
Mobile Bitcoin Payment System
(MBPS) Federation

Mehmet Ali Bekooglu
Zofingen AG, Switzerland
Student ID: 06-920-771

Supervisor: Dr. Thomas Bocek, Guilherme Machado Sperb, Prof.
Dr. Burkhard Stiller

Date of Submission: October 25, 2014

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Bitcoin, a well-known peer-to-peer digital cryptocurrency is not yet feasible for everyday
transactions like paying for a meal or a drink. The confirmation time for a Bitcoin tran-
saction takes too long. Therefore, a mobile payment system has been developed to resolve
this problem by using a centralized approach which allows to do fast Bitcoin payments by
exchanging the transaction information of two participants over NFC. Two test runs have
been conducted to evaluate the MBPS. The MBPS has performed successfully, especially
the fast NFC payment and the intuitive user interface have received positive user feed-
back. But the client/server architecture has been complete opposite to the P2P nature of
the Bitcoin network.
The goal of this thesis is to develop a federation system of servers. The servers can fe-
derate allowing users from other MBPS servers to achieve a instant payment over NFC.
Furthermore, a web-frontend is developed to administrate a server in the federation.
The implementation has been tested and evaluated based on the time performance to
do a cross-server payment in respect to the previous version. Compared to the previous
version, a cross-server payment requires on the Nexus 7 47.8% longer to receive a given
amount and and 36.7% longer for sending an amount to a user. Summarized, the payment
took in average 1 to 1,5 seconds to complete.

i

ii

Zusammenfassung

Bitcoin, eine bekannte digitale peer-to-peer Kryptowährung, ist noch nicht geeignet für
alltägliche Zahlungen wie besipielswies für eine Mahlzeit oder ein Getränk. Die Bestäti-
gung einer Bitcoin Transaktion dauert zu lange. Um dieses Problem zu lösen wurde ein
mobiles Bezahlungssystem entwickelt, welches auf einem zentralisierten Ansatz basiert.
Die Transaktionsinformationen zwischen zwei Teilnehmern werden dabei über NFC aus-
getauscht. Zwei Testläufe wurden durchgeführt um MBPS auszuwerten. MBPS wurde
erfolgreich ausgeführt, vor allem die schnelle Transaktionsabwicklung über NFC und die
intuitive Benutzeroberflüche haben positive Rückmeldungen erhalten. Die Client/Server-
Architektur hebt jedoch die Vorteile des dezentralen Netzwerkes Bitcoin wieder auf.
Das Ziel dieser Arbeit ist, ein Föderationssystem von Serveren zu entwickeln. Die Ser-
ver können sich vereinigen um Teilnehmer von anderen MBPS Servern zu erlauben, eine
sofortige Bitcoin Zahlung über NFC zu verrichten. Des Weiteren wurde eine Web-Seite
entwickelt, welche die Administration eines Servers in einer Föderation erlaubt.
Die Umsetzung wurde getestet und ausgewertet. Die Zeit, die eine serverübergreifende
Transaktion benötigt, wurde evaluiert und mit der vorherigen Version verglichen. Im Ver-
gleich zur vorherigen Version, benötigt eine serverübergreifende Zahlung auf dem Nexus 7
47.8% länger um einen bestimmten Betrag zu erhalten und 36,7% länger um die Summe
zu einem Teilnehmer zu schicken. Im Durchschnitt benötigt eine Transaktion im neuen
System 1 bis 1.5 Sekunden.

iii

iv

Acknowledgements

I would like to thank all the people involved in this master thesis. First of all, I thank
Prof. Dr. Burkhard Stiller for giving me the opportunity to write this thesis at the Com-
munication Systems Group.
I would also like to thank Dr. Thomas Bocek and Guilherme Machado Sperb for provid-
ing the idea of this thesis and for the great support during the different phases in the thesis.

v

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 2

1.2 Description of Work . 3

1.3 Thesis Goals . 4

1.4 Outline . 4

2 Background 7

2.1 MBPS . 7

2.2 CoinBlesk . 8

2.3 Game Theory - Trust . 9

2.4 Escrow . 10

3 Related Work 13

3.1 Trust models in P2P network . 13

3.2 A Preventing Fraud Trust Model in P2P Networks 14

3.3 Shibboleth . 15

3.4 Have a Snack, Pay with Bitcoins . 15

3.5 Related Work Summary . 16

vii

viii CONTENTS

4 Approach and Design 17

4.1 Approach . 17

4.2 Trust Level Features . 22

4.2.1 Without Trust . 22

4.2.2 No-Trust . 22

4.2.3 Hyprid-Trust . 23

4.2.4 Full-Trust . 24

4.2.5 Constrains and Problems . 24

4.3 Roles . 25

4.3.1 User . 25

4.3.2 Admin . 26

4.3.3 Both . 26

4.4 Android Client . 27

4.5 Web Interface . 28

4.5.1 Requirements . 28

4.5.2 Analyse and Design . 28

4.5.3 Features . 29

5 Implementation 33

5.1 Architecture . 33

5.2 Scenarios . 35

5.2.1 Create Trust Relation . 35

5.2.2 Cross-Server NFC Payment . 37

5.3 Challenges . 37

5.3.1 Communication between Angularjs and the Server 37

5.3.2 Extend Database Entries . 39

5.3.3 Active Balance . 40

5.3.4 Test Cases . 40

CONTENTS ix

6 Evaluation 41

6.1 Setup . 41

6.2 Performance Measurement NFC Payment 42

6.2.1 Payee Role . 42

6.2.2 Payer Role . 43

6.2.3 Comparison Payee and Payer . 45

6.3 Performance Measurement Cross-Server Payment 45

6.3.1 Payee Role . 46

6.3.2 Payer Role . 47

6.3.3 Comparison Payee and Payer . 48

6.4 Performance Measurement for the Server 49

6.4.1 NFC Payment . 49

6.4.2 Cross-Server Payment . 50

6.5 Summarize . 52

7 Summary and Conclusions 55

List of Figures 60

List of Tables 63

A Comparison MBPS and CoinBlesk 67

A.1 Screenshots Mobile Client . 67

A.2 Results . 70

A.2.1 Test Run in February 2014 . 70

A.2.2 Test Run in September 2014 . 70

A.2.3 Result . 71

B Game Theory 73

B.1 Glossary . 73

B.2 Experiments . 74

x CONTENTS

C Android Client Mock-ups and Screenshoots 77

C.1 Mock-Ups . 77

C.2 Screenshots . 77

D Web Page mock-ups and Screenshoots 83

D.1 Mock-Ups . 83

E Web-Site Screenshots 89

F Sequence Diagram 95

G Performance Measurement Results 99

G.1 Results Same Server . 99

G.2 Results Different Server . 102

G.3 Results Atomic Steps One Server . 102

G.4 Results Atomic Steps One Server . 107

G.5 Results Atomic Steps Two Server . 107

H Installation Guidelines 113

H.1 Client Installation . 113

H.2 Server Installation . 113

I Contents of the CD 115

Chapter 1

Introduction

Bitcoin [1] is an open, fully distributed P2P digital currency that is gaining more and
more popularity and even the governments are aware of Bitcoins [2, 3]. However, every-
day transactions such as paying for a coffee or other kind of micro payments are not yet
feasible when it comes to Bitcoins. The reason for this is that the seller (or the peer
that is going to receive the Bitcoins for a service or good) has to wait an amount of time
for the transaction to be confirmed. A transaction is confirmed when it is included in a
block which is published to the network [4]. At this time, it takes in average around 10
minutes (with a few exceptions depending on the blockchain) for a block to be created
[5]. This means that Bitcoin transactions can not be carried out instantly and both seller
and buyer have to wait a quite large amount of time before closing the deal.
Based on the nature of the Bitcoin protocol and implementation, it is not enough to
have only one confirmation since a number of blocks can be rejected in favour of another
branch. A transaction should only be considered as confirmed after 6 blocks are verified
[6]. This means that if the seller is not willing to risk losing Bitcoins (even in the scope of
micro payments) s(he) has to wait for 6 confirmations. Based on the time, this requires
both peers to wait more than 56 minutes before closing the deal. Thus, Bitcoins are not
applicable in its current implementation and approach when it comes to everyday trans-
actions, e.g. paying in a market or in a restaurant.
However, there is the approach of just broadcasting a transaction without waiting for any
confirmation. This so called ”fast payment” takes a few seconds to be completed [7]. But
there remains the risk of double spending. Therefore, this approach was not taken into
consideration for the MBPS project in order to eliminate the double spending risk for the
seller. To address and resolve these limitations mentioned above, a mobile Bitcoin pay-
ment system which allows exchanging Bitcoins instantly was developed within the scope of
a master project and carried on to different master thesis. In addition, the whole project
[8] focused on security aspects, two-way Near Field Communication (NFC), reducing the
number of Bitcoin transaction by introducing a clearing center and an easy, intuitive user
interface. This system has been successfully tested in two test runs with the UZH Mensa
Binzmühle in Oerlikon [9]. The first test run took place for one week in February 2014 and
the second test run in September was extended to three weeks. During these test runs,
students, employees and visitors had the chance to test the mobile solution CoinBlesk
(formerly MBPS) and pay their consumption with Bitcoins using CoinBlesk. To give the

1

2 CHAPTER 1. INTRODUCTION

test persons easier access to Bitcoins a Bitcoin exchange point was provided where test
user could buy Bitcoins to top up their accounts or sell them again. In the second test
run the user had additionally the opportunity to top up their user accounts with Bitcoins
by a Bitcoin ATM (BTM) which was allocated by SBEX [10].

1.1 Motivation

The first test run of the MBPS project was accomplished with success. The MBPS was
evaluated reliable and quite handy. The idea of paying the consumption by a device ap-
peal to the costumer of the Mensa. Participants had to wait approximately 2-3 seconds
for a payment confirmation with the MBPS. Nonetheless, during the development and
especially in the test-run two main flaws were disclosed. The first flaw, regarding the
handling of the application revealed that some test users had difficulties to properly do
a payment over NFC. This can be attributed to the inexperience of using a device in
this use case. One challenge a few participants had to figure out was how to establish a
successful connection. This was caused mainly because of the poor feedback and support
by the MBPS client. Furthermore, the small range of the NFC technology intensified the
occurrence of failures. The second flaw, emerged due to the NFC protocol and the man-
ufacturing of different NFC chips for Android devices. Thus, in the test run the MBPS
application was limited to just a few devices of the Google Nexus models. In overall,
the test run showed that the MBPS project had potential to be a good alternative for
a payment system and either Bitcoin to be used in everyday transactions. Therefore, to
improve the MBPS application three potential future works emerged for different areas
[8]. These potential works were taken further as master thesis’s.

One thesis addressed the improvement of the the MBPS client. To overcome the users in-
experience with the NFC the user interface has to be enhanced with supporting feedbacks
like progress dialogues. Further, a few existing views of the MBPS has to be adjust to
the needs of the user. And, also instead just requesting Bitcoins which was good enough
for the Mensa test run, users have to be allowed to send Bitcoins by entering the amount
[11].
Another thesis focused to improve the flaws related to the NFC protocol. A feature has
to be to retransmit packets which get lost due to the connection failure. Another feature,
has to be the recognition of the sessions, e.g, during a payment a user can take a way
the device to accept or reject the request and re-establish the NFC contact to proceed.
Furthermore, the time for a transaction has to be improved by making it faster. A last
requirement has to allow more devices to use the MBPS application with different NFC
manufactures [12].
The last thesis which was the scope of this thesis addresses the approach of the centralized
server and extent this by making it decentralized. This means, the MBPS application can
exists with different instances and organization. Instances can manage their own user
accounts with Bitcoins. Furthermore, instances can be federated to allow users from dif-
ferent organizations to perform a payment over NFC.

1.2. DESCRIPTION OF WORK 3

Thus, the goal of this thesis is to create a federation mechanism of MBPS servers. The
current architecture is a client/server architecture, which is the complete opposite to the
Peer-to-Peer (P2P) nature of the Bitcoin network. The idea is to create a federation
based on MBPS servers to create a super-peer type of network. To enable payment in
less than a second, a client/server architecture will be used. However, MBPS servers
can federated to allow users from other MBPS servers to perform instance payments over
NFC. The following example in Figure 1.1 illustrates the use-case: organization X and
organization Y have a federated MBPS system. If a user of the server X is going to eat
at the organization Y, the payment would go from Y’s server to X’s server and perform
the transaction without any Bitcoins involved yet. The outstanding amount is then sent
via the Bitcoin system once or twice a day between the two parties. The steps to perform
the cross-server payment is shown in Figure 1.1 below. The first step is to initialise a
NFC connection, then the payment request is send to the server of the Initiator, here Y.
The server Y sends the information to the server X and the response is returned back to
the user of Y. Furthermore, a web-frontend solution has to be developed to manage the
federation between different instances or organizations.

Figure 1.1: Example of a Federation Mechanism

1.2 Description of Work

This thesis covers the design, implementation, and evaluation of the MBPS federation
system. The existing MBPS version is used as a basis to implemented the new extensions.
The thesis focuses mainly on the server side (Java/Tomcat/Spring), and there has to be
a need to adapt the user interfaces of the Android Client. This thesis discusses in details

4 CHAPTER 1. INTRODUCTION

the design advantages and disadvantages of the federation mechanism. In addition, the
federation has to be adminstarted over web interface.

1.3 Thesis Goals

The goal of this thesis is to add a federation system to the existing MBPS. In order to
complete this thesis, the following tasks are done:

� Analyse decentralized federation mechanims including escrow Bitcoin accounts [13].
The market mechanisms of the federation mechanism is discussed.

� Implement the federation mechanism into the current MBPS application. Develop
a web-fronted for administration.

� Source code needs to be open sourced, well documented, and readable.

� Evaluate the solution in different scenarios with different MBPS servers.

� Evaluate he federation mechanism by deploying test servers.

� Use JUnits to test the federation mechanism.

1.4 Outline

Chapter 2 presents background information about the the MBPS applications (MBPS
and CoinBlesk) used in the test-runs in February 2014 [8] and in September 2014 [11, 12].
It also covers the trust issue based on game theory and introduces escrow accounts to
overcome the trust issue. Chapter 3 discusses related work. In Chapter 4 the design
choices and the analysed use-cases for the federation solution is determined. Addition-
ally, the approach and features to accomplished the defined goals are explained. Chapter
5 explains the architecture with main features. It also introduces the implementation
and challenges during the development. The following Chapter 6 compares the payment
transaction over different servers in benchmark to previous versions without a federation
mechanism. The last Chapter 7 summarizes the key findings and draws a conclusion. It
also outlines possible future works.
Aforementioned, in this Chapter the name of the MBPS has been changed to CoinBlesk
before the test run in Spetember 2014 was held. In this thesis, the name MBPS is used

1.4. OUTLINE 5

through out the thesis to not get confused. The name MBPS addresses both versions
expect the discussion is related to CoinBlesk. The reason to choice the older name is
based on the starting date of this thesis.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This Chapter provides background information about the MBPS and the improved ap-
plication CoinBlesk. This gives a overview about the whole scope and key features of
the MBPS project. Further, to comprehend this master thesis in Section 2.3 and 2.4 key
functionalities are introduced.

2.1 MBPS

Aforementioned, the goal of the MBPS project was to develop a mobile Bitcoin payment
system which allows exchanging Bitcoins instantly by overcoming the time constraint
of the Bitcoin core network. A confirmation of a Bitcoin transaction is considered as
confirmed after 6 blocks, which takes in average an hour [14]. However, the project
focused in addition on security aspects, bidirectional NFC connection, and reducing the
number of Bitcoin transaction by introducing a clearing center.
The drawback with the confirmation constraint was solved by introducing a centralized
system which keeps all accounts of each user on the MBPS server. Therefore, the MBPS
is based on a prepaid approach, where user can top up their accounts or transfer Bitcoins
out of the system. This design allows users to do payment instantly without waiting for
any Bitcoin block to be confirmed. Another reason for this approach was to omit the
danger of double spending attacks [7, 15].
A further feature of the MBPS in the master project was the implementation of a clearing
center. A user A pays several times within a day a given amount to user B or vice versa.
Instead of generating for each transaction a Bitcoin transaction, the system can initiate
a core Bitcoin transaction at a given time or for a given threshold. This kind of clearing
center is preferable to keep the Bitcoin core transaction low, since transaction fees will
play a bigger role in the future [4].
The only requirements for users to exert the MBPS and conduct a transaction among
each other is by means of an mobile device running on an Android operating system (OS)
Version 4.4.
The MBPS solution was tested in a real one week Mensa test-run at the Mensa Binz in

7

8 CHAPTER 2. BACKGROUND

Oerlikon. Summarized the evaluation of the test-run and the conduct survey following
results are stated [8]:

� Participants were pleased with a payment solution of the MBPS to pay for consump-
tion at the Mensa. Especially, the simple use and transferring Bitcoins (technically
the accounts are matched) from one user to another.

� Some drawbacks according the user interface and handling the device during a trans-
action with the NFC became apparent. There were some potential improvements
detected.

� The restriction to Android 4.4 and the availability of only few devices (i.e., Nexus 5,
Nexus 7, Nexus 10, and ACR122u) for the test run was criticised. It is to mention
at the time when the test-run was conducted, the OS 4.4 had a marked share of 2%
[16].

2.2 CoinBlesk

CoinBlesk is the follow-up payment solution based on the aforementioned MBPS appli-
cation. Two different master thesis contributed to CoinBlesk application [11, 12]. The
goal of the CoinBlesk application was to cover the exposed flaws from the MBPS and
add additional features that were missing. But the goal of the MBPS is still to provide a
mobile payment system that overcomes the time constraint of the Bitcoin core network.
Summarized, these are the key features of the CoinBlesk application:

� Allow user to easier use the application especially regarding the NFC. During a
payment with NFC a supporting feedback solution has to be provided. The user
has to be informed if the NFC connection is still proceeding or if a payment is ac-
complished with success or not.

� The interface of the application has to be more intuitive and design has to be opti-
mized. As a result, a user of CoinBlesk has to take less actions to be provided with
accounts information and has to be much faster ready for a payment.

� The existing MBPS protocol using NFC has to be improved. Has to be more resilient
when using devices from different vendors with different NFC chip manufactures.

� Retransmission of packets has to be implemented with a NFC handshakes, that can
keep messages alive.

� The transmission and the signing of the request has to be delivered much faster than
the MBPS application.

2.3. GAME THEORY - TRUST 9

These goals where achieved with success and a second Mensa test run were conducted at
the UZH Mensa Binzmühle in Oerlikon. The test run was set up for 2 weeks and was
later extended to 3 weeks. In addition to the first test run a Bitcoin ATM provided by
the SBEX [10] was positioned in the entry hall of the building Binzmühle. This allowed
participants to get easy access to Bitcoins. The CoinBlesk application run with no major
issues. The transaction were proceeded much faster and smoother than in the first test
run. The waiting time was diminished to around 1 second and by enabling the auto-accept
the transaction was even much faster. In comparison, the market share of Android devices
running on KitKat (4.4) during the test run was between 20-22 % [17]. Besides the NFC
chip manufacturer Broadcom, devices with NXP chips have also taken part in the test
run. Except one incident with HTC One (M7) showed that the CoinBlesk application
was not able to fully operated properly. For further details related to both applications
see Appendix A.

2.3 Game Theory - Trust

The new feature a federation of autonomous servers targeting instant payments between
each other brings further problems to be solved. Since Bitcoins have monetary value, the
risk of losing money increases rapidly. Therefore, the relation between servers is a key
point and to understand the risk of having cross-server payments game theory supported
the idea of trust relation.
The game theory, developed in economics, addresses exactly the relationships between
agents (individuals, organizations) in a particular model and predicts their optimal deci-
sions with the use of applied mathematics. Game theory is more about decision-making,
i.e., it is concerned with choices and strategies than seeking for the best solution [18].
Briefly, the game theory analyses to answer the following questions:

� What strategies are for this model possible?

