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Abstract

Member inference attack (MIA) poses a serious threat to model security in machine learn-
ing. An effective MIA can expose the user’s training data to a large extent, resulting in
incalculable privacy breaches. Although MIA is a very mature concept in the field of ma-
chine learning, there are many ways to deal with it. However, in the context of federated
learning, especially decentralized federated learning, the performance of such attacks is
still not much effectively evaluated and deeply logical analysis.

This work begins with an investigation and analysis of the well-known membership in-
ference attacks that are effective in machine learning, and a comprehensive evaluation
of them in decentralized federated learning context. At the same time, this assessment
tool for MIA has been integrated into Fedstellar. The results show that the effective-
ness of most MIA attacks is significantly reduced in the federated learning environment,
which proves that the federated learning approach helps to further maintain the privacy
of participants’ user data. On the other hand, it is also found that different participants
have different member reasoning abilities in different topologies. This distinction is often
related to its position in the overall network. By exploiting this unique manifestation of
decentralized federated learning, new causal inference attacks in the direction of network
topology may be created. This is also an important contribution made by this work.
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Chapter 1

Introduction

1.1 Motivation

Membership inference attack (MIA) poses a profound threat to the privacy of user training
data in machine learning. There are many mature attack methods and defense methods,
as well as in-depth research on attack mechanisms. However, the performance of this
attack method in the federated learning environment is still an area that has not been
deeply studied, especially in the decentralized federated learning context[1]. As the net-
work topology structure and data distribution of the entire federation have undergone
profound changes, the changes in the effectiveness of membership inference attacks are
worthy of researchers’ deep consideration. In this context, this work aims to compre-
hensively evaluate the effectiveness of effective attack methods in the original machine
learning background in decentralized federated learning, and establish an effective con-
nection between its performance and factors such as network settings.

1.2 Description of Work

This work aims to establish a privacy monitoring module to enable the existing federated
learning platform to simulate the damage caused by membership inference attack, and at
the same time evaluate the performance and impact of this attack method on machine
learning and federated learning as comprehensively as possible. The entire project is
mainly divided into several phases:

Design and implementation of Different MIAs: This phase includes the understanding
of MIA knowledge and the exploration of DFL structure. By understanding the operating
mechanism of the two, a solid foundation will be laid for subsequent practice and analysis.

Background Research and Problem Understanding: At this stage, the attack methods
of MIA specifically planned to be implemented will be analyzed and reproduced in detail,
and a specific machine learning and federated learning environment would be built to
facilitate the following large-scale experimental evaluation.
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2 CHAPTER 1. INTRODUCTION

Evaluation and Conclusion: In this phase, experiments on the implemented MIA in
different scenarios will be tested on a large scale and the results will be recorded for
detailed analysis. At the same time, a complete report will be also produced to summarize
all the achievements.

In summary, this work aims to comprehensively evaluate the different performances of
different membership inference attacks in the two environments of machine learning and
federated learning. On the one hand, it aims to explore whether the original attack
methods can still be effective in the case of federated learning. On the other hand, what
impact will the unique mechanism and characteristics of federated learning have on MIA,
and whether it will expose the privacy data of additional participants. At the same time,
these attack methods have also been implemented and integrated into the Fedstellar this
federated learning platform.

1.3 Report Outline

The structure of this work is outlined as follows. First, Chapter 2 establishes the theo-
retical foundation required for this work and analyzes the reasons and necessity for doing
so. Next, Chapter 3 reviews the relevant achievements in this field and gives a general
analysis of its operating mechanism. Chapters 4 and 5 introduce the specific details of the
relevant MIAs and how it is integrated into Fedstellar from an engineering perspective.
Finally, Chapter 6 shows all the experimental results and relevant conclusions are given
in Chapter 7. In addition, in the last chapter, the limitations of this work and the future
development prospects in this area are also mentioned.



Chapter 2

Background

This chapter introduces the characteristics and classification of federated learning, and
explains its advantages over traditional machine learning. It also describes the back-
ground, purpose, and specific categories of inference attacks, and analyzes the privacy
hazards that inference attacks, as a special attack method, bring to normal machine
learning models.

2.1 Federated Learning

Traditional machine learning relies on transferring large amounts of data to a unified
place (or device) for centralized training. However, this centralized approach has two
main drawbacks: (1) With the increasing complexity of the model learning task, the data
format needed by the model itself becomes more complex, which leads to the sharp increase
of the data occupation space.This makes transmission efficiency often an important factor
restricting performance when large batches of data are frequently transmitted; (2) On
the other hand, this can create significant privacy and security issues, especially when
sensitive private data is needed. Therefore, with the introduction of various privacy
protection regulations and the gradual improvement of user security awareness, these
drawbacks become more serious in the actual situation.
In this context, federated learning comes into being. The essence of federated learning
is a distributed machine learning method[[2],[3] . By combining the learning results of
multiple participants on their local machines, FL attempts to keep the data locally while
obtaining learning performance comparable to those of centralized training. The key to
this success lies in a specialized model aggregation approach.

2.1.1 Aggregation Method

Compared with traditional data sharing, federated learning achieves the effect of multi-
party collaboration by sharing model training results such as gradients or parameters.
Among them, FedAvg aggregation algorithm is the simplest but most popular method. It

3



4 CHAPTER 2. BACKGROUND

allows each participant to transmit the newly calculated gradients or model parameters
in encrypted form to a central server after completing local model training. The server
then averages the collected results of all individuals and returns them to each participant
as the starting parameters for the next round of local training. Through several rounds
of this form of parameter transfer, the local models of each participant tend to converge,
thus achieving the effect of training the data set together.

2.1.2 Different Types of Federated Learning

Federated learning can be divided into the following types based on its network topology
and communication method:

• Centralized Federated Learning (CFL)
Under this framework, all participants are interconnected with one central server
together. This central server is responsible for aggregating the collected model
parameters in each round and broadcasting the aggregated one back to all partic-
ipants[4]. As for the local participants, they only need to handle the task of local
model training. This federation is architecturally simple, but the central server can
be a potential risk for single point of failure and privacy breach. Besides, because all
participants depend on the central server’s collaboration, when there are too many
participants involved, the server needs to handle more communication requests, re-
sulting in a significant increase in its transmission overhead.

• Decentralized Federated Learning (DFL)
Unlike CFL, decentralized federated learning adopts a more autonomous commu-
nication method. There is no central server to coordinate the connections between
participants. Instead, each participant takes on the task of aggregating and broad-
casting the adjacent node models. The benefits include that since there is no single
point server, the entire system does not need to worry about a single point of failure
(SPOF), which enhances the overall robustness and fault tolerance when facing at-
tacks. At the same time, the DFL architecture increases the scalability of the overall
system. When new nodes join or existing nodes withdraw from the federation, it will
not have a significant impact on the overall structure. However, due to the lack of a
node to coordinate the overall communication, the communication between different
rounds of DFL nodes needs to be treated more cautiously to ensure the aggregation
between the correct models each time.

2.2 Inference Attack

Inference attack generally refers to the behavior that an attacker obtains the information
that the model user does not want to be exposed by processing and utilizing the features
of the machine learning model. Generally speaking, the types of information obtained
by inference can be very wide, including the user’s training data, the parameter Settings
of the model itself, and the specific data characteristics. At the same time, because the
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attacker usually does not actively interfere with the normal process of model training, it
is difficult for the attacked party to detect the information leakage. This also leads to
effective inference attacks that can often cause incalculable harm to privacy disclosure. In
some industries with high data privacy requirements, such as financial transaction data,
medical and health data, inference attacks will always be treated and prevented very
carefully.

2.2.1 Types of Inference Attack

Inference attack can be mainly divided into the following types according to the different
targets of attack:

• Membership Inference Attack
Membership inference attack is the most basic but also the most widely used type
of inference attack. Its goal is to determine whether a data point belongs to the
training set of the target model. Because in machine learning, the trained model
often performs differently to the data of the training set than other non-member data
points. By capturing the difference between the two, the attacker can effectively
identify the members of the model training set. MIA can be very harmful in many
contexts, such as in the medical industry, where training data to identify medical
models often result in a serious breach of a patient’ s personal health information.

• Attribute Inference Attack
Attribute inference attack generally aims to infer the missing or hiding attributes
among training data samples[5]. Even though some kinds of sensitive attributes are
not included in the raw data clearly, attackers can still speculate them through the
model output or the activation values by model’s intermediate layers. For example,
in an e-commerce model that includes user purchase history, an attacker may be able
to infer a user’s income level from other known attributes, such as age, gender or
frequency of purchase. Attribute inference attack not only can leak user’s personal
privacy, but also provide further attack vector to attackers for next time use.

• Property Inference Attack
Unlike attribute inference attack, the goal of property inference attack is to infer
some global properties or statistical characteristics of the entire training dataset
rather than the specific attributes of individuals[6]. In this case, the attacker hopes
to understand some global properties which are not usually present in explicit labels
of the training samples through analyzing the behaviour or parameters of target
model. For example, an attacker might try to determine if a particular pattern exist
in the training set such as a large number of labels of a certain type are included
inside or an attacker want to infer the distribution of the training set, like whether
balanced or biased.

• Model Inversion Attack
The object of model inversion attack is to reconstruct the characteristics of input
data or training data[7]. An attacker uses reverse optimization or other techniques
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to gradually deduce these characteristics by accessing the model output[8]. For ex-
ample, in the image classification model, an attacker can infer the image of one tag
reversely through analyzing its model output. Model inversion attack is a partic-
ularly serious threat to privacy since it can reconstruct the original data directly,
such as the patient’s medical image or user’s photograph.

2.2.2 Adversarial Knowledge

On the other hand, inference attack can also be classified into the following three categories
according to the level of knowledge possessed by the attacker:

• White-box Attack
The attacker has the full access rights to the target model’s inner structure and
parameters. By means of analyzing the gradient, parameters and training process
of the model, the attacker is able to obtain more detailed information to utilize.
The white-box attack generally has the simplest implementation difficulty and the
best attack performance.

• Black-box Attack
In this case, the attacker can merely access the inputs and outputs of the target
model but not inspect its internal information directly. The attacker usually make
use of statistical and machine learning techniques through attempting to send some
specific inputs here to make up for the gap of adversarial knowledge. Establishing
the valid connection between input and output is the primary goal for black-box
attackers. Corresponding, this kind of attack is the most difficult to carry out and
the hardest to defend[9].

• Semi-white-box Attack
On the basis of black-box attack information, the attacker own partial model infor-
mation additionally, including some parameters or parts of the model architecture.
This setting is somewhere between a white-box and a black-box (sometimes referred
to as gray-box) and its performance and difficulty are in the middle accordingly.

All in all, inference attacks pose a serious privacy and security threat in the field of machine
learning. With the evolution and complexity of attack methods, it becomes particularly
important to understand and explain them. This not only helps in building defences, but
also in understanding and improving the bottlenecks in the original models.



Chapter 3

Related Work

This chapter introduces the existing platforms on the market for privacy assessment
against different attacks, as well as the means and defense methods for existing mem-
bership inference attacks in machine learning and federated learning environments.

