
Linux on Tensilica Xtensa

Gregory Frommelt
Zürich, Switzerland

Student ID: 15-922-909

Supervisor: Dr. Eryk Schiller, Chao Feng
Date of Submission: September 6, 2023

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Das Internet der Dinge (Internet-of-Things, IoT) wird zu einem immer wichtigeren Be-
standteil des modernen Lebens. Es bietet eine breite Palette von Anwendungen auf ver-
schiedenen Geräten, die eine Vielzahl von unterschiedlichen Betriebssystemen (OS) ver-
wenden. Während Linux das am weitesten verbreitete Betriebssystem in der IoT Land-
schaft ist, verhindert sein Ressourcenbedarf oft den Einsatz auf weniger leistungsfähigen,
kostengünstigen Geräten wie denen der ESP32 Familie von Mikrocontrollern (MCU). Das
Ziel dieser Arbeit ist es daher zu untersuchen, inwiefern Linux auf Geräte der ESP32
Familie portiert werden kann, was sowohl einen wirtschaftlichen Anreiz, als auch einen
in puncto IoT Standardisierung hat. Eine Kostenanalyse zeigt, dass die Verwendung des
ESP32-WROVER-IE Moduls im Vergleich zum Raspberry Pi Zero W eine Kostenreduk-
tion von ca. 80% mit sich bringt. Es wurde eine Toolchain konstruiert, mit derer Hilfe ein
Linux Kernel image kompiliert werden konnte, welches anschliessend erfolgreich auf ein
ESP32-S3-DevKitC-1 Board portiert wurde. Erste Auswertungen deuten darauf hin, dass
das portierte System grundlegende Funktionalität bietet, die für IoT Aufgaben geeignet
sind, jedoch bestimmte Limitierungen derzeit seinen praktischen Nutzen einschränken.

The Internet-of-Things (IoT) is becoming increasingly integral to modern living, offering
a wide range of applications across diverse devices employing a multitude of different
operating systems (OS). While Linux is the most prevalent OS in the IoT landscape, its
resource requirements often prevent its use on less powerful, cost-efficient devices like those
in the ESP32 family of microcontrollers (MCUs). The goal of this thesis is therefore to
explore the feasibility of porting Linux to ESP32 devices, motivated by both economic and
IoT standardization incentives. A cost analysis reveals an approximately 80% reduction
in expenses when using the ESP32-WROVER-IE module compared to the Raspberry
Pi Zero W. A toolchain was constructed to compile a Linux kernel image, which was
successfully ported to an ESP32-S3-DevKitC-1 board. Initial evaluations indicate that the
ported system offers basic functionality suitable for IoT tasks, although certain limitations
currently restrict its practical utility.

i

ii

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisors, Dr.
Eryk Schiller and Chao Feng, for their invaluable guidance, unwavering support and con-
structive feedback throughout the course if this research. Their expertise and insights have
been instrumental in shaping this work and I am profoundly grateful for the opportunity
to learn under their tutelage.

Furthermore, I would like to extend my sincere thanks to Prof. Dr. Burkhard Stiller,
head of the Communication System Research Group (CSG) at the University of Zurich
(UZH), for providing me with the opportunity to delve into such an exciting subject and
thereby enriching my personal academic expertise.

Special recognition is also owed to M. Filippov, whose pioneering work in this field greatly
influenced the direction of my research. The advice and ideas provided through our
correspondence were critical to the development and implementation of the methodologies
used in this study.

Lastly, I want to thank my family and friends, in particular S. Scheuss, N. Peyer, J. Weber
and R. Abraham-Schmitz, for their support and encouragement throughout this time.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Applicability Scope: From IoT to NFTs 2

1.4 Thesis Goals & Description of Work . 3

1.5 Thesis Outline . 3

2 Related Work 5

2.1 The IoT: Importance and Diversity . 5

2.2 Linux in the IoT . 6

3 Background 7

3.1 Harvard architecture . 7

3.2 Toolchain . 8

3.3 Crosstool-NG . 9

3.4 Linux kernel . 10

3.5 Buildroot . 12

3.6 BusyBox . 12

3.7 Espressif IoT Development Framework . 13

v

vi CONTENTS

4 Design 15

4.1 From ESP32 to ESP32-S3 . 15

4.2 eXecute-In-Place . 16

4.3 Memory Management . 16

4.4 Executables and Libraries . 17

4.4.1 Statically & Dynamically linked Libraries 17

4.4.2 The Executable and Linkable Format 17

5 Implementation 19

5.1 Setup . 19

5.2 Configuring and building the Toolchain . 20

5.2.1 Installing crosstool-NG . 21

5.2.2 Overlay configuration . 22

5.2.3 Dynamic configuration . 25

5.3 Building kernel image and rootfs . 25

5.3.1 Overlay configuration . 26

5.3.2 Dynamic configuration . 27

5.4 Flashing kernel image and rootfs . 27

5.4.1 Early bootloader version . 27

5.4.2 Flashing procedure . 29

6 Evaluation 33

6.1 General observations . 33

6.1.1 Mounted filesystems . 33

6.1.2 Memory information . 35

6.1.3 CPU information . 35

6.1.4 Command Substitution issues . 36

6.2 Time measurements . 38

6.2.1 Booting . 38

CONTENTS vii

6.2.2 Measuring execution time of utilities 39

6.3 WiFi capabilities . 42

6.3.1 Connectivity behaviour . 42

6.3.2 Communicating with a RESTful API 43

7 Conclusion & Future Work 47

Bibliography 49

Abbreviations 55

Glossary 57

List of Figures 59

A Command Substitution Output 61

viii CONTENTS

Chapter 1

Introduction

In an era defined by hyperconnectivity, the Internet-of-Things (IoT) has risen as a trans-
formative force, bridging the physical and digital domains. With billions of devices [1]
globally communicating vast amounts of data, IoT is no longer a future prediction but
an existing reality. It seamlessly integrates into various sectors, from healthcare to trans-
portation [2], bringing forth both opportunities and challenges e.g., the establishment of
security and enabling means of standardization [3] of these resource-constrained devices
that form the backbone of the IoT ecosystem. This chapter delves into the significance of
IoT as an essential component of modern living, setting the stage for a deeper exploration
of IoT technology and the underlying motivation driving this thesis.

1.1 Overview

Traditionally, devices such as the Raspberry Pi (RPI) family have exemplified the possi-
bility of running Linux on microcontroller units (MCUs) [4]. The Raspberry Pi 3 Model
B for example is a small computer equipped with the Advanced RISC Machines (ARM)
Cortex-A Central Processing Unit (CPU) and Random Access Memory (RAM). Instead
of a Hard Disk Drive (HDD) it employs flash memory on which an operating system (OS)
can be installed. It also features Universal Serial Bus (USB) connectors, a video output
and a Wireless Fidelity (WiFi) adapter [5]. Integration of Linux with these devices has
not only expanded their capabilities but has also simplified the developmental process for
microcontroller applications as developers and users tread familiar territory with Linux
based operating systems.

As the technological landscape continues to evolve, newer microcontroller families like
Espressif’s ESP32 family are emerging, endowed with features such as the dual-core Ten-
silica LX6 and LX7 processors with the Reduced Instruction Set Computer (RISC) based
Xtensa Instruction Set Architecture (ISA) [6]. The ESP32’s hardware specifications are
reminiscent of early computers that successfully ran Linux [7]. Linux was first developed
for the Complex Instruction Set Computer (CISC) based Intel 386 (i386) [8] in 1991.
At the time the CPU clock frequency did not exceed 40 MHz, while the typical com-
puter was running with a mere single-digit number of Megabytes (MB) of RAM, e.g.,

1

2 CHAPTER 1. INTRODUCTION

4 MB. In comparison, the Espressif’s ESP32-WROVER-IE MCU module, featuring the
ESP32-D0WD-V3 System-on-a-Chip (SoC) that employs two Tensilica Xtensa 32-bit LX6
microprocessors, has an adjustable clock frequency from 80 MHz to 240 MHz. The module
is available with configurations of up to 8 MB of Pseudo-Static Random Access Memory
(PSRAM) and 16 MB of flash memory [9]. This indicates the possibility of running a
Linux kernel with an appropriately small embedded C library such as uClibc-ng [10] and
the necessary binary utilities.

1.2 Motivation

The RPI 3 Model B is available from around 30 CHF [11] whereas development boards
for the ESP32-WROVER-IE are available for less than 10 CHF [12]. However, the sole
ESP32-WROVER-IE module - decoupled from a development board - can be obtained
for less than 3 CHF [13]. The RPI Zero W & WH development board series’ prices start
from around 14 CHF [14], hence, the cost reduction from the RPI 3 B to the RPI Zero
W/WH, capable of running a Linux kernel, is already around 53%. The cost reduction
from the RPI Zero W/WH to a development board for the ESP32-WROVER-IE would be
another approximately 35%, when comparing with the sole ESP32-WROVER-IE module,
the reduction drops even further to around 80%. For the sake of completeness regarding
the approach taken in this thesis may here also be mentioned that prices of Espressif’s
newer ESP32-S3 series are comparable with the ones of the ESP32-WROVER-IE, e.g.,
the ESP32-S3-WROOM-1-N8R8 module, equipped with 8 MB of flash memory and 8 MB
of PSRAM costs around 3 CHF [15].

The economic incentives are evident; transitioning from devices like the RPI 3B to the
ESP32 family could lead to substantial cost reductions. Moreover, enabling ESP32 de-
vices to run Linux not only offers a cost-efficient alternative but also benefits from the
robustness and extensive documentation of a well-established OS. This dual advantage
has the potential to both significantly reduce overall expenses and advance the means of
standardization within the IoT landscape.

1.3 Applicability Scope: From IoT to NFTs

Enabling a Linux kernel to run on an embedded device offers a technical advancement
in many aspects, one of them being the kernel’s open-source nature, essentially providing
the means of a large community. Nonetheless, without dismissing the utility of Linux
in a standalone system, its capabilities can be further exploited by integrating it into a
connected environment. Given the crucial matter of the IoT this thesis surrounds, the
primary value of operating Linux on an ESP32 device is derived from its ability to function
as a linked entity within a networked domain.

The global connectivity facilitated by the internet introduces a myriad of potential ap-
plication scenarios for ESP32 IoT devices, expanding the horizon of possibilities even
further when endowed with the means of Linux. One niche yet significant application lies

1.4. THESIS GOALS & DESCRIPTION OF WORK 3

within the realm of art — specifically, in the secure transportation and real-time tracking
of artworks. It is desirable to monitor a variety of factors – such as vibration, impact
forces, and environmental conditions like temperature and humidity – to ensure the art’s
preservation during transit [16].

[17] addresses precisely these difficulties involved in securely and transparently tracking
and monitoring artworks during transportation. His work involves the integration of
Non-Fungible Tokens (NFTs) and IoT devices, utilizing blockchain technology to register
and monitor environmental parameters. The system he proposes aims to ensure the
integrity and authenticity of the artwork, relying on IoT devices for real-time tracking and
environmental monitoring. This is where the present thesis intersects with his research.
By enabling Linux to operate on WiFi-capable ESP32 devices, this thesis provides the
potential for a cost-effective yet functional hardware solution for the kind of secure and
transparent tracking system described in his work.

1.4 Thesis Goals & Description of Work

Given the potential economical benefits and the associated applicability range of running
a Linux kernel on cheap devices such as Espressif’s ESP32 device family, as a preliminary
goal, this thesis aims to analyse and devise an approach to this integration. Building upon
a working example, in a subsequent step, the aim is further oriented around evaluating the
functional prototype in terms of various performance metrics and practicality in regards
to IoT-related use cases as outlined in 1.3.

In accordance with the thesis goals, this thesis adopts a methodological approach based on
experimental prototyping and evaluation. The first pursued examination revolves around
both the hardware and software facets provided by Espressif, encompassing the ESP32
and ESP32-S3 series of their ESP32 family of MCUs accompanied by their Espressif IoT
Development Framework (ESP-IDF). Alongside, a parallel study focuses on the roles of
relevant components within the development ecosystem, including toolchains, the Linux
kernel source, and auxiliary tools such as Buildroot and BusyBox. With a foundational
understanding in place, focus is shifted towards existing attempts of implementing Linux
on MCUs of the aforementioned device family, aiming to comprehend and elaborate on
the design choices made. This leads into a showcase of a functional Linux implementation,
ultimately providing an opportunity to assess the system’s effectiveness and suitability for
its intended applications.

1.5 Thesis Outline

In alignment to the methodological approach described in the preceding section, this
thesis spans over seven chapters. Chapter 2 is devoted to findings of external research
related to the matter at hand, thereby addressing the significance of IoT in the first
section, further transitioning to the second section that revolves around the role of Linux
within this context. Chapter 3 is dedicated to establish background knowledge vital for

4 CHAPTER 1. INTRODUCTION

the remainder of this thesis, including underlying technical details and concepts, specifics
about the Linux kernel and relevant tools and frameworks. Chapter 4 outlines the design
choices made for the subsequent implementation; the subject of the MCU is addressed, a
concept for program execution introduced, on memory management elaborated and the
executable file format explained. Chapter 5 presents the implementation, encompassing
the necessary steps to reproduce a prototype running Linux. Chapter 6 deals with the
evaluation of the preceding implementation, therein displaying general observations, time
measurements and the prototype’s WiFi capabilities. The thesis concludes in chapter 7
by assessing the status quo and providing an outlook on further research based on the
findings presented herein.