� What solutions can be achieved?

The object of the study in game theory is the game, which can have a number of criteria
(number of players, strategies per player, known information, etc.) and this can be used
to classify the game [19].
For this thesis only the trust game is considered as applicable. The trust game is rep-
resented by the games Dictator and Ultimatum [20, 21]. Both games consists of two
participants that are anonymous paired and obtain a certain amount of money. The first
individual is told to send some amount of his money to an anonymous second individual.
In addition, the first individual is also informed, that the money which is send will be
tripled by the experimenter and passed to the second individual even if this money is
zero. The same is told to the second individual [21, 22]. The predicted results under the
standard economics assumption of rational self-interest, the first individual would choose
to send nothing. Even with perfect information about the mechanics of the game. The
first individual’s action in this game describes the nash equilibrium. But according to the

10 CHAPTER 2. BACKGROUND

results in the experiments [21, 22] the predicated results were violated for the first and
second individual. In overall, the outcome in both experiments stated that the results
varied sharply from those results predicated in the standard economic assumption of pure
self-interest [23]. But the amount between the individual depended heavily on the level of
social information from each other. For more detailed information and definitions about
game theory and the experiments see Appendix B.
Based on the assumption of rational self-interest a federation of servers will fail without
any additional precautions. The one responding strategy is the benefit that can be made
without relaying on trust. Hence, the only solution is not to act in a decentralized net-
work, which is not the solution this thesis is seeking. But the results of both experiments
[21, 22] disproved the standard economic assumption and even than there is no guarantee
servers will not act for their own self-interest in a network of homogeneous servers. In
a federation mechanism For this scenario, there are several strategies possible from self
interested servers to servers supporting the idea of trust in the network. The conclusion
of the experiments also indicated that individuals paired with the same individual several
times they formed a reputation of trustworthiness. A federation without precaution is a
big concern and a kickback for systems operating especially with Bitcoins. Therefore, a
model dealing with trust issues is indispensable for this thesis.

2.4 Escrow

Aforementioned, a model that includes trust and securities avoiding fraud has to be imple-
mented. Hence, escrow systems have to be judged has reliable solutions for transactions
between two untrusted parties. Escrow is well known in the information system (IT) as
software escrow, key-escrow and in the databases but those were neglected and focused
only on escrow accounts having a type of a bank account held by third parties. According
to [24], escrow account is defined as:

A financial instrument held by a third party on behalf of the other two parties
in a transaction. The funds are held by the escrow service until it receives the
appropriate written or oral instructions or until obligations have been fulfilled.
Securities, funds and other assets can be held in escrow.

Based on the definition the third party acts as an neutral intermediary and ensures that
the paid amount by the buyer will be transferred from the escrow account to the seller
of a service or good, only when all conditions are satisfied by both parties. Since the
payment transactions are done in Bitcoins, the escrow service has to operate in Bitcoins.
There are several third party providers offering escrow accounts with Bitcoins as payment
currency [25]. But in a federation of servers there is no clear assignments which server is
in a buyer or in a seller role. Second, to find a third party which satisfies both server in
a federation is difficult and it has to be expected that a server interacts with more than
one server indicates more involved third parties. On a trust level, every instance has to
be very caution when sending Bitcoins to a third party escrow partner. The danger of a

2.4. ESCROW 11

third party abscond with the received Bitcoins is high. In overall, an escrow account with
a neutral third party operating with full trust from both sides (buyer and seller) is not
applicable in this thesis and not considerate.
However, in the Bitcoin community there is a willingness to improve the Bitcoin trans-
action between individuals and this can be seen a possible solution for the escrow issues
trusting a third party. The keyword is multisig, a multi-signature transaction which pi-
oneered and formalized into the standard Bitcoin protocol in 2011 and 2012 [26]. The
reason for this change of think was tp protect against the large number of Bitcoin services
fall over and vanished, in the last years. For example, in October 2013 Silk Road an
anonymous marketplace shut down and lost $2.7 million worth in BTC [27] or in Febru-
ary 2014 the world largest Bitcoin exchange platform Mt.Gox shut down, either, and lost
Bitcoins worth of $470 million [28, 29, 30]. According to [26], the difference between
current Bitcoin addresses with one associated private key (described as send-receive sys-
tem) and the future use of Bitcoin addresses having multiple associated private keys with
multi-signature changes the security aspect. Multisig major purpose is to protect con-
sumers from finalized Bitcoin transaction. To get a better overview of the capabilities of
multi-signatures in [31] it is described as followed:

Bitcoin includes a multi-signature feature that allows a transaction to require
the signature of more than one private key to be spent. It is currently only
usable for technical users but a greater availability for this feature can be
expected in the future. Multi-signature can, for example, allow an organization
to give access to its treasury to its members while only allowing a withdrawal
if 3 of 5 members sign the transaction. It can also allow future online wallets
to share a multi-signature address with their users, so that a thief would need
to compromise both your computer and the online wallet servers in order to
steal your funds.

The described m-of-n signatures can be explained in a concrete example, e.g., a 2-of-3 sig-
nature is associated with 3 private keys, and sending Bitcoins from this address requires
signatures from at least 2 keys. The point is that there are total of 3 people(or entities)
involved in a transaction and 2, usually a less number, must sign off. Such a case, pre-
vents one person from having the ability to steal Bitcoins and ensures that a predefined
set of persons have to agree whatever transaction is is taking place. The multisign enables
several new contract designs including the multi-signature escrow [32].
There are two approaches to describe the multi-signature escrow. One option mentioned
before, is the 2-of-3 multisig transaction. The buyer collects one of their own public keys,
plus a public key each from the escrow party and the seller with the the requirement that
the Bitcoins can be spent if 2 of them sign off. In this scenario, no party can control the
Bitcoins. Even without needing the third party to be involved, the Bitcoins can be re-
leased by the buyer and seller. Only if buyer and seller cannot agree, then the third party
must break the tie. In such a case, the third party can freely decide the matter, since
only one other party has to sign off. This prevents the third party to abscond Bitcoins
but there is still the issue that both the buyer and seller have to trust the third party.
Another approach is the two party escrow using a 2-of-2 multisig transaction. In this
scenario the third party is removed and this leads to more complex behaviour. Therefore,

12 CHAPTER 2. BACKGROUND

a scenario, where Bob does nothing (not signing), i.e., for Alice the Bitcoins in the es-
crow are lost. One option to avoid this, is to lock up some of Bob’s Bitcoins along with
Alices’s. Technically, this means Bitcoins from Alice and Bob are collected together into
a single multisig output. Constructing such a transaction is trivial as long Alice’s and
Bob’s Bitcoins are hold on one centralized service. But this is unusable for accounts in
different wallets. The second option is to setup an automatic release from the escrow at
predefined points in the future, where the Bitcoins are either sent back to Alice, or split
between both Alice and Bob. In a concrete example, this is done, first Alice creates the
initial transaction sending Bitcoins into escrow and she signs the transaction in order to
determine the transaction ID. Then, instead broadcasting the transaction, she keeps the
transaction secret. Alice sends the transaction ID to Bob and tells Bob to sign the new
transaction. This transaction will be locked, so that it can only be redeemed at a specified
time in the future. After Alice gets back the signed transaction from Bob, she releases
into the escrow. The only problem is if they can agree on the refund [33].

Summarized, the standard escrow accounts are unusable, because of the trust issue to
third parties. The multisig escrow transactions are an improved form for more protection
in the Bitcoin community. In addition, multi-signatures can eliminate the trust issue to
third parties, even exclude third parties from an escrow transaction. For example, the
2-of-2 multisig escrow transaction makes it possible to sign an output with Bitcoins from
both sides. Unfortunately, both sides have to have their accounts on the same service,
otherwise it is not applicable.

Chapter 3

Related Work

This chapter looks on related systems which have similar characteristics. The goal is to
be aware that the system implemented in this thesis is not unique in the sense of the
research area but unique in the combination of already existing requirements.
However, the requirements of both applications MBPS and CoinBlesk are still valid and
were analysed and compared in different reports [8, 11, 12] and will not be repeated. In
addition to the security aspects the requirements which have to be meet are the following,
(i) federation of autonomous systems, (ii) allow to exchange Bitcoins instantly, (iii) min-
imize risk of fraud (trust issue), and (iv) maintain trust relations according to specified
parameters. Section 3.1 analyses P2P systems managing trust. Section 3.2 introduces a
model dealing with fraud in P2P networks. The next Section 3.3 introduces a federated
identity solution. Paying for consumptions with Bitcoins within seconds is covered in
Section 3.4. The last Section 3.5 summarized this Chapter.

3.1 Trust models in P2P network

In decentralized P2P system, trust has acquired considerable interest to extend the se-
curity mechanism. Trust to Distrust (T2D) [34], PeerTrust [35], and Dynamic-Trust [36]
are models dealing with trust issue in the P2P networks.
T2D is an approach to evaluate the behaviour from trustful to distrustful (Disposition of
trust). Each node evaluates the Trust Set (TS) on a scale from max trust threshold to
max distrust threshold which is defined as a trust behaviour coordinate. The TS is com-
posed of the nodes that the node with the direct trust relation can evaluate. This trusted
nodes then were sorted based on their trustworthiness [34]. Concrete, each peer sets the
strength of the relations to other peers with a scale from trust to distrust. Afterwards,
a neutral evaluation (by an administrator) based on Trust Sort generates a sorted list of
trust. The process is used to determine several groups classified based on the trust rela-
tion. T2D is attractive for the distributed environment where propagation is computed
using summation instead of average.

13

14 CHAPTER 3. RELATED WORK

PeerTrust is a reputation based trust supporting framework [35]. It includes a coher-
ent adaptive trust model for quantifying and comparing the trustworthiness of peers.
By making use of a transaction based feedback system over a structured P2P network.
PeerTrust describes three basic trust parameters and two adaptive factors to compute
trustworthiness of peers. The parameters and factors are namely, the feedback a peer re-
ceives from other peers, the total number of transactions a peer performs, the credibility
of the feedback sources, the transaction context factor, and the community context fac-
tor. Further, general trust metric is defined by combining these parameters. Peer-Trust
helps to identify malicious peers by submitting a negative feedback on the peer. Further
with the credibility factor of the feedback it tries to minimize fake or misleading ratings
in reputation-based feedbacks. This can happen if peers give fake feedbacks about other
peers to bias the trustworthiness of peers to their benefit.
The last trust management system is the Dynamic-Trust [36]. Dynamic-Trust is based on
three-dimensional computation model, namely the initial-, the direct- and the recommended-
trustworthiness. Besides this model an algorithm is designed to calculated the trust. The
initial value is described as the peer’s ability like storage capability computation power,
number of resources and bandwidth. The direct trust consists of number of interaction,
time of interaction and record of interaction. The recommended value is based on weight
of recommendation, recommendation of distance and the length of the recommended path.
According to the trustworthiness of a peer a threshold mechanism is designed, which lim-
its the behaviour of the peers and controls malicious peers.

T2D, PeerTrust and Dynamic-Trust meet two out of four requirements, namely (i) and
(iv). It is obvious that requirement (ii) is not meet of each of them. Either, requirement
(iii) is not meet. T2D, does not take any precaution against transitive relations. Even
if a transitive relation has been evaluated trustful, this does not mean it can be ensured
the behaviour of this peer will be the same if the Bitcoin trade amount increases. Either,
PeerTrust does not give any protection based on the Bitcoin trades. This reputation sys-
tems are more concerned to identify the malicious peers. This is done by rating a already
happened negative behaviour. Concluded, this means a reputation based system can not
ensure trustworthiness if monetary value is in play like Bitcoins. Dynamic-Trust designed
a superior system, considering new entries and the existence of many trust paths. But
has not considered the reliability of the trust path, so it cannot effectively prevent vicious
recommendations, either.

3.2 A Preventing Fraud Trust Model in P2P Net-

works

The trust management system [37] is based on the idea of congestion control of ”Additive
Increase/Multiplicative Decrease”. Thus, a negative experience impacts the recommen-
dation bigger, then a successful one. By providing an adaptive punishment parameter in
recommended trust (direct trust), based on recommendation credibility, concussive and

3.3. SHIBBOLETH 15

collusive fraud can be noticed and influence the rating stronger then in usual recommen-
dations. Concussive fraud is defined as few peers periodically provide good services for
a period of time to gain other peer’s trust, and then provide bad service in a particular
transaction for its own benefit. Collusive fraud means, that few peers from a collusive
group bias other peers trust relation by providing good feedbacks for peers in the group
and bad feedbacks for peers outside of the group. Three of four requirements are meet.
This system is not operating with Bitcoins or other currency. The (iii) is half meet, with-
out an additional feature to minimize the loses. For example, if a provider abscond the
Bitcoins on her or his server this will be enough reason not to join the MBPS federation
because of trust issue.

3.3 Shibboleth

According to [38], Shibboleth is open-source software that provides single sign-on (SSO)
capabilities across or within and between organizations. Shibboleth is developed as open
source software and is released under the Apache Software License. The software im-
plements widely used federated identity standards, to provide the user with a federated
SSO and an attribute exchange framework. The basic concept of Shibboleth is based
on the same core functions as every other web-based SSO system, expected Shibboleth
provides SSO support to services outside of user’s organization while still protecting their
privacy [39].Shibboleth works as follows, a user authenticates with his or her organiza-
tional and the organization (or identity provider) passes the identity information to the
service provider to enable an authorization decision [39].
The requirement (i) is meet but the other requirements are not meet due to the function-
ality the software provides. Therefore, the options of Shibboleth can be analysed and used
for future works. That means, is there a possibility where the Shibboleth software can
provide more security and less interactions. For example, a user signed in to an instance
can reach an instance which shares a trust relation to the instance of the users account
informations.

3.4 Have a Snack, Pay with Bitcoins

Based on a concept to address the drawback of Bitcoin payment taking quite a time, a
fast transactions is introduced [7]. The evaluation result of using double-spending attacks
showed that the success of such an attack had diminished to a rate of 0,09 %. In addition,
a snack vending machine was modified to accept Bitcoin payments with the fast trans-
action confirmation. To achieve a fast transaction some countermeasures has to be set
up. First, the merchant is ensured that the costumer (attacker) is not the only source of
information. Therefore, the merchant has to connect to a sufficient large number of nodes
in the Bitcoin network. Further, the merchant should not accept incoming connections.
Thus the costumer is forced to broadcast it over the network. Additionally, a merchant

16 CHAPTER 3. RELATED WORK

examines the propagation depth before accepting the transaction. Another issue which
was solved, is the situation were the merchant needs to return money to the costumer.
This situations appear, when transaction can be underspent and the funds are returned or
overspent and the customer is entitled to change or cancelled by the costumer. To prevent
double-spending attacks in these scenarios a automatic invalidation of the returned trans-
action is issued. This is called return chaining, where the merchant claims the created
output as a result of the costumers created transaction and uses it as an input to the
merchants created transaction. Based on the theory a trail with a vending machine was
conducted. The costumer successfully achieved a payment for a consumption in less than
10 seconds.
Only the requirement (ii) is meet in this case. Here the Bitcoin transactions are based on
zero-confirmation by applying the aforementioned concept. The other requirements are
not meet due to the research area, which was addressing fast payment with core Bitcoin
transaction.

3.5 Related Work Summary

Table 3.1 lists the result discussed in the previous Sections. As can seen in table there
is no system existing that satisfies all requirements. There were not research subject
that consists of a federation mechanism performing instant payment with Bitcoins, but
the core Bitcoin transactions are transferred in a later time. The mentioned trust man-
agement systems in P2P networks are concerned to identify malicious peers to minimize
the trust issue. But for this thesis a malicious peer has to be prevented to have chance
to perform a fraud which results in a bad feedback. The federation deals with Bitcoins
malicious peers have to be identified before a fraud was committed. Hence, the presented
solutions are more applicable or suggestible for system operating without monetary values.

Requirements T2D Peer
Trust

Dynamic-
Trust

Preventing
Fraud

Shib-
boleth

Pay with
Bitcoins

Federation of Autonomous
Systems

√ √ √ √ √
X

Allow to Exchange
Bitcoins Instantly

X X X X X
√

Minimize Risk of Fraud X X X (
√

) X X

Maintain Trust Relation
√ √ √ √

X X

Table 3.1: Requirements

Chapter 4

Approach and Design

After illustration of background information and related application and systems, this
Chapter covers the approach decisions and design choices. Section 4.1 discusses the se-
lected approach and decisions based on key requirements. In Section 4.2 the different
levels of the trust relation are introduced. Section 4.3 provides information about the
different roles. The extensions for the Android Client is explained in Section 4.4. The
last Section 4.5 describes the features for the web interface.

4.1 Approach

After two successful test-runs, this thesis takes the next step by extending the existing
MBPS application with a federation mechanism. Based on the goals described in Sec-
tion 1.3 a list of requirements is defined and discussed. The requirements for this thesis
are shown in Table 4.1. Further requirements will be introduced in Section 4.4. Those
requirements are based on the requirement 7 in Table 4.1.

Create a Federation Mechanism

Bitcoin is decentralized digital currency. Unfortunately, the MBPS application runs on
a centralized server, which stores all Bitcoins paid in. The current situation has a few
drawbacks, e.g., the trust concern of each registered user. Considering the circumstance
that the server is running in another country as the registered user, the user depends on
the legislation of this country and also on the behaviour of the provider. The context
that a person sending Bitcoins There is always a risk for people sending or saving the
owned money (here Bitcoins) on a place outside of his covered legislation makes it risky.
A provider committing a fraud a user can be confronted with additional problems related
to the legislation issues. Another well known situation is, when the Bitcoins amount in-
creases on a centralized server, the attention to this server increases simultaneously and
this attention can turn into a negative experience like the examples mentioned in Section

17

18 CHAPTER 4. APPROACH AND DESIGN

Table 4.1: Requirements

Number Title Description

1 Create a Federation Mechanism A decentralized network of servers having instant pay-
ments with Bitcoins.

2 Select Server The user has the decision to store her or his user infor-
mation to a trusted server.

3 Trust Relation The servers can share a relation based on a defined trust
level. Each level has different purpose.

4 NFC Payment User of different servers are allowed to do cross-server
payment using NFC.

5 Server Account A server maintains a server account of all servers shar-
ing a trust relation. Cross-server payments are de-
pended on this account.

6 Extend Android Client New features and improvements are provided to meet
the new situations on the client.

7 Create Web Interface A web interface is provided for administration purposes
and only users with the specific right is allowed to ac-
cess.

8 User Roles Users are distinguished between each other with the
role s(he) owns. The roles have different purposes.

2.4. Those mentioned circumstances can be enough to feel uncertain against centralized
system dealing especially with Bitcoins.
The introduced federation mechanism in Section 1.1 is the way out to a decentralized net-
work. This allows to minimize the concerns related to centralized systems. Additionally,
the features of the previous versions like instant payment and the approach of a clearing
center are retained for the federation mechanism. In the federation mechanism an instant
cross-server payment can be completed by two participants of different servers initialis-
ing a NFC connection. The feature of an instant transaction payment with Bitcoins is
achieved due to the approach of a clearing center. In a cross-server payment no Bitcoins
are involved or transferred to new owner, only the account balance is match to the new
situation. The clearing center takes the responsibility to do once or twice a day (depends
on the provider) a core Bitcoin transaction. In the best case, this requirement enables
participants to register the user account only on one server and do cross-server payments.
For risk-averse providers there is a also the alternative to build a small group of servers
with high trustworthiness to each other. Even if this mentioned scenario is not preferable
in the idea of a decentralized network it is still a much better solution than the previous
version running on a centralized server. The small group example distributes the regis-
tered users and still let the user to interact with each other without being from the same
server. And also users can decide with which server they do not want to have a interaction
by rejecting payment request from user of this server.
Figure 4.1 illustrates a federation mechanism with servers maintaining trust relations.
The figure shows that server A has relations with server B, C and D and the server F for
example does not share a trust relation to any other server. This shows that the number
of relations can vary from server to server. The relations in the figure are represented
by arrows. In Figure 4.1 the four icons linked to the server icon represents 4 function of
the MBPS application. The mobile payment solution is represented by a smart phone
icon, the web interface is represented by the earth icon, a database storing the accounts

4.1. APPROACH 19

is represented by a cylinder icon and the real-time information exchange (e.g. exchange
rate) is represented by the person icon.

