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Abstract

The field of Artificial Intelligence (AI) is rapidly evolving and increasingly being inte-
grated into our everyday life. Black Box Machine and Deep Learning systems support
humans in making important decisions in safety-critical industries, that consequently in-
fluence the lives of real people. This has raised the need for the ability to assess the
model’s trustworthiness. Trust is a subjective concept and depends on many factors. As
Black Box models grow bigger and become more complex, it has become impossible, even
for domain experts, to understand their reasoning and analyze how such models derive
conclusions. Luckily, early work has developed automatic tools that allow the computa-
tion and evaluation of trust in a particular system, based on the pillars called fairness,
explainability, robustness, and methodology. The algorithm computes various metrics and
relies on the user to upload the model, the used dataset, and the FactSheet describing
the applied training methodology. This forms a problem when computing the trustwor-
thiness level of Black Box Machine and Deep Learning models with limited data access.
Notably, the presented work identified two common definitions of the term Black Box
established in the research community. The first focuses on complex systems with limited
interpretability, and the underexplored second definition with respect to trustworthiness
assessment describes systems with limited information available. Therefore, this master’s
thesis introduces a Black Box Taxonomy, categorizing Machine Learning models based
on interpretability into different subgroups and adding another dimension distinguishing
their available information levels. Further, a novel approach is proposed introducing a
synthetic dataset generator to compute the trust score of Black Box models. The gener-
ator offers two approaches (MUST and MAY) to balance privacy and accuracy concerns.
This solution addresses incomputable metrics, leading to a more accurate trustworthiness
assessment. In order to validate the approach, the implementation was evaluated on two
real-world scenarios.
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Zusammenfassung

Der Bereich der Künstlichen Intelligenz (KI) entwickelt sich rasant und wird zunehmend
in unseren Alltag integriert. Black Box Machine und Deep Learning Systeme unterstüt-
zen den Menschen bei wichtigen Entscheidungen in sicherheitskritischen Branchen, die
das Leben von Menschen beeinflussen. Dadurch ist die Notwendigkeit entstanden, die
Vertrauenswürdigkeit des Modells zu bewerten. Vertrauen ist ein subjektives Konzept
und hängt von vielen Faktoren ab. Da Black Box Modelle immer grösser und komplexer
werden, ist es selbst für Fachleute unmöglich geworden, die Herleitung zu verstehen und
zu analysieren, wie solche Modelle Schlussfolgerungen ableiten. Glücklicherweise wurden
in frühen Arbeiten Tools entwickelt, die die Berechnung und Bewertung von Vertrauen in
ein bestimmtes System ermöglichen. Dies auf der Grundlage der Säulen Fairness, Erklär-
barkeit, Robustheit und Methodik. Der Algorithmus berechnet verschiedene Metriken auf
Basis des angewandten Modells, dem verwendeten Datensatz und dem FactSheet, das die
angewandte Methodik zum Trainieren des Modells beschreibt. Dies stellt ein Problem dar
bei der Berechnung der Vertrauenswürdigkeit von Black Box Machine und Deep Learning
Modellen mit begrenztem Datenzugang. In der vorliegenden Arbeit wurden zwei gängige
Definitionen des Begriffs Black Box in der Forschungsgemeinschaft identifiziert. Die erste
konzentriert sich auf komplexe Systeme mit eingeschränkter Interpretierbarkeit, die zwei-
te Definition beschreibt Systeme mit eingeschränkter Informationsverfügbarkeit, die noch
zu wenig erforscht sind im Hinblick auf die Bewertung der Vertrauenswürdigkeit. Daher
wird in dieser Masterarbeit eine Black-Box-Taxonomie eingeführt, die ML-Modelle an-
hand ihrer Interpretierbarkeit in verschiedene Untergruppen kategorisiert und eine weitere
Dimension hinzufügt, die zwischen dem Level an verfügbaren Informationen unterschei-
det. Darüber hinaus wird ein neuartiger Ansatz vorgeschlagen, der einen synthetischen
Datensatzgenerator verwendet, um die Vertrauenswürdigkeit von Black-Box-Modellen zu
berechnen. Der Generator bietet zwei Ansätze (MUST und MAY), um eine Balance zwi-
schen Datenschutz und Genauigkeit herzustellen. Diese Lösung bietet eine Möglichkeit,
um nicht berechenbare Metriken zu quantifizieren, was zu einer genaueren Bewertung der
Vertrauenswürdigkeit führt. Um den Ansatz zu validieren, wurde die Implementierung
anhand von zwei realen Szenarien evaluiert.
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Chapter 1

Introduction

1.1 Motivation

Digitalization has a greater impact on today’s world than ever before, influencing various
aspects of our life. Especially the field of Artificial Intelligence (AI) has experienced a
rapid and remarkable evolution in the last decade and continues to influence our everyday
life. Since 2016 for instance, two self-driving minibuses with passenger service can be found
on the roads of Sion, and from 2019 also in Switzerland’s capital city Bern [1]. TikTok’s
For You Page (FYP) uses advanced AI-based recommender engines to personalize the
user’s content feed based on interests and engagement without the need to actually follow
a selected group of people [2]. Generative AI techniques create digital content, such as
realistic music, visual art, creative advertisement spots, or even code [3], [4]. ChatGPT is a
natural language processing (NLP) system capable of generating human-like conversations
and stands out as one of the most promising AI technologies [5]. Because of its promising
capabilities, AI has become increasingly used to help humans make better decisions also in
safety-critical industries, such as personalized medicine, employment decisions, financial
risk analysis, and legal assessment. However, this generates a form of dependency and
requires the user to trust the predictions of the system.

Current solutions focus on achieving the best performance and are increasingly growing
in size and complexity [6]. These systems are widespread but often difficult to interpret
because they use complex Machine Learning (ML) models to make predictions, like for
example Deep Neural Networks (DNNs) with millions of parameters. They are considered
Gray Boxes, as they take data for input, and generate outcomes without the need for a
clear understanding of the internal processes. Considering Black Box approaches, impor-
tant details regarding the data or the algorithms and hyperparameters used to train the
model are completely missing. Relying on opaque decision-making systems without the
ability to understand their reasoning can be very problematic. It may lead to discrimina-
tion and cause trust issues because people may not feel comfortable putting their faith in
something they do not fully comprehend [7].

1



2 CHAPTER 1. INTRODUCTION

Real-world situations have shown that systems may introduce historical human prejudices
or inherit biases when, for instance, being trained on an unrepresentative dataset. For
example, facial recognition algorithms have raised concerns about racial discrimination
[8] and AI recruiting tools showed systematic bias against women [9]. Further, vulnerable
systems that lead to unintended behavior are simple targets for various forms of adversarial
attacks. Using a small piece of tape, researchers have successfully fooled Tesla’s cameras,
causing the car to accelerate by 50 miles per hour due to a mistake in perception [10].
This example demonstrates the risk of wrong decisions taken by such systems, as they
can lead to unintended accidents and potentially cost people’s lives. Therefore, the goal
of AI developers is to enhance the system’s ability to handle unforeseen circumstances,
maintain consistent performance, and minimize the risk of exploitation.

These and similar experiences from the past have created a general agreement on the
urgent need for guidelines and principles that are capable of creating safer and more
trustable systems. Overall, different design principles and technical measures have been
introduced to ensure AI systems align with societal values [6]. The literature has identified
that trustworthy AI is a versatile concept and that different pillars like explainability,
robustness, fairness, and methodology contribute to a safe and trustworthy deployment
of AI systems [11]. Early work has developed an algorithmic framework to measure the
trustworthiness of a trained ML model and compare different solutions with respect to
the previously mentioned pillars [12]. Besides academia also innovative examples from
the industry have shown useful progress toward trustworthy AI.

However, most scientific work and existing solutions focus on measuring and improving
the trustworthiness of ML models where all information is available. They face a major
limitation when being presented with a Black Box model, for which the used dataset is
not accessible (f.i. because of privacy concerns). In order to improve existing solutions
and make them applicable to the Black Box scenario, a new approach must be explored.
In this context, the presented thesis reviews the existing pillars and metrics of trustworthy
AI, analyzes concepts and definitions of Black Box approaches, and categorizes them in
a Black Box Taxonomy. From there, a novel way of quantifying the Black Box model’s
trustworthiness is proposed under aggravated conditions. The primary objective is to
examine the design and implementation of a synthetic dataset generator and evaluate it
on real-world scenarios to uncover an improved way of assessing the trustworthiness of
ML models with limited information.

1.2 Description of Work

The main goal of the presented work is to come up with a methodology and implement
an algorithm that is able to measure and quantify the trustworthiness level of Black Box
ML/DL models. Hence, this master’s thesis consists of the following steps:

(i) Survey of Related Work

• Focus on existing pillars and metrics relevant for trusted Black Box ML/DL
models
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• Analyze existing solutions and understand their limitations considering the
trustworthiness assessment of Black Box models

• Understand properties and characteristics of Black Box models

• Study existing approaches of opening the Black Box

(ii) Definition of Black Box Taxonomy

• Provide a formal description of existing and missing aspects

• Categorize existing models into subgroups based on their properties

• Define a comprehensive taxonomy respecting various definitions of the term
Black Box

(iii) Design an algorithm suitable for quantifying the trustworthiness of Black Box

• Explore novel approaches and specify process design

• Explain the goal and benefit of a synthetic dataset generator

• Specify the different execution scenarios (MUST and MAY) and explain their
(dis)advantages

• Describe the algorithmic design

• Elaborate the challenges and limitations

(iv) Implementation of the specified algorithm

• Realize the previously mentioned algorithm design

• Provide a possible integration into the Trusted AI Platform 2.0

• Provide installation guidelines

(v) Evaluation and Discussion

• Define feasible and realistic evaluation scenarios

• Find and describe appropriate datasets and train models

• Compute trust scores and test the implementation

• Compare and discuss the generated dataset and the computed trust scores

1.3 Thesis Outline

The following Chapters are structured as follows. Chapter 2 describes the Background
in context of Black Box ML and Trustworthy AI. Chapter 3 discusses Related Work and
existing tools in this area, and highlights their strengths as well as their limitations and
missing aspects. Chapter 4 proposes a Black Box Taxonomy and describes the problem
of incomputable metrics. Further, it presents the Design and Implementation of the
synthetic dataset generator and explains the possible specifications together with their
requirements and advantages/disadvantages. The experimental results are described and
discussed in Chapter 5. Chapter 6 ends the paper with a Summary and Conclusion on
existing problems and addresses further research directions.
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Chapter 2

Background

2.1 Machine Learning

Machine learning (ML) is a subfield of Artificial Intelligence (AI) and describes the pro-
cess of creating algorithms and models which are able to learn and make decisions based
on data. Statistical methods are applied, to train and improve the model’s accuracy
over time. This is achieved through the optimization of a loss function, comparing the
model’s prediction and the actual output. The output can either be a binary classifica-
tion (yes/no), a multi-classification for more than two different classes, or a number for
regression problems [13]. There exist different models which have proven their efficiency
for different use cases. In supervised ML, the model is trained on labeled data, where
the correct output must be provided in the dataset. Differently, in unsupervised ML, the
model is able to detect patterns and relationships between data points without being pro-
vided labeled data. For instance, clustering the data into distinct subgroups or anomaly
detection are classical use cases of unsupervised ML [14]. Another area of ML is rein-
forcement learning, where the model is acting as an agent in an environment consisting of
different states [15]. Depending on the model’s current state, different actions are avail-
able to choose from. Based on a derived policy, the model executes the optimal action and
receives feedback in the form of a new state and a set of new possible actions. For each
action, the model is provided with a reward for making a good decision, or punishment
for making a bad decision. Reinforcement learning is often applied to intelligent control
robots [16] or tasks like drone navigation [17]. In the field of cybersecurity, new trends
have shown that reinforcement learning can be used by offensive forces to dynamically
adapt ransomware-specific behavior in order to remain undetected [18] as well as on the
defensive side, to mitigate zero-day-attacks by dynamically altering target attack surfaces
[19].

Deep Learning (DL) is a subset of ML, which shows vast performance improvements on
more complex problems than classical ML algorithms, such as speech recognition and
object detection. These systems consist of multiple processing layers with varying levels
of abstraction and have the ability to discover systematic patterns in large datasets. From
a mathematical perspective, they compute gradients and apply backpropagation during

5



6 CHAPTER 2. BACKGROUND

the training phase to determine how much the internal parameters should be adjusted
to achieve a better accuracy [20]. In Deep Neural Networks (DNNs), multiple layers are
stacked with numerous nodes and used to progressively extract higher-level features from
raw input [21]. Other examples are Recurrent Neural Networks (RNNs), which are mainly
used for the generation and analysis of sequential data such as text and speech, as well as
Convolutional Neural Networks (CNNs), used to process audio, images, and videos. Real-
world applications of Deep Reinforcement Learning (Deep RL) are complex tasks, such as
intelligent game playing [22] or autonomous driving [23]. Finally, transformers apply the
encoder-decoder architecture and are well-suited for translations or image compression
[20].

2.2 Black Box vs. White Box

The term Black Box is describing a process or system in which the internal operations
are unknown to an observer, due to its high complexity. Often, a level of abstraction
is introduced through which complex systems can be simplified, making the big picture
easier to understand. For instance, a driver of a vehicle does not have to understand how
a multicylinder engine is capable of providing the desired power and how the transmission
system uses the power to make the wheels of the car roll. Instead, the driver must
understand how to use gas and brake pedals to let the system know the desired intentions.
In this scenario, the car can be considered a Black Box for a non-technical person, since
the internal logic is hidden from the user. Similarly, in the field of computer science,
software programs and algorithms whose implementation is difficult to understand are
considered a Black Box [24]. Hereby, the user is only required to provide valid input
data to the AI model and retrieve/interpret the output without having to understand
the intrinsic implementation [7]. More complex AI models like Deep Neural Networks
(DNNs), Support Vector Machines (SVMs), or Markov Networks can provide valid and
more accurate output to difficult real-world problems because of their ability to abstract
well. However, even for highly skilled experts, the reasoning behind these algorithms’
decision-making is hard to interpret. This is often a challenge when the developer of the
model wants to inspect the source of potential incorrect outputs, since the mechanisms
are hard to diagnose by definition. Further, a system or algorithm can also be considered
a Black Box when the internal operations are simply not accessible. This alternative
definition from the literature is well-known in the field of cybersecurity and software
testing [25], [26]. Considering AI models, this definition applies when there is missing
knowledge about the dataset used for training and testing the model or a lack of insights
into the intrinsic parameters (weights, biases, hyperparameters, etc.) of the model itself.
For a simpler distinction, in the presented work the former definition (describing complex
systems) will be referred to as Gray Box, while the latter definition (describing systems
with limited information) remains Black Box.

In contrast to Gray/Black Box systems, the term White Box describes systems where
internal operations are transparent and interpretable. This means that the experts in
the application domain can understand how the algorithm arrived at its predictions or
decisions. The benefit of this approach is, that White Box models can be applied in sce-
narios, where transparency and explainability play a crucial role and can not be neglected.
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Usually, in companies and processes where AI is used to support human decision-making,
this aspect of transparency is particularly relevant for decision-makers. For instance, a
doctor who uses ML models as a tool to assist a patient’s diagnosis, treatment selection,
or monitoring of disease requires a clear understanding of the influence that led to a con-
crete decision [27], [28]. Further, it is important that the models must be developed in a
responsible and ethical manner. The same is true when applying ML in other scenarios,
such as government agencies or financial institutions. The question arises, why not only
transparent and explainable White Box models should be used in ML? Gray Box models
prioritize accuracy over transparency and interpretability [29]. These models are often
more complex and difficult to understand, but can achieve higher accuracy in identify-
ing patterns and relationships in large and complex datasets like image processing. The
short-term goal of making models transparent and easy to understand may not always
align with the long-term goal of improving a certain industry. Scientists should be cau-
tious about sacrificing accuracy for transparency and make sure that transparency is truly
necessary, rather than just preference traditional methods.

Examples of Gray Box models are SVMs, DNNs, and models that contain a highly complex
mathematical function or are difficult for experts to understand in practical settings or
by the scientific community. White Box models are generally based on patterns, rules, or
decision trees, and are more transparent and interpretable. They are easily understood by
experts in practical applications because they provide a model closer to human language,
enabling users to comprehend the reasoning behind the models’ decisions [30].

2.3 Trustworthiness of ML/DL

With the increasing use of ML/DL in areas where models’ decisions significantly affect
people’s lives, such as healthcare, law, and financial services, a need for trusting the pre-
dictions is emerging. But how can anyone be sure that the model’s predictions are correct,
and to what degree should people trust DL models? Incorrect results or systematic mis-
takes can lead to unintended consequences, such as bias and discrimination. For example,
a model might mistake a stop sign for a speed limit sign, leading to dangerous driving
situations. Further, DNNs can be deluded by attackers who apply adversarial samples in
which they are adding minor perturbations to the original image such that the model is
misclassifying the sample. Therefrom, the trustworthiness of ML may suffer. If people do
not trust AI, they are unlikely to use it, which can limit the potential benefits of these
systems. But is trust only affected by the belief that the model will perform well, or do
other concepts influence human trust, like a detailed and fundamental comprehension of
the model’s implementation? The following Subsection 2.3.1 provides an answer to this
question, by presenting existing pillars and metrics and explaining their main contribu-
tions to provide a comprehensive understanding of a model’s trustworthiness. In the next
Subsections, the aspect of interpretability is explained in more detail, which is an impor-
tant influencing factor for trusting Gray Box solutions. Overall, the field of trustworthy
AI aims to introduce mechanisms, such as design principles and technical measures, to
make ML trustworthy and ensure that AI systems are aligned with societal values [29].
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2.3.1 Existing Pillars and Metrics

The upcoming Subsections present and examine existing pillars established by the re-
search community to evaluate the trustworthiness of ML models. For each pillar, the
main contribution is explained, highlighting its significance through examples. The most
important metrics are mentioned, which are used to assess the trustworthiness level of a
model.

