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Abstract

Der Fachbereich um Supply Chain Monitoring hat in vergangenen Jahren stark an Be-
deutung zugenommen. In diesem Feld eingesetzte Geräte, welche der Klasse des Internets
der Dinge zugehören, können stets kleiner gestaltet werden und verbrauchen immer we-
niger Energie: Dies liess eine Nachfrage für Low Power Wide Area Network (LPWAN)
Technologien, welche der Übermittlung von verteilt gesammelten Wertschöpfungsketten-
Daten dienen, entstehen. Im Zuge dieser Arbeit wird ein bestehendes Framework für
LPWAN-Simulation erweitert, um das Protokoll der simulierten drahtlosen Netzwerke
Blockchain-konform zu machen. Zudem wird ein effizienzsteigernder Mechanismus imple-
mentiert, um die Performanz simulierter Netzwerke zu steigern. Abschliessend werden
verschiedene Szenarien miteinander verglichen, indem sowohl die räumliche als auch zeit-
liche Dichte simulierter Netzwerke schrittweise heraufgesetzt wird.

The area of supply chain monitoring has gained a lot of importance in recent times. In this
field, a variety of devices belonging to the domain of the Internet of Things are becoming
increasingly lean and energy-efficient: This let the demand for the Low Power Wide Area
Network (LPWAN) technologies, which are applied to transport distributedly collected
supply chain data, arise. In the course of this thesis, an existing framework for LPWAN
simulation is enhanced by implementing the requirements necessary to make wireless
communication technologies blockchain-compliant. Moreover, an efficiency improvement
mechanism is integrated into the simulation framework to increase the performance of
simulated networks. Finally, to compare several scenarios, the spatial as well as temporal
density of simulated networks is gradually increased.

i



ii



Acknowledgments

I would like to express my sincere gratitude:

To Prof. Dr. Burkhard Stiller, head of the Communication Systems Group at the Univer-
sity of Zurich, for making it possible for me to work on a current and interesting topic.

To my supervisors, Dr. Eryk Schiller and Sina Rafati, for their support and shared exper-
tise.

To my family, for their constant hospitality during this intense time.

To Jonas Pescatore and Alessandro Smider, for their friendship and beautiful music.

iii



iv



Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Description of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Functional Architecture 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 IoT and LPWAN in the Oil and Gas Industry . . . . . . . . . . . . . . . . 5

2.3 Functional Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Supply Chain Monitoring and Blockchain . . . . . . . . . . . . . . . . . . . 8

3 Related Work 9

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Long Range Wide Area Network (LoRaWAN) . . . . . . . . . . . . . . . . 9

3.3 Competing LPWAN Technologies . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Simulators of LoRaWAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Evaluation of NS-3 LoRa Simulation Modules . . . . . . . . . . . . . . . . 13

3.5.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5.2 Concluding Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

v



vi CONTENTS

4 Design and Implementation 17

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 NS-3 LoRaWAN Simulation Module . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Module Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.2 PHY Layer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.3 MAC Layer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Module Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Transmission Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.2 Transaction Success Assessment . . . . . . . . . . . . . . . . . . . . 22

4.3.3 Virtual Packet Queue Management . . . . . . . . . . . . . . . . . . 25

4.3.4 Efficiency Improvement Through Listen Before Talk . . . . . . . . . 26

4.4 Simulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.1 Common Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.2 Introduction of the Four Simulation Scenarios . . . . . . . . . . . . 29

4.5 Collection of Measured Performance Metrics . . . . . . . . . . . . . . . . . 30

4.6 Bottleneck Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6.1 Scaling Up Simulation Scenarios . . . . . . . . . . . . . . . . . . . . 31

4.6.2 Constant Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6.3 Device Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 Oil and Gas Supply Chain Simulation Scenario . . . . . . . . . . . . . . . . 33

5 Traffic Patterns in TTN 35

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 TTNMapper Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.2 Determination of Transmission Frequencies . . . . . . . . . . . . . . 37

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



CONTENTS vii

6 Simulation Results 43

6.1 Results for Bottleneck Identification . . . . . . . . . . . . . . . . . . . . . . 43

6.1.1 Duty Cycle Enforcement . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.2 Listen Before Talk . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Results for O&G Supply Chain Scenario . . . . . . . . . . . . . . . . . . . 53

7 Summary and Conclusions 55

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 57

Abbreviations 61

Glossary 63

List of Figures 63

List of Tables 66

A Installation Guidelines 69

A.1 NodeExtractor Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.1.2 Running the Application . . . . . . . . . . . . . . . . . . . . . . . . 70

A.1.3 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.1.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.2 LoRaWAN Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.2.2 Running Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B Contents of the DVD 73



viii CONTENTS



Chapter 1

Introduction

Nowadays, supply chain monitoring is a field which has become increasingly important in
several different sectors. Not only is it of interest for producers but also for suppliers, dis-
tributors, retailers as well as for customers to gather a variety of data resp., measurements
about the production of goods as they traverse different stages of value chains. The most
obvious way to distribute generated data would be to use wired networks. However, this
solution would only be sustainable if the considered supply chain was static in terms of its
value-adding stages’ geographical distribution as well as of the constancy of production
procedures; Establishing wired networks within large areas as well as adjusting them at
frequently evolving supply chain stages leads to high expenses. Another issue becomes
clear, when considering industries operating in very crude, remote territories lacking com-
mercial sources of energy as well as network coverage: Should supply chain monitoring
expand into such spacial conditions, it occurs the demand for low-power communication
technologies running on battery storages as well as featuring wide communication range.
The class of Low Power Wide Area Network (LPWAN) technologies is specialized for ful-
filling exactly these needs. Among several LPWAN standards, LoRaWAN (Long Range
Wide Area Network) [1] is the most popular and an excellent candidate for being used in
supply chain monitoring, as it is freely usable and deployable.

Not only are the communication protocols used in supply chain monitoring an emerging
domain but also the field of data producing sensor devices themselves — namely the
Internet of Things (IoT). The fact that more and more computational power can be
provided by increasingly small, cheap as well as low-energy devices makes it attractive for
producing companies to distribute many such data collecting ’things’, e.g., temperature
sensors, among their supply chain.

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

It seems reasonable to investigate on how novel wireless transmission technologies can exist
as a remedy to the aforementioned issues, as by featuring large communication range as
well as very low energy consumption they realize an unprecedented level of flexibility.
However, these advantages come at the expense of drastically lower transmission speeds,
which is a fact counteracting the aim of companies to collect and transmit as much
supply chain data as possible. Therefor, many current research projects work on different
techniques allowing for efficiency improvements in LPWAN technologies.

Not only improvements in terms of efficiency, but also data integrity oriented blockchain
technology in conjunction with supply chain monitoring has recently become an emerging
subject: Blockchain technology for itself merely ensures, that stored data cannot be al-
tered afterwards, however, guaranteeing, that genuine data was issued to the blockchain
originally, remains a responsibility to its users. For the domain of supply chain moni-
toring, this means, that technologies ensuring modification-proof wireless communication
have to be implemented, if collected data will ultimately be forwarded to blockchains.

1.2 Description of Work

Initially, for addressing real world use cases, an industrial sector is analyzed, for which
supply chain monitoring using IoT in combination with LPWAN communication can be
implemented usefully. The gathered use cases are combined in a design of a functional ar-
chitecture presenting various IoT/LPWAN implementations spread over the entire supply
chain of an exemplary representative of the considered industry sector.

It follows the principal task of this thesis, namely to analyze the performance-related limits
of LoRaWAN networks applicable for supply chain monitoring by conducting simulations.
Thematically, this thesis is a part of a group of several theses currently worked at at
CSG, which all provide output for a project combining the fields of IoT and blockchain
technology. A fellow student, Ile Cepilov, will provide the requirements for making real-
world LoRaWAN networks blockchain-compliant; These necessary characteristics will be
implemented, resp., represented in an existing simulation framework for LoRaWAN, such
that simulation scenarios can be designed, in which data transported within simulated
LPWANs is guaranteed to remain integer. This way, conducted simulation scenarios will
be tailored to the strategy of collecting supply chain data using LoRAWAN in a secured
way and forwarding them onto a blockchain database.

Eventually, the simulation framework will be further enhanced by adding the logic of a
distributed efficiency improvement mechanism, which is expected to increase the perfor-
mance of simulated network scenarios.
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1.3 Thesis Outline

This thesis is divided into the following chapters:

Chapter 2 provides a functional IoT/LPWAN architecture design for the supply chain of
a considered industrial branch.

Chapter 3 gives insight on prevailing communication technologies currently used in IoT
as well as on available simulation frameworks.

In chapter 4 the design and implementation of this work’s contributions concerning Lo-
RaWAN simulations are presented.

Chapter 5 covers the implemented methods as well as results of an intermediately con-
ducted sub-project, in which a real data set was processed to gain information about the
transmission frequency of existing LoRaWAN devices.

In chapter 6, the gained simulation results are displayed and discussed.

Finally, chapter 7 comprises a summary over the entire project and feature a section on
future work in the direction of advanced efficiency improvements for LPWANs.
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Chapter 2

Functional Architecture

2.1 Introduction

Nowadays, the oil and gas industry (O&G) is under constant observation due to growing
importance of environmental concerns. The enforcement of increasingly harsh regulations
lead to the omnipresent interest of agents in this industry to mitigate the risk of accidents
and to keep financial losses due to penalties as small as possible. For mainly two reasons,
it was decided to choose this industry as a basis for envisioning IoT applications using
LPWAN communication and designing a functional architecture in the course of this
thesis: Firstly, at every supply chain stage in O&G, goods being processed should be
managed with the utmost precaution, which provides the need for collecting sensor data
to be put into different rapid alert systems. Secondly, the O&G supply chain’s production
as well as transportation phase mostly take place in uncivilized environments where taking
advantage of LPWAN technology’s characteristics is beneficial [42].

The next section covers potential IoT/LPWAN applications at different stages of the
O&G supply chain, while section 2.3 presents a diagram of a functional architecture of
IoT/LPWAN applications spread over the O&G supply chain.

2.2 IoT and LPWAN in the Oil and Gas Industry

Seismic Acquisition

As a result of progressively strict conditions, operators at the upstream section of the
O&G supply chain (crude oil gathering) are required to adhere to environment-related
precautionary measures. To better predict environmental impacts as early as possible,
more real-time sensor data gathered about the seismic activity in the area of oil fields
is required. Shell and Innoseis associates conducted a proof of concept by introducing a
LoRaWAN-based network of wirelessly transmitting sensor instruments used for seismic
quality control. They not only justify the usage of LoRaWAN due to the advantage

5



6 CHAPTER 2. FUNCTIONAL ARCHITECTURE

of wireless networks over inflexible cable-based systems but also approve the fact that
LoRaWAN features extremely low energy consumption; Both factors are expected to
reduce the need for maintenance (e.g. cable repair work, battery changes) in dangerous,
harsh environments [37].

Upstream Monitoring

In a 2017 article, G. Dixit of the Oil and Natural Gas Corp. [32] presented the advantages
of upstream monitoring in terms of planning shutdowns in the downstream (refineries):
The more stations at the upstream (e.g., well pumps) are equipped with wirelessly com-
municating IoT sensors, the earlier refineries can be warned about upcoming outages lead-
ing to temporary downtimes. For refineries, downtimes as well as recoveries thereof are
extremely costly — especially if they appear unexpectedly: At the least, using LPWAN-
driven IoT sensors for upstream monitoring allow for forewarning the downstream sector
about upcoming raw material bottlenecks, such that by pre-planning, downtimes can be
reduced, and the overall performance of refineries be improved [32].