3.1 Existing Privacy Audit Platform

With the wide application of machine learning technology, privacy protection is increas-
ingly concerned. In response to various privacy breach threats, including membership in-
ference attacks (MIA), several privacy auditing platforms and tools have emerged. These
platforms mainly ensure the privacy and security of user data through monitoring and
protection mechanisms. Here are the main privacy monitoring platforms and their fea-
tures:

• TensorFlow Privacy
TensorFlow Privacy is a library for enhancing the privacy protection of TensorFlow
models. It implements differential privacy technology, which protects data privacy
mainly by adding noise to the gradient during training. While its primary purpose is
to protect against differential attacks, it is also somewhat resistant to MIA because
the introduction of noise reduces the degree to which the model overfits the training
data.

• PySyft and PyGrid
PySyft is an in-depth learning library for encryption and privacy protection that
supports federated learning and differential privacy. It can train and reason mod-
els without exposing real data. PyGrid is an extension of PySyft that provides a
distributed platform for managing and deploying privacy protection models. These
two libraries protect against many privacy attacks including MIA through encryp-
tion and differential privacy.

7



8 CHAPTER 3. RELATED WORK

• Google JAX with DP-SGD
Google Jax is a high-performance machine learning library that combines a differ-
ential privacy gradient (DP-SGD) algorithm to protect the privacy of training data.
By adding noise and clipping gradient in the training process, JAX can effectively
reduce the dependence of the model on training data and reduce the success rate of
MIA attack.

• IBM Differential Privacy Library IBM’s differential privacy library provides a
set of tools specifically designed to incorporate differential privacy protection into
the implementation of data analysis and machine learning tasks. The core of the
library is to ensure the security of data privacy by mathematical methods, so as
to prevent malicious attackers from using query and reasoning to obtain sensitive
information. Although its main focus is to protect the privacy of statistical query,
the protection mechanism can also effectively resist the security threats such as
membership inference attack.

There are a number of privacy audit platforms that rely on differential privacy and ad-
vanced encryption techniques to protect machine learning models from all kinds of privacy
violations, including MIA. These platforms not only ensure the security of model training
and reasoning process, but also set a new benchmark for data privacy protection. In
the future, these platforms will evolve to address increasingly complex privacy security
challenges as the means of privacy attacks evolve.

3.2 Membership Inference Attack

There are two primary forms of membership inference attacks. The first involves training
an additional model to determine whether specific data was used to train the target
model. This approach is known as a binary classifier-based attack because it yields binary
outcomes (in or out). The second method utilize calculating a specific metric based on
the prediction vectors from the dataset and compares it to a selected threshold to make
an inference judgment. Next, the discussion will focus on the well-known MIAs results in
machine learning and federated learning, based on these two perspectives.

3.2.1 MIA against Machine Learning

Binary Classifier Based MIAs. Shokri et al.[10] proposed the first membership inference
attack against machine learning models by training several binary classifiers (one for each
prediction class), known as attack models, to determine whether data points belong to
the target model’s training set. To gather sufficient data for training attack models,
they created several shadow models with the same architecture as the target model and
collected the confidence vectors produced after training these shadow models. Due to
the similarity between the shadow models and the target model, these confidence vectors
could serve as ’in’ training samples for the attack model. Similarly, ’out’ training samples
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were obtained in the same manner. Since executing the attack only requires access to the
posterior confidences generated by the target model, it is classified as a black-box attack.

The success of this attack relies on two key assumptions: (1) The shadow model must
have the same architecture and parameter settings as the target model, including training
specifics such as the optimizer and learning scheduler. Only the posterior confidences
generated by the shadow model under these conditions can be used as a substitute for the
actual ’in’ sample ones. (2) The training data for the shadow model should originate from
the same distribution as the real training data, ensuring consistency in the dimensions of
their feature spaces. Although Shokri et al. later mitigated this requirement by generating
synthetic data, it remains essential for the evaluation of most data categories that are not
binary features.

Afterwards, Salem et al.[11] extended this shadow training method by progressively relax-
ing the original assumptions regarding model and data requirements. First, they demon-
strated that employing a single shadow model and attack model can achieve attack per-
formance comparable to the original method. Although the accuracy of inference attacks
is somewhat diminished, the reduction in complexity compensates for this drawback. Sec-
ond, the authors found that while using a single shadow model differing from the target
model results in lower attack accuracy, an attacker can enhance performance by combining
a set of such machine learning models, each employing a different classification algorithm,
together into one shadow model as long as the target algorithm is included. This prop-
erty is achievable given the limited number of feasible classification algorithms. Finally,
they relaxed the assumption that the attacker must possess a shadow model training set
isodistributed with the target training data set. By merely collecting a fixed number of
maximum posteriors to train the attack model, this so-called data transfer attack miti-
gates the impact of differing numbers of output classes between various data sets, so that
the attacker is no longer constrained by the need to know the type of the target data set.

In summary, Salem et al. relaxed the assumptions of the original shadow model train-
ing MIA regarding model architecture and data distribution, making the attack more
threatening and practical, and significantly expanding its application scope.

Nasr et al.[12] further enhanced the shadow training method to develop a membership
inference attack based on a white-box scenario. Unlike the previous method, which only
requires knowledge of the target model’s output for a given data point, this white-box
attack assumes that the attacker is aware of the model’s architecture (typically a deep
learning model using the SGD algorithm), including specific parameter values and the
gradient values of each layer with respect to the loss. The authors argue that each training
data point leaves a unique impact on the gradient values of the model parameters relative
to the loss. By fully leveraging this information to train the attack model, it becomes
possible to effectively distinguish between training and non-training data. Additionally,
recognizing that the attacker may lack information about the shadow training data, they
also proposed one alternative using unsupervised learning methods, such as clustering
algorithms, to differentiate potential target dataset from non-members.

Metric Based MIAs. Compared to membership inference attacks based on binary classi-
fiers, metric based MIAs are often simpler and easier to implement. There is no need to
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train a sophisticated attack model. Instead, the attacker can distinguish between mem-
bers and non-members by identifying a typical metric and determining an appropriate
threshold value. Because the principle behind this attack is the belief that the metric
values of data points after model training often differ from those of untrained data points,
some classic metrics for measuring the performance of machine learning models, such as
accuracy, prediction confidence, and entropy, are selected to test the effectiveness of the
attack[10], [13], [14].

• Prediction Correctness Based MIA[15]
This MIA considers data points whose model-predicted labels differ from the true
labels as non-members. This approach is based on the observation that a trained
model’s predictions for its training members are often significantly more accurate
than those for non-members. Unlike other attack methods, this technique only
requires the predicted values of the dataset, making it very easy to implement.
However, its performance heavily relies on the model’s poor generalization.
Mathematically, the classification method can be represented as follows:

MIACorrectness(xi, yi) =

{
Member (M) if argmaxj f(xi)j = yi

Non-member (N) if argmaxj f(xi)j ̸= yi
(3.1)

where xi is an individual data point, yi is the true label for xi, and argmaxj f(xi)j
is the predicted label by the target model for xi.

• Prediction Loss Based MIA[13]
This MIA uses the prediction loss of data points as a metric. It compares the pre-
diction loss of each data point to the average training loss of the model, considering
data points with a prediction loss greater than or equal to this threshold as non-
members. The rationale behind this approach is that during model training, the
objective is typically to minimize the prediction loss for training members. Conse-
quently, the prediction loss for member data points should generally be lower than
that for non-members. Mathematically, the classification method can be represented
as follows:

MIALoss(xi, yi) =

{
Member (M) if L(f(xi), yi) < L̄

Non-member (N) if L(f(xi), yi) ≥ L̄
(3.2)

where xi is an individual data point, yi is the true label for xi, f(xi) is the prediction
vector by the target model for xi, L(f(xi), yi) is the prediction loss for xi, and L̄ is
the chosen threshold, which is the average training loss of the target model.

• Prediction Confidence Based MIA[11]
Similar to loss-based MIA, this confidence based MIA determines whether a data
point is a training member by comparing its prediction confidence to a specific
threshold value. The underlying principle is that the model tends to exhibit greater
prediction confidence for training members, often close to 1. In this context, Naser
uses the maximum prediction confidence as the metric, while Yeom uses the predic-
tion confidence of the true label. These two variations can be expressed as follow:

MIAMaximal confi(xi) =

{
Member (M) if maxj f(xi)j ≥ τ

Non-member (N) if maxj f(xi)j < τ
(3.3)
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MIALabel confi(xi, yi) =

{
Member (M) if f(xi)yi ≥ τ

Non-member (N) if f(xi)yi < τ
(3.4)

where xi is an individual data point, yi is the true label for xi, f(xi) is the prediction
vector for xi, maxj f(xi)j is the maximum confidence across all classes for xi, f(xi)yi
is the prediction confidence for the true label yi, and τ is the threshold value.

• Prediction Entropy Based MIA[11]
In machine learning, entropy is often viewed as an important measure of uncertainty
for a given dataset. MIA attackers exploit the fact that the entropy of training mem-
ber data points is often lower than that of non-members. This is because the target
model is more certain about its predictions for training members. By calculating
the entropy of data points and comparing it to a specific threshold value, attackers
can make inferences about membership. Its mathematical form is as follows:

MIAEntropy(xi) =

{
Member (M) if H(f(xi)) < τ

Non-member (N) if H(f(xi)) ≥ τ
(3.5)

H(f(xi)) = −
∑
j

f(xi)j log f(xi)j (3.6)

where xi is an individual data point, f(xi) is the prediction vector by the target
model for xi, H(f(xi)) is the entropy of the prediction vector for xi, and τ is the
threshold value.

• Modified Prediction Entropy Based MIA[16]
The authors identified a limitation in the original prediction entropy value: it does
not incorporate any ground truth label information. For example, both a correct
prediction with a confidence of 1 and an incorrect prediction with a confidence
of 1 will result in a zero prediction entropy value. To more accurately capture the
entropy difference between training members and non-members, they introduced the
concept of ground truth label confidence into the original calculation method. They
proposed a modified version of the prediction entropy metric and made member
inference judgments by comparing this modified entropy. The specific calculation
method is as follows:

MIAMod Entropy(xi, yi) =

{
Member (M) if MH(f(xi), yi) < τ

Non-member (N) if MH(f(xi), yi) ≥ τ
(3.7)

MH(f(xi), yi) = −(1− f(xi)yi) log(f(xi)yi)−
∑
j ̸=yi

f(xi)j log(1− f(xi)j) (3.8)

where xi is an individual data point, f(xi) is the prediction vector by the target
model for xi, MH(f(xi), yi) is the modified entropy of the prediction vector for xi,
and τ is the threshold value. Inside MH(f(xi), yi), f(xi)yi is the confidence score
for the ground truth label yi, and f(xi)j is the prediction confidence for class j.

