
Sina Rafati Niya, Burkhard Stiller

A Peer-to-Peer Purchase and Rental
SmartContract-based Application

April 2017

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

–
N

o.
IF

I-2
01

7.
04

S.Rafati, Burkhard Stiller: A Peer-to-Peer Purchase and Rental SmartContract-based Application
Technical Report No. IFI-2017.04, April 2017
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

A Peer-to-Peer Purchase and Rental Smart
Contract-based Application
Sina Rafati Niya, Florian Schüpfer, Thomas Bocek, Burkhard Stiller

Communication Systems Group CSG@IfI, University of Zurich

Binzmuhlestrasse 14, CH-8050 Zurich, Switzerland

Email: [rafati|boeck|stiller@ifi.uzh.ch, flo.schuepfer@bluewin.ch]

Abstract:
By evolving blockchains (BC) many applications in various groups of use cases designed
and developed to employ unique features of them as distributed and decentralized
ledgers, and Smart Contracts (SC) as enablers of transactions integrated within BCs
have been used to drive different functionalists on BCs.This work introduces the design
and implementation of an Android-based Peer-to-peer (P2P) purchase and rental
application, which leverages Smart Contracts SC and Ethereum public blockchain
(BC).This application allows users to flexibly specify purchase and rental contracts,to
exchange personal data and execute monetary transactions directly on the BC. SC in
this application are developed in a way to use deposits to increase compliance trust
between parties in a contract.Thus, all payments are conducted in Ethereum currency
Ether. As a Device-to-device (D2D) communication protocol, WiFi-Direct is chosen to
enable the P2P data transmission between two parties due to the capability of
transferring high data rates in comparison with other protocols. As an addition to the
basic trade contract introduced in Ethereum, This work results in a cost-efficient,
secure, SC-based, P2P, and Decentralized application (Dapp). Relatively, evaluations on
performance of this Dapp is specified in terms of its D2D deployment, transaction costs,
scalability, security, and privacy.

ACM CCS: Computer Systems Organization→ Architectures → Distributed
Architectures → Peer-to-peer Architectures→ Blockchains

Keywords: Smart Contracts, Blockchains, Ethereum, Peer-to-peer Applications,
Purchase and Rental Contract, Decentralized Mobile Applications

1 Introduction

In the last decade, the Business-to-Consumer (B2C)
platforms dominated e-commerce business. With the in-
troduction of the first Consumer-to-Consumer (C2C)
platforms, a new form of markets emerged where priva-
te persons can come together and exchange goods and
services directly [27]. This market has developed from
simple sale and resale platforms like Ebay [18] to mo-
re advanced short- and long term rental platforms. Ex-
amples for such platforms are Airbnb[1] where private
persons can rent out their unused rooms to other per-
sons or RelayRides [34], where people can share their
unused vehicles. The phenomenon of the rapid growth

of the C2C market in the last years is often referred to
as the “Sharing Economy” [27].

As of today, concluding an electronic (online) purchase
contract between two parties requires centralized plat-
forms to mediate the interests of seller and buyer. The-
se platforms have to store description of the purchased
items and their price, and customers can interact with
that platform to buy an item. Online purchasing also
requires centralized platforms like banks or credit card
institutes to enable and conclude safe and valid pay-
ments. The problem that all these platforms share is
that they rely on a Trusted Third Party (TTP), the
platform owner, to operate the platform. This has ma-

1

ny disadvantages for consumers. They need to register
at each platform separately and typically have to give
away their private data to the platform owner. They al-
so often have to pay transaction fees [6]. A TTP also
determines a single point of failure for all participants
of the platform. It can be attacked or it can be shut
down because the platform owner has to comply with a
central authority.

