
and [55] utilize communication-based fingerprints, while [54] utilizes APP information. In
[16], an Autoencoder and MLP model are utilized for anomaly detection and malware
classification. [55], on the other hand, exploits device-type communication profiles to
identify malware. Despite [54] using behavioral fingerprints in the form of API calls, it
treats them as static fingerprints and employs device features to train a SVM.

Table 3.3: Comparison of Related Work Regarding Anomaly Detection and Malware
Classification Using FL Methods

Source Device Types Attack Type Data/Fingerprints Approach Prediction Robustness
[18] 2022 Raspberry Pis SSDF Usage of Resources FL, DL Anomaly Detection

and Classification
Yes, aggregation

[16] 2022 IoT devices Model poisoning
attacks

Communication-
based

FL Anomaly Detection
and Classification

Yes, aggregation

[54] 2020 Mobile (Android) Android Malware App Information FL, ML Classification
(SVM)

No

[55] 2019 IoT devices IoT Malware Communication-
based

FL, ML Anomaly Detection No

Compared to DL models, the FL model [16], [18] mainly has two distinctions as shown
in Table 3.4: The first one is in the data preprocessing phase, where preprocessing is
required. By using the formula (x-min)/(max-min), a unified data scale is achieved.

The second difference lies in the selection of a global threshold after the model training
process. Each participant computes a threshold locally and then sends their threshold

3.3. SUMMARY AND INSIGHTS 23

values to the coordinator. After a certain screening process, the maximum value is chosen
as the global threshold. This global threshold will be used for anomaly detection.

The models in FL cover two scenarios. The first is an anomaly detection scenario, which
employs an Autoencoder. The Autoencoder can be divided into an encoder and a decoder:
The encoder transforms the input into values defined as encoding dimensions by reducing
its dimensionality, while the decoder attempts to map the encoded input back to the
original input.

The second is a binary classification scenario using the MLP. The input goes through
multiple hidden layers, with these layers applying batch normalization and activation
functions, and finally returns a single output neuron.

The rapid growth of spectrum sensors has accelerated the growth of cyber attacks, posing
significant challenges to privacy. This limits the applicability of traditional DL methods,
but the FL approach has largely addressed this issue while achieving comparable detection
performance.

Table 3.4: Comparison of Models

Work Approach Model
[24] 2018 DL CNN
[18] 2022 FL (1) Data preprocessing: scaling: (x−min)/(max−min)

(2) After training: threshold = µ+ 3 · σ
(3) Two FL algorithms:
– Anomaly detection scenarios: Autoencoder activation function: GELU
– Binary classification scenarios: MLP activation function: GELU; training function:
logits (BCEwithLogitsLoss)

[16] 2022 FL (1) Data preprocessing: scaling: (x−min)/(max−min)
(2) After training: threshold = µ+ σ
(3) Two FL algorithms:
– Anomaly detection scenarios: Autoencoder activation function: ELU
– Binary classification scenarios: MLP activation function: ELU; training function: logits
(BCEwithLogitsLoss)

3.3 Summary and Insights

From the comprehensive literature review, several key insights have been derived that
inspire the research approach:

• Dynamic Feature: The analysis reveals that dynamic approaches are more resilient
to obfuscation techniques compared to static methods. Consequently, this project
focus on collecting device behavioral data as the source of fingerprints, rather than
relying on static attributes.

• Multi-Dimensional Monitoring: Different malware exhibit distinct behaviors. To
develop a system capable of detecting and classifying a broad spectrum of malware,
the strategy involves monitoring device behavior across six key dimensions: network
activity, I/O usage, file system activity, resource usage, system calls, and kernel
events.

24 CHAPTER 3. RELATED WORK

• Methodology with Privacy Focus: While most current methods predominantly uti-
lize ML and DL techniques, there is a growing trend toward prioritizing user pri-
vacy in anomaly detection and malware classification. Aligning with this trend, this
project is inspired by pioneering works in the use of FL approaches. In terms of spe-
cific models, this work considers the implementation of Autoencoders for anomaly
detection and MLP for malware classification.

Chapter 4

Architecture

This chapter introduces the system architecture, comprising six modules: Control Module,
Monitoring Module, Transmission Module, Data Processing Module, FL Module, and
Evaluation Module. The architecture is shown in Figure 4.1. Each component is described
in details below.

Data
Collector

Fedstellar

Transmission Module
POST Request

• monitoring duration
• monitoring scripts
• data directory

Network
Monitor

Input/output
Monitor

File System
Monitor

Resource
Monitor*

System Call
Monitor*

Kernel Events
Monitor*

block entropy

Feature Extraction

Data Integration

Detection

Classification

Federated Learning Module

Data Processing Module
Monitoring Module

Control Module

* existing codes with enhancements

Devices

Evaluation Module

Data Preprocessing

Feature Selection

Figure 4.1: System Architecture Overview

4.1 Control Module

The Control Module, as depicted in Figure 4.2, orchestrates the execution of monitoring
scripts to gather behavioral data from the IoT devices. It operates interactively, prompting
the user to enter three key parameters via the keyboard: the monitoring duration, the
specific monitoring scripts to be executed, and the directory path where the output will
be stored. Once provided, these parameters guide the Control Module to initiate the
appropriate monitoring scripts.

25

26 CHAPTER 4. ARCHITECTURE

Figure 4.2: Interactive Prompt of the Control Module for Parameter Input

The monitoring scripts, which will be elaborated upon in the following section, are im-
plemented as “systemd” services. This design choice ensures that they can be efficiently
managed using the “systemctl” command, allowing for seamless and concurrent operation.
The implementation of the network monitoring service, as an instance, is demonstrated
in the code excerpt in 4.1.

1 [Unit]

2 Description=Monitors events coming from the network (NET)

3 After=multi -user.target

4
5 [Service]

6 Type=simple

7 Restart=on -failure

8 User=root

9 ExecStart =/bin/bash -c ‘cd /root/MP/monitors/NET/ && source env/bin/

activate && python3 network_monitor.py’

10
11 [Install]

12 WantedBy=multi -user.target

Listing 4.1: Network Monitoring Service

Upon initiating the control script, the Control Module starts the designated monitoring
services. To maintain uninterrupted monitoring, it checks the status of each service at
ten-second intervals, relaunching any that have stopped. This procedure is delineated in
the code excerpt presented in 4.2.

1 def check_services(services):

2 for service in services:

3 status = os.system(‘systemctl is-active --quiet {service}’.

format(service=service))

4 if status != 0:

5 os.system (" systemctl restart {service} > /dev/null". format(

service=service))

6
7
8 def thread_work(active_services: array , total: int):

9 check_services(active_services)

10
11 def start_monitor(seconds: int , active_services: array):

12 total = 0

13 for service in active_services:

14 os.system (" systemctl start {service} > /dev/null". format(service

=service))

15 start = time.perf_counter ()

4.2. MONITORING MODULE 27

16 while total < int(seconds):

17 time.sleep (1)

18 if total % 10 == 0 and total != 0:

19 t1 = threading.Thread(target=thread_work , args=(

active_services , total))

20 t1.start()

21 total += 1

22 finish = time.perf_counter ()

23 actual_running_time = round(finish -start , 2)

24 print(" Finished montioring for {total} seconds .". format(total=

actual_running_time))

25 for service in active_services:

26 os.system (" systemctl stop {service} > /dev/null". format(service=

service))

Listing 4.2: Monitoring Scripts Control

4.2 Monitoring Module

The Monitoring Module is an essential component of the system, comprising six different
monitoring scripts. These scripts are designed to perform various functions, including
monitoring resource usage, kernel events, system calls, networks, I/O of block, and file
system. The resource usage (RES), kernel events (KERN), and system call (SYS) mon-
itors are based on existing scripts [56]. The remaining three scripts were developed by
ourselves. The Network (NET) Monitor is responsible for observing network activity be-
havior and providing detailed insights into the same. The I/O Monitor is further divided
into two parts, namely Block Monitor and Entropy Monitor. The former is responsible
for monitoring block usage, whereas the latter calculates the entropy of the files. Addi-
tionally, the File System (FLSYS) Monitor is utilized to monitor perf events of the file
system, providing comprehensive data on the same.

4.2.1 Resource Usage Monitoring

The script constantly monitors the device’s hardware performance and gathers a range
of behavioral statistics at regular intervals of 5 seconds. These statistics encompass a
wide range of aspects such as the device’s CPU and memory usage, disk utilization,
kernel tracepoint events, and high-performance computing (HPC) [57]. Table 4.1 has
been created to showcase the various features that the RES Monitor tracks and reports
on.

4.2.2 Kernel Events Monitoring

The KERN Monitor tracks various system metrics at regular intervals of 5 seconds [57].
It keeps a close eye on the disk I/O, CPU usage, kernel memory, and system calls made
by the operating system. These features are presented in the Table 4.2.

28 CHAPTER 4. ARCHITECTURE

Table 4.1: Features Tracked by the RES Monitor

time
ioread
iowrite
ioreadbytes
iowritebytes
ioreadtime
iowritetime
iobusytime
read
merge
write
merge
memory
net in
net out
pkt in
pkt out
err in
err out
drop in
drop out
cpu
cpu-migrations
minor-faults
page-faults
L1-dcache-load-misses
L1-dcache-loads
L1-dcache-store-misses
L1-dcache-stores
L1-icache-load-misses
L1-icache-loads
LLC-load-misses
LLC-loads
seconds
block:block bio frontmerge
block:block dirty buffer
block:block split
block:block touch buffer
ext4:ext4 es lookup extent enter

ext4:ext4 ext load extent
ext4:ext4 writepages result
ext4:ext4 journal start
filemap:mm filemap add to page cache
jbd2:jbd2 handle stats
ext4:ext4 da update reserve space
ext4:ext4 sync file enter
jbd2:jbd2 checkpoint stats
ext4:ext4 free inode
ext4:ext4 evict inode
ext4:ext4 releasepage
ext4:ext4 unlink enter
block:block bio remap
LLC-store-misses
LLC-stores
branch-load-misses
branch-loads
dTLB-load-misses
dTLB-store-misses
iTLB-load-misses
filemap:mm filemap delete from page cache
gpio:gpio value
irq:softirq exit
pagemap:mm lru activate
rpm:rpm return int
fib:fib table lookup
raw syscalls:sys enter
random:credit entropy bits
kmem:kfree
kmem:kmem cache alloc
kmem:mm page alloc zone locked
kmem:mm page free
mmc:mmc request done
writeback:global dirty state
writeback:sb clear inode writeback
writeback:wait on page writeback
napi:napi poll
tcp:tcp probearmv7 cortex a7/br immed retired/
armv7 cortex a7/br mis pred/

armv7 cortex a7/br pred/
armv7 cortex a7/bus cycles/
armv7 cortex a7/cpu cycles/
armv7 cortex a7/exc return/
armv7 cortex a7/exc taken/
armv7 cortex a7/inst retired/
armv7 cortex a7/l1d cache/
armv7 cortex a7/l1d cache refill/
net:netif rx
timer:tick stop
sched:sched process exec
sched:sched waking
task:task newtask
sched:sched stat runtime
timer:timer cancel
timer:timer init
timer:timer start
workqueue:workqueue execute start
branch-instructions
branch-misses
bus-cycles
cache-misses
cache-references
cpu-cycles
instructions
context-switches
armv7 cortex a7/l1d cache wb/
armv7 cortex a7/l1d tlb refill/
armv7 cortex a7/l1i cache/
armv7 cortex a7/l1i cache refill/
armv7 cortex a7/l1i tlb refill/
armv7 cortex a7/l2d cache/
armv7 cortex a7/l2d cache wb/
armv7 cortex a7/ld retired/
armv7 cortex a7/mem access/
armv7 cortex a7/pc write retired/
armv7 cortex a7/st retired/
armv7 cortex a7/unaligned ldst retired/
armv7 cortex a7/cid write retired/

Table 4.2: Features Tracked by the KERN Monitor

time
timestamp
seconds
connectivity
alarmtimer:alarmtimer fired
alarmtimer:alarmtimer start
block:block bio backmerge
block:block bio remap
block:block dirty buffer
block:block getrq
block:block touch buffer
block:block unplug
cachefiles:cachefiles create
cachefiles:cachefiles lookup
cachefiles:cachefiles mark active
clk:clk set rate
cpu-migrations
cs
dma fence:dma fence init
fib:fib table lookup
filemap:mm filemap add to page cache
gpio:gpio value
ipi:ipi raise
irq:irq handler entry
irq:softirq entry
jbd2:jbd2 handle start
jbd2:jbd2 start commit

kmem:kfree
kmem:kmalloc
kmem:kmem cache alloc
kmem:kmem cache free
kmem:mm page alloc
kmem:mm page alloc zone locked
kmem:mm page free
kmem:mm page pcpu drain
mmc:mmc request start
net:net dev queue
net:net dev xmit
net:netif rx
page-faults
pagemap:mm lru insertion
preemptirq:irq enable
qdisc:qdisc dequeue
random:get random bytes
random:mix pool bytes nolock
random:urandom read
raw syscalls:sys enter
raw syscalls:sys exit
rpm:rpm resume
rpm:rpm suspend
sched:sched process exec
sched:sched process free
sched:sched process wait

sched:sched switch
sched:sched wakeup
signal:signal deliver
signal:signal generate
skb:consume skb
skb:kfree skb
skb:skb copy datagram iovec
sock:inet sock set state
task:task newtask
tcp:tcp destroy sock
tcp:tcp probe
timer:hrtimer start
timer:timer start
udp:udp fail queue rcv skb
workqueue:workqueue activate work
writeback:global dirty state
writeback:sb clear inode writeback
writeback:wbc writepage
writeback:writeback dirty inode
writeback:writeback dirty inode enqueue
writeback:writeback dirty page
writeback:writeback mark inode dirty
writeback:writeback pages written
writeback:writeback single inode
writeback:writeback write inode
writeback:writeback written

4.2. MONITORING MODULE 29

4.2.3 System Call Monitoring

This script records system call data every 10 seconds for the entire device to accurately
track the requests made by the device to the OS kernel. The collected system call data is
then saved as system call log files and transmitted to the server for further analysis [57].

4.2.4 Network Monitoring

To monitor the network activity of IoT devices, this work employs the Scapy package, a
powerful Python-based library for packet manipulation, to capture network traffic data.
The network traffic data is collected from the“eth0”network interface in discrete time win-
dows of 5 seconds each. From TCP and UDP packets, key attributes including the packet
timestamp, protocol type, source and destination IP addresses, corresponding source and
destination ports, and the overall packet length are extracted. Each of these data points
is systematically compiled into a row within the resultant file. The critical code under-
pinning this procedure is shown in 4.3.