• Prediction Sensitivity Based MI[14]
The authors observed that the norm of the Jacobian matrix for training members
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is often smaller than that for non-members. This observation stems from the fact
that the Jacobian matrix effectively indicates the model’s sensitivity to data point
predictions. A well-trained machine learning model is usually less sensitive to per-
turbations in the feature space of the training set. Consequently, training members
tend to have smaller Jacobian norms. Based on this insight, the attacker collects
the second-order norms of the Jacobian matrices and applies a clustering algorithm
to divide the data points into member and non-member sets.
Mathematically, this approach can be represented as follows:

MIASensitivity(xi) =

{
Member (M) if ∥J(f, xi)∥2 < τ

Non-member (N) if ∥J(f, xi)∥2 ≥ τ
(3.9)

where xi is an individual data point, f is the trained target model, J(f, xi) is
the Jacobian matrix of the model f with respect to xi, ∥J(f, xi)∥2 is the second-
order norm of the Jacobian matrix, and τ is the threshold value determined by the
clustering algorithm.

3.2.2 MIA against Federated Learning

Compared to membership inference attacks in traditional machine learning, MIAs in the
context of federated learning remain relatively unexplored. Existing MIAs for federated
learning are mostly simple extensions of attacks designed for centralized machine learning
models and rarely exploit the unique characteristics of federated learning (for example,
attackers are more often in a white-box attack environment)[[17], [18]]. Moreover, these
attacks have primarily been evaluated in centralized federated learning (CFL) environ-
ments, without considering the context of decentralized federated learning. In decentral-
ized federated learning (DFL), varying network topologies and diverse data distributions
among participants complicate the evaluation of the effectiveness of membership inference
attacks further.

Naser et al. were the first to test the effectiveness of a white-box membership inference
attack based on model gradient changes in a federated learning environment regulated
by a central server. They examined the attack from both the server’s and participants’
perspectives and demonstrated that even individual participants could achieve significant
inference accuracy. They attributed this capability to the repeated updates of model
parameters on the same training set in federated learning[12].

Gu, Bai, and Xu[19] argued that most existing membership inference attacks against FL
are less effective in multi-participant settings. To address this, they proposed CS-MIA,
a novel membership inference attack based on prediction confidence series, which poses a
more significant privacy threat to FL. This attack leverages the differences in prediction
confidence between training and testing data, as well as multiple model versions over FL
rounds. By employing a neural network to learn features from the confidence series, the
authors designed effective inference algorithms for both local and global adversaries and
also introduced an active attack for global adversaries to extract further information.
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Hu et al.[20] proposed a specialized inference attack method for federated learning, known
as the source inference attack. The goal of this attack is not only to obtain information
about the training data within the entire federation but also to attribute this information
to a specific participant. They demonstrated that in a federated learning system using
the FedAvg algorithm with a malicious server, an attacker can effectively infer which
participant’s training data is involved. This is achieved by exploiting the characteristic
that the local training data of different individuals results in varying prediction losses
in the local models of other participants. This attack method broadens the application
scenarios of MIA and poses a significant threat to participants with unique data in the
federated learning system.

3.3 Defense Methods for MIA

In view of the increasingly serious threat of membership inference attack to the privacy
of ML models, several defense strategies are proposed and deeply explored. This section
introduces three efficient defense mechanisms: Differential Privacy , Knowledge Distil-
lation, and Dropout techniques. These defenses provide strong academic support and
practical guidance for privacy protection of machine learning models and even federated
learning.

• Differential Privacy[21]
Differential privacy (DP) is a powerful technology widely used in data privacy pro-
tection, especially in defense against MIA. By introducing noise into the data or
model parameters during training, the technique ensures that the effect of any sin-
gle data point on the model output is limited to an acceptable range, thus effectively
protect the privacy of individual data.
Differential privacy is mainly realized by the method of differential privacy gradient
descent (DP-SGD). DP-SGD adds appropriate noise to the gradient in each step
of the gradient update, and implements gradient clipping to control its influence
range. This approach not only reduces the degree of over-fitting of the model to
the training data, but also makes it difficult for the attacker to infer the specific
information of the training data by analyzing the model parameters. Many studies
show that the DP-SGD model performs well in defense against MIA attacks, which
provides a solid theoretical basis and experimental support for privacy protection of
ML model.

• Knowledge Distillation[22]
Knowledge distillation is an efficient model compression and transfer learning tech-
nique. It simulates the behavior of a large and complex model (teacher model) by
training a smaller model (student model).
In implementation, knowledge distillation usually follows two main steps. First, a
large, complex model (the teacher model) is trained to learn the intrinsic character-
istics of the original data set. Next, a smaller model (the student model) is trained
to produce outputs as close as possible to the predictions of the teacher model,
rather than training directly on the original data set.
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Because the student model does not contact the original training data directly, but
obtains the knowledge by studying the prediction result of the teacher model, this
makes it difficult for attackers to infer information from the original training data
by analyzing the behavior of student models. This kind of indirect training method
effectively separates the model from the original data, which improves the privacy
protection ability of the model significantly.

• Dropout[23]
Dropout is a widely used regularization strategy designed to suppress overfitting
during training by randomly discarding a subset of neurons in a neural network,
thereby improving the model’s generalization performance.
It works by randomly selecting and temporarily ”turning off” (that is, setting their
output to zero) a subset of neurons in the network during each training iteration.
These neurons that are ”switched off” are randomly selected in each iteration and
do not repeat, and this randomness prompts the rest of the model to learn more
robust and generalized features.
In effect, Dropout effectively reduces the model’s dependence on specific training
data points by reducing overfitting, thereby reducing the success rate of membership
inference attacks. The model does not overly ”memorize” the features of a particular
data point during training, making it difficult for an attacker to infer the content of
the training data by analyzing the model’s behavior. Therefore, Dropout provides
an effective technical approach to privacy protection of machine learning models.

3.4 Research Motivation

Although membership inference attacks have been widely designed and evaluated in the
field of machine learning, in federated learning, especially in decentralized federated learn-
ing, MIA research still faces many challenges and unsolved problems. The impact of
unique features of DFL, such as network topology and non-iid distribution of datasets, on
MIA has not been fully explored and understood.

First of all, the network topology in decentralized federated learning is complex and
variable, and the communication and cooperation patterns among participants may sig-
nificantly affect MIA performance. For example, in different topologies, the path of data
transmission, the update frequency of model parameters and the way of synchronization
will have different effects on the attack. In addition, datasets in a federated learning
environment are typically non-independent and identically distributed, and the data held
by each participant is highly personalized and biased, further adding complexity to the
defense against Mia. Second, migrating some of the classic and effective MIA methods in
machine learning to the federated learning case to explore their performance differences
is meaningful. This not only can verify the effectiveness of these methods in the decen-
tralized scene, but also provide new ideas and methods for the federated learning MIA
defense.

To sum up, the motivation of this work is to fill the gap of MIA research in current
federated learning, especially in view of the characteristics of DFL and to explore the
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adaptability and effectiveness of classical MIA methods in the new environment. It is
expected to provide theoretical support and practical guidance for improving the privacy
protection capability of system. In this case, a summary of previous work whether fo-
cusing on either machine learning or federated learning is available in Table3.1. This
overview highlights the need for innovative research and robust techniques to safeguard
DFL systems against memberhsip inference attacks effectively.
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Chapter 4

Architecture

This chapter introduces the integration of the audit component designed to evaluate pri-
vacy leaks caused by membership inference attacks in Fedstellar, a comprehensive feder-
ated learning simulation platform[24]. It mainly includes the analysis of the content of
this new module and how to be integrated into Fedstellar.

4.1 Privacy Audit Component

The structure of this privacy audit component mainly includes the following parts:

• Front-end: By providing a user-friendly front-end interface, users of Fedstellar can
manually select the MIA method to be applied under the desired federated learning,
and also allow users to adjust the specific attack parameters of different MIAs to
better compare the effects of the attacks.

• Attack Performing Module: The attack module mainly contains the details of the
specific MIA implementation. By using the model and data information contained
in the original normal federation training, it simulates the possible attack attempts
made by the attacker.

• Logging Module: After completing the MIA attack, the logging module will be re-
sponsible for recording the specific manifestations of the attack and displaying these
manifestations through the original results presentation method of the Fedstellar
platform, so that users can obtain different types of information data in a unified
manner.

Figure4.1 shows the newly added privacy assessment options on the original front-end
interface of Fedstellar. Users can first determine the type of MIA they want to evaluate,
and then select the specific MIA from the list that appears. In the category of shadow
model based MIA, users can also define the number of shadow models and the specific
attack model types to adapt to their own computing power limitations. In addition,

19
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users can choose to try to implement a defense against MIA in the overall federated
learning process (currently only differential privacy is provided). Through this option
menu, Fedstellar users can easily make the attack selection they want to evaluate without
having to specifically touch the back-end code.

(a) Privacy Option (b) Shadow Model Based MIA

(c) Metric Based MIA (d) DP Defense

Figure 4.1: Privacy Auditing Frontent Interface

As for the attack performing module, which is the core part to implement different MIAs,
from the perspective of software architecture, it can be seen as a part independent of
the original Fedstellar modules. Unlike other attacks such as poison attacks, when users
want to apply MIA to federated learning, they first need to obtain a trained model,
which can be the version of each round or the final version, without interfering with the
original communication process or training process. This also makes it difficult to detect
membership inference attacks in the general sense. Its specific implementation code is
shown below:

Listing 4.1: Membership Inference Attack Class Implementation

1

2 class MembershipInferenceAttack:

3 def __init__(self , model , global_dataset , in_eval , out_eval , logger ,

indexing_map):

4 ...

5

6 def compute_predictions(self , model , dataloader):

7 ...

8 return predictions , labels

9

10 def execute_attack(self):

11 # To be overridden by specific attack implementations

12 raise NotImplementedError("Must␣override␣execute_attack")

13

14 def evaluate_metrics(self , true_positives , false_positives):

15 ...

16 return precision , recall , f1

17

18 class ShadowModelBasedAttack(MembershipInferenceAttack):
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19 def __init__(self , model , global_dataset , in_eval , out_eval , logger ,

indexing_map , max_epochs ,shadow_train , shadow_test , num_s , flag ,

file_name):

20 super().__init__(model , global_dataset , in_eval , out_eval ,

logger , indexing_map)

21 ...

22

23 def _generate_attack_dataset(self):

24 ...

25

26 def MIA_shadow_model_attack(self):

27 ...

28

29 class MetricBasedAttack(MembershipInferenceAttack):

30 def __init__(self , model , global_dataset , in_eval , out_eval , logger ,

index_mapping , train_result):

31 super().__init__(model , global_dataset , in_eval , out_eval ,

logger , index_mapping)

32 ...

33

34 def execute_attack(self):

35 ...

After the attack is performed, the Logging module displays the attack performance data
recorded by the node to the user in a visual way through Fedstellar’s original Tensorboard
logging way, making it easier for users to review all information data of federated learning
in a centralized manner. The final display effect is as follows:

Figure 4.2: MIA Performance Logging in Fedstellar Tensorboard
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Chapter 5

Design and Implementation

This chapter focuses on discussing the details of the implemented membership inference
attacks in this work, which are listed in Table5.1. The characteristics of each attack
are analyzed and demonstrated from the algorithm level. This helps to understand the
circumstances of the attacker’s attack, including the level of knowledge, attack considera-
tions, and the cost of launching the attack. For ease of reference, all MIAs will be referred
to by their abbreviations below.