Bitcoin [31] defines a CC for transfer of funds between
participants without relying on a TTP, like a bank. The
ownership of currency tokens is maintained with the
help of public key cryptography, meaning that a token
belongs to the user that holds its associated private key.
To maintain the integrity of the network, Bitcoin intro-
duced the BC, a distributed ledger that stores all tran-
sactions ever committed in a chain of distinct blocks.
Participants have to solve a cryptographic puzzle that
is used to verify a block. The main incentive for parti-
cipants (miners) to take part in this process is a reward
that is distributed when a block is proofed to be valid.
In this manner, new Bitcoin tokens are created and this
processes is called mining.

Although the functionality of Bitcoin can be extended
beyond the exchange of value tokens by writing special
protocols, the scripting language used is not powerful
enough to express complex contract logic like in the ex-
ample envisioned by [16].

Ethereum [20], a cryptocurrency described first by [11],
is the first cryptocurrency with full support for SC. It
stores the code and related data of a contract on the BC
and executes code when participants or other contracts
issue transactions. The code of a contract is stored in
a byte code format and executed concurrently by all
participants on the Ethereum Virtual Machine (EVM).

A solution to overcome the requirement of a TTP in a
contractual agreement between two or more parties is
offered by the concept of Smart Contracts (SC). The
concept of a SC was first introduced by Nick Szabo [38].
He defined it as a digital protocol that facilitates the
agreement process between different parties by enforcing
certain predefined rules. [38] proposes to embed contrac-
tual clauses, like property rights directly into hard- and
software to make it expensive for a party to breach the
protocol. In [38] a hypothetical digital security system
for cars is outlined, where a cryptographic key represents
the ownership of the car and is transferred only if the
terms implemented in the protocol are fulfilled. In his
example, the owner of a car can withdraw the key from
a leaser who does not pay the monthly rent.At that ti-
me, SC were not practically achievable, mainly because
no digital infrastructure existed that allowed the secu-
re execution of protocols without a TTP. This changed
with the introduction of the Crypto-Currency (CC) Bit-
coin and its underlying blockchain (BC) technology.

By revolution in BC-based systems and emerge of public
BC of Ethereum [20] as a P2P and fully decentralized

architecture, there is a potential in solving issues raised
by centralized purchase and rental platform without the
need for TTPs in developing Dapps using this BC by
enabling and adoption of SC. Ethereum supports sever-
al scripting languages to write SC. The most popular
among them is Solidity, a contract-oriented high level
language whose syntax is similar to JavaScript (JS). Va-
rious types of apps can be implemented in Solidity, like
“Voting”, “Crowd Funding”, “Blind Auctions” or “Mul-
ti Signature Wallets” [21].

To tackle the issues experienced with traditional con-
tracts this work proposes design and implementation of
a Dapp to be replaced by the centralized TTP-based so-
lutions for purchase and rental contracts. This Dapp is
developed for Android-based mobile phones with a P2P
architecture which employs the Ethereum BC as its de-
centralized back-end architecture and addresses various
challenges of such a Dapp such as choosing the best pro-
tocol for D2D communications, providing trust, privacy,
and security on one hand, and on the other hand, de-
veloping the SC codes to be as cost efficient as possible
with high scalability and ability of handling and mana-
ging transactions for setting up successful contracts.

In this work, according to the required throughput and
security of such communication, the WiFi-Direct pro-
tocol is used to exchange identity information between
users. Users are encouraged to use either their phone
camera to scan a Quick Response (QR) code or by ex-
changing it through WiFi-Direct.

To provide security and privacy, in order to exchanging
sensitive user data between two parties for identificati-
on purposes, user data is encrypted during transmission
and signed before sending over the network and to broa-
den the scope of applicability, legal aspects of SC are
investigated in this work to address the question if it is
possible to conclude a legally valid electronic purchase
or rental contract directly between two private parties
without the need of a TTP. This Dapp allows users to
flexibly set up contracts that provide enough informati-
on to be legally valid.

A critical aspect in developing apps using SC, is the
cost for saving transactions in the BC. To tackle high
costs of storing data, this paper introduces light weight
contracts along with full contracts. Additionally, data
types are carefully regarding units and functions in the
SC to obtain the least contract cost. Also, as users can
decide themselves the amount of identity-related data to
be provided for each contracts by both sides, users are
capable of reducing total costs by minimizing the reque-
sted data. to calculate SC costs. Estimation Equations
are developed to calculate SC costs in advance with a
high accuracy.