Figure 2.1: Exisitng Pillars Contributing To Trustworthy AI [6]

Fairness

The objective of the fairness pillar is to ensure that AI systems and their outcomes are
unbiased and not prejudiced. It aims to prevent discriminatory practices, biases, or unfair
treatment in decision-making processes [11]. Further, this pillar seeks to promote equal
opportunities and address any inequalities or biases that may arise in AI systems. One
example of deployed AI systems that did not respect the fairness principle is the case of
early facial recognition systems deployed by HP and Google, which have demonstrated
higher error rates and inaccuracies when identifying individuals with darker skin tones [8].
This bias in facial recognition algorithms has raised concerns about racial discrimination
and unequal treatment in various domains, including law enforcement, surveillance, and
hiring processes. Reasons for such biased outcomes often are related to an insufficient
number of data points, an incomplete dataset, or a lacking diversity which makes the
dataset not representative [11]. The decision-making process in AI is based on statistics
and mathematical operations. Therefore, AI does not consciously distinguish between
ethical and unethical choices. Humans bear the responsibility of addressing potential bias
by considering the context of a scenario. For instance, if there are significant differences
between men and women in terms of required treatment, it may be considered fair for
a system to incorporate a patient’s gender into individual treatment recommendations.
In this example, using statistical parity as a measure to assess the model results for the
protected class would be an unsuitable approach. Conversely, it would be considered
unfair to employ an applicant’s gender as a factor in hiring decisions. In this context,
the application of this metric is justified. To ensure fairness, it is crucial to thoroughly
examine the data and model for any hidden biases.

Fairness can be defined on both an individual and group level. It describes compa-
rable handling for similar individuals or groups. This can be achieved by ensuring
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that the prediction probability, denoted as f(X,P = 0) ≈ f(X,P = 1), is indepen-
dent of the protected feature for individual observations, where X is the set of obser-
vations {x1, x2, ..., xN}, Y contains the corresponding labels {y1, y2, ..., yN}, and P =
{p1, p2, ..., pN} ∈ {0, 1}N signals the protected group membership for every observation.
Similarly, at the group level, fairness is achieved by grouping observations and ensuring
similar treatment among the groups. This is accomplished by making the expected predic-
tion value, denoted as E[f(x, p = 0)] ≈ E[f(x, p = 1)], approximately equal across both
protected and unprotected groups [12]. Various approaches have been suggested in the
literature to identify and mitigate bias such as the IBM AI Fairness 360 [31] open-source
toolkit, which encourages the contribution of researchers to enhance existing metrics and
algorithms. Developers are able to test their model on features like:

• Statistical Parity Difference, which computes the spread between the percentage of
samples receiving a favorable outcome for protected and unprotected sample groups

• Equal Opportunity Difference, which measures the spread between true positive rate
(TPR) and false positive rate (FPR) between different groups

• Average Odds Difference, which calculates the mean absolute difference in TPR and
FPR between protected and unprotected groups

• Disparate Impact, which measures the ratio of a protected and unprotected group
receiving a favorable prediction

• Euclidean, Mahalanobis, and the Manhattan Distance, which measure the proximity
or distance between data points and determine if they can be clustered together

One can choose between ten algorithms to mitigate bias in the dataset (pre- and post-
processing) or directly in the model itself (in-processing) [31]. Further, the difference
in train and baseline performance can be valuable indicators describing Underfitting or
Overfitting, as well as the Class Balance, which describes the ratio of samples belonging
to different classes in the training dataset. If applied correctly, the fairness pillar helps to
create unbiased models and generate equal opportunities.

Explainability

The aim of the explainability pillar is to provide transparency and understanding of how
the AI system makes decisions. It seeks to enable humans to understand the reasoning be-
hind AI algorithms and outputs, making the decision-making process more interpretable
and accountable (see Subsection 2.3.2). This is particularly important when AI is used
in high-risk use cases [11]. Despite the ability to support the criminal justice system in
evaluating for instance criminal recidivism, ML models are today still not fully utilized
at their potential. Reasons for this are, that even if humans are presented with evidence
that machines are making on average better decisions than humans, it is natural to feel
uneasy about it [32]. The explainability pillar improves trust by explaining the model’s
underlying reasoning, and therefore enables error detection and correction. Furthermore,
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it facilitates compliance with regulations because it allows regulators and stakeholders to
understand and verify how certain decisions were made, ensuring that legal and ethical
boundaries are respected. Simple ML models, such as linear regression or logistic regres-
sion, have a straightforward mathematical relationship between the input and output.
This relationship is simple enough for humans to comprehend directly. It allows stake-
holders to easily validate the algorithm’s correctness. However, this is not true for more
advanced models like Neural Networks (NNs) or Random Forest (RF). In these complex
models, the relationship between the input and output can be extremely difficult to com-
prehend. Such complex Gray Box models are being applied in various fields and already
have a major impact on human lives. Simply opting for explainable algorithms is insuffi-
cient, but the model itself must be designed to be explainable. Therefore, transparency
is essential when it comes to trusting, understanding, and critiquing such models.

To build trust, it is necessary to comprehend the reasoning behind individual decisions
made by these models. However, different personas have different requirements for ex-
planations (e.g. person applying for a mortgage, an employee communicating the deci-
sion, or a developer implementing the tool for decision support). The AI Explainability
360 open-source toolkit [33] provides algorithms, which help users from various back-
grounds and different requirements to understand the reasoning behind ML predictions.
Tools like Boolean Decision Rules via Column Generation, Generalized Linear Rule Mod-
els, ProfWeight, Teaching AI to Explain its Decisions, Contrastive Explanations Method
(CEM), CEM with Monotonic Attribute Functions, Disentangled Inferred Prior VAE, and
ProtoDash can be applied by developers and end-users to add transparency throughout
the whole AI lifecycle. Different metrics can be computed to calculate an explainability
score describing the transparency and understanding of a particular AI model [11]. The
Model Size calculates the number of parameters used by models, besides considering the
used Algorithm Class itself. The Correlated Features metric computes the percentage of
highly correlated features, which should be as low as possible. Correlated features affect
the accuracy and influence the ability to generate explanations. Further, it complicates
the interpretation of the Feature Relevance metric, which computes the percentage of ir-
relevant features for a set of predictions. Ideally, correlated features have been identified
and dropped in the preprocessing phase.

Robustness

The robustness pillar aims to ensure that ML models are resilient and resistant to various
forms of adversarial attacks, vulnerabilities, and unintended behaviors. The focus lies
on creating models that are highly accurate and reliable, even when being faced with
uncertainties, noisy data or adversarial inputs. ML models are created to engage with the
real world, where it is impossible to control every input received. Deployed models are
being exposed to data, that may reflect different properties than the data used for training
and testing the model [34]. For instance, DNNs are known for their ability to abstract
because of their architectural design, which allows them to solve complex problems [21].
On the contrary, it has been shown that small modifications to the inputs can change
the output of the model even with high confidence. Such behavior indicates a lack of
robustness and allows the model to be exploited through adversarial attacks [35]. The
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goal is to enhance the system’s ability to maintain consistent performance, and minimize
the risk of exploitation.

However, simply hiding the inner workings of a model is not enough to protect it from
attackers. Therefore, different tools and methods have been proposed to measure and
improve the robustness of ML models. One example is the Python library called ART:
Adversarial Robustness Toolbox [36]. It is provided by IBM and enables developers to
defend against different adversarial attacks, such as evasion, data poisoning, extraction,
and inference. Similar to the previous pillars, different metrics can be computed describing
the robustness of a particular AI model. The Confidence Score measures the probability
of correctly predicting a given sample and describes how stable predictions are [37]. The
Loss Sensitivity measures the extent to which the output of a model can change when
there is a slight modification in the input [38]. If small changes in the inputs result in
significant differences in the output, it indicates that the model lacks robustness. The
Cross Lipschitz Extreme Value for Network Robustness (CLEVER) Score is developed
for NNs and provides an estimation of the maximum amount by which the output can
change in response to alterations in the input [39]. Further, the Clique Method computes
the minimal adversarial perturbation needed for tree-based models [40]. Finally, the
Empirical Robustness (ER) determines the average smallest change required in the input
to alter the model’s prediction [38]. It works by comparing the performance before and
after a specific attack. It is important to note that certain metrics have limitations and can
only be applied to specific ML algorithms [11]. Measuring and improving the robustness
of a system makes it more reliable and increases the level of trust.

Accountability

The accountability pillar aims to evaluate if ML models are developed, deployed, and used
in a responsible way. The term methodology is analogously found in literature and de-
scribes the same pillar. By documenting the creation process of AI models and validating
its maintenance, this pillar generates traceability [11]. It verifies whether the decisions
made align with established best practices. Having this information readily available en-
hances users’ trust in the system. Similar to nutrition labels for food items, facts about
the AI model allow the user of the system to better understand how the model was cre-
ated. Further, it assigns clear responsibilities which hold organizations accountable for
their actions, decisions, and impacts. This helps, for instance, to prevent models from
being trained on prohibited datasets. However, since many roles are involved in the devel-
opment of ML models, and since particular models require different details, it is difficult
to come up with a generic method to document the development in a clear and under-
standable way. Piorkowski et al. [41] have evaluated different approaches to intelligent
system documentation suitable for different personas. Based on their work, IBM has
introduced AI FactSheets 360 [42]. It is a more general approach for capturing model
facts from the entire AI lifecycle. The goal is to foster trust, integrity, and responsible
behavior in the development and deployment of AI systems. For instance, appropriate
data pre-processing steps decrease outlier effects and increase prediction stability. Hav-
ing such information about taken measures present is valuable to the user of the system.
Only relying on performance metrics can be misleading, and one might overlook flaws
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in the methodology and mistakenly place trust in the model. Valuable information for
measuring the trustworthiness of the accountability pillar involves [11]:

• Normalization: Evaluates if the training data has been normalized or not.

• Train/Test Split : Measures the ratio between the number of samples used for train-
ing and testing.

• Information about how Missing Data was handled for the feature computation.

• Information if any Regularization techniques were applied.

• FactSheet Completeness : Measures if the FactSheet includes all necessary informa-
tion that stakeholders need in order to trust the model and its predictions.

2.3.2 Interpretability and Transparency

In academic literature, the term interpretability is mentioned to be an important fac-
tor. However, often the term is referred to different concepts and only a few authors
articulate precisely what interpretability means. Lipton [43] reasons, that the concept of
interpretability lacks a clear and precise definition, and therefore statements about the
interpretability of different models are not entirely scientific in nature. For instance, some
papers refer to understandable models as transparent (knowing how the model works),
and incomprehensible models as Gray Boxes. Other papers try to make the model more
interpretable by applying post hoc explanations. These methods may clarify the pre-
dictions made by models, but do not reveal the underlying mechanisms by which the
models operate. This implies, that a model is more interpretable if it is easy for a person
to understand why the model made a certain prediction. According to Biran et al. [44],
interpretability is the degree to which a human can understand the cause of the model’s de-
cision. There exists no mathematical definition of interpretability. In linguistics, however,
to interpret means to bring out the meaning of something by performance or execution
[45]. In the presented work, the term interpretability is defined as the ability to explain
model-specific behavior based on intrinsic components, which only can be applied when
information about the ML model is available and accessible, i.e. the model is transparent.
To characterize how interpretable the model is (or has to be), different dimensions can be
identified: First, a model may be globally or locally interpretable. Local interpretability
means that the user is able to understand the mathematical reasoning behind a single
prediction. Global interpretability means that the algorithmic properties themselves are
interpretable to humans (e.g. most relevant features of the model) and an intuition about
the model’s global behavior is possible. Secondly, the amount of time the user needs to
understand an explanation, which depends on the specific use case. And lastly, the nature
of expertise and background knowledge of the user. Understanding these dimensions is
crucial in determining the model’s interpretability [7]. Applying post hoc methods to
explain the model’s decisions is referred to as explainability in this work. Hereby, an
explanation must be an accurate representation of the Gray Box and understandable to
humans (see Subsection 2.3.3).
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The degree of transparency defines how much information about the model is known and
accessible. A human should be able to produce a prediction for a transparent model
whose input data and parameters are known in a reasonable amount of time. Therefore,
the model’s size and number of computations needed to make a prediction also impact
the transparency. In other words, the complexity of the predictive model is a component
for measuring transparency. Moreover, for a fully transparent model, each input should
be understandable on its own, and models that contain complex or unidentifiable features
may affect transparency and reduce interpretability. But not only information about the
model’s parameters is relevant. In addition, the information known about the learning of
the algorithm itself is also defining the level of transparency [43].

Finally, one should also understand the reason why an explanation is necessary because
different analytical methods may be required. Guidotti et al. [7] distinguish between
the two scenarios: the need to reveal findings in data aimed at explaining why a specific
decision has been returned for a particular input (applied nature), or the aim of explaining
how the Gray Box itself works (theoretical nature). Also, in scenarios where no important
decisions are made based on the prediction of the model, and no consequences exist for
unacceptable results, it may not always be required to have an interpretable model.

2.3.3 Explainable AI (XAI)

Studies have investigated the significance of providing explanations to users in different
domains, and the results consistently indicate that such explanations play a crucial role
in increasing users’ trust and confidence [46]. Trust is a subjective concept, where an
individual may feel more comfortable with a model that they understand well, even if
this understanding does not necessarily have a practical benefit. Explainable AI (XAI)
is a collection of methods, technologies, and algorithms, which provide reasoning for the
decision-making process through explanations. Furthermore, XAI highlights potential
weaknesses of ML/DL models and is grouped into the explainability pillar. The goal is
to enhance the interpretability of Gray Boxes by applying mechanisms that are of high
quality, easy to understand, and interpretable by humans. Thereby, they give a sense of
how the system will behave in the future. An important property of such systems is, that
the explanations should be consistent for similar data points and remain stable over time.
Das et al. [47] defines three categories for XAI:

1. Scope: Explanations can have a limited scope, focusing on specific data points or
instances, as depicted in the right column of Figure 2.2. Alternatively, explanations
can have a broader scope, describing the entire model and dataset, as the left column
of Figure 2.2 shows. Certain explanation methods may be applicable to both local
and global scopes.
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Figure 2.2: Visual Representation Of Scope And Usage Of Explainable AI [48]

2. Methodology: Explainable algorithms for both extent (local and global) may be
either backpropagation-based, where a forward pass through a NN is performed and
attributions during the backpropagation stage are generated by utilizing partial
derivatives. A saliency mask is an example of such a method. Perturbation-based
explainers involve changing the feature set of an input instance, either by masking
certain features or by substituting them with other values using techniques like
occlusion, filling operations, generative algorithms, conditional sampling, and more.
These methods typically only require a forward pass through the NN to generate
the attribution representations, without needing to backpropagate gradients.

3. Usage: The explanator can be either embedded within the model architecture
(model-specific) as depicted in the top row of Figure 2.2, or applied as an exter-
nal algorithm (model-agnostic), which is more flexible as it can be applied to any
existing Gray Box model. Research is mostly focused on developing these model-
agnostic explanations, which are able to provide explanations for every ML model
used.



Chapter 3

Related Work

This Chapter reviews Related Work and gives insights into the research’s state-of-the-
art. It includes work attempting to open complex Gray Boxes and making them more
transparent to increase trust. As described in Section 2.2, two common definitions exist
for the term Black Box: The first well-known definition describes complex systems, which
are even for domain experts hard to interpret. The second definition established in the
research community is the one, where only limited information about the system or used
dataset is available. Most related work has addressed the former definition, whereas
the latter definition to my best knowledge has not yet been researched with respect to
trustworthy AI so far, as the following Sections will show. For simpler distinction, in
the presented work, the former definition (describing complex systems) is referred to
as Gray Box. Further, in this Chapter an overview of existing tools used to explain
complex ML models is given, and an existing solution is presented capable of evaluating
the trustworthiness of any ML model. Finally, this Chapter concludes with a review of
the strengths, challenges, and limitations.

3.1 Opening the Black Box

In recent years, the use of AI systems has become increasingly prevalent as they are be-
coming a part of everyday life. In November 2022 OpenAI introduced a chatbot called
ChatGPT [49], which interacts with humans in a conversational way. This tool created
awareness about how accessible it is to harness the power of AI for humans without a sci-
entific background. As a consequence, a high interest in Trusted AI research and society
evolved, particularly in the context of calculating the trustworthiness level of Gray Box
models. If there is no technology that allows us to understand the reasoning behind Gray
Box models, these models will continue to be viewed as mysterious and incomprehensible
tools, much like oracles. However, attempts of opening the Gray Box are not new in
research. Already in 1995, researchers have come up with an algorithm called TREPAN
for extracting tree-structured representations of trained NNs [50]. Further, companies
and communities have developed learning-based systems and tools that calculate reliable
metrics, such as IMB 360 Trustworthy AI, LIME and SHAP (see Section 3.2). This

15
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emphasizes, that with the advancements in the field of ML and sophisticated concepts,
an urge for explainability and a measure of trust is felt. On one side, Rudin [51, 52]
highlights the importance of using interpretable models and emphasizes that explainable
Gray Box models should be avoided in high-stake decisions. On the other side, Loyola-
González [30] provides interesting perspectives to understand that both (White and Gray
Box approaches) are suitable for addressing practical problems. Recently, researchers are
developing approaches that make ML models more understandable to humans for spe-
cific scientific fields like genetics and genomics [53] or biology and medicine [28] as well
as many others. Further, frameworks are being established that nurture trustworthiness
when using ML in the field of psychiatry [54].

The increasing number of concepts and emerging solutions among different scientific com-
munities can lead to confusion and difficulty in selecting the appropriate methods for
explaining Gray Box models. While some focus on understanding how Gray Box models
work, others are more interested in explaining the decisions made by these models, even if
they do not fully understand their inner workings. Therefore, Giudotti et al. [7] provided
a systematic organization and classification of these methodologies concerning the expla-
nation of Gray Box models. This classification allows a simpler comparison of different
solutions and an evaluation of the proposed solution. For the categorization, Guidotti et
al. [7] differentiate solutions on the following four aspects for opening and understanding
the Gray Box:

Figure 3.1: Problem Taxonomy Of Opening The Gray Box [7]

1. Faced problem: This aspect very much depends on the aim of the expert and the
specific use case. Figure 3.1 depicts a tree-structured diagram, in which different
categories of possible problems are listed. The first distinction occurs whether the
aim is to directly design a transparent and interpretable classifier (Transparent Box
Design) or to explain an existing predictor (Gray Box Explanation). The former
approach aims to create a local or global interpretable model that maintains the
accuracy of a Gray Box model designed to solve the same task. The latter is also
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called Reverse Engineering or Post Hoc because this approach reconstructs an ex-
planation for certain returned outcomes. In other words, Gray Box Explanation
problems share the common target of providing an interpretable and accurate pre-
dictive model which mimics the original Gray Box model, but whose output can be
comprehensibly understood by a human. The Gray Box Explanation can be fur-
ther refined into Model Explanation, Outcome Explanation, and Model Inspection.
Model Explanation seeks to comprehend the underlying logic behind the model,
while Outcome Explanation is concerned with the relationship between the input
data and the resulting decisions made by the model only for a specific record. Model
Inspection lies somewhere in between and varies depending on the purpose of the
research being conducted. For all problems of Gray Box Explanation, the dataset
used for training the original Gray Box predictor is unknown.