5.1 Binary Classifier Based MIA

As explained above, MIA based on binary classifiers can also be called shadow model based
MIA (SM MIA). Its main attack process relies on training an independent attack model to
determine which data points may come from the training set of the target model. In order
to obtain enough data to train this attack model, the attacker often trains one or more
shadow models to generate prediction vectors that are comparable to actual members and
non-members, which are the input data of the attack model.

The purpose of using shadow model technique is mainly to enable the attacker to obtain
an object that can mimic the behavior of the target model so that it can clearly determine
which data points will be correctly identified as actual members based on its own known
divided shadow training sets (Strain) and shadow test sets (Stest). In this way, the attacker
fully simulates the different reactions of the target model to its own training set and
non-training set members, from the model to the data set, making this MIA extremely
threatening.

Since the purpose of building shadow models is to obtain a representation similar to the
target model, this MIA must rely on the following two key assumptions:

• Shadow Model should have the same architecture and setting as the target model.
This assumption is particularly important. The consistency of this model not only
includes the same type and parameters of the model used, but also the consistency of

23
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the epochs and training set size. If this cannot be guaranteed, the resulting shadow
model will never be able to simulate the behavior of the target model, even if a large
number of trainings are performed. In this case, the attacker will never be able to
obtain a valid decision boundary for the target data set.

• Shadow training data should come from the same distribution of the target train-
ing set. This assumption is to ensure the consistency of the target model and the
shadow model results from the data perspective. Assuming that the shadow training
data is completely different from the real training data set in terms of feature di-
mensions, the results it produces cannot be used as an effective input for the attack
model.

Based on these two essential assumptions, the attacker can implement SM MIA in the
following order. First, prepare a shadow dataset with the same distribution as the target
training set, and divide it into two independent parts to ensure that there is no overlap
between them. One of them is used to train the shadow model, refered as Strain. The
other part is used as a non-member set that has not been accessed by the shadow model,
called Stest.Afterwards, according to the number of shadow models to be implemented, an
equal number of parts are extracted from these two groups as the training and test sets of
the shadow model. The training sets of different shadow models can be crossed, which in
fact also indirectly shows that the more shadow models, the better, unless there are ex-
tremely sufficient data sets for attackers to choose from. As the number of shadow models
increases, the duplication between different shadow training datasets will increase, and
eventually multiple shadow models will produce the same results, which is not conducive
to improving the MIA effect. At the same time, it is also worth noting that the shadow
training data set should be as non-intersecting as possible with the actual target training
set to simulate a most realistic attack environment.

After preparing the dataset, the attacker should train the prepared shadow model. After
training, the attacker will take Strain and Stest as input into the shadow model and obtain
the corresponding prediction vector as output. The necessity of this process lies in that
the original SM MIA is a membership inference attack created in a black-box environment,
which means that the attacker can only access the input and output of the target model.
Therefore, by obtaining the output results from the shadow model, this accurately utilizes
the data form that the attacker can collect in this case. After that, these two different
types of prediction vectors are used as in and out samples to train the final attack binary
classifier. Based on the original assumption, the attacker has reason to believe that this
attack model can effectively judge data similar to it (i.e., the real members and non-
members).

Although SM MIA for the first time innovatively uses the technique of training shadow
models to enable attackers to transform the distribution of unknown member sets and
non-member sets into judgments of known shadow training sets and test sets, its complex
and cumbersome process will cause relatively high attack costs for attackers. In the
original form of SM MIA proposed by Shokri et al, the attacker would need to even train
multiple shadow models (up to hundreds in their case). As a result, many attackers choose
to pursue lower-cost, easy-to-carry out member inference attacks category-metric based
MIA.
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Name of MIA Abbreviation
Evaluation
Context

Shadow model based MIA SM MIA ML / FL

Prediction Correctness
based MIA

PC MIA ML / FL

Prediction Loss
based MIA

PL MIA ML

Prediction Maximal
Confidence based MIA

PMC MIA ML / FL

Prediction Entropy
based MIA

PE MIA ML / FL

Prediction Sensitivity
based MIA

PL MIA ML

Class Label Confidence
based MIA

CLC MIA ML / FL

Class Label Entropy
based MIA

CLE MIA ML / FL

Modified Class Label
Entropy based MIA

MCLE MIA ML / FL

Source Inference Attack SIA ML / FL

Table 5.1: Summary of Implemented MIAs in this work.

Algorithm 1 Shadow Model Based Membership Inference Attack

Require: MT : Target model
DStrain

, DStest : Training and testing datasets for shadow models
DA, LA: Data and labels for training the attack model
N : Number of shadow models

Ensure: MA: Trained attack model
1: Train Shadow Models
2: for i = 1 to N do
3: Initialize MSi

with the same architecture with MT

4: Train MSi
on DStrain

5: Collect predictions:
PSi

train
= MSi

.predict(DStrain
)

PSi
test

= MSi
.predict(DStest)

6: end for
7: Prepare Attack Model Data
8: Initialize empty sets DAtrain

and LAtrain

9: for i = 1 to N do
10: Append PSi

train
to DAtrain

with labels 1 (member)
11: Append PSi

test
to DAtrain

with labels 0 (non-member)
12: end for
13: Train Attack Model
14: Initialize MA with an appropriate architecture
15: Train MA on DAtrain

with labels LAtrain

16: Perform Membership Inference Attack
17: for each x ∈ DA do
18: Predict using MT : pT = MT .predict(x)
19: Infer membership using MA: is member = MA.predict(pT )
20: end for
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(a) Shadow Model Training

(b) SM MIA Attack

Figure 5.1: Process of Performing SM MIA.

5.2 Metric Based MIAs

Compared with the shadow model-based MIA, a major advantage of metric based MIA
is that it is simple and easy to implement. Compared with the former, which requires
the preparation of a series of models and data conditions, metric based MIA only needs
to select a metric value and determine a valid threshold value, and then compare the
calculated value in the evaluation set with the threshold value to make membership infer-
ences. It can be seen that the effectiveness of metric-based Membership Inference Attacks
(MIAs) often depends on the comparative threshold value selected by the attacker. Next,
the selection logic of the threshold value for each attack will be discussed and analyzed.

PC MIA This MIA is the simplest and easiest attack method. The attacker determines
the in and out samples by judging whether the true label of the evaluated dataset is
consistent with the model prediction. This attack itself does not involve the selection of
a specific threshold value, because the data label is an inherent feature of itself.

PL MIA This MIA uses the average loss during model training as the threshold value
to distinguish between member sets and non-member sets. Although this approach is
reasonable, because a trained model does produce lower prediction losses when facing its
own training set, in practice, the average loss of model training is not necessarily easy for
an attacker to obtain. This MIA itself is in a relatively white-box attack mode, which
limits the possibility of many scenarios. In addition, because the mean of the model
training loss is used as the boundary, this is bound to mean that there will inevitably be
misestimated in samples, which makes the effect of this MIA have an upper limit.
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PMC and PE MIA Both MIAs are from Salem et al.[11]. Although they use different
metrics, one is to select the maximum confidence value in the prediction vector, and
the other is to calculate entropy, they both use the same threshold value establishment
method, that is, to obtain the threshold value for the optimal attack effect by generating
random data in the same form as the target data set.

The exact threshold choosing method can be accomplished in this way: First, attacker try
to generate a sample of random points in the feature space of the target data point. For
example, if the target attack dataset is image data such as CIFAR-10, the attacker will
create a series of random images where the value of each pixel is drawn from a uniform
distribution. Given that the CIFAR-10 dataset format is 32 x 32 x 3, each image consists
of 3072 pixels. For these 3072 points, each pixel value is randomly drawn from the range
0 to 255, corresponding to the possible pixel values in the dataset. Then after getting
enough random images, the attacker would query these random points to the target model
to get the corresponding metric values (maximal posteriors or entropies here). Because
the authors believe that these newly-generated random data are sound substitutes for non-
member samples, choosing their top t percentile of metrics can serve as a good threshold
to perform attack. Although Salem et al. finally selected a fixed top 10 quantile as a
benchmark for threshold selection for different datasets, in this work, a slightly different
approach was taken for the thresholds of PMC and PE MIA.

In fact, no matter which percentile of the random metrics the attacker chooses as the
final threshold, it will have two-fold impact. If this metric has a positive impact on
reasoning, such as confidence applied here, then the smaller quantile often means that
the attacker has chosen a more relaxed threshold, which will increase the value of attack
recall (because more training samples are identified). But correspondingly, the precision
will decrease, because relaxed conditions also mean an increase in false positives. Negative
signs such as entropy are just the opposite. In reality, which percentile to choose depends
on the attacker’s goal, whether to focus more on the number or accuracy of inferences.
Therefore, a compromise method is used here: by calculating the precision and recall for
specific percentiles (10, 20, 30, ..., 90, increasing by 10 each time), the percentile with the
largest F1-score is selected. This approach balances both aspects of attack performance
effectively.

PS MIA PS MIA is an attack designed to capture the difference in prediction sensitivity
between the training set and the non-member set. It is based on the observation that a
well-trained machine learning model usually exhibit less sensitivity to the perturbations
to the feature values.In essence, this is similar to the attack logic of PMC MIA, where
the machine learning model becomes more confident in the predictions of its training
data, and thus exhibits greater robustness to tiny changes in input values. In order to
effectively quantify this concept, Liu et al. proposed to use the Jacobian matrix, which
contains the first-order derivative of each output value of the model with respect to the
input(5.1), to measure its sensitivity to changes in the input value. At the same time, in
order to simulate a black-box attack, the author proposed an approximate solution to the
Jacobian matrix of the model through an approximate estimation method, shown as 5.2.
The advantage of this is that the attacker does not need information about the specific
architecture of the training model, but only needs access to the model input and output
to carry out this attack. In this way, the second-order norm value of the Jacobian matrix
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of the target model for each data point can be obtained. This metric is a negative sign
like entropy, and members of the training set tend to have lower Jacobian norm values.

J(x;M) =
[
∂M(x)
∂x1

· · · ∂M(x)
∂xn

]
=


∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂ym
∂x1

· · · ∂ym
∂xn

 , (5.1)

where y = M(x). The input sample is x = [x1, x2, . . . , xn], and the corresponding
prediction is y = [y1, y2, . . . , ym].

∂yi
∂xj

represents the first derivative between the input

sample’s ith feature value and its prediction confidence to jth class.

∂yj
∂xi

≈ M(x+ ϵ)−M(x− ϵ)

2ϵ
, (5.2)

where ϵ is a tiny value added to the ith feature value of the input sample.

Apart from this unique metric value, compared to the above-mentioned MIA, PS MIA
does not select a real threshold value in a general sense. Instead, it divides all data sets into
two categories, in group and out group, by applying clustering algorithms in unsupervised
learning. For example, Liu et al. chose spectral clustering for the final division. This
method applies the characteristics of unsupervised learning, which is quite different from
the first proposed MIA by Shokri et al.[10] that trained the attack model in a supervised
learning environment.