1 # Function to capture and save network packets

2 def capture_and_save(networkInterface):

3 while True:

4 current_timestamp = int(time.time())

5
6 captured_packets = []

7
8 # Capture network traffic for 5 seconds

9 sniff(iface=networkInterface , prn=lambda packet: packet_handler(

packet , captured_packets), timeout =5)

10
11 # Call render_content_from_pcap to process and send captured

packets

12 render_content_from_pcap(captured_packets)

13
14 # Function to process and send captured packets

15 def render_row(packet):

16 if IP in packet and (TCP in packet or UDP in packet):

17 # Extract packet information

18 source_address = packet[IP].src

19 destination_address = packet[IP].dst

20
21 if TCP in packet:

22 protocol = ‘TCP ’

23 source_port = packet[TCP].sport

24 destination_port = packet[TCP].dport

25 else:

26 protocol = ‘UDP ’

27 source_port = packet[UDP].sport

28 destination_port = packet[UDP].dport

29
30 packet_time = packet.time

31 packet_length = len(packet)

32

30 CHAPTER 4. ARCHITECTURE

33 data_to_send = "{} ,{} ,{} ,{} ,{} ,{} ,{}". format(

34 packet_time , protocol , source_address , source_port ,

destination_address , destination_port , packet_length

35)

36
37 try:

38 # Send the data to the server over HTTPS

39 response = requests.post(server_url , data=data_to_send ,

verify=False)

40
41 # Check the response status code to ensure the data was sent

successfully

42 if response.status_code == 200:

43 print("Data sent successfully .")

44 else:

45 print("Error: {} - {}". format(response.status_code ,

response.text))

46 except Exception as e:

47 print("Error: {}". format(str(e)))

Listing 4.3: Monitoring Scripts of Network

4.2.5 Input/Output Monitoring

(1) Block Monitoring

To monitor the block input and output events of the IoT devices, iostat, a tool used for
monitoring system input/output statistics related to devices and partitions, was utilized.
Several statistics were extracted , such as read kps, write kps, avg queue and await, from
iostat. These metrics denote kilobytes read per second, kilobytes written per second, the
number of requests waiting for service and the average time for I/O requests to be serviced
respectively.

Once the script is launched, the iostat command is executed every 10 seconds. After
collecting the desired statistics, these metrics will be compiled into a row in the result file.
The code snippet is shown in 4.4.

1 # Main monitoring loop

2 while true; do

3 # Display date and time

4 timestamp=$(($(date +%s%N)/1000000))

5
6 # Display I/O statistics using iostat

7 # the name of the block device

8 iostat_output=$(iostat -d -x 10 2 | grep ‘[0-9]’ | tail -n 1)

9 # number of read I/O operations per second

10 read_ops=$(echo "$iostat_output" | awk ‘{print $4}’)

11 # number of write I/O operations per second

12 write_ops=$(echo "$iostat_output" | awk ‘{print $5}’)

13 # kilobytes read per second

14 read_kbs=$(echo "$iostat_output" | awk ‘{print $6}’)

15 # kilobytes written per second

4.2. MONITORING MODULE 31

16 write_kbs=$(echo "$iostat_output" | awk ‘{print $7}’)

17 # average size (in sectors) of the requests sent to the device

18 avgrq_sz=$(echo "$iostat_output" | awk ‘{print $8}’)

19 # average queue length (number of requests waiting for service)

20 avg_queue=$(echo "$iostat_output" | awk ‘{print $9}’)

21 # average time (in milliseconds) for I/O requests to be serviced (

including queue time)

22 await=$(echo "$iostat_output" | awk ‘{print $10}’)

23 # average time (in milliseconds) for read requests to be serviced

24 r_await=$(echo "$iostat_output" | awk ‘{print $11}’)

25 # average time (in milliseconds) for written requests to be serviced

26 w_await=$(echo "$iostat_output" | awk ‘{print $12}’)

27 # average service time (in milliseconds) for I/O requests

28 svctm=$(echo "$iostat_output" | awk ‘{print $13}’)

29 # percentage of time the device was busy servicing I/O requests.

30 util=$(echo "$iostat_output" | awk ‘{print $14}’)

31
32 finalOutput =" $timestamp ,$read_ops ,$write_ops ,$read_kbs ,$write_kbs ,

$avgrq_sz ,$avg_queue ,$await ,$r_await ,$w_await ,$svctm ,$util"

33
34 #PUSH to server

35 res=$(curl -sk -X POST -d "$finalOutput" -H "Content -Type: text/csv"

"$server:$port$directory$mac ")

36
37 done

Listing 4.4: Monitoring Scripts of Block I/O

(2) Entropy Monitoring

To monitor file creation and modification events, inotifywait, a command-line tool that
uses the inotify Linux kernel subsystem to observe changes in one or more files or directo-
ries, was employed. Of particular interest is the entropy of these altered files, as malware,
such as Ransomware, will encrypt files, resulting in higher file entropy. Consequently,
entropy values were computed using the Shannon entropy formula. Given the time and
resource-intensive nature of performing calculations on the entire file, the computation
was limited to the first 100 bytes of each file.

Once the script is launched, inotifywait continuously monitors file changes until manually
stopped. When a changed file is detected, and confirming it is neither a temporary nor
log file, the script calculates its entropy. Subsequently, the file path and corresponding
entropy values will be compiled into a row in the result file. The code snippet is shown
in 4.5.

1 caculate_entropy (){

2 entropy=$(${pythoncmd} <<EOF

3 import math

4 from collections import Counter

5 try:

6 with open(‘$tmp_path ’, ‘rb ’) as f:

7 data = f.read()

8 counter = Counter(data)

9 total_bytes = len(data)

10 entropy = 0

32 CHAPTER 4. ARCHITECTURE

11 for count in counter.values ():

12 p_x = count / total_bytes

13 entropy += - p_x * math.log2(p_x)

14 print(entropy)

15 except FileNotFoundError:

16 pass

17 EOF

18)

19 }

20
21 monitor_write_file (){

22 inotifywait -q -m -e modify ,create --fromfile ${ScriptDir }/ fromfile.

txt -r $monitor_dir | while read path action file

23 do

24 if [[-f "$path$file" && "$file" != *"log"* && "$file" != *" watchdog

"* && "$file" != *".swp"* && "$file" != *".tmp"* && "$file" != *".swx

"*]]; then

25 timestamp=$(($(date +%s%N)/1000000))

26 file_path =" $path$file"

27 head -c ${header_byte} "${file_path }" >${tmp_path}

28 caculate_entropy

29
30 num="$(echo ${entropy} | awk ‘{printf "%.6f", $0}’)"

31 final="$timestamp ,$file_path ,$action ,$num"

32 res=$(curl -sk -X POST -d "$final" -H "Content -Type: application/

json" "$server:$port$directory$mac ")

33 fi

34 done

35 }

36
37 pythoncmd =" python3"

38 header_byte =100 #the amount of bytes to calculate

39 monitor_write_file

Listing 4.5: Monitoring Scripts of Entropy

4.2.6 File System Monitoring

To monitor file system operations, this project defines all file system-related perf events as
the events to monitor, including block:*, ext4:*, filemap:*, jbd2:* and writeback:*. Once
the script is launched, it will loop indefinitely to monitor the aforementioned perf events
until interrupted by the keyboard. Each data point is systematically compiled into a line
in the result file. The code snippet is shown in 4.6. And the Table 4.3 (at the end of this
chapter) shows the various features that the File System Monitor tracks.

1 # the value of targetEvents is reduced

2 targetEvents ="block:block_bio_backmerge ,block:block_bio_bounce"

3 timeWindowSeconds =5

4 timeAcumulative =0

5
6 while :

7 do

4.3. TRANSMISSION MODULE 33

8 timestamp=$(($(date +%s%N)/1000000))

9 tempOutput=$(perf stat --log -fd 1 -e "$targetEvents" -a sleep "

$timeWindowSeconds ")

10 sample=$(echo "$tempOutput" | cut -c -20 | tr -s " " | tail -n +4 |

head -n -2 | tr "\n" "," | sed ‘s/ //g’| sed ‘s/.$//’)

11 seconds=$(echo "$tempOutput" | tr -s " " | cut -d " " -f 2 | tail -n

1 | tr "," ".")

12 timeAcumulative=$(awk "BEGIN{ print $timeAcumulative + $seconds }")

13 finalOutput =" $timeAcumulative ,$timestamp ,$seconds ,$connectivity ,

$sample"

14 res=$(curl -sk -X POST -d "$finalOutput" -H "Content -Type:

application/json" "$server:$port$directory ")

15 done

Listing 4.6: Monitoring Scripts of File System

4.3 Transmission Module

After collecting data through the Monitoring Module, the data is transmitted to a PC
using the client URL (cURL) method due to the limited storage capacity of the Raspberry
Pi. Curl, an open source command line tool, enables developers to efficiently transfer data
to and from a server. By specifying the location and the data to be sent, the data could
be transferred between the Raspberry Pi and the PC using curl. The snippet of the curl
command running on the Raspberry Pi is shown in 4.7. This command sends data to the
specified PC with POST method.

1 #Server and port to push data

2 server ="http ://192.168.24.132"

3 port ="5002"

4 directory ="/ sensor /"

5 mac=$(cat /sys/class/net/eth0/address | tr : _)

6
7 #PUSH to server

8 finalOutput =" $timestamp ,$read_ops ,$write_ops ,$read_kbs ,$write_kbs ,

$avgrq_sz ,$avg_queue ,$await ,$r_await ,$w_await ,$svctm ,$util"

9 res=$(curl -sk -X POST -d "$finalOutput" -H "Content -Type: text/csv" "

$server:$port$directory$mac ")

Listing 4.7: Data Transmission Code on Raspberry Pi Side

On the PC side, the Flask framework was employed to create a WSGIServer listening
to a designated port. For different monitoring dimensions, data is transferred through
different ports, and therefore reduce data conflicts and enhance concurrency. The code
snippet running on the PC is shown in 4.8.

1 from flask import Flask , request

2 from flask_restful import Resource , Api

3 from gevent.pywsgi import WSGIServer

4
5 app = Flask(__name__)

34 CHAPTER 4. ARCHITECTURE

6 api = Api(app)

7
8 class sensor(Resource):

9
10 def post(self , sensorid):

11 vector = request.data.decode ("utf -8")

12

13
14 def launch_REST_Server ():

15 if not os.path.exists(data_directory):

16 os.makedirs(data_directory)

17
18 api.add_resource(sensor , ‘/sensor/<sensorid >’) # Route_1

19 http_server = WSGIServer ((‘0.0.0.0’, 5002), app)

20 http_server.serve_forever ()

21
22 if __name__ == "__main__ ":

23 launch_REST_Server ()

Listing 4.8: Data Transmission Code on PC Side

4.4 Data Processing Module

In this module, the previously collected data are processed for model training. The
first step is data cleaning, where redundant features from the six monitoring scripts are
removed. Timestamp measurement units are standardized for subsequent operations.
Additionally, outliers identified as absolute (z) greater than 3 are replaced with values
whose absolute (z) equals 3, and all missing values are filled with zeros.

z =
x− xmin

σmin

(4.1)

The second step is Feature Extraction. First, features from SYS Monitor, I/O Monitor,
and NET Monitor were extracted. For the SYS Monitor, all features from txt files were
extracted and stored in csv files. For the I/O Monitor, the entropy_file_count variable
was calculated. For the NET Monitor, variables containing PacketCount, TotalLength,
AverageLength, etc. were extracted. Next, the start time and end time of the timestamps
for the six monitoring scripts were determined. Then, the timestamps were divided into
multiple intervals of 20 seconds and the average value of each variable within these intervals
were calculated. Finally, the data from the six monitoring scripts were merged according
to these time intervals.

The third step is Normalization. the following formula was used to normalize the data,
mapping all values between 0 and 1. This normalization is beneficial for enhancing ML
performance.

x′ =
x− xmin

xmax − xmin

∈ Rd (4.2)

4.5. FEDERATED LEARNING MODULE 35

The fourth step in the process is Feature Selection. This involved initially eliminating
features considered irrelevant, such as time, seconds, connectivity, and timestamp. From
an extensive pool of over 500 features, the selection was then narrowed down to 22 features
for the Autoencoder and 30 features for the MLP. The details of these selected features
are listed in Table 4.4.

This selection was performed using two methods. The first method calculated the min-
imum cosine distance (feature_min_distances) for each feature, which represents the
distinctiveness of each feature across different categories of malware and normal states.
From this, this project selected the top 22 features where the minimum cosine distance
exceeded a threshold of 0.1. The second method involved plotting scatter diagrams for
each feature across different types of malware and normal states, and selecting features
with significant distinctions based on the data distribution observed in these diagrams.

Table 4.4: Selected Features for Autoencoder and MLP

Task Model Selected Features

Anomaly
Detection

Autoencoder

clone mean, ugetrlimit mean, ftruncate64 mean,
epoll wait mean, setresuid32 mean, setresgid32 mean,
llseek mean, kcmp mean, accept4 mean,
umask mean, armv7 cortex a7/exc return/ mean,
rt sigprocmask mean, pipe2 mean,
armv7 cortex a7/mem access/ mean,
armv7 cortex a7/l1d cache/ mean,
armv7 cortex a7/exc taken/ mean,
brk mean, cache-references mean, sendmsg mean,
set robust list mean, read mean, setsid mean

Malware
Classifica-
tion

MLP

armv7 cortex a7/br immed retired/ mean,
armv7 cortex a7/exc return/ mean,
armv7 cortex a7/inst retired/ mean,
armv7 cortex a7/l1i cache/ mean,
armv7 cortex a7/pc write retired/ mean,
armv7 cortex a7/st retired/ mean, brk mean,
connect mean, epoll wait mean, execve mean,
fstat64 mean, getrandom mean, kcmp mean,
L1-dcache-loads mean, L1-dcache-stores mean,
L1-icache-loads mean, llseek mean, memory mean,
mmap2 mean, mprotect mean, munmap mean,
openat mean, pagemap:mm lru insertion mean,
raw syscalls:sys enter mean, raw syscalls:sys exit mean,
set robust list mean, set tid address mean,
socket mean, statfs64 mean, uname mean

4.5 Federated Learning Module

This work designed, developed, and trained two FL pipelines. One was an Autoencoder
model used for anomaly detection, with its key code shown in Listing 4.9, and the other was

36 CHAPTER 4. ARCHITECTURE

a MLP model used for malware classification, with its key code illustrated in Listing 4.10.