2. Type of analyzed data: The type of data used for classification can vary, and offer
different levels of interpretability for humans. Most ML models use tables (data in
a structured format), which can be easily processed by algorithms in the form of
matrices. For humans to interpret values in tables, additional meta-data needs to be
provided. Differently, images and texts are more easily understood by humans since
they reflect the way how people communicate. However, they must be transformed
into vectors before they can be used for predictive models (usually SVM, NN, or
DNN). Thus, there are some interpretable models that are not directly applicable
to this type of data, which makes it difficult to obtain a human-understandable
explanation or an interpretable model without using transformations. Other types
of data include sequences, spatio-temporal data, and complex networks.

3. Type of explanator: The explanator is the tool or concept adopted to open the Gray
Box and to provide an explanation in a way that is understandable and transparent
to human users. Therefore, the explanator must be a simpler concept than the Gray
Box itself. Guidotti et al. [7] differentiate between the following explanators:

• Decision Tree (DT) also called single-tree approximation, is a popular tech-
nique and easily understandable.

• Decision Rules (DR) describe a set of rules to explain the model, outcome, and
design of the Gray Box.

• Feature Importance (FI) is an effective solution and indicates the magnitude
and weight of the features of the Gray Box.

• Saliency Mask (SM) is a method capable of indicating causes of a certain out-
come, often used to explain DNNs. It is especially useful for text or image
input where a visual mask is highlighting specific aspects.

• Sensitivity Analysis (SA) measures the uncertainty in the outcome regarding
different uncertainties in the input.

• Partial Dependence Plot (PDP) evaluates the relationship of a reduced feature
space to the outcome of a Gray Box model.

• Prototype Selection (PS) which selects representative instances from the avail-
able dataset to create an interpretable model.
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• Activation Maximization (AM) is often applied to inspect a NN and DNN by
identifying the essential neurons that are activated in response to specific input
patterns, which means finding input patterns that can maximize the activation
of a particular neuron in a specific layer.

4. Type of predictor: This aspect is a list of all Gray Box models which have been
opened in reviewed papers listed by Guidotti et al. [7]. The list includes Tree
Ensemble (TE), Support Vector Machines (SVMs), Neural Networks (NN), Deep
Neural Networks (DNNs), and Non-Linear Models (NLM).

3.2 Existing Tools

3.2.1 IBM 360 Trustworthy AI

IBM Research is investing many resources in developing effective tools to measure and im-
prove the trustworthiness of AI systems. Besides testing AI’s reliability, the tools are able
to certify the robustness of different types of attacks, explain certain predictions, and in-
crease end-to-end transparency and fairness. The theoretical and algorithmic frameworks
are developed in an extensible manner and all code is accessible and open-source, which
motivates developers to contribute as well. For specific tools, intuitive web demos are
provided that demonstrate available capabilities and give an intuition about the applied
benefit. Developers have the ability to test examples and execute Jupyter Notebooks that
demonstrate the capabilities of models and sample data in different domain applications.
Additional resources, such as videos and scientific papers, provide further insights into
the developed tools [6]. The following listing briefly explains available tools:

• ART: Adversarial Robustness Toolbox is a Python library that provides the possi-
bility to test ML models on their adversarial robustness. Different forms of attacks
can be applied to compute scores and detect possible vulnerabilities.

• AI Privacy 360 is a framework that has the ability to reveal potential privacy risks of
ML models. It checks if applicable privacy regulations are respected or disregarded.
Further, the trade-off between privacy and performance can be assessed, supporting
developers to make the right decisions.

• AI Explainability 360 provides both model-specific and model-agnostic algorithm to
help the user understand the reasoning behind ML models’ predictions. The tool
supports explanations for different stakeholders (e.g. developers, users, regulators)
by regulating the form and mathematical depth of the output.

• AI Fairness 360 contains fairness metrics which can be used to identify potential
biases or prejudices in ML models. It helps developers to identify weaknesses in the
datasets and improves the representativity of different subgroups.
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• AI FactSheets 360 is a standardized framework that simplifies the creation and main-
tenance FactSheets. These are documents containing important meta-data about
the training, testing and deployment of ML models. They provide a comprehensive
overview, as they are continuously updated over the entire life-cycle.

• Uncertainty Quantification 360 is a Python package that provides the possibility
to measure and improve the uncertainty of a model’s predictions. Further, the
communication of uncertainty is provided in the form of probability scores and
prediction intervals, which generates transparency.

• Causal Inference 360 is a Python package that supports developers to conduct a
causal inference analysis and execute diverse model evaluations. It helps to identify
the cause and effect behind the predictions of ML models.

3.2.2 Local Interpretable Model-Agnostic Explanations (LIME)

LIME is a tool that provides local explanations for a certain data point and helps to
understand reasons for specific predictions. It allows analyzing the behavior of any ML
model by applying an interpretable linear model as an explanator. Despite the fact,
that the linear model does not align with the overall behavior of the Gray Box model,
it supports the understanding which makes it locally useful. LIME is a model-agnostic
explanator and can be used to explain various ML models, such as RFs, SVMs, and NNs
[55].

Figure 3.2: Illustration Of LIME Approximation [55]
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Figure 3.2 shows an illustration from the paper of Ribeiro et al. [55], which depicts a
possible explanation using LIME. The colored areas correspond to decision regions for a
binary classification problem, and the bold red cross indicates the observation of interest.
The blue circles and red crosses represent data of interest (based on proximity), sampled
by the algorithm. Finally, the dashed line represents a simple linear model, explaining the
local classification of the bold red cross. This illustration nicely shows, that the explanator
is not aiming to explain the complex decision function of the Gray Box globally, but rather
helps to understand the local reasoning.

3.2.3 SHapley Additive exPlanations (SHAP)

Similarly to LIME, SHAP is a local explanator that aims to provide explanations for
the prediction of an individual data point. It does this by calculating the contribution
of each feature to the particular prediction. These explanations are generated using
Shapley values, which come from coalitional game theory and describe how the influence
of the prediction can be distributed among each feature value in the model to reflect
their individual contributions to the prediction. It does this by calculating the Shapley
values for every possible combination of features and taking the average. However, the
calculation grows exponentially for every additional feature. Representative sampling
address this problem [56].

Figure 3.3: Illustration Of SHAP Tool [56]

The SHAP tool offers three distinct explainers. First, the model-agnostic KernelSHAP
explanator, which utilizes local surrogate models and kernels for estimating Shapley val-
ues. Second, the model-specific TreeSHAP explanator, which is specifically designed for
tree-based models, such as DT, RF, and gradient-boosted trees. It provides optimized ex-
planations and is a fast alternative to KernelSHAP. Third, the model-specific DeepSHAP
explanator, which is a fast approximation algorithm for calculating SHAP values in deep
learning models. Figure 3.3 depicts one simplified example of the SHAP tool, in which
one particular prediction of a Gray Box model is explained and the contribution of each
feature towards the final prediction is visible. Assume, the square on the left shows an ML
model that predicts the probability to suffer from diabetes. The model takes values about
the age, sex, blood pressure, and body mass index from the person to be diagnosed and
outputs the expected probability. Applying SHAP, the attribution of each feature towards
the prediction is visualized as arrows within the square, as depicted on the right. The
value of +0.4 indicates, that the age of 65 contributed positively and did increase (red)
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the probability of the prediction. Instead, the value of -0.3 for the sex feature contributed
negatively and did decrease (blue) the probability of being diagnosed with diabetes. This
can be useful for the doctor to assess if the prediction of the model can be trusted or not.

3.2.4 ELI5

ELI5 is a Python tool that helps in troubleshooting ML classifiers and providing simple ex-
planations for their predictions. It supports different frameworks, such as Scikit-learn and
Keras, and provides an interpretation of the model’s weights. However, the explanation in
Scikit-learn is limited to linear models and tree-based classifiers only. For Keras models,
it is able to explain predictions of a wide variety of image classifiers (CNN model-families)
via Gradient-weighted Class Activation Mapping (Grad-CAM) visualizations [57]. These
visual explanations use the gradients of a classification network and let them flow into the
final convolutional layer. This process generates a rough localization map, highlighting
the most important regions in the image for predicting the class, without architectural
changes or the need of re-training of the network [58]. Image classification models may
use unexpected and inappropriate signals in the data to provide an answer. A common
instance of this is the misclassification of a husky as a wolf, where the NN learned to
associate the presence of snow in the background as a key indicator for classifying the
animal as a wolf [59]. With the help of localization maps, developers may address this
issue and improve the model’s stability.

Figure 3.4: Illustration Of Grad-CAM’s Localization Map, Based On [58]

Figure 3.4 shows four different scenarios, each consisting of two images. On the left, an
image from the Visual Question Answering (VQA) [60] dataset is shown together with
a question. On the right, the answer (prediction of a CNN + LSTM-based classifier) to
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the respective question is shown together with a localization map generated by Grad-
CAM, highlighting regions relevant for predicting the answer. In Scenario 1 the model
successfully recognized a human standing on a board with waves in the background as a
surfer. In Scenario 2 the model correctly emphasized the lower part of the baseball bat
stronger, because the question is related to the object that the woman is holding in with
her hands. In Scenarios 3 and 4 the model was presented with the same image. The
question is formulated in a way, such that both responses are correct, and the location
map shows the attention for the respective classification. For Scenario 3 the attention
lies on the elephant, whereas in Scenario 4 the zebra is highlighted. This indicates that
interpretable explanations can be provided even for complex models. Further, according
to Das et al. [61], Grad-CAM’s visualizations showed a positive correlation of 0.136
compared to human attention maps (manually labeled), which is higher than by chance
or from random attention maps (zero correlation) [58].

3.2.5 Microsoft Fairlearn

Microsoft Fairlearn is an open-source tool that is enhanced and maintained by many
developers worldwide. Microsoft supports the community and fosters exchange through
platforms, such as Discord, StackOverflow, GitHub, and Twitter. The aim is to provide in-
formation about the concept of fairness and to present Fairlearn’s metrics and algorithms,
considering their wider societal impact. Metrics allow the user to assess negatively af-
fected groups and provide a possibility to compare different models with respect to their
fairness. Algorithms on the other side, allow the user to actively mitigate discrimination
in unfair scenarios [62].

3.2.6 Trusted AI

The Trusted AI platform is an application that consists of an algorithm capable of quanti-
fying the trustworthiness level of ML models and visualizing the results in a user interface.
Automatically generated trust reports indicate the model’s potential for improvement and
allow for a simple comparison between different scenarios. The trustworthiness score is
computed by aggregating several metrics from distinct pillars into one global trust score.

In order to assess the trustworthiness, the user needs to upload the ML model, used train-
ing and testing datasets, and the FactSheet which is providing additional information
about the AI lifecycle. The methodology of the trust score computation is depicted in
Figure 3.5. Various metrics are computed for every individual pillar (fairness, explainabil-
ity, robustness, and methodology) taking the provided inputs as parameters and returning
the metric value as a result. As shown in the figure on the left, the metric values are then
mapped into scores (Score1,E, Score2,E, etc.), which allow the values to be interpreted
and compared. The respective mapping function is individual for every metric and maps
the value to a trust score from one to five. In this scale, a score of one corresponds to the
lowest/worst score, while a score of five represents the highest/best score. For this map-
ping, thresholds are derived from literature and the state of the art. However, the user
is provided the possibility to customize the thresholds depending on the use-case-specific
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Figure 3.5: Methodology Of The Trust Score Computation For The Trusted AI Platform
[12]

context by adjusting the values in the configurationmapping file. Once the individual
scores for all the metrics are derived, the algorithm aggregates all individual metric scores
into one single score per pillar. For this, weights indicate how much importance a specific
metric has and allows prioritizing certain metrics by computing the weighted average. The
computation of the global trust score from the individual pillar scores follows the same
mechanism, as shown in Figure 3.5 on the right. Weights are allocated to the four pillars,
and the overall trust score is calculated as the weighted average of the scores assigned to
each pillar. Figure 3.6 shows the default configuration setting of the weights, which can
be parameterized and saved by the user. For instance, the pillar score for explainability
is computed as follows, using the default weights:

ScoreExplainability =
∑ wi,E ∗ scorei,E∑

wi,E

ScoreExplainability = 0.55 ∗ scoreAC + 0.15 ∗ scoreCF + 0.15 ∗ scoreMS + 0.15 ∗ scoreFR

(3.1)

The first input field per pillar corresponds to the pillar weight. The following input fields
represent the metric weights. One can recognize, that for the computation of the pillar
score, not all the pillars must have an equal number of metrics. This makes the algorithm
extensible for future enhancements, in the case that new metrics will be added.

Figure 3.6: Configuration Setting Of The Weights [12]

The results of the computation are then visualized in a dedicated analyze page, which
allows an intuitive and simple interpretation of the results. Figure 3.7 depicts one example
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of a possible analysis. On the left, the overall score informs the user about the global
trustworthiness level of the selected scenario and about which pillar has a strong/weak
trust score. Additional information about each pillar is presented after clicking on the
buttons below the respective pillar (e.g. fairness button). A more detailed view is depicted
on the right of Figure 3.7, where the user can inspect the individual metric scores. By
examining the metric scores, one can identify whether they had a positive or negative
influence on the final score. For instance, a robustness score of 1.5/5 indicates, that
the model’s robustness is insufficient and that the model may be vulnerable to different
attacks (fast gradient, carlini wagner, and deepfool). This is particularly valuable because
it allows for the immediate detection of low scores and provides insight into which metrics
need improvement to achieve a higher trust score.

Figure 3.7: Visualization Of The Trustworthiness Score Per Pillar [12]

3.3 Limitations and Missing Aspects

In the previous Sections, important related work has been reviewed and existing tools
have been analyzed. In the last few years, the field of trustworthy AI is gaining more
awareness and getting increasingly researched. Especially in recent work, scientists have
developed diverse methods for making ML more transparent and understandable, which
increases trust in such systems. By understanding the physical implications of ML, devel-
opers can improve the model, for instance with respect to robustness or fairness. But not
only academia is intensively researching this field - also innovative examples from the in-
dustry (e.g. IBM and Microsoft Research) have shown useful progress toward trustworthy
AI. Approaches allow developers to interact with predictions and generate interpretable
explanators even for highly complex ML models. The existing platform by Leupp et al.
[12] provides the possibility to measure trustworthiness and compare different solutions
with respect to fairness, explainability, robustness, and methodology. Through a deep
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analysis of the state of the art, one major limitation was identified. Most related work,
analyzing trustworthiness for White and Gray Box ML models, assumes that all infor-
mation about the model’s architecture and dataset is available. Considering Black Box
models, previous work primarily attempts to make highly complex models more tangi-
ble through various approaches. Despite that, to my best knowledge, no material can be
found in the literature which measures the trustworthiness of Black Box ML models, when
only limited information is available. However, this is an important role in trustworthy
AI because depending on the application, ML models may be trained on personal data
which is protected and should not be shared with a third party. For instance, a hospital
or insurance company would not be willing to upload sensitive data into an online tool, in
order to compute the trustworthiness of its ML model. Current methods can be used if the
model architecture is already known and the used dataset is accessible. However, modern
API-based services produce more challenges because of the relative Black Box nature.
This makes the computation of trustworthiness for certain metrics not applicable. For
the presented work, the aspect of the missing dataset is the most relevant. Therefore, the
next Section explores existing solutions for data augmentation and data generation with
the aim to enhance the existing solution and make it applicable to the scenario having
only limited information.

3.4 Data Augmentation and Generation

Synthetic data is computer-generated information for testing and training AI models and
it can be generated in various ways. The concept is not new, and methods for data
augmentation have been applied especially in the field of image processing and natural
language processing (NLP), where complex and data-intensive models are trained and
the collection of real data may be expensive, time-consuming, or limited. For this, often
generative AI is applied using transformer-based foundation models [63], diffusion models
[64], and generative adversarial networks (GANs) [65]. GANs apply a generator discrimi-
nator approach proposed by Goodfellow [35] where the generator creates artificial samples
from random noise, and the discriminator has to distinguish between these artificial and
real samples. This approach is depicted in Figure 3.8 and results in synthetic data that
contains similar characteristics to the original set. As the Figure illustrates, GANs may be
well suited for data augmentation, but not for data generation. This is because it requires
access to the original dataset and to feed it to the discriminator. However, this access is
not applicable in the case being presented a Black Box model with limited information,
since the trustworthiness score must be computed under the restriction of having limited
information (no dataset at all). Recent work has also shown progress in the generation
of tabular data to balance out uneven data distribution between train and test data [67].
However, also here a base dataset is required, from which the generative model is able
to learn representations of the underlying data in order to generate versions in a similar
style. This clearly indicates the necessity, that the presented work needs to present a
novel approach, which allows the synthetic data generation from scratch.
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Figure 3.8: Illustration Of GAN Concept For Data Augmentation [66]

3.5 Learnings from Related Work

The thorough analysis of related work with a focus on complex Black Box models has
identified work, that aim to make ML/DL models more transparent and understandable
in order to increase trust. Existing tools have shown the ability to provide local and global
explanations, which supports the understanding of the model’s behavior. Further tools
have been developed, capable of assessing the trustworthiness level of ML models by the
computation of a global trust score. However, existing tools assume that all information
about the model’s architecture and dataset is available. This forms a clear limitation, as
most metrics become incomputable when measuring the trust of a Black Box model whose
original dataset is not provided, resulting in a limited trust score. Therefore, the goal of
this thesis is to improve the overall trustworthiness assessment for Black Box models,
by presenting a novel approach. This approach includes the design and implementation
of a synthetic dataset generator that is fundamentally different from previously explored
data augmentation and generation methods, as it does not require access to the original
dataset.