Figure 4.1: Federation of Servers

Select Server

A decentralized network of servers enables the feature for a user to decide which server
can store the user account belonging to him. The possibility to select a server is a fur-
ther instrument to minimize the uncertainty of a user by providing a choice to select. In
centralized server approach the user is left only with two choices to participate or do not
participate.
from the user perspective, a further advantage to select a server is related to the Bitcoin
network. It has to be emphasized that every bad publicity concerning Bitcoins induces
a negative or a cautious behaviour against Bitcoins and also against services or products
with Bitcoins. Therefore, the possibility to select a server has an advantages that can
be crucial for the reputation of MBPS. For example, a potential fraud or violation or
even a non-accessibility of one server in a decentralized network does not effect the net-
work as it would be in a centralized network. In a federation mechanism a user decides
not only because of the instant payments with Bitcoins, the user also decides based on
the reputation of the provider by selecting a server. In a centralized system, the user
is not given a chance to decide for a server, instead the user is allowed to participate or

20 CHAPTER 4. APPROACH AND DESIGN

not. In decentralized system users can avoid untrusted servers or switch to an other server.

Trust Relation

With the federation mechanism additional concerns emerge. Especially, the approach of
a clearing center involves risk factors. A clearing center reduces the number of transac-
tions, e.i., several users of a server X and Y can do an undefined number of cross-server
payments without a real core Bitcoin transactions is realized. The Bitcoin transaction
is performed at a later time based on a defined time or a defined balance limit. The
centralized server approach for the server in a federation is a requirement to allow instant
payments. But before the defined time is reached or the balance limit is exceeded there is
a timespan where one server holds Bitcoins that does not belong to the server any more.
This reflects an uncertainty and especially because of the monetary value of Bitcoins the
uncertainty converts to a trust issue between counterparties. Therefore a solution has
been developed to eliminate this concern. Since the MBPS application including the fed-
eration mechanism is unique in the form, a trust relation system classifying each server
by a trust level is designed as the most accurate solution. The trust levels are No-Trust,
Hybrid-Trust and Full-Trust. These levels are discussed in Section 4.2 in more detail. It
is also important to mention that even the trust game theory in Section 2.3 came to the
conclusion a precaution has to be provided to overcome the trust issue, which is the trust
relation system in the federation mechanism.

NFC Payment

By initiating a NFC connection between two Android devices a payment transaction is
started. This is a main functionality of the MBPS application. For a payment with NFC
only the Initiator has to be online. The data of the Responder is passed to the Initiator
over NFC and the Initiator sends both data to the server. The data of the Responder is
signed by a private/public key combination. This is a necessary security condition that
prevents the initiator to manipulate the information to his benefit. Only the server is
capable of verifying the authenticity of both users involved in the payment transaction.
In a cross-server payment between users from different servers both servers are involved in
the payment transaction. Therefore the existing verification is extended with additional
checks considering the trust relation. To satisfy the security conditions the server calls
(the request and the response) are signed by the specific server with a private/public key
combination. The signed payment is then verified by the other server.

Server Account

The server account is the core entity to allow and to create trust relations. The server
account consists of several attributes. The attribute Trust Level introduces the level a

4.1. APPROACH 21

server shares with another server. Besides this attribute there exists further attributes
like the Active Balance, Balance Limit and User Balance Limit. These attributes are all
concerned with balance on Bitcoins.
The Active Balance determines if a server owns Bitcoins to another server or vice versa.
A negative balance means the server expects Bitcoins to be paid in in the amount of the
negative balance. A positive balance therefore the opposite. The Balance Limit is a fixed
limit that cannot be exceeded. A cross-server payment is enabled until the defined Bal-
ance Limit is reached further payment request is rejected until a Bitcoin core transaction
is done and neither of both servers expect any payins or payouts. The attribute User
Balance Limit allows each user to do a cross-server payment up to the defined balance
limit per day. This attributes gives a server additional flexibility to determine the most
accurate trust relation combined with the trust level.

Extend Android Client

A user uses the Android Client to select a trusted server and create a user account.
Further, the user does a cross-server payment by establishing a NFC connection. The
previous version of the Android Client does not support these features and the Android
Client has been improved and extended to satisfy the new requirements. The user can
enter the url of the server with the most trust. This allows the Android Client to interact
with the selected server. As long the user does not change the url, the Android Client
interacts with existing server (the last entered url).
Before attempting a cross-server NFC payment the user has to know if the server of the
other user is related by a trust relation. Therefore, the Android Client has been extended
with an additional view that identifies the trust relation of servers sharing a trust. Be-
sides, the trust level the user is also informed about the allowed balance limit and user
balance limit.

Create Web Interface

In a federation mechanism servers interact with each other an to administrate the inter-
actions a platform has to be offered. Since the start of the project the Android Client
serves as a mobile payment system to transfer Bitcoins instantly. Therefore, an alterna-
tive solution has been collaborated and implemented beside the Android Client.
To make it to work a web interface serves as an administration tool to manage trust re-
lations in the federation. The web interface has other priorities than the Android Client
and therefore the users of each client have other roles. Further details on the design and
functionalities of the web interface is provided in the Section 4.5.

22 CHAPTER 4. APPROACH AND DESIGN

Roles

In the current solution, there is no distinction made between the users of MBPS system.
Every user can sign in by going the process of registration and verification. The intro-
duction of the web interface makes the discussion of the user roles indispensable. The
fact of the different priorities between these clients, the users have other responsibilities.
Therefore, the most applicable solution includes the extension of the user into user roles.
Each role grants different rights and responsibilities. The roles are User, Admin and Both.
Section 4.3 provides the necessary information about the role system.

4.2 Trust Level Features

This Section introduces the different levels of trust. For each level the possibilities and
constraints are discussed. The analysed and developed levels are No-Trust, Hybrid-Trust
and Full-Trust. But before introducing each trust level in Subsection 4.2.1 the scenario
of not having a trust relation is explained. In Subsection 4.2.2 the lowest level of trust
is discussed. The Hybrid-Trust is introduced in Subsection 4.2.3 and includes the theory
of escrow. Subsection 4.2.4 provides the Full-Trust the highest trust level. In the last
Subscection 4.2.5 problems and constrains are explained.

4.2.1 Without Trust

Before going into the trust level, there is a case of not having a trust relation. This case
is expected to be seen most of the time, especially in the earlier stage of then federation
mechanism. It is logical behaviour that a provider running the MBPS will not form a
trust relation with a server which is not known or not trusted. What does that mean for
the users? Users have no choice but to created a further user account with any server
that does not share a trust relation. But a user can still try to attempt a cross-server pay-
ment transaction without trust relation. The payment will be refused immediately. When
the payment request is directed to the server, the first check is to find out which users
are involved and if a user is unknown a check is done to identify if the server of the un-
known user shares a trust relation. If this is not the case, the process is abort and refused.

4.2.2 No-Trust

The first level of a trust relation is the No-Trust level. The name introduces, there exist
a trust level of the basis not trusting each other. No interaction exists in this level and
compared to Subsection 4.2.1 few similarities pop up. The similarities are particularly
related to NFC payment. Here, the transaction is abort and refused, either. Concluded,

4.2. TRUST LEVEL FEATURES 23

the purpose of this level lies more in the security aspect than in the functionality. This
means, the trust relation is the first step to be connected with other servers. After this
level has been analysed the results showed that an interaction in this level is too costly.
In this level the servers are not trusting each other to allow payment transactions with a
core Bitcoin transaction at a later time.
A discussed solution during the design phase was that servers pay in an amount of Bitcoins
into the other trusted server and vice versa. This balance serves as transaction payment
for its users doing cross-server payment with No-Trust. This modelled scenario consisted
of several challenges that has to be solved.
Before having a trust relation, there are steps involved to create a trust relation. To
goal for the action to create a trust relation has to be easy. Only one server is needed
to created a trust relation by knowing the url of the other server. The trust relation is
created when one server enters the URL of the other server. Hence, on both servers a
server account of the counterpart is created with the default level No-Trust. This way the
creation of a trust relation is simple and transparent and does not needed the interaction
of both servers. Besides creating a trust relation, the deletion of a trust relation can be
done only with level.

4.2.3 Hyprid-Trust

The next level of the trust relation is the Hyprid-Trust. This level is the first level that
actually allows to do cross-server payments. The process to achieve a successful Hyprid-
Trust both servers have to agree on the trust level. The Initiator sends a request for
this trust level and the Responder has the possibility to accept or decline the request.
If two server share a Hyprid-Trust, the trust is backed by securities. This means both
server have to give up the same amount of Bitcoins in front to allow cross-server payment
transactions. The Bitcoins are paid into an escrow account and neither of both can charge
back the Bitcoins without the agreement of the other server. The escrow account serves
as a kind of punishment system if a violation is committed. In this case the both server
will lose will lose the Bitcoins that were deposit. Mentioned in Section 2.4 there can be
different kinds of escrow accounts created. The most preferable escrow account for the
federation mechanism is the one without any third party involved. In the federation a
server probably maintains several Hyprid-Trust relations and to find a third party that
pleases both servers is to time consuming.
The escrow using 2-of-2 multisig transaction by locking up Bitcoins from both servers is
the most adequate solution. In a 2-of-2 multisig transaction, both servers have to de-
posit the same amount of Bitcoin and signed the transaction. Hence, to be feasible with
the escrow account the amount of cross-server payment transactions have to be less than
the deposit. This can be achieved by the attribute Balance Limit of the server account,
mentioned in Section 4.1. The Bitcoin value of the Balance Limit needs to be half of
the deposited Bitcoins. If a server commits a fraud it will lose at least the double of the
Bitcoin amount, which will be gained by the fraud. Unfortunately, the server not involved
in the fraud will lose besides the expected Bitcoins the deposited Bitcoins, too. If both
server resign from this trust level the Bitcoins on the escrow account have to be send back
to the server it belongs.

24 CHAPTER 4. APPROACH AND DESIGN

Due to few constrains and problems, this level is constructed but not developed in this
thesis. The reasons is discussed in Section 4.2.5.

4.2.4 Full-Trust

The highest trust level in the trust relation is Full-Trust. The procedure to build a Full-
Trust relation is the same mentioned in Section 4.2.3. The servers in this level trust each
other without attentional precautions or deposits. In this level the server can combine the
trust level with the attributes Balance Limit and User Balance Limit to determine the
most adequate Full-Trust level for each server. These attributes support the Full-Trust
relation based on the commitment for the server to have a Full-Trust level. The Balance
Limit is the limit for cross-server payments and it depends on the attribute Active Bal-
ance. The Active Balance is the current payment to the trusted relation. This means a
server either owns Bitcoins (positive balance) or expects Bitcoins (negative balance) from
a server, This attribute can change on both direction until the absolute value does not
exceed the limit of Balance Limit. Further, the User Balance Limit allows user to do
cross-server payments up to a defined limit. This limit counts only payment transaction
made per day.
It is important to know that the attributes of Balance Limit and User Balance Limit do
not need have the same limit in a trust relation between servers. The limits are based on
the trustworthiness they inspire for each other. Though, User Balance Limit cannot be
the same or even exceed the limit of the Balance Limit. The maximal limit for the User
Balance Limit is fixed by 75% of the Balance Limit.

4.2.5 Constrains and Problems

The trust relation had to deal with few constrains and problems that influenced the deci-
sion making. The trust relation is based on a trust level mechanism in which two servers
share a relation with each other. The relation between servers can share only the same
level of trust. So, a server X shares a Full-Trust relation with server Y and server Y
has to have the same relation with the server X. Another constrain is, a transitive trust
relations does not exists. For example, server X shares trust relation to server Y and Z
but Y and Z does not have a trust relation with each other. Thus, a cross-server payment
between server Y and server Z will be rejected. Transitive relations are not considered
trustfully due to the fact that the federation mechanism deals with monetary value in the
form of Bitcoins.
The trust relations can be created and updated between servers. The creation process is
accomplished by one server entering the information of the other server. The approval of
the other server is not needed in creation process. Therefore, every creation of a trust
relation is by default No-Trust. In this level a server does not have obligations associated
to the other server. Further, the trust level upgrade can be successfully performed if
both servers agree upon it. But a change on the level can only be accomplished if the

4.3. ROLES 25

attribute Active Balance is equal zero. This means, there are no core Bitcoin transaction
outstanding.
To delete a trust level only one server is needed to perform a deletion. But the trust level
has to be No-Trust, otherwise it is not possible. A deleted server is not completely deleted
only the deleted flag is changed to deleted. This assures that all transactions concerning
the deleted server are traceable at any time. But for the trust relation an already deleted
server can be undone by a request to re-created the trust relation. This approach has been
chosen due to the uniqueness of the the url and only one server account can be created
with a url.
Aforementioned, in Section 4.2.3, the Hyprid-Trust could not be developed in this thesis.
Due to time constrains the development of the escrow account was not included in this
thesis. There were question-marks if the additional analyse and implementation of the
2-of-2 multisig escrow account, which is seen as the most ideal case, would go beyond the
scope of the thesis with respect to given time. To included the multi-signature escrow
account, not only the successful creation is meant also the combination of multisig in re-
spect to the web interface and server account which is holding the key information about
the trust level and transactions. This means, a server has to have an option to created
an escrow account and deposited the multisign Bitcoins may be with an option to select
which contract pleases both servers. The steps which have to be modelled would be first
the first server signs the transaction and sends that to the other server and the second
server signs it, too, an sends the transaction back. Not to forget, the escrow account has
to be coupled to the server account, the server account is the main entity for a cross-server
payment in the federation mechanism.
An escrow account used with multi signature combined with the web interface needs a
deeper analyse on an algorithm or design model to make the escrow account work with
the existing web interface to federate cross-server payments on federation system.

4.3 Roles

With the federation mechanism a web interface has been developed for administration of
the trust relation. The web interface and the Android Client is seperated by roles. Each
role has its own priorities. In Section 4.3.1 the role User is discussed. The next Section
4.3.2 explained the role Admin followed by the role Both in Section 4.3.3.

4.3.1 User

The role User allows the user to access the MBPS application. The previous solutions
operated only with this role, therefore no role was needed. The steps to become a user
with the role User is: First the application is downloaded and then the registration and
verification steps are performd. As User the user can sign in to MBPS application and
perform several tasks, e.g., a transfer of Bitcoins into or out of the system, do a payment
transaction with NFC and retrieve or alter information stored in the server. Furthermore,

26 CHAPTER 4. APPROACH AND DESIGN

the role User is only restricted to the Android Client.

4.3.2 Admin

The role Admin is restricted to the web interface. The registration process for this role
differs completely from the Android Client. The role Admin cannot be signed up by enter-
ing the credentials on a registration page. However, the first Admin is created when the
MBPS is deployed on the server. The credentials of this user are known in advanced and
should be changed afterwards. As an Admin the user can access every web site without
any restrictions and even alter data as desired. But the main task is still to administrate
and manage the server and trust relation.
Another difference between the roles Admin and User is the number of participants. For
the role User there can be none up to an undefined number of users. The number of user
depends on the willingness to participate. This case is not valid for the Admin role. At
least there is one user that has this role within. The number of users can also increase to
an undefined number of users, but that depends not only on the willingness to participate
it also depends on other users who are already in the role of an Admin and decide to
invite a person to join the MBPS application as an Admin. The invitation is sent by
email. This is a necessary precaution to avoid a large number of users that should not
have authorization. Another reason is to prevent users with hidden intentions to harm the
server by altering trust relations. Concluded, the invitation process serve as an security
condition to control the user that can join the system as Admin.
Lot of systems have usually one Admin for administration but MBPS allows more than
one. This is based on the fact that maintaining a web interface takes quit a time and not
every one is available at any time and more users in Admin role can manage and react
much more efficient to changes.

4.3.3 Both

The last role Both inherits both roles, the Admin and the User. In this role a user can
access the Android Client and the web interface with the same credentials. There is only
one way to become Both. First, a user has to sign up on the MBPS application to be in
the role User. After a successful verification, the User has to wait to be invited by an
Admin to join for the administration. The second step is achieved by sending an email.
The email address is the key factor to become the role Both. A user has to provide an
email address for the registration and if the same email address is used for the invitation
of the role Admin, the user becomes the role Both. The change from User to Both is
done automatically and does not need an approvement of the user. The email serves as a
notice for a role update. The opposite way is not possible and will be refused. An Admin
can not use the same email for sign up on the Android Client.

4.4. ANDROID CLIENT 27

4.4 Android Client

The extension of the Android Client is also a part of the federation mechanism. Before
deciding for a final design mock-ups were designed and discussed internally with the in-
volved people of the MBPS group. Since the changes to the client are just a few, it does
not need an extensive evaluation procedure. The goal was that the improvements has to
be easy do understand and the level of intuitiveness has to be the same like for the pre-
vious versions. Based on this mock-ups shown in Appendix C a decision was made. The
views in consideration for improvements are the registration and the login view. Besides
the improvements an additional view has been implemented. This extension supports the
user with information about trust relation.
In the first design process the insertion of the server url in the login screen was chosen as
a pop up screen, but later this decision was improved and the login screen was extended
with additional text area. The text area seem to be the best decision. The login screen
already has several text areas and further the user does not need to figure out where to
enter the url. Another argument that supported the text area is that the url is always in
the sight of the user. For the registration view the design was retained and also an addi-
tional text area for the server url was implemented. But between these two views there
is a functional difference. The text area of the registration can be neglected by the user
and the standard server, which is the server maintained by the CSG of the informatics
department from the University of Zürich, will be chosen. But on the login screen, the
user has to enter at least once the server url. The screenshots for the login and registration
screens can be seen in the Appendix C in Section C.2.
Additional improvements to the history view were made. This improvement was a nice to
have requirement. The improvement of bold text emphasises the important information
in the view. The user can distinguish between a payment transactions made within or
outside of the server. The cross-server payments are distinguished to internal payments
with url listed besides the username of the user. Figure C.8 in the Appendix C shows the
history screen.
Since the thesis goal is based on federation mechanism, a trust relation view is indispens-
able. The view can be visited over the menu navigation on the left above corner. The
Figure C.7 in Appendix C shows the screenshot of the view. This view was implemented
based on the history view, therefore a similarity is visible. Like in the history view this
view lists all servers that share a trust relation. The information that is provided too
each server are the url, the trust level, the User Balance Limit and a combination of the
Active Balance and Balance Limit named after the Balance Limit. The combination of
this balance limits provides an value that represents the current amount that is available.
For example when the Balance Limit is at 1.0 Bitcoin and transaction were made with
the value of 0.6 Bitcoins the combination shows a value of 0.4 Bitcoins in the view. This
value is still available for further cross-server payments.

28 CHAPTER 4. APPROACH AND DESIGN

4.5 Web Interface

A web interface for administration has been developed. Before implementing the web
interface an analysis and design process were conducted. Due to the time constraint and
the scope of the thesis, the focus was on the features and the functions of the web inter-
face. Therefore, the design for the user interface was not considered. Thus, the design has
been kept simple over the whole web interface. In Subsection 4.5.1 the requirements for
the web interface are illustrated. The Subsection 4.5.2 discussed the analyse and design
phase. The features of the web interface are introduced in Subsection 4.5.3.

4.5.1 Requirements

These requirements in Table 4.2 are based on the requirement 7 in Table 4.1. The re-
quirements is be explicitly explained in this Subsection. It will be discussed in the further
Subsection 4.5.3.