1 # Encoder layer

2 self.encoder = nn.Sequential(

3 nn.Linear(input_dim , 4),

4 nn.BatchNorm1d (4),

5 nn.GELU(),

6 nn.Linear(4, 2),

7 nn.BatchNorm1d (2),

8 nn.GELU()

9
10)

11 # Decoder layer

12 self.decoder = nn.Sequential(

13 nn.Linear(2, 4),

14 nn.BatchNorm1d (4),

15 nn.GELU(),

16 nn.Linear(4, input_dim),

17 nn.GELU()

18)

19
20 self.criterion = MeanSquaredError ()

21 self.anomaly_threshold = 10000

22 self.reconstruction_error_list = []

23
24 self.epoch_global_number = {‘Train ’: 0, ‘Validation ’: 0, ‘Test ’: 0}

25
26
27 def forward(self , x):

28 encoded = self.encoder(x)

29 decoded = self.decoder(encoded)

30 return decoded

31
32 def configure_optimizers(self):

33 return torch.optim.Adam(self.parameters (), lr =0.001)

34)

Listing 4.9: Code Snippet of Autoencoder Model

1 def __init__(

2 self ,

3 input_size =30,

4 hidden_size1 =30,

5 hidden_size2 =30,

6 output_size =9,

7 learning_rate =1e-2,

8 metrics=None ,

9 confusion_matrix=None ,

10 seed=None

11):

12
13 def forward(self , x):

14 x = self.l1(x)

15 x = torch.relu(x)

16 x = self.l2(x)

17 x = torch.relu(x)

18 x = self.l3(x)

4.6. EVALUATION MODULE 37

19 x = torch.log_softmax(x, dim=1)

20 return x

21
22 def configure_optimizers(self):

23 optimizer = torch.optim.Adam(self.parameters (), lr=self.

learning_rate)

24 return optimizer

Listing 4.10: Code Snippet of MLP

Following the previous Data Processing Module, datasets for both the Autoencoder and
MLP were obtained. This project integrated these datasets and models with the Fedstellar
framework to conduct DFL training and testing. If the results of the Autoencoder indicate
that the reconstruction error exceeds a predefined threshold, it may suggest the presence
of an anomaly.

This work evaluated the performance of the models using three metrics: precision, recall,
and f1-score. Higher values of these metrics indicate better performance of the models in
anomaly detection or malware classification.

4.6 Evaluation Module

To validate the robustness of the results of the two FL pipelines, this work designed and
executed several related experiments, as shown in table 4.5.

Table 4.5: Related Experiments for Evaluation

Evaluation Model

Evaluation 1: Comparison between ML, CFL, and DFL Ap-
proaches.

anomaly detection
model, malware
classification model

Evaluation 2: Comparison between Different DFL Topologies.
Evaluation 3: Training Each Node with Data from a Specific Phys-
ical Device.

Evaluation 4: Training Nodes wherein Some of Them Missing a
Certain Type of Malware Data. malware classification

modelEvaluation 5: Training Nodes wherein All of Them Missing Cer-
tain Types of Malware Data.
Evaluation 6: Training Nodes wherein the label of a particular
malware is flipped to the label of an untargeted malware.

Both the Autoencoder and the MLP model undergo evaluations 1, 2, and 3. Evaluation 1
and Evaluation 2 are used to analyze the differences in precision, recall, and f1-score when
applying ML, CFL, and DFL approaches, as well as different DFL topologies. Evaluation
3 explores the differences in outcomes when each node is trained using data from specific
physical devices and uniformly divided data.

38 CHAPTER 4. ARCHITECTURE

Additionally, the malware classification model underwent further evaluations to explore
variations in model performance under certain settings: Evaluation 4 explores the dif-
ferences in outcomes when zero, one, two, or three nodes miss certain types of malware
attack data; Evaluation 5 explores the differences in results when each node randomly
misses some types of malware attack data compared to previous results; Evaluation 6
investigates the outcomes when the label of a particular malware is flipped to the label of
an untargeted malware.

4.6. EVALUATION MODULE 39

Table 4.3: Features Tracked by the File System Monitor

time
timestamp
seconds
connectivity
block:block bio backmerge
block:block bio bounce
block:block bio complete
block:block bio frontmerge
block:block bio queue
block:block bio remap
block:block dirty buffer
block:block getrq
block:block plug
block:block rq complete
block:block rq insert
block:block rq issue
block:block rq remap
block:block rq requeue
block:block sleeprq
block:block split
block:block touch buffer
block:block unplug
ext4:ext4 alloc da blocks
ext4:ext4 allocate blocks
ext4:ext4 allocate inode
ext4:ext4 begin ordered truncate
ext4:ext4 collapse range
ext4:ext4 da release space
ext4:ext4 da reserve space
ext4:ext4 da update reserve space
ext4:ext4 da write begin
ext4:ext4 da write end
ext4:ext4 da write pages
ext4:ext4 da write pages extent
ext4:ext4 direct IO enter
ext4:ext4 direct IO exit
ext4:ext4 discard blocks
ext4:ext4 discard preallocations
ext4:ext4 drop inode
ext4:ext4 error
ext4:ext4 es cache extent
ext4:ext4 es find extent range enter
ext4:ext4 es find extent range exit
ext4:ext4 es insert delayed block
ext4:ext4 es insert extent
ext4:ext4 es lookup extent enter
ext4:ext4 es lookup extent exit
ext4:ext4 es remove extent
ext4:ext4 es shrink
ext4:ext4 es shrink count
ext4:ext4 es shrink scan enter
ext4:ext4 es shrink scan exit
ext4:ext4 evict inode
ext4:ext4 ext in cache
ext4:ext4 ext load extent
ext4:ext4 ext map blocks enter
ext4:ext4 ext map blocks exit
ext4:ext4 ext put in cache
ext4:ext4 ext remove space
ext4:ext4 ext remove space done
ext4:ext4 ext rm idx

ext4:ext4 write end
ext4:ext4 writepage
ext4:ext4 writepages
ext4:ext4 writepages result
ext4:ext4 ext rm leaf
ext4:ext4 ext show extent
ext4:ext4 fallocate enter
ext4:ext4 fallocate exit
ext4:ext4 find delalloc range
ext4:ext4 forget
ext4:ext4 free blocks
ext4:ext4 free inode
ext4:ext4 fsmap high key
ext4:ext4 fsmap low key
ext4:ext4 fsmap mapping
ext4:ext4 get reserved cluster alloc
ext4:ext4 getfsmap high key
ext4:ext4 getfsmap low key
ext4:ext4 getfsmap mapping
ext4:ext4 ind map blocks enter
ext4:ext4 ind map blocks exit
ext4:ext4 insert range
ext4:ext4 invalidatepage
ext4:ext4 journal start
ext4:ext4 journal start reserved
ext4:ext4 journalled invalidatepage
ext4:ext4 journalled write end
ext4:ext4 load inode
ext4:ext4 load inode bitmap
ext4:ext4 mark inode dirty
ext4:ext4 mb bitmap load
ext4:ext4 mb buddy bitmap load
ext4:ext4 mb discard preallocations
ext4:ext4 mb new group pa
ext4:ext4 mb new inode pa
ext4:ext4 mb release group pa
ext4:ext4 mb release inode pa
ext4:ext4 mballoc alloc
ext4:ext4 mballoc discard
ext4:ext4 mballoc free
ext4:ext4 mballoc prealloc
ext4:ext4 nfs commit metadata
ext4:ext4 other inode update time
ext4:ext4 punch hole
ext4:ext4 read block bitmap load
ext4:ext4 readpage
ext4:ext4 releasepage
ext4:ext4 remove blocks
ext4:ext4 request blocks
ext4:ext4 request inode
ext4:ext4 shutdown
ext4:ext4 sync file enter
ext4:ext4 sync file exit
ext4:ext4 sync fs
ext4:ext4 trim all free
ext4:ext4 trim extent
ext4:ext4 truncate enter
ext4:ext4 truncate exit
ext4:ext4 unlink enter
ext4:ext4 unlink exit
ext4:ext4 write begin

ext4:ext4 get implied cluster alloc exit
ext4:ext4 ext convert to initialized enter
ext4:ext4 ext convert to initialized fastpath
ext4:ext4 ext handle unwritten extents
ext4:ext4 zero range
filemap:file check and advance wb err
filemap:filemap set wb err
filemap:mm filemap add to page cache
filemap:mm filemap delete from page cache
jbd2:jbd2 checkpoint
jbd2:jbd2 checkpoint stats
jbd2:jbd2 commit flushing
jbd2:jbd2 commit locking
jbd2:jbd2 commit logging
jbd2:jbd2 drop transaction
jbd2:jbd2 end commit
jbd2:jbd2 handle extend
jbd2:jbd2 handle start
jbd2:jbd2 handle stats
jbd2:jbd2 lock buffer stall
jbd2:jbd2 run stats
jbd2:jbd2 start commit
jbd2:jbd2 submit inode data
jbd2:jbd2 update log tail
jbd2:jbd2 write superblock
writeback:balance dirty pages
writeback:bdi dirty ratelimit
writeback:flush foreign
writeback:global dirty state
writeback:inode foreign history
writeback:inode switch wbs
writeback:sb clear inode writeback
writeback:sb mark inode writeback
writeback:track foreign dirty
writeback:wait on page writeback
writeback:wbc writepage
writeback:writeback bdi register
writeback:writeback congestion wait
writeback:writeback dirty inode
writeback:writeback dirty inode enqueue
writeback:writeback dirty inode start
writeback:writeback dirty page
writeback:writeback exec
writeback:writeback lazytime
writeback:writeback lazytime iput
writeback:writeback mark inode dirty
writeback:writeback pages written
writeback:writeback queue
writeback:writeback queue io
writeback:writeback sb inodes requeue
writeback:writeback single inode
writeback:writeback single inode start
writeback:writeback start
writeback:writeback wait
writeback:writeback wait iff congested
writeback:writeback wake background
writeback:writeback write inode
writeback:writeback write inode start
writeback:writeback written

40 CHAPTER 4. ARCHITECTURE

Chapter 5

Implementation

This chapter presents implementation details on anomaly detection and malware classifi-
cation tasks. It begins with introducing the devices used in this thesis and describing the
experimental setup. Serving as the foundation for model training, the second part of this
chapter delves into the processes of feature extraction, data integration, data preprocess-
ing, and feature selection. The last section offers insights into model architectures and
the methodologies employed for training and evaluation.

5.1 Setup

In this research, a total of 8 Raspberry Pi devices, consisting of 6 Raspberry Pi 3 and
2 Raspberry Pi 4, were used. Each device was equipped with SDR kits, functioning as
the sensing infrastructure. Figure 5.1 presents an example of the sensors utilized in this
project. Regarding their configuration, these devices were equipped with either 32 GB or
64 GB SD cards. They operated on an ARM-based CPU architecture and made use of
the ElectroSense sensor image for data collection and analysis.

These eight devices were deployed for data collection, capturing behaviors in both a normal
state and during eight distinct malware attacks. As detailed in Table 5.1, the selected
malware included one botnet (Bashlite), three backdoors (HttpBackdoor, Backdoor, and
TheTick), two rootkits (Beurk and Bdvl), one Ransomware (Ransomware-PoC), and one
Coinminer (XMRig). Each data collection session lasted for a duration of four hours,
resulting in a cumulative dataset of 288 hours.

To simulate the behavior of potential attackers, scripts were created for each malware.
These scripts implemented infinite loops to execute actions such as creating files, writing
to files, reading files, encrypting files, deleting files, listing directories, or other relevant
operations. This approach facilitated the collection of valuable data on the impact of each
malware type.

41

42 CHAPTER 5. IMPLEMENTATION

Figure 5.1: An Example of the Sensors Utilized in this Project

Table 5.1: Malware Used in this Project

Malware Family Malware Type Source Code
Botnet Bashlite https://github.com/hammerzeit/BASHLITE

Backdoor
HttpBackdoor https://github.com/SkryptKiddie/httpBackdoor

Backdoor https://github.com/jakoritarleite/backdoor

TheTick https://github.com/nccgroup/thetick

Rootkits
Beurk https://github.com/unix-thrust/beurk

Bdvl https://github.com/Error996/bdvl

Ransomware Ransomware-PoC https://github.com/jimmy-ly00/Ransomware-PoC

Coinminer XMRig https://github.com/xmrig/xmrig

5.2 Feature Extraction

After collecting raw data on six types of device behaviors, statistical methods were em-
ployed. The following describes the methodology for extracting features from each dimen-
sion of device behavior.

(1) Network Activity.

The raw data about network activity were captured network packages. To obtain useful
features, the data were segmented into 20-second intervals. For each interval, the following
steps were taken:

• Computed the total number of packets.

• Calculated aggregate statistics for packet length, including sum, mean, median,
minimum, maximum values, and variance.

• Determined the count of distinct source and destination ports used within the in-
terval.

https://github.com/hammerzeit/BASHLITE
https://github.com/SkryptKiddie/httpBackdoor
https://github.com/jakoritarleite/backdoor
https://github.com/nccgroup/thetick
https://github.com/unix-thrust/beurk
https://github.com/Error996/bdvl
https://github.com/jimmy-ly00/Ransomware-PoC
https://github.com/xmrig/xmrig

5.2. FEATURE EXTRACTION 43

This process enables efficient collection of information on network traffic volume, deriva-
tion of essential statistics related to packet characteristics, and acquisition of insights into
the diversity of network connections.

(2) SYS Activity.

Files with system call data are often large and contain thousands of entries. The frequency
of system calls was calculated by following a set of steps.

• Extracted system call names from every file.

• Stored system call names extracted from each file as a string (separated by spaces).

• Created an array of individual strings, each representing the system call data from
one file.

• Used the feature extraction technique BoW to construct unigram feature vectors.

To illustrate, if there are two files, and each contains ten system call entries, the resulting
dataset would be an array made up of two strings, where each string encapsulates ten
system call names.

(3) Entropy Activity.

When a file is modified or created, its entropy value was calculated. As indicated by
Alberto and Chao [58], different file types exhibit distinct entropy scores. For instance,
.jpg, .pdf, and .ppt files typically have entropy scores higher than 5.5, while .txt, .csv,
and .xls files have entropy scores lower than 5.5. Ransomware encrypts files, resulting in
unstructured and random data, leading to high entropy scores. For Ransomware PoC,
the average write entropy for all file types is approximately 6. In the experiment, the
Ransomware PoC was utilized to encrypt files with low entropy scores, such as .txt files.
Detection of a file with an entropy value exceeding 6 may indicate a ransomware infection.

To extract useful features, the following steps were taken:

• Partitioned the data into 20-second time windows.

• Calculated the number of files with entropy values greater than or equal to 6 within
each interval.

(4) File System, Resource, Kern and Block Activity.

For the FLSYS, RES, KERN and BLOCK Monitoring Modules, the collected data are
the features and do not require additional transformation processes.

44 CHAPTER 5. IMPLEMENTATION

5.3 Data Integration

After extracting features from each dimension of device behavior, the feature tables of
each device behavior were merged into a single table based on the timestamp.

First, the timestamp units were standardized to seconds, rounding down if there were
decimals. The “Timestamp” in the collected table from NET module was renamed to
“timestamp”, and the “Time” in the collected table from SYS module was renamed to
“timestamp”.