Chapter 4

Design and Implementation

This Chapter provides insights into the Design and Implementation of an advanced ap-
proach, to improve the metric computation for the Black Box scenario, where limited
information about the used dataset is available. The goal is to provide a more accurate
global trust score for a specific solution under the constraint of having only limited in-
formation available. The design Section includes the creation of a Black Box taxonomy,
which groups ML and DL algorithms in the respective subgroups, based on their char-
acteristics and specific properties. Further, the taxonomy also distinguishes the level of
available information. The next Section motivates the synthetic dataset generation as a
solution to the before mentioned challenge and shows the process design of the dataset
generation. Two different solutions are presented for the dataset generation, varying in
the level of available information provided by the user of the system, as the following
Sections will show. The trade-off between accuracy and privacy is described in further
detail. The implementation Section explains the current algorithmic design and proposes
a possible integration into the Trusted AI [12] platform for an autonomous global trust
score computation.

4.1 Design of Black Box Taxonomy

A Black Box model is either too complex for any person to interpret or has missing
internal knowledge, which is kept secret and thus not available (see Section 2.2). The
complexity of an ML model affects how well the model can be explained. The chosen
learning technique plays a major role in determining what metrics can be computed in
the fairness, explainability, and robustness pillar. It influences the overall functioning of
the model and limits the potential post-hoc explanations. An analysis of various ML/DL
models provides details and justifications for the level of understandability and explain-
ability achievable in their decision-making processes and lays the foundation for the first
hierarchy of the Black Box Taxonomy, as depicted in Figure 4.1. The second hierarchy
distinguishes the level of Available Information for all subgroups from the first hierarchy
into Everything Known, Missing Dataset, and Unknown Underlying Architecture.

27
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Figure 4.1: Black Box Taxonomy

The following analysis provides details and explanations of the most prevalent White Box
ML models and examines their properties and possible configurations. It also groups each
model into a subgroup called Simple Models and Understandable Models from the first
hierarchy of the Black Box Taxonomy (see Figure 4.1), due to their high interpretability
and transparency. All subgroups of the Black Box Taxonomy are expandable with ML
models that have similar properties. Thus, subgroups are not a complete collection of all
possible models but are meant to provide a structure to categorize future models.

• Decision Tree (DT) is a model that is considered easily understandable and inter-
pretable for humans. The DT algorithm is a graphical representation of a tree,
composed of a root, multiple nodes, branches, and leaves. The nodes in the tree
serve as crucial points where decisions are made, based on specific conditions learned
by the algorithm in the training phase. These conditions are based on the feature
with the highest information gain, to optimally divide and separate the data [68].
One big advantage of DTs is the human ability to interpret the reasoning process for
any prediction of the model, simply by following the branches of the tree. In fact, a
DT can be transformed into a collection of decision rules in an if-then format [69],
where the outcome corresponds to the class label of a leaf node:

if condition1 ∧ condition2 ∧ condition3, then outcome (4.1)

Further, not only single predictions can be explained, but the transparent properties
of the model allow users to inspect the most significant features for predicting the
whole dataset - the features with the highest information gain are positioned at the
top of the tree, whereas features with a lower information gain are positioned lower
in the tree. As described in Section 3.1, DTs are often used as explanators for Highly
Complex Models, due to their interpretable properties by design. The size of the
model depends on the tree depth and number of rules. This design ensures excessive
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comprehensibility and explainability, especially when it is not deeply branched and
the features themselves are understandable [68]. Therefore, DT is grouped into the
subgroup Simple Models.

• Linear Models are considered one of the simplest models in the field of ML. They
are widely established and serve as the foundation for numerous sophisticated ML
techniques such as DNN. Linear models may be further split into Linear Regression
and Logistic Regression models. The former is used for regression tasks where the
algorithm learns the linear correlation among variables, and the latter is a classifi-
cation algorithm. It assumes that the dataset is linearly separable and tries to learn
the weight of each feature. Mathematically, the linear regression can be written in
matrix form as

y = Xβ + ε with ε ∼ N (0, σ2I) (4.2)

where y is the target variable, β is the vector of coefficients that is learned by the
model, ε is the residual term for adjusting the error, and X is the provided feature
matrix. When the input feature X consists of a single feature, the Linear Regres-
sion model fits the line in a two-dimensional space so that the residuals between
the predicted and actual values are minimized. Commonly, the least squares loss
function is used to optimize the vector coefficients β and ε towards the optimal solu-
tion and minimizes the residuals (distance between predicted and observed values)
[70]. Linear Models have the property of being interpretable due to their simple
and human-understandable mathematical computation. The weights [W] are inter-
pretable and predictions can be clarified. Therefore, Linear Models are grouped into
the subgroup Simple Models.

• Tree Ensemble Models, such as Random Forest (RF) and Gradient Boost (GB),
enhance the predictive capabilities of individual learning algorithms by combining
multiple algorithms together. These ensembles incorporate predictions from multi-
ple decision trees, where each tree is trained on a distinct subset of the input data,
considering both features and samples. For classification tasks, the RF outputs the
class that is chosen by the majority of trees (majority voting). In regression tasks,
the RF returns the mean or average prediction of the individual trees. One benefit
of RF models is that they reduce overfitting compared to simple DTs and help to
improve accuracy. However, the interpretation is more difficult because multiple
independent decision trees are applied. Besides the maximum depth of the trees,
the number of trees can also be specified as a hyperparameter at the instantiation
[71]. While the ensemble model loses some of their explainability as a whole, it still
provides an estimate of the feature’s relevance in classification. GB similarly con-
sists of an ensemble of decision trees. However, instead of computing independent
scores for each tree, it aggregates the results of each decision tree along the way to
calculate the final result [72]. This improves the accuracy of the model because trees
are able to correct the error of the previous tree but makes the trees more dependent
on each other. This again influences the interpretability of such models. Therefore,
Tree Ensemble Models are grouped into the subgroup Understandable Models.

• K-Nearest Neighbors (kNN) is a non-parametric model which classifies a data record
based on the similarity of its k nearest neighbors. This simple but effective method
is similar to how a human learns, and thus rather intuitive. For single instances, the
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decision-making process can be understood by examining the identified neighbors
and their corresponding labels. However, the success of kNN depends on the defini-
tion of the parameter k and other factors, such as whether distance-based weighting
is taken into account or not [73]. When difficult problems require complex distance
functions to be applied and the parameter k takes a higher value, the understand-
ing of the model’s general behavior may suffer, as the model incorporates a larger
number of neighbors and potentially more complex relationships. Also, kNN does
not provide an implicit way of directly extracting feature importance. However, it
is possible to gain insights indirectly by examining the relevance of features among
the nearest neighbors. Therefore, kNN is grouped into the subgroup Understandable
Models.

Table 4.1 shows a categorization of Gray Box ML/DL models based on findings from the
previous Section 3.1. The groups and properties of the ML classes are explained in further
detail below.

Table 4.1: Categorization Of Gray Box Models Into Subgroups (i-ii), And Visualization
Of Black Box Terminology (iii)

Gray Box Models Black Box

(i) Hard To Interpret (ii) Highly Complex (iii) Missing Knowledge

SVM NN DNN Dataset Underlying Architecture

interpretability medium low very low * *

complexity medium high very high * *

transparency medium medium medium low low

# parameter low medium high * *

The table assigns Gray Box models into two different subgroups: (i) models whose rea-
soning of the results are Hard To Interpret even for domain experts in practical fields, and
(ii) Highly Complex Models due to their mathematical complexity. For each model the
differences in the properties interpretability, complexity, transparency, and the number of
parameters (# parameter) are described. The two subgroups (i-ii) are used in the first
hierarchy of the Black Box Taxonomy in Figure 4.1. The last column (iii) of the Table
shows that any model can be considered a Black Box when Missing Knowledge is present.
This category is depicted in the second hierarchy of the Black Box Taxonomy and adds
another dimension for every existing subgroup.

(i) Support Vector Machines (SVMs) are supervised ML models, which use a subset
of the training data (support vectors) to create a hyperplane, separating the data
into different classes. The area around the hyperplane remains as wide as possible
free of objects and serves as a decision boundary for the remaining data. It is a
Linear Model capable of solving linear and non-linear problems using available ker-
nels, such as the Radial Basis Function or the Quadratic Kernel. These and similar
kernels provide an efficient method for converting data into higher dimensions but
make results very difficult to comprehend. A different model of the same subgroup
is the Neural Network (NN), which is inspired by the biological brain, consisting
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of many neurons which can send and process signals through weighted connections.
The information travels from the input layer through one or more hidden layers, in
which signals are transformed through activation functions, before finally reaching
the output layer. Since NNs are highly configurable regarding different hyperparam-
eters, such as the number of hidden layers, dropout rate, selection of the activation
function and batch size, the number of parameters may vary. Compared to SVMs,
NNs contain more parameters and are considered to be more complex systems. Nev-
ertheless, both models are hard to interpret and considered as Gray Box models but
still less complex than Deep Neural Networks. That is why they belong to the
subgroup called models Hard To Interpret.

(ii) Deep Neural Networks (DNNs) are special types of NNs, that can handle complex
non-linear relationships by using numerous hidden layers. Due to their large size,
DNNs require more time for training compared to regular NNs, but have the ability
to abstract into higher dimensions. The main difference between NNs and DNNs
is that DNNs are deeper and use more complex node architectures. This is also
reflected in the very high number of parameters. Often, DNNs are applied in the
field of computer vision and natural language processing tasks. To address the
problem of sequential data, a special class of DNNs has evolved, called Recurrent
Neural Networks (RNNs). They introduce feedback connections, enabling them
to consider context from previous time steps while calculating the importance of
the current input. Long Short-Term Memory (LSTM) is a type of RNN designed
to address long-term dependencies in sequential data. Furthermore, Generative
Adversarial Networks (GANs) are systems that train two NNs simultaneously, to
generate realistic data such as images or text. As it can be seen, many variations
of DNNs exist in practice, which all have address complex problems and as result
the number of parameter grow exponentially large. Therefore, DNNs including the
above-mentioned variations have their own subgroup called Highly Complex Models.

(iii) Lastly, the term Black Box describes any possible ML/DL model for which infor-
mation about the Dataset (used for training/testing the model) or the Underlying
Architecture is not known. As only limited information is available, the transparency
of the model is considered low. The asterisk (*) serves as a placeholder and indicates,
that these values depend on the particular model and its configurations.

4.2 Problem Definition

The analysis of related work has shown, that current solutions (see Subsection 3.2.6) are
capable of assessing the trustworthiness score of ML models, with respect to fairness,
explainability, robustness, and methodology. However, one major limitation is the as-
sumption, that all information about the model’s architecture and dataset is available.
This causes problems in the computation of the global trustworthiness score since various
metrics require access to the dataset, used for training and testing the respective model.
Considering the Black Box Taxonomy from Figure 4.1, this applies to all subgroups when
in the second hierarchy the situation Missing Dataset or Unknown Underlying Architec-
ture is true. The consequence of having fewer metrics computed per pillar is, that it can
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lead to a limited and potentially incomplete understanding of the underlying trustwor-
thiness of the system being evaluated. Relying on a few metrics can overlook important
aspects and nuances, resulting in an oversimplified representation of the pillar score. This
is especially critical if certain pillars end up having no quantifiable metrics at all, making
it difficult to compute a global trust score without neglecting the respective pillar. This
incomplete assessment also makes the comparison of models more challenging. Therefore,
this work approaches an alternative way to generate estimations for such incomputable
metrics using a synthetic dataset.

4.2.1 Existing Metrics

This Subsection provides an overview of existing metrics in the Trusted AI platform [12].
For every metric, the following properties are defined:

• Pillar: Name of the pillar towards which the metric is contributing to.

• Metric: Name to describe and reference the metric.

• Input: Variables that are required for the computation of the metric (e.g. Model,
Training Dataset, Testing Dataset, FactSheet).

• Condition: Special condition which restricts the applicability of the metric. The
minus sign (-) means, that no restrictions exist and the metric can be applied to all
scenarios.

• Output: The result of the metric computation, used for the later score mapping.

Since the output of the metrics can not be compared directly, due to the outputs being
of different data types, scales, and meanings, the values have to be mapped onto a nor-
malized scale (one to five) to achieve a comparable trust score. The respective mapping
functions are defined based on good practices that are defined in the literature. Since the
mapping function and their parameter are not influenced in the scenario of computing
the trustworthiness score with only limited information, the presented work is not further
elaborating on the mapping. For more information, it is referred to read Section 4.1 Al-
gorithm Design of the work by Leupp et al. [12]. Table 4.2 provides an overview of all
metrics, including the properties as defined above. In the column named Input, the term
Dataset is highlighted in bold. This indicates that many metrics rely on this information
and consequently will get incomputable, under the restriction of not having access to the
original dataset.
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Table 4.2: Metrics Calculated By The Trusted AI Platform And Their Properties [11]

Pillar Metric Input Condition Output

F
ar
in
es
s

Underfitting Training & Testing
Datasets, Model

- [0-1]

Overfitting Training & Testing
Datasets, Model

- [0-1]

Statistical Par-
ity Difference

Training Dataset,
FactSheet

Applicable if a protected group and
a favorable outcome are defined

[0-1]

Equal Opportu-
nity Difference

Testing Dataset,
Model, FactSheet

Applicable if a protected group and
a favorable outcome are defined

[0-1]

Average Odds
Difference

Testing Dataset,
Model, FactSheet

Applicable if a protected group and
a favorable outcome are defined

[0-1]

Disparate Im-
pact

Testing Dataset,
Model, FactSheet

Applicable if a protected group and
a favorable outcome are defined

[0-1]

Class Balance Training Dataset - Class %

E
x
p
la
in
ab

il
it
y

Algorithmic
Class

Model - Name

Correlated Fea-
tures

Training & Testing
Datasets

Applicable on features with non-
missing values

[0-1]

Feature Rele-
vance

Model Applicable for models providing
features relevance scores

[0-1]

Model Size Training Dataset - Integer

R
ob

u
st
n
es
s

Confidence
Score

Model, Testing
Dataset

Applicable on models providing
prediction probabilities

%

Clique Method Model Applicable on DT, RF, and GBDT
algorithms

Real

Loss Sensitivity Model Applicable on NN algorithms Real
CLEVER Score Model Applicable on NN algorithms Real
ER Carlini
Wagner

Model, Testing
Dataset

Applicable on NN, LR, and SVM
algorithms

%

ER Fast Gradi-
ent

Model, Testing
Dataset

Applicable on NN, LR, and SVM
algorithms

%

ER DeepFool Model, Testing
Dataset

Applicable on NN, LR, and SVM
algorithms

%

A
cc
ou

n
ta
b
il
it
y

Normalization Training & Testing
Dataset

- Name

Missing Data Training & Testing
Datasets

- Integer

Regularization FactSheet Applicable if the regularization
technique details are present in the
FactSheet

Name

Train-Test Split Training & Testing
Datasets

- [0-1]

FactSheet Com-
pleteness

FactSheet - [0-1]
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4.2.2 Incomputable Metrics

This Subsection aims to make the impact of the missing dataset more tangible, through
a visual representation of incomputable metrics. Figure 4.2 shows a matrix where all
metrics are listed vertically on the left side, grouped by pillar. Each column corresponds
to one scenario from the Black Box Taxonomy (see Figure 4.1). The first three columns of
the matrix belong to the subgroup Simple Models and differentiate each other in the level
of available information. Similarly, the next three columns belong to the next subgroup,
and so on. For each cell, it is highlighted if the metric is computable for the respective
scenario (green checkmark), or not (red cross). Additionally, helpful information is pro-
vided beside the indication about the computability, such as the source of the tool which
has already implemented the computation of the metric and other information. Below
each column, the ratio of computable metrics is displayed. For Simple Models where
everything is known, 21/23 metrics could be computed. This ratio is high, and the met-
rics are computed from all pillars. The second column shows computable metrics for the
scenario, where the dataset is not available. A significant drop in computable metrics to
4/23 is identifiable. Especially the pillars fairness and robustness have to be highlighted,
where without exception all metrics get incomputable, since they rely on the uploaded
dataset. The third column shows computable metrics for the scenario, where information
about the underlying architecture of the model is unknown. Here, the ratio of computable
metrics of 16/23 is not alarming, however, the explainability pillar is most affected by the
lack of information about the underlying architecture of the model. Likewise, for the
second subgroup Understandable Models similar behavior of incomputable metrics can be
observed, except for the metric Feature Relevance, since this metric is implemented to be
model dependent (only RF&GB) and the three Empirical Robustness (ER) metrics (see
Condition column in Table 4.2). For subgroups Models Hard To Interpret and Highly
Complex Models, the ratio of computable metrics is comparable to the subgroup Sim-
ple Models, except for the feature Clique Method, which is only applicable for tree-based
models. Further, the following Robustness metrics can be applied when all information is
available: Loss Sensitivity and CLEVER Score (see Condition column in Table 4.2).

4.2.3 Quantifiablility of Incomputable Metrics

As depicted in Figure 4.2, certain incomputable metrics (red cross) are highlighted with
a green background. These metrics become quantifiable using the synthetic dataset gen-
erator (see Section 4.3) to replace the original test dataset with the synthetic dataset
(labeled by the Black Box). Let us derive at these final quantifiable metrics, by evaluat-
ing all available metrics individually. It is not possible to replicate the original dataset
that was used for the training of the ML model. Therefore, incomputable metrics that do
not rely on the Training Dataset as Input, form a subset of possibly quantifiable metrics.
For each metric part of this subset, the exact implementation [12] is further studied in
detail:
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Figure 4.2: Overview Of Computable Metrics Regarding The Black Box Taxonomy

• Equal Opportunity Difference:
The Equal Opportunity Difference (EOD) is a metric from the fairness pillar and
is only applicable when for the dataset a protected group and a favorable outcome
are defined, e.g. credit risk assessment where the ethnicity of the applicant is a
feature used for predicting the likeliness of repaying a credit. In this example,
the protected group takes the value of a certain ethnicity and the favorable outcome
takes the value describing the likelihood of repaying the credit. This metric captures
potential performance issues, where one group is disproportionally benefiting of a
higher opportunity being predicted the favorable outcome. Because discrimination
towards certain ethnicities is considered unacceptable in a society, the feature should
have as little influence as possible on the prediction. Equation (4.3) shows the formal

computation of the EOD, where Ỹ stands for the predicted label of the model, Y
stands for the true label, and P stands for the protected group membership.