Table 4.2: Requirements

Number Title Description

1 Authorization The Web-page should be authorized for particular users.
2 Trust Relation The trust relation shared with other servers has to be managed

and an overview should be exists.
3 History The server transactions have to be represented in a view.
4 Multiple Users More then one user has the rights to sign in.
5 Accept/Decline requests A server can accept or decline requests sent by other servers.
6 Logs All users have to be informed about changes.

Section D.1 in Appendix D provides the mock-ups for the Web-page.

4.5.2 Analyse and Design

The focus lied on the implementation and not in the user interface. Therefore, no iterative
procedure was conducted, either to evaluate the design decisions. First the requirements
for the web interface was analysed and evolved. Based on the requirements the user
interfaces were modelled and mock-ups were created. The created user interfaces as
mock-ups can be seen in Section D.1 in the Appendix D. The mock-ups consists of the
followed interfaces:

� Login interface to sign into the web page.

� Home interface consists of the most adequate information about the user credentials,
Bitcoin balance, the last recent server transactions and the admin list. This page
serves as default page after a successful sign in.

4.5. WEB INTERFACE 29

� Trust Relation interface retrieves and lists the server accounts sharing a trust rela-
tion. Each server consists of the url, payout address, balance limit, trust level and
creation time.

� Server Account interface retrieves detailed information about the selected server.
Additional to the previous view trust relation, the payout rules are visible.

� History interface provides information about the successful Bitcoin core transactions.
It consists of the url, the timestamp, the amount and if it was a incoming or outgoing
transaction.

� Users interface retrieve all users registered on the Coin Blesk server with the user-
name.. email address and role.

During the implementation of the web interface the requirements changed and the web
interfaces had to be altered due to new requirements. Besides the already defined web
pages in the design phase two additional web pages have been designed and developed.
The Activities interface which logs every changes on the web interface. This features is
supporting the admins in order to be aware of any change. The second interfaces is the
Messages interfaces that notifies the admins about requests from trusted servers. Only
not answered requested messages are list that have to be accepted or declined by an admin.

4.5.3 Features

In this Subsection the features of the web interface is discussed. The screenshots of the
features are introduced in Appendix D. It has to be clear that most of the pages have the
same design. Almost every page has the menu bar at the top and several links with de-
scriptions on the the bottom. The links redirect the user to the overview, the description
about the MBPS project, the guideline and the Help interface. The overview provides
information about the master thesis. The about MBPS describes the project and the
goals. The functionalities and features are presented in the guideline. The help supports
the user with frequent asked questions (FAQ). In addition to that, the look-and-feel of
the web interface has been kept very simple. Every action that involves a change is rep-
resented by a button. A click on the button opens a pop up dialogue and the dialogue is
submitted if a change has to be done.

Home

After a successful login the user is redirected to this page. The home interface is the
default page and its purpose is to support the user with the most adequate information.
Figure 4.2 shows the user interface of the Home interface. The informations are, the
sum of all Bitcoins in the system, the credentials of the logged user, the recent server
transactions and the messages waiting for a response. This design differs in comparison

30 CHAPTER 4. APPROACH AND DESIGN

to the mock-up introduced in Section 4.5.2. The admin list is replaced by the most recent
messages. The messages have more weighted when it comes to adequate information. The
credentials email and password can be update. Further, the recent server transactions can
be used to ensure if any transaction have been made without redirecting to the History
page. The last data informs the user about the last recent message that has to be re-
sponded.

Figure 4.2: Home interface

Trust Relation

The trust relation is presented by two nested interfaces. The first interface includes a list
of all trusted servers. Every server is represented based on the server url, the payin and
the payout addresses, the active balance, the balance limit and the trust level. Those
informations are illustrated for every server.
The second interface is nested and can be visited by clicking on a url of one of the listed
servers on the first interface. The second page offers more information about the server ac-
count. The additional informations are the User Balance Limit, the existing payout rules
and the latest server transactions base on this specific server. On this page an admin has
the possibility to updated the trust level, to alter the Balance Limit and the User Balance
Limit and created payout rules. The deletion of the trust level is also done in this interface
and is distinguished by a different color to underline the consequence this action can have.

4.5. WEB INTERFACE 31

Users

This interface is simple and does not have any complex features. The interface retrieves
the user accounts that are registered on the server. Each user consists of the username,
email, payment address and role. The balance limit was not retrieved because the Bitcoin
amount of a user belongs only to the user self and nobody should have the right to observe
the Bitcoin amount of a user. Besides the retrieved information a user can invite further
persons to join the system as an Admin by clicking on the button Invite Admin and en-
tering the email address. Another button allows admins to send a email to all users at
once. This feature can be used to notify all user about very urgent events. For example,
a shut down of a server is a reason to inform all users in before.

History

The history interface lists all the successful server transaction. The server transactions
are core Bitcoin transactions. It is enabled by predefined pay out rules combined with
the attribute Active Balance. The server transaction consist of the Bitcoin amount, the
server url, the timestamp and if the transaction was incoming or outgoing. This interface
is modelled for the purpose to provide the user with traceable information about trans-
actions which have been achieved with success.

Messages

This interfaces lists all requests of trusted servers. Only the request which are not an-
swered are shown. The response can be performed by accepting or declining the request.
The message consists of the subject, e.i., the reason of the request, a detailed description
of the request and the server which sent the request, the tmestamp when the request was
created and the buttons to accept or decline the request. In this stage of the thesis, only
the upgraded of a trust level is a request that can be accepted or declined. There does
not exists a time frame to answer the request. When a request is accepted or declined the
other server is automatically informed about the decision which is logged and presented
in the Activities view. However, an accept also includes an alteration on the data on both
servers.

Activities

This interface supports all admins to be up-to-date related to the changes made. The
activities interface shows all the interaction done (manipulation of data) by every admin
or the received responses by the other servers. The interface consists of logs sorted after
the timestamp with the most recent at the top. The subject of the activity is given, a

32 CHAPTER 4. APPROACH AND DESIGN

detailed description, the server url of the server that had been changed, the admin that
did the changed and the timestamp of the change.

Chapter 5

Implementation

This Chapter describes the implementation part of the thesis. To give a better under-
standing how MBPS works, Section 5.1 gives an overview over the architecture. The next
Section 5.2 discussed essential scenarios of the thesis based on the technical part. The last
Section 5.3 introduces the challenges regarding the implementation of the new features.

5.1 Architecture

The architecture of the MBPS has proven to be reliable and therefore no essential changes
were done. The MBPS architecture shown in Figure 5.1 consist of several parts. The pre-
vious tools and features will be discussed first and then the new features and changes will
be explained.
The middle part of the application a Java web server is running on a Apache Tomcat
7.0. This is hosted on a virtual Unbuntu machine. The server is reachable over a se-
cure HTTPS connection. The Java web server is developed with the spring framework
version 3.2.10 [40]. Authorization and access is managed by the spring-security version
3.2.5 [41]. The spring-security is also responsible for the role validation. Every request
is checked if the user that sent the request has the right role, if not a 403 HTTP-Status
is send back [42]. To persist the information the PostgreSQL database instance is used
[43]. The Object-relational mapping (ORM) Hibernate is used to connect the implemen-
tation part with the database [44]. The left above part of Figure 5.1 presents the Android
Client. This part has not changed and the application runs on Android 4.4. The client
is the interface for the user to connect to the server by means of a mobile device. Still
the user is capable to manage his user account, initiate transactions (pay with or receive
Bitcoins), pay out Bitcoins to another wallet, etc. The left below part the Web Browser
has to separated functions. The Support part serves as support to communicated with
user using the mobile devices over the email address. The views are build in JSP format
[45]. The other part will be explained later. The connection between the server and the
Bitcoin network is established with Bitcoin client bitcoind (Bitcoin core) [46]. This is
used to initiate transactions from the server to the outside world or listen for incoming

33

34 CHAPTER 5. IMPLEMENTATION

transactions into the server. The library Azazar Bitcoin-JSON-RPC is used to connect
the server with the bitcoind by using RPC commands [47]. The right above part of the
Figure 5.1 shows two external server connected to the server. The upper server Bitstamp
is used to retrieve the current exchange rate USD/BTC from one of the leading Bitcoin
exchanges [48]. The lower server Bitcoin exchange center is used to immediately exchange
Bitcoins on different Bitcoin platforms [49].

Figure 5.1: Architecture

The architecture had also changes to satisfy the new requirements or to improve the per-
formances. The changes can be seen by comparing the architecture in report [8] with the
architecture in Figure 5.1. To boost the performance the jackson message converter for
converting objects [50] to JSON and back has been replaced by an own implementation of
a Object mapper offered by the supervisor. The performance was tested and it showed a
clear performance improvement. Especially the duration of a NFC transaction fall under
one second, for more infromation see report [12]. A further change implementing the Java
Persistence API (JPA) [51] between the Hibernate and the Java implementation lead to
more flexibility. As long the JPA is the interface between the Java implementation and
the ORM, the ORM can be changed if desired without further changes. The JPA provides
a POJO persistence model for object-relational mapping.

5.2. SCENARIOS 35

Besides the improvements the architecture was extended by the introduction of the web
interface. The Web Browser in Figure 5.1 includes the Angularjs as the core front-end tool
for visualising and manipulating the view. It also maintains the communication with the
back-end (server) [52]. Angularjs is a open source web application framework on the client
site. It is developed by Google as a single-page application. The Angularjs consists of the
script languages CSS, HTML and mainly JavaScript. In a single-page application there
is one page which is rendered with the first request of the web page. The content is then
load into this page and for every request that involves a new view the content is switch
with the respective view. This framework is build on the model-view-controller (MVC)
design pattern to separates the part of the code to their responsibility. The views have
been developed with HTML. The server call from the front-end to the back-end is done by
core Angular service $http [53]. The $http communicates between a remote HTTP server
via the browser’s XMLHttpRequest object or via JSONP. The authentication between
the Android Client and the Server works based on tokens send in the header of a request
to identify the user on the server. In order to make it work for the web-frontend and
the server a Cross Origin Resource Sharing (CORS) [54] Filter on the server as well as
the requesting $http of Angularjs must explicitly allow certain flags in the Header. To
enable for cookies to pass through the Angularjs and the CORS Filter on the server must
expressly have the credentials flag withCredentials enabled. Further, to enable authenti-
cation the flag Authorization has to be set, too. Further, Figure 5.1 shows two server A
and B connected to each other with a secure HTTP connection.

5.2 Scenarios

In this Section two use cases have been introduced. The use cases are emerged with the
implementation of a federation mechanism. In Subsection 5.2.1 the scenario of creating
a trust relation is explained followed by the scenario doing a cross-server payment in
Subsection 5.2.2. It is important that both described scenarios are synchronized requests
expecting a response in a specified time.

5.2.1 Create Trust Relation

A trust relation can be create only involving one active server in the creation process.
Figure 5.2 shows the creation cycle of a trust relation. A user of server A enters the
information about the server B over the web page and sends a request to the server A.
On server A the request is prepared with the server url of A, the email address of the
Initiator and the server key pair of the server A. Those information are sent to the server
B. B creates a server account based on the received information. The server B prepares a
response consists with the same data (server url and key pair of B) and sends the response
back to A. Server A creates a user account based on the received information. After the
creation of the server account additional request have to be exchanged consisting of sen-
sible data. The payout address is the sensible data. The payout address for the other

36 CHAPTER 5. IMPLEMENTATION

server is the created payin address on the server account. This piece of information was
not sent in the previous request due to the sensitiveness of the payout address. When
the payout address is lost or even stolen the existing Bitcoins on this address are gone,
too. And also without a payout address no core Bitcoin transaction can be established
between the servers and no cross-server payments are allowed, either. Therefore, the risk
that the request could be manipulated or even replaced is a big concern.
After exchanging the initial server information to create a server account and the public
keys, a second request is created by server A. The request consists of the payout address
for B and the server url of A. The url serves as identification. This request is signed by
the private key of A and send to B. B verifies the received request with the stored public
key of A and the payout address is persisted into the database. Server B repeats the same
steps and responds with a signed response object having the payout address for A and
the url of B. Server A also verifies the response and persists the payout address.
But in the case the request fails in the first place the information is stored in the ”Server-
AccountTask”. The ServerAccountTask stores failed requests between server s to repeat
the request on a later time without a user involved. These stored information are pro-
cessed each hour until the request can complete with success. Figure 5.2 illustrates the
creation cycle of a trust relation.

Figure 5.2: Create Trust Relation

5.3. CHALLENGES 37

5.2.2 Cross-Server NFC Payment

This is the scenario to request Bitcoins from another user. It represents the ”Receive
Payment” scenario from MBPS but with an extension of allowing users to do cross-server
payments. In this scenario, the servers Seller and Buyer have a Full-Trust relation and
Android Clients Are involved.

First, the devices are hold together to start a NFC connection. After exchanging messages
over NFC the information are send to the server of the Seller. On the server the accounts
of both users are loaded. But if one of the users are not found a check is done to find out
if the unknown user belongs to a server that shares a trust relation with the level at least
Hyprid-Trust. In the next step the Balance Limit and the User Balance Limit are checked
and verified. Both limits can not be exceeded. A customer payment request is created
after the checks were successful. The payment request consists of payment information of
both involved users, the amount, the timestamp of the payment and the url of the server
that send the request. Before the request is passed to the Buyer the request is signed by
the server Seller to ensure this request is sent by the Seller. The server Buyer checks that
the limits for the balances are not exceeded and verifies the signed request. After that, the
information are persisted in the server and the a customer payment response is created
and signed by the Buyer. The response is retuned back to server Seller. Seller verifies the
signed object and checks if the received information are same in comparison to the send
information. The server Seller then persists the information and acknowledges the user
Seller and Buyer about the payment success. In this scenario of cross-server payment
the send and received objects are signed twice. Once the users signed the created server
payment with the key pair and once the server signed the created customer payment with
the key pair.

5.3 Challenges

In this Section the challenges which were faced during the implementations are discussed.
The challenges that are introduced are related to the implementation of the web-site wit
respect to Angularjs, the database entries, the attribute Active Balance of the server ac-
count and finally about writing JUnit tests.

5.3.1 Communication between Angularjs and the Server

Aforementioned, Angularjs communicates by a core Angular service $http. The content
of the request between the back-end and the front-end is exchanged as JSON objects. The
structure of the Angulrjs request differs to the request from the server, but since both
can handle JSON objects, the communication was done with JSON objects. A further

38 CHAPTER 5. IMPLEMENTATION

F
igu

re
5.3:

M
ean

an
d

S
tan

d
ard

D
ev

iation

5.3. CHALLENGES 39

customization had to be made, before the communication could work. Explained in Sec-
tion 5.1 certain flags had to be enabled permanently in the header of a request. Also, a
CORS filter was implemented on the server that states to the browser that cookies are
permitted. It is important that the CORS filter has to be validated before the security
filter of the spring-security is processed. Otherwise the request would fail.
Another challenge was the authorization of the user. In this thesis a users has different
roles and a role permits the user for certain requests. The check of the role is done by
the spring-security. The reason to verify the roles on the server was decided because the
spring-security was already responsible for the authorization between the server and the
Android Client. Only a simple modification was enough to allow the spring-security to
authorize users based on their roles.
A further challenge during the implementation was, that the spring framework has to
handle different forms of views. Spring has a build-in view resolver that looks for the
requested view and returns it. Unfortunately this resolver neglects other resolvers. This
means it does not pass the request to other resolver instead sends back an error. Therefore
a second resolver was implemented for the HTML views. This resolver had to be modified
and placed in front of the internal resolver. So, if the implemented resolver did not find
the respective view it pass the request to the internal resolver.

5.3.2 Extend Database Entries

The implementation of a federation mechanism also included information that had to be
stored on the database. New entries has been created like the server account that stores
the information about the trusted servers, server transaction that stores successful per-
formed core Bitcoin transactions and server account tasks that stores failed request to
other servers which have to be repeated. The challenge here was to decide if a new entry
was needed or an alteration of the existing entry was good enough. But it was decided
that the data from the Android Client and web interface are not mixed and therefore new
entries were created for data coming from the web interface.
Besides the new entries existing entries has been altered, to meet the requirements of
this thesis. In the previous version the username consisted only with the entered name.
In the federation mechanism the username has been altered and the new username
consists of the entered name and the server url of the server that holds the user ac-
counts. These strings are separated by the symbol of ”@”. This symbol is forbidden to
be used in the entered name an the url. For example, a username can look like this:
”muster@http://muster.com”. The name is the first part followed by the symbol that
serves as separation and the last part is the absolute url of the server which the user
is registered. This changes helped to identify server of the user. Especially, during a
cross-server payment the username is used to identify the server of a unknown user. A
further alternation is done to the transaction entry. This entry has been extended with
two attributes. The attributes are the server urls of the payee and the payer of a payment
transaction. This information helps to check if the User Balance Limit was exceeded by
a user of a cross-server payment.

40 CHAPTER 5. IMPLEMENTATION

5.3.3 Active Balance

A successful cross-server payment has to be stored to do a core Bitcoin transaction on a
later time. This means an attribute has to be implemented that understands if a payout
or a payin is needed. Therefore, the attribute Active Balance is created. This attribute
is the only balance attribute that can have a positive or a negative amount. The Active
Balance has a default value of zero. A value zero means for the Server there are no out-
standing or incoming transactions. With the balance limit zero either of both server have
no obligations to own or expected any Bitcoins. Therefore, a new created trust relation
has an Active Balance of null. And if a change is related to the server account the change
can only be succeed if the Active Balance is zero, otherwise the change will be rejected.
This is a security condition, e.g., a server wants to downgrade the trust level of Full-Trust
to No-Trust, so the server could have to possibility to deleted the trust relation if the
server has outstanding Bitcoins to send.
If the Active Balance is greater than zero, the server owns this amount to another server.
An outgoing Bitcoin core transaction is expected. But if the Active Balance is negative
the server expects this amount from another server. An incoming Bitcoin core transaction
is expected.

5.3.4 Test Cases

An implementation has to have test cases to ensure that the written implementation has
no bugs and the source code is functional correct. In the previous projects the test cases
were implemented by manipulating the entries of the existing database. This is not pro-
ductive if the database already holds sensitive data that cannot be altered. Therefore,
for the test case in this thesis DbUnit was used which allows the manipulation of data
without touching the database with the sensitive data. DbUnit is a JUnit extension that
puts your database into a known state between tests [55]. The data that has to be used
and alter are generated in a XML file. During the test run the entries in the XML files
are put in the memory of the processor and can be compared or altered.

Chapter 6

Evaluation

One main objective the instant payment between users of the MBPS application has been
the focus for the evaluation. Therefore, the evaluation addressed the time required to suc-
cessfully complete a payment over a NFC connection. The performance of two scenarios
have been evaluated and compared. The first scenario is a payment from users registered
on the same server. This scenario has been already evaluated in a previous report [12].
But the evaluation was focused on the Payment Library and the NFC Library. The second
scenario is a payment between users from different servers.
In Section 6.1 the setup of the evaluation is explained. The next Section 6.2 explains
the performance of the payment on the same server. In Section 6.3 the performance of
cross-server payment is evaluated. The Section 6.4 discusses the performance measure-
ment on the server. The last Section 6.5 analyses the performances measurements and a
conclusion is drawn.