CLC, CLE, and MCLE MIA The types of indicators selected by these three MIAs are
essentially the same as the previous ones, except that the prediction confidence and en-
tropy of the data are differentiated by different labels. However, among the implemented
metric-based MIAs, these three MIAs, compared to others, apply another special method
to determine the optimal threshold value. The attacker uses the idea of training a shadow
model to obtain a tool that simulates the performance of the target model. Through the
performance of the shadow model’s metric in its shadow data set (the in, out relationship
is known by the attacker), the attacker selects a threshold value that makes the attack
effect the best, and transfers this value to the attack on the target model. In this way, the
attacker can inherit the advantages of the shadow model training technology to make the
attack more targeted, but at the same time, the necessary preparations and assumptions
mentioned above also need to be maintained, which also increases the burden of MIA
implementation.
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Chapter 6

Evaluation

This chapter presents a comprehensive evaluation of the performance of different types of
membership inference attacks in Table5.1 in the context of machine learning and federated
learning. In machine learning, the primary focus of evaluation is on how different models,
varying volumes of training data, and differing numbers of training epochs influence the
effectiveness of attacks. Conversely, in federated learning, the analysis shifts to examining
the impact of network topology changes and the number of training rounds. This chapter
will first present the setup for the experiments, then list the specific experimental results,
and finally conduct a comparative analysis of experiments under different circumstances.

6.1 Experimental Setup

This section outlines the experimental setup, detailing the datasets employed, the model
architecture and training parameters, as well as the metrics used to evaluate MIA perfor-
mance.

6.1.1 Datasets and Preprocessing

All experiments are conducted on the following three datasets: MNIST, Fashion-MNIST,
and CIFAR-10. These datasets are not only used as benchmarks in the field of model
training but are also widely referenced in MIA-related literature. Figure 6.1 shows the
grayscale and RGB visualizations of these datasets.

• MNIST[25] is a freely accessible dataset that contains 70,000 images of handwritten
digits, 60,000 images of the training set, and 10,000 images of the testing set. Each
image is formatted as 28 x 28 and processed so that the digit is in the center. The
MNIST dataset is a 10-class classification problem in which the task is to determine
which digit between 0 and 9, inclusive, is present in a given image.
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• FMNIST[26] is a dataset that consists of 70,000 images of Zalando’s article images,
60,000 images of the training set, and 10,000 images of the testing set. Each image
is a 28 x 28 grayscale image associated with a label from 10 classes.

• CIFAR-10[27] dataset is also freely accessible and contains 60,000 color images,
50,000 images of the training set, and 10,000 images of the test set. Each image is
again formatted to be 32 x 32. There are also ten classes in the CIFAR-10 dataset:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Each class has
6,000 images available. The problem is a 10-class classification problem to determine
which of the ten classes is depicted in a given image.

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 6.1: Visualization of MNIST, Fashion-MNIST, and CIFAR-10 datasets.

In addition to these three original datasets, the impact of data augmentation on model
training is also considered. Data augmentation is commonly applied to complex datasets
to enhance the robustness and generalization capabilities of machine learning models[28].
By artificially increasing the diversity of the training data through various transforma-
tions—such as rotation, scaling, flipping, and cropping to image data—models can learn
to recognize patterns and features more effectively, which helps reduce overfitting. As
discussed in the previous chapter, the level of overfitting significantly influences the effec-
tiveness of MIA. Therefore, it is both reasonable and meaningful to evaluate the impact
of data augmentation in the following analysis.

Considering the characteristics of above three datasets, data augmentation measures are
specifically applied to the CIFAR-10 dataset. Its RGB three-channel structure often
hinders the model from fully learning image features during training, resulting in poor
generalizability. Applying data augmentation to the CIFAR-10 dataset during training
has become a widely accepted practice in the field of machine learning. Here, two different
data augmentation methods are adopted to more comprehensively evaluate its impact on
membership inference attacks:

The first method includes the following transformations:

• Random cropping of images to 32 x 32 pixels with a padding of 4 pixels

• Random horizontal flipping

The second method incorporates additional operations:
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• Random cropping of images to 32 x 32 pixels with a padding of 4 pixels

• Random horizontal flipping

• Random rotation of images by up to 15 degrees

• Color jittering to adjust brightness, contrast, saturation, and hue

• Random vertical flipping

Figure 6.2 illustrates the impact of two different data augmentation methods on original
CIFAR-10 dataset images. It is evident that the second augmentation method is more
intense than the first. This method not only alters the style and position of the images
but also significantly changes their color and rendering compared to the original data.
Regardless of the augmentation method used, the goal is to expose the model to a wider
variety of data while preserving the essential features of the original images during train-
ing. This approach enhances the model’s ability to generalize without compromising the
core characteristics of the dataset.
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Figure 6.2: Example of CIFAR-10 image with different augmentation methods.

In general, three datasets—MNIST, Fashion-MNIST, and CIFAR-10—are used to com-
prehensively evaluate the performance of membership inference attacks (MIA) in both
machine learning and federated learning scenarios. This evaluation also includes the vari-
ants of the two data augmentation methods applied to the CIFAR-10 dataset. Detailed
information on these datasets and augmentation methods is summarized in Table 6.1.

In the federated learning environment, different topological structures and data distri-
bution forms (iid or non-iid) will cause differences in the data of each participant. The
three network structures shown in Figure 6.3 are evaluated respectively in the experi-
ments. Here, each participant is aggregated by the FedAvg algorithm. At the same time,
considering whether the data distribution is independent and identically distributed, the
data distribution of each node shown in Figure 6.4 is applied separately.

In the case of iid, each participant has a fixed number of 2500 training data and the
number of data for each label is basically the same. However, considering non-iid, not
only the amount of training data for each participant is very different, but the distribution
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Name Type
Number of
Classes

Size of
Training Records

Size of
Test Records

Data
Augmentation

MNIST Image 10 60,000 10,000 No
FMNIST Image 10 60,000 10,000 No

CIFAR-10no Image 10 50,000 10,000 No
CIFAR-10aug Image 10 50,000 10,000 First Aug

CIFAR-10extend Image 10 50,000 10,000 Second Aug

Table 6.1: General information of the Experiment Datasets

of data labels is also extremely uneven, thus simulating the situation that may exist in
the real environment. Here, this severe non-iid situation is achieved by using the Dirichlet
distribution with alpha of 0.1.

(a) Fully Connected (b) Star (c) Ring

Figure 6.3: Three Different Topologies for the Decentralized Federated Learning with 10
participants.

6.1.2 Model Architectures

The experiments were conducted on a server equipped with an AMD EPYC 7702 64-Core
Processor running at 1.996 GHz. The server architecture supports both 32-bit and 64-bit
operations with a total of 16 cores per socket and 64 threads, distributed across a single
socket.
For graphical processing, the server utilizes an NVIDIA Tesla T4 GPU, with driver version
545.23.06 and CUDA version 12.3.
The specific machine learning model involved in the experiment applied the Pytroch
Lightning library. Considering the different complexities of the three kinds of experimental
datasets, the following two model architectures were selected and handled respectively:

• Multilayer Perceptron (MLP) One multilayer perceptron model was chosen for
MNIST and FMNIST classification tasks. It consists of an input layer that flattens
28x28 pixel images into 784-dimensional vectors, followed by two fully connected
layers with 256 and 128 neurons respectively, each with ReLU activation functions.
The final layer is a fully connected layer with 10 neurons for class prediction, using
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(a) MNIST iid (b) MNIST non-iid

(c) CIFAR-10 iid (d) CIFAR-10 non-iid

Figure 6.4: IID and non-IID distribution of MNIST and CIFAR-10 datasets for each
participant in DFL

Cross-Entropy Loss for optimization and the Adam optimizer with a learning rate
of 0.001.

• Convolutional Neural Network (CNN) As for CIFAR-10 class datasets, one convo-
lutional neural network model was used. The implemented CNN model comprises
three convolutional layers with 16, 32, and 64 filters respectively, each followed by
ReLU activation and 2x2 max-pooling. The output from the convolutional lay-
ers is flattened and passed through a fully connected layer with 512 neurons and
a final output layer with 10 neurons for class prediction. Besides, the model uses
Cross-Entropy Loss for optimization, employs the Adam optimizer with specific beta
parameters (0.851436 and 0.999689) and AMSGrad.

In the case of federated learning, all participants use the same model type to train local
datasets, regardless of whether the dataset distribution is iid or non-iid. This can help
the overall model converge and make the evaluation of the performance of MIA performed
from each node more objective.
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6.1.3 Evaluation Metrics

In order to objectively evaluate the performance of MIAs in various situations, the fol-
lowing metrics are selected to measure the quality of MIA from different perspectives.

• Attack Precision (AP) Attack Precision measures the proportion of true positive
memberships (correctly identified as members) out of all instances that were pre-
dicted as members by the attack. It is defined as:

AP =
TP

TP + FP
(6.1)

where TP is the number of true positives and FP is the number of false positives.
A higher precision indicates that the attack model is more accurate in identifying
true members without incorrectly labeling non-members as members.

• Attack Recall (AR) Attack Recall measures the proportion of true positive mem-
berships out of all actual members. It is defined as:

AR =
TP

TP + FN
(6.2)

where FN is the number of false negatives. A higher recall indicates that the attack
is more effective at detecting members from the actual member population, ensuring
fewer actual members are missed.

• F1-Score The F1-Score is the harmonic mean of Precision and Recall, providing a
single metric that balances both concerns. The F1 Score is defined as:

F1-Score = 2× AP× AR

AP + AR
(6.3)

A higher F1 Score indicates a better balance between AP and AR, making it a
comprehensive metric for overall attack performance.

• AUC Score The AUC score is defined as the area under the ROC curve, which plots
the true positive rate against the false positive rate. This metric aims to measure
the attack’s ability to distinguish between members and non-members across all
threshold values. A higher AUC score (ranging from 0 to 1) indicates a better over-
all performance of the attack in distinguishing members from non-members, with a
score of 0.5 representing random guessing and 1.0 representing perfect discrimina-
tion.

6.2 Experimental Results

This section specifically presents the performance results of different types of membership
inference attacks in various situations in the context of machine learning and federated
learning.
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6.2.1 Machine Learning Case

Table 6.2 first shows the attack performance of shadow model based MIA (SM MIA)
under the CIFAR-10 dataset without data augmentation. It shows the difference in attack
performances caused by training different numbers of shadow models to carry out attacks.
It can be seen that although the number of shadow models has increased by 10 times, the
improvement in both attack precision and attack recall is very small. This verifies Salem
et al[11]’s point of view - that training a single shadow model can achieve similar results
to multiple shadow models. At the same time, this attack method is also evaluated under
different training data size and different training epochs of the target model, which are
both important factors affecting the level of model overfitting. By experimenting with
different training data sizes and epochs, the connection between the reasons for MIA’s
success and the level of overfitting can be better established.

Based on the CIFAR10 experience, it has been demonstrated that simply increasing the
number of shadow models does not enhance the effectiveness of the SM MIA. Therefore, to
save computing resources, all SM MIAs evaluated subsequently use the setting of training
only one shadow model. In this case, Table 6.3 illustrates the performance of SM MIA on
MNIST and FMNIST datasets.

Next, when evaluating the performance of MIA on the dataset after data augmentation,
it is necessary to consider whether the attacker knows that the target model uses data
augmentation during training. This can be broken down into the following cases:

• Adversary 1. This attacker knows that the target model uses data augmentation
to improve training performance. So it also takes corresponding measures when
training the shadow model to mimic behaviour. However, due to practical limita-
tions, it is not possible to obtain the original data form to evaluate the effect of the
attack. This situation is very likely in reality. Assuming that the attacker’s target
is MLAS (Machine Learning as a Service), the platform that provides such services
often only provides an API for users to obtain data, so that the attacker can only
get the randomly transformed dataset.