Chapter 2

Related Work

In the following chapter, relevant work in the domains of the IoT and embedded systems,
particularly focusing on Linux-based solutions, will be presented. The objective is to
identify the current state of the art, understand the challenges and opportunities in the
field, and establish the context within which this thesis contributes. This chapter outlines
the influence of IoT and the role of OSes like Linux in this context. It concludes by
focusing on the application of Linux on the ESP32 series of microcontrollers, which serves
as the cornerstone of this thesis.

2.1 The IoT: Importance and Diversity

The IoT has cemented its position in such a substantial role within the modern era that
it has become an indispensable cornerstone of the 21st century. The extensive scope of
its applications spans a broad spectrum of conceivable areas, ranging from healthcare
and mobility to home automation and environmental monitoring, thereby introducing the
necessity for smart solutions along the way. Advances in IoT have significantly simplified
or even automated numerous tasks, serving as the backbone for data-driven decision-
making and resource optimization [18]. Yet, by narrowing the focus of the metaphorical
magnifying glass, already the individual’s gain in user experiences can be observed in
actions that seamlessly integrate into daily life, such as biometrical mechanisms [19].

The diversity of areas in which IoT is assuming a key role appears limitless. However, this
term diversity is not solely tied to the wide array of IoT applications; it also extends to
the underlying technical aspects, including the multitude of OSes available for embedded
design. Various Real-Time Operating Systems (RTOS) like FreeRTOS, ChibiOS/RT, and
RIOT are commonly employed, to name a few examples. In addition, other specialized op-
erating systems such as Contiki and Tiny OS are also utilized in the embedded realm [20].
Notably, Linux, with its monolithic kernel architecture, has found applicability in this
diverse landscape as well.

5

6 CHAPTER 2. RELATED WORK

2.2 Linux in the IoT

Using Linux for embedded development is beneficial for several reasons. It supports a
broad range of hardware architectures, including x86, Alpha, Sparc, ARM, Xtensa and
many more. This allows for flexibility in design and system architecture. Furthermore, the
open-source nature of Linux allows for tailored customization; the kernel can be modified
in order to meet specific needs, thereby providing economical advantages [21]. Linux also
shines when it comes to performance-intensive tasks such as deep learning and big data [4].
According to [22] is Linux employed as OS by more than 70% of IoT devices. Consequently,
a lot of research utilizing embedded Linux can be found, e.g., [23] leverage Linux running
on a RPI model 3B+ to illustrate the potential for enhancing manufacturing logistics
through advanced tracking and monitoring systems; [24] developed a system for real-time
cloud monitoring of a decentralized solar plant with the use of Linux on a RPI model 2B;
[25] discussed the development of a multi-protocol IoT gateway for smart buildings, using
a wireless network. The latter employs various different MCUs, one of them being the
CubieTruck SBC running on embedded Linux and interestingly enough also a FreeRTOS
enabled ESP32 device.

Although Linux is widely used in the domain of embedded design, the only research that
could be found suggesting its integration on devices of the ESP32 family is the one this
thesis builds upon [26]. Instead, besides the aforementioned example, there exists further
research utilizing ESP32 devices by the means of FreeRTOS [27], [28]. Therefore, the
opportunity to equip these cost-efficient devices with a well-established OS such as Linux
and at the same time advance standardization in the IoT field is yet to be explored.

Chapter 3

Background

This chapter serves the purpose of providing the reader with comprehensive knowledge
about specific aspects in the field where this thesis is situated. Topics range from underly-
ing hardware-related technical details to software-related matters, including information
about essential tools for building the Linux kernel, which also makes appearance herein.
Furthermore, the framework upon which the final step in the development process will be
based is introduced.

3.1 Harvard architecture

The term Harvard architecture has undergone various interpretations over time. Initially,
the term was applied to machines designed by and also for the Harvard Computing Lab-
oratory (HCL). These machines had completely separate memories for instructions and
data. In the 1970s, the term was formally coined. In the context of designing the first
microcontroller, it was used to describe a complete computing device on a single chip
still with separate memories for instructions and data. Later on, the term was applied to
RISC processors that had separate caches for instructions and data but not necessarily
concomitant separation of physical memory [29]. As stated in 1.1, the LX6 and LX7 cores
employed in the ESP32 and ESP32-S3 devices are based on RISC processors and inher-
ently follow a Harvard architecture. However, the external memory, i.e., the PSRAM,
is not physically separated. Figure 3.1 shows the dual-core-shared ICache and DCache
nature of the ESP32-S3 SoC.

7

8 CHAPTER 3. BACKGROUND

Figure 3.1: ESP32-S3 Harvard architecture structure [30, p. 394]

3.2 Toolchain

In order to fully grasp the concept of a toolchain within the domain of embedded systems
development, one must initially understand the notion of cross-compilation as it pertains
to this specialized field. A compiled executable program, including complex binaries such
as the Linux kernel, can be fundamentally understood as a product facilitated through
the utilization of a compiler tailored to function in alignment with a designated ISA,
such as the Xtensa ISA. A particular challenge emerges when considering the constrained
environment of embedded devices, which usually lack the resources needed to utilize the
compiler directly. Addressing this issue necessitates the employment of a technique known
as cross-compilation. This process involves compiling a binary on a powerful machine
(host machine) utilizing a compiler that has been configured for the embedded device
(target device) and its specific ISA, which usually differs from that of the host machine’s.
Following this compilation process, the resulting binary can be transferred to the target
device and executed. Though this approach circumvents the challenges tied to resource
limitations, it also introduces the need for tools tailored to function with the target ISA,
adding a layer of complexity.

Such tools are part of what is referred to as a toolchain in the context of embedded
systems development. A toolchain is a comprehensive suite of development tools that
encompasses a wide array of software development processes, including the compilation,
assembly, linking, and debugging of code. These tools collectively facilitate the trans-
formation of source code into executable machine code that can run on the hardware
platform, forming the essential bridge between the high-level programming language and
the specific architecture of the target hardware. In this way, the toolchain serves as both
a practical solution to the problem of resource constraints and an integral component of
the development process for embedded applications.

Within the toolchain, various components play distinct roles. In the case of Linux kernel
compilation, these are [31]:

3.3. CROSSTOOL-NG 9

• Compiler: This tool translates high-level programming lanugage (e.g., C) into archi
tecture-specific assembly language. For example, a C compiler configured for the
Xtensa architecture produces Xtensa assembly code. The compiler used in this thesis
is the C compiler from the GNU Compiler Collection (GCC). Even though the GCC
consists of several compilers for different high-level programming languages besides
C (e.g., C++, Java, Fortran, Go, etc.), in the remainder of this thesis by GCC will
be referred to as the C compiler.

• Assembler: The assembler takes the assembly language code and converts it into
relocatable machine code, represented in object files. The assembler used in this
thesis is part of GNU’s Binutils, a set of binary utilities.

• Linker: The linker connects the object files produced by the assembler together,
resolving references between them and generating the final executable file. As with
the assembler, the linker used in this thesis is also part of GNU’s Binutils.

• C library: This is a collection of precompiled routines that a program can uti-
lize. They are crucial for embedded development as they provide commonly used
functions without the need for re-writing them. In this thesis, the used library is
uClibc-ng [10], a small C library designed specifically for embedded system devel-
opment.

• Linux Kernel Headers: Kernel headers are a collection of C header files used in
the Linux kernel, providing the necessary definitions and structures to allow user
space applications to interface with the kernel. They define the Application Binary
Interface (ABI) and are essential for building programs that interact with the kernel.

• Debugger: A debugger is often also seen as part of the toolchain, even though it
is not essential. The debugger fitting the aforementioned tools would be the GNU
Debugger (GDB), however, the GDB will be omitted from the toolchain used in this
thesis.

Basically, such a toolchain can be re-used for a variety of devices, as long as it is tailored for
the particular environment. The term environment in this context is understood to mean
compatibility with the host machine or rather its ISA, the fact that it was compiled for
the correct target ISA, and the library (i.e., C library) with which it was compiled. Thus,
for example, pre-built toolchains can also be found that have been compiled specifically
for target machines with the Xtensa ISA [32]. In the course of this thesis, however, it has
become apparent that the factors mentioned above do not exclusively determine whether
a toolchain can be used. The specific difficulties encountered in this context and the
approaches to solving them are presented in more detail in Chapter 4 and 5. In such
cases, it is necessary to compile the toolchain oneself.

3.3 Crosstool-NG

Crosstool-NG offers a framework for toolchain construction. Unlike other available cross-
toolchain solutions, which are often restricted by limitations such as sub-optimal config-
urations for specialized hardware or the use of outdated components, crosstool-NG aims

10 CHAPTER 3. BACKGROUND

to offer a more flexible and up-to-date alternative. In contrast to other tools designed for
broader purposes, like Buildroot, which primarily focus on the construction of a kernel
image and the root filesystem (rootfs), crosstool-NG narrows its focus strictly to the gen-
eration of toolchains. With the need for customization and optimization in the toolchain
construction, crosstool-ng acts as a modular piece of software, enabling the user to decou-
ple those necessary adjustments from the bigger build tool. This consequently makes the
development process easier.

3.4 Linux kernel

Linux is a key member of the Unix-like family of OSes, initially developed by Linus Tor-
valds in 1991 for IBM-compatible personal computers. Unlike many commercial counter-
parts, Linux is open-source and licensed under the GNU General Public License (GPL),
offering free access to its source code. Over the years, Linux has adapted to multiple
hardware architectures, and it continues to be driven by a global development community
coordinated by Torvalds [33, pp. 1–2].

Building on Linux’s adaptability to different hardware architectures, this research specif-
ically employs a variant of the Linux kernel – the linux-xtensa port [34]. This is a kernel
source fork, designed specifically for the Xtensa architecture and as such serves as the basis
for this thesis. Configuring and building the kernel relies on the GNU Make language [35]
which is used from within the kernel source’s root directory.

[36, pp. 17–21, 28] elaborates on the multiple methods available for configuring the ker-
nel. The simplest is the make config command, which prompts the user to individually
confirm or deny each configuration option. Given that the number of options exceeds a
thousand, this method is seldom practical for most development scenarios. An alternative
approach is to use a pre-existing default configuration. These configurations are located
in the Linux kernel source – depending on the architecture – at /arch/ARCH/configs,
where ARCH denotes the specified architecture. For instance, the make ARCH=xtensa

defconfig command applies the configuration located in /arch/xtensa/defconfig, if the
defconfig file exists. The chosen settings are then stored in a .config file in the source
directory, allowing for additional adjustments through the make menuconfig command.
This command provides a user-friendly, menu-based interface for further customization as
can be seen in Figure 3.2. Once the kernel is configured with the desired options, the build
process can be initiated by simply using the make command without any parameters.

3.4. LINUX KERNEL 11

Figure 3.2: Menuconfig in linux-xtensa kernel port

However, it’s important to note that the kernel build process doesn’t automatically include
the construction of a rootfs. Even if a custom toolchain is utilized — facilitated by the
CROSS_COMPILATION flag — the rootfs must be built as a separate entity [36, pp. 28,
59–62]. This challenge is addressed by using a build tool such as Buildroot, the details of
which will be covered in 3.5.

Another important fork of the Linux kernel source tree, which eventually became a stan-
dalone project and has played an important role in the embedded Linux world, was the
µClinux project. Originally launched in 1998, the project aimed to enable embedded de-
vices without the support of a memory management unit (MMU) to run Linux [37]. Its
integration into the mainline Linux kernel with version 2.6 marks a significant milestone,
further solidifying its role in the broader Linux ecosystem [38]. Development on the sep-
arate fork of µClinux concluded in 2016 [39]. Among its key contributors, Erik Andersen
stands out for creating uClibc, a compact embedded C library, originally intended to be
used with µClinux. While the official support for uClibc ended in 2012, its added benefits
have been re-introduced with the uClibc-ng spin-off, the C library that is also utilized in
the context of this thesis [10].

For the remainder of this thesis, it is vital to understand the Linux kernel’s fundamental
mode of operation. In the essence, the Linux kernel handles two main tasks: Managing
the underlying hardware components by the means of the Hardware Abstraction Layer
(HAL); providing an execution environment for the programs on the system to run. When
a program needs to use resources on the hardware side, e.g., allocate memory, it issues a
request to the kernel upon which the request is being evaluated and if granted, hardware
interaction by the kernel takes place on behalf of the program. This mechanism is enforced
with a concept called execution modes, provided by the CPU. These execution modes
consist of two different modes: user mode and kernel mode. The user mode is a non-
privileged mode, whereas the kernel space is a privileged one, i.e., resource allocation
is restricted in user mode. Behind the curtains, when a program sends a request for
hardware resources to the kernel, the system switches from user mode to kernel mode.
Moreover, these modes are associated with separate memory spaces called user space and
kernel space respectively [33, pp. 8–10].