This paper is organized as follows, section 2 reviews rela-
ted work. Legal aspects of purchase contracts are descri-
bed in Section 3 and legal aspects of SC are explained in
Section 3.1. A brief overview of WiFi-Direct communi-

2

cation protocol is provided in Section 4. Design decisions
are presented in Section 5 and the implementation of the
whole system, including SC codes and D2D connections
are described in detail in Section 6. In Section 7, cost
evaluations of the implemented SC codes including the
empirical results are presented and the analysis of pri-
vacy and security are performed in Sections 7.3. Final
concluding remarks are mentioned in Section 8.

2 Related Work

An investigation of existing apps reveals that only a few,
such as bogner’s app [6], TransActive Grid [39], and
Digix [17] exploit BC and SC to develop mobile apps
with the purpose of flexible (in term of information from
both parties to be presented to each other and accessing
other parties information by D2D communications), le-
gally valid, and safe transaction execution (guaranteed
purchasing and renting transactions) for the Purchase
ans renting use case. In this section an overview of abo-
ve mentioned apps is presented.

The application presented in [6] employs SC and the
Ethereum BC for conclusion of rental contracts. In this
app, creator of a contract can register rental objects that
are stored in a dictionary and referenced by their Id’s.
SC stores the description of the item together with its
rental price and deposit and when one party wants to
rent an object, she scans its QR code with the camera
of her smart phone. The client then invokes the rentOb-
ject function on the contract and submits the deposit for
the object. The renter is then assigned to the object to-
gether with a timestamp. When the object is returned,
the owner of the contract can then trigger the reclaim-
Object function that calculates the renting fees for the
time of usage and sends the renting fee to the address of
the owner. The deposit is then returned to the renter.
Front end of the app that provides the user interface is
implemented in JS and HTML5.

bogner’s solution a central SC is used to manage exi-
sting rent items and is more focused on the commercial
renting of items from a store. However, the proposed
Dapp in this article focuses more on direct unique tran-
sactions between two parties and also supports purchase
contracts and supports the exchange of personal infor-
mation between participants.

TransActive Grid is a not fully decentralized P2P energy
trading platform that uses Ethereum based SC to mana-
ge transactions between participants in a local electric
power microgrid. In the system, every owner of a “pho-
tovoltaic”facility installs a smart meter that keeps track
of the surpluses she makes. The smart meter then up-
dates the available surplus for this participant on a SC
on the Ethereum BC. Interested buyers that live in the
same neighbourhood can then interact with the contract
to buy energy credits. Brooklyn microgrid [7] is the first

renewable energy startup that uses the Transactive Grid
system to create a local energy market.

Digix is an asset tokenisation service built on the Ethe-
reum BC. Digix is offering physical gold bullions on
the BC, more specifically, digital tokens linked to real
world physical assets. DGX tokens are created (“min-
ted”) through an Ethereum SC with each token repre-
senting 1 gram of gold. Each DGX token can be linked
definitely to a Proof of Asset (PoA) card of a physi-
cal gold bar. The PoA card is stored on a SC on the
BC and contains information like the time stamp of the
card creation, the gold bar serial number, the purcha-
se receipt and the audit documentation [13]. The PoA
asset card is created through the “Asset Registration
Process”. The registration process accepts a gold con-
tract from a user and creates the PoA card that is linked
to the Ethereum address of the user. To convert the PoA
asset card to DGX tokens, a user can use the “Minter
SC”that will hold the PoA card and return 1 DGX to-
ken per gram of gold. With the “Recaster SC”a user
can exchange its DGX tokens back into PoA cards. To
redeem the PoA card back to the physical gold bar, the
user can trigger the “Redemption Process”[13].