Then, some overlapping features were found between the KERN, RES, FLSYS modules,
as all three modules monitor perf events and some perf events are related to both kernel,
resource, and file system, such as“ext4:ext4 free inode”and“ext4:ext4 writepages result”,
which are directly related to ext4 file system operations and also involve managing re-
sources like memory and storage. For these duplicate features, only one of each is retained.

Next, the start time and end time of the timestamp were calculated and the time from
start time to end time were divided into numerous continuous intervals of 20 seconds
each, known as time duration, which served as indices. For all rows with “timestamp”
belonging to a certain time duration, the average of these rows was calculated and used
as the value for the current time duration; if no rows with “timestamp” belonging to a
certain time duration, then the value for that time duration was null. After calculating
the averages, the RES, KERN, FLSYS, SYS, NET, ENTROPY and BLOCK modules
each resulted in one table, and six tables in total.

Finally, the six tables were merged into a single table with over 400 columns, and fur-
ther integration was conducted as follows. The above operations are shown in the code
snippet 5.1.

1 time_intervals = np.arange(start_time , end_time , time_window)

2 time_intervals = np.append(time_intervals , end_time)

3 all_means = []

4 for name , df in dataframes.items():

5 if name in [‘entropy ’, ‘net ’]:

6 continue

7 df[‘time_duration ’] = pd.cut(df[‘timestamp ’], bins=time_intervals ,

right=False , include_lowest=True)

8 means_list = []

9 for col in df.select_dtypes(include =[np.number]).columns:

10 if col != ‘timestamp ’:

11 means_list.append(df.groupby(‘time_duration ’)[col].mean().

rename(col + ‘_mean ’))

12 df_means = pd.concat(means_list , axis =1)

13 df_means.reset_index(inplace=True , drop=True)

14 df_means[‘time_duration ’] = time_intervals [:-1]

15 all_means.append(df_means)

16 df_means.to_csv(f‘C:/DATA/MP/output /{name}_means.csv ’, index=False)

17 for df in all_means:

18 df.reset_index(inplace=True , drop=True)

19 merged_df = reduce(lambda left , right: pd.merge(left , right , on=‘

time_duration ’), all_means)

20 cols = list(merged_df.columns)

5.3. DATA INTEGRATION 45

21 cols.insert(0, cols.pop(cols.index(‘time_duration ’)))

22 merged_df = merged_df[cols]

23 merged_df.columns = [‘timestamp ’ if col == ‘time_duration ’ else col for

col in merged_df.columns]

24 merged_with_net = pd.merge(merged_df , dataframes[‘net ’], on=‘timestamp ’,

how=‘left ’, suffixes=(‘’, ‘_net ’))

25 merged_final = pd.merge(merged_with_net , dataframes[‘entropy ’], on=‘

timestamp ’, how=‘left ’, suffixes=(‘’, ‘_entropy ’))

Listing 5.1: Integration Script 1

The data from six dimensions of behavioral sources collected on each device were processed
and integrated. Subsequently, the data from eight IoT devices were integrated into one
large table. The normal data and malware samples were labeled accordingly to facilitate
further data preprocessing. Finally, a large, single table with over 500 columns was
obtained. The above operations are shown in the code snippet 5.2.

1 table_list_with_label = []

2 data_folder = "/Users/xicheng/dataset_all/raw_data_20s"

3 label_mapping = {

4 "normal ": 0,

5 "httpbackdoor ": 1,

6 "backdoor ": 2,

7 "thetick ": 3,

8 "bashlite ": 4,

9 "beurk": 5,

10 "bdvl": 6,

11 "ransomware ": 7,

12 "xmrig": 8

13 }

14
15 for filename in os.listdir(data_folder):

16 if filename.endswith (".csv"):

17 for keyword , label in label_mapping.items():

18 if keyword in filename:

19 filepath = os.path.join(data_folder , filename)

20 df = pd.read_csv(filepath)

21 df["label"] = label

22 cols = df.columns.tolist ()

23 cols = ["label"] + [col for col in cols if col != "label

"]

24 df = df[cols]

25 table_list_with_label.append(df)

26
27 combined_table = pd.concat(table_list_with_label , axis=0, ignore_index=

True)

28 combined_table = combined_table.sort_values(by="label", ascending=True)

Listing 5.2: Integration Script 2

46 CHAPTER 5. IMPLEMENTATION

5.4 Data Preprocessing

The integrated data obtained in the previous steps underwent simple data preprocessing
to enable subsequent feature selection for Autoencoder and MLP. This involved a series
of steps, as implemented in 5.3, which can be summarized as follows:

• Eliminate Useless Features: Useless features such as time, seconds, connectivity,
and timestamp were eliminated.

• Handle Outliers: Outliers were handled by calculating the Z-score for all feature
columns. Values with a Z-score greater than or equal to 3 were replaced with the
mean of that column plus 3 times the standard deviation.

• Fill Missing Values: Missing values were filled with 0.

• Eliminate Constant Features: Features with variance equal to 0 were removed, that
is, constant features.

1 # Eliminate Useless Features

2 combined_table.drop(columns =[" time_mean", "seconds_mean", "

connectivity_mean", "timestamp"], inplace=True)

3
4
5 # Handle Outliers

6 X = combined_table.iloc[:, 1:]

7 y = combined_table.iloc[:, 0]

8
9 z_scores = np.abs((X - X.mean()) / X.std())

10
11 X_replaced = X.copy()

12 X_replaced = X_replaced.apply(lambda col: np.where(z_scores[col.name] >=

3, X[col.name].mean() + 3 * X[col.name].std(), col))

13
14 df = pd.DataFrame(X_replaced , columns=X.columns)

15 df.insert(0, ‘label ’, y)

16 df = df.sort_values(by="label")

17
18
19 # Fill Missing Values

20 df1 = df.fillna (0)

21
22
23 # Eliminate Constant Features

24 X = df1.iloc[:, 1:]

25 y = df1.iloc[:, 0]

26
27 variance_threshold = 0

28 selector_variance = VarianceThreshold(threshold=variance_threshold)

29
30 X_filtered = selector_variance.fit_transform(X)

31 selected_feature_indices_variance = selector_variance.get_support(

indices=True)

32

5.5. FEATURE SELECTION 47

33 constant_feature_indices = [i for i in range(len(df1.columns [1:])) if i

not in selected_feature_indices_variance]

34 print(" Constant Feature Indices:", constant_feature_indices)

35
36 df1 = pd.DataFrame(X_filtered , columns=df1.columns [1:][

selected_feature_indices_variance])

37 df1["label"] = y

38
39 new_columns = ["label"] + df1.columns [:-1]. tolist ()

40 df2 = df1[new_columns]. sort_values(by=[" label "])

Listing 5.3: Simple Data Preprocessing

5.5 Feature Selection

Following basic data preprocessing, the feature set remained extensive, which posed a
challenge due to its high dimensionality. To streamline the training process and reduce
the risk of overfitting, a feature selection strategy was employed. The methods of feature
selection for the anomaly detection and malware classification tasks are detailed below.

5.5.1 Feature Selection for Anomaly Detection

To effectively differentiate between normal and abnormal data, a thorough analysis and
comparison of features across different labels was undertaken. This involved assessing the
distribution of each feature using histogram binning and cosine distance as primary metrics
to evaluate the similarity or dissimilarity among these distributions. The procedure for
evaluating each feature, as implemented in 5.4, can be summarized as follows:

• Binning Process: The first step involved segmenting the feature values into 10
distinct bins for each label. This converted the feature data into a histogram format,
facilitating easier analysis of distribution patterns.

• Vector Formation: The next step was to count the number of samples in each bin,
resulting in a ten-dimensional vector representing the distribution of feature values
for a specific label.

• Distance Calculation: For each vector corresponding to a malware label (any label
other than 0), the cosine distance was calculated relative to the vector of normal
data (label 0). This quantified the similarity or dissimilarity of the malware data
compared to normal data for the feature being examined.

1 def cosine_distance(a, b):

2 if np.all(a == 0) or np.all(b == 0):

3 return np.nan

4 return 1.0 - cosine_similarity(a.reshape(1, -1), b.reshape(1, -1))

[0][0]

48 CHAPTER 5. IMPLEMENTATION

5
6 def normalize_to_unit_vector(counts):

7 norm = np.linalg.norm(counts)

8 return counts / norm if norm > 0 else counts

9
10 feature_min_distances = []

11
12 # Define the number of bins

13 num_bins = 10

14
15 for feature_column in tqdm(feature_columns , desc=" Calculating feature

distances "):

16 label_0_bins = np.zeros(num_bins)

17 label_0_values = df1[df1[‘label ’] == 0][feature_column]. values

18 for value in label_0_values:

19 bin_index = min(int(value * num_bins), num_bins - 1)

20 label_0_bins[bin_index] += 1

21
22 normalized_label_0_bins = normalize_to_unit_vector(label_0_bins)

23
24 min_distance = None

25 min_distance_label = None

26
27 for other_label in df1[‘label ’]. unique ():

28 if other_label == 0:

29 continue

30
31 other_label_bins = np.zeros(num_bins)

32 other_label_values = df1[df1[‘label ’] == other_label][

feature_column]. values

33 for value in other_label_values:

34 bin_index = min(int(value * num_bins), num_bins - 1)

35 other_label_bins[bin_index] += 1

36
37 normalized_other_label_bins = normalize_to_unit_vector(

other_label_bins)

38
39 # Calculate the cosine distance between normalized bin counts of

label 0 and this other label

40 distance = cosine_distance(normalized_label_0_bins ,

normalized_other_label_bins)

41
42 if min_distance is None or distance < min_distance:

43 min_distance = distance

44 min_distance_label = other_label

45
46 if min_distance is not None:

47 feature_min_distances.append ((feature_column , min_distance ,

min_distance_label))

Listing 5.4: Feature Selection for Autoencoder

After evaluating all candidate features, they were sorted by their minimum cosine distance
to normal data. Those exhibiting a minimum cosine distance greater than 0.1 were se-
lected as the definitive set for both training and evaluating the anomaly detection model,
culminating in a selection of 22 features. This approach ensures a focus on the most

5.5. FEATURE SELECTION 49

pertinent features for distinguishing between normal and abnormal data.

5.5.2 Feature Selection for Malware Classification

To effectively distinguish among data under eight types of malware attacks as well as
normal data, a method combining visual inspection and calculation of the minimum cosine
distance is employed.

(1) Visual Inspection.

In the first step, by visual inspection, 96 features from over 500 features were initially
selected. First, each column of data was min-max normalized to a value between 0 and
1, then scatter plots were generated for these features, each plot containing 9 columns
representing data under eight types of malware attacks and the normal data. Then the
plots where there is a significant difference in the distribution of the 9 columns of dots
were filtered out. If the distribution of the 9 columns of dots in the plot differs signif-
icantly, it implies a significant difference in the performance under eight types of mal-
ware attacks and the normal performance, suggesting that the feature corresponding to
the plot plays a relatively significant role in distinguishing 9 states, therefore the feature
“armv7 cortex a7/br immed retired/ mean”corresponding to the Figure 5.2 was selected;
whereas if the distribution of the 9 columns of dots in the plot is very similar, the feature
“net:net dev xmit mean” corresponding to the Figure 5.3 was excluded. Through visual
inspection, 96 features were selected initially selected for the second step of selection.

Figure 5.2: Distribution of “armv7 cortex a7/br immed retired/ mean”

50 CHAPTER 5. IMPLEMENTATION

Figure 5.3: Distribution of “net:net dev xmit mean”

(2) Calculation of the Minimum Cosine Distance.

In the second step, 30 features were further selected from the 96 by calculating the mini-
mum cosine distance. This operation is very similar to the feature selection for anomaly
detection. The difference is that for each feature, the cosine distances between pairs of
the 9 vectors corresponding to data under eight types of malware attacks and normal
data were calculated, and then the smallest of the 36 cosine distances was recorded as
min distance. After traversing the 96 features, this project sorted their min distances
from largest to smallest, and chose the top 30 features with the highest min distance as
the final set for training and evaluating the malware classification model.

The reason the first step was not skipped is that doing so would exclude some informative
features. For example, a certain feature that distinguishes well among data under six
kinds of malware attacks as well as normal data but struggles to distinguish between data
under the other two kinds of malware attacks, would have a very small min distance. If
going directly to the second step, such informative features will be eliminated.

By combining the methods of visual inspection and calculating the minimum cosine dis-
tance, a better distinction can be made among data under eight types of malware attacks
as well as normal data.

5.6 Model Training

After identification of the relevant features, two distinct models were developed for anomaly
detection and malware classification:

(1) Anomaly Detection.

5.6. MODEL TRAINING 51

The approach to anomaly detection draws inspiration from the methodology outlined
in [16]. An Autoencoder served as the core model for this purpose. The encoder part
of the Autoencoder was composed of two linear layers: the first layer was fitted with 4
neurons, and the following layer had 2 neurons. Each of these linear layers was succeeded
by a batch normalization layer and a GELU activation layer. This configuration of the
encoder compressed the input data into a two-dimensional vector. This vector was then
fed into the decoder, which aimed to reconstruct the original input data. The decoder
mirrored the encoder’s two-layer structure, with the first layer containing 2 neurons and
the second layer having 4 neurons. Each linear layer in the decoder was also followed by
a batch normalization layer and a GELU activation layer.

The Autoencoder model underwent training with normal data for 50 epochs, using the
Adam optimizer to minimize the mean square loss. The learning rate was set at 0.001 to
achieve a balanced and efficient training process. In the testing phase, the model’s perfor-
mance was assessed by measuring the reconstruction error for each input sample. Samples
with a reconstruction error that surpassed a predetermined threshold were identified as
anomalies, signaling a potentially abnormal state.

(2) Malware Classification.

The approach to malware classification follows the methodology used in [18], employing a
MLP. The model comprises four layers: the first layer is the input layer, receiving an input
of size 30, corresponding to the 30 features in the dataset. The second and third layers are
hidden layers, which take the output of the previous layer as input and then use the ReLU
activation function to enhance the model’s ability to handle complex data. The fourth
layer is the output layer, which maps the output of the second hidden layer to an output
size of 9, as the model is tasked with classifying eight types of malware and normal states.
The log-softmax function is used in the output layer, suitable for multi-class classification
tasks. Throughout training, the MLP model continuously adjusts its weights and biases
to reduce the CrossEntropyLoss value, which indicates the difference between predicted
and actual labels. Additionally, the model utilizes the Adam optimizer, which adaptively
adjusts the learning rate for a more efficient and stable training process. A learning rate
of 0.01 is set to accomplish effective learning and convergence to the optimal solution.

The MLP was trained using data under eight malware attacks and in a normal state, over
180 training epochs. Training would be stopped early if there was no significant decrease
in loss on the validation set. During the testing phase, the model predicted the labels of
the data, which represented eight types of malware and normal state. Finally, a confusion
matrix was outputted. From this confusion matrix, metrics including precision, recall, and
f1-score were calculated to evaluate the performance of the MLP in classifying malware.