12 CHAPTER 3. BACKGROUND

3.5 Buildroot

Buildroot is an open-source tool specifically engineered to simplify and automate the cre-
ation of a complete Linux OS for embedded systems through the use of cross-compilation.
Operating on Linux-based host systems, Buildroot can be configured and initiated in
the same fashion as the Linux kernel by leveraging the GNU make language. Buildroot
comes equipped with the ability to generate various components besides the kernel im-
age, including a cross-compilation toolchain, a rootfs and even a bootloader for the target
system. While the tool itself builds most of the host packages it needs for compilation,
i.e., packages used by the host system on which the build process takes place, it does
anticipate certain standard Linux utilities, such as make and GCC, to be pre-installed on
the host system [31, pp. 165–178], [40].

The versatility of Buildroot lies in its flexibility to produce any combination of these es-
sential components; for instance, an externally specified toolchain can be employed while
still utilizing Buildroot to construct the kernel image and rootfs. Specifying an externally
built toolchain (by the means of crosstool-NG) will also be the approach taken in this
thesis. Furthermore does Buildroot provide a high level of configuration options in sev-
eral regards, e.g., a selection of the most common packages to integrate in a kernel build
is readily available. The configuration of auxiliary tools, such as BusyBox — which will
be elaborated upon in 3.6 — is also facilitated. Buildroot supports a wide range of archi-
tectures and their processor variants; this includes support for the Xtensa architecture,
making it particularly relevant for this thesis. This modular approach makes Buildroot a
favored choice for developing embedded Linux systems.

3.6 BusyBox

In the context of embedded systems and lightweight Linux implementations suited for
such systems, BusyBox combines multiple common Unix utilities into a single executable.
BusyBox is designed to reduce the resource usage in constrained environments. The main
purpose is to offer a functional interface similar to the traditional GNU Core Utilities
package, but with much less memory and storage requirements. BusyBox achieves this by
focusing on a minimalist design, removing functionalities down to only the most essential
parts. This results in an executable that can be as small as a few hundred Kilobytes (KB),
depending on the options chosen during compilation [41].

Under the hood, BusyBox operates through symbolic links and hard links that point to
the BusyBox binary. When invoked under different names, the BusyBox binary reads its
own name and executes the corresponding applet. This allows for a modular approach,
where system administrators can choose to include or exclude specific utilities according
to the unique requirements of a given project. Thus, BusyBox offers a flexible toolkit for
embedded system developers, enabling them to equip their Linux-based systems with a
versatile set of utilities without burdening the constrained resources [42].

3.7. ESPRESSIF IOT DEVELOPMENT FRAMEWORK 13

3.7 Espressif IoT Development Framework

The Espressif IoT Development Framework (ESP-IDF) is the official development frame-
work for the ESP32 and ESP32-S series of SoCs from Espressif Systems. Designed to
provide a robust foundation for building IoT applications, ESP-IDF offers a range of soft-
ware libraries and tools necessary for configuring, compiling, and flashing firmware onto
ESP32 devices. The framework is modular and allows for high-level abstractions for tasks
such as networking, sensor interfacing, and peripheral management, thus simplifying the
development process for complex IoT applications [43].

In this thesis, the ESP-IDF is relevant for its role in creating the environment required to
load the compiled Linux kernel image, rootfs, and a custom bootloader onto a development
board. It offers this functionality through its application programming interface (API)
and integration of the FreeRTOS kernel, thereby providing RTOS capabilities [44].

14 CHAPTER 3. BACKGROUND

Chapter 4

Design

The process of building a complex system demands the means of a roadmap upon which
the actual implementation is based. This chapter is focused on the design choices that
will be vital for the actual realisation of running a Linux kernel on an ESP32 board in the
subsequent implementation chapter. These design choices encompass technicalities of the
selected development board and further software-related topics crucial to the underlying
concept. By analysing these design choices, the reader will gain insight into the logic
and structure that form the basis of the implementation. Thus, this chapter serves as a
pivotal link in the thesis, connecting the theoretical exploration of related work with the
practical steps of the implementation.

4.1 From ESP32 to ESP32-S3

Initially, the implementation was planned to be carried out utilizing the ESP-EYE devel-
opment board of the ESP32 series. The chosen board is furnished with 4 MB of PSRAM,
8 MB of flash memory, and the ESP32-D0WD SoC. The latter is built around two 32-bit
Xtensa LX6 microprocessors, each operating at a frequency of 240 MHz [45]. However,
as the implementation phase advanced, an unexptected inconsistency was encountered
with the aforementioned board. Specifically, the API of the ESP-IDF framework utilizes
the esp_partition_mmap function to map a given partition into the data memory [46].
When a partition larger than 3 MB is mapped, the function call is executed successfully.
Nevertheless, in the context of the ESP32 series, any partition exceeding this size appears
to be mapped erroneously. This issue has been reported and is still open on Espressif’s
official ESP-IDF GitHub repository at the time of this writing. This bug is believed to
be a hardware-related one, thus presenting an obstacle that required a deviation from the
ESP32 series [47]. Espressif’s newer ESP32-S3 series of the same ESP32 device family,
but equipped with a different SoC, emerged as a promising implementation target.

The ESP32-S3-DevKitC-1 development board of aforementioned ESP32-S3 series employs
the ESP32-S3-WROOM-1 module with the ESP32-S3 SoC. This module is available with

15

16 CHAPTER 4. DESIGN

different memory configuration, however, the utilized one employs 8 MB of flash mem-
ory and 8 MB of PSRAM [48]. The ESP32-S3 SoC integrates two 32-bit Xtensa LX7
microprocessors, each operating at up to 240 MHz [30, p. 389].

4.2 eXecute-In-Place

Despite the presence of 8 MB each of PSRAM and flash memory, the challenge remains
to efficiently allocate space for both the Linux kernel and the rootfs, or the specific parts
of them needed at a given time. For instance, as will be shown in the implementation in
the next chapter, a stripped-down Linux kernel image alone requires a minimum of 3 MB,
and the rootfs demands at least 3.5 MB. This inherently impacts the remaining available
memory for dynamic memory allocation. As will be outlined in section 4.3, methods
like demand paging, which rely on a capable MMU [49], are not applicable due to the
architectural limitations of Espressif’s boards. This effectively eliminates the possibility
to simply load the kernel along with necessary executables into RAM and run them from
there.

For systems with tightly constrained memory resources a technique called eXecute-In-
Place (XIP) has proved successful [50]. As the name implies, with XIP the non-volatile
storage (e.g., flash memory) is utilized for program execution instead of loading the rel-
evant parts of a program into memory first; in other words, the flash memory directly
serves as instruction memory. The XIP kernel support for the Xtensa architecture has
been mainlined into the Linux kernel source tree already in 2019 [51]. A kernel compiled
with this XIP support differs mostly in the way the static kernel data gets allocated in
a distinct segment, which is being loaded from flash memory into a designated memory
area [26], [52].

4.3 Memory Management

Both high-performance personal computers and resource-constrained MCUs share a fun-
damental requirement: the imperative of memory management. In contemporary Linux
systems running on robust hardware, the MMU serves as a standard architectural com-
ponent. This unit is integral to the hardware and interfaces directly with the OS, which
is responsible for orchestrating its operations to optimize memory utilization and enable
memory protection mechanisms at the same time [49, pp. 164–174]. It is not uncommon
for systems to incorporate multiple MMUs functioning at various hierarchical levels. For
instance, the Xtensa ISA specifies an MMU at the core level, while another MMU operates
at the SoC level in the ESP32-S3 [30, p. 393], [6, p. 217]. One of the most crucial roles of
the MMU is to facilitate the concept of virtual memory — a conceptual abstraction that
enables the mapping of physical memory locations to virtual or logical memory addresses.
A fully-equipped MMU allows the OS to allocate discrete virtual address spaces for indi-
vidual processes; for instance, in a 32-bit machine, this allocation spans a range of 4 GB,
extending from virtual address 0x00000000 to 0xFFFFFFFF. Another ability featured by

4.4. EXECUTABLES AND LIBRARIES 17

such a MMU is the concept of paging or swapping. Paging refers to the illusion of having
all of a program’s essentials readily stored in memory even though this might not be the
case, however, by leveraging the concept of virtual addresses, the MMU can create the
impression as if it were the case. It achieves this by loading a page stored physically on
secondary storage (e.g., on an HDD) on demand into main memory and swapping out the
least recently used page from main memory to the secondary storage [53, pp. 496–504].

Unfortunately, this degree of virtualization remains unfeasible in the context of the ESP32-
S3 and its underlying Xtensa LX7 microprocessors. Although the Xtensa ISA specifies
the architectural capability for cores to employ this form of a MMU, this feature is absent
in Espressif’s SoC. Instead, the microprocessor cores in the ESP32-S3 deploy a region
protection option supplemented by address translation [6, pp. 196–200]. The lack of an
MMU with such capabilities has the implication of a single shared address space among
all processes, which further complicates matters. In the remainder of this thesis, it will
be implied for the ESP32 family to be MMUless (i.e., not having an MMU) for the sake
of simplicity.

4.4 Executables and Libraries

4.4.1 Statically & Dynamically linked Libraries

Libraries serve as reusable components that contain pre-compiled pieces of code which can
be utilized by multiple programs. Libraries generally exist in two distinct forms: statically
and dynamically linked libraries, each with its own set of advantages and limitations.
Statically linked libraries are collections of code that are built into a program. Because
the code is part of the program, you get a bigger executable that doesn’t need separate
library files at runtime. However, this means each program has its own copy of the library,
which uses more memory. Also, if the library gets updated, you have to recompile your
program. Dynamically linked libraries, on the other hand, are separate files loaded when
you run the program. Multiple programs can use the same dynamically linked library,
saving memory. However, since code from dynamically linked libraries has to be loaded
dynamically when needed by the calling process, it imposes additional time required for
linking and loading the corresponding location in memory. Updates to the library apply
to all programs that use it, without recompiling them. But, the program won’t work if
the library file is missing or incompatible. Regarding the embedded case at hands, the
use of shared libraries is a necessity given by the memory-constraints [54].

4.4.2 The Executable and Linkable Format

The so-called Executable and Linkable Format (ELF) was developed by the Unix System
Laboratories and has been the executable file format used in Unix and Unix-like systems
such as Linux for many years [33, pp. 824–826].

18 CHAPTER 4. DESIGN

An ELF file is fundamentally organized into a hierarchical structure that starts with an
ELF header at the beginning of the file. The ELF header outlines the properties of the
file and references either a program header table or a section header table, or both. These
tables, in turn, specify the details of the binary - including code, data segments, dynamic
sections, symbol tables, and relocations among other elements. The ELF header not only
serves as the roadmap for the ELF file, but also includes key attributes such as the type
of machine for which the file is intended, the version of the file, and the program point,
to name a few. An ELF file can be position-dependent, i.e., it describes segments that
must be loaded into a process’s address space at fixed, predetermined addresses, specified
in the ELF program header [55], [54, pp. 82–94]. In Linux systems with an MMU, this
works seamlessly because each process is being provided with an isolated address space.
When the kernel loads a new process, it can allocate these addresses without conflict.
But even in such systems a problem arises when dealing with dynamically linked objects
(e.g., dynamically linked libraries). Regarding the embedded case, the aforementioned fact
that the kernel and all other processes share one common address space and the need for
dynamically linked libraries leads directly to the inability of utilizing position-dependent
executables [26].

An approach to tackle the aforementioned constraints has found applications in other
approaches to MMUless Linux, such as the µClinux project introduced in chapter 3.
Regarding the issue of executables in an MMUless environment, µClinux utilizes a file
format called binary flat (bFLT) format. Essentially, during the linking process of the
toolchain a tool called elf2flt generates the linked binaries in the bFLT format along the
ELF ones [56]. The bFLT format enables executables to be loaded where processes share
a common address space, however, it poses the problem of statically linked binaries and
is there no viable option [26].

To finally solve the limitations at hands, another approach – and also the one taken in
this thesis – is the so-called function descriptor position-independent code (FDPIC) ELF.
The position-independent code (PIC) part of FDPIC refers to a fairly old concept, with
its first applications in 1996. In its core, PIC uses the fact that the .test section of the
ELF (i.e., usually the read-only code to be executed) and the .data section of the ELF
(i.e., the readable and writable data) have an offset that is known and constant among
all processes. When the .text and .data sections have a constant offset, a function pointer
can directly point to the function to be executed, e.g., when a program needs to call a
subroutine from a library, the function pointer gets resolved to the .text section of that
subroutine from where it can be executed. The subroutine’s .data section can be easily
located since the offset between .text and .data section is constant [54, pp. 203, 208–212].
This, however, is only possible if the running process is being provided with a separate
address space for the ELF. When sharing a common address space, the offset between
.text and .data section cannot be constant, that’s where the function descriptor comes
into play. Essentially, instead of a function pointer directly pointing to a subroutine,
it points to a function descriptor. The function descriptor in return contains both the
address of the subroutine to be executed and the starting address of the subroutine’s .data
section [57].