Main benefit of DGX tokens is that their value is much
more stable than the cryptocurrency Ether (ETH), be-
cause they are directly backed by gold or other physical
assets. Another benefit of DGX compared to traditio-
nal digital gold certificates is that this system does not
rely on a centralized database that holds the informa-
tion stored in a PoA card. Further, This app is prone
to “Man In The Middle ”(MITM) attacks because users
use a desktop client to log in, instead of a web form [13].

A comparative overview of related apps is listed in Ta-
ble 1. In this Table, SC Dapp is presented in this article
which, regarding the BC used it is the same as other
apps but considering the use case and currency, only
the Bogner app [6] is the closest one which has the ren-
ting functionality and uses Ether. Considering the client
platforms, Transaction Grid [39] and Digix [17] are deve-
loped for desktop machines, while Bogner and SC Dapps
are specifically designed for Mobile phones and conside-
ring decentralization. SC Dapp is capable of being fully
decentralized by employing Ethereum light clients on
the smart phones. A more detailed description of Bo-
gner app, Transaction Grid and Digix is presented at
[42].

3 Legal Aspects of Purchase and Rental
Contracts

This section will focus on the legal aspects of purcha-
se and rental contracts and the requirements need to
be met to provide users legally bonding contracts. A
purchase contract should not only be legal (accepted by
law), but also be enforceable by law. This poses the que-

3

Table 1: Comparison of Related Apps

BC
Technology
Used

Application
Use case

Payment
method

Client
Platform

Fully
Decen-
tralized

Bogner
Dapp

Ethereum P2P rental
contracts

Ether Mobile No

Transactive
Grid

Ethereum P2P energy
trading

Paypal Desktop No

Digix Ethereum Physical
asset
tokenization

Gold
and other
metals

Desktop No

SC Dapp Ethereum P2P rental and
purchase
contracts

Ether Mobile Yes

stion about the required properties a purchase contract
must have to offer legal security.

Law doesn’t give a definition of a purchase contract but
describes duties of involved parties that result out of
conclusion of a purchase contract: It obligates the sel-
ler to hand out the purchase item and to transfer the
property of it to the buyer and it obligates the buyer to
pay the purchase price to the seller [10]. Buyer has to
pay the purchase price to seller. He also must accept the
item that is offered to him in the purchase contract. If
nothing else is negotiated or commonly accepted, recep-
tion of an item must take place immediately. Further,
buyer has to review the purchase item after reception
and notify the seller about possible defects [39].

Conclusion of a purchase contract needs general rules
on contract conclusions which in this case we consider
the swiss federal law defined in OR 1 ff [37] have to be
applied. The most important rules are briefly described
here:

• Conformable will: It is crucial that both parties
express their will to conclude the contract. It is al-
so mentioned that this declaration can be explicit or
by implication. This means that the relationship bet-
ween the parties may be created orally, in writing
or by conduct. For example, when a party accepts a
good or a service against payment, this is considered
a declaration of intent by conduct [9]. However, an
offer in an online-shop is usually not considered an
offer in legal terms, but an offer to the customer to
send a bid to the seller. This means that the offer is
made when a customer orders a good or a service.
The seller has to accept this offer for a contract to be
formed. He can accept this offer either explicitly or
by implication by sending the goods to the customer
[33]. Alternatively, [9] says that the applicant of an
offer is not legally bound to it if he adds a disclai-
mer of warranty to the offer or if such a caveat lies in
nature or in the circumstances of an offer [36].

• Requirements for Validity: The purchase contract
has to fulfill specific formal requirements for speci-
al kinds of contracts (for example when buying real
estate). This is discussed in more detail in section 4.3.
Further the purchase contract has to conform to the
barriers of contractual freedom. This means that the

content of the contract can be chosen freely unless it
violates the law or it is an agreement against public
policy [39].

• Articles of Agreement: For the conclusion of a con-
tract the parties need to agree at least on the essenti-
al articles of agreement (Essentialia Negotii). For the
purchase contract, both parties must agree on the pri-
ce and the purchase item for the contract to be valid
[10].