6.1 Setup

The setup for the performance measurements have been conducted with the devices Google
Nexus 7 [56] and LG G3 [57]. The NFC of Nexus 7 works with a Broadcom chip and the
NFC of LG G3 with a NXP chip. In both scenarios the complete time required has been
split into steps nested in each other. This steps has been needed to identify the required
times for a comparison. The measurements for each evaluation part was repeated twenty
times on both devices as a payer and as a payee. A second performance measurement has
been conducted to evaluated the required time for the atomic steps of the server. The
measurements for the payee and payer for each device has been repeated 10 times. The
amount of repetition for the second evaluation was lesser due the fact that the required
time for server was not affected by the specific features of both devices. Further, the total
time required to completed a payment has been based on an auto-complete mode. In
practice the devices used for the evaluation haven been tapped to each other without an
accept or refuse possibility.
It has to be clear to distinguish the evaluation of this thesis from the evaluation in report

41

42 CHAPTER 6. EVALUATION

[12]. Another remark to mention is the Android’s Host-based Card Emulation (HCE)
mode of operation. The Initiator, acting as transceiver, in a NFC connection sends a
message and receives a response in the same turn. Due to the fact that the Android
API lacks to offer functionalities for measurements when the Initiator or the Responder
is reading and writing data this thesis had to chose other beginning points for the mea-
surement. Based on the Android API, the time for the Initiator can be measured before
passing data to the NFC channel and stop measuring when the response arrives. The
measurement for the Responder can be start after a message has arrived and before the
response is passed to the NFC channel.
In this thesis only the time for the Initiator has been taken to account. Hence, the focus
does relay on the total time required to completed a NFC payment but from the initial-
ising point of the NFC up to the success notification. It is important to pinpoint that
the steps between the scenario of users from the same server differ in opposite to the
users from different servers. The evaluation goal is to show if a federation of servers still
operate applicable for the MBPS project. Therefore, the new scenario is compared to
the previous version and possible improvements can be quantified. The time discussed in
both scenarios are based on the arithmetic average with a standard deviation measured
in milliseconds. Another important aspect is, the evaluation has been conducted with
HTTP requests instead of the required HTTPS. The reason is the during the implemen-
tation HTTP requests were used. For the production the HTTPS is required.

6.2 Performance Measurement NFC Payment

This Section first introduces the payee and payer role for the scenario involving one server
to completed a NFC payment. Then the steps on the server is discussed. Afterwards, a
comparison is drawn.

6.2.1 Payee Role

The performance measurements for the payee role are shown in Figure 6.1. The figure
illustrates the arithmetic average and the standard deviation for the Nexus 7 and LG
G3. The results for the Nexus 7 are shown in the Tables G.1 and G.2. The Tables G.5
and G.6 consists of the results for the LG G3. The last bar in Figure 6.1 is the total
time required to complete a payment between users. The NFC Exchange, the Server Call
and NFC Notification are a part of the total time. But the Server Process is nested in
the Server Call step. The first step is proceed on the devices, the second step consists
on the server and on the devices. Server Call is called on the device but the most time
is consumed by the server which is the step Server Process. The NFC Exchange is the
time needed to create both payment requests of both involved users. This step consists
of multiple atomic steps which are not considerate for the evaluation. The major pieces
are the NFC handshake, the time a device has been discovered until the handshake com-
pletes by a message returned by the payer. Further, the payment request is created by
exchanging data with the payer. The data in the payment request is serialized to keep

6.2. PERFORMANCE MEASUREMENT NFC PAYMENT 43

the message shorter and send to the server. The Server Call describes the required time
to send a payment request and receive a payment response back from the server. The
Server Process consists of different verification and manipulation steps, see Section 6.4.1.
After the server validated the data a signed payment response is sent back. On the client
side, the payment response is verified by the payee and serialized in order to forward it to
the payer. At the end the success notification is shown on both devices. This is the step
NFC Notification.
Compared to the total time required, the most time consumed the step NFC Exchange
with an average of 372ms (± 9.9ms) on the Nexus 7. The performance measurement
for this step on the LG G3 took in average 424ms (± 33.9ms). This time is considered
as justifiable, since it consists of the message exchange between the devices. First, the
prepared message is send to the payer, the payer then signed the request and returns
back to the payee. The payee serialized the request and forward the request to the server.
This steps make around 46% percentage of the total time to complete. Since both devices
have been proceeding the same atomic steps and have been evaluated with each other,
the recognisable difference in NFC Exchange has to be device specific.
The next step Server Call took in average 312ms (± 23.3ms) on the device Nexus 7 and
in average 369ms (± 67.2ms) on the device LG G3. This time cannot be compared effi-
ciently, due to the reason that the measured time consists of HTTP requests to the server.
The last step Server Process is the only nested step in the Server Call step without the
HTTP request. This time describes the start and the end of different checks and manip-
ulations. On the Nexus 7 this step took in average 176ms (± 22.6ms). The performance
measurement for the LG G3 took in average 159ms (± 15.6ms). The difference of around
15ms between the devices is not a big factor and compared to the standard deviation of
both devices it can be seen as same. But considering the step Server Process to the step
Server Call there is a clear difference between the time the data is sent and returned to
the client. On the Nexus 7 the step Server Process makes up to 56.6 % percentage of
the measured time for Server Call but only 43.1 % percentage on the LG G3. Since both
devices were evaluated on the same WLAN at the same time, there can be found an ex-
planation without further evaluation based on the difference. The step NFC Notification
took in average on the Nexus 7 121ms (± 11.3ms) and on the LG G3 178ms (± 35.4ms).
The LG G3 took longer than Nexus 7 and this is based on the same reason like for the
NFC Exchange, device specific.
Concluded, the performance measurement for the total time on the Nexus 7 took in av-
erage 807ms (± 46.7ms) and for the LG G3 it took 976ms (± 134.4ms). The difference is
due to the specific features on both devices. The LG G3 took in average around 150ms
longer to complete the NFC payment. The evaluation shows that both devices completed
a NFC payment transaction under one second.

6.2.2 Payer Role

The Figure 6.1 shows the performance measurements for the payer role. The steps in this
role are exactly the same mentioned in the Subsection 6.2.1. The last bar in the figure
represents the measured time for the total time required to complete a payment. The
results for the arithmetic average and the standard deviation in the Figure 6.1 for the

44 CHAPTER 6. EVALUATION

Figure 6.1: Mean and Standard Deviation NFC Payment

devices Nexus 7 and LG G3 are illustrated in the Tables G.3, G.4, G.7 and G.8. The NFC
Exchange

”
Server Call and NFC Notification are a part of the total time. The Server

Process is nested in the Server Call step. The NFC Exchange is the time needed to create
both payment requests. This step consists of multiple atomic steps. The major pieces
are the NFC handshake, from the time a device has been discovered until the handshake
completes by the second handshake message returned by the payee. Further, the payer
requests the payee’s username. After the username of the payee is deserialized the payer
creates a payment request. This request is signed and send to the server. On the server,
the request is verified, checked and manipulated. Finally, a signed payment response
signed by the server is returned back. The client of the payer verifies the signature and
serializes the payment response to forward the response to the payee. At the end the
success notification is shown on both devices. This is the step NFC Notification.
For the Nexus 7 the most time consuming step is the server call. The server call made
up 38.9% of the total time required followed by the step NFC Exchange with 33.8%. The
arithmetic average for the step NFC Exchange took 252ms (± 41.2ms). The arithmetic
average of the device LG G3 for the step NFC Exchange resulted in 302ms (± 89.1ms). It
is important to mention that the atomic steps for the NFC Exchange differ for the payee
and payer role. One important difference is, in the payee role there is the step where the
Responder (payer) has the possibility to accept or reject the payment and if the request
is accepted a signed payment object is created. But in the payer role only the username
of the Responder (payee) is needed to create a payment request. However, for the LG
G3 the steps NFC Exchange and Server Call required the same time to complete. 35.7%
of the measured total time was covered by the step NFC Exchange and the Server Call
covered 35.2%. The arithmetic average for the step Server Call took 290ms (± 26.4ms)
for the Nexus 7. The LG G3 took in an average 298ms (± 3.5ms). In consideration that
this steps consists of HTTP requests and responses to the server, it is difficult to compare

6.3. PERFORMANCE MEASUREMENT CROSS-SERVER PAYMENT 45

and explain the time performance.
The step Server Process is the only nested step in the Server Call step without the HTTP
request. The arithmetic average for the Nexus 7 took 161ms (± 28.8ms). The perfor-
mance measurement for the arithmetic average for the LG G3 took 128ms (± 37.5ms). In
percentage the step Server Process on the Nexus 7 made up 55.6% of the measured time
of the step Server Call. The same step for the LG G3 made up 42.9% of the complete
time required for the Server Call. The last step the NFC Notification took in average
201ms (± 19.5ms) on the Nexus 7 and 243ms (± 19.8ms) on the LG G3.
Concluded, the performance measurement for the total time on the Nexus 7 took in av-
erage 744ms (± 63.4ms) and for the LG G3 it took 845ms (± 104.7ms). The difference is
due to the specific features on both devices. Considering the calls on the server on both
devices required the same time to complete it has to be related to the devices.

6.2.3 Comparison Payee and Payer

Figure 6.1 compares the performance measurements for the role payee and payer. The
required time to complete the payment for the payer took longer than the time to com-
pleted a payment for the payer. The step NFC Exchange does the difference with the
payee role the arithmetic average took 372ms (± 9.9ms) and 424ms (± 33.9ms) and for
the payer role the average took 252ms (± 41.2ms) and 302ms (± 89.1ms). In the payee
role the Responder needs to created a signed payment request which is send to the server.
But for the payer role the Initiator only needs the username to completed the task. The
messages exchanged between the Initiator and Responder for the payer is shorter than
the one exchanged between the payee as Initiator. The steps Server Call took in average
the same time but this results can probably vary in a further test based on the HTTP
request. The measured step Server Process to completed a payment took in average for
both devices and for both roles around the same time. In Figure 6.1 the total time to
completed a payment was around 800ms. The payee role took in average a bit longer than
the payer but this is mostly related to the step NFC Exchange. Further, the step NFC
Notification in the payee role consumed in average less time than as payer. This has to
do with devices specific features, that have to be evaluated focused on the different devices.

6.3 Performance Measurement Cross-Server Payment

This Section introduces the payee and payer role for the scenario involving two servers.
This scenario is based on the federation mechanism (see Section 4.1) in which a cross-
server payment can be succeeded between two servers sharing a trust relation. Besides the
already existing steps in the previous versions additional steps have been implemented to
enable a cross-server payment transaction. Below the payee and payer role is discussed
followed with the comparison part.

46 CHAPTER 6. EVALUATION

6.3.1 Payee Role

The performance measurement for the cross-server payment shown in Figure 6.2 consists
of multiple steps. The figure shows the arithmetic average and the standard deviation for
each step and the total time. The last bar indicates the total time required to complete
a payment. Besides the measured total time. the further steps and the nested steps in
the figure are based on the results in the Tables G.9, G.16 for the Nexus 7 and in the
Tables G.13 and G.14 for the LG G3. The steps NFC Exchange, Server Call, Server
Process and NFC Notification are the same steps evaluated in the Subsection 6.2.1 in the
payee role. The additional new steps are all nested into each other and consist in the
step Server Process. The nested step the Trust Relation Process is the beginning point
for a cross-server payment. This step is proceeded if the Responder (payer) is registered
on another server sharing a trust relation. The Trust Relation Process step itself consists
of atomic steps that are responsible for checks, server calls related to the trusted server
and verification of the returned payment response. The Trust Relation Process consists
of the steps Trusted Server Call and this again consist of the step Trusted Server Call.
Further steps which are not evaluated in this scenario can be seen in Section 6.4. The
Trusted Server Call is defined as the time needed to send the payment request to the
trusted server and receive a response is return. The last step NFC Notification verifies
and serialized the response in order to forward it to the Responder. At the end the success
notification is shown on both devices. The step Trusted Server Process is proceeded by
the other server. Figure 6.2 shows the nested step of another step always on the left side
of the relevant bar. Expect the nested step is proceed on a different platform.
In a cross-server payment the arithmetic average for the step NFC Exchange took 339ms
(± 70.7ms) on the Nexus 7 and 505ms (± 73.5ms) on the LG G3. There is a visible differ-
ence between the arithmetic average of the two devices which can not be explained with
the measured results and further measurements focused on the devices specific difference
have to be evaluated. However, with an average of 28.4% for the Nexus 7 and 34.5% for
the LG G3 this step was not the most time consuming step. The most time consuming
step was the Server Call that took half of the time required for a payment to complete
(58.6% Nexus 7 and 52.00% LG G3). The arithmetic average for the Nexus 7 took 699ms
(± 106.1). The LG G3 had an arithmetic average of 759ms (± 82.0ms). The results of
the measured time can be explained with the argument that in a cross-server payment
two servers are involved during a payment.
The nested step of the Server Call the Server Process is the time required to completed
all the atomic steps consist in the server. The Nexus 7 had an arithmetic average of
478ms (± 166.2ms) and the LG G3 an average of 469ms (± 72.1ms). The most consider-
ate step in the Server Process is the Trust Relation Process. This step is only proceeded
if a cross-server payment is started. For both devices the arithmetic step for the Trust
Relation Process took 304ms (± 87.7ms) respectively 350ms (± 106.8ms). The required
time for this step covers more than the half of the Server Process. This can be explained
due to the check and verification part based to verify the trusted server. Further, the
server call to the trusted server has had also an role , why the Trust Relation Process
took in average over 300ms on both devices. The server call to the trusted server had
an arithmetic average of 247ms (pm 64.3ms) and 304ms (± 116.0ms). This nested step
covers for the Nexus 7 and LG G3 more than 80% of the Trust Relation Process step.
Skipping the HTTP request the trusted server call took in average 205.5ms (± 57.3ms)

6.3. PERFORMANCE MEASUREMENT CROSS-SERVER PAYMENT 47

for the Nexus 7 and 269ms (± 133.0ms) for the LG G3. Considering the checks and data
manipulations in this step, this step has been fast. The atomic steps in this step are
evaluated in Section 6.4. The last step NFC Notification which is proceeded on the device
took in average 153ms (± 12.7ms) on the Nexus 7 and 189ms (± 12.0ms) on the LG G3.
Compared to the total time required this step make up 12.8% and 12.9%.
Concluded, the performance measurement for the total time on the Nexus 7 took in av-
erage 1193ms (± 164.0ms) and for the LG G3 it took 1460ms (± 169.7ms). The huge
time difference cannot be explained without further evaluation. The performance mea-
surement for the total time showed that both devices needed between 1 and 1,5 seconds
to completed a cross-server payment.

Figure 6.2: Mean and Standard Deviation Cross-Server NFC Payment

6.3.2 Payer Role

The Figure 6.2 shows the performance measurements for the payer role. The steps in this
role are the same mentioned in the Subsection 6.3.1. The last bar in the figure represents
the measured total time required to complete a payment. The results for the arithmetic
average and the standard deviation for the devices Nexus 7 and LG G3 are illustrated
in the Tables G.11, G.12, G.15 and G.16. The NFC Exchange and the Server Call are
steps nested in the total time. The Server Process is a nested step of the Server Call.
The NFC Exchange is the time to initialize a NFC connection and exchange messages
through the NFC until the prepared payment request is passed to the server. Only the
NFC exchange and Server Call can be seen as atomic steps of the measured total time.
The steps Server Process, Trust Relation Process, Trusted Server Call and Trusted Server
Process are nested into each other. The last step NFC Notification verifies and serialized
the response in order to forward it to the Responder. At the end the success notification

48 CHAPTER 6. EVALUATION

is shown on both devices. Figure 6.2 shows the nested step of another step always on
the left side of the step that consists it. Expect the nested step is proceed on a different
platform.
The NFC Exchange step for the Nexus 7 and LG G3 took in average 229ms (± 31.8)
and 345ms (± 29.7ms). The LG G3 again needed in average more time to complete this
step. The next step Server Call consumed in average half of the complete total time. The
Nexus 7 took in average 594ms (± 70.7ms) and the LG G3 had an arithmetic average
of 563ms (± 77.1ms). Compared to the total time the LG G3 makes up 48.5% and the
Nexus 7 58.4% of the measured average of the total time.
The nested step Server Process took in average 400ms (± 150.6ms) and 378ms (± 18.4ms)
for the Nexus 7 and LG G3. This step consists of a server call to the other involved server.
The next step in the figure the Trust Relation Process is proceed only if a cross-server
payment is established. This step checks the server account information of the involved
server and sends the payment request to this server. the arithmetic average of the step
Trust Relation Process for both devices took 267ms (± 42.4ms) and 246ms (± 36.8ms).
In consideration of the standard deviation both devices took in average the same time to
completed this step. In comparison to the time to completed the Server Process the Trust
Relation Process make up 66.8% of the time for the Nexus 7 and 65% for the LG G3. The
arithmetic average for the Trusted Server Call on the Nexus 7 took 211ms (± 95.5ms)
and on the LG G3 183ms (± 43.8ms). Without the the HTTP requests the required time
on the other server took in average 176ms (± 42.4ms) on Nexus 7 and 143ms (± 36.8ms)
on LG G3. The step NFC Notification took in average 192ms (± 42.4ms) and 246ms (±
34.6ms).
Concluded, the performance measurement for the total time on the Nexus 7 took in av-
erage 1017ms (± 145.0ms) and for the LG G3 in average it took 1159ms (± 18.4ms).
The performance measurement for the total time for the payer role took around 1 second
which is a good performance.

6.3.3 Comparison Payee and Payer

Figure fig:evalDiffComparison compares the performance measurements for the role payee
and payer in a cross-server payment. The required time to complete a cross-server pay-
ment took for both cases in average more than one second. The request (payee) of Bitcoins
needed in average more time to completed has sending the Bitcoins (payer) to another
user. For the Nexus 7 the case requesting Bitcoins took in average 1193ms and the sending
Bitcoins took in average 1017ms. However, for the LG G3 the requesting took in average
1460ms and the sending 1159ms. For the Nexus 7 there is no difference in time to request
or send Bitcoins but the LG G3 had in average around 250-300ms longer to proceed a
request compared to a send. The time differences can be seen in Figure 6.2. The first
step NFC Exchange needed in average much longer for the payee scenario than for the
payer. The difference is related to the message exchange when the Initator is a payee
or a payer. Additional, there LG G3 took for both scenarios in average longer than the
Nexus 7 for the first step and this is related to the specific feature to the devices. This
need to be evaluated in a further research scope. There exists also a time difference in
the step Trusted Server Process which affects the average times of all steps that includes

6.4. PERFORMANCE MEASUREMENT FOR THE SERVER 49

this step. For the payee the step Trusted Server Process took on both devices in average
206ms and 269ms and for the payer it took in average 176ms and 143ms. This has to do
with an atomic step in Trusted Server Process which is discussed in Section 6.4. It can
be seen that the steps Trust Relation Process and Trust Server Call have the same form
like the Trust Server Process that also indicates that the time difference is related to the
step proceeded by the trusted server. Further, the NFC Notification took for the LG G3
for both roles longer in compared to Nexus 7. This has to do with the specific features of
a device.

6.4 Performance Measurement for the Server

In this Section the server performance during a payment over NFC is measured. In the
Section 6.2 and 6.3 the specific feature of each devices had an impact on the total re-
quired time to complete a payment. For this scenario only the steps on the server is
evaluated. This means, the measurement starts when the server received a request object
and returned a response object to the client. This Section first introduces performance
measurement for the scenario when both involved users are registered on the same server.
Second the performance measurement for the cross-server payment is discussed.