Chapter 5

Implementation

As outlined in 4.1, this chapter presents the steps taken to get a Linux kernel image
running on an ESP32-S3-DevKitC-1 that employs a ESP32-S3-WROOM-1-N8R8 module,
i.e., equipped with 8 MB of both flash memory and PSRAM. The chapter starts with a
general setup of the implementation environment, followed by configuring and building
the toolchain, paving the way for the build process with the use of Buildroot. After these
steps, the kernel image and rootfs are obtained. The chapter wraps up by describing
the last steps, which involve using a custom bootloader and the ESP-IDF framework to
flash everything onto the board. The condensed sources to reproduce the implementation
can be found online [58], however, the original forks on which this implementation is
based on can be found by following the git submodules. It is also important to note
that the implementation this one is based on is under active development at the time
of this writing and hence, this implementation features not the most recent updates. A
streamlined version attempting to stay updated can be found online [59].

5.1 Setup

The repository provided in [58] has to be cloned with the --recursive flag enabled to
ensure the submodules get cloned as well. Change into the cloned linux-esp32s3 directory
and source the setup.sh bash script. It is essential to source the script in order to export
required environment variables for the current shell process. The wpa supplicant that
gets installed in the kernel image is responsible for connecting to the WiFi. The setup.sh
script can be sourced as source setup.sh -w ssid psk, where ssid has to be replaced
with the actual WiFi’s ssid and psk with the actual WiFi’s passkey, which will essentially
modify the wpa supplicant.conf file that gets built into the /etc directory of the rootfs by
Buildroot. The purposes of the exported environment variables are as follow:

• ESP32S3 ROOT DIR: Specifies the absolute path to the root directory of the im-
plementation repository. Specifying this environment variable is crucial for the sub-
sequent build steps, since the streamlined implementation is configured with its
presence in mind.

19

20 CHAPTER 5. IMPLEMENTATION

• CT PREFIX: Used by crosstool-NG internally. It points to the output directory
where the built toolchain will reside. Since Buildroot’s configuration in this imple-
mentation depends on this specific location, it is essential to leave this unchanged
as well.

• CONF DIR: The xtensa-dynconfig tool needs this environment variable to find the
correct location of the dynamic configuration files. Leave this unchanged when
building with dynamic configuration.

• ORIG: The same applies to this environment variable, it is used by the xtensa-
dynconfig tool to include all essential files for the dynamic configuration. Leave this
unchanged when building with dynamic configuration.

∼$ git clone https :// github.com/fromGreg/linux -esp32s3.git --recursive

∼$ cd linux -esp32s3

∼/linux-esp32s3$ source setup.sh -w ssid psk

wpa_supplicant.conf configured with ...

SSID: ssid

PSK: psk

Exported environment variables ...

ESP32S3_ROOT_DIR: /home/user/linux -esp32s3

CT_PREFIX: /home/user/linux -esp32s3/crosstool -NG/output

CONF_DIR: /home/user/linux -esp32s3/configs

ORIG: 1

Listing 5.1: Sourcing setup.sh with wpa supplicant

5.2 Configuring and building the Toolchain

The initial step in the implementation process involves compiling the toolchain, config-
ured to align with the Xtensa architecture and the specific ESP32-S3 SoC. It is important
to highlight that the release of GCC-13 and Binutils-2.40 allows for dynamic configu-
ration, i.e., the toolchain can be compiled using default settings and make adjustments
later during the building of the Linux kernel image and rootfs. This approach provides the
advantage of creating a more versatile toolchain, which can be adapted for various proces-
sors as needed [60]. Therefore, both procedures are described in separate subsections. At
this point be mentioned that the build process successfully compiles all required binaries
in both cases. However, following the compilation of the final C compiler, an exception
related to the linking process is thrown. The specific consequences of this exception are
currently unknown but do not appear to impede the construction of the kernel image and
rootfs, nor the operation of the kernel and user space on the device.

5.2. CONFIGURING AND BUILDING THE TOOLCHAIN 21

Figure 5.1: Toolchain build exception related to the linker

5.2.1 Installing crosstool-NG

The toolchain is compiled with the help of crosstool-NG. The following packages must be
pre-installed on the host OS.:

• gcc

• g++

• gperf

• bison

• flex

• texinfo

• help2man

• make

• libncurses5

• python3

• autoconf

• automake

• libtool

• libtool-bin

• gawk

• wget

• bzip2

• xz-utils

• unzip

• patch

• libstdc++6

• rsync

• git

• meson

• ninja-build

[61]

Changing into the crosstool-NG directory, the tool needs to be initialized first by issuing
the following commands:

22 CHAPTER 5. IMPLEMENTATION

∼/linux-esp32s3/crosstool-NG$./ bootstrap

∼/linux-esp32s3/crosstool-NG$./ configure --enable -local

∼/linux-esp32s3/crosstool-NG$ make

Listing 5.2: crosstool-NG installation

These commands are essentially the crosstool-NG installation procedure. Executing ./

bootstrap enables GNU’s Autoconf and Automake utilities to create the configure ex-
ecutable from the configure.ac file along with several *.in files [62], [63]. Subsequently,
executing the generated ./configure --enable-local generates a Makefile in return,
which GNU’s make utility uses to compile another set of files, however, the generated
utility of interest is the ct-ng executable which is used for building the toolchain [35].
Note that by using the --enable-local flag, crosstool-NG gets installed only locally, i.e.,
in the crosstool-NG working directory [64].

5.2.2 Overlay configuration

In the non-dynamic case, the toolchain must be configured with so-called overlay files.
These overlay files consist primarily of C header files and a few C source files that use the
former. Those files are usually provided by the processor vendor, i.e., by Cadence Design
Systems or in this case by Espressif [65]. The overlay files define things relevant for
compiling the toolchain correctly for the Xtensa ISA, such as the maximum instruction
size as can be seen in Figure 5.2. In the actuality, the Xtensa ISA defines instruction
sizes to be 16- or 24-bit, i.e., 2- or 3-byte instructions [6, pp. 32–36]. However, since the
LX7 cores of Cadence Design Systems are designed after the Harvard model, they restrict
the instruction bus access to only 4-byte aligned manner, which is why the XCHAL_MAX

_INSTRUCTION_SIZE must be defined as 4 bytes [30, p. 390].

Figure 5.2: Detail of xtensa-config.h from the overlay files

5.2. CONFIGURING AND BUILDING THE TOOLCHAIN 23

Another point of significance is the ABI utilized. The Xtensa architecture offers two dis-
tinct ABIs for processor configuration: the Windowed ABI and the Call0 ABI. The ISA
describes 64 general-purpose registers, with 16 being active at any given time. In the Win-
dowed ABI, these registers are rotated to avoid the computational cost of more frequent
store and load instructions to memory. Specifically, when a routine calls a subroutine, the
window of the visible 16 general-purpose registers shifts, potentially presenting a new set
of unused registers for the subroutine to operate on. Upon the subroutine’s completion,
the window reverses, making the subroutine’s results accessible to the initiating routine.
Conversely, the Call0 ABI is more straightforward, allowing only the use of a fixed set
of 16 general-purpose registers and relying on store and load instructions for subroutine
invocations [6, pp. 684–687]. Unfortunately, it proved difficult to make use of the Win-
dowed ABI, hence both kernel and user space in this implementation realize the Call0
ABI [66]. It is important to note that the only modification made to the overlay files
occurs in the xtensa-config.h file, seen on line 177 in Figure 5.2, where the ABI definition
is set to #define XSHAL_ABI XTHAL_ABI_CALL0.

Besides the configuration provided by the xtensa-overlay files, further configuration is
given by the specific core definitions, i.e., the LX7 core definitions, found in Espres-
sif’s HAL components. These configurations are responsible for correctly configuring the
toolchain with more in-depth options, such as definitions of the concrete ISA instructions
and their availability in these cores [67]. For instance, Figure 5.3 specifies XCHAL_HAVE

_L32R, indicating that the core has the L32R instruction enabled. This instruction rep-
resents a 32-bit load operation relative to the program counter (PC) [6, p. 56]. Enabling
this instruction in the toolchain configuration allows the compiler to generate assembly
code that utilizes it where applicable. This is evident in the compiled assembly code of a
sample example.c file, as shown in Figure 5.4, which employs a subroutine named add to
sum the immediate values 5 and 7.

Figure 5.3: Detail of core-isa.h from the HAL

24 CHAPTER 5. IMPLEMENTATION

Figure 5.4: Assembly of example.c compiled with the built toolchain

In the streamlined implementation repository the overlay files are located in the /linux-
esp32s3/configs directory as compressed xtensa esp32s3-overlay-config.tar.gz file. The
xtensa-esp32s3-overlayed default configuration for crosstool-NG resides in the /samples
subdirectory and comprises multiple variables. These variables serve various functions,
such as specifying the repositories from which GCC, Binutils and uClibc-ng should be
obtained, setting C compiler flags for the compilation process and more. With the ct-ng
utility at hands, the following commands apply the corresponding crosstool-NG configu-
ration and subsequently build the toolchain accordingly:

∼/linux-esp32s3/crosstool-NG$./ct-ng xtensa -esp32s3 -overlayed

∼/linux-esp32s3/crosstool-NG$./ct-ng build

Listing 5.3: Applying overlay crosstool-NG configuration

5.3. BUILDING KERNEL IMAGE AND ROOTFS 25

5.2.3 Dynamic configuration

Even though the dynamically configured toolchain can be later modified during the Buil-
droot process to accommodate a broader range of processors, some initial configuration
is necessary. This configuration informs the GCC compiler e.g., about the ABI it gets
configured for [68]. The configuration files that form the basis for the dynamic configura-
tion originate also from the aforementioned xtensa-overlay files and the ESP32-S3 HAL,
however, this approach differs in the way those files are being used. In the dynamic
case, instead of compiling GCC with the header and source files from the overlays, they
are precompiled to a shared object in advance and can then be used as such by GCC.
This can be achieved with the provided xtensa-dynconfig tool [69]. Changing into the
xtensa-dynconfig directory, the following commands can be issued to generate the needed
xtensa esp32s3-dynconf-config.so shared object:

∼/linux-esp32s3/xtensa-dynconfig$ make xtensa_esp32s3 -dynconf -config.so

∼/linux-esp32s3/xtensa-dynconfig$ export XTENSA_GNU_CONFIG=$(pwd)/

xtensa_esp32s3 -dynconf -config.so

Listing 5.4: Generating dynamic configuration shared object

The environment variable XTENSA_GNU_CONFIG exported on the last line is crucial to both
GCC and Buildroot, since if configured for the dynamic case, they can find the needed
shared object at the location specified. Hence, to proceed, the same steps are taken as in
the overlay-case but with another crosstool-NG configuration:

∼/linux-esp32s3/crosstool-NG$./ct-ng xtensa -esp32s3 -dynconf

∼/linux-esp32s3/crosstool-NG$./ct-ng build

Listing 5.5: Applying dynamic crosstool-NG configuration

5.3 Building kernel image and rootfs

The compiled toolchain resides now in the /linux-esp32s3/crosstool-NG/output direc-
tory and is labelled xtensa-esp32s3-linux-uclibcfdpic. To proceed with the construction
of the kernel image and the rootfs, the working directory must be switched to /linux-
esp32s3/buildroot. The following packages must be pre-installed on the host OS addi-
tionally to the ones already installed for crosstool-NG:

• which

• sed

• binutils

• build-essential

• diffutils

• bash

• bzip2

• gzip

• perl

26 CHAPTER 5. IMPLEMENTATION

• tar

• cpio

• unzip

• file

• bc

• findutils

[40]

Similar to the toolchain configuration, the steps for building the kernel and rootfs will
vary based on whether the dynamic configuration is employed or the configuration with
overlay files.

5.3.1 Overlay configuration

Following the steps taken in 5.2.2, the following command applies the corresponding
configuration for Buildroot:

∼/linux-esp32s3/buildroot$ make O=${ESP32S3_ROOT_DIR }/buildroot -build

esp32s3wifi_overlayed_defconfig

Listing 5.6: Applying overlay Buildroot configuration

The inlined environment variable O serves the purpose of redirecting the build output into
/linux-esp32s3/buildroot-built which is not mandatory but advisable, especially since the
subsequent implementation steps assume the buildroot-build directory to contain the built
kernel image and rootfs.

The esp32s3wifi overlayed defconfig configuration resides in the /linux-esp32s3/buildroot
/configs directory and specifies various settings, such as where the overlay files can be
found, where the toolchain resides, flags for the toolchain’s linker, where the rootfs overlay
resides (this is the one that also contains the wpa supplicant.conf file enabling the built
kernel to connect to WiFi) and where to obtain the kernel source from, i.e., from which
repository. Furthermore does the configuration specify the architecture and a variant;
these two options will be picked up by the kernel source in the build process to locate
essential header files and its own configuration file. Moreover, the configuration also
indicates that the rootfs will be a cramfs and that a tmpfs will be employed, as will
be discussed in 6.1.1. If the aforementioned O environment variable has been used, the
directory needs to be changed to /linux-esp32s3/buildroot-build in order to initiate the
build process as follows:

∼/linux-esp32s3/buildroot-build$ make

Listing 5.7: Initiating Buildroot build

5.4. FLASHING KERNEL IMAGE AND ROOTFS 27

5.3.2 Dynamic configuration

For the approach taken in 5.2.3, the corresponding Buildroot configuration is esp32wifi dynconf defconfig.
The application of this configuration and initiation of the build process is the same as in
the overlay case:

∼/linux-esp32s3/buildroot$ make O=${ESP32S3_ROOT_DIR }/buildroot -build

esp32s3wifi_dynconf_defconfig

∼/linux-esp32s3/buildroot$ cd ../ buildroot -build

∼/linux-esp32s3/buildroot-build$ make

Listing 5.8: Applying dynamic Buildroot configuration and build

This configuration differs from the overlay one primarily in the sense that the BR2_XTENSA
_DYNCONFIG option is enabled and no path to overlay files is specified. However, it is
important so start the build process in an environment where the XTENSA_GNU_CONFIG

has been exported according to the instructions in 5.2.3.