3.1 Legal Validity of SC-based Applications

One of the first issues come to mind about SC-based ap-
ps while comparing to regular contracts is whether these
contracts are legally valid or they need to adopt some
specific the It is crucial to deduce the legal binding con-
tracts, which are produced and used by SC-based app.
Nature of offers in SC are very different from an offer
in an online shop. In a conventional online shop, sel-
lers does not have to accept an offer from customers
and buyers only have to pay the purchase price if sel-
lers confirmed the purchase. In contrast, SC code allows
only one buyer per offer and account of the buyer is im-
mediately charged after clicking on the ”Buy” button.
Further, SC is locked after the payment of the buyer is
confirmed and neither party can withdraw the money
any more.

It can be argued that such an offer is binding by na-
ture because the SC code does not allow the withdrawal
of payment after an offer is accepted by the buyer. To
make sure that an offer made by seller is binding, it is
better to specify this explicitly in the general terms and
conditions of the app. For example, general terms and
conditions of “Ebay”also specify these conditions for of-
fers made by their customers [19].

Articles of an agreement are fulfilled if the price and the
purchase item are defined properly. Since the SC requi-
res the seller to specify the price in a common currency,
the first condition is satisfied. Regarding the definition
of the purchase item, the law does not specify in which
form and how detailed this description must be. There-
fore, it has been assumed that a written description of
a purchase item and its properties together with one or
more pictures of it are sufficient.

Regarding the formal requirements, it can be stated that
every SC is valid as long as its content does not requi-
re the contract to fulfill special formal properties. This
means that for example contracts involving the purchase
of real estate, patents, designs or trade markets cannot
be concluded with the SC.

Considering the above mentioned requirements, imple-
mented app is legally valid as the following conditions
are fulfilled: (1) General terms and conditions explicitly
state that an offer made by the seller is binding by law.
(2) Content of the SC does not violate the law and is
not an agreement against public policy. (3) The content

4

of the SC does not have special formal requirements by
law.

4 Device-to-device Communication

In order to provide the means of sending and recei-
ving the identity data, there are few protocols to choose
such as Near Field Communication (NFC), WiFi, WiFi-
Direct, Bluetooth and Bluetooth Low Energy (BLE).
A brief overview of D2D communication protocols are
listed in Table 2. Different wireless technologies may
differ in operating frequency range, data rate and se-
curity standards. Obviously, selecting the best protocol
depends on the requirements and use cases, which are
high data rate and security in the introduces SC-based
Dapp.This section describes and justifies the incentives
of using WiFi-Direct protocol as the D2D communica-
tion protocol in the presented Dapp.

WiFi-Direct is an extension of the IEEE 802.11 protocol
and was developed for direct communication of two or
more devices in the absence of a distribution network.

Table 2: Overview of wireless technologies in D2D communi-
cations

Bluetooth BLE 4.0 WiFi-
Direct

NFC

IEEE
Standard

802.15.1 802.15.1 802.11
(a, b, g, n)

ISO 18092

Frequency
(GHz)

2.4 2.4 2.4 and 5.0 0.01356

Max.
Data Rate
(Mbps)

1-3
(24 with HS)

1 11 (b),
54(g), 600
(n)

0.106, 0.212
or 0.424

Security
128 bit SA-
FER+

128 bit AES,
user defined
on app layer

256 bits
AES-CCMP

short range,
user defined
on app layer

WiFi-Direct uses the WiFi Protected Setup (WPS) pro-
cedure to secure the connection with minimal user inter-
vention [12]. WPS is based on the WiFi Protected Ac-
cess 2 (WPA2) protocol. WPA2 implements the IEEE
802.11i standard and provides data confidentiality and
integrity by using the Advanced Encryption Standard
(AES)-CCMP cypher. When used in Personal mode, a
Pre-Shared-Key (PSK) must be present both at the AP
and the client for the mutual authentication. The 256 bit
PSK is usually generated from a plain text pass phrase
that must be entered on both devices. After the authen-
tication, a set of temporary keys is exchanged between
the AP and the client which are regularly updated [3].