EOD(Ỹ , Y, P ) = Pr(Ỹ = 1|P = 1, Y = y)− Pr(Ỹ = 1|P = 0, Y = y), y ∈ 0, 1
(4.3)

As y ∈ 0, 1, the computation is measuring the difference between the false positive
rates (FPR) and the difference between the true positive rates (TPR) of the un-
protected and the protected group. This however, is only possible when the true
labels Y of the testing dataset are available. Since no dataset is provided, and the
synthetic dataset only allows generating the predicted labels Ỹ , it is not possible to
make this metric quantifiable.
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• Average Odds Difference:
Similar to the previous metric, the Average Odds Difference is also a metric from the
fairness pillar and is only applicable when a protected group and favorable outcome
are defined. The aim is to ensure that the model performs equally well for both
groups and the effectiveness is similar. It is measured as the mean absolute difference
between making accurate predictions (TPR) and misclassifying negative cases as
positive (FPR). Again, these metrics can not be computed since the true labels Y
are not available, regardless of the synthetic dataset’s accessibility. Therefore, this
metric does also not become quantifiable.

• Disparate Impact (DI):
This is the last metric that belongs to the fairness pillar. Again, this metric is only
applicable if a protected group and favorable outcome are specified. It measures
if protected attributes are relevantly influencing the outcomes of a model, such
that the subgroups are treated differently. It does this by dividing the probability of
receiving a favorable outcome for the protected group by the probability of receiving
a favorable outcome for the unprotected group, as depicted in Equation (4.4).

DI(Ỹ , P ) =
Pr(Ỹ = 1|P = 1)

Pr(Ỹ = 1|P = 0)
(4.4)

As the Equation shows, the computation does not rely on the true labels of the
original dataset Y , but only on the predictions of the model Ỹ . Therefore, this
metric becomes quantifiable, using the synthetically generated dataset labeled by
the model (y pred).

• Feature Relevance:
This metric belongs to the explainability pillar since it supports the understanding of
the model’s behavior and provides insights into the influences of the decision-making
process. The current implementation allows the computation of feature importance
only for models providing feature relevance scores. From there, the percentage of
irrelevant features is computed. As discussed in Section 4.1, especially rule-based
systems such as DTs and ensembles of rule-based systems (e.g. RF and GB) provide
this possibility, together with SVMs. For more complex Gray Box models, like kNN
and DNN, no such functionality is available. Therefore, existing explanator tools
like SHAP (described in Subsection 3.2) can be applied to calculate Shapley values
and approximate the importance of each feature (code in Appendix A). Therefore,
this metric becomes quantifiable even for the subset of Highly Complex Models from
the Black Box Taxonomy.

• Confidence Score:
The Confidence Score is a metric that belongs to the robustness pillar and is well
known to ML developers. In many cases, ML models provide not only the predicted
class label but also a probability score for each class. It measures the level of
certainty or reliability of a prediction made by an ML model. Considering the
implementation, the average certainty over all true predictions is computed, which
should be high for robust models. As the labels of the original dataset are not
available, the confidence over all true predictions can not be computed. Therefore,
this metric remains incomputable.
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• Clique Method:
The Clique Method is a metric that measures the robustness of tree-based models.
Since DTs are using learned rules, instead of a continuous step function, traditional
gradient-based evaluation metrics are not applicable. For this reason, the Clique
Method (originating from graph theory) can be used to find the largest set of data
points that share similar characteristics or fall into the same regions of the DT.
For these data points identified by the clique, the tree makes consistent predictions.
Identifying this max clique, helps in assessing the robustness of the DT model and
understanding the stability of its predictions across different data points. Since the
true label of the original dataset is not needed, this metric becomes quantifiable
using the synthetic dataset. In the case that the maximum clique is small, it can be
derived that even small changes to the output of the model result in changes of the
prediction and that the tree based classifier is not robust.

• Loss Sensitivity:
The Loss Sensitivity metric uses the loss function of NNs to compute the maximal
possible deviation of the output, with respect to small changes of the input. It mea-
sures the change of the loss, which is related to the model’s decision surface. For loss
functions with local extremas and large differences for the gradients, the decision
confidence may quickly drop to negative areas [37]. Since for models trained on the
Keras framework, the loss function is bound to the model, the current implemen-
tation is retrieving it and using the IBM ART library for the metric computations.
For this metric, the synthetic dataset can be applied.

• CLEVER Score:
The Cross Lipschitz Extreme Value for Network Robustness (CLEVER) Score is
developed for NNs and provides an estimation of the maximum amount by which
the output can change in response to small alterations in the input. For this, the
product of the Lipschitz constant and the amount of perturbation is used to estimate
an upper and lower bound for changes in the output. The current implementation
uses the clever u function from the IBM ART library which takes the model and a
predicted sample as input and provides the bound limiting the number of changes
to the class output. Therefore, this method is also applicable to the scenario using
a synthetic dataset.

• Empirical Robustness:
It is a metric that evaluates the susceptibility of ML models with respect to different
types of attacks and belongs to the robustness pillar. The accuracy score of the
model is compared to the accuracy when presented with adversarial samples. In
the current implementation, three different types of attacks (Carlini Wagner, Fast
Gradient, ER DeepFool) are implemented for SVMs and Logistic Regression models.
As previously mentioned, the computation of this metric requires the comparison of
the accuracy score, which again relies on the true labels (Y ) of the original dataset.
However, since this information is missing, the metric does not become quantifiable.

• Model Size:
This metric belongs to the explainability pillar and is an important indicator of
the model’s interpretability. Large models are harder to understand, because more
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parameters influence the prediction of the model. Because models have different
architectures, there also exist different approaches how to compute the size of a
model. However, a good indication is the number of features used for training
the model because in most models they do positively correlate to the number of
weights/parameters of the model. This corresponds exactly to how the current
implementation measures the size of the model. As this implementation depends on
the dataset, it becomes incomputable when the dataset is not available. Applying
the synthetic dataset however, this metric becomes quantifiable again. Further,
Figure 4.2 provides additional information next to the checkbox, showing other
approaches how the model size can be calculated. The code can be found in the
Appendix A.

Concluding, the following metrics (highlighted with green background in Figure 4.2) be-
come quantifiable using the synthetically generated dataset: Disparate Impact (DI), Fea-
ture Relevance, Clique Method, Loss Sensitivity, CLEVER Score.

4.3 Synthetic Dataset Generation

As discussed in Related Work (Section 3.4), existing data augmentation and generation
methods do not form applicable solutions for the aim of the presented work, as they require
access to the original dataset. The following Subsections describe the goal, methodology,
and algorithmic implementation of the synthetic dataset generation. Two scenarios of
the implementation are presented, which use information about the model’s features and
statistical properties in order to compute a synthetic dataset from scratch. The variations
differ in the amount of input provided to create an artificial dataset - the more statistical
properties are provided, the better the generator can mimic the characteristics and pat-
terns of real data. This provides the user the possibility to decide how much information
he/she feels comfortable sharing with the platform, addressing constraints such as data
privacy.

4.3.1 Goal and Benefit

The availability of a synthetic dataset provides the possibility to systematically investigate
the behavior of the model and to gain insights into its characteristics and behavior. For
instance, by strategically examining the model’s predictions across different demographic
groups or protected attributes, potential biases and discrimination can be detected in the
fairness pillar. The incomputable metric Disparate Impact becomes quantifiable through
this approach. Further, a synthetic dataset also allows identifying the importance of differ-
ent features (computation of the Feature Relevance metric) which improves the assessment
of the explainability pillar. Additionally, for the computation of the Model Size metric,
the number of features can also be extracted from the synthetic dataset. Likewise, robust-
ness properties can be analyzed, such as the sensitivity to perturbations. By introducing
different types and magnitudes of perturbations, the model’s sensitivity and its ability
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to handle perturbed inputs can be measured. Depending on the fact, to which subgroup
the ML model belongs, the following metrics get quantifiable: Loss Sensitivity, CLEVER
Score, and Clique Method. Regardless of the unavailability of the original dataset used
for training and testing the ML model, using the synthetic dataset for statistical probing
may discover important characteristics and improve the assessment of the model’s global
trustworthiness by making incomputable metrics described in Section 4.2.1 quantifiable.

4.3.2 Process Design

Figure 4.3 shows an illustration of the process design and the flow of operations toward
the computation of an advanced trust score. In the first step, the synthetic dataset is
generated. The following Subsection 4.3.3 provides more details about what information
must/may be provided to the algorithm and what respective advantages are. Subsection
4.4.1 gives insights into the algorithmic computation. In the second step, the Black Box
model is used as a labeling oracle to provide labels for the generated dataset. Through
this labeling process, model intrinsic characteristics are propagated onto the dataset. In
a third step, this can be exploited in the metric calculation to provide a more complete
and realistic picture of the fairness, explainability and robustness pillar scores. Lastly,
the pillar scores are aggregated to compute the advanced trust score.

Figure 4.3: Process Design From Data Creation To Score Computation
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4.3.3 Scenarios

In order to systematically engineer a synthetic tabular dataset, some information needs
to be provided by the user, to prevent creating a fully arbitrary dataset. Further, the
ML model requires maintaining a consistent input format, since the model is designed to
handle a fixed number of features. This work presents two variations for dataset creation.
Table 4.3 vertically lists statistical properties required as input for each scenario. The user
of the system, who is interested in evaluating the trustworthiness of an ML model under
the constraint of not sharing the original dataset, has to decide how much information
describing the data is going to be shared with the platform. For the MUST scenario,
mandatory information include the Feature Name, Data Type, Minimum Value, Maximum
Value, and Unique Values. In the MAY scenario, the user benefits from a more accurate
trust score, since the resulting dataset used for the computation of the metrics is more
similar to the original dataset compared to the MUST scenario. Additionally, in the MAY
scenario the statistical properties Mean, Variance, and skew are considered. This provides
information about the shape of the distribution and its modality (multi/single modal,
long tail, Non-Gaussian). The fourth central movement (Kurtosis) is not considered in
the current implementation, but could be considered for future work.

Table 4.3: Two Variations Of The Synthetic Dataset Generator And The Required Input

MUST MAY
(High Privacy) (High Similarity)

Feature Name Yes Yes

Data Type Yes Yes

Minimum Value Yes Yes

Maximum Value Yes Yes

Unique Values Yes Yes

Mean No Yes

Variance No Yes

Skew No Yes

Kurtosis No No

The challenge lies in using as few exact specifications as possible, while at the same time
preserving the statistical properties of the original dataset. A clear trade-off between
privacy (MUST) and similarity (MAY) can be identified. The more similar the synthetic
dataset is to the original dataset, the more accurate the assessment of trustworthiness
can be. However, this also allows for different types of privacy attacks, such as inference
attacks, where information leakage from the model is exploited and sensitive information
can be inferred about individual data points. By querying the model with the entire syn-
thetic dataset, an adversary could carefully select instances to reveal information about
sensitive data points. However, the success of this attack is mainly dependent on the ML
model’s application of privacy-enhancing techniques to mitigate such attacks (e.g. differ-
ential privacy) and less on the synthetic dataset itself. The synthetic dataset rather serves
as a pool of possible instances, from which the attacker could carefully select instances.
It is also notable mentioning, that the dataset creation is model-independent, and works
the same for all subgroups from the Black Box Taxonomy (see Section 4.1).
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4.4 Implementation

4.4.1 Algorithmic Design

The algorithmic design of the synthetic dataset generator consists of two main compo-
nents: (1) the specification of ranges and (2) the generation of the dataset. Both com-
ponents are implemented in a Python class called Generator. The first component is
responsible for specifying the ranges of possible values for each feature. This is the sys-
tematic part of the implementation, and the decisions taken influence the properties of
the synthetic dataset. The second component is the executive part, which is responsible
for the actual generation of the dataset.

(1) Specification of Ranges

This component uses information provided by the user, to specify ranges for each feature,
that contain the statistical properties and will be used by the second component. For
this, the data type of the individual features and the specified scenario (MUST or MAY)
play a crucial role. The implementation differentiates between three different data types:

• Categorical : This data type includes nominal values which can only be categorized
as for instance ”a”, ”b”, and ”c” without the possibility to order values based on a
rank. This also includes instances, when a category is described with a number, as
for instance group ”1”, ”2”, and ”3”. In this example, group ”1” is not considered
better or worse than group ”2”.

• Discrete: This data type includes natural numbers that can be categorized and
ranked, as for instance the numbers on a scale from one to ten, 0 < a ⩽ 10 | a ∈ N.
This often applies to counts or scores.

• Continuous : This data type includes real numbers that may take any possible nu-
meric value and can be meaningfully split into smaller parts, such as decimal values
and fraction. Examples are 0.25 and -412.5.

The implementation of the categorical feature is the simplest, regardless of the specified
scenario. Because the synthetic dataset is a representation of the original dataset, each
category should be present at least once. Therefore, the ranges for categorical features
simply contain every unique value of the categorical feature (see line 19 in Code Listing
depicting the range specification function for the MAY scenario 4.2). For the data types
discrete and continuous, the implementation for specifying the range is different between
the MUST and the MAY scenario. Figure 4.4 illustrates the method of range specification
for features with discrete data types on an example. The same methodology however, can
be applied also for features with continuous variables. The box at the top represents a
histogram plot, showing the occurrences of each value from the discrete feature in the
original dataset, together with its probability distribution function (orange line). The
value span reaches from the minimum value 1 to the maximum value 15. Other statistical
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properties are also visible in the Figure, such as the mean with the value of 11 and the
variance of value 1. Further, the distribution is left-skewed, since the left tail (smaller
values) is much longer than the right tail (larger values). This is captured in the statistical
property of a negative skew.

1 # discrete (finite options within a defined range)

2 if d_type[idx]. __eq__("discrete"):

3 self.ranges.append(range(int(min_[idx]), int(max_[idx]) + 1, np.

maximum(1, int(max_[idx] - min_[idx]) // 10)))

Code Listing 4.1: Specification Of Range For Discrete Features In MUST Scenario

For the specification of the range in the MUST scenario, only the minimum and maximum
values are available. The Code Listing 4.1 shows the implementation, where the step size
is defined as the tenth fraction of the absolute difference between the minimum and
maximum value (integer division for features with discrete values, regular division for
continuous features). This ensures, that the range always contains at most ten equally
spaced values. This approach is visualized in the middle box of the Figure, where the
step size equals to a value of 2. The final range therefore, consists of the following values:
[1,3,5,7,9,11,13,15]. However, the difference in the statistical properties can be observed
for the specified range of the MUST scenario, with a mean of value 8 and skew of value
0 (no skew). This is due to the methodology and the absence of this the properties in
the specification of the range. For the MAY scenario, these statistical properties are used
to generate a range, which better reflects the original distribution. The final range for
the MAY scenario consists of the following values: [1,3,4,6,9,11,12,13,14,15]. Here, values
from the upper half (8 to 15) of the total range are more often represented than values
from the lower half (1 to 8). For this reason, the mean of the range for the MAY scenario
is higher (equal to the mean of the original dataset) than the mean of the range for the
MUST scenario. This similarity of statistical properties compared to the original dataset
is also shown for the variance and skew.

Figure 4.4: Illustration Of Range Specification For Features Of Discrete Data Type
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As shown above, the ranges computed for the MAY scenario are more accurately represent-
ing the distribution of the original dataset. This raises the question, how the algorithm can
decide, what discrete value should be selected for the specification of the range, and how is
the distance between the values is computed, considering the fact, that the spacing is not
defined by a fixed constant? The following paragraph provides an answer to this question.

Figure 4.5: CDF Plot

The code from line 22 to 38 in the Code Listing 4.2 exemplifies the value specification
on the concrete implementation. The algorithm draws a large enough number of samples
from the skewed normal distribution with the provided statistical properties as arguments.
These samples approximate the values from the original dataset (blue bars in top box of
Figure 4.4, since they share the same statistical properties. However, it is important
to mention, that it is not possible to derive at the exact values, since many possible
distributions may share the same properties. Because samples may result in higher/lower
values than the maximum/minimum value provided as a statistical property, the samples
out of bound are replaced with the respective extrema (line 25/26 in the Code Listing).
Then, the samples are sorted in ascending order which could result in an array as the
following: [1,2,2,3,3,4,4,4,4,...,15,15,15]. Since each sample has the probability of 1

#samples
,

the cumulative probability represents the accumulation of the individual probabilities. As
the value of the sample in the sorted array increases, so does the value of the cumulative
distribution. The summed probability over all samples equals to one. Figure 4.5 depicts
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different Cumulative Distribution Functions (CDFs) for different skewness values. As it
can be seen, the skewness value influences, how early the slope of the CDF begins to
increase. Therefore, the values for the cumulative probability can be used as thresholds
- if reached, the value of the sample is included into the range. Because the length of
the specified range should not exceed more than ten values, the thresholds are specified
in an interval of 0.1, as the dashed, horizontal blue lines in the Figure indicate (line 31
in the Code Listing). Assuming the provided skew in the example equals -1, the first
value of the range takes the value 3 since this is the x-value of the graph, where the
y-value crosses the first horizontal line. The second value is at 4.5, which is casted to an
integer value in the case of being faced with discrete values (not casted for features with
continuous variables). This could result in the following range, when each unique value
is only once: [3,5,6,7,8,9,10]. In this example, the range of possible values is rather small.
In situations where the minimum and maximum value are wider separated, the variation
of the distances in the specified range gets bigger.
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1 def _specify_ranges_may(self , d_type , min_ , max_ , unique , mean , std ,

skew):

2 """ Iterates over the number of features (n) and

3 specifies a [List] for each feature containing

4 possible values for the later dataset generation.