5.4 Flashing kernel image and rootfs

The kernel image built in 5.3 employs an additional driver necessary for the Universal
Asynchronous Receiver/Transmitter (UART) on the development board to communicate
with the connected host machine [70]. But before this driver can be of any use, kernel
image and the rootfs need to be flashed onto the board. This is achieved with a custom
bootloader based on the hello world example in the ESP-IDF framework [71].

5.4.1 Early bootloader version

While the bootloader used in this thesis has undergone modifications to incorporate WiFi
capabilities, its core functionality remains unchanged compared to its eralier versions.
Consequently, for the sake of simplified illustration, one such early version is presented
here. Figure 5.5 shows this bootloader’s linux boot main.c source file.

The bootloader comes with several partition table definitions, one of them being a parti-
tion table for the ESP32-S3 equipped with 8 MB of flash memory. Its definition is shown
in Figure 5.6.

In essence, the partition table, along with the compiled code depicted in Figure 5.5, is
flashed onto the board. The partition designated to store the kernel image is labeled
as linux, while the partition allocated for the rootfs is labeled rootfs. The kernel image
and rootfs, generated as discussed in Section 5.3, are subsequently flashed onto their
corresponding partitions, a process which will be elaborated upon in Section 5.4.2. Upon
booting, the bootloader first invokes the map_flash_and_go method. This method is

28 CHAPTER 5. IMPLEMENTATION

Figure 5.5: Early bootloader version for ESP32-S3

Figure 5.6: Partition table for ESP32-S3 with 8 MB flash memory

5.4. FLASHING KERNEL IMAGE AND ROOTFS 29

responsible for mapping both the linux and rootfs partitions to the virtual address space
as instruction memory, utilizing ESP-IDF’s esp_partition_mmap method [72]. Following
this, an inline assembly jump instruction reassigns the PC to the starting address of the
mapped linux partition. In other words, the PC is now set to point to the kernel’s initial
location. When the esp_restart method is subsequently invoked, the board reboots,
initializing from the newly configured PC location, thereby booting the Linux kernel [73].
In the current implementation the kernel runs only on one of the two available cores with
the intention to run the ESP-IDF firmware on the other [74].

5.4.2 Flashing procedure

Espressif provides with their ESP-Hosted-NG solution the possibility to enable their SoC’s
WiFi capabilities [75]. A modified version of this solution is used in this implementation
to enable the kernel to use these capabilities [76]. Hence, to proceed with the flash-
ing procedure in the streamlined implementation, the directory needs to be changed to
/linux-esp32s3/esp-hosted/esp hosted ng/esp/esp driver. This directory contains a mod-
ified version of the ESP-IDF as submodule in its /esp-idf subdirectory and the modified
bootloader configured with network adapter capabilites in its /network adapter subdirec-
tory. The subsequent commands are issued to initialize the framework:

∼/linux-esp32s3/esp-hosted/esp_hosted_ng/esp/esp_driver$ cmake .

∼/linux-esp32s3/esp-hosted/esp_hosted_ng/esp/esp_driver$ source esp -idf/export.

sh

∼/linux-esp32s3/esp-hosted/esp_hosted_ng/esp/esp_driver$ cd network_adapter

∼/linux-esp32s3/esp-hosted/esp_hosted_ng/esp/esp_driver/network_adapter$ idf.py

set -target esp32s3

∼/linux-esp32s3/esp-hosted/esp_hosted_ng/esp/esp_driver/network_adapter$ cp

sdkconfig.defaults.esp32s3 sdkconfig

Listing 5.9: Initializing the ESP-IDF framework

The first command cleans the ESP-IDF submodule, replaces the esp wifi library compo-
nents in the submodule with the ones in the esp driver directory and executes the install.sh
script located in the esp-idf directory. The install.sh script installs several python scripts,
such as the idf.py used to flash onto and monitor the board and the parttool.py used
to write the kernel image and rootfs onto the board. By sourcing the export.sh script
with the second command, environment variables vital for the esp-idf are being exported.
The third command changed the directory to the one actually containing the bootloader
project to be flashed. The fourth command cleans previous build outputs if any and sets
up the framework for the ESP32-S3, generating an sdkconfig file among other things, even
though this file will be replaced by a custom configuration with the fifth command. After
these steps, the bootloader project can be built and once the board is connected via the
UART, flashed onto the board by issuing the following commands [77]:

∼/linux-esp32s3/esp-hosted/esp_hosted_ng/esp/esp_driver/network_adapter$ idf.py

build

30 CHAPTER 5. IMPLEMENTATION

∼/linux-esp32s3/esp-hosted/esp_hosted_ng/esp/esp_driver/network_adapter$ idf.py

flash

Listing 5.10: Building and flashing the project

The final step is to write the kernel image and the rootfs onto their respective partitions,
using the previously mentioned parttool.py script:

∼/linux-esp32s3/esp-hosted/esp_hosted_ng/esp/esp_driver/network_adapter$ parttool

.py write_partition --partition -name linux --input ${

ESP32S3_ROOT_DIR }/buildroot -build/images/xipImage

∼/linux-esp32s3/esp-hosted/esp_hosted_ng/esp/esp_driver/network_adapter$ parttool

.py write_partition --partition -name rootfs --input ${

ESP32S3_ROOT_DIR }/buildroot -build/images/rootfs.cramfs

Listing 5.11: Writing kernel image and rootfs onto their partitions

After this step, the bootloader can be triggered and ultimately the kernel be booted by
invoking:

∼/linux-esp32s3/esp-hosted/esp_hosted_ng/esp/esp_driver/network_adapter$ idf.py

monitor

Listing 5.12: Booting Linux via idf.py monitor

Eventually the user is prompted to enter the passphrase, which is defaulted to root and
if the wpa supplicant.conf has been configured accordingly as described in 5.1, it will try
to connect to the WiFi as can be seen in Figure 5.7.

5.4. FLASHING KERNEL IMAGE AND ROOTFS 31

Figure 5.7: Linux login on ESP32-S3

32 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

Following the presented implementation, the task shifts to the assessment of the estab-
lished system’s capabilities. Therein, this chapter provides a concise evaluation of the
former. Starting with general observations obtained from hands-on interaction with the
system, and proceeding through time measurements, the evaluation ultimately culminates
in an analysis of the system’s WiFi capabilities.

As a useful sidenote, the graphical representations of the Command Line Interface (CLI)
in the following sections, which relate to the monitored kernel, may occasionally be mis-
leading. In particular, some characters from an earlier stdout may show up on the current
stdin line, even though they are leftovers from the preceding operation and not part of
the current input, as can be seen e.g., in Figure 6.7 where droot login: root is only a
residual.

6.1 General observations

The Linux filesystem employs the concept of the so-called virtual filesystem (VFS), whose
role is to provide a software layer that functions as an interface to several different filesys-
tems. One class of filesystems supported by the VFS are the special filesystems or pseudo
filesystems, in which category also the /proc filesystems falls [33, pp. 456–482], [78]. As
such, it provides an interface to access kernel data structures, i.e., it can be leveraged to
obtain useful system information for evaluation, as will be outlined in this section.

6.1.1 Mounted filesystems

The Linux VFS is hierarchical and consists of various types of filesystems, each serv-
ing specific functions and purposes. For instance, the invocation of cat /proc/mounts

presents a list of the mount namespaces available to the invoking process, i.e., in this con-
text, to the shell executing the command [78]. Invoked on the provided implementation,

33

34 CHAPTER 6. EVALUATION

Figure 6.1: Output of cat /proc/mounts

the output presents the list seen in Figure 6.1. The mtd:data filesystem is the root filesys-
tem mounted at / and respresents the read-only compressed ROM filesystem (cramfs) as
configured in 5.3. However, the filesystem of particular interest for the subsequent eval-
uations is the tmpfs mounted at /tmp. This filesystem provides read/write capabilities
from the user space, i.e., it enables the user to create, manipulate and delete files located
there. Unfortunately, the data represented through the /tmp filesystem resides on volatile
memory and as such poses the most significant limitation for real-world use cases: Data
whose attributes and volume may be indeterminate at initialization, might require preser-
vation beyond the system’s uptime. Nevertheless, the current state of affairs suggests the
issue partially being addressed [79].

6.1. GENERAL OBSERVATIONS 35

6.1.2 Memory information

The cat /proc/meminfo provides an elaborate snapshot
of the system’s memory status quo, as shown in Figure 6.2.
It is particularly of interest in regards to this implementa-
tion, in the MMUless context and the employment of XIP.
The MemTotal entry, which specifies the total available
memory as 7388 KB, makes efficient memory utilization a
high priority, especially considering the incapability of es-
tablishing advanced memory handling techniques such as
paging.
The MemAvailable metric, showing 2796 KB of estimated
readily accessible memory [80], becomes even more signifi-
cant in light of the XIP implementation as well, since exe-
cutable code is run directly from flash memory, thereby
saving PSRAM that would otherwise be consumed for
loading the executable into memory. Furthermore, the
presence of a notable Slab memory of 2044 kB highlights
how the system uses slab allocation to manage its kernel
objects efficiently. Slab allocation becomes increasingly
important in a system lacking an MMU because it reduces
fragmentation and optimizes memory usage for kernel ob-
jects, thus maximizing the efficiency of the available mem-
ory space [33, pp. 324–350].

Figure 6.2: Output of cat
/proc/meminfo

6.1.3 CPU information

Listing the contents of another pseudo file by cat /proc/cpuinfo, presents the output
shown in Figure 6.3. The first line, as mentioned in the sidenote in 6, is misleading here,
since it supposedly aims to display the count of processors the system runs on as CPU

count : 1, i.e., as explained in 5.4.1, the system makes use of only one of the available
two processor cores. Further, besides a bunch of meta information, such as the vendor id
being defined as Tensilica and the core ID as Xtensa LX7.0.12, more insightful information
can be gained. Although the ESP32-S3 is designed to provide a CPU frequency of up to
240 MHz in high performance mode [30], here it is only operating at 160 MHz.

One notable entry is the set of CPU flags, which indicate capabilities for which the core has
been configured. These align with the core configuration overlay as elaborated in 5.3, e.g.,
as visibible in Figure 5.3 has the core been configured to support the MUL16, MUL32,

36 CHAPTER 6. EVALUATION

MUL32 HIGH instructions that correspond to the flags mul16, mul32, mul32h respec-
tively [6, pp. 324–617].

Another interesting insight presented is the distinction between ICache and DCache re-
lated cache entries, which reflect the nature of a Harvard architecture as outlined in 3.1,
i.e., the system having separate instruction and data busses connected to different caches.

Figure 6.3: Output of cat /proc/cpuinfo

6.1.4 Command Substitution issues

One observation of particular interest and as such one that indicates a flaw in the es-
tablished system functionality, is the inability for correct Command Substitution. The
GNU bash manual [81] describes Command Substitution as the ability to

”
[...] allow the

output of a command to replace the command itself“. In other words, by using the syntax
$(CMD), where CMD specifies the command being replaced by its own output, one can in-
tegrate a subroutine into a parent command. A simple example is echo $(echo "foo").
The outer echo command spawns a subshell process to evaluate its argument, since it
is a command substitution; this results in executing the inner echo "foo" command in
said subshell process, substituting its output foo as the argument for the outer echo, and
thus printing foo to the stdout. An excerpt from the output generated by issuing echo

$(echo "foo") can be seen in Figure 6.4, the full output can be found in Appendix A.

6.1. GENERAL OBSERVATIONS 37

The output indicates a page allocation failure by three involved processes, in the example

Figure 6.4: Excerpt of echo $(echo "foo") output

the ones with process ids (PIDs) 163, 164 and 165, each attempting to allocate mem-
ory of length 40960, 40960 and 49152 (in bytes) respectively. Additional processes being
spawned by the invokation makes sense, regarding the necessity of spawning a subshell.
The page allocation order of 4 on the first line translates to 24 = 16 pages attempted to be
allocated [82]. The PAGE_SIZE employed in the system is known from the kernel source;
more specifically, the header files page.h and types.h located in arch/xtensa/include/uapi
/asm of the kernel source define the PAGE_SIZE to be 4 KB, as can be seen in Figure 6.5
and 6.6. This yields an attempted allocation of 16 ∗ 4 = 64 KB = 65536 bytes, aligning
with the SoCs being designed to map external RAM in blocks of 64 KB via DCache or
ICache [30, p. 393] and as such justifies the aforementioned lengths.