52 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

This chapter provides a detailed evaluation of the anomaly detection and malware classifi-
cation models trained on the malware dataset. Initially, three methodologies (traditional
ML, CFL, and DFL) are compared. This comparison is aimed at assessing the efficacy
of each approach in the context of anomaly detection and malware classification. The
analysis then extends to a more focused analysis of the DFL approach, examining how it
performs under various network topologies. This exploration is critical to understanding
the influence of network structure on the effectiveness of decentralized learning processes.
Another key aspect of this chapter is the exploration of the models’ performance in sce-
narios involving non-independent and identically distributed (Non-IID) data. This aspect
is crucial as it mirrors real-world situations where data may not follow a uniform distri-
bution. Lastly, the chapter includes supplementary experiments to evaluate the models’
resilience against attacks. These experiments provide valuable insights into the robust-
ness of models, offering a gauge of their practical reliability and effectiveness in real-world
applications.

6.1 Comparison between ML, CFL, and DFL Approaches

The analysis began with testing the anomaly detection and malware classification models
using three distinct approaches: ML, CFL, and DFL.

(1) Anomaly Detection.

For the evaluation of the anomaly detection model (specifically, the Autoencoder), a
performance comparison was conducted between ML, CFL, and DFL, focusing on three
key metrics: precision, recall, and f1-score. These metrics were crucial in assessing the
effectiveness of each approach in identifying anomalies accurately. Precision is calculated
as the ratio of true positive results to the total number of positive results, encompassing
both correctly identified and incorrectly identified cases. Recall, on the other hand, is the
ratio of true positive results to the total number of cases that should have been positively
identified. F1-score, serving as the harmonic mean of precision and recall, effectively

53

54 CHAPTER 6. EVALUATION

consolidates both metrics into a singular, balanced measure. The formulas for these
metrics are as follows:

Precision =
True Positives

True Positives + False Positives
(6.1)

Recall =
True Positives

True Positives + False Negatives
(6.2)

F1-score = 2× Precision× Recall

Precision + Recall
(6.3)

The results of this evaluation are depicted in Figure 6.1. It is observed that the three
models—ML, CFL, and DFL—each exhibit a high level of precision. Notably, the ML
model shows a slightly better performance in recall than its CFL and DFL counterparts.
In assessing overall effectiveness using f1-score, the ML model stands out with a score of
0.736. This is slightly ahead of the CFL and DFL models, which both show comparable
performances with scores around 0.687.

Precision Recall F1 score
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

0.99

0.586

0.736

0.982

0.531

0.689

0.99

0.526

0.687

ML
CFL
DFL_fully

Figure 6.1: Comparison between ML, CFL, and DFL for Anomaly Detection

(2) Malware Classification.

Similar to the anomaly detection, in examining the malware classification model (specif-
ically, the MLP), the precision, recall, and f1-score were compared across ML, CFL, and
DFL approaches.

The results, as depicted in Figure 6.2, indicate that the precision, recall, and f1-score for
ML, CFL, and DFL are all roughly around 0.70. The ML outcomes are slightly superior
to DFL, with a margin within 0.02, while DFL slightly outperforms CFL, again with a
margin within 0.02. The discrepancies between ML, CFL, and DFL are not significant,
because parameters of the MLP model are identical except for the parameter aggregation
required after each round in FL. The marginally better results of ML over DFL might be
due to each aggregator not fully representing the overall data distribution as well as the

6.1. COMPARISON BETWEEN ML, CFL, AND DFL APPROACHES 55

varying training speeds of different aggregators affecting the final model performance. The
reason DFL slightly outperforms CFL may be that each aggregator in DFL independently
updates its model, leading to a more diversified feature learning and better classification
of different types of malware.

Figure 6.2: Comparison between ML, CFL, and DFL for Malware Classification

In addition, the differences in precision for various types of malware across the ML, CFL,
and DFL methods were compared, as illustrated in the heatmap shown in Figure 6.3.
This comparison allows us to evaluate the variations in precision both horizontally across
the three methods and vertically across different types of malware. A horizontal compar-
ison reveals that each malware type exhibits very similar hue under the three methods,
indicating minor differences in their precision. Specifically, except for Coinminer, which
shows a precision range of 0.05, and Ransomware, with a range of 0.07, the precision range
for each other type of malware remains within 0.04. A vertical comparison shows that
variations in hue among different malware types indicating differences in the precision of
classification among different malware types, and the precision for Botnet and Rootkits
is higher. This is easily understandable since the selected features have varying degrees
of matching with different malware types.

Figure 6.3: Differences in Precision for Different Types of Malware across the ML, CFL,
and DFL Methods

56 CHAPTER 6. EVALUATION

Similarly, the differences in recall and f1-score for different types of malware across the
ML, CFL, and DFL methods were examined. As depicted in Figure 6.4 and Figure 6.5,
horizontally, the recall and f1-score for each malware type do not vary significantly across
the three methods, with all ranges within 0.05. Vertically, Botnet, Ransomware, and
Rootkit exhibit relatively higher precision, and Botnet and Rootkit also show higher f1-
score.

Figure 6.4: Differences in Recall for Different Types of Malware across the ML, CFL, and
DFL Methods

Figure 6.5: Differences in F1-score for Different Types of Malware across the ML, CFL,
and DFL Methods

Furthermore, the results of a fully-connected DFL with 4 aggregators were compared to
that with 8 aggregators, as shown in Figure 6.6. The former slightly outperforms the
latter, with a difference within 0.02, which is due to the reduction in data volume of each
aggregator when the data is divided into more slices, increasing the likelihood of each
aggregator’s data deviating from the overall dataset’s distribution.

Moreover, the performance differences in precision, recall, and f1-score for various types
of malware between DFL with 4 nodes and DFL with 8 nodes were compared. As can be
observed from Figure 6.7, Figure 6.8, and Figure 6.9, the DFL with 4 nodes consistently
exhibits higher precision, recall, and f1-score for each type of malware compared to the
8-node DFL. This conclusion aligns with previous findings.

6.1. COMPARISON BETWEEN ML, CFL, AND DFL APPROACHES 57

Figure 6.6: Comparison between DFL with 4 Aggregators and 8 Aggregators for Malware
Classification

Figure 6.7: Differences in Precision for Different Types of Malware between DFL with 4
Aggregators and 8 Aggregators

Figure 6.8: Differences in Recall for Different Types of Malware between DFL with 4
Aggregators and 8 Aggregators

58 CHAPTER 6. EVALUATION

Figure 6.9: Differences in F1-score for Different Types of Malware between DFL with 4
Aggregators and 8 Aggregators

6.2 Comparison between Different DFL Topologies

The second series of experiments aimed at comparing the performance of different DFL
topologies: fully-connected, star, ring, and random. Figure 6.10 illustrates these con-
figurations in detail. The fully-connected topology is characterized by each node being
interconnected with every other node in the network. In the star topology, there exists
a central node to which all other nodes are connected. The ring topology is designed
such that each node is linked only to its immediate neighbors on either side. Finally, the
random topology is distinguished by its nodes being connected in an arbitrary pattern,
without a specific structural design.

(a) Fully (b) Star (c) Ring (d) Random

Figure 6.10: Different DFL Topologies

The various topologies were applied to assess the performance of both the anomaly de-
tection and malware classification models. Detailed results and analyses of these tests are
outlined in the following:

(1) Anomaly Detection.

The outcomes for the anomaly detection task are illustrated in Figure 6.11. The results
indicated a similarity in performance across the different topologies, with only marginal
differences. Notably, the fully-connected structure emerged as the most effective, closely
followed by the star topology. The ring and random configurations were slightly less

6.2. COMPARISON BETWEEN DIFFERENT DFL TOPOLOGIES 59

effective but the difference was small — about 2%. These observations indicate that the
way nodes are connected in a DFL network does affect its performance, but not drastically.
Generally, having more connections between nodes leads to slightly better performance.

Precision Recall F1 Score
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

0.99

0.526

0.687

0.987

0.509

0.672

0.99

0.521

0.682

0.992

0.504

0.668

DFL_fully
DFL_ring
DFL_star
DFL_random

Figure 6.11: Comparison between Different DFL Topologies for Anomaly Detection

(2) Malware Classification.

The results of malware classification model demonstrate that the performance of the
four topologies—fully-connected, star, ring, and random—is very close, with the range
of precision, recall, and f1-score differences not exceeding 0.02, as shown in Figure 6.12.
These observations suggest that the connection mode of nodes within a DFL network does
not significantly affect model performance.

Figure 6.12: Comparison between Different DFL Topologies for Malware Classification

Furthermore, the differences in precision, recall, and f1-score for different types of malware
across these four topologies were compared, as shown in Figure 6.13, Figure 6.14, and
Figure 6.15. It was found that the variations in performance metrics for each type of
malware across the four topologies are minimal. The range of precision for each type of
malware is less than 0.04, except for Ransomware with a range of 0.06. Similarly, the range
of recall for each malware class is less than 0.04, except for Ransomware with a range of

60 CHAPTER 6. EVALUATION

0.06. Additionally, the range of f1-score for each type of malware is less than 0.03, except
for Backdoor with a range of 0.07. These findings indicate that when considering each
specific type of malware, the performance across the four different network topologies are
also very close.

Figure 6.13: Differences in Precision for Different Types of Malware across Different DFL
Topologies

Figure 6.14: Differences in Recall for Different Types of Malware across Different DFL
Topologies

Figure 6.15: Differences in F1-score for Different Types of Malware across Different DFL
Topologies

6.3. NON-IID SCENARIOS 61

6.3 Non-IID Scenarios

For the Non-IID scenarios, tests in three distinct settings were conducted: 1) each node
was trained using data collected by an individual physical device; 2) certain nodes were
missing one specific type of malware data; 3) all nodes lacked multiple types of malware
data. These scenarios were contrasted against a fully-connected DFL approach, wherein
the complete dataset was randomly distributed across all nodes. The following sections
provide an in-depth exploration and detailed analysis of each of these scenarios.

6.3.1 Non-IID Scenario 1: Training Each Node with Data from a Spe-
cific Physical Device

In this scenario, each node in the network was trained exclusively on data that had been
collected by a single, unique physical device. This setup aims to simulate a realistic
environment where each device generates its own data.

(1) Anomaly Detection.

The performance of the anomaly detection model under this scenario is depicted in Fig-
ure 6.16. A comparative analysis with the IID scenario revealed that, in the Non-IID
setting, there was a slight reduction in precision. However, both recall and f1-score ex-
perienced an increase, leading to an overall enhancement in performance. This improve-
ment might be attributable to the more uniform data patterns associated with individual
devices, which were potentially simpler to learn and adapt to. Conversely, in the IID sce-
nario, where data from various sources were integrated and randomly distributed across
nodes, the resultant complex data patterns posed a more challenging learning environ-
ment.

Precision Recall F1 Score
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

0.99

0.526

0.687

0.971

0.674

0.775

IID (Randomly Distributed Data)
Non-IID (Device Specific Data)

Figure 6.16: Comparison for Anomaly Detection in IID (Randomly Distributed Data) vs.
Non-IID (Device Specific Data) Scenarios

(2) Malware Classification.

62 CHAPTER 6. EVALUATION

The performance of the malware classification model, as illustrated in Figure 6.17, shows
that precision, recall, and f1-score are all notably higher in the Non-IID scenario com-
pared to the IID scenario, indicating better performance. This is because, in the Non-IID
scenario, the data comes from different devices with considerable variation, thus forming
more complex data patterns, which makes the learning process of the malware classifi-
cation model more challenging. As a result, the model’s ability to classify malware is
stronger in the Non-IID scenario.

Figure 6.17: Comparison for Malware Classification in IID (Randomly Distributed Data)
vs. Non-IID (Device Specific Data) Scenarios

The differences in precision, recall, and f1-score for different types of malware between
the IID and Non-IID scenarios were further compared. From Figure 6.18, Figure 6.19 and
Figure 6.20, it was observed that for each type of malware, the three metrics, precision,
recall, and f1-score are all higher in the Non-IID scenario compared to the IID scenario.
This underscores the fact that in the Non-IID scenario, the model’s capability to classify
malware is stronger than in the IID scenario.

Figure 6.18: Differences in Precision for Different Types of Malware in IID vs. Non-IID
Scenarios

6.3. NON-IID SCENARIOS 63

Figure 6.19: Differences in Recall for Different Types of Malware in IID vs. Non-IID
Scenarios

Figure 6.20: Differences in F1-score for Different Types of Malware in IID vs. Non-IID
Scenarios

6.3.2 Non-IID Scenario 2: Training Nodes wherein Some of Them Miss-
ing a Certain Type of Malware Data

The nodes were trained in this scenario using the malware classification model that is based
on the fully connected DFL approach. However, not all nodes have complete datasets,
i.e., some nodes miss a certain type of malware data. For instance, two of the nodes lack
Botnets data, whereas other nodes have data from all types of malware. The purpose of
this setup is to evaluate the robustness of the DFL model to node data incompleteness,
evaluate whether the model can continue to work properly when some nodes are missing
data, and compensate through cross-node communication where possible.

The following will be analyzed one by one from the perspectives of the five families of
malware: Botnets, Backdoors, Rootkits, Coinminer, and Ransomware. In the analysis of
each malware category, zero (i.e., fully connected DFL), one, two, and three nodes were
missing corresponding malware data respectively.

64 CHAPTER 6. EVALUATION

(1) Botnets.

The results of the malware classification model for this scenario are shown in Figure 6.21.
It is generally observed that when more nodes are missing Botnets data, the precision,
recall, and f1-score tend to decrease. However, the figure reveals that the precision value
is slightly higher in the scenario where two nodes are missing Botnets data (0.820) as com-
pared to the scenario where one node is missing Botnets data (0.814). This anomaly can
be attributed to accidental circumstances or better communication compensation between
the nodes in the former scenario. Furthermore, the fully connected DFL scenario, which
has no missing data, has larger values for all three indicators than the other scenarios.

Figure 6.21: Comparison for Malware Classification between Fully Connected DFL and
Scenarios with One, Two, and Three Nodes Missing Botnets Data

(2) Backdoors.

Figure 6.22 displays the outcomes of the malware classification model in this situation.
Similar to the situation described in (1) about Botnets, it has been commonly noticed
that when a greater number of nodes are lacking Backdoors data, the evaluation metrics
such as precision, recall, and f1-score tend to exhibit a declining trend. Notably, as
the number of nodes missing backdoor data increases, the magnitude of the decline of
these indicators increases. This means the model’s performance degrades more for the
Backdoors category, as missing data nodes cannot contribute enough in training and
compensate for this deficiency through communication between nodes.

(3) Rootkits.