6.4.1 NFC Payment

The Figure 6.3 shows the arithmetic average and the standard deviation of the essential
steps on the server during a payment over a NFC. The last bar indicates the total time
required to complete the steps on the server. A payment request is send by the Client to
the server. After the request is serialized the step Get Users looks for both users received
with the request. In the next step the signed request is verified. The server checks if the
payment request is from the user who claims to be. The server stores the public key of
each user. Thus, the server can verify users registered on the server. After the verification,
the data is stored into the database. This is the step Persist DB. The last step in the
Figure 6.3 is the Create Payment Response which creates a response with the information
that had been stored. This request is signed by the server for security reasons and send
back to the Client. The results for the steps are based on tables in Section G.4.In this
scenario both users the Initiator and the Responder are registered on the same server.
The arithmetic average of the Server Process in a payee role took 155ms (± 21.9ms) with
the Nexus 7 and 145ms (± 30.2ms) with the LG G3. For the payer the arithmetic average
was 128ms (± 21.4ms) and 127ms (± 27.3ms). The step Get Users took in average 10ms
and 11ms as a payee and payer. The different devices had also no influence. For both
devices and roles this step took in average the same time. The Verify Signed Users had
an arithmetic average 33ms (± 6.1ms) and 37ms (± 19.6ms) as payee for Nexus 7 and
LG G3. As payer in average it took 34ms (± 7.6ms) and 34ms (± 9.7ms) on the Nexus 7
and LG G3. The step Persist DB had on both devices and also for both roles the same
average. The last step Create Payment Response 19 (± 13.2ms) 14ms (± 4.2ms) 15ms (±

50 CHAPTER 6. EVALUATION

5.0ms) 12 (± 0.8ms). Compared, the step Verify Signed Users and DB Persists consume
the most time. But the Verify Signed Users takes double the time to complete as payee
than as payer. This can be explained, that in the payee there exists two signed object,
One by the Initiator and one by the Responder. For the payer only the username of the
Responder is needed and only one object is signed. Further, the sum of the steps in the
Figure 6.3 make around 65% up to 75% of the measured time of Server Process. There
exists a gap that consumes a lot compared to the 4 described steps. An explanation for
the gap is, ther is the time which is needed to serialize a object o send it back to the client
consumes a part of the gap. But the gap is still there and one reasonable argument can be
the time an object needs to each step of the code even the step which are not performed
needs time. Another will be the programming language itself has settings which leads to
that. The real reason can not be said and a second evaluation has to be conducted to
verify the gap.

Figure 6.3: Mean and Standard Deviation Same Server

6.4.2 Cross-Server Payment

The Figure 6.4 shows the arithmetic average and the standard deviation of the essential
steps on the server during a cross-server payment. The last bar indicates the total time
required to complete the steps on the server. On the figure the steps which are part of
another steps are on the left site of the step that consist this step. Further, the bars are
divided into 2 group of colors. The two group of color represents the two server which are
involved in the cross-server payment. The arithmetic average and the standard deviation
are based on the results of Tables in Section G.5 Appendix G. Besides the step Server
Process the steps Trust Relation Process and the step Trusted Server Process are essential
steps on the server.. The Trust Relation Process consists of the steps:

6.4. PERFORMANCE MEASUREMENT FOR THE SERVER 51

� Server Check Accounts : Checks if the balance limits are not exceeded and if the
trust relation allows a payment.

� Sign Server : A payment request is signed by the server, Server Call, sends the
payment request to the trusted server and receives the payment response.

� Server Call : Sends the payment request to the trusted server and receives the
payment response.

� Decode Verify Server : Serialize the received response and verifies the signature.

The step Trust Relation Process is only proceeded if a cross-server payment has been
initialized. The other step Trusted Server Process is the time required for the trusted
server to do cheeks, verifications and manipulations. The atomic step are followed:

� Trusted Server Get Users : Returns the user which belong to the trusted server and
also the server information of the server that sent the request.

� Trusted Server Verify Server : Verifies that the signed payment request is from the
server that claims to be.

� Trusted Server Check Accounts : Checks if the balance limits are not exceeded and
if the trust relation allows a payment.

� Trusted Server Verify User : Verifies the signed payment object of the users.

� Trusted Server Persists DB : Stores the changes into the database.

There are more steps involved which are not shown in Figure 6.4. This means the sum of
the existing steps are not the total time of the Trusted Server Process. The same is valid
for the step Server Process. Minor steps have been ignored.
The total time measured for the Server Process took in average 438ms (± 56.2ms) and
418ms (± 36.2ms) as a payee and 391ms (± 32.2ms) and 408ms (± 408ms) as a payer.
More than half of the required time consumed the step Trust Relation Process with 303ms
(± 60.7ms) and 281ms (± 24.7) as a payee and 256ms (± 30.8ms) and 263ms (± 22.5ms)
as a payer. The Trust Relation Step consists of the server call to the other server. Hence,
the step Trust Relation Process consumes the most time on the server for a cross-payment
process. The step Trusted Server Verify Users has a time difference if the payment is ini-
tiated as a payee compared to a payer. In a payer role only the payer request is signed and
send to the server. The Responder (payee) sends his name to the Initiator for a payment
and therefore the trusted server has no payee request to verify.
Compared the measured performance of the step Trusted Server Process to the Server
Process the process accomplish by the trusted server consumed one third of the required
time. This is justifiable, the Trusted Server Process has multiple atomic steps to perform
before the response returns to the server of the Initiator. The atomic steps on the trusted
server are repetition of the atomic steps on the server of the Initiator. This means more
than half of the consumed time of Server Process is performed twice. Once the server
of the Initiator and once the trusted server proceeded the steps. The sum of the nested

52 CHAPTER 6. EVALUATION

steps (Get Users. Trust Relation Process, Verify Signed Users, Persists) of Server Process
makes up around 85% of the total time required for Server Process. The difference can
be explained with three further steps wich were not part of this evaluation. The steps
Decode Request at the beginning, Created Payment Response the payment response which
is returned back to the client and the Transfer Object, the object which serilaized and
send back. The Transfer Object consists of the object Create Server Payment.

6.5 Summarize

This Section summarize the Chapter and essential key findings are discussed::

� The NFC payment has been performed fast. A usual payment between users regis-
tered on the same server have performed in average of around 800ms. This means
from the start of the NFC up to the success notification. As a payer the measured
performance took in average around 50ms -100ms longer which is irrelevant.

� A cross-server payment performed in average around 1 up to 1.5 seconds. Con-
sidering that that two servers were involved during the payment request this time
is acceptable and applicable for instnat payments with Bitcoins. The cross-server
payment performed much faster than the MBPS used in the test-run in February
2014.

� The difference of the cross-server payments compared to usual payments is related
to the step Trust Relation Process see Figure 6.2. This step is only performed when
two users of different servers with on a trust relation do a payment over NFC. In
average this step took around 300ms as payer and 250ms as payee. The step is has
been the most time consuming step on the server.

� When compared the devices Nexus 7 and the LG G3, there was a time difference
for the payer and for the payee as Initiator. The Nexus 7 outperformed the LG G3
in every scenario. The main reason was that the LG G3 took in average more time
to perform for the step NFC Exchange and for the step NFC Notification. Hence,
both mentioned steps are proceeded over the device. The time difference has to be
device specific. Further evaluation should be considered on the NFC Library with
different devices.

� Approximately the Server Call consumed half of the required time to completed a
cross-server payment. This is due to nested HTTP request and also the steps which
are repeated on the trusted server. The evaluation on the server showed that the
total sum of the steps does not make the complete step of the Server Process. This
gaps have to be evaluated and checked if it can be optimized.

6.5. SUMMARIZE 53

F
ig

u
re

6.
4:

M
ea

n
an

d
S
ta

n
d
ar

d
D

ev
ia

ti
on

54 CHAPTER 6. EVALUATION

Chapter 7

Summary and Conclusions

Two test runs were conducted with success. Participants had the chance to pay their
consumption with Bitcoins by means of an Android device. To use the MBPS application
participants created a user account and topped their accounts with Bitcoins. The Bitcoins
were hold on a server maintained by the CSG group. The server served as a centralized
entity to store the user accounts and the Bitcoins paid in. This client/server architecture
is a complete opposite to the P2P nature of the Bitcoin network. Further, a centralized
server has disadvantages compared to a decentralized network based on accessibility and
distribution.
The goal of this thesis is to create a federation for MBPS servers. To enable payment in
less than a second, a client/server architecture will be used. However, MBPS servers can
federate allowing users from other MBPS servers. Furthermore, a web-frontend has to
be developed to administrate server in the federation network. Finally, participant have
to be allowed to chose a federation based on their own interest by means of an Android
Client. The performance of allowing cross-server payments has to be evaluated in com-
parison to the previous version. To achieve these goals a trust relation model has been
analysed, developed and tested. further, a web interface has been developed to adminis-
trated the trust relation between servers. For the web interface Angularjs has been used
as framework on the front-end. To distinguish users of the web interface and the Android
Client a role system has been implemented. Furthermore, the Android Client has been
extended to allow the user to decide which server stores the user account. Finally, the
NFC payment process has been extended to allow cross-server payments.
The cross-server payment has been evaluated with respect to the performance using the
previous version as baseline. The goal of the evaluation was to compare the new cross-
server payment and achieve a result close to the current performance. The result pointed
out that a cross-server payment took in average between 1 and 1.5 seconds. For the payee
as Initiator the Nexus 7 had an arithmetic average of 1193ms to completed a payment
compared to a usual payment with an average of 807ms. This is a increase of 47.8%. For
the scenario as payer the Nexus 7 had an arithmetic average of 1017ms compared to the
usual payment with an average of 744ms to completed a payment. This is an increase of
36.7%. The performance results for the cross-server payment is still in the range of the
required time around 1 seconds. The server call consumed the most time of the total mea-
sured time for a cross-server payment with around 65%. The reason the server call claims

55

56 CHAPTER 7. SUMMARY AND CONCLUSIONS

the most time is because of the second server. The server of the Initiator calls the server
of the Responder to verify and accept the payment. In addition, it has been observed
that the steps to satisfy the payment success have been repeated by the second server. A
further performance difference has been observed between the two devices Nexus 7 and
LG G3 both were used for the evaluation. The Nexus 7 outperformed the LG G3 in each
scenario. This has to be based on the specific features of each device.
For a future work, the next step is to make further evaluations on the key findings. This
means an analyse has to be conducted to reduce the repeated steps on both server in
consideration of the system Shibboleth [38]. Further, the devices specific features should
be analysed and further devices should be involved to the evaluation. Besides the im-
provement of the findings the Hyprid-Trust with an escrow account should be analysed
and implemented into the system. There should be a solution that operates mostly over
the existing web-fronted to create and remove an escrow account. The Bitcoin multisig
should be included to the development of the escrow account. Further, the user interface
of the web-site should be improved and new feature should be developed. For example,
the user gets rights to manage the user account besides the server accounts. Finally, a
point-of-sale should be integrated to the web-fronted, to allow customers like the Mensa
to manage their Bitcoins. This means they should get the right to access the web-site
and manage the exchange of the Bitcoins to another excepted currency by including a
provider to the web-site over the API.

Bibliography

[1] “Bitcoin.” http://bitcoin.org/en. Accessed: September 2014.

[2] “Neue zürcher zeitung, winklevoss-zwillinge planen bitcoin-fonds.” http://www.

nzz.ch/aktuell/digital/tyler-und-cameron-winklevoss-fonds-bitcoin-1.

18109996. Accessed: September 2014.

[3] “Das geld, das aufstreckt.” http://www.tagesanzeiger.ch/digital/internet/

Das-Geld-das-aufschreckt/story/29480474?track. Accessed: September 2014.

[4] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System.”https://bitcoin.
org/bitcoin.pdf. Accessed: September 2014.

[5] “Blockchain.” http://blockchain.info/en/stats. Accessed: September 2014.

[6] “Bitcoin Wiki, Confirmation.” https://en.bitcoin.it/wiki/Confirmation. Ac-
cessed: September 2014.

[7] T. Bamert, C. Decker, L. Elsen, R. Wattenhofer, and S. Welten, “Have a Snack,
Pay with Bitcoins,” 13th IEEE International Conference on Peer-to-Peer Computing
(P2P), Trento, Italy., September 2013.

[8] J. Memeti, M. A. Bekooglu, and S. Kaeser, “Bitcoin in Practice,” 2014.

[9] “Mensa uzh binzmühle.” http://www.mensa.uzh.ch/standorte/

mensa-uzh-binzmuehle.html. Accessed: September 2014.

[10] “Sbex - swiss bitcoin broker.” http://www.sbex.ch. Accessed: September 2014.

[11] S. Kaeser, “Improving the Mobile Bitcoin Payment System (MBPS),”Master’s thesis,
2014.

[12] J. Memeti, “Protocol Design and Implementation for a Fast and Reliable Mobile
Bitcoin Payment System (MBPS) with two-way NFC,” Master’s thesis, 2014.

[13] “Two-factor bitcoin.” https://bit2factor.org/. Accessed: June 2014.

[14] M. Rosenfeld, “Analysis of hashrate-based double-spending,” 2012.

[15] A. E., C. s., and K. G., “Two bitcoins at the price of one? double-spending attacks
on fast payments in bitcoin,” 2012.

57

58 BIBLIOGRAPHY

[16] “Android 4.4 kitkat market share grew just 0.4 percent in jan-
uary.” http://www.theinquirer.net/inquirer/news/2326994/

android-44-kitkat-market-share-grew-just-04-percent-since-january.
Accessed: September 2014.

[17] “Most common sdk versions.” http://www.appbrain.com/stats/

top-android-sdk-versions. Accessed: September 2014.

[18] “Game theory.” http://www.investopedia.com/terms/g/gametheory.asp. Ac-
cessed. September 2014.

[19] T. L. Turocy and B. von Stengel, “Game theory”,” 2001.

[20] G. W., S. R., and S. B., “An experimental analysis of ultimatum bargaining,” Eco-
nomic Behavior and Organization, vol. 3, pp. 367–388, December 1982.

[21] B. J., D. J., and M. K, “Trust, reciprocity, and social history,” Games and Economic
Behavior, vol. 10, pp. 122–142, July 1995.

[22] B. M. and U. J.C., “Does the trust game measure trust?,” Economics Letters, vol. 115,
no. 1, pp. 20–23, 2012.

[23] “Bestiary of behavioral economics/trust game.” http://en.wikibooks.org/wiki/

Bestiary_of_Behavioral_Economics/Trust_Game. Accessed: September 2014.

[24] “Escrow.” http://www.investopedia.com/terms/e/escrow.asp. Accessed:
September 2014.

[25] “Bitcoin escrow service.”https://en.bitcoin.it/wiki/Bitcoin_Escrow_Service.
Accessed: September 2014.

[26] “Multisig: The future of bitcoin.” http://bitcoinmagazine.com/11108/

multisig-future-bitcoin/. Accessed: September 2014.

[27] “Silk road shut down, alleged owner arrested.”http://bitcoinmagazine.com/7362/
silk-road-shut-down-alleged-owner-arrested/. Accessed: September 2014.

[28] “Transaction malleability: Mtgox’s latest woes.” http://bitcoinmagazine.com/

10093/transaction-malleability-mtgoxs-latest-woes/. Accessed: September
2014.

[29] “Joint statement regarding mtgox.” http://blog.coinbase.com/post/

77766809700/joint-statement-regarding-mtgox. Accessed: September 2014.

[30] “Almost half a billion worth of bitcoins van-
ish.” http://online.wsj.com/news/article_email/

SB10001424052702303801304579410010379087576-lMyQjAxMTA0MDIwNzEyNDcyWj.
Accessed: September 2014.

[31] “Securing your wallet.” https://bitcoin.org/en/secure-your-wallet. Accessed:
September 2014.

BIBLIOGRAPHY 59

[32] “Contracts.”https://en.bitcoin.it/wiki/Contracts#Theory. Accessed: Septem-
ber 2014.

[33] “The future of bitcoin escrow.” http://www.opine.me/

future-of-bitcoin-escrow/. Accessed: September 2014.

[34] R. Saadi, J.-M. Pierson, and L. Brunie, “T2d: a peer to peer trust management
system based on disposition to trust,” in SAC ’10 Proceedings of the 2010 ACM
Symposium on Applied Computing, pp. 1472–1478, ACM New York, March 2010.

[35] L. Xiong and L. Liu, “Peertrust: supporting reputation-based trust for peer-to-peer
electronic communities,” vol. 16, Knowledge and Data Engineering, IEEE Transac-
tions on, July 2004.

[36] X. Liu, M. Zheng, and Y. Liu, “Dynamictrust: three-dimensional dynamic comput-
ing model of trust in peer-to-peer networks,” in GEC ’09 Proceedings of the first
ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 1–6, ACM
New York, June 2012.

[37] S. Liu, Y. Yu, J. Xu, and Z. Huang, “A preventing fraud trust model in p2p net-
works,” in Parallel and Distributed Processing Symposium Workshops and PhD Fo-
rum (IPDPSW), 2012 IEEE 26th International, pp. 2305 – 2311, IEEE, May 2012.

[38] “Shibboleth.” http://shibboleth.net/. Accessed: September 2014.

[39] “What is shibboleth?.” http://shibboleth.net/about/. Accessed: September
2014.

[40] “Spring.” http://spring.io/. Accessed: October 2014.

[41] “Spring-security.” http://projects.spring.io/spring-security/. Accessed: Oc-
tober 2014.

[42] “10 status code definitions.” http://www.w3.org/Protocols/rfc2616/

rfc2616-sec10.html. Accessed: October 2014.

[43] “PostgreSQL.” http://www.postgresql.org. Accessed: October 2014.

[44] “Hibernate.” http://hibernate.org. Accessed: September 2014.

[45] “Javaserver pages technology.” http://www.oracle.com/technetwork/java/

javaee/jsp/index.html. Accessed: October 2014.

[46] “bitcoind.” https://en.bitcoin.it/wiki/Bitcoind. Accessed: October 2014.

[47] “Bitcoin-JSON-RPC-Client.” https://bitbucket.org/azazar/

bitcoin-json-rpc-client/wiki/Home. Accessed: October 2014.

[48] “Bitstamp.” https://www.bitstamp.net/. Accessed: October 2014.

[49] “Xeiam XChange.” http://xeiam.com/xchange. Accessed: October 2014.

60 BIBLIOGRAPHY

[50] “Mappingjacksonhttpmessageconverter.” http://docs.spring.io/

spring-framework/docs/4.0.x/javadoc-api/org/springframework/http/

converter/json/MappingJacksonHttpMessageConverter.html. Accessed: Octo-
ber 2014.

[51] “Java persistence api.”http://www.oracle.com/technetwork/java/javaee/tech/
persistence-jsp-140049.html. Accessed: October 2014.

[52] “Angularjs.” https://angularjs.org/. Accessed: October 2014.

[53] “Angular http service.” https://docs.angularjs.org/api/ng/service/$http.
Accessed: October 2014.

[54] “Cross-origin resource sharing.” http://www.w3.org/TR/cors/. Accessed: October
2014.

[55] “About dbunit.” http://dbunit.sourceforge.net/. Accessed: October 2014.

[56] “Nexus 7 made for what matters..” http://www.google.ch/nexus/7/. Accessed:
October 2014.

[57] “Lg g3.” {http://www.lg.com/ch_de/mobiltelefone/

lg-D855-g3}.\newblockAccessed:October2014.\bibitem{hce2}‘‘{Host-basedCardEmulation}.

’’\urlhttps://developer.android.com/guide/topics/connectivity/nfc/hce.html. Ac-
cessed: October 2014.

[58] “Advanced card systems ltd., acr122u usb nfc reader.” http://www.acs.com.hk/en/
products/3acr122u-usb-nfc-reader. Accessed: Semptember 2014.

[59] “Game theory.” http://www.cdam.lse.ac.uk/Reports/Files/cdam-2001-09.pdf.
Accessed: September 2014.

[60] “The basics of game theory.” http://www.investopedia.com/articles/

financial-theory/08/game-theory-basics.asp. Accessed: September 2014.