Not only outage detection but also sensors able to determine types of incoming oil blends
find good usage at the upstream: The earlier incoming blends are categorized and com-
municated to the downstream, the better refineries can adapt to changing raw material
and reduce adjustment overhead [42].

Pipeline Leakage Detection

A very critical stage in the O&G downstream is the transportation of substances in
pipelines: Not only causing a huge, negative effect on climate change but also on the
operator’s financial situation as well as reputation, leakages are to avoid at any cost.
The better pipelines are covered with leakage detection instruments communicating in
real-time, e.g., using LPWANs, the earlier operators can react and fix leakages as fast as
possible [42].

Cargo Shipping

The ultimate step of the O&G supply chain, namely the transportation of completed
goods, again takes place in remote areas — should the substances be shipped by sea.
For letting ships transmit data to mainland, LPWANs are not an option, as there is no
possibility, e.g., to setup stationary (intermediate) LoRaWAN gateways in the open sea.
However, transportation ships themselves might operate an LPWAN to monitor parts of
the ship which are either difficult to access or completely unreachable. For forwarding
collected IoT sensor data (e.g., tank temperatures and pressures etc.) to the outside
world, satellite technology can be used as a remedy [42].
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Remote Tank Level Monitoring

Today, still a lot of companies as well as private households possess proper oil tanks which
have to be checked and re-filled regularly for avoiding interruptions in production resp.,
heating. With increasing consumption, the effort to measure tank levels and ordering
refills by hand becomes obviously higher. As a solution to this problem there are several
implementations involving sensor devices as well as wireless communication systems: For
example, Swiss manufacturer for isolated pressure transducers and transmitters, KELLER
AG, presented a system called EasyOil®, in which oil tanks are equipped with pressure
sensors: As soon as measured pressures drop below a certain threshold, oil tanks are
considered almost empty and a connected GSM transmission module automatically places
a replenishment order [33]. Evidently, this system could also be envisioned by using
LPWAN communication instead of GSM: Not only would there be no more reliance on
coverage by a GSM provider but also could communication expenses be economized.

2.3 Functional Architecture Design

For effectively simulating IoT/LPWAN applications in the O&G supply chain, the func-
tional supply chain architecture design at the end of this section was developed. The
chronologically ordered numbers wrapped in green circles correspond to different supply
chain stages (from raw material extraction to end consumer) with individually configured
applications:

1. The first stage is set at a production site of the O&G supply chain, namely an oilfield
of 400 km2. There are two different IoT/LPWAN applications used in this area:
Ten randomly distributed monitoring sensors used for seismic acquisition as well as
20 randomly distributed upstream monitoring instruments installed at oil pumps.
All 30 sensor stations equip LoRaWAN end devices for transmitting collected data.
There are 9 equally distributed LoRaWAN gateways in the area. It is noteworthy to
mention, that in the entire figure, only the oilfield gateways’ geographical positions
are true to scale and scope.

2. The second stage is a crude oil pipeline of 100 km of length, which is equipped with
21 geographically equally distributed leakage detection sensors. 21 LoRaWAN end
devices send data collected by their respective leakage detectors to 10 LoRaWAN
gateways, which geographically are equally distributed alternatingly 600 m above
as well as 600 m below the pipeline.

3. The third setting takes place inside a cargo ship, where five randomly distributed
sensors measure various dimensions (e.g., pressures, temperatures, etc.) of unreach-
able parts of the ship. LoRaWAN end devices transmit collected data to one central
gateway.

4. The fourth and last supply chain stage takes place directly at a customer holding
three oil tanks equipped with pressure sensors. Measured pressures at the bottom
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of the oil tanks are converted into tank level metrics and — using LoRaWAN end
devices — communicated to the customer’s single central gateway.

Figure 2.1: Functional Architecture Design O&G Supply Chain

2.4 Supply Chain Monitoring and Blockchain

All gathered data at several different places within the O&G supply chain can eventually
be forwarded to a blockchain. This blockchain could be maintained by e.g., a government,
non-profit organizations or even by the general public (public blockchain) — to name a
few entities putting great emphasis on O&G companies’ accountability. For example, if
a dishonest O&G company measured unfavourable seismic conditions in an area and still
continued extracting oil, for lowering the risk of getting penalized, they might purposely
obscure the measured data afterwards. However, if sensed data was directly (i.e., un-
changedly) added to a blockchain, there would not be any possibility for the company to
cover up data later on. In the best sense, collaborating in such a blockchain will be very
beneficial for O&G companies’ reputation, as their willingness of being identifiable and
accountable for any kind of prohibited action will be publicly known and appreciated.



Chapter 3

Related Work

3.1 Introduction

In this chapter, the state of the art in terms of communication technologies allowing
Internet of Things (IoT) devices to communicate is elaborated. Whereas in total seven
different technologies, resp., standards are broached, LoRaWAN is discussed most in-
depth: At the beginning of the process time of this thesis, it was decided, that the focus
should only go into the direction of LoRaWAN, to keep the workload in the realms of
possibly and to let the output of several theses running concurrently be compatible for
later re-use.

LoRaWAN as well as other communication technologies in IoT belong to the class of
Low Power Wide Area Networking (LPWAN) [25,27] offering long-range communication
at low power consumption. Due to the deployment of several technologies, batteries
powering IoT devices using LPWAN to communicate may run for several years without
replacement [40].

3.2 Long Range Wide Area Network (LoRaWAN)

LoRaWAN is arguably the most adopted among current LPWAN standards. It fea-
tures simple network structures as well as management and provides ubiquitous connec-
tivity, which is advantageous for outdoor IoT applications [27]. LoRa (short form for
LoRaWAN) has become an interesting technology for lightweight IoT sensor devices [1].
The LoRaWAN standard defines a radio layer based on the Chirp Spread Spectrum (CSS)
modulation as well as a simple channel access method. LoRa operation depends on the
following parameters [41]:

1. Bandwidth: A range of frequency spectrum used for transmitting data

2. Spreading Factor (SF): The chirp rate influencing the bit rate as well as reliability
(i.e., higher SF result in lower bit rate as well as bit error rate)

9



10 CHAPTER 3. RELATED WORK

3. Coding Rate: The ratio of redundant information used for forward error correction

The CSS modulation used in LoRa enables low reception sensitivity allowing for trans-
missions over wide distances. It manages to let end devices communicate within a range
of several kilometers outdoors and hundreds of meters indoors [46]. In the outdoors case,
there is a loss rate (i.e., the ratio between lost packets and packets sent in the network
totally) of less than 10% over a distance of 2 km for SF 9-12, and a more than 60% loss
rate over 3.4 km for SF 12. Depending on the duty cycle (i.e., how often the spectrum
is used to transmit data) of LoRa devices, their lifetimes can be significantly extended —
for instance, up to 17 years for a node (an end device) sending 100 B once in a day [40].

LoRaWAN defines an access method [41] to the radio channel similar to ALOHA [26]:
For sending data, a device ’wakes up’ and immediately transmits a packet to reachable
gateways. LoRaWAN and pure ALOHA only differ in terms of the variable packet length
used in LoRa in comparison to the fixed packet size in ALOHA.

The European Telecommunications Standards Institute (ETSI) regulations of the 868
MHz ISM frequency band set the limits on the maximum duty cycles between 0.1% and
10% in the 863—870 MHz of the Industrial, Scientific, and Medical (ISM) band (depending
on the selected sub band). This is a result of the pure ALOHA implementation of LoRa
devices which does not conform to the Listen Before Talk (LBT) schema required by
ETSI (i.e., if LBT was applied, transmitters would be relieved from the maximum duty
cycle regulations). This circumstance obviously limits the throughput of devices and the
overall network capacity. Moreover, the LoRaWAN operation similar to ALOHA results
in an increasingly high level of packet losses due to collisions as the number of devices
grows [28]. For a larger number of devices, the performance of LoRaWAN strictly follows
ALOHA with maximum channel capacity of 18% and an increasingly high collision ratio.
As an example, for the link load of 0.48, the collision ratio is around 60% (i.e., the ratio
between lost packets due to interference and packets sent in the network totally) [28].
The impact of collisions is — however — significantly mitigated by the capture effect and
orthogonal spreading factors, such that some transmissions benefiting from a stronger
signal are successful despite collisions [44].

Adelantado et al. [27] realized that for low duty cycles, network throughput is limited
by collisions, whereas for greater duty cycles, the maximum duty cycle set by the ETSI
regulations (i.e., 0.1% - 10%) prevents devices from increasing their packet transmission
rates and limits the overall throughput of the network.

T-H. To et al. [46] improve the performance of LoRaWAN networks by not impacting
energy consumption at the same time. They provide a simple LBT enhancement to Lo-
RaWAN which effectively lowers the collision ratio. Their results show that Carrier Sense
Multiple Access (CSMA) considerably lowers the collision ratio, while only slightly increas-
ing energy consumption. Moreover, CSMA is implemented through an LBT mechanism
preceding every transmission, therefor, the devices are relieved from the restrictive 0.1%
- 10% duty cycle regulations by ETSI, allowing for higher achievable throughput. Fur-
thermore, they observed that CSMA featured lower energy consumption than LoRaWAN
for a large number of devices. In conclusion, the work of T-H. To et al. significantly
increases data rates as well as the probability of successful transmissions for low density
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networks at the expense of slightly higher energy consumption. At the same time, the
probability of successful transmissions, throughput as well as energy efficiency for high
density networks are improved.

3.3 Competing LPWAN Technologies

Next to LoRaWAN, there is a series of currently other known LPWAN standards, which
are briefly addressed in the following paragraphs as well as compared in terms of perfor-
mance characteristics in Table 3.1 at the end of this section.

SigFox [27] is a very commonly used LPWAN solution basing on Ultra Narrow Band
technology operating in the 869 MHz (Europe) as well as in the 915 MHz (USA) frequency
bands. Due to the fact that SigFox is a proprietary technology and per the effective
business model, the company possesses the network itself, a large part of the interest
group in the LPWAN domain migrated towards more open standards such as LoRaWAN.

Ingenu Random Phase Multiple Access is a proprietary solution for operating private
as well as industrial Machine-to-Machine (M2M) networks [27], which transmits signals
on the 2.4 GHz frequency band. The outstanding advantage of this technology are the
exceptionally high data rates (cf. the comparison table below).

Weightless-N is an open LPWAN standard of a set of technologies provided by the
Weightless Special Interest Group (i.e., Weightless-W, Weightless-N, and Weightless-P)
[27]. Among all three standards Weightless-N provides the longest battery lifetimes of up
to 10 years as well as extended transmission ranges, making it a noticeable LoRaWAN
competitor.