38 CHAPTER 6. EVALUATION

Figure 6.5: Detail from page.h Figure 6.6: Detail from types.h

Interestingly enough, the intended output foo can nevertheless be seen on the last line.
While the precise cause of this obscure behaviour has not been conclusively determined,
the given Mem-Info indicates sufficient memory of certain types, which might imply none
of them being of the type attempted to allocate. Another hypothesis suggests memory
fragmentation on the kernel side being responsible, particularly given the absence of a
MMU.

To summarize the general observations, the findings from subsections 6.1.1 through 6.1.3
were to be expected and accurately represent the characteristics of the Xtensa ISA and the
ESP32-S3 SoC, along with the specific design choices made. However, the observations in
subsection 6.1.4 raise unresolved questions. For practical applications of this implemen-
tation, it would be advisable to identify the exact cause of the observed issue to prevent
potential critical consequences.

6.2 Time measurements

Timing metrics hold significant value in evaluating the effectiveness of the implemented
system. Even if the system were to show flawless functionality, the utility of such perfor-
mance becomes limited if it fails to operate within acceptable time constraints.

6.2.1 Booting

An initial critical metric to evaluate is the duration required for the system to complete
its boot process. The boot time for the implemented system detailed in Chapter 5 is
explicitly indicated during the boot process. The numerical value displayed on the left
represents the elapsed time in seconds from the initiation of the monitoring process to the
point of user space login, i.e., approximately 3.2 seconds in Figure 6.7. Given its brevity,
this boot time presents no significant issues and is comfortably acceptable for practical
applications.

6.2. TIME MEASUREMENTS 39

Figure 6.7: Kernel image boot time

6.2.2 Measuring execution time of utilities

Another relevant aspect to evaluate is the execution time of specific binary utilities in-
tended for practical use. The subsequent section provides measurements obtained using
the time utility from BusyBox. In its standard mode of operation, time measures three
key parameters: user time, which represents the CPU time spent in user mode; system
time, denoting the CPU time spent in kernel mode; and overall elapsed time, also known
as wall clock time, which accounts for the total duration from the moment the measured
binary is invoked to its ultimate termination. When invoked with the -v flag for ver-
bose output, it provides additional metrics such as CPU usage percentages and context
switches [41], [83].

Measuring find

For the first example an empty sample file is created in /tmp/random.file. In this
example it is measured how long it takes for the find utility to locate the file, starting
from the filesystem’s root directory, i.e., the following command is issued: time -v

find / -name random.file. The output reveals a user time of 22.07 seconds and a
system time of 22.99 seconds, signifying a balanced workload between user and kernel
modes. This finding is supported by the CPU usage of 94%, which is expected given
that the operation is the only process actively demanding CPU resources. The wall
clock time is registered at 47.86 seconds, aligning with the aforementioned metrics, since
(usertime + kerneltime)/wallclock ≈ CPUusage holds true. The exit status of 0 also
indicates a successful return from the method. The result can be seen in Figure 6.8.

40 CHAPTER 6. EVALUATION

Figure 6.8: Measuring find Figure 6.9: Measuring cat

Measuring cat

In this second example, we measure the cat command. This command concatenates the
contents of files and prints the result to stdout, however, by specifying only a single file,
only that file’s content gets printed. Hence, for the measurement we will print the contents
of the previously presented cpuinfo file located in the /proc pseudo filesystem by issuing
time -v cat /proc/cpuinfo. The output records also here an almost equal amount of
0.05 seconds user time and 0.04 seconds kernel time. The CPU usage is measured at
89% much like the previous find example, but only for a very short duration of 0.10 sec-
onds. Here as well does the approximate equation (usertime+ kerneltime)/wallclock ≈
CPUusage hold true. Having an exit status of 0, also this command returns successfully.
The result can be seen in Figure 6.9.

Measuring tar with gzip

[41] The tar utility serves to create an uncompressed archive file from one or more indi-
vidual files, whilst the gzip utility specializes in single-file compression. These utilities
are often used in conjunction to overcome gzip’s limitation of handling only single files,
as tar enables the archiving of multiple files into a single uncompressed file suitable for
compression. In standard Linux systems, the tar utility can directly archive and com-
press files into gzip format using the -z flag. However, this implementation employs
limited versions of both utilities, derived from BusyBox, which do not natively support
this functionality. To circumvent this limitation, the pipe functionality can be employed,
which serves the purpose of redirecting one command’s output to another command’s
stdin instead of its own stdout [84].

For demonstration, a 1 MB sample file filled with zeros is created in the /tmp directory us-
ing the command dd if=/dev/zero of=/tmp/zeros.file bs=1024 count=1024. This
consumes a significant portion of the remaining writable memory, leaving approximately

6.2. TIME MEASUREMENTS 41

1.8 MB available. Upon navigating to the /tmp directory, the archived and compressed
file is generated with tar -cf - zeros.file | gzip -9 > zeros.file.tar.gz. In this
command, the -cf flags instruct tar to create a file, but using – as the filename redirects
the output to stdout, however, intercepted by the pipe operator |, hence channeling the
output to gzip’s stdin instead. The -9 flag specifies the highest level of compression, and
the output is finally redirected via > to the file zeros.file.tar.gz. The measurement
can then be executed with time -v tar -cf - | gzip -9 > zeros.file.tar.gz. The
output can be seen in 6.10; for the sake of completeness, a subsequent – yet not measured
– invocation of du -ha . has been issued to present the file sizes of the /tmp directory’s
contents. Concerning the ratio between user time and kernel time, the observations align
with those made in the previous examples. The noteworthy divergence is the relative
increase in wall clock time of 0.75 seconds, coupled with a reduced CPU utilization of
19%. This discrepancy may be attributed to increased read and write durations, allowing
the CPU more idle time. Without further investigation of the internal specifics, may be
speculated about a possibly large number of necessary instruction memory reads by either
of tar or gzip; assuming this being the case would imply, as outlined in 4.2, slower reads
from flash memory instead of PSRAM due to the nature of XIP. Here as well does the
exit status of 0 indicate a successful return.

Figure 6.10: Measuring tar with gzip

To conclude the evaluation of the timing metrics, the observations through these experi-
ments offer valuable insights that may be applicable to a wide range of real-world scenar-
ios. However, it is imperative to recognize the limitations of the current implementation,
particularly in contexts requiring high temporal precision. For instance, employing this
MCU for applications such as capturing time-sensitive data in downhill ski races, where
even hundredths of a second are crucial, would likely be unsuitable. Therefore, while the

42 CHAPTER 6. EVALUATION

measurements present a functional foundation, they highlight the necessity for specialized
adjustments when high-performance or time-sensitive operations are involved.

6.3 WiFi capabilities

This section serves the purpose of assessing the WiFi capabilities inherent to the imple-
mented system. As outlined in 5.1, the wpa supplicant is configured to facilitate connec-
tivity with a WPA2 network.

6.3.1 Connectivity behaviour

During the boot sequence, observations confirm that the wpa supplicant autonomously
initiates attempts to establish a network connection. While it generally succeeds in au-
thenticating and connecting, the process occasionally necessitates multiple attempts, as
indicated by the recurring FW_MAIN: Scan request messages displayed in Figure 6.11.
Moreover, it has been observed that the network connection is subject to occasional dis-

Figure 6.11: Successful WiFi connection

6.3. WIFI CAPABILITIES 43

ruptions. Although, a plausible explanation for this behaviour could simply be the limited
perimeter within which the integrated network adapter can effectively operate. This hy-
pothesis is supported by the lower frequency of disconnection events when the device is
positioned in closer proximity to the WiFi’s access point.

6.3.2 Communicating with a RESTful API

The presented implementation features only the wget utility for making REST requests,
more precisely, the BusyBox variant of wget [41]. Therefore, in the following, several
different applications of the wget utility will be evaluated. In each case the expected API
response is redirected to stdout by specifying -O -. To ensure that wget’s own output to
stdout does not overwrite this API response, the -q (quiet) flag is enabled as well.

Assessment of HTTPS support

In the initial experiment, a GET request via HTTPS is made to a web page as a proof-of-
concept to assess the availability of HTTPS functionality. Unfortunately, as can be seen
in 6.12, wget yields an error, indicating support only for HTTP or FTP. Upon review-

Figure 6.12: GET request via HTTPS unsuccessful

ing the suite of installed packages within the implementation, it became apparent that
Certification Authority (CA) certificates were absent, a crucial component for enabling
HTTPS [85]. A subsequent attempt to rebuild the rootfs with integrated CA certificates
led to a size constraint issue. The newly compiled rootfs expanded from a compressed
size of 3.5 MB, as mentioned in 4.2, to 6.7 MB, thereby exceeding the available storage
and preventing further exploration of HTTPS support.

Extent of wget capabilities

To examine the performance of the wget utility in the absence of HTTPS support, a
rudimentary RESTful API is set up on a remote server to facilitate communication via
HTTP. This API offers support for the following endpoints:

• GET method to /get

• POST method to /post, accepting data in JSON format

• PATCH method to /patch/:id, accepting data in JSON format

• DELETE method to /delete/:id

44 CHAPTER 6. EVALUATION

The GET request successfully executes, as shown in Figure 6.13. The same holds true
for a simple POST request, whose output can be seen in Figure 6.14. The data to send
can be specified with the --post-data option, enabling sending of JSON data. To ensure
clarity, since the command issued for the POST request becomes overwritten by the API
response, Listing 6.1 shows the full command.

wget --post -data "{\"key\": \"value\"}"

--header "Content -Type:application/json"

-q -O - http ://192.41.136.239:49160/ post

Listing 6.1: Sending simple POST request

Figure 6.13: Simple GET request

Figure 6.14: Simple POST request

It appears that the --method option – intended to specify the REST method – is not
supported by the limited BusyBox variant of wget, thereby restricting the available REST
methods to only GET and POST.

Complex POST request

In the preceding example of a POST request, the submitted data comprised a simple JSON
object, specified directly on the command line. While this serves as a useful demonstra-
tion, it is not necessarily reflective of typical, real-world applications. In a more realistic
setting, one might employ a shell script to dynamically populate the data for the POST
request via a variable. Unfortunately, as discussed in 6.1.4, Command Substitution shows
malfunctioning in the current implementation, hence, restricting this particular approach.
Nonetheless, with a similar technique as the one presented in 6.2.2, where data was piped
between the tar and gzip utilities, a more sophisticated POST request can be devised.
Listing 6.2 shows the command issued to transmit the well-known output of cat /proc/

cpuinfo from 6.1.3.

cat /proc/cpuinfo |

sed ’:x;N;$!bx;s/\n/; /g;s/\t//g’ |

awk ’{printf "’\’’{\"cpuinfo\":\"%s\"}’\’’\n", $0}’ |

awk ’{printf "wget --post -data %s --header \"Content -Type:

application/json\" -q -O - http ://192.41.136.239:49160/ post\n",

$0}’ | sh

Listing 6.2: Sending output of cat /proc/cpuinfo via POST request

6.3. WIFI CAPABILITIES 45

To break it down, the cat /proc/cpuinfo produces multiple lines of output, therefore
using sed ’:x;N;$!bx;s/\n/; /g;s/\t//g’ combines them into a single line of out-
put, separating them with ’; ’. Additionally, the sed command removes all tab charac-
ters. The next command – awk ’{printf "’\’’{\"cpuinfo\":\"%s\"}’\’’\n", $0}’

– formats the output from sed into JSON format. This output becomes the input to
another awk command; awk ’{printf "wget --post-data %s --header \"Content-

Type:application/json\" -q -O - http://192.41.136.239:49160/post\n", $0}’ pro-
duces a string representing the full wget command with the formatted POST data JSON
inserted as an actual substring instead of being accessed as a variable. At last, the shell
binary sh executes the constructed string as its input, essentially making the POST re-
quest. The data received on the server-side for this and also the preceding examples can
be seen in Figure 6.15.

Figure 6.15: Server logs of the API

In summary, the evaluation of the WiFi capabilities reveals functional yet limited network-
ing features. The first noteworthy constraint is the restriction to only GET and POST
requests. However, this may not pose a significant challenge depending on the applica-
tion context, as other REST methods like PATCH or DELETE can be emulated by the
means of GET and POST. The far more pressing issue is the absence of HTTPS support,
which substantially compromises the security of communications. Moreover, this evalua-
tion poses an additional incentive to investigate the issues discussed in 6.1.4. Although a
workaround could be constructed to submit a more complex POST request, conventional
methods to do so are more desirable.

In regards to the specific application scenario discussed in 1.3, concerning secure and
real-time tracking of artworks, a conclusive assessment of compatibility between the WiFi
capabilities of the ESP32 device running Linux and this use case remains open. Neverthe-
less, the findings of this work present opportunities for such future implementations in the
realm of IoT tracking devices. To move from potential to practice, several key issues iden-
tified in this evaluation must first be addressed. The absence of HTTPS support stands as
the most pressing concern, given its imperative role in ensuring secure communications.
Beyond this, expanding the MCU’s sensory capabilities stands as a further necessity to
facilitate its applicability as an artwork tracking device.