• Adversary 2. This attacker also knows that data augmentation is used to train the
target model, but unlike the first adversary, it has access to the original form of the
training data.

• Adversary 3. The attacker is completely unaware that data augmentation is used
for target model training. Therefore, based on its cognition, it will only choose to
use the original data form to train the shadow model and evaluate the effectiveness
of the attack.

The above adversary assumption is summarized in Table6.4 with regard to different
shadow set and evaluation set. Based on this setting, Table6.5, Table7.1 and Table7.2
illustrate the performance of SM MIA on CIFAR-10aug and CIFAR-10extend datasets
under different adversary assumptions respectively. Additionally, as analyzed in Chap-
ter5, the three attacks—CLC MIA, CLE MIA, and MCLE MIA—also require training a
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Number of
Shadow Models

Size of
Training Data

Epochs AP AR
F1-
Score

Overfitting
Level

AUC

k = 1

n= 2500

10 0.507 0.646 0.568 15.02% 0.516
25 0.637 0.898 0.745 46.30% 0.737
50 0.688 0.995 0.814 48.60% 0.800
75 0.680 0.999 0.809 48.50% 0.809
100 0.686 0.997 0.812 48.60% 0.807

n=5000

10 0.505 0.573 0.537 11.88% 0.512
25 0.613 0.873 0.720 43.21% 0.719
50 0.670 0.981 0.796 43.70% 0.782
75 0.667 0.998 0.800 44.05% 0.786
100 0.669 0.996 0.801 43.80% 0.792

n = 12500

10 0.531 0.516 0.524 14.75% 0.538
25 0.638 0.940 0.760 35.70% 0.735
50 0.648 0.984 0.781 35.66% 0.746
75 0.652 0.971 0.780 35.76% 0.750
100 0.647 0.953 0.771 35.80% 0.755

n = 25000

10 0.526 0.704 0.602 17.26% 0.545
25 0.583 0.987 0.733 30.78% 0.689
50 0.621 0.971 0.757 30.41% 0.720
75 0.623 0.883 0.730 30.52% 0.721
100 0.621 0.989 0.763 30.53% 0.722

k = 10

n= 2500

10 0.534 0.667 0.593 15.02% 0.543
25 0.664 0.901 0.765 46.30% 0.764
50 0.715 0.994 0.832 48.60% 0.827
75 0.707 0.999 0.828 48.50% 0.836
100 0.713 0.999 0.832 48.60% 0.835

n=5000

10 0.532 0.556 0.544 11.88% 0.539
25 0.640 0.878 0.740 43.21% 0.746
50 0.697 0.992 0.819 43.70% 0.809
75 0.694 0.997 0.819 44.05% 0.813
100 0.696 0.999 0.821 43.80% 0.819

n = 12500

10 0.558 0.535 0.546 14.75% 0.565
25 0.665 0.931 0.776 35.70% 0.762
50 0.675 0.947 0.788 35.66% 0.773
75 0.679 0.963 0.797 35.76% 0.777
100 0.674 0.995 0.803 35.80% 0.782

n = 25000

10 0.553 0.738 0.633 17.26% 0.572
25 0.610 0.945 0.741 30.78% 0.716
50 0.648 0.926 0.762 30.41% 0.747
75 0.650 0.932 0.770 30.52% 0.748
100 0.648 0.999 0.757 30.53% 0.750

Table 6.2: Performance of SM MIA with Different Number of Shadow Models under
CIFAR-10no Dataset.
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Dataset
Size of

Training Data
Epochs AP AR F1-Score

Overfitting
Level

AUC

MNIST

n= 2500

10 0.513 0.750 0.609 3.24% 0.521
25 0.527 0.816 0.640 6.98% 0.554
50 0.535 0.601 0.566 7.10% 0.562
75 0.537 0.270 0.360 7.00% 0.581
100 0.557 0.460 0.504 6.90% 0.587

n=5000

10 0.504 0.807 0.620 2.25% 0.511
25 0.519 0.847 0.644 5.92% 0.538
50 0.527 0.962 0.681 5.50% 0.550
75 0.531 0.671 0.593 5.35% 0.557
100 0.530 0.902 0.667 5.35% 0.562

n = 12500

10 0.504 0.655 0.569 1.93% 0.503
25 0.514 0.756 0.612 3.00% 0.526
50 0.518 0.986 0.679 2.98% 0.538
75 0.520 0.898 0.658 2.98% 0.548
100 0.519 0.690 0.592 3.02% 0.539

n = 25000

10 0.504 0.954 0.659 1.15% 0.503
25 0.506 0.848 0.634 2.31% 0.513
50 0.509 0.971 0.668 2.80% 0.517
75 0.509 0.794 0.621 2.30% 0.518
100 0.509 0.899 0.650 2.25% 0.521

FMNIST

n= 2500

10 0.500 0.568 0.532 6.32% 0.500
25 0.526 0.614 0.567 14.02% 0.550
50 0.558 0.812 0.662 16.50% 0.607
75 0.573 0.779 0.660 16.80% 0.623
100 0.571 0.778 0.659 16.80% 0.631

n=5000

10 0.509 0.499 0.504 7.69% 0.515
25 0.516 0.747 0.611 11.07% 0.537
50 0.537 0.697 0.607 15.27% 0.575
75 0.534 0.848 0.655 15.88% 0.573
100 0.552 0.756 0.638 15.60% 0.599

n = 12500

10 0.504 0.616 0.554 5.06% 0.506
25 0.510 0.847 0.637 9.90% 0.523
50 0.523 0.808 0.635 12.90% 0.551
75 0.539 0.804 0.645 13.92% 0.583
100 0.538 0.996 0.699 13.34% 0.594

n = 25000

10 0.502 0.581 0.539 3.97% 0.502
25 0.511 0.844 0.637 8.67% 0.523
50 0.518 0.910 0.660 10.60% 0.544
75 0.518 0.884 0.653 12.04% 0.535
100 0.529 0.726 0.612 11.44% 0.557

Table 6.3: Performance of SM MIA with a Single Shadow Model under MNIST and
FMNIST Dataset.
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Adversary
Knowledge of Data
Augmentation Used

Shadow Model
Training Set

Evaluation
Set

Adversary 1 Yes Yes Yes
Adversary 2 Yes Yes No
Adversary 3 No No No

Table 6.4: Assumptions for Each Adversary Regarding the Use of Data Augmentation in
Shadow Model Training and Evaluation.

shadow model to determine the optimal metric comparison boundary. Consequently, the
same adversary analysis is conducted on these attacks. Figures 4, 5, and 6 present the
corresponding results.

As for other metric based MIAs which does not involve using shadow model, their attack
performance results across different datasets can be found in Figure6.7, Figure7.5, Fig-
ure7.6, Figure7.7, and Figure7.8. Among them, PMC and PE MIA are worth exploring
further in depth for the threshold values selected each time. As discussed in chapter5,their
threshold comparison values are generated by creating random data. Each time, the at-
tacker would traverse trying different percentiles and use the one with the best F1-score
at last. The cases where each quantile is selected as the optimal threshold in all datasets
are counted here shown in Table6.8. It can be seen that PMC MIA mainly selects the
10th quantile, while PE MIA selects the 95th quantile as the best threshold. The values
corresponding to these two quantiles generally mean that the attacker has chosen a looser
boundary value to compare whether a data point is a training member(since the entropy
is a negative sign and the smaller the entropy value of a data point, the higher the prob-
ability that it is a training member). The impact of this is that compared to stricter
control of false positives, increasing the number of true positives can make the overall
attack more effective. At the same time, although this method of selecting threshold
values based on random data quantiles is only tested in the experimental dataset of this
work, considering the huge difference between it and other quantile counts, it has great
potential to be migrated to a wider datasets to form a paradigm of attack method.
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Figure 6.8: Total Counts of Different Percentiles Chosen for PMC MIA and PE MIA
Across All Datasets
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Dataset
Size of

Training Data
Epochs AP AR F1-Score

Overfitting
Level

AUC

CIFAR-10
aug

n= 2500

10 0.506 0.630 0.561 -0.04% 0.503
25 0.510 0.364 0.425 5.20% 0.507
50 0.522 0.607 0.561 14.30% 0.522
75 0.542 0.658 0.594 23.96% 0.570
100 0.592 0.719 0.650 33.18% 0.637

n=5000

10 0.510 0.380 0.436 -1.68% 0.516
25 0.506 0.576 0.539 1.28% 0.517
50 0.520 0.686 0.591 10.35% 0.535
75 0.542 0.593 0.566 16.72% 0.565
100 0.567 0.601 0.584 24.05% 0.597

n = 12500

10 0.502 0.615 0.553 -0.80% 0.503
25 0.505 0.688 0.582 3.24% 0.511
50 0.522 0.692 0.595 10.41% 0.539
75 0.543 0.719 0.619 15.93% 0.571
100 0.550 0.747 0.634 19.69% 0.588

n = 25000

10 0.497 0.570 0.531 -1.67% 0.496
25 0.495 0.470 0.482 3.10% 0.497
50 0.510 0.808 0.625 8.36% 0.516
75 0.523 0.743 0.614 11.37% 0.540
100 0.528 0.779 0.629 13.22% 0.551

CIFAR-10
extend

n= 2500

10 0.503 0.370 0.426 -1.58% 0.511
25 0.519 0.440 0.476 3.28% 0.515
50 0.509 0.452 0.479 3.28% 0.506
75 0.510 0.609 0.555 8.56% 0.521
100 0.516 0.524 0.520 9.40% 0.521

n=5000

10 0.503 0.724 0.594 -1.90% 0.508
25 0.510 0.254 0.339 -2.44% 0.507
50 0.500 0.367 0.423 -1.38% 0.501
75 0.516 0.439 0.475 2.12% 0.520
100 0.523 0.346 0.417 5.34% 0.521

n = 12500

10 0.499 0.581 0.537 -4.54% 0.499
25 0.515 0.280 0.363 -2.56% 0.509
50 0.506 0.531 0.518 -0.56% 0.509
75 0.506 0.618 0.557 2.05% 0.509
100 0.518 0.611 0.561 1.62% 0.523

n = 25000

10 0.500 0.567 0.531 -2.38% 0.499
25 0.493 0.414 0.450 -3.32% 0.495
50 0.489 0.393 0.436 -1.75% 0.492
75 0.491 0.443 0.466 -0.32% 0.489
100 0.495 0.500 0.497 0.35% 0.494

Table 6.5: Performance of SM MIA for CIFAR-10aug and CIFAR-10extend Dataset based
on Adversary 1 Assumption.
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Dataset Name of MIA
Fully Connected Star Ring
AP AR AP AR AP AR