The performance of the malware classification model in this scenario are presented in
Figure 6.23. By comparing the four data sets, it is evident that the increase in the
number of nodes missing Rootkits data harms the model’s performance. In other words,
with each additional node missing Rootkits data, the precision, recall, and f1-score will
decrease further. Notably, the recall rate shows a more noticeable downward trend than
the precision rate in this scenario. The decline in recall means that missing nodes have a
more significant impact on the model’s ability to identify all relevant instances. This is
because each node could contain exclusive information that is a positive example for the
model. With this information missing, the detection ability of the model will be impaired.

6.3. NON-IID SCENARIOS 65

In practical terms, this could lead to reduced security, especially with Rootkits detection,
where a lower recall rate may result in more malware being missed.

Figure 6.22: Comparison for Malware Classification between Fully Connected DFL and
Scenarios with One, Two, and Three Nodes Missing Backdoors Data

Figure 6.23: Comparison for Malware Classification between Fully Connected DFL and
Scenarios with One, Two, and Three Nodes Missing Rootkits Data

(4) Coinminer.

The outcomes of the malware classification model for this scenario are illustrated in Fig-
ure 6.24. When evaluating overall performance using f1-score, a notable decrease is ob-
served as more nodes miss Coinminer data. This decline is expected, given the reduced
amount of data available for the model to learn from. However, it is noteworthy that
the recall scores for the DFL fully connected, one node missing, and two nodes missing
Coinminer data are similar, with the differences not exceeding 0.01. This phenomenon
can be partially attributed to communication compensation between the nodes and the
features and distributions of the missing data.

66 CHAPTER 6. EVALUATION

Figure 6.24: Comparison for Malware Classification between Fully Connected DFL and
Scenarios with One, Two, and Three Nodes Missing Coinminer Data

(5) Ransomware.

The performance of the malware classification model under this scenario, as depicted in
Figure 6.25, follows a similar trend as previous analyses.

When the number of nodes missing Ransomware data increases, the model’s performance
worsens in general. This degradation is clearly demonstrated by the decreasing precision,
recall, and f1-score. Overall, there is no drastic drop between consecutive scenarios and
interestingly, the precision and recall values for scenarios with 2 nodes missing and 3
nodes missing Ransomware data are found to be similar. This observation suggests the
potential impact of cross-node communication on maintaining the robustness of the DFL
model, even in the face of node data incompleteness.

Figure 6.25: Comparison for Malware Classification between Fully Connected DFL and
Scenarios with One, Two, and Three Nodes Missing Ransomware Data

6.4. RESILIENCE AGAINST ATTACKS 67

6.3.3 Non-IID Scenario 3: Training Nodes wherein All of Them Missing
Certain Types of Malware Data

In this scenario, an experiment involving four nodes using the malware classification model
based on the fully connected DFL approach was conducted. Each node was intentionally
configured to be devoid of one or two malware families. Specifically, node 1 lacked Bot-
net data, node 2 lacked Backdoor data, node 3 lacked Rootkits data and node 4 lacked
Ransomware and Coinminer data. The purpose of this setup is to further evaluate the
robustness of the DFL model in the context of node data incompleteness.

The performance of the malware classification model for the Backdoor malware family is
depicted in Figure 6.26. The f1-scores are lower for the configuration where all nodes are
missing one or two malware families (0.645) compared to the DFL fully connected scenario
(0.655), where all nodes process full datasets without missing any type of malware.

Despite the decrease in precision, recall and f1-score, the model’s performance did not
degrade significantly. This may be attributed to the information compensation facilitated
by cross-node communication. Additionally, since each malware family is only missing
in one node, the impact on the overall model’s ability to classify that specific malware
family may not be substantial.

Figure 6.26: Comparison of Backdoor Malware Classification Performance between Fully
Connected DFL and Scenarios with All Nodes Missing One or Two Types of Malware
Data

6.4 Resilience Against Attacks

To assess the model’s resilience against adversarial attacks, supplementary experiments
were conducted using the label-flipping feature of the Fedstellar platform. These experi-
ments aimed to simulate attack scenarios and evaluate the model’s response under such
conditions.

68 CHAPTER 6. EVALUATION

Specifically, botnet data was chosen as a representative to test the malware classification
model’s performance when faced with different levels of label manipulation. Initially,
40% of the botnet labels were modified on one, two, and three nodes, respectively. The
performance of the model was then analyzed in each of these scenarios to understand
the impact of this level of label modification. To further test the model’s resilience, the
challenge was escalated by inverting 80% of the botnet data labels on the same nodes. This
step was designed to assess the model’s robustness under more extreme conditions. The
resulting precision and recall metrics are depicted in Figure 6.27, while the comprehensive
f1-score metrics are illustrated in Figure 6.28.

(a) Precision (b) Recall

Figure 6.27: Precision and Recall under Varying Attack Intensities

Figure 6.28: F1-score under Varying Attack Intensities

6.4. RESILIENCE AGAINST ATTACKS 69

The results indicate the resilience of the model to adversarial attacks. Specifically, when
40% of the botnet labels on a single node were altered, there was an approximate 8% de-
cline in precision for the botnet category, while recall decreased by about 4%. The overall
f1-score experienced a reduction of approximately 6%. Given the substantial proportion
of label modification, this modest decline underscores the model’s relative robustness
against attacks. In more extreme scenarios, such as flipping 80% of the data on one node,
the overall f1-score maintained a value exceeding 0.6. This resilience can potentially be
attributed to the weight-aggregation mechanism inherent in the DFL approach.

Additionally, the observations revealed a trend where increasing the number of compro-
mised nodes led to a more pronounced degradation in performance. A similar effect was
seen when a larger proportion of the data underwent label modification. The perfor-
mances across different types of malware were also impacted, with botnets being the most
severely affected. This is primarily because the botnet labels were randomly modified
to other labels, leading to more significant disruptions in the model’s accuracy for this
category.

70 CHAPTER 6. EVALUATION

Chapter 7

Summary, Conclusions and Future Work

This chapter provides a comprehensive summary of the entire project and delves into
potential directions for future research. The first section offers a concise overview of the
project, while the subsequent section explores prospective paths for further development.

7.1 Summary and Conclusions

The primary goal of this project is the creation of a comprehensive dataset encompassing
both normal and abnormal behaviors of IoT devices. It aims to develop models capable
of detecting and classifying malware within a DFL framework. To achieve this goal, the
project has been structured into several key phases. Initially, this work introduces the nec-
essary background knowledge, encompassing malware types, detection and classification
methodologies, and foundational concepts of DFL. Subsequently, an extensive analysis of
the state-of-the-art in anomaly detection and malware classification is presented. Drawing
from this literature review, a system architecture is conceptualized to outline the structure
and functionality of the proposed system.

In the practical phase, a system was implemented to collect device behavior data across six
critical dimensions: kernel events, system calls, resource usage, network activity, I/O us-
age, and file system activities. This data was meticulously integrated, processed, and ana-
lyzed to select features for model training and evaluation carefully. Utilizing this dataset,
an Autoencoder model was developed for anomaly detection, and an MLP model was
constructed for malware classification. The effectiveness of these models was thoroughly
evaluated in various scenarios, ensuring the robustness and reliability of the system.

In conclusion, this work presents several key findings:

• Comparative analysis between traditional ML, CFL, and DFL models revealed that
ML models slightly outperform CFL and DFL models in terms of effectiveness.

• Examination of different DFL network topologies indicated a minor impact of node
connectivity on performance. Denser connections generally lead to slightly improved
outcomes.

71

72 CHAPTER 7. SUMMARY, CONCLUSIONS AND FUTURE WORK

• In scenarios involving Non-IID data, it was observed that complex data patterns
pose a substantial challenge to the learning process. However, the joint learning
mechanism of DFL ensures performance is not significantly hampered, even when
some training nodes lack certain data types.

• The evaluation under attack scenarios demonstrated that DFL approaches maintain
relative robustness against adversarial conditions.

This project makes a significant contribution to IoT security through the creation of a
substantial dataset, coupled with novel insights into malware detection and classification
within the DFL framework. The results highlight DFL’s potential in privacy-preserving
scenarios, thereby establishing a foundation for ongoing research and development in this
critical area.

7.2 Future Work

This project constructs a large dataset containing device behaviors in both normal and
abnormal situations. The abnormal situations cover eight types of malware belonging
to five families of malware. To strengthen the effectiveness of the system, future work
could incorporate a broader range of malware samples, particularly those that are newly
emerging. Additionally, while this work effectively detects and classifies malware, it does
not encompass subsequent actions to mitigate these threats. Future improvements could
consider integrating the system with defensive solutions to address this gap.

Bibliography

[1] S. Rajendran, R. Calvo-Palomino, M. Fuchs, et al., “Electrosense: Open and big
spectrum data”, IEEE Communications Magazine, vol. 56, no. 1, pp. 210–217, 2017.

[2] L. Li, Y. Fan, M. Tse, and K.-Y. Lin,“A review of applications in federated learning”,
Computers & Industrial Engineering, vol. 149, p. 106 854, 2020.

[3] ElectroSense, Collaborative spectrum monitoring, https://electrosense.org/,
Last accessed on 2024-01-02, 2024.

[4] E. association, Electrosense - collaborative spectrum monitoring, Accessed 2024-01-
10, 2016. [Online]. Available: https://electrosense.org/open-api-spec.html.

[5] A. Huertas, P. M. Sánchez, M. Castillo, G. Bovet, G. Martinez Perez, and B. Stiller,
“Intelligent and behavioral-based detection of malware in iot spectrum sensors”,
International Journal of Information Security, vol. 22, Jul. 2022. doi: 10.1007/
s10207-022-00602-w.

[6] hammerzeit, An archive of bashlite source code, Accessed 2024-01-02, 2016. [Online].
Available: https://github.com/hammerzeit/BASHLITE.

[7] SkryptKiddie, Httpbackdoor, Accessed 2024-01-02, 2020. [Online]. Available: https:
//github.com/SkryptKiddie/httpBackdoor.

[8] J. ao Koritar, Backdoor, Accessed 2024-01-02, 2020. [Online]. Available: https:
//github.com/jakoritarleite/backdoor.

[9] Nccgroup, The tick: A simple embedded linux backdoor. Accessed 2024-01-02, 2021.
[Online]. Available: https://github.com/nccgroup/thetick/.

[10] unix thrust, Beurk experimental unix rootkit. Accessed 2024-01-02, 2015. [Online].
Available: https://github.com/unix-thrust/beurk.

[11] Error996, Bdvl, Accessed 2024-01-02, 2020. [Online]. Available: https://github.
com/Error996/bdvl.

[12] xmrig, Xmrig, Accessed 2024-01-02, 2023. [Online]. Available: https://github.
com/xmrig/xmrig.

[13] jimmy-ly00, Ransomware poc github repository, Accessed 2024-01-02, 2020. [Online].
Available: https://github.com/jimmy-ly00/Ransomware-PoC.

[14] B. Cakir and E. Dogdu, “Malware classification using deep learning methods”, in
Proceedings of the ACMSE 2018 Conference, ser. ACMSE ’18, Richmond, Kentucky:
Association for Computing Machinery, 2018, isbn: 9781450356961. doi: 10.1145/
3190645.3190692. [Online]. Available: https://doi.org/10.1145/3190645.
3190692.

73

https://electrosense.org/
https://electrosense.org/open-api-spec.html
https://doi.org/10.1007/s10207-022-00602-w
https://doi.org/10.1007/s10207-022-00602-w
https://github.com/hammerzeit/BASHLITE
https://github.com/SkryptKiddie/httpBackdoor
https://github.com/SkryptKiddie/httpBackdoor
https://github.com/jakoritarleite/backdoor
https://github.com/jakoritarleite/backdoor
https://github.com/nccgroup/thetick/
https://github.com/unix-thrust/beurk
https://github.com/Error996/bdvl
https://github.com/Error996/bdvl
https://github.com/xmrig/xmrig
https://github.com/xmrig/xmrig
https://github.com/jimmy-ly00/Ransomware-PoC
https://doi.org/10.1145/3190645.3190692
https://doi.org/10.1145/3190645.3190692
https://doi.org/10.1145/3190645.3190692
https://doi.org/10.1145/3190645.3190692

74 BIBLIOGRAPHY

[15] P. M. S. Sanchez, J. M. J. Valero, A. H. Celdran, G. Bovet, M. G. Perez, and G. M.
Perez, “A survey on device behavior fingerprinting: Data sources, techniques, ap-
plication scenarios, and datasets”, IEEE Communications Surveys & Tutorials,
vol. 23, no. 2, pp. 1048–1077, 2021. doi: 10.1109/comst.2021.3064259. [Online].
Available: https://doi.org/10.1109%2Fcomst.2021.3064259.

[16] V. Rey, P. M. S. Sánchez, A. H. Celdrán, and G. Bovet, “Federated learning for
malware detection in iot devices”, Computer Networks, vol. 204, p. 108 693, 2022.

[17] S. Flores.“Variational autoencoders are beautiful”. (2019), [Online]. Available: https:
//www.compthree.com/blog/autoencoder/ (visited on 12/20/2023).

[18] P. M. S. Sánchez, A. H. Celdrán, T. Schenk, et al., “Studying the robustness of
anti-adversarial federated learning models detecting cyberattacks in iot spectrum
sensors”, IEEE Transactions on Dependable and Secure Computing, 2022.

[19] E. T. M. Beltrán, M. Q. Pérez, P. M. S. Sánchez, et al., “Decentralized federated
learning: Fundamentals, state of the art, frameworks, trends, and challenges”, IEEE
Communications Surveys & Tutorials, 2023.

[20] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining methods for
detection of new malicious executables”, in Proceedings 2001 IEEE Symposium on
Security and Privacy. S&P 2001, IEEE, 2000, pp. 38–49.

[21] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, “N-gram-based detection
of new malicious code”, in Proceedings of the 28th Annual International Computer
Software and Applications Conference, 2004. COMPSAC 2004., IEEE, vol. 2, 2004,
pp. 41–42.

[22] J. Saxe and K. Berlin, “Deep neural network based malware detection using two
dimensional binary program features”, in 2015 10th international conference on ma-
licious and unwanted software (MALWARE), IEEE, 2015, pp. 11–20.

[23] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep learning
method for android malware detection using various features”, IEEE Transactions
on Information Forensics and Security, vol. 14, no. 3, pp. 773–788, 2018.

[24] A. Azmoodeh, A. Dehghantanha, and K.-K. R. Choo, “Robust malware detection
for internet of (battlefield) things devices using deep eigenspace learning”, IEEE
transactions on sustainable computing, vol. 4, no. 1, pp. 88–95, 2018.

[25] D. Vasan, M. Alazab, S. Venkatraman, J. Akram, and Z. Qin, “Mthael: Cross-
architecture iot malware detection based on neural network advanced ensemble
learning”, IEEE Transactions on Computers, vol. 69, no. 11, pp. 1654–1667, 2020.