46 CHAPTER 6. EVALUATION

Chapter 7

Conclusion & Future Work

The overarching objective of this thesis was focused on investigating the feasibility of
building and operating a minimal Linux kernel, in alignment with the Xtensa ISA, on
microcontrollers of the ESP32 family of MCUs, facilitating a possible integration into
the IoT. Through meticulous examination of key tools and valuable contributions from
external sources, a functional prototype was successfully constructed. This accomplish-
ment enabled the culminating endeavour of conducting a comprehensive evaluation of the
prototype’s practical utility and limitations.

As the IoT continues to expand and shape various aspects of modern life, the role of cost-
efficient and adaptable hardware becomes increasingly significant. This thesis, therefore,
primarily explored the prospects of employing cost-effective microcontrollers, specifically
those from the ESP32 family, to run a Linux kernel. In the concomitant study of these
microcontrollers, challenges ranging from resource-constraints to ones arising from their
architectural paradigms, led to distinct design choices for the kernel, ultimately providing
a tailored solution for a niche architectural constitution. Such an approach not only
has the potential to accelerate the growth of the IoT landscape but also hints at the
possibility for some degree of standardization through the utilization of a widely known
and well documented OS like Linux.

Traditionally, porting of Linux to constrained platforms, such as the one at hand, has
often been a sidelining effort. By presenting the viability of Linux on cost-effective ESP32
MCUs, deviating from the norm already due to the less commonly used Xtensa ISA,
not only does this thesis present an economical incentive, but even more broadens the
catalogue of Linux-compatible IoT hardware. Moreover, as a consequent effect, this thesis
thus also challenges prevailing notions about the hardware requisites to support the means
of Linux. As a result, this thesis presents a potential enrichment to the embedded world
as a whole but even more, possibly to the vast IoT jungle.

However, taking into account the current stage at which the advancements presented in
this thesis find themselves, the discussed potential enrichment remains largely hypothet-
ical. This is especially the case considering the illustrated shortcomings of the imple-
mentation, both in terms of partially flawed isolated system behavior and its yet to be
optimized capabilities for secure interaction with external environments. Despite these

47

48 CHAPTER 7. CONCLUSION & FUTURE WORK

limitations, this thesis presents opportunities, inviting for further exploration into them
and the associated prospective utility gain by broadening the horizons of IoT technology.
Thereby, opening the doors of innovation wider than before, even if only by a certain
amount.

Subsequent research focusing on the matter of WiFi capabilities may investigate the op-
tions available for increased flash storage, thereby potentially enabling a prototype to
fulfill the requirements for secure network communication. Further, creating a stable sys-
tem without memory allocation deficiencies and making it a priority to ensure absence of
potentially arising collateral errors and ones that might not yet have caught the eye.

Bibliography

[1] Cisco Systems,“Cisco Annual Internet Report (2018–2023)”, Mar. 10, 2020. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/executi
ve-perspectives/annual-internet-report/white-paper-c11-741490.html

(visited on 08/21/2023).

[2] S. Kumar, P. Tiwari, and M. Zymbler, “Internet of Things is a revolutionary ap-
proach for future technology enhancement: A review”, Journal of Big Data, vol. 6,
no. 1, p. 111, Dec. 2019. doi: 10.1186/s40537-019-0268-2.

[3] Rachit, S. Bhatt, and P. R. Ragiri, “Security trends in Internet of Things: A survey”,
SN Applied Sciences, vol. 3, no. 1, p. 121, Jan. 2021. doi: 10.1007/s42452-021-0
4156-9.

[4] U. Saeed, M. A. Khuhro, M. Waqas, and N. Mirbahar, “Comparative analysis of dif-
ferent Operating systems for Raspberry Pi in terms of scheduling, synchronization,
and memory management”,Mehran University Research Journal of Engineering and
Technology, vol. 41, no. 3, pp. 113–119, Jul. 1, 2022. doi: 10.22581/muet1982.220
3.11.

[5] “Raspberry Pi 3 B 3 B 1 GB Prozessor: BCM2837”. (), [Online]. Available: htt
ps://de.rs- online.com/web/p/raspberry- pi/1826547?gb=b (visited on
08/22/2023).

[6] Cadence Design Systems, Xtensa Instruction Set Architecture (ISA) Summary for
all Xtensa LX Processors, 2022. [Online]. Available: https://www.cadence.com/e
n_US/home/tools/ip/tensilica-ip.html (visited on 08/19/2023).

[7] I386, in Wikipedia, Jul. 31, 2023. [Online]. Available: https://en.wikipedia.org
/w/index.php?title=I386&oldid=1168007310 (visited on 08/22/2023).

[8] Linux, in Wikipedia, Jul. 28, 2023. [Online]. Available: https://en.wikipedia.o
rg/w/index.php?title=Linux&oldid=1167562094#cite_note-25 (visited on
08/22/2023).

[9] Espressif Systems, ESP32-WROVER-IE Datasheet, Feb. 9, 2023. [Online]. Avail-
able: https://www.espressif.com/en/support/documents/technical-documen
ts (visited on 08/23/2023).

[10] “Welcome to uClibc-ng! - Embedded C library”. (), [Online]. Available: https://u
clibc-ng.org/ (visited on 08/22/2023).

[11] “SC0022 Raspberry Pi 3B”, Mouser Electronics. (), [Online]. Available: https://w
ww.mouser.ch/ProductDetail/358-SC0022 (visited on 08/22/2023).

49

50 BIBLIOGRAPHY

[12] “Search results for: ESP32-DevKitC”, Mouser Electronics. (), [Online]. Available:
https://www.mouser.ch/c/?q=ESP32- DevKitC&sort=pricing (visited on
08/22/2023).

[13] “ESP32-WROVER-IE-N8R8 Espressif Systems”, Mouser Electronics. (), [Online].
Available: https://www.mouser.ch/ProductDetail/356- ESP32WRVIE6464UC
(visited on 08/22/2023).

[14] “Zero W & Zero WH - Raspberry Pi”, Mouser Electronics. (), [Online]. Available:
https://www.mouser.ch/new/raspberry-pi/raspberry-pi-zero-w-zero-wh/

(visited on 08/22/2023).

[15] “ESP32-S3-WROOM-1-N8R8 Espressif Systems”, Mouser Electronics. (), [Online].
Available: https://www.mouser.ch/ProductDetail/356- EP32S3WROOM1N8R8
(visited on 08/22/2023).

[16] M. F. Mecklenburg, Art in Transit: Studies in the Transport of Paintings. Sep. 1991.

[17] J. Küffer, “Art Tracking with IoT and Blockchains”, University of Zurich, 2023, in
preparation.

[18] V. A. Arowoiya, A. E. Oke, C. O. Aigbavboa, and J. Aliu, “An appraisal of the
adoption internet of things (IoT) elements for sustainable construction”, Journal of
Engineering, Design and Technology, vol. 18, no. 5, pp. 1193–1208, Jan. 1, 2020.
doi: 10.1108/JEDT-10-2019-0270.

[19] D. Shah and V. haradi, “IoT Based Biometrics Implementation on Raspberry Pi”,
Procedia Computer Science, Proceedings of International Conference on Communi-
cation, Computing and Virtualization (ICCCV) 2016, vol. 79, pp. 328–336, Jan. 1,
2016. doi: 10.1016/j.procs.2016.03.043.

[20] A. Milinković, S. Milinković, and L. Lazic, “Choosing the right RTOS for IoT plat-
form”, Mar. 22, 2015.

[21] J. Hu and G.-b. Zhang,“Research Transplanting Method of Embedded Linux Kernel
Based on ARM Platform”, 2010 International Conference of Information Science
and Management Engineering, pp. 35–38, Aug. 2010. doi: 10.1109/ISME.2010.191.

[22] C. Sabri, L. Kriaa, and S. L. Azzouz, “Comparison of IoT Constrained Devices
Operating Systems: A Survey”, in 2017 IEEE/ACS 14th International Conference
on Computer Systems and Applications (AICCSA), Oct. 2017, pp. 369–375. doi:
10.1109/AICCSA.2017.187.

[23] W. Wu, L. Shen, Z. Zhao, M. Li, and G. Q. Huang, “Industrial IoT and Long Short-
Term Memory Network-Enabled Genetic Indoor-Tracking for Factory Logistics”,
IEEE Transactions on Industrial Informatics, vol. 18, no. 11, pp. 7537–7548, Nov.
2022. doi: 10.1109/TII.2022.3146598.

[24] R. I. Pereira, I. M. Dupont, P. C. Carvalho, and S. C. Jucá, “IoT embedded linux
system based on Raspberry Pi applied to real-time cloud monitoring of a decen-
tralized photovoltaic plant”, Measurement, vol. 114, pp. 286–297, Jan. 2018. doi:
10.1016/j.measurement.2017.09.033.

BIBLIOGRAPHY 51

[25] K. Khanchuea and R. Siripokarpirom,“AMulti-Protocol IoT Gateway andWiFi/BLE
Sensor Nodes for Smart Home and Building Automation: Design and Implementa-
tion”, in 2019 10th International Conference of Information and Communication
Technology for Embedded Systems (IC-ICTES), Mar. 2019, pp. 1–6. doi: 10.1109
/ICTEmSys.2019.8695968.

[26] M. Filippov. “Linux on esp32s3”. (May 20, 2023), [Online]. Available: https://hab
r.com/ru/articles/736408/ (visited on 08/26/2023).

[27] M. Babiuch, P. Foltýnek, and P. Smutný,“Using the ESP32 Microcontroller for Data
Processing”, in 2019 20th International Carpathian Control Conference (ICCC),
May 2019, pp. 1–6. doi: 10.1109/CarpathianCC.2019.8765944.

[28] A. Sharp and Y. Vagapov, “Comparative analysis and practical implementation of
the ESP32 microcontroller module for the Internet of Things”, [Online]. Available:
https://core.ac.uk/outputs/287589325 (visited on 09/04/2023).

[29] R. Pawson, “The Myth of the Harvard Architecture”, IEEE Annals of the History
of Computing, vol. 44, no. 3, pp. 59–69, Jul. 1, 2022. [Online]. Available: https://i
eeexplore.ieee.org/document/9779481/ (visited on 08/31/2023).

[30] Espressif Systems, ESP32-S3 Technical Reference Manual, Jul. 4, 2023. [Online].
Available: https://www.espressif.com/en/support/documents/technical-doc
uments (visited on 08/23/2023).

[31] F. Vasquez and C. Simmonds, Mastering Embedded Linux Programming, Third edi-
tion. Packt Publishing, 2021.

[32] “Cross-compilation toolchains for Linux - Home”. (), [Online]. Available: https://t
oolchains.bootlin.com/ (visited on 08/23/2023).

[33] D. Bovet and M. Cesati, Understanding the Linux Kernel, 3rd. O’Reilly Media,
Nov. 1, 2005.

[34] M. Filippov. “Linux-xtensa”. (), [Online]. Available: https://github.com/jcmvbk
bc/linux-xtensa (visited on 08/31/2023).

[35] Free Software Foundation. “GNU make”. (), [Online]. Available: https://www.gnu
.org/software/make/manual/make.html (visited on 08/29/2023).

[36] G. Kroah-Hartmann, Linux Kernel in a Nutshell, 1st edition. O’Reilly Media, Inc.,
Dec. 1, 2006.

[37] Wikipedia. “uClinux”, Wikipedia. (), [Online]. Available: https://en.wikipedia
.org/wiki/%CE%9CClinux (visited on 09/05/2023).

[38] M. Gillham.“uClinux and Linux set to merge”, Linux.com. (Nov. 19, 2002), [Online].
Available: https://www.linux.com/news/uclinux- and- linux- set- merge/
(visited on 08/28/2023).

[39] uClinux.org.“uClinux™ - Embedded Linux Microcontroller Project”. (Nov. 13, 2018),
[Online]. Available: https://web.archive.org/web/20181113230737/http://ww
w.uclinux.org/ (visited on 09/05/2023).

[40] The Buildroot developers. “The Buildroot user manual”. (), [Online]. Available: ht
tps://buildroot.org/downloads/manual/manual.html (visited on 08/31/2023).

52 BIBLIOGRAPHY

[41] D. Vlasenko, R. Landley, and B. Reutner-Fischer. “BusyBox Package List”. (), [On-
line]. Available: https://busybox.net/downloads/BusyBox.html (visited on
08/31/2023).

[42] BusyBox Developers. “Mirror/busybox”, GitHub. (), [Online]. Available: https://g
ithub.com/mirror/busybox (visited on 09/04/2023).

[43] Espressif Systems. “Espressif IoT Development Framework”, GitHub. (), [Online].
Available: https://github.com/espressif/esp-idf (visited on 09/05/2023).

[44] Espressif Systems. “FreeRTOS (Overview) - ESP32-S3 - ESP-IDF”. (), [Online].
Available: https://docs.espressif.com/projects/esp-idf/en/latest/esp32s
3/api-reference/system/freertos.html (visited on 09/05/2023).