CIFAR-10no

SM MIA 0.535 0.293 0.535 0.303 0.529 0.274
PC MIA 0.564 0.848 0.540 0.710 0.542 0.723
PMC MIA 0.538 0.424 0.503 0.928 0.523 0.447
PE MIA 0.535 0.509 0.504 0.907 0.519 0.564
CLC MIA 0.549 0.276 0.552 0.271 0.540 0.246
CLE MIA 0.534 0.264 0.535 0.272 0.528 0.246
MCLE MIA 0.549 0.280 0.553 0.274 0.541 0.249

Avg. 0.543 0.414 0.532 0.524 0.532 0.393

CIFAR-10aug

SM MIA 0.499 0.819 0.500 0.791 0.499 0.815
PC MIA 0.518 0.758 0.517 0.711 0.518 0.706
PMC MIA 0.510 0.557 0.509 0.527 0.509 0.507
PE MIA 0.507 0.617 0.509 0.535 0.509 0.502
CLC MIA 0.519 0.593 0.519 0.595 0.521 0.588
CLE MIA 0.510 0.351 0.512 0.414 0.512 0.362
MCLE MIA 0.522 0.620 0.519 0.590 0.521 0.589

Avg. 0.512 0.616 0.512 0.595 0.513 0.581

CIFAR-10extend

SM MIA 0.535 0.293 0.535 0.303 0.529 0.274
PC MIA 0.507 0.622 0.508 0.602 0.507 0.607
PMC MIA 0.501 0.636 0.502 0.679 0.502 0.741
PE MIA 0.502 0.519 0.503 0.482 0.501 0.752
CLC MIA 0.507 0.727 0.505 0.736 0.506 0.715
CLE MIA 0.499 0.691 0.501 0.655 0.502 0.563
MCLE MIA 0.506 0.698 0.506 0.743 0.506 0.734

Avg. 0.508 0.598 0.509 0.600 0.508 0.627

Table 6.6: Performance of Different MIAs in the Final Round (Round 10) Across Various
Datasets and Topologies.

6.2.2 Federated Learning Case

In the context of federated learning, different attack methods are evaluated under differ-
ent DFL topologies. In all experiments, federated learning is conducted for 10 rounds.
After each round of aggregation, different attacks are launched by various participants
to evaluate the effects. Table6.6 presents the results of different MIAs across different
datasets and topologies. The performance value of each attack is the average value evalu-
ated by all participants in the federation in this round. Only the results of the last round
are shown here because the model generally converges to the highest degree at this time,
and is closer to the results of large-scale data training in traditional machine learning. In
fact, in the first few rounds of federated learning, the model information was not fully
transmitted between different participants, resulting in a relatively random performance
of the aggregated model, which caused great trouble for the launch of MIA.

Although Table6.6 provides a perspective to examine the MIA effect in different types of
federated learning, the way calculating the average performance of all participants in a
round invisibly ignores the uniqueness of the different participants. Compared with this
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macro perspective, Figure6.9, Figure6.11, and Figure6.12 evaluates the different nodes
themselves at a micro level. These tables depict how the MIA attack launched from a
certain node can be used to infer the training data of each node in the entire federation.
The horizontal axis represents node1 to node10, and the vertical axis represents round1
to round10. Through the changes in color depth in the heat map, it can be seen that
different nodes in different topologies infer different amounts of training data for other
nodes. This change is closely related to the location of the node and the topology of the
overall network. This is also a special feature of MIA in DFL, because the aggregation
model of each participant in DFL is different in different time periods.
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Figure 6.9: Heatmap of AR of PC MIA from Node 1 in fully connected network across
CIFAR-10no, CIFAR-10aug, and CIFAR-10extend
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Figure 6.10: Heatmap of AR of SIA in the Final Round (Round 10) from Different Nodes
across CIFAR-10no, CIFAR-10aug, and CIFAR-10extend Dataset.

6.3 Comparison Analysis

6.3.1 ML vs FL

First, overall, compared to the performance of various MIAs in machine learning environ-
ments, the performance of all MIAs in FL has been greatly reduced. Regardless of the
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topology, the attack precision has basically dropped to nearly 50%, which means that the
effect of this attack is no better than random guessing. At the same time, the drop in
attack recall is even more significant, and the recall value of many MIAs has even dropped
to 20% to 30%, which means that it has lost any reasoning function.

At the same time, compared with the performance in machine learning, the performance
of MIA in FL is also extremely random. For example, in machine learning, as the number
of model training epochs increases, the overall performance of MIA will increase. However,
in FL, it can be found that the performance of many MIAs does not seem to be equal
to the number of rounds. Even after the last round of aggregation, in theory, the models
of each node should gradually converge and become homogeneous, but at this time, the
performance of many MIAs will not show a significant increase compared to the previous
rounds. This makes the method of controlling MIA more difficult.

The reasons why MIA failed in FL are mainly the following:

• Reduction of overall model overfitting level
As discussed above, an important factor in the success of MIA is that the model has
poor generalization ability and a large overfitting level. However, in federated learn-
ing, as different participants gradually aggregate each other’s model parameters, the
poor generalization ability of the original model training is reduced invisibly, which
is also one of the advantages of federated learning. Although there is currently
no unified calculation method for the overfitting value of the overall model in each
round of federated learning, considering that in aggregation, the model can continue
to be exposed to information from different data distributions, thereby enhancing
the model’s predictive ability in dealing with unknown data.

• Difficulty to simulate the behavior of the federated model
Among the many MIAs tested, whether it is the MIA involving shadow model
training or the MIA determining the threshold by generating similar random images,
the attacker always tries to simulate the unknown part that the attacker wants to
speculate by using the data set at hand where the in and out relationships are
known. This is exactly what was discussed in Chapter5 that the essential purpose
of the shadow model is to mimic the behavior of the target model, and the random
data is generated with the assumption that it closely approximates the distribution
of non-member values.

But in the context of federated learning, the assumptions that these attacks work
no longer hold true. When implementing a shadow model attack, the attacker
can generally only train an ordinary machine learning model. Even if it keeps
other conditions consistent, this model will have very different performances when
facing the same data points compared to the model after each round of aggregation,
resulting in the final trained binary classifier attack model being unable to correctly
distinguish the relationship between member sets and non-member sets. This is
why in the Table, the MIA effects involving training shadow models are particularly
poor. This situation is very similar to the situation of Adversary 3 in the Table, that
is, the performance of the target model cannot be correctly simulated, resulting in
the final attack not being able to target this situation well. The same principle also
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applies to the use of random data. Because in the unique environment of federated
learning, a simple random image with each pixel obeying a standard distribution
can no longer describe the distribution of non-member sets.

• Complex Data Distribution among Participants
In actual federated learning, it is normal for the data distribution of each participant
to be very different. In this case, for an individual with very small local data or very
extreme data labels, it is very likely to obtain a model that does not fully converge
at the end of federated learning, especially if it is located in a remote position in the
entire network. In this case, it is quite difficult for an attacker to use the information
obtained to infer the situation of the training set members in the entire federation.

But at the same time, although the MIA effects of most tests have deteriorated signif-
icantly, there is still one MIA that poses substantial risk of privacy leakage in the FL
environment. It is PC MIA, which is inferred by whether the model prediction is correct.
Its easy-to-implement feature makes it more adaptable to changes in the environment in
FL. Unlike attacks such as shadow models that can be misled by incorrect attack infor-
mation, its characteristics based on model prediction results make it more sensitive to
changes in models of different participants. This can be seen from the examples in Figure
6.9 to Figure 6.11.

6.3.2 Different Topologies of FL

Although Table 6.6 shows the difference in the average values of all attacks implemented
by different topologies, considering that the absolute values are already at a low level,
it does not seem reasonable to evaluate the difference at this time. Therefore, looking
at the participant composition of the training members inferred by MIA from a micro
perspective is a better angle to analyze the differences between different topologies.

Figure 6.9 uses the form of heat change to depict the different changes in the proportion
of each member in the federation inferred by node 1 in different rounds of PC MIA. First
of all, from a vertical perspective, no matter which type of CIFAR-10 dataset is used, the
overall trend of PC MIA is constantly improving. This is consistent with the nature of
federated learning. As the degree of model convergence increases, the information inferred
by the attack continues to increase. On the other hand, from a horizontal perspective, no
matter which round node 1 is in, the proportion of each member’s training data inferred
is basically the same. It does not obtain more information for any specific node. This
actually corresponds to the property of fully connected topology in which it is located. In
this case, the model of each participant after each round of aggregation is the same, so
that the reasoning ability of each node is basically identical.

From the Star network shown in Figure 6.10, it can be clearly seen that different attackers
have very different reasoning abilities for different nodes. Node 1 is the center of the star
graph, and it aggregates with all the remaining nodes in each round. Relatively speaking,
it always has the strongest ability to reason about its own training data set, while the
level of reasoning about other attachment nodes is basically the same, maintaining a lower
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level. This may be because as a center point, its own model information is always used
multiple times in aggregation, making it unable to break away from the influence of its
own data. In addition, the performance of nodes 2, 3, and 4 is very similar. They always
have strong reasoning abilities for themselves and their only neighbor, the center node
1, and know very little about other participants who are not directly connected. It can
be clearly seen from Figure 6.10 that the topology of the star graph greatly affects the
difference in MIA effects between different participants.

Figure 6.11 depicts the difference in inference results of different nodes in the ring graph.
First, from the situation of these four nodes, it can be seen that the number of reasoning
decreases from the self to the adjacent then to distant points, presenting an obvious ladder-
like form. In other words, the distance between nodes in the ring graph greatly affects the
reasoning ability of each participant to others. This is actually quite reasonable. Because
each participant will aggregate with the neighbours directly connected to it in each round,
in this case, the model information of the node close to it must have a greater impact on
itself, while the information of the distant individuals needs to spend extra time to be
brought to itself step by step through other nodes. This logic precisely reflects the change
of the ladder state potential. In addition, unlike the star graph, the ring graph itself
is a symmetrical graph, so there is no one that has a higher reasoning ability than any
other nodes. This conclusion reflects that the topological structure of the network leads
to different reasoning ability by affecting the aggregation behavior of each participant.

Finally, just as data augmentation reduces the effect of MIA in machine learning, in
federated learning, data augmentation masks the network topology tendency discussed
above. That is, for a participant, the membership composition it infers gradually tends to
be uniform. This phenomenon can be clearly seen from the heatmaps between different
data sets from Figure 6.9 to Figure 6.11. Obviously, from left to right, not only the number
of members inferred as a whole is decreasing, but also the inferred targets no longer have
obvious directionality. This result is also related to the conclusion that data augmentation
can reduce the overall overfitting level of the model. In federated learning, after using
data augmentation, the model influence of each participant gradually converges, so that
MIA no longer has additional network topology reasoning functions as mentioned above.
This also shows that the means of data augmentation can still protect the privacy leakage
of MIA in a relatively profound way in federated learning.