[26] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert,“Deep learning for classification
of malware system call sequences”, in AI 2016: Advances in Artificial Intelligence:
29th Australasian Joint Conference, Hobart, TAS, Australia, December 5-8, 2016,
Proceedings 29, Springer, 2016, pp. 137–149.

[27] S. Chaba, R. Kumar, R. Pant, and M. Dave, “Malware detection approach for an-
droid systems using system call logs”, arXiv preprint arXiv:1709.08805, 2017.

[28] W. Zhong and F. Gu, “A multi-level deep learning system for malware detection”,
Expert Systems with Applications, vol. 133, pp. 151–162, 2019.

https://doi.org/10.1109/comst.2021.3064259
https://doi.org/10.1109%2Fcomst.2021.3064259
https://www.compthree.com/blog/autoencoder/
https://www.compthree.com/blog/autoencoder/

BIBLIOGRAPHY 75

[29] S. I. Popoola, B. Adebisi, M. Hammoudeh, G. Gui, and H. Gacanin, “Hybrid deep
learning for botnet attack detection in the internet-of-things networks”, IEEE In-
ternet of Things Journal, vol. 8, no. 6, pp. 4944–4956, 2020.

[30] J. Jeon, J. H. Park, and Y.-S. Jeong, “Dynamic analysis for iot malware detection
with convolution neural network model”, IEEE Access, vol. 8, pp. 96 899–96 911,
2020. doi: 10.1109/ACCESS.2020.2995887.

[31] T. Carrier, P. Victor, A. Tekeoglu, and A. H. Lashkari, “Detecting obfuscated mal-
ware using memory feature engineering.”, in Icissp, 2022, pp. 177–188.

[32] N. Quoc-Dung, “Malware detection in internet of things devices based on associa-
tion models”, in Proceedings of the 2023 4th International Conference on Computing,
Networks and Internet of Things, ser. CNIOT ’23,<conf-loc>,<city>Xiamen</city>,
<country>China</country>, </conf-loc>: Association for Computing Machinery,
2023, pp. 743–748, isbn: 9798400700705. doi: 10.1145/3603781.3603913. [Online].
Available: https://doi.org/10.1145/3603781.3603913.

[33] J. P. Barona, J. A. Alvarez, C. J. Farfán, J. M. Aguilar, and R. I. Bonilla, “Mal-
ware detection using api calls visualisations and convolutional neural networks”, in
2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet
Computing Workshops (CCGridW), IEEE, 2023, pp. 153–159.

[34] N. Quoc-Dung,“Malware detection in internet of things devices based on association
models”, in Proceedings of the 2023 4th International Conference on Computing,
Networks and Internet of Things, 2023, pp. 743–748.

[35] E. Ilavarasan and K. Muthumanickam, “A survey on host-based botnet identifica-
tion”, in 2012 International Conference on Radar, Communication and Computing
(ICRCC), 2012, pp. 166–170. doi: 10.1109/ICRCC.2012.6450569.

[36] Y. Meidan, M. Bohadana, Y. Mathov, et al., “N-baiot—network-based detection of
iot botnet attacks using deep autoencoders”, IEEE Pervasive Computing, vol. 17,
no. 3, pp. 12–22, 2018.

[37] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the develop-
ment of realistic botnet dataset in the internet of things for network forensic analyt-
ics: Bot-iot dataset”, Future Generation Computer Systems, vol. 100, pp. 779–796,
2019, issn: 0167-739X. doi: https://doi.org/10.1016/j.future.2019.05.041.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X18327687.

[38] V. H. Bezerra, V. G. T. da Costa, S. B. Junior, R. S. Miani, and B. B. Zarpelão,
“Iotds: A one-class classification approach to detect botnets in internet of things
devices”, Sensors (Basel, Switzerland), vol. 19, 2019. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:198170644.

[39] V. G. T. da Costa, S. Barbon, R. S. Miani, J. J. P. C. Rodrigues, and B. B. Zarpelão,
“Detecting mobile botnets through machine learning and system calls analysis”, in
2017 IEEE International Conference on Communications (ICC), 2017, pp. 1–6. doi:
10.1109/ICC.2017.7997390.

[40] F. Martinelli, F. Mercaldo, and A. Saracino,“Bridemaid: An hybrid tool for accurate
detection of android malware”, Apr. 2017, pp. 899–901. doi: 10.1145/3052973.
3055156.

https://doi.org/10.1109/ACCESS.2020.2995887
https://doi.org/10.1145/3603781.3603913
https://doi.org/10.1145/3603781.3603913
https://doi.org/10.1109/ICRCC.2012.6450569
https://doi.org/https://doi.org/10.1016/j.future.2019.05.041
https://www.sciencedirect.com/science/article/pii/S0167739X18327687
https://www.sciencedirect.com/science/article/pii/S0167739X18327687
https://api.semanticscholar.org/CorpusID:198170644
https://api.semanticscholar.org/CorpusID:198170644
https://doi.org/10.1109/ICC.2017.7997390
https://doi.org/10.1145/3052973.3055156
https://doi.org/10.1145/3052973.3055156

76 BIBLIOGRAPHY

[41] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “Madam: Effective and ef-
ficient behavior-based android malware detection and prevention”, IEEE Transac-
tions on Dependable and Secure Computing, vol. 15, no. 1, pp. 83–97, 2018. doi:
10.1109/TDSC.2016.2536605.

[42] Y. Zhang and V. Paxson, “Detecting backdoors”, Feb. 2001.

[43] R. Canzanese, S. Mancoridis, and M. Kam,“System call-based detection of malicious
processes”, in 2015 IEEE International Conference on Software Quality, Reliability
and Security, 2015, pp. 119–124. doi: 10.1109/QRS.2015.26.

[44] G. Hoglund and J. Butler, Rootkits: subverting the Windows kernel. Addison-Wesley
Professional, 2005.

[45] L. Y. Li J, “Rootkits”, 2010. [Online]. Available: https://urn.kb.se/resolve?
urn=urn:nbn:se:lnu:diva-8378.

[46] C. Kruegel, W. Robertson, and G. Vigna, “Detecting kernel-level rootkits through
binary analysis”, in 20th Annual Computer Security Applications Conference, 2004,
pp. 91–100. doi: 10.1109/CSAC.2004.19.

[47] A. Baliga, V. Ganapathy, and L. Iftode, “Automatic inference and enforcement of
kernel data structure invariants”, in 2008 Annual Computer Security Applications
Conference (ACSAC), 2008, pp. 77–86. doi: 10.1109/ACSAC.2008.29.

[48] J. Nick L. Petroni, T. Fraser, J. Molina, andW. A. Arbaugh,“Copilot—a coprocessor-
based kernel runtime integrity monitor”, in 13th USENIX Security Symposium (USENIX
Security 04), San Diego, CA: USENIX Association, Aug. 2004. [Online]. Available:
https://www.usenix.org/conference/13th-usenix-security-symposium/

copilot%7B%5Ctextemdash%7D-coprocessor-based-kernel-runtime-integrity.

[49] A. Baliga, V. Ganapathy, and L. Iftode, “Detecting kernel-level rootkits using data
structure invariants”, IEEE Transactions on Dependable and Secure Computing,
vol. 8, no. 5, pp. 670–684, 2011. doi: 10.1109/TDSC.2010.38.

[50] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang, “Mapping kernel ob-
jects to enable systematic integrity checking”, in Proceedings of the 16th ACM Con-
ference on Computer and Communications Security, ser. CCS ’09, Chicago, Illinois,
USA: Association for Computing Machinery, 2009, pp. 555–565, isbn: 9781605588940.
doi: 10.1145/1653662.1653729. [Online]. Available: https://doi.org/10.1145/
1653662.1653729.

[51] S. H. Kok, A. B. Abdullah, N. Z. Jhanjhi, and M. Supramaniam, “Ransomware
, threat and detection techniques : A review”, 2019. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:197868067.

[52] S. Barbhuiya, Z. Papazachos, P. Kilpatrick, and D. S. Nikolopoulos, Rads: Real-time
anomaly detection system for cloud data centres, 2018. arXiv: 1811.04481 [cs.DC].

[53] D. Tanana,“Behavior-based detection of cryptojacking malware”, in 2020 Ural Sym-
posium on Biomedical Engineering, Radioelectronics and Information Technology
(USBEREIT), 2020, pp. 0543–0545. doi: 10.1109/USBEREIT48449.2020.9117732.

[54] R.-H. Hsu, Y.-C. Wang, C.-I. Fan, et al., “A privacy-preserving federated learning
system for android malware detection based on edge computing”, in 2020 15th Asia
Joint Conference on Information Security (AsiaJCIS), IEEE, 2020, pp. 128–136.

https://doi.org/10.1109/TDSC.2016.2536605
https://doi.org/10.1109/QRS.2015.26
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-8378
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-8378
https://doi.org/10.1109/CSAC.2004.19
https://doi.org/10.1109/ACSAC.2008.29
https://www.usenix.org/conference/13th-usenix-security-symposium/copilot%7B%5Ctextemdash%7D-coprocessor-based-kernel-runtime-integrity
https://www.usenix.org/conference/13th-usenix-security-symposium/copilot%7B%5Ctextemdash%7D-coprocessor-based-kernel-runtime-integrity
https://doi.org/10.1109/TDSC.2010.38
https://doi.org/10.1145/1653662.1653729
https://doi.org/10.1145/1653662.1653729
https://doi.org/10.1145/1653662.1653729
https://api.semanticscholar.org/CorpusID:197868067
https://api.semanticscholar.org/CorpusID:197868067
https://arxiv.org/abs/1811.04481
https://doi.org/10.1109/USBEREIT48449.2020.9117732

BIBLIOGRAPHY 77

[55] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A.-R.
Sadeghi, “Dı̈ot: A federated self-learning anomaly detection system for iot”, in 2019
IEEE 39th International conference on distributed computing systems (ICDCS),
IEEE, 2019, pp. 756–767.

[56] A. H. Celdrán, P. M. Sánchez Sánchez, E. J. Scheid, et al., “Policy-based and be-
havioral framework to detect ransomware affecting resource-constrained sensors”, in
NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium,
2022, pp. 1–7. doi: 10.1109/NOMS54207.2022.9789790.

[57] D. Shushack, BA_Thesis_PI, https://github.com/dennisshushack/BA_Thesis_
PI, 2022.

[58] R. Oles and C. Feng, “Detection and classification of malware using file system
dimensions for mtd on iot”, [Online]. Available: https://files.ifi.uzh.ch/CSG/
staff/vonderassen/extern/theses/ma-oles.pdf.

https://doi.org/10.1109/NOMS54207.2022.9789790
https://github.com/dennisshushack/BA_Thesis_PI
https://github.com/dennisshushack/BA_Thesis_PI
https://files.ifi.uzh.ch/CSG/staff/vonderassen/extern/theses/ma-oles.pdf
https://files.ifi.uzh.ch/CSG/staff/vonderassen/extern/theses/ma-oles.pdf

78 BIBLIOGRAPHY

Abbreviations

Acc Accuracy
AES Advanced Encryption Standard
ANNs Artificial Neural Networks
API Application Programming Interface
APP Application
BLSTM Bidirectional Long Short-Term Memory
BoW Bag-of-Words
CFL Centralized Federated Learning
CNN Convolutional Neural Network
CPU Central Processing Unit
cURL Client URL
C&C Command and Control
DDoS Distributed Denial of Service
DFL Decentralized Federated Learning
DL Deep Learning
DLLs Dynamically Linked Libraries
DT Decision Tree
ELU Exponential Linear Unit
FL Federated Learning
FLSYS File System
FPR False Positive Rate
GELU Gaussian Error Linear Unit
GPUs Graphics Processing Units
GRU Gated Recurrent Unit
HPC High-Performance Computing
HTTP HyperText Transfer Protocol
IF Isolation Forest
IID Independent and Identically Distributed
IoT Internet of Things
IP Internet Protocol
I/O Input/Output
KERN Kernel Events
KNN K-Nearest Neighbors
LAE Long Short-Term Memory Autoencoder
LOF Local Outlier Factor
LR Logistic Regression

79

80 ABBREVIATONS

LSTMs Long Short-Term Memory
ML Machine Learning
MLP MultiLayer Perceptron
NB Näıve Bayes
NET Network
Non-IID Non-Independent and Identically Distributed
OC-SVM One-Class SVM
OS Operating System
PC Personal Computer
PE Portable Executable
RAM Random Access Memory
RES Resource Usage
RF Radio Frequency
RF Random Forest
RNNs Recurrent Neural Networks
RSA Rivest-Shamir-Adleman
SDR Software-Defined Radio
SSDF Subtle System Design Flaws
SVM Support Vector Machines
SYS System Call
TCP Transmission Control Protocol
TNR True Negative Rate
TPR True Positive Rate
UDP User Datagram Protocol
WSGI Web Server Gateway Interface

List of Figures

2.1 ElectroSense Network Overview . 6

2.2 Architecture of Autoencoder [17] . 12

2.3 Architecture of MLP . 13

2.4 Traditional ML (left) and FL (right) . 13

2.5 CFL (left) and DFL (right) [19] . 14

2.6 Fedstellar User Interface . 16

2.7 Fedstellar Advanced Mode . 16

2.8 Fedstellar Real-time Monitoring Metrics 17

4.1 System Architecture Overview . 25

4.2 Interactive Prompt of the Control Module for Parameter Input 26

5.1 An Example of the Sensors Utilized in this Project 42

5.2 Distribution of “armv7 cortex a7/br immed retired/ mean” 49

5.3 Distribution of “net:net dev xmit mean” 50

6.1 Comparison between ML, CFL, and DFL for Anomaly Detection 54

6.2 Comparison between ML, CFL, and DFL for Malware Classification 55

6.3 Differences in Precision for Different Types of Malware across the ML, CFL,
and DFL Methods . 55

6.4 Differences in Recall for Different Types of Malware across the ML, CFL,
and DFL Methods . 56

6.5 Differences in F1-score for Different Types of Malware across the ML, CFL,
and DFL Methods . 56

81

82 LIST OF FIGURES

6.6 Comparison between DFL with 4 Aggregators and 8 Aggregators for Mal-
ware Classification . 57

6.7 Differences in Precision for Different Types of Malware between DFL with
4 Aggregators and 8 Aggregators . 57

6.8 Differences in Recall for Different Types of Malware between DFL with 4
Aggregators and 8 Aggregators . 57

6.9 Differences in F1-score for Different Types of Malware between DFL with
4 Aggregators and 8 Aggregators . 58

6.10 Different DFL Topologies . 58

6.11 Comparison between Different DFL Topologies for Anomaly Detection . . 59

6.12 Comparison between Different DFL Topologies for Malware Classification . 59

6.13 Differences in Precision for Different Types of Malware across Different
DFL Topologies . 60

6.14 Differences in Recall for Different Types of Malware across Different DFL
Topologies . 60

6.15 Differences in F1-score for Different Types of Malware across Different DFL
Topologies . 60

6.16 Comparison for Anomaly Detection in IID (Randomly Distributed Data)
vs. Non-IID (Device Specific Data) Scenarios 61

6.17 Comparison for Malware Classification in IID (Randomly Distributed Data)
vs. Non-IID (Device Specific Data) Scenarios 62