3GPP The 3GPP (3rd Generation Partnership Project) [27] — most commonly known for
mobile telecommunication — developed a series of inexpensive, simple devices intended to
be used for eMTC (enhanced Machine Type Communications) [29,36]. More specifically,
3GPP addresses the IoT domain by standardizing the following three technologies:

• Long Term Evolution for Machines (LTE-M), operating in LTE frequency bands
within a 1.4 MHz bandwidth

• Enhanced Narrow Band IoT (NB-IoT), an alternative to LTE-M with reduced com-
plexity and cost (at the expense of lower data rates)

• Extended Coverage GSM IoT (EC-GSM-IoT), a standard based on EGPRS and
tailored on IoT use cases

It should be mentioned, that due to the fact that cellular IoT communication means
operate in licensed frequency bands, participation of mobile operators while setting up
private networks cannot be circumvented, which is a profound disadvantage in comparison
to openly deployable technologies, such as LoRaWAN.
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The main technology characteristics of the reviewed LPWAN technologies are summarized
in the following table [25, 43]. MAC MTU stands for Medium Access Control Maximum
Transmission Unit.

Table 3.1: LPWAN Performance Comparison Table

Technology Range Throughput MAC MTU
LoRaWAN 2 – 5 km urban, < 15 km suburban 0.3 to 50 kbps 256 B
SigFox < 10 km urban, < 50 km suburban 100 bps Fixed 12 B
IngenuRPMA 20 – 65 km up: 624 kbps, down: 156 kbps 64 B
Weightless-N < 5 km urban, < 30 km suburban 30 kbps to 100 kbps max. 20 B
LTE-M < 12 km up: < 1 Mbps, down: < 1 Mbps 1500 B
NB-IoT < 15 km 200 kbps 1600 B

3.4 Simulators of LoRaWAN

In recent years, various simulators have been developed which allow for simulating LoRa-
oriented scenarios. The majority of them base on common C++ network simulation
frameworks such as Network Simulator Version 3 (NS-3) [3] or OMNeT++ [13]. This
section covers a number of these implementations.

Basing on the OMNeT++ network simulator, FLoRa [2] is a framework capable of simu-
lating end-to-end communication in LoRa networks. It divides the domain of LoRaWAN
networks into the following modules (i.e., device classes): Nodes (LoRa end devices),
gateways as well as network server. In FLoRa, it is possible to connect application logic
modules independently with the simulated network server. By making use of applying
adaptive data rate technology, FLoRa is capable of dynamically managing simulation pa-
rameters. In addition, FLoRa provides a feature to collect energy consumption data in
each individual simulated end device. [2].

Magrin et al. [38, 39] assessed the performance of LoRaWAN. They implemented a C++
NS-3 module to simulate the whole LoRaWAN network consisting of tens of thousands of
end devices. Their link model is based on the underlying sub models:

1. Link Measurement Model estimating the signal strength at the receiver site

2. Building Penetration Loss Model modelling the losses caused by external as well as
internal walls of buildings

3. Correlated Shadowing modelling fading of the signal with various variables, e.g.,
time, geographical position as well as radio frequency

4. Link Performance Model modelling the reception sensitivity and signal to inter-
ference ratio taking into account partial orthogonality of spreading codes used for
encoding the signal with different SFs

Van den Abeele et al. provide modelling of LoRaWAN networks in NS-3, which con-
sists of a number of different elements (i.e., Error Correction Encoder/Decoder, Digital
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Interleaver/Deinterleaver, Data Whitening/De-Whitening, Gray Encoder/Decoder, LoRa
Modulator/De-Modulator as well as Additive White Gaussian Noise channel): Firstly, an
error model for the LoRa modulation was implemented in NS-3 based on base band sim-
ulations of a LoRa transceiver over an additive white Gaussian noise channel. Secondly,
the LoRaWAN physical OSI layer (PHY) and Medium Access Control OSI (MAC) layers
were added in NS-3 to represent LoRaWAN gateways and simple class A end devices [41].
Thirdly, NS-3 applications were developed to represent the behaviour of class A end de-
vices and gateways. Finally, a simple Network Server (NS) was added to NS-3 [30,31].

T-H. To et al. [45,46] present an NS-3 module which simulates the behavior of LoRaWAN
in an accurate way. To assess the module, they compared the simulation results with
measurements on a real-world testbed and measured values reported by the work by
Haxhibeqiri et al. [35]. The model description is not extensively presented in the paper,
however, it is demonstrated that the module correctly represents the capture effect low-
ering the packet loss ratio due to collision. The simulation of the capturing effect with
orthogonal spreading factors is — however — unclear. To estimate energy consumption
of battery powered end devices, the energy framework by Wu et al. [47] is used, which is
included in NS-3.

3.5 Evaluation of NS-3 LoRa Simulation Modules

In this chapter, the result of an evaluation conducted for a subset of LoRaWAN sim-
ulation projects introduced in section 3.4 is presented. For keeping the scope of work
reasonable, only NS-3 based simulation projects were considered. To come to the choice
of the simulation module on which all further work concerning LoRaWAN simulation and
efficiency improvements in the course of this thesis will base, the evaluation worked ac-
cording to four criteria, which are explained in subsection 3.5.1. The following table gives
an overview of the evaluation results:

Table 3.2: Comparison Table of NS-3 Based LoRaWAN Simulation Modules

Module Usability Documentation Implementation Energy Framework
Magrin et al. [38] 100% 90% acceptable available
Abeele et al. [30] 100% 60% acceptable not available
Duda & To [45] 70% 20% unacceptable not available

3.5.1 Evaluation

Usability

This criterion describes the quality in terms of applicability and flexibility of provided
code, resp., simulation scripts. That is, a high usability percentage signifies, that the
considered simulation module features concise code with great readability, such that it is
expected to be well adaptable to the parameters which will be provided for the simulation
scenarios conducted for this work.
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Magrin et al. [38,39] provide a series of useful, well-structured simulation example scripts,
which are all thoroughly commented. It is estimated, that this precondition will prove
itself to be very helpful, when it comes to implant custom simulation parameters (e.g., ge-
ographical positions of LoRa end devices) into the provided example scripts. The example
scripts by Abeele et al. [30,31] are similarly well-structured, however, their in-code docu-
mentation is notably scarcer than the annotations in the scripts by Magrin et al. [38,39].
To mention last here is the project by Duda and To [45, 46], which unfortunately does
neither provide more than one example script nor feature a good structure, resp., code
documentation.

Documentation

The percentages in the column ’Documentation’ grade the amount and quality of available
documentation about the regarded simulation module (i.e., its source code). The higher
this percentage, the better does the documentation give insight about which assumptions
the simulation is based on. Clearly, the most advanced and extensive documentation is
provided by the module by Magrin et al. [38, 39] and it is to mention, that this doc-
umentation also features a section about the model’s usage, which is great for reusing
the provided simulation examples. The module documentation by Abeele et al. [30, 31]
presents a similar conciseness in terms of NS-3 model description, however, there are no
usage instructions provided. The simulation module by Duda and To [45, 46] does not
deliver more than sparse setup instructions; There is no information given, on how their
simulation model is effectively reproduced as an NS-3 module.

Implementation

For this criterion, the actual source code files of all three modules were surveyed and it
was decided — based on the perceived maturity of the code — whether it is acceptable
to reuse in the simulation part of this thesis. ’Maturity of code’ refers to the degree
of clearness of the code’s structure and whether it appears proper and well-formatted.
Especially the former criterion will be important, when it comes to learning about the
module’s source code to eventually enhance it.

Energy Framework

This criterion indicates, if a simulation project features the possibility to measure energy
consumption of LoRa devices. Magrin et al. [38,39] have implemented an energy model as
well as a simulation script in which it is possible to enter energy consumption rates during
different end devices states (i.e., transmission, reception, standby and sleep modes). The
module by Magrin et al. [38,39] is the only one of the selection of three simulation modules
to feature an energy framework.
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3.5.2 Concluding Choice

Clearly, the simulation project by Magrin et al. [38, 39] is the preferred choice to use
as a starting point for this thesis’ LoRaWAN simulation. While the project by Duda
and To [45,46] features very significant results concerning the enhancement of LoRaWAN
networks due to collision reduction using LBT, the module code is unfortunately only very
scarcely documented. However, the conference paper provided by Duda and To covering
this work [46] contains an exact description of their LBT strategy, which will serve as
guidance for implementing this feature in the simulation module by Magrin et al.
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Chapter 4

Design and Implementation

4.1 Introduction

This chapter covers the design of an existing simulation framework as well as implemented
enhancements towards the simulation of blockchain-compliant LoRaWAN networks. The
following illustration gives an overview over the different interconnected domains being
part of an architecture connecting LPWAN networks with blockchain databases. More-
over, it displays the different device types as well as interfaces in terms of data flow
present in a LoRaWAN network. The simulated LoRaWAN characteristics represented in
the used framework are discussed in subsection 4.2.1.

Figure 4.1: Overview of Simulated LoRaWAN Domain

17
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4.2 NS-3 LoRaWAN Simulation Module

As elaborated in subsection 3.5.2, the LoRaWAN simulations conducted in the course of
this thesis will be based on the NS-3 module by Magrin et al. [38, 39]. This section gives
an overview of the architecture, made assumptions as well as fixed configurations of the
considered module.

4.2.1 Module Design

Essentially, the NS-3 module by Magrin et al. depicts three kinds of devices as part of a
LoRaWAN network:

End Devices (EDs) adhere to the to the characteristics of basic class A LoRa devices
and communicate completely asynchronously, which means that besides conducting trans-
missions, they can only receive data (i.e., acknowledgements) during two fixed-length
receive-windows.

Gateways (GWs) are significantly more sophisticated devices, most prominently in terms
of reception ability: By featuring eight parallel receive paths, each gateway can receive
up to eight non-interfering packets simultaneously.

Using a robust, high speed link, gateways can forward data to a Network Server upon
successful packet reception. This third device type’s purpose is to keep track of incoming
packets and command its affiliated GWs to send acknowledgements (ACK) back to the
EDs, should the received packet be marked as to be confirmed. Furthermore, the Network
Server can be regarded as the final stage of the LoRaWAN network, where all incoming
links are joined and the collected data from within the LoRa network might eventually
be forwarded to another network.

Typically for NS-3 modules, the Physical (PHY) as well as the Medium Access Control
(MAC) OSI layer of the simulated network are represented as models (classes), which
have the responsibility to adhere to the same behaviours as both layers operating in real
LoRa networks.

4.2.2 PHY Layer Model

Magrin et al. focus on two main aspects for declaring a signal as being received successfully,
or not, namely device sensitivity as well as signal orthogonality:

Device Sensitivity

The model for device sensitivity makes assumptions on how strong incoming signals of
certain spreading factors (SF) at receiving gateways have to be at least, such that the
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signal can still be interpreted correctly. The model uses the following sensitivity threshold
matrix [38,39]:

Table 4.1: Gateway Reception Sensitivity per Spreading Factor of Incoming Signal

Spreading Factor Sensitivity [dBm]
SF 7 -130
SF 8 -132.5
SF 9 -135
SF 10 -137.5
SF 11 -140
SF 12 -142.5

The power of signals being received is computed by using NS-3’s built in two propagation
models, PropagationLossModel as well as PropagationDelayModel [10]. For propa-
gation loss, the LogDistancePropagationLossModel [7] is chosen, which computes the
remaining signal power at a receiving entity by applying a logarithmic formula to the
distance between sender and receiver. Magrin et al. set the following parameters required
for this model’s formula, which are directly re-used for the simulations conducted for this
thesis:

• Path loss distance exponent = 3.76

• Reference distance = 1 m

• Path loss at reference distance = 7.7 dB

For propagation delay, the ConstantSpeedPropagationDelayModel [6] is used. In this
model, each signal spreads out at constant speed, while the delay between signal emission
resp., reception is computed using the direct distance between sender and receiver.