List of Figures

1.1 Example of a Federation Mechanism . 3

4.1 Federation of Servers . 19

4.2 Home interface . 30

5.1 Architecture . 34

5.2 Create Trust Relation . 36

5.3 Mean and Standard Deviation . 38

6.1 Mean and Standard Deviation NFC Payment 44

6.2 Mean and Standard Deviation Cross-Server NFC Payment 47

6.3 Mean and Standard Deviation Same Server 50

6.4 Mean and Standard Deviation . 53

A.1 Login . 67

A.2 Registration . 67

A.3 Main . 67

A.4 History . 68

A.5 Request . 68

A.6 Accept/Decline request . 68

A.7 Login . 69

A.8 Registration . 69

A.9 Main . 69

A.10 History . 69

61

62 LIST OF FIGURES

A.11 Choose Payment method . 69

A.12 Request . 69

A.13 Send . 70

A.14 Establish NFC . 70

A.15 Payment in Progress . 70

C.1 Login Screen . 78

C.2 Enter Server URL . 78

C.3 Login Screen . 79

C.4 Enter Server URL . 79

C.5 Login Screen . 80

C.6 Registration Screen . 80

C.7 Relation view . 81

C.8 History view . 81

C.9 Navigation menu . 82

D.1 Mock Login . 84

D.2 Mock Home . 84

D.3 Mock Relation . 85

D.4 Mock Edit . 85

D.5 Mock History . 86

D.6 Mock Users . 86

D.7 Mock Overview . 87

D.8 Mock Guideline . 87

E.1 Web Login . 89

E.2 Web Login . 90

E.3 Web Relation . 90

E.4 Web Server Acounts . 91

E.5 Web Users . 91

LIST OF FIGURES 63

E.6 Web History . 92

E.7 Web Activities . 92

E.8 Web Messages . 93

E.9 Web Messages . 93

F.1 No-Trust Buyer as Initiator . 95

F.2 No-Trust Seller as Initiator . 96

F.3 Upgrade Trust Level . 96

F.4 Downgrade Trust Level . 97

F.5 Full-Trust Cross-Server NFC Transactions (Buyer) 97

64 LIST OF FIGURES

List of Tables

3.1 Requirements . 16

4.1 Requirements . 18

4.2 Requirements . 28

A.1 Pre-requirements of first Test Run . 70

A.2 Pre-requirements of second Test Run . 71

G.1 Performance Measurements Payment Nexus 7 as Payee (1-10) 100

G.2 Performance Measurements Payment Nexus 7 as Payee (11-20) 100

G.3 Performance Measurements Payment Nexus 7 as Payer (1-10) 100

G.4 Performance Measurements Payment Nexus 7 as Payer (11-20) 101

G.5 Performance Measurements Payment LG G3 as Payee (1-10) 101

G.6 Performance Measurements Payment LG G3 as Payee (11-20) 101

G.7 Performance Measurements Payment LG G3 as Payer (1-10) 102

G.8 Performance Measurements Payment LG G3 as Payer (11-20) 102

G.9 Performance Measurements Nexus 7 as Payee (1-10) 103

G.10 Performance Measurements Nexus 7 as Payee (11-20) 103

G.11 Performance Measurements Nexus 7 as Payer (1-10) 104

G.12 Performance Measurements Nexus 7 as Payer (11-20) 104

G.13 Performance Measurements LG3 as Payee (1-10) 105

G.14 Performance Measurements LG3 as Payee (11-20) 105

G.15 Performance Measurements LG3 as Payer (1-10) 106

65

66 LIST OF TABLES

G.16 Performance Measurements LG3 as Payer (11-20) 106

G.17 Performance Measurements Server Nexus 7 Payee 107

G.18 Performance Measurements Nexus 7 Same Server Payee 107

G.19 Performance Measurements Nexus 7 Same Server Payer 108

G.20 Performance Measurements LG G3 Same Server Payer 108

G.21 Performance Measurements LG G3 Same Server Payee 108

G.22 Performance Measurements Nexus 7 Different Server Payee 109

G.23 Performance Measurements Nexus 7 Different Server Payer 110

G.24 Performance Measurements LG G3 Different Server Payee 111

G.25 Performance Measurements LG G3 Different Server Payer 112

Appendix A

Comparison MBPS and CoinBlesk

In Section A.1 few screenshots of MBPS and CoinBlesk are introduced. Section A.2
presents numbers and facts about both test runs. More information about MBPS and
CoinBlesk are provided in the reports [8, ?].

A.1 Screenshots Mobile Client

The figures from A.1 to A.6 representing views of the MBPS application. The main view
in figure A.3 has features for current balance and buttons to redirect the user to the pay
(accepting/declining request), the receive (requesting Bitcoins) and the history (made
transactions) view.

Figure A.1: Login Figure A.2: Registration Figure A.3: Main

67

68 APPENDIX A. COMPARISON MBPS AND COINBLESK

Figure A.4: History Figure A.5: Request
Figure A.6: Ac-
cept/Decline request

The views of CoinBlesk makes it obvious that views have been redesigned to the need of
the users. The main view in figure A.9 consist of the current balance, the last transaction
made, an animation bring out that the device is ready for a NFC transaction, and a button
that redirects the user to the payment option view see figure A.11. In the payment option
view the user can select which option will be performed to transfer Bitcoins. The send
view in figure A.13 is a new features that was not available in the MBPS application. The
user can send the entered amount to another user by holding the devices together. By the
way, there is no view to redirect for accepting or declining a request. This one is replaced
by the animation aforementioned. In addition, the views in the figure A.14 and A.15 are
new and support the user during the NFC connection with feedback.

A.1. SCREENSHOTS MOBILE CLIENT 69

Figure A.7: Login Figure A.8: Registration Figure A.9: Main

Figure A.10: History
Figure A.11: Choose Pay-
ment method

Figure A.12: Request

70 APPENDIX A. COMPARISON MBPS AND COINBLESK

Figure A.13: Send
Figure A.14: Establish
NFC

Figure A.15: Payment in
Progress

A.2 Results

To understand the scope of the first and second test run important numbers and facts are
provided.

A.2.1 Test Run in February 2014

Duration Date Mensa equip-
ment

Required OS Available Devices

1 week 10.02 - 14.02 Nexus 10 tablet
with NFC reader
ACR122u [58]

Android 4.4.
(kitkat) with HCE

Nexus 5, 7, 10

Table A.1: Pre-requirements of first Test Run

A.2.2 Test Run in September 2014

A.2. RESULTS 71

Duration Date Mensa
equip-
ment

Required
OS

Available Devices

3 week 01.09 - 19.09 Nexus 10
tablet with
NFC reader
ACR122u
[58]

Android
4.4.
(kitkat)
with HCE

All Devices expect HTC One(M7)

Table A.2: Pre-requirements of second Test Run

A.2.3 Result

February 2014 September 2014
Transactions in the Mensa 42 117

Total Value in CHF 187.5 774.95

72 APPENDIX A. COMPARISON MBPS AND COINBLESK

Appendix B

Game Theory

Section B.1 is a glossar of definitions used in game theory [59, 60]. Section B.2 provides
more information about the experiments in [21, 22].

B.1 Glossary

Backward induction
The process of deducing a problem or a scenario backwards from the end to determine a
sequence of optimal actions.

Game
A game is the formal description of a set of circumstances that has a result dependent on
the actions of decision maker of a strategy.

Game Theory
Game theory is the formal study of decision-making.

Information set
The information available at a given time in the game. Perfect information is known and
it describes that at any point every action that haven been made is known to all.

Nash Equilibrium
A Nash equilibrium is a list of strategies, where the optimal outcome of a game is one
where player has an incentive to deviate from his or her chosen strategy after considering
an opponent’s choice in which no player can unilaterally change his strategy and get a
better payoff.

Payoff
A payoff is a number (utility) that a player receives from arriving at a particular outcome.

73

74 APPENDIX B. GAME THEORY

The expected payoff incorporates the player’s attitude towards risk.

Player (Individual)
A player is an agent who makes decisions in a game.

Rationality
The attitude of a player seeking the maximum payoff.

Strategy
A strategy is one of the given possible actions of a player.

B.2 Experiments

In a standard economical assumption individuals act in their own self interest. To prove
this assumption several experiments were conducted. Below two experiments are intro-
duced which set up a trust game to observe how individuals act in relation to the standard
economic assumption.

First Experiment - 1995 ([21]))
The procedure in this game is as followed: Player 1 and 2 are endowed with 10 Dollar.
Player can decide how much of the 10 Dollar will be transferred to the player 2. The
experimenter triples the amount and sent. Player 2 is informed about the transfer of
player 1 and decides how much will be send back. In standard prediction player 1 will
send nothing and player 2 will do the same. The same is valid for backward induction.
The results were followed:

� 32 games were tried.

� 30 games violated under the standard economic assumption.

� Vast majority of palyer 1 make a transfer.

� Player 2 sends back money.

� reflects unconditional kindness (altruism) or trust

� In average, player 1 gets back the amount that is sent

Second Experiment - 2010 ([22])
The setup of this experiment was done by first-year undergraduate students at the uni-
versity of Lausanne. The first player (mover) were endowed with 10 Swiss francs and the
second player altered between three option of 0, 10 and 20 Swiss francs. In addition, both
player were informed about the situation of the other paired player. The same procedure
was valid here like in experiment above and the result were followed:

B.2. EXPERIMENTS 75

� The game was done in 4 sessions. The session were organized in two methodological
dimensions: manual vs internet-based games and between-subject design vs within-
subject design.

� First player send in average 7.04 of their 10 Swiss francs to the second player and
second player send 11.02 Swiss francs back.

� Only a small fraction conform to the perfect equilibrium with pure self-interest, by
giving nothing. 11 % of first players and 20 % of second players in four sessions
fulfil the selfishness.

Summarized
The experiments in both tests disprove the assumption under standard economics. One
explanation why the players send money to another player can be related to reputation
of trustworthiness. For example, when the trail was run multiple time between the same
players, there is a reliableness build. But, as the majority of first players send money to
the second, even on the first run of the game, an alternative explanation to the results is
needed.
An alternative approach, denies that self-interest is the sole motivator to human actions.
As Berg states, ”Evolutionary models predict the emergence of trust because it maximizes
genetic fitness.” [21]. This will explain the action under the the trust game, at least for
the first player. The explanation for the second player might depend on the evolutionary
innateness of trust. Berg suggests that the response of reciprocation is triggered by the
second player viewing that the fisrt players intend is an attemot to use trust to improve
the outcome for both [23].

76 APPENDIX B. GAME THEORY

Appendix C

Android Client Mock-ups and
Screenshoots

Section C.1 introduces the mock-ups created during the analysing and design process.
The final screenshoots are presented in Section C.2.

C.1 Mock-Ups

Figure C.1 shows the the extension made to the Login screen. The description of of ”Server
URL eingebn” enables the user to enter the URL of the trusted server. After tapping on
this description a pop up shows up. Figure C.2 is the pop up where the user can enter
the URL. This design allows the user to not be concerned with server url an instead focus
on the sign in. Once entered the url this url will be remembered until it is changed.
Figure C.3 shows the extensions of an additional column. This column is used to enter
the url of the server that should persists the user account of the user. The next Figure
C.4 shows an view which does not exists in the previous solutions. This view shows the
different trust relation with other servers. The name, the trust level, the active balance
and the balance limit is shown.

C.2 Screenshots

From Figure C.5 the improvements are shown. The Figure C.5 and C.6 shows the login
and the registration screens. The improvements are made very simple and match to
the current layout. Figure C.7 shows the new view that represents the trust relations
between the servers. The most important informations for a user is given back. There
are additional improvements done which were included during the implementation. Those
improvements should support the user to focus on the important information. Figure C.8
shows the new look and feel of the history screen.

77

78 APPENDIX C. ANDROID CLIENT MOCK-UPS AND SCREENSHOOTS

Figure C.1: Login Screen Figure C.2: Enter Server URL

C.2. SCREENSHOTS 79

Figure C.3: Login Screen Figure C.4: Enter Server URL

80 APPENDIX C. ANDROID CLIENT MOCK-UPS AND SCREENSHOOTS

Figure C.5: Login Screen Figure C.6: Registration Screen

C.2. SCREENSHOTS 81

Figure C.7: Relation view Figure C.8: History view

82 APPENDIX C. ANDROID CLIENT MOCK-UPS AND SCREENSHOOTS

Figure C.9: Navigation menu

Appendix D

Web Page mock-ups and
Screenshoots

The mock-ups and screenshots of the Web-page are illustrated in this Section. Section
D.1 shows the mock-ups generated during the analyse phase.

D.1 Mock-Ups

The Login interface D.1 is very simple and has two text areas that serve as sign in. The
home interface is the standard interface if logged. There is all important information
shown for the user. The Bitcoin amount in the whole system, the last server transactions,
credentials of the logged user and the admin list. The user can updated the email address
or the password. Additional new users can be invited to join. The Figures D.3 and D.4
are related to the trust relation. The first picture shows a list of trusted servers. Besides
the name it consists of further attributes concerning about different kind of balances.
The second interface is a more detailed look on one server sharing a trust relation. The
purpose for this interface is to manage the relation between each other. This means al-
tering the trust level, the limit for the balance, the payout rules and further more. The
history interface lists the accomplished server transaction ordered by the most current
transaction shown in Figure D.5. Figure D.6 illustrates all user from the system. The
listed users are mixed and can be in the role of User or Admin or Both. The last two in-
terfaces are neglected, due to the fact that those interfaces serve only as information pools.

83

84 APPENDIX D. WEB PAGE MOCK-UPS AND SCREENSHOOTS

Figure D.1: Mock Login

Figure D.2: Mock Home

D.1. MOCK-UPS 85

Figure D.3: Mock Relation

Figure D.4: Mock Edit

86 APPENDIX D. WEB PAGE MOCK-UPS AND SCREENSHOOTS

Figure D.5: Mock History

Figure D.6: Mock Users

D.1. MOCK-UPS 87

Figure D.7: Mock Overview

Figure D.8: Mock Guideline

88 APPENDIX D. WEB PAGE MOCK-UPS AND SCREENSHOOTS

Appendix E

Web-Site Screenshots

This Appendix shows the Screenshots of the web interface. The main page described in
Section 4.5.

Figure E.1: Web Login

89

90 APPENDIX E. WEB-SITE SCREENSHOTS

Figure E.2: Web Login

Figure E.3: Web Relation

91

Figure E.4: Web Server Acounts

Figure E.5: Web Users

92 APPENDIX E. WEB-SITE SCREENSHOTS

Figure E.6: Web History

Figure E.7: Web Activities

93

Figure E.8: Web Messages

Figure E.9: Web Messages

94 APPENDIX E. WEB-SITE SCREENSHOTS

Appendix F

Sequence Diagram

This appendix shows the sequence diagrams which have been modelled during the analy-
sis. The Full-Trust as Initiator as payee and the create Account are discussed in Chapter
5 Section 5.2.

Figure F.1: No-Trust Buyer as Initiator

95

96 APPENDIX F. SEQUENCE DIAGRAM

Figure F.2: No-Trust Seller as Initiator

Figure F.3: Upgrade Trust Level

97

Figure F.4: Downgrade Trust Level

Figure F.5: Full-Trust Cross-Server NFC Transactions (Buyer)

98 APPENDIX F. SEQUENCE DIAGRAM

Appendix G

Performance Measurement Results

This Appendix contains the performance measurements of the NFC payment with and
without cross-server payment. A detailed analysis is provided in Chapter 6.

The tables in this Appendix shows the performance measurement for a NFC payment
between two devices. The performance measurement are split into steps. The steps be-
tween a NFC payment of two user from the same server and the NFC payment between
two users from trust related servers differ in their steps. The values in all tables are
indicated in milliseconds. The measurements have been repeated 20 times for each role
payer and payee. The repetitions are represented by the columns 1 to 20. The last two
columns of every table shows the arithmetic average and the standard deviation of the
given step. The last row of each table contains the total time required for a NFC payment
to complete. The sum of all steps are not the total time required for a payment. Minor
manipulations have been not considered.
A second evaluation has been conducted. Only the server site of the payment over NFC
has been addressed. The Section G.4 and G.5 shows the results of the evaluation. For
each device the role has been repeated 10 times.
The measurements have been conducted with the devices Google Nexus 7 with a Broad-
com NFC chip and LG G3 with a NXP NFC chip. Section G.1 contains the performance
measurements for the NFC payments from users of the same server. Section G.2 contains
the performance measurements for the NFC payments from users of different servers.

G.1 Results Same Server

Tables G.1 and G.2 show the performance measurement for the Nexus 7 in the payee role.
The next Tables G.3 and G.4 show the performance measurement for the Nexus 7 in the
payer role. The same for the Tables G.5 and G.6 in payee role and tables G.7 and G.8 in
payer role. The last four tables have been measured with the LG G3.

99

100 APPENDIX G. PERFORMANCE MEASUREMENT RESULTS

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

NFC
Exchange

361 335 382 416 445 394 420 376 321 363 371.90 9.90

Server Call 256 424 281 352 288 334 438 246 354 300 311.75 23.33
Server
Process

169 158 163 249 167 167 256 141 224 178 176.35 22.63

NFC
Notification

91 135 107 87 93 167 98 154 129 133 120.95 11.31

Total Time 709 897 776 859 827 897 959 778 807 798 807.45 46.67

Table G.1: Performance Measurements Payment Nexus 7 as Payee (1-10)

Step 11 12 13 14 15 16 17 18 19 20 Mean Std.
Dev.

NFC
Exchange

303 318 445 354 328 346 394 391 371 375 371.90 9.90

Server Call 250 251 327 303 325 347 294 277 299 289 311.75 23.33
Server
Process

132 135 212 195 197 216 149 138 144 137 176.35 22.63

NFC
Notification

93 151 133 103 151 100 117 103 167 107 120.95 11.31

Total Time 709 897 776 859 827 897 959 778 807 798 807.45 46.67

Table G.2: Performance Measurements Payment Nexus 7 as Payee (11-20)

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

NFC
Exchange

272 166 214 225 321 253 160 171 214 214 252.00 41.17

Server Call 323 230 232 234 286 248 213 264 256 279 289.50 26.42
Server
Process

217 125 123 131 199 132 124 159 124 167 161.00 28.78

NFC
Notification

221 208 151 211 174 182 165 170 167 200 177.90 35.36

Total Time 818 606 599 673 782 685 539 607 639 695 744.00 63.37

Table G.3: Performance Measurements Payment Nexus 7 as Payer (1-10)

G.1. RESULTS SAME SERVER 101

Step 11 12 13 14 15 16 17 18 19 20 Mean Std.
Dev.

NFC
Exchange

271 235 161 265 221 219 200 212 204 232 252.00 41.17

Server Call 227 271 268 280 284 245 286 278 268 256 289.50 26.42
Server
Process

124 151 158 162 157 132 171 150 109 105 161.00 28.78

NFC
Notification

165 175 172 177 164 189 171 216 175 180 177.90 35.36

Total Time 665 683 602 724 670 654 659 708 648 670 744.00 63.37

Table G.4: Performance Measurements Payment Nexus 7 as Payer (11-20)

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

NFC
Exchange

405 387 483 448 462 408 457 467 317 271 423.80 33.94

Server Call 339 333 363 357 211 370 363 360 364 476 368.50 67.18
Server
Process

162 166 152 157 76 216 167 169 168 237 158.85 15.56

NFC
Notification

124 164 163 176 160 213 146 173 208 182 200.50 19.48

Total Time 875 888 1016 989 836 994 973 1006 893 936 976.35134.35

Table G.5: Performance Measurements Payment LG G3 as Payee (1-10)

Step 11 12 13 14 15 16 17 18 19 20 Mean Std.
Dev.

NFC
Exchange

455 412 473 295 408 493 446 475 461 453 423.80 33.94

Server Call 260 316 263 391 415 516 428 408 403 434 368.50 67.18
Server
Process

60 152 152 227 146 192 140 149 149 140 158.85 15.56

NFC Noti-
fication

149 257 161 199 151 178 182 221 177 174 200.50 19.48

Total Time 869 994 899 903 979 1197 1062 1108 1045 1065 976.35134.35

Table G.6: Performance Measurements Payment LG G3 as Payee (11-20)

102 APPENDIX G. PERFORMANCE MEASUREMENT RESULTS

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

NFC
Exchange

239 395 350 331 356 325 380 364 363 298 302.00 89.10

Server Call 300 254 343 227 248 213 363 268 242 296 297.50 3.54
Server
Process

101 130 140 124 129 116 147 123 108 143 127.50 37.48

NFC
Notification

229 281 303 167 239 190 244 201 272 232 243.00 19.80

Total Time 771 936 1002 727 847 730 996 836 884 832 845.00 104.65

Table G.7: Performance Measurements Payment LG G3 as Payer (1-10)

Step 11 12 13 14 15 16 17 18 19 20 Mean Std.
Dev.