6.3. COMPARISON ANALYSIS 47

20 40 60 80 100
Epochs

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

At
ta

ck
 P

re
cis

io
n

CLC MIA
CLE MIA
MCLE MIA

(a) AP with n = 2500

20 40 60 80 100
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

At
ta

ck
 R

ec
al

l

CLC MIA
CLE MIA
MCLE MIA

(b) AR with n = 2500

20 40 60 80 100
Epochs

0.50

0.52

0.54

0.56

0.58

0.60

At
ta

ck
 P

re
cis

io
n

CLC MIA
CLE MIA
MCLE MIA

(c) AP with n = 5000

20 40 60 80 100
Epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

At
ta

ck
 R

ec
al

l

CLC MIA
CLE MIA
MCLE MIA

(d) AR with n = 5000

20 40 60 80 100
Epochs

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

At
ta

ck
 P

re
cis

io
n

CLC MIA
CLE MIA
MCLE MIA

(e) AP with n = 12500

20 40 60 80 100
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

At
ta

ck
 R

ec
al

l

CLC MIA
CLE MIA
MCLE MIA

(f) AR with n = 12500

20 40 60 80 100
Epochs

0.50

0.51

0.52

0.53

0.54

0.55

At
ta

ck
 P

re
cis

io
n

CLC MIA
CLE MIA
MCLE MIA

(g) AP with n = 25000

20 40 60 80 100
Epochs

0.60

0.65

0.70

0.75

0.80

0.85

At
ta

ck
 R

ec
al

l

CLC MIA
CLE MIA
MCLE MIA

(h) AR with n = 25000

Figure 6.5: Performance of CLA, CLE, and MCLE MIA for the CIFAR-10aug Dataset
based on Adversary 1 Assumption.
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Figure 6.6: Performance of CLA, CLE, and MCLE MIA for the CIFAR-10extend Dataset
based on Adversary 1 Assumption.
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Figure 6.7: Performance of PC, PL, PMC, and PE MIA for the CIFAR-10no Dataset.
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Figure 6.11: Heatmap of AR of PC MIA from Different Nodes in Star network across
CIFAR-10no, CIFAR-10aug, and CIFAR-10extend Dataset.
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Figure 6.12: Heatmap of AR of PC MIA from Different Nodes in Ring network across
CIFAR-10no, CIFAR-10aug, and CIFAR-10extend Dataset.



52 CHAPTER 6. EVALUATION



Chapter 7

Summary and Conclusions

This work evaluates in detail the attack performance of different types of MIA in machine
learning and federated learning environments, especially decentralized federated learning.
On the one hand, it makes up for the analysis of MIA effects in the context of federated
learning; on the other hand, it provides a unique insight into the unique topology of DFL,
linking the inference results of MIA with the structure of network topology.

For MIA in machine learning, this work demonstrates that as the model training rounds
increase and the training data set is minimal, the attack performance of most MIA will
improve, because this means that the overfitting level of the target model is increasing.
In addition to evaluating the original standard data set, the work also considers that the
data-enhanced preprocessing of the data often reduces the effect of MIA, thus acting as a
privacy breach defense effect.

In Federation Learning, it was found that most MIA attacks suffer a significant decrease in
effectiveness in FL. This phenomenon is attributed to two factors: (1) Federated learning
reduces the overfitting level of the overall model through the continuous aggregation of
models among multiple nodes, thus making MIA unable to accurately judge the differ-
ences in and out samples. (2) On the other hand, the setting of the federation learning
environment interferes with the attacker’s judgment of the MIA hypothesis and thus fails
to make corresponding simulations, such as training a shadow model with similar effects,
which makes the final attack effect very weak. In addition, the ability of different nodes
in the federation to reason about the training data of other points in the entire network
is also explored. This is often related to the topology of the entire model. In symmetric
graphs such as fully connected and circular graphs, the reasoning ability of each node is
basically the same, while in star graphs, the central node has significantly stronger rea-
soning ability than other nodes attached to it. This also provides a possible realistic basis
for topological inference attacks that may exist in federated learning.

At the same time, there are some shortcomings in this work, such as fewer studies and the
latest estimates of MIA specifically for federated learning. These emerging MIA can the-
oretically overcome many difficulties in attacking in federation learning and thus achieve
a better attack level. In future work, further tests aiming on the attack performance of
these MIA could be implemented in DFL and explore whether they still reflect a strong
topological logic tendency.
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66 APPENDIX

Dataset
Size of

Training Data
Epochs AP AR F1-Score

Overfitting
Level

AUC

CIFAR10

n= 2500

10 0.513 0.630 0.565 -0.04% 0.513
25 0.523 0.354 0.422 5.20% 0.520
50 0.531 0.663 0.590 14.30% 0.550
75 0.548 0.767 0.639 23.96% 0.598
100 0.597 0.836 0.697 33.18% 0.679

n=5000

10 0.511 0.374 0.432 -1.68% 0.514
25 0.513 0.629 0.565 1.28% 0.525
50 0.516 0.741 0.609 10.35% 0.531
75 0.553 0.690 0.614 16.72% 0.584
100 0.583 0.696 0.635 24.05% 0.634

n = 12500

10 0.504 0.659 0.571 -0.80% 0.507
25 0.509 0.737 0.602 3.24% 0.519
50 0.531 0.770 0.629 10.41% 0.556
75 0.552 0.805 0.655 15.93% 0.598
100 0.561 0.842 0.673 19.69% 0.620

n = 25000

10 0.497 0.496 0.496 -1.67% 0.495
25 0.494 0.453 0.473 3.10% 0.495
50 0.515 0.853 0.642 8.36% 0.527
75 0.532 0.821 0.646 11.37% 0.563
100 0.536 0.850 0.658 13.22% 0.574

CIFAR10
extend

n= 2500

10 0.493 0.298 0.371 -1.58% 0.501
25 0.503 0.412 0.453 3.28% 0.498
50 0.503 0.412 0.453 3.28% 0.510
75 0.517 0.646 0.574 8.56% 0.523
100 0.520 0.580 0.548 9.40% 0.532

n=5000

10 0.508 0.715 0.594 -1.90% 0.515
25 0.515 0.329 0.401 -2.44% 0.509
50 0.510 0.455 0.481 -1.38% 0.510
75 0.519 0.551 0.534 2.12% 0.525
100 0.528 0.461 0.492 5.34% 0.534

n = 12500

10 0.505 0.588 0.543 -4.54% 0.509
25 0.507 0.303 0.380 -2.56% 0.505
50 0.510 0.559 0.533 -0.56% 0.509
75 0.508 0.686 0.584 2.05% 0.516
100 0.518 0.698 0.595 1.62% 0.525

n = 25000

10 0.497 0.460 0.478 -2.38% 0.494
25 0.491 0.350 0.409 -3.32% 0.491
50 0.484 0.293 0.365 -1.75% 0.488
75 0.480 0.332 0.393 -0.32% 0.483
100 0.487 0.356 0.411 0.35% 0.490

Table 7.1: Performance of SM MIA for CIFAR-10 Dataset with the First and the Second
Data Augmentation based on Adversary 2 Assumption.
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Dataset
Size of

Training Data
Epochs AP AR F1-Score

Overfitting
Level

AUC

CIFAR10

n= 2500

10 0.520 0.390 0.445 -0.04% 0.513
25 0.507 0.100 0.168 5.20% 0.521
50 0.584 0.128 0.209 14.30% 0.565
75 0.611 0.281 0.385 23.96% 0.618
100 0.651 0.460 0.539 33.18% 0.674

n=5000

10 0.509 0.316 0.390 -1.68% 0.508
25 0.520 0.159 0.243 1.28% 0.519
50 0.543 0.115 0.190 10.35% 0.539
75 0.581 0.260 0.360 16.72% 0.574
100 0.609 0.415 0.493 24.05% 0.634

n = 12500

10 0.517 0.295 0.376 -0.80% 0.511
25 0.529 0.136 0.216 3.24% 0.521
50 0.539 0.253 0.344 10.41% 0.549
75 0.559 0.341 0.424 15.93% 0.582
100 0.579 0.462 0.514 19.69% 0.608

n = 25000

10 0.505 0.429 0.464 -1.67% 0.505
25 0.515 0.328 0.400 3.10% 0.515
50 0.524 0.200 0.290 8.36% 0.530
75 0.532 0.276 0.363 11.37% 0.544
100 0.543 0.383 0.449 13.22% 0.559

CIFAR10
extend

n= 2500

10 0.514 0.082 0.141 -1.58% 0.504
25 0.481 0.016 0.030 3.28% 0.513
50 0.500 0.001 0.002 3.28% 0.507
75 0.468 0.020 0.039 8.56% 0.522
100 0.565 0.042 0.078 9.40% 0.539

n=5000

10 0.521 0.181 0.268 -1.90% 0.504
25 0.546 0.029 0.054 -2.44% 0.511
50 0.557 0.011 0.021 -1.38% 0.509
75 0.536 0.029 0.054 2.12% 0.513
100 0.559 0.039 0.072 5.34% 0.527

n = 12500

10 0.504 0.128 0.204 -4.54% 0.504
25 0.527 0.008 0.016 -2.56% 0.509
50 0.516 0.024 0.047 -0.56% 0.509
75 0.525 0.048 0.088 2.05% 0.508
100 0.539 0.081 0.140 1.62% 0.516

n = 25000

10 0.506 0.249 0.334 -2.38% 0.500
25 0.506 0.114 0.187 -3.32% 0.505
50 0.520 0.043 0.080 -1.75% 0.506
75 0.524 0.061 0.109 -0.32% 0.508
100 0.521 0.081 0.140 0.35% 0.511

Table 7.2: Performance of SM MIA for CIFAR-10 Dataset with the First and the Second
Data Augmentation based on Adversary 3 Assumption.
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(g) AP with n = 25000
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Figure 7.1: Performance of CLA, CLE, and MCLE MIA for the CIFAR-10aug Dataset
based on Adversary 2 Assumption.
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Figure 7.2: Performance of CLA, CLE and MCLE MIA for CIFAR-10aug Dataset based
on Adversary 3 Assumption.
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(g) AP with n = 25000
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Figure 7.3: Performance of CLA, CLE and MCLE MIA for CIFAR-10extend Dataset
based on Adversary 2 Assumption.
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(g) AP with n = 25000
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Figure 7.4: Performance of CLA, CLE and MCLE MIA for CIFAR-10extend Dataset
based on Adversary 3 Assumption.
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(f) AR with n = 12500
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(g) AP with n = 25000
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(h) AR with n = 25000

Figure 7.5: Performance of PC, PL, PMC, and PE MIA for the CIFAR-10aug Dataset.
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(a) AP with n = 2500
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(b) AR with n = 2500
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(c) AP with n = 5000
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(d) AR with n = 5000
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(e) AP with n = 12500
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(f) AR with n = 12500
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(g) AP with n = 25000
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(h) AR with n = 25000

Figure 7.6: Performance of PC, PL, PMC, and PE MIA for the CIFAR-10extend Dataset.
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(a) AP with n = 2500
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(b) AR with n = 2500
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(c) AP with n = 5000
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(d) AR with n = 5000
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(e) AP with n = 12500
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(f) AR with n = 12500
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(g) AP with n = 25000
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(h) AR with n = 25000

Figure 7.7: Performance of PC, PL, PMC, and PE MIA for the Mnist Dataset.
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(a) AP with n = 2500
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(b) AR with n = 2500
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(c) AP with n = 5000
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(d) AR with n = 5000
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(e) AP with n = 12500
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(f) AR with n = 12500
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(g) AP with n = 25000
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(h) AR with n = 25000

Figure 7.8: Performance of PC, PL, PMC, and PE MIA for the FMnist Dataset.
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