[45] Espressif Systems, ESP32-S3-WROOM-1 Datasheet, ESP32-S3-WROOM-1-N8R8
datasheet, Mar. 7, 2023. [Online]. Available: https://www.espressif.com/en/su
pport/documents/technical-documents (visited on 08/23/2023).

[46] Espressif Systems. “Partitions API - ESP32 - ESP-IDF”. (), [Online]. Available:
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-refe

rence/storage/partition.html (visited on 08/23/2023).

[47] GitHub user OtherCrashOverride. “Esp partition mmap fails with partitions larger
than 3MB (IDFGH-107) · Issue #1184 · espressif/esp-idf”, GitHub. (Oct. 28, 2017),
[Online]. Available: https://github.com/espressif/esp- idf/issues/1184
(visited on 08/23/2023).

[48] Espressif Systems. “ESP Product Selector”. (), [Online]. Available: https://produ
cts.espressif.com/#/product-selector (visited on 08/22/2023).

[49] D. E. Comer, Essentials of Computer Architecture, 1st edition. Pearson Education,
Aug. 23, 2004.

[50] S. Wellhöfer, Application eXecute-In-Place (XIP) With Linux and AXFS, Sep. 17,
2009. [Online]. Available: https://www.scribd.com/document/19855245/Applic
ation-eXecute-In-Place-XIP-with-Linux-and-AXFS (visited on 08/21/2023).

[51] M. Filippov.“Xtensa: Add XIP kernel support”. (Nov. 26, 2019), [Online]. Available:
https://github.com/torvalds/linux/commit/7af710d988775aadf440222ecbe

0c10eecf3eb54 (visited on 08/26/2023).

[52] T. Benavides, J. Treon, J. Hulbert, and W. Chang, “The Enabling of an Execute-In-
Place Architecture to Reduce the Embedded System Memory Footprint and Boot
Time”, Journal of Computers, vol. 3, no. 1, pp. 79–89, Jan. 1, 2008. [Online]. Avail-
able: http://academypublisher.com/ojs/index.php/jcp/article/view/382
(visited on 09/05/2023).

[53] D. Harris and S. Harris, Digital Design and Computer Architecture, 2nd ed. Morgan
Kaufmann Publishers Inc., Jul. 2012, 712 pp.

[54] J. R. Levine, Linkers & Loaders, 1st edition. Morgan Kaufmann, Oct. 11, 1999.

[55] The Santa Cruz Operation, System V Application Binary Interface, Mar. 18, 1997.
[Online]. Available: https://refspecs.linuxbase.org/ (visited on 08/27/2023).

[56] uclinux-dev. “Elf2flt/README.md”, GitHub. (), [Online]. Available: https://git
hub.com/uclinux-dev/elf2flt/blob/main/README.md (visited on 09/05/2023).

BIBLIOGRAPHY 53

[57] M. Guene. “Fdpic doc/abi.txt”, GitHub. (), [Online]. Available: https://github
.com/mickael-guene/fdpic_doc/blob/master/abi.txt (visited on 09/05/2023).

[58] G. Frommelt. “fromGreg/linux-esp32s3”. (Aug. 29, 2023), [Online]. Available: http
s://github.com/fromGreg/linux-esp32s3 (visited on 08/29/2023).

[59] M. Filippov. “Esp32s3 linux rebuild scripts”. (), [Online]. Available: https://g
ist . github . com / jcmvbkbc / 316e6da728021c8ff670a24e674a35e6 (visited on
08/30/2023).

[60] M. Filippov. “[RFC 0/5] xtensa: Support dynamic configuration”. (May 22, 2017),
[Online]. Available: https://gcc.gnu.org/pipermail/gcc-patches/2017-May/4
75109.html (visited on 08/29/2023).

[61] crosstool-NG community. “Setting up host OS”. (), [Online]. Available: https://c
rosstool-ng.github.io/docs/os-setup/ (visited on 08/29/2023).

[62] Free Software Foundation. “GNU Autoconf”. (), [Online]. Available: https://www
.gnu.org/savannah-checkouts/gnu/autoconf/manual/autoconf-2.71/autoco

nf.html (visited on 08/29/2023).

[63] Free Software Foundation. “GNU Automake”. (), [Online]. Available: https://www
.gnu.org/software/automake/manual/automake.html (visited on 08/29/2023).

[64] crosstool-NG community. “Installing crosstool-NG”. (), [Online]. Available: https:
//crosstool-ng.github.io/docs/install/ (visited on 08/29/2023).

[65] Espressif Systems. “Xtensa-overlays”. (), [Online]. Available: https://github.com
/espressif/xtensa-overlays (visited on 08/30/2023).

[66] M. Filippov. “WIP: Xtensa: Change default abi to windowed abi”. (Jul. 11, 2023),
[Online]. Available: https://github.com/jcmvbkbc/linux-xtensa/commit/9c08
02afef8797c7a343fc6b3c00abf9299898e4 (visited on 08/30/2023).

[67] Espressif Systems. “Esp-hal-components”. (), [Online]. Available: https://github
.com/espressif/esp-hal-components (visited on 08/30/2023).

[68] M. Filippov. “WIP: Gcc: Xtensa: Implement FDPIC support”. (Apr. 29, 2023),
[Online]. Available: https://github.com/jcmvbkbc/gcc-xtensa/commit/4b95a6
91656adf2f59786733b36cd8a352f3881a (visited on 08/30/2023).

[69] M. Filippov. “Xtensa-dynconfig”. (), [Online]. Available: https://github.com/jcm
vbkbc/xtensa-dynconfig/tree/original (visited on 08/30/2023).

[70] M. Filippov. “WIP: Drivers/tty/serial: Add driver for ESP32 UART”. (), [Online].
Available: https://github.com/jcmvbkbc/linux-xtensa/commit/88ec52cf55d1
fbcbdd78ef3bad5c963b70686883 (visited on 08/30/2023).

[71] M. Filippov. “Esp-idf/examples/get-started/linux boot”. (), [Online]. Available: ht
tps://github.com/jcmvbkbc/esp-idf/tree/linux-5.0.1/examples/get-star

ted/linux_boot (visited on 08/30/2023).

[72] Espressif Systems. “Partitions API - ESP32-S3 - ESP-IDF”. (), [Online]. Available:
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/api-r

eference/storage/partition.html?highlight=esp_partition_t# (visited on
08/23/2023).

54 BIBLIOGRAPHY

[73] Espressif Systems.“Miscellaneous System APIs - ESP32-S3 - ESP-IDF”. (), [Online].
Available: https://docs.espressif.com/projects/esp-idf/en/latest/esp3
2s3/api-reference/system/misc_system_api.html?highlight=esp_restart

#_CPPv411esp_restartv (visited on 08/30/2023).

[74] M. Filippov. “Misc/esp32-ipc: Introduce generic IPC for ESP32”. (Aug. 30, 2023),
[Online]. Available: https://github.com/jcmvbkbc/linux-xtensa/commit/e4db
f9ea0a4ecaa2b6aef8d6e5fb345d36c55643 (visited on 09/02/2023).

[75] Espressif Systems. “ESP-Hosted-NG”. (), [Online]. Available: https://github.com
/espressif/esp-hosted/tree/master/esp_hosted_ng (visited on 08/30/2023).

[76] M. Filippov. “fromGreg/esp-hosted at shmem-frozen”. (), [Online]. Available: ht
tps://github.com/fromGreg/esp- hosted/tree/shmem- frozen (visited on
08/30/2023).

[77] Espressif Systems. “Getting started - ESP32-S3 - ESP-IDF”. (), [Online]. Available:
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/get-st

arted/linux-macos-setup.html (visited on 08/30/2023).

[78] M. Kerrisk. “Proc(5) - Linux manual page”. (), [Online]. Available: https://man7
.org/linux/man-pages/man5/proc.5.html (visited on 09/01/2023).

[79] M. Filippov. “Drivers/mtd: Add esp32 MTD support”. (Aug. 23, 2023), [Online].
Available: https://github.com/jcmvbkbc/linux-xtensa/commit/1c26c02f2daa
e58007ffa831735fb134b8e36b6c (visited on 09/01/2023).

[80] R. van Riel and L. Torvalds. “/proc/meminfo: Provide estimated available memory”.
(Jan. 22, 2014), [Online]. Available: https://github.com/torvalds/linux/comm
it/34e431b0ae398fc54ea69ff85ec700722c9da773 (visited on 09/02/2023).

[81] Free Software Foundation. “Command Substitution (Bash Reference Manual)”. (),
[Online]. Available: https://www.gnu.org/software/bash/manual/html_node
/Command-Substitution.html (visited on 09/02/2023).

[82] M. Gorman, Understanding the Linux® Virtual Memory Manager, 1st Edition.
Pearson Education, Apr. 2004.

[83] M. Kerrisk. “Time(1) - Linux manual page”. (), [Online]. Available: https://man7
.org/linux/man-pages/man1/time.1.html (visited on 08/31/2023).

[84] Free Software Foundation. “Pipelines (Bash Reference Manual)”. (), [Online]. Avail-
able: https://www.gnu.org/software/bash/manual/html_node/Pipelines.htm
l (visited on 09/01/2023).

[85] J. Viega, M. Messier, and P. Chandra, Network Security with OpenSSL, 1st Edition.
O’Reilly Media, Jun. 2002.

Abbreviations

ABI Application Binary Interface
API Application Programming Interface
ARM Advanced RISC Machines
bFLT Binary Flat Format
CA Certification Authority
CISC Complex Instruction Set Computer
CLI Command Line Interface
CPU Central Processing Unit
ELF Executable and Linkable Format
FDPIC Function Descriptor Position-Independent Code
GCC GNU Compiler Collection
GDB GNU Debugger
GPL GNU General Public License
HAL Hardware Abstraction Layer
HCL Harvard Computing Laboratory
HDD Hard Disk Drive
IoT Internet-of-Things
ISA Instruction Set Architecture
KB Kilobyte
MB Megabyte
MCU Microcontroller Unit
MMU Memory Management Unit
NFT Non-Fungible Token
OS Operating System
PC Program Counter
PIC Position-Independent Code
PID Process Identifier
PSRAM Pseudo-Static Random Access Memory
RAM Random Access Memory
RISC Reduced Instruction Set Computer
RPI Raspberry Pi
RTOS Run-Time Operating Systemn
SoC System-on-a-Chip
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus
VFS Virtual File System

55

56 ABBREVIATONS

WiFi Wireless Fidelity
XIP eXecute-In-Place

Glossary

Board A Board refers to a PCB board, also called PWB board, is used to integrate or
wire a MCU and peripherals onto.

Espressif Espressif refers to Espressif Systems, a semiconductor company originating from
China.

Cramfs The cramfs stands for Compressed ROM filesystem. A virtual, read-only, com-
pressed file system used in Linux, primarily for embedded systems with memory
constraints.

Host (machine) In the context of embedded design, a host (machine) refers to the machine
on which resource-intensive compilations take place to produce software that can be
flashed onto an embedded device.

Microcontroller A microcontroller describes a processor on a single integrated circuit. A
microcontroller contains one or more processor cores, memory and programmable
input/output peripherals.

Rootfs The rootfs stands for Root filesystem. The virtual base filesystem in Linux
mounted at / where other file systems are mounted, serving as the starting point
for the filesystem hierarchy.

Stdin The stdin refers to Standard Input. A standard stream for input data, commonly
used for receiving data from the user in a Linux environment.

Stdout The stdout refers to Standard Output. A standard stream where a program writes
its output data, typically displayed in the terminal in a Linux system..

Target (device) In the context of embedded design, a target (device) refers to the em-
bedded device, which is being targeted for development.

Tmpfs The tmpfs stands for Temporary filesystem. A virtual, RAM-based filesystem in
Linux, commonly used for storing temporary files that do not require persistence
across reboots.

57

58 GLOSSARY

List of Figures

3.1 ESP32-S3 Harvard architecture structure [30, p. 394] 8

3.2 Menuconfig in linux-xtensa kernel port . 11

5.1 Toolchain build exception related to the linker 21

5.2 Detail of xtensa-config.h from the overlay files 22

5.3 Detail of core-isa.h from the HAL . 23

5.4 Assembly of example.c compiled with the built toolchain 24

5.5 Early bootloader version for ESP32-S3 . 28

5.6 Partition table for ESP32-S3 with 8 MB flash memory 28

5.7 Linux login on ESP32-S3 . 31

6.1 Output of cat /proc/mounts . 34

6.2 Output of cat /proc/meminfo . 35

6.3 Output of cat /proc/cpuinfo . 36

6.4 Excerpt of echo $(echo "foo") output 37

6.5 Detail from page.h . 38

6.6 Detail from types.h . 38

6.7 Kernel image boot time . 39

6.8 Measuring find . 40

6.9 Measuring cat . 40

6.10 Measuring tar with gzip . 41

6.11 Successful WiFi connection . 42

59

60 LIST OF FIGURES

6.12 GET request via HTTPS unsuccessful . 43

6.13 Simple GET request . 44

6.14 Simple POST request . 44

6.15 Server logs of the API . 45

Appendix A

Command Substitution Output

61

62 APPENDIX A. COMMAND SUBSTITUTION OUTPUT