5

6 Args:

7 :param d_type: [List:Strings] of size n

8 :param min_ , max_ , unique: [List] of size n

9 :param mean , std , skew: [List:float] of size n

10 NaN for categorical features

11

12 Sets:

13 self.ranges: [NestedList] attribute of the

14 Generator object with n Lists of different size

15 """

16 for idx , _ in enumerate(d_type):

17 if d_type[idx]. __eq__("categorical"):

18 # ordinal or nominal

19 self.ranges.append(unique[idx])

20 continue

21

22 # draw from distribution with statistical properties

23 X = skewnorm(skew[idx], loc=mean[idx], scale=std[idx]).rvs (10000)

24 # replace drawn samples out of bound

25 X[X < min_[idx]] = min_[idx]

26 X[X > max_[idx]] = max_[idx]

27 X.sort()

28 c_prop = np.arange(1, len(X) + 1) / len(X)

29 r = []

30

31 for threshold in np.arange(0, 1.1, 1 / 9):

32 i = (np.abs(c_prop - threshold)).argmin ()

33 # discrete (finite options)

34 if d_type[idx]. __eq__("discrete"):

35 r.append(int(X[i]))

36 # continuous (infinite options)

37 elif d_type[idx]. __eq__("continuous"):

38 r.append(X[i])

39 else:

40 raise AttributeError("Unsupported data type provided.")

41

42 r = list(set(r))

43 r.sort()

44 if int(min_[idx]) not in r: r.append(int(min_[idx]))

45 if int(max_[idx]) not in r: r.append(int(max_[idx]))

46 self.ranges.append(r)

Code Listing 4.2: Code Dataset Generation
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(2) Generation of the Dataset

This component is responsible for the execution of the data generation. It uses the speci-
fied ranges from the first component, based on which a dataset is generated and saved to
a CSV file. The implementation is independent of the specified scenario (MUST or MAY)
and uses the Python module called Itertools [74]. It provides the usage of fast, memory-
efficient tools for the creation of iterators. Line 27 in Code Listing 4.3 calls the product()
function, to generate a Cartesian product of input iterables. In mathematics, the term
Cartesian product is defined as a mathematical operation that combines elements from
two or more sets to create a new set. The operation is denoted by the ”×” symbol. The
new set of a Cartesian product between set A and set B contains ”all possible ordered
pairs whose first component comes from (set) A, and whose second component comes
from (set) B” [75, p. 1]. This is illustrated on a short example below:

Let A = {1, 2} and B = {a, b}. Then the Cartesian product of A and B is written
as A × B and results in a new set A × B = {(1, a), (1, b), (2, a), (2, b)}. Note that
|A×B| = 4 = |A| × |B|.

1 def _generate_dataset(self , path , f_names , must):

2 """ Generates a dataset and saves it to a CSV

3 file at the provided path destination.

4 This function uses the ranges saved in the

5 self.ranges attribute.

6

7 Requires:

8 Before calling this function , the ranges

9 have to be specified by calling the

10 _specify_ranges () function.

11

12 Args:

13 :param path: [String] pa

14 :param f_names: [List:Strings] names of the

15 features in a list for

16 :param must: [bool] used for file naming

17

18 Returns:

19 :return [DataFrame] synthetic dataset

20 """

21 mustormay = "must" if must is True else "may"

22 full_filename = f"{path}/ synDS_{mustormay }.csv"

23 with open(full_filename , "w", newline="") as f:

24 writer = csv.writer(f)

25 writer.writerow(f_names)

26 # Write all possible combinations to the CSV file

27 for element in itertools.product (*self.ranges):

28 writer.writerow(element)

29 return pd.read_csv(full_filename)

Code Listing 4.3: Code Dataset Generation
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For the implementation of the synthetic dataset generation, the individual sets correspond
to the ranges for every individual feature, provided by the first component. Assume, that
an original dataset (which is not accessible for the trustworthiness analysis) contains three
features that are listed and described below, together with the specified ranges from the
first component of the synthetic dataset generator:

• f1: The first feature is a categorical feature with the values ”a”, ”b”, and ”c”. The
specified range from the first component of the implementation is simply containing
each unique value: [”a”, ”b”, ”c”]

• f2: The second feature consists of continuous values ranging from zero to one. The
specified range for the MAY scenario could look like this: [0.1, 0.4, 0.9]

• f3: The third feature contains discrete values from one to three. The specified range
is the following: [1, 2, 3]

The ranges specified for each feature form a set, since the values in the range are only
appearing once. For the generation of a synthetic dataset, the Cartesian product of all
three feature ranges can be computed. This example is illustrated in Figure 4.3 in the
bottom left. The formal description looks as follows:

F1 × F2 × F3 = {(f1, f2, f3) | f1 ∈ F1, f2 ∈ F2, f3 ∈ F3} (4.5)

The result is a dataset containing nine samples. This value is calculated as the product of
the total number of values per feature (|A×B × C| = |A| × |B| × |B| = 27 = 3× 3× 3).
Figure 4.3 as well shows, that the newly created dataset contains for example the samples
(b, 0.4, 1) and (a, 0.9, 3), which might also appear in the original dataset as such. Further,
this example also nicely illustrates, that the synthetic dataset may also contain samples
that are not part of the original dataset. One such example may be the sample (c, 0.1,
1) under the assumption that the second (continuous) feature of the original dataset only
contained values 0, 0.2, and larger but not the value 0.1. However, the more statistical
properties are considered for the range specification, the better will the synthetic dataset
approximate the original one.



48 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.4.2 Time Complexity Analysis

To estimate the time needed for a dataset creation and to evaluate the time complexity
of the implementation, an experiment has been conducted. It is important to highlight,
that real world datasets have different properties, such that it is not feasible to test every
scenario. Therefore, the aim of this time complexity analysis is to provide a realistic upper
bound.

As indicated in the previous Section, the size of the synthetic dataset depends on two
components: first, on the number of features and second, on the Range Length of each
feature. The former relies on the original dataset and can not be influenced by the design
of the implementation. The latter depends on the first part of the Algorithmic Design
(see Subsection 4.4.1) and can vary between different data types. Gentle reminder: the
Range Length for categorical features equals the number of unique independent values.
In the special cases of binary categorical features, the Range Length has a value of two.
For discrete and continuous features, the Range Length is bounded by a maximum length
of ten. The specification of MUST or MAY influences the spacing between the individual
values, but not primarily the length of the range itself. Therefore, it is assumed that the
average Range Length will lie between five and eight values.

One possible example is depicted in Table 4.4 containing four features. As shown in the
last column, the Range Length is different and mainly depends on the data type of the
feature. In this example, the synthetically generated dataset would contain 720 rows
(|F1| × |F2| × |F3| × |F4| = 10× 2× 6× 6 = 720).

Table 4.4: Possible Result Of The Range Specification

Feature Data Type Specified Range Range Length

F1 discrete [0,2,5,7,9,12,15,18,24,31] 10
F2 binary categorical [0, 1] 2
F3 continuous [1.2, 2.1, 4.4, 5.9, 8.2, 8.8] 6
F4 multinomial categorical [a, b, c, d, e, f] 6

To provide an upper bound for the time calculation, the experiment assumes that all
features have the same specified Range Length. Figure 4.6 depicts the Time Complexity
Plot, where the x-axis shows the independent variable (number of features) and the y-axis
shows the dependent variable (time in seconds). The colored lines illustrate the difference
in the specified Range Length from five to eight. Regardless of the Range Length, the time
needed to generate a synthetic dataset with seven features or fewer is tolerably low (less
than five seconds). However, in all cases an exponential time increase can be identified for
eight features or more. For a dataset with eight features, each having a specified Range
Length of eight, the final dataset contains 88 = 16′777′216 samples and the generation
takes slightly longer than 80 seconds.

Again, this computation assumes that all features have the same Range Length, and serves
as an upper bound. Real-world datasets however, often have features of different data
types, which result in distinct Range Lengths. Therefore, the experiment suggests that
this approach is practical for datasets with a feature size around ten.
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Figure 4.6: Experiment To Evaluate The Time Needed For The Dataset Generation

4.4.3 Challenges and Limitations

The creation of synthetic data is not a trivial process, and many different approaches
exist that can be pursued. For the context of the presented work, access to the original
dataset is not granted. This clearly limits the number of applicable methods, as for
instance no existing data augmentation methods can be applied, such as the usage of
GANs. As the use-case of a synthetic dataset generation from zero is rather specific,
no existing solutions for this challenge could be identified. Therefore, the methodology
of the presented implementation provides novelty as it is capable of creating a tabular
dataset for two scenarios (MUST and MAY). This Subsection aims to address potential
limitations.

As mentioned above, the methodology of the implementation is concentrated on generating
tabular data. The methodology uses the Cartesian product to generate the dataset from
different feature ranges. One property of the Cartesian product is, that the cardinality
of the output equals the product of the cardinalities of all the input sets. This causes an
issue for datasets with a large number of features because it would result in blowing up
the size of the dataset exponentially. The Time Complexity Analysis in Subsection 4.4.2
has shown, that the dataset generation with up to eight features is relatively feasible. For
datasets with more than eight features, the practicability depends on the individual data
types.
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Further, the size of the specified range for categorical features corresponds to the number
of unique values in the original dataset. This causes problems if the dataset contains
unique identifiers and a feature is used as a primary key. The number of unique values
equals the size of the original dataset, which again influences the size of the synthetic
dataset. However, the unique identifier does not provide useful information that can be
used for the ML model and is anyway considered an irrelevant feature. Furthermore, the
removal of direct identifiers avoids the possibility of re-identification of individuals and
improves the privacy aspect. Additionally, the generation of exponentially large files is
not only impractical regarding the aspect of file size, but also the time it takes to produce
the dataset. Another limitation by design is, that statistical properties do not contain
information about the relation between features. Additional input such as the feature
correlation could be used to filter out impossible samples from the synthetic dataset, e.g.
a two-year-old baby with a body weight of 65 kg. The dataset generation is tested and
works properly for normalized datasets, but not for one-hot-encoded features because the
information is spread across different columns. Similarly, the dataset generation works for
spatial features, e.g. longitude and latitude values because they are in a decimal degree
format. But for features, where the basis is not decimal as for instance time-series data,
the generator is missing this information (one day has 24 hours). A solution could be
to convert the time value into a universal Unix timestamp before the sample generation
and convert them back again. Similar to the conversion from the time to a running total
number of seconds, other feature values could be converted into the decimal system for
the dataset generation.

4.4.4 Possible Integration Into Trusted AI Platform 2.0

The implementation of the synthetic dataset generator aims to address the limitation of
the Trusted AI [12] platform, when faced with a scenario for which the original dataset
is not uploaded to the tool. Because a new version of the platform is being developed
simultaneously in independent work, the final integration of the dataset generator into the
current version of the platform is not part of this thesis. However, the dataset generator
is built in a modular way and can be considered an encapsulated module independent
of the current implementation. The code is also written in Python, which allows simple
integration into the application without the need for an API. The architecture of the
application including the synthetic dataset generator could look as depicted in Figure 4.7.

The Upload Module in the front end could provide the user an alternative interface if the
dataset is not allowed to be shared with third parties out of privacy concerns. Instead
of a mandatory dataset field, the user is asked to provide descriptive information about
the features of the dataset. Hereby, information from the MUST scenario is marked as
mandatory fields, and additional statistical information from the MAY scenario is marked
as optional (see for reference Table 4.3).
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Figure 4.7: App Architecture Including The SynDS Generator, Based On [12]

Algorithm 1 shows the algorithmic pseudocode and illustrates the change in the current
implementation needed, to produce a successful integration. Lines 10 to 13 show, that
the current implementation does not need to be changed and the regular trust score com-
putation can be executed. However, the algorithm first will have to check if a dataset
is provided by the Upload Module and in if this is not the case, then in lines 3 to 8 the
instantiation of the Generator object is executed, and the respective method called de-
pending on if the user provided statistical properties for the MUST or MAY scenario.

Algorithm 1 Extended Trusted AI Algorithm

1: function TrustedAI(model, datatrain, datatest, factsheet, configmap, configweights)
2: if datatrain = 0 || datatest = 0 then
3: generator← Generator()
4: if MUST then
5: datatest ← generator.generate dataset must(MUSTargs)
6: else
7: datatest ← generator.generate dataset may(MAYargs)
8: end if
9: end if
10: compute metrics ▷ Regular Trust Score Computation
11: apply mapping
12: compute pillar scores
13: compute weighted trust score
14: return trust score
15: end function
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4.4.5 Code and Installation

The implemented code can be found in the GitHub repository [76], together with the
ReadMe.md file including additional instructions, specified requirements, and execution
examples.

The following steps describe the installation process:

Clone the GitHub Repository

1 git clone https :// github.com/dgagul/trustworthyBlackbox

2 cd trustworthyBlackbox

Create a virtual environment and install the dependencies

1 python -m venv BBenv

2 BBenv\Scripts\activate

3 pip install -r requirements.txt

Launch the Jupyter Notebook and execute desired scenario

1 jupyter notebook



Chapter 5

Evaluation

The primary objective of this Chapter is to evaluate the robustness of the trust score for
trustworthiness assessment. To achieve this, this Chapter evaluates the computation of
the trustworthiness level of ML and DL models in four different ways: True Score, Limited
Score, Advanced Score MUST, and Advanced Score MAY. The last three ways address
the assessment of trustworthiness under the restriction of having no access to the original
dataset (Black Box), whereas the first score is used as a baseline for comparison. The goal
is to measure the effectiveness of the implemented synthetic dataset generation and its
appliance to measure a more accurate trustworthiness score under the restriction of having
limited information present. The implementation is evaluated on two real-world scenarios:
Diabetes Prediction using Random Forest (RF) in Section 5.1 and Home Credit Default
Risk using Deep Neural Networks (DNN) in Section 5.2. Both models solve a classification
problem, whereas the same model could be applied to a regression task. The selection
of these two model types is based on the differences in the respective properties. As
defined in the Black Box Taxonomy in Section 4.1, RF is placed in the subgroup called
Understandable Models whereas DNN belongs to the subgroup called Highly Complex
Models. Evaluating models from different subgroups respects the fact that some metrics
are only applicable to a specific ML/DL algorithm (see Table 4.2). For each of the two
scenarios, a detailed problem description is included and insights into the dataset and
architecture of the used model are provided. Then, the four trustworthiness scores are
computed. Finally, each scenario ends with a comparison of the four trustworthiness
scores.

53
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5.1 Scenario: Diabetes Prediction - RF

5.1.1 Problem Description

Especially in the last years, the fast-evolving technology of AI has made it useful in various
aspects of health care. ML models are used for instance in analyzing medical images, drug
discovery as well as in medical diagnostics and treatment [77]. However, the usage of AI
in healthcare has risen ethical considerations and expressed the need for interpretable
models [28]. One particular example is the diagnosis and the probability prediction of
suffering from diabetes based on the patient’s symptoms, medical history, and lab results.
Ensuring that the diabetes prediction model generalizes well to new patient data from
different populations is crucial for its responsible and trustworthy use. Therefore, this
scenario is well suited for the trustworthiness assessment using the methodology of the
Trusted AI platform [12]. One important aspect however, is the patient’s privacy and data
security. As the patient’s health records contain personal and sensitive data, stakeholders
are not allowed to share the information with third parties including the online tool, used
for trustworthiness analysis. For these reasons, the example of diabetes prediction forms
a well-suited evaluation scenario.

5.1.2 Dataset and Model

For the first scenario, the diabetes prediction dataset from Kaggle was used [78] to train
an RF predictor. Based on a patient’s medical history and demographics, the diabetes
prediction dataset can be used to build an ML model to predict diabetes in that patient.
This helps doctors develop individualized treatment programs and identify individuals at
risk of developing diabetes. Researchers can also use the dataset to examine associations
between different demographics, medical characteristics, and risk of developing diabetes.
The presented dataset comes pre-labeled and contains patient’s medical and demographic
information. Table 5.1 depicts the features of the Kaggle dataset [78] that are used for
the training of the RF classifier. The columns dType, min, max, mean, std, and skew
describe statistical properties of the feature values and are used for the generation of the
synthetic dataset.

The trained model is an RF Classifier from the scikit-learn library [79], with the parameter
n estimators set to 1000 and random state set to 42. The model was trained on categorical
features, where strings were encoded using integer dummy variables. The data was not
normalized before training. The dataset was split into an 80/20 ratio for training and
testing, respectively. After training, the model achieved an accuracy of 97.0%, indicating
its high performance in making accurate predictions on the test data.
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Table 5.1: Features Used By The RF Classifier To Predict Diabetes

Feature Description dType min max mean std skew

Age plays a significant role since older per-
sons are more likely to be diagnosed
with diabetes.

discrete 0 80 41.8 22.5 -0.05

Gender biological sex of a person is referred to
as their gender, and this can affect how
susceptible they are to developing dia-
betes. The feature is divided into three
categories: male, female, and other.

multinomial
categorical

- - - - -

Blood
glucose
level

describes how much glucose is present
in the blood at any one moment. This
feature is closely linked with diabetes,
as diabetes patients are often affected
by a high blood glucose level.

discrete 80 300 138 40.7 0.82

Hyper-
tension

measures if the arterial blood pressure
is persistently high. Since this feature
is binary, a value of 0 means that there
is no hypertension, whereas a value of
1 means that the person suffers from
hypertension.

binary cat-
egorical

0 1 0.07 0.26 3.23

Body
mass
index
(BMI)

frequently used measure to determine
whether the person has a healthy
weight in relation to their height. Ac-
cording to this, a BMI under 18.5
means, that the person is under-
weighted, while a BMI range between
18.5 and 24.9 is defined as normal.
Overweight persons have a BMI be-
tween 25 and 29.9, obese persons over
30.

continuous 10.0 95.6 27.3 6.63 1.04

HbA1c
level

indicator of a person’s average blood
glucose level for the previous two to
three months. A higher risk of get-
ting diabetes is indicated by a higher
Hemoglobin value.

continuous 3.5 9.0 5.52 1.07 -0.06

Heart
disease

is also linked to a higher chance of get-
ting diabetes. A value of 0 signifies
that the person does not suffer from
heart disease, a value of 1 indicates
that the person has heart disease.

binary cat-
egorical

0 1 0.03 0.19 4.73

Smoking
history

a known risk factor for developing di-
abetes. Categories include: not cur-
rent, former, no info, current, never
and ever.

multinomial
categorical

- - - - -

Diabetes is used as the target class for the RF
prediction, labels each sample if the
patient was diagnosed with diabetes.

binary 0 1 0.08 0.27 2.97
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5.1.3 Trustworthiness Scores

True Score

The true score is calculated based on the original dataset and the trained RF classifier,
according to the methodology presented by the work of Leupp et al. as depicted in Figure
3.5. It serves as a ground truth and is assumed to reflect the true trustworthiness score
of the RF classifier. The results of the trustworthiness analysis are depicted in Figure
5.1, showing the scores of the individual metrics on top of the respective bar together
with the aggregated pillar score as a ratio of the maximum (five points) at the top. In
total, 18 individual metrics were computed, of which seven come from the fairness pillar,
four from the explainability pillar, two from the robustness pillar, and five from the
methodology pillar. The pillar scores are computed according to Equation 3.1 with the
default configuration weights depicted in Figure 3.6. The fairness score of the RF classifier
measures a value of 4.0/5. The explainability score shows a value of 4.4/5, robustness a
value of 4.0/5, and methodology a value of 2.4/5.