Signal Orthogonality

Not only is the propagation loss due to the distance between sending and receiving an-
tenna a critical factor for reception success but also the effects of interference caused by
simultaneously present signals in the area of the receiving entity. To determine, whether a
signal being received is interfered by another signal on the channel, Magrin et al. consider
the following matrix giving the minimum signal to interference Ratio thresholds deciding
over successful reception, resp., signal destruction due to interference [34,39].

[dB] SF7 SF8 SF9 SF10 SF11 SF12

SF7 6 −16 −18 −19 −19 −20
SF8 −24 6 −20 −22 −22 −22
SF9 −27 −27 6 −23 −25 −25
SF10 −30 −30 −30 6 −26 −28
SF11 −33 −33 −33 −33 6 −29
SF12 −36 −36 −36 −36 −36 6
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The rows represent the SF of the aimed-at signal, while columns stand for current inter-
fering signals on a certain SF. For a considered SF combination, the ratio of the energy
(= reception power ∗ signal duration) of the signal, to which the receiver is currently
tuned into, against the aggregated energy of all interferers on some SF has to be above
the threshold, such that the desired signal still wins against its interferers.

Using a popular NS-3 programming paradigm — Callbacks [8] — each gateway’s PHY
layer immediately emits the occurrence of each unsuccessful packet reception. These
packet reception failures are categorized into the following causes, such that a global
overview on the different issues at the PHY layers can be produced:

• No. of packets lost due to interference

• No. of packets lost due to reception under sensitivity

• No. of packets lost because no more receivers available

• No. of packets lost because receiving gateway was transmitting during packet arrival

4.2.3 MAC Layer Model

The medium access control layer modeled in the simulation module by Magrin et al. repro-
duces the LoRaWAN standard according to prevalent duty cycle regulations in the EU:
As standard LoRaWAN emits signals in license-free frequency bands without performing
LBT, the transmission periodicity of individual devices has to adhere to the maximum
duty cycles for the current sub band which is defined by ETSI. The following tables show
the ETSI sub bands regulations as well as the implemented channels to operate within
the sub bands [38]:

Table 4.2: Prevalent ETSI Sub Band Regulations

Frequency Range [MHz] Max. Duty Cycle Max. TX Power
868 – 868.6 1% 14 dBm

868.7 – 869.2 0.1% 14 dBm
869.4 – 869.65 10% 27 dBm

Magrin et al. defined three different frequency channels to transmit signals on: 868.1 MHz,
868.3 MHz as well as 868.5 MHz. They all belong to the 868 — 868.6 MHz sub band, thus
they have to adhere to the 1% duty cycle regulation. If an end device wants to transmit
a packet, it chooses randomly one of these three channels. The following formula is then
used to compute the time the transmission will be postponed until it actually may be
started, such that the max. duty cycle can be complied with [38]:

toff =
tair

dc
− tair

The time the end device is enforced to wait for to transmit is denoted toff , while tair is the
air time needed for the planned transmission and dc is the duty cycle, e.g., 1%.
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Furthermore, the MAC layer manages the re-transmission of packets in case end devices
were not yet able to receive any acknowledgement (ACK) for some confirmed packet
from any gateway. Similarly as the PHY layer, the MAC layer emits the number of
required transmissions for each packet using Callbacks. In general, as shown in Figure 4.1,
confirmed message handling is accomplished by the Network Server sending back ACKs
via the Gateways to the End Devices as soon as it has received a data packet.

4.3 Module Enhancements

As introduced, this thesis aims at analyzing, how the performance of simulated LoRaWAN
reveals itself, if its transmission scheme is adjusted to become blockchain-compliant. This
can be achieved by letting end devices send signed multi-packet transactions, which ul-
timately will be forwarded to a blockchain. The module by Magrin et al. simulates in-
distinguishable packets, making it impossible to evaluate the throughput in terms of suc-
cessful transactions per time. This section covers the various implementational advance-
ments, which were required to achieve the desired figures, especially in terms of attainable
throughput, i.e., multi-packet transactions per hour. The enhanced NS-3 module source
code is available at www.github.com/timolex/ns-3-dev-with-signetlabdei-lorawan-
module as well as on the attached DVD.

4.3.1 Transmission Scheme

Magrin et al. provide a C++ class for periodically issuing transmissions, which is called
PeriodicSender. It operates at a settable, steady periodicity and uses a fixed packet size
for all transmissions. On the contrary, this work aims at simulating — besides single-
packet transmission scenarios — end devices sending signed multi-packet transactions,
which is not possible with the provided artifacts of the NS-3 module by Magrin et al.

The following transactional transmission scheme was delivered by Ile Cepilov, who by
working with a real-world LoRaWAN testbed investigated, in how to convert larger data
records to be sent by end devices into a signed series of packets, namely a transaction.
Each transaction consists of 10 data packets as well as of a signature, which is divided
into 2 packets. This signature packets contain the hash value of a cryptographic function
which is eventually used to validate the integrity of transmitted data. The following
scheme shows the structure of a transaction in terms of individual packet sizes:

42 B 42 B 42 B 42 B 42 B 42 B 42 B 42 B 42 B 42 B 34 B 34 B

In reality, this system requires a counter of 2 B per packet allowing to distinguish sub-
transaction-packets from each other at their destination, which is the reason, why all
packets (also partial signature packets) are simulated with additional + 2 B in size. Thus,
the remaining payload per data packet is 40 B, resulting in a total data payload of 10 ∗
40 B = 400 B per transaction.

Along the lines of the module’s PeriodicSender class, the class TransactionalSender

was developed taking the following additional parameters into account:



22 CHAPTER 4. DESIGN AND IMPLEMENTATION

• dataPacketSize: The size in B of data packets

• sigPartPktSize: The size in B of partial signature packets

• intraTransactionDelay: The time delay between issuing the transmission of two
consecutive packets

• interTransactionDelay: The time delay between completion of an old, and be-
ginning of a consecutive transaction

4.3.2 Transaction Success Assessment

Packet Distinguishability

As mentioned before, the simulated packets in the plain module by Magrin et al. are
anonymous, meaning that they do not carry along any information about e.g., their source
in the payload. This circumstance was changed by serializing the following fields into each
payload making each packet distinguishable after source, transaction as well as packet
itself:

• node_uid: The unique ID of the packet’s source (end device)

• packet_id: The ID of the current packet

• transaction_id: The ID of the transaction to which the current packet belongs to
(only used for simulation of end devices transmitting multi-packet transactions)

The serialization of these data into packets’ payloads was accomplished by implementing
two classes, i.e., TransactionalPacketHeader as well as PeriodicPacketHeader (with-
out transaction-aspect), which both inherit from Header [9] provided by the standard
NS-3 library.

The handling of packet sizes was solved in such that after adding the respective Header-
classes’ serialized fields to the packet payload, the remaining payload is filled with zero-bits
until the packet size matches the pre-defined requirement (e.g., 34 B per signature packet,
as described in subsection 4.3.1).

Transaction Completeness Analysis

In a discrete event network simulation environment, there is no necessity to verify the
intactness of transmitted packet content; As soon as at least one receiving entity computed
a packet reception as successful, it can be assumed, that the data would also have arrived
intact in the real world case. This is also true for the simulations featuring multi-packet
transactions which are investigated in this work: The additional counter-related payload
(2 B) as well as the two-part signature are only simulated for the sake of taking into
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account all physical preconditions which are necessary to comply with a transactional
transmission scheme in reality.

A multi-packet transaction is declared as having passed the simulated LoRaWAN network
successfully if (and only if) all of its associated packets were fully received by at least one
(arbitrary) gateway. The class modelling the device type Network Server (introduced
in subsection 4.2.1) was chosen to be augmented with the feature of transaction success
analysis, as it represents a stage in the simulated network where all gateways’ ends meet.

For each unique ID of an End Device (packet source) there are two separate data struc-
tures (associative containers) in the NetworkServer class — one for registering success-
ful and another for recording unsuccessful transactional packet receptions. As soon as
some gateway’s PHY layer calls back either the successful, or, the unsuccessful recep-
tion of a packet transmission, it is registered in the respective container based on the
IDs (node_uid, packet_id, transaction_id) gathered by de-serializing the packet’s
Header-fields. It should be mentioned that due to the fact, that gateways do not have
any knowledge of each other, it appears the case in which e.g., there are several gateways
calling back the unsuccessful reception of the same packet despite there was already a
gateway, which called back this (same) packet’s reception as successful. Also, due to the
associative nature of the chosen C++ data structures, multiple registrations of the same
packet-IDs (and the same outcome – i.e., successful or unsuccessful) are idempotent.

At the end of simulations, for each packet source (end device), the containers for successful,
resp., unsuccessful transactional packet registrations are analyzed: If (and only if) for some
transaction ID all required packet IDs are present in the container for successful packets,
the transaction counts to the global no. of successful transactions. Immediately, this
transaction is erased from the container of unsuccessful packets to avoid false negatives.
All remaining transactions in the container for unsuccessful packets directly increase the
global no. of unsuccessful transactions.

The C++ code on the following page was developed to be used in class NetworkServer

to determine the no. of successful, resp., unsuccessful transactions at the end of every
simulation using either scenario3 or scenario4:

The variables m_successfulTransactionalPackets as well as the equivalent for unsuc-
cessful transactional packets (m_unsuccessfulTransactionalPackets) are associative
containers of the following type: std::map<int, std::map<int, std::set<int>>>, a
map indexed after packet sources (node_uid) containing as values maps which are or-
ganized after transactions (transaction_id) holding sets of already registered packets
(packet_id) as value.
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1 /**

2 * Computing the number of entirely received transactions

3 * (all packets + signature packets received)

4 */

5 int successfulTransactions = 0;

6 int unsuccessfulTransactions = 0;

7 // Iteration over all end devices in m_successfulTransactionalPackets

8 for (auto edIte = m_successfulTransactionalPackets.begin ();

9 edIte != m_successfulTransactionalPackets.end (); ++edIte)

10 {

11 for (auto transIte = edIte->second.begin ();

12 transIte != edIte->second.end (); ++transIte)

13 {

14 /**

15 * Counting this transaction to the no. of successful transactions,

16 * if its size fulfils the requirement

17 */

18 if (transIte->second.size () ==

19 (unsigned int) m_numberOfPacketsPerTransaction)

20 {

21 NS_LOG_DEBUG ("Successful transaction nr.: " << transIte->first <<

22 ", size: " << transIte->second.size () << ", node :" << edIte->first);

23 ++successfulTransactions;

24

25 /**

26 * Removing the transaction from the m_unsuccessfulTransactionalPackets

27 * map, if present there

28 */

29 auto edIte2 = m_unsuccessfulTransactionalPackets.find (edIte->first);

30 if (edIte2 != m_unsuccessfulTransactionalPackets.end ())

31 {

32 edIte2->second.erase (transIte->first);

33 }

34 }

35 }

36

37 auto edIte2 = m_unsuccessfulTransactionalPackets.find (edIte->first);

38 // Checking, if there is a transaction map for the current node

39 if (edIte2 != m_unsuccessfulTransactionalPackets.end ())

40 {

41 for (auto transIte2 = edIte2->second.begin ();

42 transIte2 != edIte2->second.end (); ++transIte2)

43 {

44 NS_LOG_DEBUG ("Unsuccessful transaction nr.: " << transIte2->first <<

45 ", size: " << transIte2->second.size () << ", node :" << edIte2->first);

46 ++unsuccessfulTransactions;

47 }

48 }

49 }
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Single-Packet Transmissions For simulating the periodic transmission of single, un-
signed packets (for certain scenarios introduced in subsection 4.4.2), the process of suc-
cess analysis is somewhat simplified: For each end device, successful resp., unsuccessful
packet receptions are registered into associative containers organized after packet sources
(end devices). After simulations have ended, the size of the container holding successful
transmissions is directly considered as the no. of successful transactions for the currently
analyzed end device, while an entry in the container for unsuccessful transmissions only
counts to the no. of unsuccessful transactions, if the same packet ID does not appear in
the container holding successful transmissions.