NFC
Exchange

363 392 374 348 393 384 363 261 372 365 302.00 89.10

Server Call 296 307 306 296 281 236 297 370 352 295 297.50 3.54
Server
Process

140 138 129 116 113 117 106 124 140 154 127.50 37.48

NFC Noti-
fication

184 346 331 279 228 326 299 294 282 257 243.00 19.80

Total Time 846 1047 1015 925 917 960 963 928 1010 919 845.00104.65

Table G.8: Performance Measurements Payment LG G3 as Payer (11-20)

G.2 Results Different Server

The Tables G.9, G.10, G.12 and G.12 have been conducted by the Nexus 7. The first
two Tables G.9 and G.10 show the performance measurement in the payee role. Tables
G.11 and G.12 show the performance measurement in the payer role. The next Tables
G.13, G.14, G.15 and G.16 show the performance measurement conducted with the LG
G3. The Tables G.13 and G.14 have been in the payee role and the Tables G.15 and G.16
have been in the payer role.

G.3 Results Atomic Steps One Server

This are the atomic steps of a payment on the server. The evaluation has been tested
for the payee and payer. But the scenario for the test was a NFC payment on the same
server. This means both users are registered on the same server.

G.3. RESULTS ATOMIC STEPS ONE SERVER 103

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

NFC
Exchange

389 280 419 355 353 301 358 292 432 418 339,00 70,71

Server Call 774 829 774 731 389 480 752 698 355 657 699,00 106,07

Server Process 595 599 640 532 277 352 197 419 252 469 477,50 166,17

Trust
Relation
Process

366 437 568 338 210 252 143 289 128 341 304,00 87,68

Trusted
Server Call

292 374 150 249 183 216 109 188 99 291 246,50 64,35

Trusted
Server Process

246 321 118 202 167 196 92 158 85 247 205,50 57,28

NFC
Notification

144 103 154 97 122 100 97 95 138 103 153 12.7

Total Time 1309 1214 1349 1184 866 884 1210 1087 927 1180 1193,00164,05

Table G.9: Performance Measurements Nexus 7 as Payee (1-10)

Step 11 12 13 14 15 16 17 18 19 20 Mean Std.
Dev.

NFC
Exchange

374 366 378 435 460 372 354 357 427 289 339,00 70,71

Server Call 634 770 678 693 791 799 720 605 727 624 699,00 106,07

Server
Process

488 586 450 467 545 546 462 411 455 360 477,50 166,17

Trust
Relation
Process

312 471 281 325 411 393 309 276 333 242 304,00 87,68

Trusted
Server Call

255 408 233 248 341 311 259 185 269 201 246,50 64,35

Trusted
Server
Process

210 364 193 202 305 279 221 160 219 165 205,50 57,28

NFC
Notification

102 102 132 142 103 111 142 131 140 162 153 12.7

Total Time 1111 1239 1190 1271 1356 1285 1218 1098 1298 1077 1193,00164,05

Table G.10: Performance Measurements Nexus 7 as Payee (11-20)

104 APPENDIX G. PERFORMANCE MEASUREMENT RESULTS

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

NFC
Exchange

264 151 253 164 214 207 214 261 357 231 228,90 31,82

Server Call 757 703 585 634 460 643 670 750 474 500 593,95 70,71

Server Process 637 387 390 412 352 387 458 438 345 347 400,45 150,61

Trust Relation
Process

445 228 259 298 248 272 311 225 198 221 267,35 88,39

Trusted
Server Call

344 174 180 250 201 204 238 167 151 168 210,90 95,46

Trusted
Server Process

237 144 140 222 152 171 203 137 125 136 175,85 42,43

NFC
Notification

225 180 226 174 185 176 312 183 160 163 189 12

Total Time 1247 1036 1066 974 867 1032 1198 1195 992 895 1016,95144,96

Table G.11: Performance Measurements Nexus 7 as Payer (1-10)

Step 11 12 13 14 15 16 17 18 19 20 Mean Std.
Dev.

NFC
Exchange

242 158 238 212 225 297 236 247 188 219 228,90 31,82

Server Call 445 607 544 572 725 616 568 335 634 657 593,95 70,71

Server Process 315 419 388 397 514 381 398 181 439 424 400,45 150,61

Trust Relation
Process

192 290 279 205 402 255 243 119 337 320 267,35 88,39

Trusted Server
Call

147 245 238 151 361 204 195 97 294 209 210,90 95,46

Trusted Server
Process

121 217 211 128 334 167 164 74 257 177 175,85 42,43

NFC
Notification

186 161 173 213 180 175 221 176 205 165 189 12

Total Time 875 928 957 999 1132 1089 1027 759 1029 1042 1016,95144,96

Table G.12: Performance Measurements Nexus 7 as Payer (11-20)

G.3. RESULTS ATOMIC STEPS ONE SERVER 105

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

NFC
Exchange

557 453 421 479 321 489 456 403 451 444 505,00 73,54

Server Call 817 699 689 742 638 634 775 781 559 659 759,00 82,02

Server
Process

520 423 482 400 428 433 436 492 420 504 469,00 72,12

Trust
Relation
Process

425 242 318 261 289 285 277 274 273 331 349,50 106,77

Trusted
Server Call

386 192 212 207 235 225 211 217 216 255 304,00 115,97

Trusted
Server
Process

363 154 173 174 190 181 174 173 178 212 269,00 132,94

NFC
Notification

197 175 180 190 172 119 163 209 175 182 191.95 42.43

Total Time 1580 1330 1292 1414 1142 1246 1411 1396 1188 1289 1460,00169,71

Table G.13: Performance Measurements LG3 as Payee (1-10)

Step 11 12 13 14 15 16 17 18 19 20 Mean Std.
Dev.

NFC
Exchange

392 471 456 430 480 284 406 413 292 453 505,00 73,54

Server Call 695 833 596 780 793 757 771 619 650 701 759,00 82,02

Server
Process

452 537 420 516 468 445 448 374 393 418 469,00 72,12

Trust
Relation
Process

305 373 272 373 263 303 288 222 254 274 349,50 106,77

Trusted
Server Call

248 257 218 321 210 250 214 167 202 222 304,00 115,97

Trusted
Server
Process

199 192 170 174 167 206 184 137 170 175 269,00 132,94

NFC
Notification

181 165 181 179 210 255 189 161 185 180 191.95 42.43

Total Time 1272 1471 1238 1403 1500 1299 1372 1196 1132 1340 1460,00169,71

Table G.14: Performance Measurements LG3 as Payee (11-20)

106 APPENDIX G. PERFORMANCE MEASUREMENT RESULTS

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

NFC
Exchange

324 408 143 335 363 375 0 321 201 253 345,00 29,70

Server Call 617 718 471 605 623 501 583 582 625 612 562,50 77,07

Server
Process

418 537 383 460 392 289 410 405 528 419 377,50 57,28

Trust
Relation
Process

269 350 244 269 245 155 271 268 387 265 245,50 33,23

Trusted
Server Call

214 263 189 210 186 111 216 211 303 203 183,00 43,84

Trusted
Server
Process

169 197 156 167 151 94 177 167 251 158 143,00 36,77

NFC
Notification

221 179 245 179 286 303 176 285 173 326 245.5 34.65

Total Time 1172 1308 860 1126 1282 1182 761 1190 1000 1194 1159,0018,38

Table G.15: Performance Measurements LG3 as Payer (1-10)

Step 11 12 13 14 15 16 17 18 19 20 Mean Std.
Dev.

NFC
Exchange

262 119 157 374 374 278 374 280 362 366 345,00 29,70

Server Call 703 484 781 547 370 729 619 596 609 508 562,50 77,07

Server
Process

515 394 208 260 166 434 388 368 375 337 377,50 57,28

Trust
Relation
Process

324 258 133 154 112 312 250 240 217 222 245,50 33,23

Trusted
Server Call

266 193 99 115 0 261 197 180 170 152 183,00 43,84

Trusted
Server Call

266 193 99 115 0 261 197 180 170 152 183,00 43,84

Trusted
Server
Process

219 169 83 102 87 219 156 153 145 117 143,00 36,77

NFC
Notification

263 134 123 344 313 349 287 393 279 270 245.5 34.65

Total Time 1232 738 1070 1269 1066 1373 1292 1279 1254 1146 1159,0018,38

Table G.16: Performance Measurements LG3 as Payer (11-20)

G.4. RESULTS ATOMIC STEPS ONE SERVER 107

Step 11 12 13 14 15 16 17 18 19 20 Mean Std.
Dev.

NFC
Exchange

262 119 157 374 374 278 374 280 362 366 345,00 29,70

Server Call 703 484 781 547 370 729 619 596 609 508 562,50 77,07

Server
Process

515 394 208 260 166 434 388 368 375 337 377,50 57,28

Trust
Relation
Process

324 258 133 154 112 312 250 240 217 222 245,50 33,23

Trusted
Server Call

266 193 99 115 0 261 197 180 170 152 183,00 43,84

Trusted
Server Call

266 193 99 115 0 261 197 180 170 152 183,00 43,84

Trusted
Server
Process

219 169 83 102 87 219 156 153 145 117 143,00 36,77

Total Time 1232 738 1070 1269 1066 1373 1292 1279 1254 1146 1159,0018,38

Table G.17: Performance Measurements Server Nexus 7 Payee

G.4 Results Atomic Steps One Server

This are the result for a cross-server payment. Only the steps for the server has been
evaluated. In this scenario two server are involved in the payment.

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

Get Users 9 9 9 14 12 11 9 9 9 8 10 1.9

Verify Signed
User

42 37 58 64 56 48 32 40 38 36 45 10.8

Persists DB 33 32 27 27 47 36 27 29 29 32 33 6.1

Create Payment
Response

24 12 12 12 22 13 11 14 13 54 19 13.2

Server Process 155 123 147 156 167 148 112 134 122 182 155 21.9

Table G.18: Performance Measurements Nexus 7 Same Server Payee

G.5 Results Atomic Steps Two Server

108 APPENDIX G. PERFORMANCE MEASUREMENT RESULTS

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

Get Users 10 10 8 9 11 18 9 7 10 13 11 3.8
Verify Signed
Users

22 21 19 23 19 44 57 14 22 28 27 13.4

Persists DB 38 29 26 44 29 36 38 25 37 48 34 19.6
Create Payment
Response

15 12 11 11 12 22 25 14 16 10 15 4.2

Server Process 123 108 111 120 106 156 169 113 132 140 128 30.2

Table G.19: Performance Measurements Nexus 7 Same Server Payer

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

Get Users 10 11 12 8 9 8 8 9 17 11 10 2.8
Verify Signed
Users

20 20 77 17 18 17 18 20 34 20 26 18.6

Persists DB 33 36 50 27 27 27 27 30 53 30 34 9.7
Create Payment
Response

13 12 11 11 11 11 11 12 13 12 12 0.8

Server Process 114 121 190 112 105 112 105 125 160 125 127 27.3

Table G.20: Performance Measurements LG G3 Same Server Payer

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

Get Users 10 10 8 9 11 18 9 7 10 13 11 3.8

Verify Signed
Users

22 21 19 23 19 44 57 14 22 28 27 13.4

Persists DB 38 29 26 44 29 36 38 25 37 48 34 19.6

Create Payment
Response

15 12 11 11 12 22 25 14 16 10 15 4.2

Server Process 123 108 111 120 106 156 169 113 132 140 128 30.2

Table G.21: Performance Measurements LG G3 Same Server Payee

G.5. RESULTS ATOMIC STEPS TWO SERVER 109

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

Get users 14 11 17 15 14 17 13 18 13 12 14 2.3
Check Server
Acccount

22 10 12 21 22 13 11 12 11 11 15 5.0

Sign server 43 36 12 24 14 32 10 13 13 13 21 11.9
TS Get user 18 12 14 14 12 19 19 25 17 18 17 4.0
TS Verify Signed
Server

22 21 18 19 18 48 23 41 21 22 25 10.4

TS Check Server
Account

13 12 12 17 11 28 12 20 12 13 15 5.4

TS Verify Signed
Users

41 53 30 56 18 21 20 29 34 20 32 13.8

TS Persists DB 81 48 49 82 37 42 45 43 41 44 51 16.3
Trusted Server
Process

225 255 167 266 136 232 171 225 175 168 202 43.8

Server Call 279 290 204 314 164 295 214 267 210 204 244 50.6
Decode Verify
Server

22 18 19 19 22 22 17 26 47 20 23 8.8

Trust Relation
Process

357 357 248 382 212 364 253 321 281 250 303 60.7

Verify Signed
Users

20 17 31 18 19 19 17 22 36 21 22 6.4

Persists DB 39 38 48 35 39 41 35 45 53 40 41 5.8
Server Process 481 469 398 504 340 499 367 463 437 407 437 56.5

Table G.22: Performance Measurements Nexus 7 Different Server Payee

110 APPENDIX G. PERFORMANCE MEASUREMENT RESULTS

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

Get users 13 13 11 17 15 12 18 14 14 15 14 2.1
Check Server
Acccount

11 12 11 13 22 11 12 11 11 18 13 3.8

Sign server 15 13 14 62 14 14 13 14 14 55 23 18.9
TS Get user 11 13 23 13 13 13 14 14 20 11 15 3.9
TS Verify Signed
Server

23 23 28 22 21 20 21 22 41 37 26 7.3

TS Check Server
Accounts

12 11 12 12 12 11 12 12 22 16 13 3.4

TS Verify Signed
Users

0 0 0 0 0 0 0 0 0 0 0 0.0

TS Persists DB 45 44 39 38 40 37 42 41 44 43 41 2.8
Trusted Server
Process

142 146 170 165 136 162 141 181 179 151 157 16.3

Server Call 177 177 214 212 164 188 178 214 206 200 193 18.5
Decode Verify
Server

24 21 29 20 21 35 21 24 45 19 26 8.3

Trust Relation
Process

231 225 259 310 222 250 225 263 278 293 256 30.8

Verify Signed
Users

21 21 18 19 21 31 20 20 31 16 22 5.1

Persists DB 47 39 35 40 38 41 41 39 39 33 39 3.7
Server Process 434 348 365 434 343 391 378 402 411 402 391 32.2

Table G.23: Performance Measurements Nexus 7 Different Server Payer

G.5. RESULTS ATOMIC STEPS TWO SERVER 111

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

Get users 19 15 15 21 18 11 19 18 13 19 17 3.2
Check Server
Acccount

12 11 11 15 12 11 12 12 11 12 12 1.2

Sign server 14 14 36 21 36 13 14 45 13 21 23 11.9
TS Get user 14 17 14 13 16 13 18 14 16 13 15 1.8
TS Verify Signed
Server

24 23 17 18 16 27 23 22 22 21 21 3.4

TS Check Server
Accounts

12 12 13 12 12 16 14 12 12 12 13 1.3

TS Verify Signed
Users

22 33 16 18 15 16 20 22 21 21 20 5.1

TS Persists DB 42 41 38 36 42 36 43 39 81 59 46 14.0
Trusted Server
Process

179 168 155 141 163 151 174 164 220 184 170 21.9

Server Call 217 203 217 207 210 184 220 223 254 238 217 19.1
Decode Verify
Server

51 21 21 49 22 22 21 22 22 24 28 11.9

Trust Relation
Process

296 250 286 295 283 230 269 303 302 296 281 24.3

Verify Signed
Users

46 19 19 15 21 20 29 21 21 20 23 8.8

Persists DB 55 41 38 35 43 37 43 46 41 44 42 5.6
Server Process 471 375 414 428 422 345 407 445 431 443 418 36.2

Table G.24: Performance Measurements LG G3 Different Server Payee

112 APPENDIX G. PERFORMANCE MEASUREMENT RESULTS

Step 1 2 3 4 5 6 7 8 9 10 Mean Std.
Dev.

Get users 34 18 18 15 19 12 20 17 11 36 14 8.4
Check Server
Acccount

19 13 12 11 14 11 12 12 11 12 13 2.4

Sign server 16 15 16 14 16 29 14 14 12 14 23 4.7
TS Get user 15 15 15 19 19 12 11 14 14 12 15 2.7
TS Verify Signed
Server

23 23 52 35 23 21 21 22 39 22 26 10.5

TS Check Server
Accounts

14 12 16 11 13 12 13 12 12 12 13 1.4

TS Verify Signed
Users

0 0 0 0 0 0 0 0 0 0 0 0.0

TS Persists DB 45 41 39 37 44 39 36 41 39 41 41 2.8
Trusted Server
Process

172 156 190 174 164 138 162 150 161 169 157 14.2

Server Call 214 195 242 207 209 187 201 189 197 200 193 15.8
Decode Verify
Server

27 23 45 26 24 17 25 37 17 43 26 9.9

Trust Relation
Process

277 248 318 260 264 246 255 254 238 269 256 22.5

Verify Signed
Users

28 22 31 22 22 16 21 36 17 32 22 6.7

Persists DB 44 43 41 45 47 35 60 70 35 42 39 10.9
Server Process 434 387 458 392 409 350 417 437 341 456 391 40.8

Table G.25: Performance Measurements LG G3 Different Server Payer

Appendix H

Installation Guidelines

H.1 Client Installation

1. Consider hardware requirements: Android 4.4 device with NFC

2. Download and install MBPS application from:

� Google Play Store: https://play.google.com/store/apps/details?id=ch.
uzh.csg.mbps.client

� MBPS Homepage: http://bitcoin.csg.uzh.ch/downloads

� Source: https://github.com/MBPS-Project/mbps_client

3. Register your MBPS account

4. Verify your email address

5. Login to MBPS with your username and password

H.2 Server Installation

MBPS is developed and tested for the software versions mentioned in the listing. MBPS
should also run with newer versions, but there is no guarantee as not tested. Only up to
date and stable software versions should be used to run MBPS.

1. Set up a Linux server (tested with Ubuntu 12.04) with Java 1.7 (tested with version
1.7.0 51)

2. Install and set up Apache Tomcat 7 on your server (tested with version 7.0.26)

3. Install Postgresql 9 (tested with version 9.1.12)

4. Install official Bitcoin Client bitcoind (tested with version 0.8.6)

113

114 APPENDIX H. INSTALLATION GUIDELINES

5. Configure bitcoind configuration file (default: /home/username/.bitcoin/bitcoin.
conf) to allow local RPC connections, define RPC username and password

6. Run bitcoind, encrypt your wallet and wait for successful download and verification
of blockchain

7. Checkout MBPS source code from Github and import to Eclipse (make sure Maven
is installed)

� Server: https://github.com/mbps-project/mbps_server

� Shared-Resources: https://github.com/mbps-project/mbps-shared-ressources

� Custom Serialization: https://github.com/mbps-project/custom-serialization

8. In the server package adapt Config.java, SecurityConfig.java and hibernate.cfg.xml

to match your configuration (server ports, usernames, passwords etc.)

9. Export server application as .war file (e.g., Server.war)

10. Deploy and run .war file on Apache Tomcat server

Appendix I

Contents of the CD

The CD-ROM contains the following files:

� Abstract.txt
English version of the abstract

� Zusfsg.txt
German version of the abstract

� mbps client.zip
Source code of the Android mobile client application

� mbps server.zip
Source code of the server application

� mbps-shared-resources.zip
Source code of the shared resources. This library contains resources which are used
by the client and the server, e.g., model classes.

� Report.zip
Figures and LaTeX source files of this report

� Report.pdf
PDF version of this report

� Presentation.pptx
The slides for the final presentation

� Presentation.pdf
The slides for the final presentation in PDF format

115