Figure 5.1: RF True Score: Fairness Scores (Green), Explainability Scores (Yellow), Ro-
bustness Scores (Red), Methodology Scores (Blue)
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The aggregated score of the methodology pillar shows a rather low score and has a high
variance regarding the individual scores. While the feature Missing Data and Train Test
Split have a value of five, the metrics Normalization, Regularization and FactSheet Com-
pleteness show a low score of zero to one. This correctly reflects the attributes of the
model, since for evaluation purposes the original dataset on which the RF classifier was
trained, is not normalized and the model does not use any regularization method as de-
scribed in the previous Subsection 5.1.2.

Limited Score

The limited score reflects the assessable trustworthiness, under the restriction that the
original dataset is not uploaded by the user of the tool. The score is calculated using a
limited subset of computable metrics for this scenario. In Figure 5.2, one big difference
compared to the previous example can be quickly identified.

Figure 5.2: RF Limited Score: Fairness Scores (Top Left), Explainability Scores (Yellow),
Robustness Scores (Bottom Left), Methodology Scores (Blue)
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Both, the fairness as well as the robustness score are showing a value of zero. This is due
to the fact that for these pillars, all available metrics rely on the dataset and therefore
get incomputable. Also, the number of computable metrics for the explainability pillar
dropped from four (in the case of the true score) to two computable metrics. Similarly,
in the methodology pillar, only two metrics remain computable (compared to five in the
previous example). The unavailability of computable metrics for any pillar is alarming,
as the low pillar score with a value of zero is not reflecting the true pillar score and can be
misleading. Further, the unavailability of metrics per pillar complicates the computation
of a global trust score. The comparison of the global trust scores is provided in a separate
paragraph after presenting the two advanced trust scores. The explainability score of the
RF classifier measures a value of 3.8/5. Comparing it with the true score, the metrics
Model Size and Correlated Features become incomputable. The Feature Relevance metric
can not be computed using the SHAP approximation, because of the unavailability of the
dataset. Therefore, the original implementation (relevance estimate by the RF model)
is used, which results in a metric score of value three. The methodology score shows a
value of 0.5/5. This is because the metric calculation mainly depends on the methodology
applied for training the model (takes training dataset as input).

Advanced Score MUST

The advanced score MUST is calculated using the synthetic dataset generated by the
module presented in Section 4.4 with only the statistical properties of the MUST scenario
(see Table 4.3) provided as input. The aim is to provide a more accurate representation
of the true score and improve the total number of computable metrics. The results of the
trustworthiness analysis are depicted in Figure 5.3, showing the scores of the individual
metrics. In total seven metrics were computed. Compared to Figure 5.2, there exists
no pillar with a score of zero, due to the absence of computable metrics. Considering
the fairness pillar, the metric Disparate Impact became quantifiable using the synthetic
dataset for the metric calculation and measures a metric score of value five. Since only
one metric is available, this results in a pillar score of value five according to the described
methodology (see Equation 3.1). For the robustness pillar, the Clique Method became
quantifiable and measures a value of two. Similarly to the fairness pillar, this results in a
pillar score of value two for the robustness pillar. The explainability pillar consists of the
metrics Algorithm Class, Model Size and Feature Relevance. Compared to the explain-
ability pillar of the limited score, the Model Size metric additionally became quantifiable
using the synthetic dataset. Further, the Feature Relevance metric, shows a higher score
with a value of five, compared to the limited score (value of three), but the same value as
in the True Score. Because of the availability of the synthetic dataset, this metric is also
computed with the SHAP explanator. The methodology pillar shows equal results as in
the limited score (both pillar score of 0.5).
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Figure 5.3: RF Advanced Scores MUST: Fairness Scores (Green), Explainability Scores
(Yellow), Robustness Scores (Red), Methodology Scores (Blue)
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Advanced Score MAY

The advanced score MAY is following the same approach of using the synthetic dataset,
with the difference of using additional statistical properties of the MAY scenario (see Table
4.3) provided as input. Since this dataset more accurately reflects the original dataset,
more representative metric/pillar scores are expected. The results of the trustworthiness
analysis are depicted in Figure 5.4, showing the scores of the individual metrics. Similarly
to the previous example (Advanced Score MUST), the same number of metrics were
computed with a value of seven. This was expectable since the methodology for calculating
the metrics is the same (see Figure 4.3). The only difference compared to the Advanced
Score MUST is a higher robustness pillar score of value 3/5 (compared to 2/5). This
reflects that the more accurate dataset leads to an improved metric score for the Clique
Method.

Figure 5.4: RF Advanced Scores MAY: Fairness Scores (Green), Explainability Scores
(Yellow), Robustness Scores (Red), Methodology Scores (Blue)
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Comparison

This Subsection provides a side-by-side comparison of the overall trust scores for the
True Score, Limited Score, Advanced Score MUST, and Advanced Score MAY. Figure 5.5
shows a summary of the previously mentioned paragraphs. Each subplot is showing the
aggregated overall score as a ratio of the maximum (five points) at the top. The individual
pillar scores can be seen on top of the respective bar charts.

Figure 5.5: RF Overall Trust Scores Comparison: True Score (Top Left), Limited Score
(Top Right), Advanced Score MUST (Bottom Left), Advanced Score MAY (Bottom
Right)

The true overall score is depicted in the top left and was calculated using the original
dataset. It shows a value of 3.7/5 and is assumed to reflect the true trustworthiness score
of the RF classifier. In the top right, the overall score shows a value of 1.1/5 and results
from the aggregation of a few computable metrics that do not rely on the dataset (as it is
unavailable). While the pillar score for the explainability pillar slightly reduced (from 4.4
to 3.8), the pillar scores of the fairness and robustness pillar have dramatically dropped
to a value of zero. This is due to the unavailability of any computable metric. Also, the
score of the methodology pillar dropped to a value of 0.5/5. It can be concluded, that the
limited score is misleading and in no way reflects the true score.
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The two subplots at the bottom show the advanced scores, calculated using the generated
synthetic dataset. Comparing the overall trust scores, it becomes recognizable that the
availability of the synthetic dataset improves the trustworthiness assessment and provides
more accurate results. The explainability pillars exactly reflect the true value of 4.4/5.
The robustness score (bottom left) measures a value of two compared to the limited score
(value of zero). Even better, the robustness value approximates the true score in the
Advanced MAY example (value of three). This is an indication that the usage of the
synthetic dataset may help to derive a more accurate assessment of global trustworthiness
level. The methodology pillar looks quite different and has the same score of 0.5/5 as the
limited score. This is because the metrics from the methodology pillar mostly depend on
the original dataset used for training the model. The last pillar (fairness) shows interesting
behavior when comparing the true score to both advanced scores. The advanced score
MUST and MAY show a pillar score of value 5/5, which is higher than the pillar score in
the ground truth. However, one big difference in the number of metrics used for calculating
the pillar score can be identified. While the true fairness score is calculated using seven
metrics, the pillar score for both of the advanced scores is computed using only one single
metric. Since this single metric (Disparate Impact) has a value of five, the whole pillar
score ends up having a high value.

Figure 5.6: Diabetes Prediction Dataset Comparison For Features: Blood Glucose Level
(Left), HbA1c level (Middle), BMI (Right)

Figure 5.6 shows the comparison of the original dataset in red, the synthetically generated
dataset with the MUST scenario in brown, and the dataset with the MAY scenario in
green. Three histogram plots are visible, showing the distribution of possible values
together with their occurrences in the dataset. The left histogram shows the discrete
feature Blood Glucose Level, the middle plot the continuous feature HbA1c level, and the
last plot on the right the continuous feature BMI. In all three histogram plots, the feature
values of the MUST dataset are uniformly distributed, where each possible value has the
same number of appearances. Comparing this to the original dataset in red, it becomes
obvious that this is not the case for real-world datasets. The BMI plot on the right
indicates, that the true distribution is right-skewed and most people have a lower value,
whereas the number of people with a very high value is relatively small. These statistical
properties are well captured by the distribution of the MAY dataset, which better follows
the trend of the original dataset. Despite the aim is not to perfectly match the values of
the original dataset, the Figure clearly illustrates the difference between the results.
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5.2 Scenario: Home Credit Default Risk - DNN

5.2.1 Problem Description

Not only in the field of health care is the application of AI technology vastly improving
standardized procedures. Also in financial services, the usage of AI has been shown to
gain more attention. The technology is applied for example in fraud detection systems
or to improve anti-money laundering systems [80]. Another interesting use case is the
task of risk assessment. As the risk in many scenarios can be quantified, accurate risk
assessment is critical to avoid potential consequences. AI models are used to assess credit
risk by analyzing the historical data of a person to predict the likelihood of successful
repayment of the loan. However, many people struggle to obtain credit because their
loan histories are either nonexistent or not good enough. In applying ML models, the
objective is to ensure that creditworthy clients are not denied access to loans [81]. The
aim is to train a model, that helps to approve loans with appropriate credit amounts.
Equal treatment in credit lending is crucial, even for individuals without an extensive
credit history. Equal treatment is also important, considering historical gender-based
discrimination. Measuring the trustworthiness of such a model helps to identify potential
biases and generates awareness. Similar to the previous evaluation scenario, the privacy of
applicants and their data security is very important in the financial sector. Credit lenders
may not be willing to share sensitive financial records containing sensitive data. For these
reasons, the example of diabetes prediction forms a well-suited evaluation scenario.

5.2.2 Dataset and Model

For the second scenario, the Home Credit Default Risk dataset from Kaggle was used
[81]. The raw dataset is a dataset used for Kaggle competitions, with 122 features joined
from various sources. As the joined table contains missing values and not all features
are considered equally important, nine features (including the target) were used for the
training of the classifier in this evaluation scenario. A description of the features together
with the most important statistical properties can be seen in Table 5.2. Categorical fea-
tures consisting of string values were encoded using integer dummy variables. No data
normalization was applied before training. The train-test split measures a ratio of 80/20.

The trained model is a DNN Classifier from the PyTorch framework. The architecture of
the model consists of one input layer with eight nodes (number of features excluding the
label), one hidden layer with ten nodes, and the output layer with two nodes as the task is
a binary classification problem. A cross-entropy loss function was used together with the
Adam optimizer and a learning rate of 0.001. The model was trained in ten epochs with
a batch size of 100. The final model achieved an accuracy of 96%. As the algorithm used
for the metric calculation in the Trusted AI platform is implemented mainly for DNN
models from the Keras framework, the model parameters were saved and loaded into a
Keras model with the same architecture.
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Table 5.2: Features Used By The DNN Classifier To Predict Credit Risk

Feature Description dType min max mean std skew

Amt credit the total credit amount
that is asked for by the ap-
plicant.

continuous 4.5e+4 4.0e+6 5.9e+5 4.0e+5 1.23

Amt in-
come total

indicates the applicant’s
yearly income and plays an
important role for the fi-
nancial solvency, strongly
right-skewed.

continuous 2.5e+4 1.1e+8 1.6e+5 2.3e+5 3.9e+2

Family
members

describes the number of
family members of the ap-
plicant. This feature di-
rectly impacts the finan-
cial responsibilities and ex-
penses or financial obliga-
tions.

discrete 1 20 2.1 0.91 0.98

Own car flag indicator that marks
the ownership of a car.

binary cat-
egorical

0 1 0.34 0.47 0.67

Own realty flag indicator that marks
the ownership of a realty.
This feature reduces the
applicant’s risk since they
can sell the property to re-
cover the debt (a form of
collateral).

binary cat-
egorical

0 1 0.3 0.46 0.84

Gender indicates the gender of the
applicant.

multinomial
categorical

- - - - -

Education
type

is linked to a higher chance
of individual employment
opportunities and earning
potential. This feature
differentiates between five
categories ranging from
secondary to academic de-
gree.

multinomial
categorical

- - - - -

Region rat-
ing client

a score based on the ge-
ographical location of the
residence. Measures the
overall economic health of
the region. The feature
contains a score from one
to three.

discrete 0 3 2.05 0.5 0.08

Target is used as the target class
for the DNN prediction, la-
bels each sample if the ap-
plicant credit request was
granted.

binary cat-
egorical

0 1 0.08 0.27 3.07
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5.2.3 Trustworthiness Scores

True Score

Using the original dataset and the DNN classifier, applicable metrics were computed for
each pillar. Figure 5.7 shows the representing values, with a fairness score of 4.1/5, an ex-
plainability score of 2.2/5, a robustness score of 3.0/5, and a methodology score of 2.4/5.
Compared to the previous evaluation scenario (diabetes prediction using RF), the indi-
vidual methodology metrics show the same values. This is expected, as the methodology
for the training of the model is consciously kept the same. In total, 19 individual metrics
were computed, of which seven come from the fairness pillar, four from the explainability
pillar, three from the robustness pillar, and five from the methodology pillar.

Figure 5.7: DNN True Score: Fairness Scores (Green), Explainability Scores (Yellow),
Robustness Scores (Red), Methodology Scores (Blue)

Looking at the explainability pillar, the Feature Relevance metric is computed using the
original dataset and the SHAP explanator presented in Subsection 3.2.3, as DNNs do not
provide the possibility to extract the values for feature importance. The Algorithm Class
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metric of the explainability pillar indicates, that the model used in this evaluation sce-
nario (DNN) is considered less interpretable compared to the previous evaluation scenario
(RF) and therefore has a lower metric score with a value of one. Further, two additional
metrics from the robustness pillar are applicable to this scenario. The Loss Sensitivity
measures a score of value one, and the CLEVER Score a value of five. Again, the scores
of the next paragraphs will be compared to the described true scores from this paragraph.

Limited Score

Regardless of the applied model, Figure 5.8 again indicates that numerous metrics get
incomputable, as most rely on either the training or testing dataset. Once more, the
fairness and robustness pillars have a value of zero as for these pillars, not a single metric
can be computed. Comparing the pillar scores to the values from the true score, without
exception, all values have dropped significantly. The number of computable metrics in the
explainability pillar dropped from four to only a single metric. In general, this example
demonstrates the flawed overall impression of the model’s trustworthiness in the limited
example.

Figure 5.8: DNN Limited Score: Fairness Scores (Top Left), Explainability Scores (Yel-
low), Robustness Scores (Bottom Left), Methodology Scores (Blue)
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Advanced Score MUST

Figure 5.9 shows the improved trustworthiness assessment, compared to the limited sce-
nario. The synthetically generated dataset was created with statistical properties from
the MUST column in Table 4.3. This way, five additional metrics become quantifiable,
which results in a total number of eight computable metrics. Also, for every single pillar,
at least one metric can be calculated. The value of the Disparate Impact metric from
the fairness pillar shows the same value as in the true score. The same is true for the
metrics Loss Sensitivity, CLEVER Score, Model Size, and Feature Relevance. This results
in more accurate pillar scores, with a value of 5/5 for the fairness pillar, 1.7/5 for the
explainability pillar, 3.0/5 for the robustness pillar, and 0.5 for the methodology pillar.

Figure 5.9: DNN Advanced Scores MUST: Fairness Scores (Green), Explainability Scores
(Yellow), Robustness Scores (Red), Methodology Scores (Blue)

Interestingly, the fairness pillar score takes higher values compared to the true scores.
Again, this is influenced by the methodology how the pillar scores are computed (see
Equation 3.1). The weighted sum of a single (high) metric in the fairness pillar results in
the same (high) value for the pillar score. For the robustness pillar, the Confidence Score
metric is not computable for the Advanced Score MUST. Because the value of this metric
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in the True Score equals the average pillar score, it does not influence the weighted sum
when becoming incomputable.

Advanced Score MAY

Figure 5.10 shows the results of the trustworthiness analysis using the synthetic dataset
generated with properties from the MAY column in Table 4.3. All metric scores show the
same value as in the Advanced Score MUST. A reason for this may be that the methodol-
ogy of the dataset generation did not influence the computation of the individual metrics.
However, the MUST dataset was sufficiently accurate to calculate the additionally quan-
tifiable metrics, because they all show the same values as the true scores Disparate Impact,
Loss Sensitivity, CLEVER Score, Model Size and Feature Relevance. Therefore, the MAY
dataset could not have possibly improved the result. The next paragraph is providing a
detailed comparison of the overall trust scores and the statistical properties of the corre-
sponding datasets.

Figure 5.10: DNN Advanced Scores MAY: Fairness Scores (Green), Explainability Scores
(Yellow), Robustness Scores (Red), Methodology Scores (Blue)
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Comparison

Figure 5.11 shows a side-by-side comparison of the scores from the previous paragraphs.
The true overall score is assumed to reflect the true trustworthiness level of the DNN
classifier, with a value of 2.9/5. Similar to the previous evaluation scenario, the limited
overall score (top right graph) is far off with a value of 0.4/5 and not representing the true
score at all. Again, the advanced scores (bottom graphs) do more accurately reflect the
true trust score (top left graph) with the same overall trust score with a value of 2.6/5.
Different from the previous evaluation scenario, all scores show the same values between
the Advanced Score MUST (bottom left) and Advanced Score MAY (bottom right). The
reason for this result is, that the metrics in the MUST scenario already measure the same
values as compared to the ground truth. Therefore, the synthetic dataset of the MUST
scenario was good enough and the MAY dataset could not have improved the values
further.