Transaction Failure Due To Short Simulation Time It appears the case that due
to the hard defined end time of NS-3 simulations, ongoing transactions are interrupted for
the sole reason of not having had enough time to complete. Since this is a circumstance
which would not appear in reality, this effect was leveraged by letting all simulations con-
tinue during an extra time window in which every end device is allowed to finish conducting
its current transaction (resp., transmission for single-packet transmission scenarios).

4.3.3 Virtual Packet Queue Management

By default, in the NS-3 simulation module by Magrin et al. [38], the process of issuing a
new transmission works like follows: A virtual NS-3 sender application [4] is installed on
every simulated end device. It is this sender application, which adheres to the transmission
periodicities (inter-/intraTransactionDelay resp., interTransmissionDelay) config-
ured in the simulation scripts. At this predefined pace, the sender applications call the
end devices’ MAC layer to start the transmission of a new, i.e., the next packet. In some
cases, during the time the next command by the sender application arrives, a packet is
still being held back by the ED MAC layer to not violate the max. duty cycle, or, to
eventually re-transmit, if the MAC has not yet received any acknowledgement. In such
a case, the module by Magrin et al. simply cancels the ongoing transmission of the cur-
rent packet and gives the new packet incoming from the sender application precedence.
This practice revealed itself very disadvantageous for scenarios using high transmission
frequencies; Especially for scenarios using multi-packet transactions, success rates sud-
denly dropped to 0% at a certain level of transmission frequency: The more often the
EDs’ MAC layer tries to deliver new packets, the higher becomes the probability, that
packets cannot be immediately sent due to the implemented mechanism adhering to max.
duty cycles. Because of this fact, held-back packets were regularly dropped, leading to
incomplete multi-packet transactions.

In any case, the ’cancelling’ habit implemented by Magrin et al. does not properly rep-
resent LoRaWAN end devices existing in reality: Rather, real existing LoRaWAN nodes
would feature data storage for caching rapidly incoming data packets (e.g., from sen-
sor instruments). Typically, these storages are organized in data structures adhering to
the principle of FIFO- (first in, first out) queues: New packets to be transmitted have to
’stand in line’ until the MAC layer has finished processing the transmission of the previous
packet.



26 CHAPTER 4. DESIGN AND IMPLEMENTATION

The behaviour of a FIFO-packet-queue was implemented the following way: If the ED
MAC layer is called by a sender application to start the transmission of a new packet,
it verifies, if there is currently still a packet being processed. If so, it does not proceed
to send the new packet but rather calls back (using NS-3 Callback [8]) the sender appli-
cation: After the sender application was notified about a packet having been rejected,
it resets the current IDs (node_uid, packet_id, transaction_id), such that after the
next transmission delay, the application can re-send a packet with the same IDs as the
previously rejected packet. This strategy basically emulates the characteristics of a FIFO-
packet-queue, therefor it is referred to as ’Virtual Packet Queue’.

4.3.4 Efficiency Improvement Through Listen Before Talk

It was shortly mentioned in subsection 4.2.3, that LoRa end devices have to obey to the
mandatory duty cycle regulations, if they do not assess the channel before sending. Duty
cycle enforcement is a simple, but effective means, when it comes to protecting a wireless
network from excessive congestion. However, postponing transmissions to comply with
max. duty cycles obviously attenuates the up-scaling of simulation scenarios in terms of
end devices’ transmission frequency; The more frequent a devices attempts to issue data,
the longer will it have to postpone each transmission to not violate duty cycle regulations.

However, if end devices spend the additional energy to listen into the channel before
transmitting on it (i.e., Listen Before Talk (LBT)), they are exempt from duty cycle
commandments. This fact sounds promising, keeping in mind the intention to scale up
end devices’ transmission frequency. To be able to show the (expected) positive effects of
LBT in the course of simulations, the NS-3 module by Magrin et al. [38] was extended by
an LBT-mode, which — if activated — lets end devices’ PHY- and MAC-layer suppress
duty cycle enforcement and operate according to LBT. It was decided to implement the
scheme presented by To et al. [46], which they refer to as CSMA-x.

Clear Channel Assessment (PHY Layer)

For end devices to be able to determine, whether the channel they plan to transmit on
is occupied or not, a means for their PHY layer to listen to ongoing transmissions is
required. Besides, it has to be settled, for which time interval the devices should listen.
To et al. use a Clear Channel Gap (CCG) of 10 ms during which end devices probe the
channel [46]; The ’x’ within the name CSMA-x is intended to be set to the duration of the
CCG in milliseconds. This listening mechanism for CSMA-10 was reproduced as follows:

In the module by Magrin et al. [38], each LoraPhy-object is associated with an instance
of LoraInterferenceHelper, which holds a list of recent, ongoing transmissions on all
channels. In LBT-mode, before every transmission this list is iterated over by method
EndDeviceLoraPhy::IsChannelOccupied: This method immediately stops the list itera-
tion and reports channel occupancy, if for another ongoing transmission, resp. its signal,
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the following three conditions hold:

• The signal has to appear on the same channel on which the ED plans to transmit

• The transmission has to either partially or fully take place during the CCG of 10 ms

• The signal must be detectable over the device’s reception sensitivity threshold

The last criterion depends on the detected signal’s spreading factor; The following sensi-
tivity threshold matrix is used for all simulated end devices [38]:

Table 4.3: End Device Reception Sensitivity per Spreading Factor of Incoming Signal

Spreading Factor Sensitivity [dBm]
SF 7 -124
SF 8 -127
SF 9 -130
SF 10 -133
SF 11 -135
SF 12 -137

Backoff Strategy (MAC Layer)

While the channel sensing during a CCG is plainly PHY-layer-related, it is the end devices’
MAC layer, which is responsible to react correctly to the PHY layer’s reported answer
concerning channel occupancy: Should the channel be busy, the MAC layer has to stop
the current transmission attempt and postpone a next one until the end of a backoff
interval. To et al. use a random backoff-interval of k seconds, while the bound of the
random number to pick depends on the nth attempt to transmit [46]:

k ∈ [0, 2n − 1]

If after n = 3 attempts, the channel is still busy, the transmission is cancelled. The
unsuccessful transmission is called back to the Network Server class where the packet as-
sociated to this transmission is registered and the ”No. of packets dropped due to reaching
the maximum allowed transmission attempts when using CSMA-x” is incremented.

The following sequence diagram illustrates the implemented LBT mechanism, which was
discussed in the previous sections:
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Figure 4.2: Sequence Diagram for Implemented LBT Mechanism
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4.4 Simulation Scenarios

In this section, the four fundamental simulation scenarios, which were used to perform sev-
eral simulations, are presented. Whereas the four scenarios differ in terms of transmission
schemes, they all share the following common parameters:

4.4.1 Common Assumptions

Simulation Time

The total simulation time is set to 30 min for all scenarios. For the conducted simula-
tions, this is enough time for letting each end device transmit at least one multi-packet
transaction while keeping the computation time reasonable. It is assumed that choosing
longer simulation time is useless, as due to the steady transmission pace of end devices,
the same effects in the network would be repeated over and over.

PHY- & MAC-Layer Related Assumptions

For all simulation scenarios — except for the efficiency-improved LBT-scenarios — the
preconditions concerning simulated devices’ PHY- and MAC-layer models provided by
Magrin et al. [38,39] (subsection 4.2.2, subsection 4.2.3) were left unchanged.

4.4.2 Introduction of the Four Simulation Scenarios

Single-Packet Transaction Scenarios scenario1 & scenario2

Simulation scenarios scenario1 as well as scenario2 demonstrate the outcome of let-
ting all end devices transmit unsigned, single-packet transmissions (42 B each). While
scenario1 works with unconfirmed packets, scenario2 re-transmits packets up to seven
times if no acknowledgement was received yet. The parameter to adjust the time interval
between two successive single-packet transmissions is called interTransmissionDelay.

Multi-Packet Transaction Scenarios scenario3 & scenario4

The scenarios scenario3 as well as scenario4 adhere to the transaction scheme de-
scribed in subsection 4.3.1, letting every end device transmit signed multi-packet trans-
actions. Analogous to the single-packet scenarios, end devices in scenario4 expect gate-
ways to send back acknowledgements, whereas scenario3 does not use confirmed packets.
The adjustable delay between two successive multi-packet transactions is referred to as
interTransactionDelay, while with intraTransactionDelay, the interval between two
consecutive packet transmissions within a transaction can be set. It should be mentioned,
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that for all multi-packet transaction scenarios simulated in the course of this work, for
interTransactionDelay usually the same time values as for intraTransactionDelay

were chosen.

4.5 Collection of Measured Performance Metrics

NS-3 was configured to log performance metrics as well as statistics about executed sim-
ulations into console output, which easily can be redirected into text files; Additionally,
the module code was enhanced in such that after every simulation, computed statistics
are also written into (appended to) comma-separated files (CSV). For each of the four
scenarios (subsection 4.4.2), there is a separate CSV file generated to which the results
of successively run simulations are appended. For multi-packet transaction scenarios, the
result files feature the following fields (marked fields (*) are only relevant for multi-packet
transactions (scenario3, scenario4)):

• Configuration Data

– NEndDevices: No. of simulated EDs

– NGateways: No. of simulated GWs

– SimulationTime in s

– InterTransactionDelay, resp., InterTransmissionDelay in s

– IntraTransactionDelay in s *

– PacketsPerTransaction: No. of data packets per multi-packet transaction *

– SignaturePacketsPerTransaction: No. of signature packets per transaction *

– DataPacketSize in B

– PartialSignaturePacketSize in B *

• Result Data

– SuccessfulTransactions, resp., SuccessfulTransmissions: No. of success-
fully received transactions (resp., transmissions)

– UnsuccessfulTransactions, resp., UnsuccessfulTransmissions: No. of un-
successful transactions (resp., transmissions)

– SuccessRate: The ratio of successful transactions against all transactions
(resp., transmissions)

– Throughput: The no. of successful transactions (resp., transmissions) achiev-
able per hour

Additionally to the data written into CSV files, the recorded NS-3 console output con-
tains gateway MAC & PHY-layer statistics. Most prominently, these figures represent
the different reasons, why gateways called dropped packets back to the NetworkServer;
Noteworthy examples for such figures are:
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• No. of packets lost due to interference

• No. of packets lost due to reception under sensitivity

• No. of packets lost because no more receivers (all of the GW’s receive paths were
occupied)

• No. of packets lost because GW was transmitting during packet arrival (only relevant
for scenarios using confirmed packets)

4.6 Bottleneck Identification

For identifying technical limits of different LoRaWAN networks adhering to the scenarios
introduced in subsection 4.4.2, several simulations were conducted by constantly increasing
the no. of end devices present in the network as well as by decreasing the delay in between
letting end devices’ sender applications release two consecutive packet transmissions. The
results of these simulations are discussed in section 6.1.