6.18 Differences in Precision for Different Types of Malware in IID vs. Non-IID
Scenarios . 62

6.19 Differences in Recall for Different Types of Malware in IID vs. Non-IID
Scenarios . 63

6.20 Differences in F1-score for Different Types of Malware in IID vs. Non-IID
Scenarios . 63

6.21 Comparison for Malware Classification between Fully Connected DFL and
Scenarios with One, Two, and Three Nodes Missing Botnets Data 64

6.22 Comparison for Malware Classification between Fully Connected DFL and
Scenarios with One, Two, and Three Nodes Missing Backdoors Data 65

6.23 Comparison for Malware Classification between Fully Connected DFL and
Scenarios with One, Two, and Three Nodes Missing Rootkits Data 65

6.24 Comparison for Malware Classification between Fully Connected DFL and
Scenarios with One, Two, and Three Nodes Missing Coinminer Data . . . 66

LIST OF FIGURES 83

6.25 Comparison for Malware Classification between Fully Connected DFL and
Scenarios with One, Two, and Three Nodes Missing Ransomware Data . . 66

6.26 Comparison of Backdoor Malware Classification Performance between Fully
Connected DFL and Scenarios with All Nodes Missing One or Two Types
of Malware Data . 67

6.27 Precision and Recall under Varying Attack Intensities 68

6.28 F1-score under Varying Attack Intensities 68

84 LIST OF FIGURES

List of Tables

3.1 Comparison of Related Work Regarding Anomaly Detection and Malware
Classification . 20

3.2 Behavioral sources affected by different types of malware 21

3.3 Comparison of Related Work Regarding Anomaly Detection and Malware
Classification Using FL Methods . 22

3.4 Comparison of Models . 23

4.1 Features Tracked by the RES Monitor . 28

4.2 Features Tracked by the KERN Monitor 28

4.4 Selected Features for Autoencoder and MLP 35

4.5 Related Experiments for Evaluation . 37

4.3 Features Tracked by the File System Monitor 39

5.1 Malware Used in this Project . 42

A.1 Selected Features for MLP in Two Steps 91

85

86 LIST OF TABLES

Appendix A

Installation Guidelines

This chapter provides a guideline for installing and deploying scripts aimed at monitoring
behavior data on Raspberry Pis and developing models for anomaly detection and malware
classification.

A.1 Data Monitoring

This section details the steps for the installation and deployment of the monitor controller.
You can find the required code, along with installation guides for related malware samples,
at GitHub Repository. Before starting the installation process, it’s crucial to have a
Raspberry Pi ElectroSense sensor properly configured. Additionally, users should establish
a dedicated folder on their server or desktop to store monitoring data.

A.1.1 Initial setup

Prior to installing the monitor controller on the Raspberry Pi, SSH needs to be enabled
on the server/desktop. The following code presents the installation on a server/desktop
machine running Ubuntu:

1 sudo apt -get install openssh -server

2 sudo systemctl enable ssh

3 sudo systemctl start ssh

After SSH has been enabled, the following commands need to be run on the Raspberry
Pi sensor:

1 # Update the packages on the sensor:

2 apt -get update

3
4 # Install git on the sensor:

5 apt -get install git

87

https://github.com/JingHan0724/MP

88 APPENDIX A. INSTALLATION GUIDELINES

6
7 # install necessary packages

8 pip3 install scapy

9 pip3 install requests

10 sudo apt -get install sysstat

A.1.2 Monitor Controller Installation

An installer script is provided for users to set up the monitor controller. The script will
automatically download all dependencies and establish a passwordless SSH connection
between the Raspberry Pi sensor and the server. The following commands illustrate the
procedure:

1 # Clone GitHub repository

2 git clone https :// github.com/JingHan0724/MP.git

3
4 # Change directory into the Git repository:

5 cd MP

6
7 # Give access to the installer script:

8 chmod +x install_source.sh

9
10 # Run installer script

11 ./ install_source.sh -s username@desktopipaddress

A.1.3 Monitoring Scripts

In the“./monitors”directory, a suite of monitoring scripts is available, each with a specific
function:

• KERN.sh: Monitors HPC and ressource usage (provided by Dr.Huertas and Dr.Feng;
5 seconds time window)

• RES : Monitors HPC and ressource usage (provided by Dr.Huertas and Dr.Feng; 5
seconds time window)

• SYS.sh: Monitors systemcalls (provided by Dr.Huertas and Dr.Feng; 10 seconds
time window)

• network monitor.py : Monitors events coming from the network (5 seconds time
window)

• block monitor.sh: Monitors events coming from the input/output (10 seconds time
window)

• calculate entropy.sh: Calculate the entropy from the input/output (10 seconds time
window)

A.1. DATA MONITORING 89

• file system monitor.sh: Monitors events coming from the file system (5 seconds time
window)

Each of these scripts can be executed independently or can be invoked through the moni-
toring controller. For details on how to control these scripts via the monitoring controller,
refer to Section A.1.4.

A.1.4 Data Collecting

To initiate the monitoring scripts and ensure the transmission of collected data to the
personal computer, specific scripts need to be executed on both the personal computer
and the Raspberry Pi.

(1) Server-side (Personal Computer):

The scripts responsible for listening and data transmission are located in the “./server”
directory. Modify these scripts to specify your preferred IP address and choose a data
directory according to your requirements. Once configured, run the data transmission
scripts to start listening for incoming data.

(2) Client-side (Raspberry Pi):

Adjust the monitoring scripts to utilize the server IP address and ports. Then execute
the control script:

1 # Change Directory to Monitor Controller :}

2 cd controller

3
4 # Enable Virtual Environment:

5 source env/bin/activate

6
7 # Start collecting:

8 python3 collect.py

Upon initiating the data collection process, the user will be prompted to input several
parameters, each crucial for customizing the monitoring session:

• Time: Specify the duration for monitoring, in seconds. For example, 60 for one
minute.

• Monitors: Choose which monitoring scripts to invoke, running them concurrently.
If selecting multiple monitors, separate them with commas. For instance, RES,
KERN, SYS.

• Server Path: Indicate the storage path on the server or personal computer for the
collected data. An example format is: username@serverip:/home/username/Deskto-
p/data.

90 APPENDIX A. INSTALLATION GUIDELINES

By carefully setting these parameters, users gain the flexibility to tailor the monitoring
process to their specific needs, allowing for data collection from chosen dimensions over
the desired time frame.

A.2 Model Development

This section is dedicated to the construction of models for anomaly detection and mal-
ware classification. The process begins with the crucial step of processing the collected
monitoring data, followed by model building and testing on the Fedstellar platform.

A.2.1 Data Processing

After completing the previous operations, data tables from the NET, BLOCK, EN-
TROPY, FLSYS, RES, SYS, and KERN modules were collected.

In this phase, the preprocessing data.ipynb notebook will be executed firstly to extract
features and merge the data tables of the six modules based on timestamps. Subsequently,
the merge data.ipynb notebook will be run to combine the data collected from all eight
devices. Afterwards, feature selection autoencoder.ipynb and feature selection mlp.ipynb
will be separately executed to select features specifically for the Autoencoder model and
the MLP model. A more detailed introduction of code function is as follows:

• preprocessing data.ipynb: This script extracts features from the NET, ENTROPY,
and SYS modules, then calculates the start time and end time for the tables of all
six modules. The time span from start time to end time is divided into numerous
continuous intervals of 20 seconds each, and then the script calculates the row av-
erage in each intervals for six tables. Finally, the script merges these six processed
tables into a single table comprising over 400 columns.

• merge data.ipynb: This script integrates the data from eight IoT devices into one
large table, and then label normal data and eight types of malware samples accord-
ingly. Since eight devices have some difference in SYS features, a final table with
over 500 columns is obtained.

• feature selection autoencoder.ipynb: This script is instrumental in generating a re-
fined dataset with 22 features specifically for the Autoencoder model.

• draw scatterplot.py : This script is used to generate scatter plots for all features, each
plot containing 9 columns representing data under eight types of malware attacks
and the normal data. Then 96 features corrsponding to 96 plots were filtered out
where there is a significant difference in the distribution of the 9 columns of dots as
listed in the step 1 of Table A.1.

• feature selection mlp.ipynb: This script is instrumental in generating a refined dataset
with 30 features specifically for the MLP model as listed in the step 2 of Table A.1.

A.2. MODEL DEVELOPMENT 91

Step Selected Features

Step 1

access mean, armv7 cortex a7/br immed retired/ mean,
armv7 cortex a7/exc return/ mean, armv7 cortex a7/inst retired/ mean,
armv7 cortex a7/l1i cache/ mean, armv7 cortex a7/l1i cache refill/ mean,
armv7 cortex a7/pc write retired/ mean, armv7 cortex a7/st retired/ mean,
await mean, block:block bio backmerge mean, block:block getrq mean,
block:block plug mean, block:block rq complete mean, brk mean,
clone mean, connect mean, cpu mean, DifferentDestPorts,
DifferentSourcePorts, dup2 mean, epoll wait mean, execve mean,
exit group mean, ext4:ext4 alloc da blocks mean,
ext4:ext4 begin ordered truncate mean, ext4:ext4 drop inode mean,
ext4:ext4 es find extent range enter mean,
ext4:ext4 es find extent range exit mean,
ext4:ext4 es insert extent mean, ext4:ext4 es lookup extent enter mean,
ext4:ext4 writepages result mean, faccessat mean, fchmod mean, fcntl64 mean,
filemap:mm filemap add to page cache mean, flock mean, fstat64 mean,
fstatat64 mean, getdents64 mean, getegid32 mean, getrandom mean,
getsockname mean, gettimeofday mean, getxattr mean,
gpio:gpio value mean, ioctl mean, iowrite mean, iowritebytes mean,
kcmp mean, keyctl mean, L1-dcache-loads mean, L1-dcache-stores mean,
L1-icache-load-misses mean, L1-icache-loads mean, llseek mean, lstat64 mean,
MaxLength, MedianLength, memory mean, mkdir mean, mmap2 mean,
mmc:mmc request done mean, mprotect mean, mremap mean, munmap mean,
openat mean, pagemap:mm lru insertion mean, perf event open mean,
pipe mean, poll mean, prctl mean, r await mean, raw syscalls:sys enter mean,
raw syscalls:sys exit mean, read mean, read ops mean, recvfrom mean,
rpm:rpm suspend mean, rt sigaction mean, set robust list mean,
set tid address mean, setitimer mean, sigreturn mean, socket mean, statfs mean,
statfs64 mean, ugetrlimit mean, uname mean, unlink mean, w await mean,
wait4 mean, waitid mean, workqueue:workqueue execute start mean,
write kbs mean, writeback:sb clear inode writeback mean,
writeback:writeback dirty inode enqueue mean

Step2

armv7 cortex a7/br immed retired/ mean, armv7 cortex a7/exc return/ mean,
armv7 cortex a7/inst retired/ mean, armv7 cortex a7/l1i cache/ mean,
armv7 cortex a7/pc write retired/ mean, armv7 cortex a7/st retired/ mean,
brk mean, connect mean, epoll wait mean, execve mean, fstat64 mean,
getrandom mean, kcmp mean, L1-dcache-loads mean, L1-dcache-stores mean,
L1-icache-loads mean, llseek mean, memory mean, mmap2 mean, mprotect mean,
munmap mean, openat mean, pagemap:mm lru insertion mean,
raw syscalls:sys enter mean, raw syscalls:sys exit mean, set robust list mean,
set tid address mean, socket mean, statfs64 mean, uname mean

Table A.1: Selected Features for MLP in Two Steps

A.2.2 Model Training and Evaluation

In the initial stage of model development, traditional ML techniques are utilized, with
scripts written in PyTorch. The process involves several key steps:

92 APPENDIX A. INSTALLATION GUIDELINES

• Data Preparation: The malware.py script is designed for the dataset preparation
specific to the MLP model. Its primary functions include dividing the data into
training, validation, and testing subsets and converting the data into the Tensor-
Datasets format. In parallel, the malware2.py script performs a similar role for the
Autoencoder model, ensuring the dataset is appropriately loaded and prepared.

• Model Training and Evaluation: The training and evaluation of the MLP and
Autoencoder models are executed via the mlp.py and autoencoder.py scripts, re-
spectively. These scripts are integral to both the training of the models and the
subsequent evaluation of their performance.

Following the development of these scripts, they are integrated into the Fedstellar frame-
work. This integration allows users to train and evaluate their models in a FL environ-
ment, leveraging the distributed and collaborative nature of Fedstellar to enhance the ML
processes.

Appendix B

Contents of the CD

The CD contains all the documents, project source code, and installation instructions for
this project.

93

	Declaration of Independence
	Abstract
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Description of Work
	Thesis Outline

	Background
	Spectrum Sensing Data and ElectroSense
	Malware Affecting IoT Devices
	Botnets
	Backdoors
	Rootkits
	Coinminer
	Ransomware

	Malware Analysis Methods
	IoT Anomaly Detection
	IoT Malware Classification

	Machine Learning and Deep Learning Techniques
	Overview
	Autoencoder
	MultiLayer Perceptron

	Federated Learning
	Centralized Federated Learning
	Decentralized Federated Learning

	Fedstellar
	Feature Extraction Techniques
	Bag-of-words
	Entropy with Relation to Files

	Related Work
	Anomaly Detection and Malware Classification
	Federated Learning
	Summary and Insights

	Architecture
	Control Module
	Monitoring Module
	Resource Usage Monitoring
	Kernel Events Monitoring
	System Call Monitoring
	Network Monitoring
	Input/Output Monitoring
	File System Monitoring

	Transmission Module
	Data Processing Module
	Federated Learning Module
	Evaluation Module

	Implementation
	Setup
	Feature Extraction
	Data Integration
	Data Preprocessing
	Feature Selection
	Feature Selection for Anomaly Detection
	Feature Selection for Malware Classification

	Model Training

	Evaluation
	Comparison between ML, CFL, and DFL Approaches
	Comparison between Different DFL Topologies
	Non-IID Scenarios
	Non-IID Scenario 1: Training Each Node with Data from a Specific Physical Device
	Non-IID Scenario 2: Training Nodes wherein Some of Them Missing a Certain Type of Malware Data
	Non-IID Scenario 3: Training Nodes wherein All of Them Missing Certain Types of Malware Data

	Resilience Against Attacks

	Summary, Conclusions and Future Work
	Summary and Conclusions
	Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	Installation Guidelines
	Data Monitoring
	Initial setup
	Monitor Controller Installation
	Monitoring Scripts
	Data Collecting

	Model Development
	Data Processing
	Model Training and Evaluation

	Contents of the CD