Figure 5.11: DNN Overall Trust Scores Comparison: True Score (Top Left), Limited
Score (Top Right), Advanced Score MUST (Bottom Left), Advanced Score MAY (Bottom
Right)

Figure 5.12 depicts six histogram plots showing statistical properties of features from the
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original dataset (red), the synthetic datasets MUST (brown), and MAY (green). The top
row shows two continuous features (left and middle plots) and one discrete feature (right).
The bottom row shows three categorical features, with each a different amount of possible
categories (two, three, and five). All three features in the top row show a right-skewed
distribution, which can also be seen in the last column of Table 5.2, where Amt income
total (top middle plot) has the highest skew with a value of 390. Here also the difference
between the MUST and MAY datasets is visible. The MAY dataset nicely captures this
and other statistical properties, such as the mean and standard deviation, whereas the
frequency of the MUST dataset always shows a uniform distribution. On the contrary,
the difference is not visible for categorical features in the bottom plots. Here, all possible
values within a dataset show the same number of occurrences. As the red bars in the
Name Education Type plot on the right show, this is not true for the original dataset, as
the value of zero (lower secondary) occurs the most, whereas the value of five (academic
degree) occurs the fewest. This is also mentioned as a limitation of the methodology of
the dataset generation in Section 3.3.

Figure 5.12: Credit Risk Dataset Comparison For Features: Blood Glucose Level (Left),
HbA1c Level (Middle), BMI (Right)
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5.3 Discussion

The two evaluation scenarios show that the use of a synthetically generated dataset im-
proves the quality of assessing the model’s trustworthiness with existing tools, under the
limitation of having missing information available (no access to the original dataset). In
both evaluation scenarios, the number of quantifiable metrics increased using the synthetic
dataset (advanced scores). Further, for every pillar at least one metric became quantifiable
in the advanced scores, which avoids a limited pillar score of value zero due to the lack of
computable metrics. However, there are still metrics that can not be computed despite
using the synthetic dataset. These are metrics that either rely on the original training
dataset or the availability of true target labels (used for calculation of TPR and FPR).
However, it has been shown that the approach can be used to gather information about
the model by using it as a labeling oracle for the synthetic dataset and analyzing the
predictions. This approach clearly improves the trustworthiness assessment and provides
more accurate scores when compared to the limited scenario.

Another interesting aspect to discuss is the trade-off between privacy and accuracy, which
requires careful consideration. Both dataset-generation approaches are beneficial when
dealing with sensitive data or complying with privacy regulations. On one side, the syn-
thetic dataset generator in the MUST scenario takes fewer input properties and offers
higher privacy protection since it discloses limited information about the original dataset.
On the other side, the dataset generation with more statistical properties in the MAY
scenario results in a closer representation of the original dataset, which allows for a more
reliable assessment of the ML model’s trustworthiness as shown in the first evaluation
scenario (True Score: 3.7, Limited Score: 1.1, Advanced Score MUST: 3.0, Advanced
Score MAY: 3.2). However, because the MAY dataset is a more accurate approximation
of the original dataset, it contains more sensitive information (statistical properties) that
can be leaked and becomes vulnerable to potential inference attacks. These are privacy
attacks in which an adversary tries to infer sensitive information about individuals in
the original dataset by analyzing the predictions of the synthetic dataset [82]. There-
fore, it is important to keep the dataset safe and only accessible to authorized users of the
tool and apply mechanisms when storing the dataset, such as for example data encryption.

The comparison between the different datasets (original, MUST, and MAY) confirmed
a successful implementation of the dataset generator and pointed out their differences
with respect to the statistical properties. Further, the comparison reflects the strengths
and limitations of the used methodology and supports the reasoning and interpretation
of the individual trust scores. On one side, the generator proved to be capable of creat-
ing MUST and MAY datasets, that showed clear differences for discrete and continuous
features. On the other side, the comparison has shown that the statistical properties
between the MUST and MAY datasets look the same for categorical features. Regardless
of the specified scenario, every possible category of the feature shows the same number of
occurrences within a dataset. For instance, in the second evaluation scenario, the MUST
dataset has the same number of fictive people that own a car, as people that do not own
a car. The same is true for the MAY dataset. For features with more than two categories,
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the total number of samples is equally divided amongst each category. In future work, the
distribution of categorical features could be integrated in the MAY scenario to improve
the synthetic dataset’s representation of the original dataset. One possible statistical
property could be the distribution in the form of a ratio, which indicates the fraction of
people that belong to a specific category divided by the total number of people in the
original dataset. This information could be used to generate a synthetic dataset that
reflects the category distribution of the original dataset. Another possible improvement
of the current implementation could be the inclusion of statistical properties such as cor-
relation (Pearson, Kendall rank, Spearman, Point-Biserial) between features, to prevent
generating unrealistic samples. As an example, the diabetes dataset shows a low positive
Spearman correlation between the feature Age and BMI with a value of 0.351. Having
this information, unrealistic samples could be excluded from the synthetic dataset, e.g.
an 80-year-old man (maximum value) with a BMI of 10.01 (minimum value). Considering
this additional information into the MAY dataset generation would enhance its similarity
to the original dataset and likely improve the accuracy of the metric calculation. This
and other possible enhancements could be a valuable step to take in potential future work.

Further, a shortcoming in the representation of the pillar scores was identified, as the
current implementation does not take into account how many metrics were computed.
This not only affects the comparison of the True Score to the Limited Score, but also the
comparison of ML models that belong to different subgroups in the Black Box Taxonomy,
e.g. the comparison of a DT and a DNN classifier. In this example, the number of available
metrics may be different because f.i. DT provides a form of feature relevance (higher nodes
in the tree) but DNN does not. In both evaluation scenarios, the fairness pillar showed a
higher value in the Advanced Scores, than in the True Score, ignoring the fact that the
number of quantifiable metrics decreased from seven to one metric. This forms an issue,
as the trust score of a pillar computed by only one metric is not as reliable/confident as
a trust score computed by multiple metrics. Incorporating multiple metrics provides a
much completer view on the pillar than one metric is able to provide. Thus, the absence
of scores (incomputable metrics) decreases the confidence, as they could have impacted
the aggregated score in either direction (positive or negative). One possible solution for
the comparison could be, to provide a confidence interval (CI) for the model with fewer
computable metrics. The range of the CI depends on the difference in computable metrics
when comparing two models. Equation 5.1 shows the formal notation of such a CI:

CIlower =
n∑

i=1

wi,pillar ∗ scorei,pillar∑n
i=1wi,pillar

∗ #computable

#total

CIupper =
n∑

i=1

wi,pillar ∗ scorei,pillar∑n
i=1wi,pillar

∗ #computable

#total

+ 5 ∗ #incomputable

#total

(5.1)

The lower bound of the CI assumes that in the worst-case scenario, all incomputable
metrics would have shown the minimum value of zero. It is computed by multiplying
the pillar score with a Punishment Factor (PF). The PF is a fraction of the number of
computable metrics divided by the total number of all possible metrics. The upper bound
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makes the assumption, that in the best-case scenario, all incomputable metrics would have
received the maximum score of five. Therefore, the computation of the upper bound adds
a product to the lower bound. The product is the multiplication of the value five (highest
score possible) and the fraction of incomputable metrics divided by the total number of all
metrics. From this definition results, the higher the ratio of computed metrics, the more
confident and narrower the CI. Because one single value is needed for the computation of
the overall trust score, the mean of the lower and upper bound would be a representative
value. Returning a value above the mean would represent a rather optimistic value of
trustworthiness, which is not desired since it could build false trust in a system and could
lead to worse consequences. Table 5.3 shows an overview of the pillar scores before and
after introducing the CI, to illustrate the proposed solution.

Table 5.3: Comparison Of The Pillar Score Before And After Introducing The Confidence
Interval (CI)

Fariness Explainability Robustness Accountability Overall
Score

D
ia
b
et
es

P
re
d
ic
ti
on

T
ru
e

before 4.0 4.4 4.0 2.4 3.7
PF 7/7 4/4 2/2 5/5
CI 4.0 - 4.0 4.4 - 4.4 4.0 - 4.0 2.4 - 2.4
after 4.0 4.4 4.0 2.4 3.7

L
im

it
ed

before 0.0 3.8 0.0 0.5 1.1
PF 0/7 2/4 0/2 2/5
CI 0.0 - 5.0 1.9 - 4.4 0.0 - 5.0 0.2 - 3.2
after 2.5 3.2 2.5 1.7 2.5

M
U
S
T

before 5.0 4.4 2.0 0.5 3.0
PF 1/7 3/4 1/2 2/5
CI 0.7 - 5.0 3.3 - 4.6 1.0 - 3.5 0.2 - 3.2
after 2.9 4.0 2.3 1.7 2.7

M
A
Y

before 5.0 4.4 3.0 0.5 3.2
PF 1/7 3/4 1/2 2/5
CI 0.7 - 5.0 3.3 - 4.6 1.5 - 4.0 0.2 - 3.2
after 2.9 4.0 2.8 1.7 2.9

The fairness pillar score in the Advanced Score MUST shows a higher value (five) than in
the fairness pillar of the True Score (four) before the introduction of the CI. However, the
ratio of computable metrics in the MUST is lower (1/7) compared to the True Score (7/7).
Therefore, the computed metric score in the MUST does more influence the final pillar
score than the same metric score does in the true scenario. Applying Equation 5.1, this is
represented in low confidence and wider CI, ranging from 0.7 to 5.0. Computing the aver-
age from the CI boundaries results in a more representative pillar score with a value of 2.9.

The pillar score of the Advanced Score MUST and the True Score both show the same
value of 4.4 in the explainability pillar. Again, fewer metrics were computed in the MUST
scenario (3/4). Compared to the fairness pillar, the difference of computable metrics is
smaller in the robustness pillar. Because only one single metric becomes incomputable,
there are fewer metrics that could have impacted the pillar score (positively or nega-
tively), and the CI is more narrow ranging from 3.3 to 4.6. The average results in a more
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representative pillar score of 4.0. The just described methodology is only one possibility
to improve the comparison of aggregated scores with a different amount of computable
metrics. Other approaches can be explored in future work.



Chapter 6

Final Considerations

6.1 Summary

Black Box Machine and Deep Learning systems are increasingly used and applied in var-
ious applications. There exists an essential need to understand their trustworthiness,
especially when applied in critical decision-making processes. Thus, within this master’s
thesis, the computation of the trustworthiness level of Black Box models has been stud-
ied. In the beginning, a comprehensive background on ML and the distinction between
Black Box and White Box models was introduced. It also covered essential concepts of
trustworthiness in the context of ML/DL, introducing existing pillars for assessing trust-
worthiness with a particular emphasis on interpretability, transparency, and explainable
AI (XAI). The Related Work Chapter surveyed scientific studies dedicated to enhancing
the trustworthiness of Black Box ML models and portrayed existing tools, highlighting
their contributions and limitations. Early work has proposed a Trusted AI Platform, ca-
pable of computing a trust score for White Box and Gray Box ML models. During the
literature review, two common definitions of the term Black Box have been identified in
the research community. Most related work has focused on the first definition, where the
term Black Box is describing complex systems that are not interpretable, even for domain
experts. However, the second definition, describing systems for which only limited infor-
mation is available, to my best knowledge, has not yet been researched with respect to
trustworthy AI so far.

In the Design and Implementation Chapter, a Black Box Taxonomy was presented, taking
both definitions into consideration by grouping ML models into four subgroups based on
their interpretability and adding another dimension for the distinction between the level
of available information. From the taxonomy, a limitation in the existing trustworthiness
analysis for ML models with limited information (no access to the original dataset) was
identified, as certain metrics become incomputable. Therefore, the concept of a synthetic
dataset generator has been proposed, providing a novel solution to make incomputable
metrics quantifiable and improve the trustworthiness assessment for models with limited
information. The developed solution provides two ways of generating a synthetic dataset
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(MUST and MAY), varying in the number of statistical properties about the original
dataset it takes as input, addressing the trade-off between privacy and accuracy. The
process design and potential integration into the Trusted AI Platform 2.0 have been dis-
cussed. Finally, the dataset generation and trustworthiness assessment have been tested
and evaluated in two different scenarios. For each evaluation scenario, the results of
four different trust scores (True Score, Limited Score, Advanced Score MUST, and Ad-
vanced Score MAY) have been compared, analyzed, and discussed. The advantages and
limitations of the implemented solution have been outlined and possible suggestions for
improvement have been proposed.

6.2 Conclusion

Within the scope of this thesis, the feasibility of improving the trustworthiness assess-
ment of ML models with limited information using a synthetic dataset can be confirmed.
The unavailability of the original dataset consequentially leads to a decreased number
of computable metrics, as by definition, most existing metrics rely on either the original
training dataset or the true target labels for its computability. The methodology of using
a synthetic dataset enabled certain incomputable metrics to become quantifiable and con-
tributed to a more expressive trust score. Further, the evaluation process has uncovered
some learnings and findings when comparing different solutions (also if all information
is available), for which a different number of metrics are computed. Thus, this work
suggested providing the score as a confidence interval (CI) for the solution with fewer
computed metrics, taking into consideration the level of uncertainty.

The comparison between the MUST and MAY datasets showed the differences in discrete
and continuous features. While the MUST dataset preserves higher privacy protection,
the MAY dataset results in a more realistic representation of the original dataset. The
comparison of categorical features between the datasets has identified a limitation that
can be improved by considering the proposed statistical properties, such as the correla-
tion or unique count (ratio) to filter out impossible samples and improve the distribution
over the individual categories. It can be concluded, that the existence of both approaches
provides a flexible framework to balance privacy concerns and the need for more accu-
rate trustworthiness assessments. Organizations can choose the level of privacy they are
comfortable with, while still obtaining reasonably accurate insights into their models’ ca-
pabilities. The synthetic dataset generator is built in a modular way, which allows simple
integration into the existing Trusted AI Platform 2.0.

Concluding, the presented work contributes to the research community by providing a
Black Box Taxonomy that takes into account both common definitions of the term Black
Box known by the community. Further, a novel approach was implemented, that allows
the systematic generation of a tabular dataset from scratch, without having access to the
original dataset. Lastly, it proposed a privacy-preserving way of computing the Black Box
model’s trustworthiness with the use of the synthetic dataset, resulting in a more accurate
trust score.
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6.3 Limitations and Future Work

Although the presented solution offers a tested and documented implementation, it is cru-
cial to recognize the limitations that emerged throughout the research and implementation
process, such that they can be addressed and improved, for instance in future work. As
discussed throughout the presented work, the statistical properties for categorical features
in the MAY scenario may be enhanced to more accurately reflect the properties of the
original dataset. Further, additional metrics could be defined or added that do not require
the original dataset or true labels, to further increase the number of computable metrics.
This would increase the confidence of the computed pillar scores and decrease the range of
the proposed CI. Also, the current implementation only supports the creation of tabular
data. As complex Gray Box models such as DNNs have proven to work well in the field
of computer vision and natural language processing, it could be interesting to consider
generating synthetic data in the form of images or text. Finally, the implementation of the
synthetic dataset generator into an existing platform would generate more awareness for
privacy-preserving trustworthiness assessments and lower the barrier for potential users.
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Pérez, and B. Stiller, “Ransomai: Ai-powered ransomware for stealthy encryption,”
arXiv preprint arXiv:2306.15559, 2023.

[19] A. H. Celdrán, P. M. S. Sánchez, J. von der Assen, T. Schenk, G. Bovet, G. M. Pérez,
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Appendix A

Additional Code Excerpt

1 # Compute Feature Importance using SHAP Explainer

2 nr_random_samples = 20

3 rand_idxs = np.random.randint(0, test_data.shape[0], nr_random_samples)

4 sample_data = test_data.iloc[rand_idxs]

5 bg = sample_data.drop(target_column , axis =1)

6

7 # Fits the explainer

8 explainer = shap.Explainer(clf.predict , bg)

9 shap_values = explainer(bg)

10

11 # Calculates the feature importance (mean absolute shap value) for each

feature

12 importance = []

13 for i in range(shap_values.values.shape [1]):

14 importance.append(np.mean(np.abs(shap_values.values[:, i])))

15 importance = scipy.special.softmax(np.asarray(importance))

Code Listing A.1: Extantion Of The feature relevance score Function In The
Explainability Pillar
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98 APPENDIX A. ADDITIONAL CODE EXCERPT

1 # New Suggestions to improve the Model Size Metric

2 if isinstance(clf , sklearn.ensemble.RandomForestClassifier):

3 # Get the overall maximum depth

4 overall_max_depth = max([ estimator.tree_.max_depth for estimator in

clf.estimators_ ])

5 print(overall_max_depth)

6

7 # Get the number of trees

8 nr_trees = clf.n_estimators

9 print(nr_trees)

10

11 # Calculate the total number of nodes

12 total_nodes = sum([dt.tree_.node_count for dt in clf.estimators_ ])

13 print(total_nodes)

14

15 elif isinstance(clf , sklearn.neighbors.KNeighborsClassifier):

16 # Get the "k" value

17 k_value = clf.n_neighbors

18 print(k_value)

19

20 elif isinstance(clf , sklearn.svm.SVC):

21 # Get the number of support vectors

22 total_support_vectors = len(clf.support_vectors_)

23 print(total_support_vectors)

24

25 elif isinstance(clf , torch.nn.Module):

26 # Calculate the number of parameters of a PyTorch DNN

27 total_params = sum(p.numel () for p in clf.parameters () if p.

requires_grad)

28 print(total_params)

29 # Get the number of layers in the PyTorch model

30

31 num_layers = len(list(clf.children ()))

32 print(num_layers)

33

34 elif isinstance(clf , tf.keras.models.Sequential) or isinstance(clf , tf.

keras.models.Model):

35 # Calculate the number of parameters of a Keras/Tensorflow DNN

36 total_params = clf.count_params ()

37 print(total_params)

38

39 # number of layers

40 num_layers = len(clf.layers)

41 print(num_layers)

Code Listing A.2: Extantion Of The model size score Function In The Explainability
Pillar
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