4.6.1 Scaling Up Simulation Scenarios

As scaling up all four simulation scenarios by hand would be cumbersome, Bash-scripts
allowing for running batches of simulations for all four scenarios were developed. Using
two nested for-loops, the simulation programs were scaled up after no. of end devices
(nEndDevices) for different time intervals (s, delays) in between end devices’ consecutive
packet transmissions. This was accomplished by making advantage of the possibility in
NS-3 to run simulations by passing arguments via the command line [5]. The following
Bash code is used to run a batch of simulations using scenario3. :

1 #!/bin/bash

2 nEndDevices="200 400 600 800 1000 1200 1400 1600"

3 delays="120 95 65 35 14 9"

4

5 for delay in $delays

6 do

7 for number in $nEndDevices

8 do

9 mkdir -p logs

10 ./waf --run "scenario3 --nDevices=$number --intraDelay=$delay

11 --interDelay=$delay" > logs/scen3_${delay}_${number}.txt 2>&1

12 done

13 done

14

15 echo "Batch simulation for scenario 3 complete."

16 date +%d.%m", "%X
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4.6.2 Constant Parameters

The consistent configuration used during scaling up all four scenarios (subsection 4.4.2)
is presented in the following table:

Table 4.4: Parameters Used For Bottleneck Identification Simulation Scenarios

Parameter Value
SimulationTime 30 min

PacketsPerTransaction 10
SignaturePacketsPerTransaction 2

dataPacketSize 42 B
sigPartPktSize 34 B

NGateways 6

4.6.3 Device Distribution

It was decided to keep the number of simulated gateways low, to not end up with excessive
computational effort. This decision bases on the following idea: If hypothetically, the
no. of end devices and gateways is scaled up equally, such that for each increment, the
ratio between EDs to GWs remains similar, it becomes clear that by following such a
strategy, the same effects in terms of network exhaustion would be repeated over and
over. Therefor, each simulation was conducted using only six gateways; Their geographical
positions correspond to real data provided by TTN [22] and are chosen in such a way that
each gateway has the smallest Euclidean distance to one of the six regularly transmitting
end devices in the Zurich area shown in Fig. 4.5. The positions of six end devices are
taken from section 5.3.3 in chapter 5, where the determination of real device positions is
thoroughly described. If the no. of simulated end devices exceeds six, additional nodes
with randomized positions are added, such that their coordinates differ +/- 1000 m from
the six real end devices’ coordinates. The following figure shows an up-scaled scenario with
400 end devices in red and gateways in blue (map: © OpenStreetMap contributors [14]):

Figure 4.3: 400 EDs Clustered Near 6 TTN GWs in the Zurich Area
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4.7 Oil and Gas Supply Chain Simulation Scenario

According to the specifications defined in section 2.3 covering the functional architec-
ture design for the O&G supply chain, an NS-3 simulation scenario was configured. In
essence, it corresponds to the same characteristics as scenario4 introduced in subsec-
tion 4.4.2 (confirmed, signed multi-packet transactions). The following table shows the
used parameters (according to their definitions in subsection 4.3.1):

Table 4.5: Parameters Used For Functional O&G Supply Chain Architecture Simulation

Parameter Value
SimulationTime 12 h

PacketsPerTransaction 5
SignaturePacketsPerTransaction 2

dataPacketSize 42 B
sigPartPktSize 34 B

inter-/intraTransactionDelay for oilfield EDs 5 min
inter-/intraTransactionDelay for pipeline EDs 66 s
inter-/intraTransactionDelay for cargo ship EDs 2 min

inter-/intraTransactionDelay for end customer EDs 15 min
total no. of end devices 59
total no. of gateways 21

The results of a simulation scenario using the above parameters can be found in sec-
tion 6.2.
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Chapter 5

Traffic Patterns in TTN

5.1 Introduction

During the first third of the processing time of this thesis, it became clear, that working on
the simulation part could not be started as early as planned. The reason therefor was, that
output from the work by Ile Cepilov — namely the design of a transactional transmission
scheme making real-world LoRa devices blockchain-compliant, which was a precondition
for configuring the simulation framework — could not be delivered in time. Therefor,
it was decided intermediately to invest the time on hold in analyzing traffic patterns of
real-world LoRaWAN devices. Due to the waiting time delay as well as the additional
effort spent for the implementation covered in this chapter, it was agreed to bypass the
milestones concerning experiments and measurements on a real-world LoRaWAN testbed.

As addressed in chapter 1, the simulation scenarios developed in this work should be
compatible with the requirement that data produced by end devices will — after being
collected at gateways — eventually be sent onto a blockchain. Since one of the fundamen-
tal tenets of blockchains is data integrity, it must be ensured, that the communication
between end devices and gateways is secure, too and is not prone to any malicious mod-
ification. Therefor, at the end devices data records records to send are split into several
packets, which all are processed using a cryptographic hash function. By adding the
resulting signature (the hash value) to the set of data packets, a signed multi-packet
transaction is formed. At the receiving sites (i.e., gateways) the data packets are again
processed using the same hash function. This allows for comparing the computed hashes
at the gateways with the one sent by an end device, such that the gateways can verify the
integrity of received data.

The initial aim for the sub-project documented within this chapter was to gather statis-
tical information about real LoRa devices which currently are following transaction-like
transmission schemes.
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5.2 TTNMapper Data Set

The freely available database dump by TTNMapper.org [24] revealed itself useful to con-
duct the task of analyzing a real existing LoRaWAN network for traffic patterns and even-
tually obtaining statistical information about devices following transactional transmission
schemes. TTNMapper is a project providing a global map displaying the coverage of Lo-
RaWAN gateways being part of The Things Network (TTN) [23], a community-based,
public LoRaWAN-network. For TTNMapper.org to work, every LoRa device engaging in
it has to announce its exact geographical position. Therefor, TTNMapper only covers a
subset of the entire TTN, as by far not all TTN end devices reveal their positions.

5.3 Implementation

This section covers the implementation of a Python 3.0 [17] application, which was de-
veloped for the purpose of processing the data set provided by TTNMapper.org. This
implementation is available on the attached DVD as well as under the URL mentioned in
the installation guidelines:

5.3.1 Procedure

The following approach was applied to get at the desired information:

1. Using a Python version [19] of the S2 geometry library [18], a circular area with
radius of 10 km around the center of the city of Zurich was defined. This circular
shape is used for the first filtering stage based on geographical positions; Only end
devices from within this area are considered for further processing.

2. The second filtering stage performs an analysis of each end device’s lifespan as well
as of their total number of transmissions and removes those, which only existed
for less than 24 h or transmitted less than 15 packets. As in the data set being
processed, every data point corresponds to a transmission of some end device, these
two figures are determined by computing the time difference between a device’s first
and last transmission as well as by counting the number of data points for each
device. It is assumed, that end devices (nodes), which did not pass this filtering
stage, were exclusively used for testing purposes and therefor are not interesting for
this analysis.

3. At this stage, a distinction between nodes with regular transmission frequencies and
nodes, which send irregularly, is carried out. The transmission scheme of irregularly
sending nodes can eventually be analyzed and the findings be reused in the sim-
ulation, as it is assumed, that these nodes are involved in transactions with their
gateways, which is detectable at irregular transmission periodicities. The algorithms
used to analyze transmission frequency are presented in subsection 5.3.2.
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4. As the TTNMapper.org data set features geographic positions of end devices, it was
decided to reuse this data as realistic input for the simulation. Therefor, the sphere-
based coordinates (latitude-/ longitude) present in the data set are mapped to NS-3’s
metric Cartesian coordinate system. This task was accomplished by the Python-
version of the PROJ.4 library [15,16], which allows for mapping coordinates from one
coordinate system to another. In this context, coordinates of the commonly known
sphere-based WGS84 system [21] are mapped to the metric 2D-plane projection
CH1903 [20] covering Switzerland and Liechtenstein. This implementation only
focuses on devices from within a rather small area — bearing in mind the used map
projection. Therefor, the converted coordinates are normalized by defining a new
origin point (X, Y) = (0, 0), which is located 10 km to the south and 10 km to the
east of the center of the city of Zurich.

5.3.2 Determination of Transmission Frequencies

This section covers the two algorithms (resp. methods,) which were developed to distinct
regularly transmitting from irregularly transmitting TTNs end devices. To apply conver-
sions from the time- to the frequency-domain, both methods make use of Fast Fourier
Transformation (FFT), which was applied using the NumPy package [11, 12] providing
functions for numerical computing in Python.

Sine Method

This algorithm is used to determine those end devices, which send at one clearly detectable
peak frequency. It is assumed that these devices are serving one application only (e.g.,
transmission of air humidity measurements every three hours). Also due to a found peak
frequency, it can be assumed, that these devices are not involved in transactions with
the network, as transactions would yield irregular traffic, for which no such strong major
frequency could be found. The algorithm was developed by the author of this thesis and
consists of the following phases:

1. For every end device present in the data set, a transmission array is built, which
ranges from the timestamp of its first transmission to the timestamp of its last, such
that every index of the array corresponds to a second in that time interval. If for
a specific second, one or more transmissions are found in the data set, the value at
this second’s index is set to 1, the values of the remaining indices are set to 0. The
following figure shows a plot (of a section) of an end device’s transmission array:
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Figure 5.1: Example Plot of an End Device’s Transmission Array

2. As sine waves are fundamental signals, which do not show harmonics, they produce
proper and clearly detectable representations in frequency analysis such as FFT.
This intuitive idea is applied in this context in such that the transmission array is
modified by filling in one full period of a sine wave in between the indices of every
two subsequent transmissions. This conversion yields the following representation:

Figure 5.2: Sine Version of an End Device’s Transmission Array

3. Lastly, the sine version of the transmission array is transferred into the frequency
domain by processing it using Fast Fourier Transformation. Clearly, the plot of
the FFT-array shows a strong peak at index 17, which correctly corresponds to a
periodicity of approximately 23 s. A frequency is interpreted as peak, if the ratio of
its value against the length of the FFT-array is above 50%.
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Figure 5.3: Fast Fourier Transformation of a Sine Transmission Array

Direct Method

This method operates on the remainder of the Sine method and is applied to detect nodes
with several regular transmission frequencies. The same argumentation as in the Sine
method is used here for declaring nodes as not being involved in transactions; End de-
vices showing a set of significant transmission periodicities cannot possibly be following a
transaction scheme, as this would result in an incoherent, undetectable set of transmission
periodicities. The following algorithm was kindly advised by Dr. Eryk Schiller’s colleague
at University of Bern, Mostafa Karimzadeh:

1. The same way as for the Sine method, for each node a transmission array is con-
structed (cf. Fig. 4.1).

2. This direct method computes FFT directly on the transmission array — hence
its name. However, due to the character of this array, the resulting FFT shows an
entire ’forest’ of harmonics, which makes it difficult to determine the most dominant
frequencies.

Figure 5.4: Fast Fourier Transformation of a Transmission Array
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3. The FFT-array is only analyzed for frequencies within a certain cutoff, which is
computed after predefined periodicities, e.g., transmission every 2 h up to every two
weeks. The found peak-frequency from within this cutoff is then checked against
the transmission array: The transmission array is divided in intervals, such that the
number of intervals corresponds to the peak-frequency. In each interval, the occur-
rence of at least one transmission is verified. End devices only pass this check, if for a
considerable percentage (i.e., 99%) of intervals there really appeared transmissions.

5.3.3 Results

Unfortunately, filtering end devices from the data set after the methods presented so far
did not yield any leftover, which possibly could be examined further for gathering infor-
mation about transactional transmission schemes applied in reality. This might be due to
the fact that TTNMapper.org only keeps data on LoRaWAN end devices communicating
their geographical position, such that only a set of nodes broadcasting data in simple
transmission schemes are present for the data points in the considered area.

Nevertheless, this implementation provides value in being able to extract geographical
positions of ordinarily operating TTN end devices, which is data serving as realistic input
for the LoRaWAN simulation configuration as discussed in subsection 4.6.3. Also, Dr.
Eryk Schiller expressed interest for reusing the implementation and results of this sub-
project in future work.

Results Zurich Area

The next figure shows the geographical positions of TTN end devices, which — according
to the previously introduced filtering stages — are transmitting data frequently (map:
© OpenStreetMap contributors [14]). The following parameters were used to run the
Python application:

Table 5.1: Parameters for Analysis of Node Transmission Periodicity in the Zurich Area

Parameter Value
Radius of circle (cap) around Zurich 10 km

Min. node life span 24 h
Min. no. of packets transmitted 15

Min. FFT-peak against FFT-array-length ratio (Sine Method) 50%
Frequency-cutoff used in Direct Method 2 h - 2 weeks

Min. % of intervals to be checked back (Direct Method) 99%
No. of used data points (transmissions) 2M transmissions
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Figure 5.5: Regularly Transmitting TTN Nodes in the Zurich Area

Global Analysis

By removing the geographical restrictions comprising the Zurich area, an analysis over
the entire TTNMapper.org data set [24] was conducted. The following histogram shows
the distribution of end devices in terms of transmission periodicity. Periodicities range
from two hours (at index 0) up to two weeks. The histogram is overlaid with a kernel
density curve:

Figure 5.6: Global Transmission Periodicity Histogram
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Chapter 6

Simulation Results

This chapter presents and discusses the results for simulations which, were performed
after the various scenarios declared in sections 4.6 and 4.7. The full simulation result
artifacts in terms of CSV-files as well as log-text files can be found on the attached DVD.

6.1 Results for Bottleneck Identification

This section covers the results for simulations conducted to identify technical network
limits as introduced in section 4.6. For both strategies, namely Duty Cycle enforcement
(DC), as well as LBT, all four simulation scenarios (subsection 4.4.2) were run for for
every combination of the following two parameters to scale up network density and nodes’
transmission frequency:

• interTransactionDelay / interTransmissionDelay: [120, 95, 65, 35, 14, 9] s

• NDevices: [200, 400, 600, 800, 1000, 1200, 1400, 1600]

The thereby generated 48 results per scenario were used to create color maps depict-
ing the development of success rates in terms of intactly transported data packets resp.,
completely received multi-packet transactions. The y-axis denotes the no. of end de-
vices against the no. of gateways, which is derived by dividing the no. of end devices by
the fixed no. of gateways (6). For the x-axis, interTransmissionDelay, (resp., inter-
/intraTransactionDelay) was converted to the no. of issued packet transmissions per
end device per hour.

The second plot-type shows for each network density (i.e., no. of end devices per gateway)
the transmission frequency in terms of issued packet transmissions per ED and h for which
the highest throughput (i.e., single packet transmissions resp., multi-packet transactions
per hour) could be achieved. The purpose of these graphics is to demonstrate, that for
certain scenarios, the simulated networks are exhausted by scaling up network density such
that transmission frequencies need to remain moderately small to retain high throughput.
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6.1.1 Duty Cycle Enforcement

Simulation Results scenario1

Max. throughput: 178’046 packets per h, attained by 257.15 issued transmissions per h
and end device (interTransmissionDelay = 14 s), at 266.67 end devices per gateway
(NEndDevices = 1600)

Figure 6.1: Success Rates for scenario1 using DC

Figure 6.2: Maximal Throughputs for scenario1 using DC
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Simulation Results scenario2

Max. throughput: 80’154 packets per h, attained by 400 issued transmissions per h
and end device (interTransmissionDelay = 9 s), at 266.67 end devices per gateway
(NEndDevices = 1’600)

Figure 6.3: Success Rates for scenario2 using DC

Figure 6.4: Maximal Throughputs for scenario2 using DC
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Simulation Results scenario3

Max. throughput: 5’988 signed multi-packet transactions per h, attained by 102.86 issued
transmissions per h and end device (inter-/intraTransactionDelay = 35 s), at 200 end
devices per gateway (NEndDevices = 1’200)

Figure 6.5: Success Rates for scenario3 using DC

Figure 6.6: Maximal Throughputs for scenario3 using DC
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Simulation Results scenario4

Max. throughput: 6’340 signed multi-packet transactions per h, attained by 55.39 issued
transmissions per h and end device (inter-/intraTransactionDelay = 65 s), at 200 end
devices per gateway (NEndDevices = 1’200)

Figure 6.7: Success Rates for scenario4 using DC

Figure 6.8: Maximal Throughputs for scenario4 using DC
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6.1.2 Listen Before Talk

Simulation Results scenario1

Max. throughput: 379’810 packets per h, attained by 400 issued transmissions per h
and end device (interTransmissionDelay = 9 s), at 266.67 end devices per gateway
(NEndDevices = 1’600)

Figure 6.9: Success Rates for scenario1 using LBT

Figure 6.10: Maximal Throughputs for scenario1 using LBT
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Simulation Results scenario2

Max. throughput: 63’378 packets per h, attained by 55.39 issued transmissions per h
and end device (interTransmissionDelay = 65 s), at 266.67 end devices per gateway
(NEndDevices = 1’600)

Figure 6.11: Success Rates for scenario2 using LBT

Figure 6.12: Maximal Throughputs for scenario2 using LBT
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Simulation Results scenario3

Max. throughput: 11’486 signed multi-packet transactions per h, attained by 102.86
issued transmissions per h and end device (inter-/intraTransactionDelay = 35 s), at
266.67 end devices per gateway (NEndDevices = 1’600)

Figure 6.13: Success Rates for scenario3 using LBT

Figure 6.14: Maximal Throughputs for scenario3 using LBT
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Simulation Results scenario4

Max. throughput: 6’078 signed multi-packet transactions per h, attained by 55.39 issued
transmissions per h and end device (inter-/intraTransactionDelay = 65 s), at 266.67
end devices per gateway (NEndDevices = 1’600)

Figure 6.15: Success Rates for scenario4 using LBT

Figure 6.16: Maximal Throughputs for scenario4 using LBT
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6.1.3 Discussion

In general, scenarios simulating the transmission of signed multi-packet transactions
scored significantly lower success rates, resp., throughputs, than single-packet transmis-
sion scenarios. This is due to the fact, that for multi-packet transactions, all twelve
packets belonging to a transaction have to be consecutively received intact, such that a
transaction counts as successful, whereas for the other scenarios, a single successful packet
transmission increases the success rate.

As expected, implementing and installing the Listen Before Talk variant CSMA-x [46]
in the used LoRaWAN simulation framework lead to notably improved performances of
networks simulated within the four scenarios. This becomes most apparent by comparing
the success rate color maps for scenario1 (Figure 6.1) and scenario3 (Figure 6.5) us-
ing duty cycle enforcement with the same scenarios using LBT (Figure 6.9, Figure 6.13):
Not only success rates but also throughputs in terms of single-packet transmissions, resp.,
signed multi-packet transactions per hour are improved; Clearly, in scenario1, the duty
cycle prevention mechanism begins to attenuate throughput from network density of 200
EDs/GW and upwards (Figure 6.2), which is not the case for the LBT-variant in Fig-
ure 6.10.

For scenario2 using confirmed messages, introducing LBT and suppressing the max.
duty cycle enforcement did not bring any increase in terms of throughput. This fact can
be ascribed to the following effect: In DC, end devices only consider their own transmis-
sion behaviour when it comes to the decision, whether to send data immediately, or, to
postpone to not violate the max. permitted duty cycle; At the same time, the enforced
max. duty cycle remains the same, regardless of the actual total channel usage. On the
contrary, when using LBT, end devices actually are aware of other ongoing transmissions,
such that the channel usage of receivable devices’ signals, too, is a respected factor when
it comes to prevention of network congestion. Therefor, in confirmed-message scenarios
exhibiting elevated channel occupancy due to transmissions of acknowledgements as well
as occasional packet re-transmissions, end devices will sense the channels as being occu-
pied more regularly and transmissions need to be backed off more often, leading to lower
throughput.
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6.2 Results for O&G Supply Chain Scenario

This section presents the result of a simulated LoRaWAN network scenario which was
customized for the functional architecture design of chapter 2 by using the parameters
displayed in Table 4.5. Running a simulation with duty cycle enforcement, i.e., without
conducting Listen Before Talk, by using confirmed and signed multi-packet transactions
(scenario4) and setting geographical device positions described in section 2.3 yields the
following results:

Table 6.1: Obtained Results Functional O&G Supply Chain Architecture Simulation

Figure Value
SuccessfulTransactions 2885 transactions

UnsuccessfulTransactions 0 transactions
SuccessRate 100%
Throughput 240.417 transactions per h

The used parameters concerning network density as well as transmission frequency yield
an average no. of 2.81 end devices per gateway and 25.14 issued packet transmissions per
end device in one hour. Looking at the success rate color map for scenario4 using duty
cycle enforcement (Figure 6.7), these values are related to the region at the very bottom
left of the plot. Therefor, the achieved success rate of 100% for this simulation scenario
is justifiable.
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Chapter 7

Summary and Conclusions

The contributions achieved in this thesis are twofold:

Firstly, to analyze the transmission behaviour of real-existing LoRaWAN devices, a data
set covering TTN devices was processed. While the initial goal — namely to determine end
devices in the Zurich area transmitting data as a series of packets forming transactions
— could not be realized due to the input data at hand, this implementation can be
used to determine the geographical position of end devices in a definable area which
are transmitting in a regular fashion. Moreover, the ability to draw the distribution of
transmission periodicities among end devices, is realized through this implementation.

Secondly, an existing NS-3 LoRaWAN simulation module was enhanced by several compo-
nents such that the simulation of blockchain-compliant LoRa networks became possible:
At first, the code was extended to reach the goal of determining simulated networks’
scored success rates as well as attained throughput in terms of successfully transmitted
multi-packet transactions. Later, the simulation framework was equipped with the ability
for end devices to conduct Listen Before Talk (LBT), i.e., to only transmit, if the channel
was sensed clear beforehand. By running four different simulation scenarios and scaling up
simulated networks in terms of end device density as well as transmission frequency, the
reused code adhering to duty cycle enforcement (DC) was compared against the LBT im-
plementation: While for all four scenarios, LBT introduced significantly improved success
rates, throughput was only raised for scenarios using unconfirmed messages. However, if
for certain use cases, it is strictly to avoid losing any of the transmitted data, LBT would
definitely be the better choice, as it trades throughput for greater transmission success
rates.
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7.1 Future Work

The implemented and simulated efficiency improvements through Listen Before Talk (sub-
section 4.3.4) can be described as a distributed solution mitigating the effects of inter-
ference. That is, the simulated end devices are given the task to sense the channels for
ongoing transmissions and possibly back off in case of a busy channel. However, with this
approach, there is by no means a 100% guarantee, that the chosen channel will still be
free after an end device eventually started transmitting. It became clearly recognizable in
the simulation results, that also by using LBT, at a certain level of transmission frequency
resp., network density, the effects of interference have a negative impact on the conducted
simulations’ success rate. Undoubtedly, packet loss is to avoid at any cost, if there is
great emphasis on data completeness as well as integrity in a considered use case (e.g.,
section 2.2).

For future work, it can be analyzed, how a central controlling entity (i.e., a ’controller’)
can be engaged to avoid unsuccessful (resp., incomplete) transactions due to packets
dropped by interference: Rather than the end devices themselves, only the controller
will be permitted to grant individual end devices permission to conduct their subsequent
transmission. This way, the controller will be able to leave the channel free for individual
packet transmissions to complete while keeping potential interferers on hold.
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[40] É. Morin, M. Maman, R. Guizzetti, and A. Duda. Comparison of the Device Lifetime
in Wireless Networks for the Internet of Things. IEEE Access, 5:7097–7114, 2017.

[41] T. Eirich T. Kramp O.Hersent N. Sornin, M. Luis. LoRaWAN Specification v1.0.2.
https://lora-alliance.org/resource-hub/lorawantm-specification-v102.
Accessed: 2018-11-05.

[42] Brian Ray. NS-3 Documentation: CommandLine Class Reference. https://www.

link-labs.com/blog/iot-oil-gas-use-cases, Aug. 2018. Accessed: 2018-11-10.

[43] U. Raza, P. Kulkarni, and M. Sooriyabandara. Low Power Wide Area Networks: An
Overview. IEEE Communications Surveys Tutorials, 19(2):855–873, June 2017.

https://github.com/imec-idlab/ns-3-dev-git/tree/lorawan
https://github.com/imec-idlab/ns-3-dev-git/tree/lorawan
http://www.keller-druck.ch/home_e/painfo_e/berichte_2013_e.asp
http://www.keller-druck.ch/home_e/painfo_e/berichte_2013_e.asp
https://ubidots.com/blog/exploring-cat-m1-nb-iot-lpwan-connections/
https://ubidots.com/blog/exploring-cat-m1-nb-iot-lpwan-connections/
https://github.com/signetlabdei/lorawan
https://github.com/signetlabdei/lorawan
https://lora-alliance.org/resource-hub/lorawantm-specification-v102
https://www.link-labs.com/blog/iot-oil-gas-use-cases
https://www.link-labs.com/blog/iot-oil-gas-use-cases


60 BIBLIOGRAPHY

[44] Brecht Reynders, Wannes Meert, and Sofie Pollin. Range and Coexistence Analysis
of Long Range Unlicensed Communication. In 23rd International Conference on
Telecommunications, ICT 2016, Thessaloniki, Greece, May 16-18, 2016, pages 1–6,
2016.

[45] T. To and A. Duda. Simulation of LoRa in NS-3: Improving LoRa Perfor-
mance with CSMA (Source Code on GitHub. https://github.com/drakkar-lig/

lora-ns3-module. Accessed: 2018-11-22.

[46] T. To and A. Duda. Simulation of LoRa in NS-3: Improving LoRa Performance with
CSMA. In 2018 IEEE International Conference on Communications (ICC), pages
1–7, May 2018.

[47] He Wu, Sidharth Nabar, and Radha Poovendran. An Energy Framework for the
Network Simulator 3 (NS-3). In Proceedings of the 4th International ICST Conference
on Simulation Tools and Techniques, SIMUTools ’11, pages 222–230, ICST, Brussels,
Belgium, Belgium, 2011. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

https://github.com/drakkar-lig/lora-ns3-module
https://github.com/drakkar-lig/lora-ns3-module


Abbreviations

LPWAN Low Power Wide Area Network
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Glossary

back off The verb used to describe an end device postponing a transmission due to other
observed transmissions on the channel.

congestion The state of a network which has to bear too much ongoing traffic such
that a significant part of transmitted data packets are dropped due to the effects of
interference.

signal to interference ratio The ratio of the reception power of a signal being received
against the aggregated signal power of interfering signals simultaneously present on
the channel.

transactional The adjective used to describe a data record consisting of several data
packets as well as of a signature forming a transaction; The signature contains a
hash value gained by encrypting the data packets to ensure integrity.

bit error rate The ratio of incorrectly transmitted bits against the size in b of the totally
transmitted data.

forward error correction A technique letting sending entities transmit redundant data
allowing receivers to detect errors in transmitted data.
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Appendix A

Installation Guidelines

Please note, that the setup instructions below (subsection A.1.1, subsection A.2.1) are
only necessary for installing the two provided implementations on a host machine. The
Lubuntu 18.10 (www.lubuntu.net) virtual machine image attached on the DVD (compati-
ble with Oracle VirtualBox, www.virtualbox.org) features both implementations pre-setup
in directories under Desktop/ of user lorasim (password = lorasim).

A.1 NodeExtractor Application

To run the Python-script allowing for determining frequently transmitting TTN end de-
vices in the Zurich area (as described in subsection 5.3.2), the following dependencies
have to be available on your UNIX system (it was successfully tested on a Ubuntu 18.04.2
LTS machine). The package names in square brackets refer to the official Ubuntu 18.04
package repositories:

• Python 3.6 [python3.6] (www.docs.python.org/3.6/using/index.html)

• Tkinter for Python 3 [python3-tk] (www.tkdocs.com/tutorial/install.html)

• Virtualenv [virtualenv] (www.virtualenv.pypa.io/en/latest)

A.1.1 Setup

1. Please extract file nodeExtractor.zip (included on the DVD) onto your system
and launch a terminal in project directory nodeExtractor. Alternatively, the code
can be obtained by cloning the Git repository available under:
https://github.com/timolex/nodeExtractor.git . (Please note, that the input
CSV-file called ’input.csv’ is only available on the attached DVD).
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2. Please run the provided Bash-script setup.sh and follow its instructions. This
script automatically creates a virtual Python environment in the current directory
and installs all required Python packages into it using Python’s package manager
pip.

3. As prompted by the script, please verify, if the dependency installation process was
successful (pip logs messages in red in case of errors).

A.1.2 Running the Application

1. (If using the attached VM, please open directory Desktop/nodeExtractor in a
terminal.) Please run $ source venv/bin/activate in the project directory to
activate the virtual Python environment.

2. Please execute $ python3.6 nodeExtractor.py to start the application. Upon
completion, a window containing a plot showing the distribution of TTN nodes’
transmission periodicities will be displayed. Please note, that given the large input
data set, this computation might take up substantial time resources.

A.1.3 Input Data

Please note that raw data are coming from the included file input.csv, which is a subset of
two million transmissions from the database-dump provided by TTNMapper.org. This file
may be exchanged with a new version from TTNMapper.org, or a subset, resp., superset
of the included file as long as its format (its CSV signature) as well as the filename remain
the same.

A.1.4 Parameters

As mentioned earlier, the nodeExtractor.py application uses the same parameters as
presented in Table 5.1. However, different parameters can be defined by modifying file
nodeExtractor.py and changing the fields at the top of the file under the comment
”# general parameters”.
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A.2 LoRaWAN Simulation

A.2.1 Setup

1. Please extract file LoRaNS3.zip (included on the DVD) onto your UNIX system and
launch a terminal in the project (sub-)directory:
ns-3-dev-with-signetlabdei-lorawan-module. Alternatively, the source code
can be obtained by cloning the Git repository available under:
https://github.com/timolex/ns-3-dev-with-signetlabdei-lorawan-module.

git .

2. Please run the following command to launch the configuration process for the Python
build automation tool Waf:
$ ./waf configure --enable-tests --enable-examples

Please read the console output and verify, if ’configure’ finished success-

fully. A reason for an unsuccessful configuration is usually a missing dependency,
e.g., C++ compiler GCC. Please repeat the command above after installing every
new dependency until the configuration was reported as successful.

3. Please checkout either of the following two Git branches:

• $ git checkout virtualQueueMgmt

• $ git checkout LBTwithQueue

4. Please run the following command to build NS-3:
$ ./waf build

5. (Optional:) Upon completion of a successful build, please run the following com-
mand to test the functionality of the LoRaWAN module:
$ ./test.py -s lorawan

A.2.2 Running Simulations

1. (If using the attached VM, please open directory Desktop/lorawanSim in a ter-
minal.) For running simulations with end devices adhering to max. duty cycles,
please checkout branch virtualQueueMgmt; For simulating end devices operating
according to Listen Before Talk, checkout branch LBTwithQueue. Please note, that
after each time, a different branch was checked out, it is necessary to re-build NS-3
with the command: $ ./waf build

2. After a successful build, there is the option of running single simulation scenarios:
With the following commands, each of the four scenarios (introduced in subsec-
tion 4.4.2) may be run with different parameters, namely no. of end devices (X)
and delay in s (Y) in between issuing two consecutive packet transmissions:

• $ ./waf --run "scenario1 --nDevices=X --delay=Y"

• $ ./waf --run "scenario2 --nDevices=X --delay=Y"

https://github.com/timolex/ns-3-dev-with-signetlabdei-lorawan-module.git
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• $ ./waf --run "scenario3 --nDevices=X --intraDelay=Y

--interDelay=Y"

• $ ./waf --run "scenario4 --nDevices=X --intraDelay=Y

--interDelay=Y"

Alternatively, there is the possibility of running the four scenarios in batches: There-
for, please edit the Bash scripts scenN.sh (N ∈ [1, 4]) and set the desired set of
numbers of end devices (nEndDevices) as well as the delays in s in between issuing
two successive packets (delays) at the beginning of the file. Simulation batches can
be started with the command $ ./scenN.sh .

Both running single simulations as well as batches will create a CSV file for each scenario
(e.g., scenario3.csv), where the performances of finished simulations will be written to.

Simulation batches additionally create a sub-directory called logs/, where NS-3 console
output is bypassed to in terms of text files. The names of these log files feature the
following structure: scenN_Y_X.txt, where N corresponds to one of the four scenarios, Y
is the delay in s in between issuing two consecutive packet transmissions and X the no.
of end devices in the simulated network.

All simulation scripts work with a fixed no. of six gateways (cf. subsection 4.6.3). This,
as well as a variety of other assumptions may be changed by modifying the simulation
scripts under scratch/scenarioN.cc (N ∈ [1, 4]).



Appendix B

Contents of the DVD

• Abstract.txt, Zusfsg.txt: This thesis’ abstract in English and in German.

• Bachelorarbeit.pdf: This thesis document in the PDF format.

• BScThesis.ps: This thesis document in the PostScript format.

• BScThesis.zip: The LATEX source code of this thesis document.

• IntermediatePresentation.pptx: The presentation slides of the midterm presen-
tation.

• LoRaSim.ova: An OVF 1.0 image of a Lubuntu 18.10 virtual machine with both
main implementations already set up.

• nodeExtractor.zip: The source code for the implementation covered in chapter 5.

• LoRaNS3.zip: The source code for running LoRaWAN simulations as documented
in section 4.6.

• Simulation_Results.zip: Results in terms of CSV files as well as logs (subdirec-
tory logs/) for the simulation scenarios discussed in section 4.6
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