WPA2 is considered secure against most attacks like
man-in-the-middle (MITM), authentication forging, re-
play, key collision, weak keys, packet forging and brute-
force attacks [3]. Using WPS as authentication mecha-
nism, the PSK can be exchanged with less user interven-

tion than usually required by using one of the following
methods:

• Push-Button-Connect(PBC): The user has to
press a button on both the AP and the client device
[40].

• PIN: The user has to enter the PIN of the WiFi
adapter into the web interface of the AP (Internal
registrar) or the user has to enter the PIN of the AP
in a UI form on the client device (External registrar)
[40].

It has been shown that the External Registrar authen-
tication is potentially vulnerable to brute-force attacks,
because the authentication is entirely based on the PIN
[40]. WiFi-Direct uses the PBC authentication method,
which is vulnerable against man-in-the middle”(MITM)
attacks during the authentication phase, which is on-
ly active when the buttons are pressed on both de-
vices [26],[40]. Considering throughput, since both the
user profile and the contract can contain high resoluti-
on images, the payload can easily exceed 1 megabyte.
Both classic Bluetooth and Bluetooth Low Energy do
not provide the bandwidth to transmit larger files in re-
asonable time, especially since the achievable data rates
will be below the theoretical limit. Bluetooth 3.0+HS
could provide up to 24 Mbps, but is not very widely
used among smart phone users as well as NFC which
is most of the times users don’t know how to run the
NFC or they can’t find the exact location of the NFC
hardware in their phones. Therefore only WiFi-Direct
can provide the required throughput.

And Considering security issues, The user profile con-
tains personal data and therefore the transmission
should be encrypted appropriately. WiFi-Direct has a
stronger encryption by using 256 bit key length but it is
also vulnerable against man-in-the-middle (MITM) at-
tacks during the WPS authentication procedure. Both
Bluetooth and BLE offer OOB and PIN authentication
to exchange keys and can be considered safer when these
mechanisms are used.

Although the exchanged data is personal and allows a
potential adversary to identify the parties, it does not
provide her with information that could be used directly
to steal money out of a contract or to use the identity
of a party to sign a contract. Even if the parties could
sign a contract with a certified signature in the future,
the private key would never be transmitted to the other
device. Therefore, security is certainly important but
does not have the same priority than data throughput
in this use case.

5 Design

Based on the previous sections some of the most im-
portant factors of designing such a Dapp to automate
processes for data and money transactions while ensu-
ring all parties with guaranteed transactions and iden-

5

tity verification can be listed as: reliable decentralized
data storage, trust to the Dapp and its underlying tech-
nologies, fast and secure P2P and D2D communications,
and user privacy.

The proposed Dapp is designed to be used as a BC-based
system. This system including its users as end nodes
and data storage infrastructure follows a P2P principle
which by communicating within a BC, users setup con-
tracts in a trustable P2P system even though there is no
direct trust between two parties of a contract. This fea-
ture derived by public BC facilitates the whole system
to operate in a fully decentralized way without the need
for TTNs for transaction handling or user authenticati-
on in which users hold Android-based smart phones and
at the same time.

This Dapp designed with two main utilization methods.
In the first method, users install Ethereum light client
on their smart phones and thus, they are connected di-
rectly to the Ethereum BC as shown in right side of the
Figure 1. In the second method, users need to connect to
an Ethereum client which may be installed on a laptop
machine as shown in the left side of the Figure 1.

Figure 1: System’s Architecture

Identity provision as one the key aspects of this Dapp,
is designed to be possible in two methods. The first me-
thod is designed to enable using QR readers in which
each party can read the other parties identity by rea-
ding his/her QR image. Second method is to send and
receive identity data via WiFi-Direct with possibility of
setting the required ID data by seller or hirer flexibly,
e.g., asking for buyer’s image in addition to name and
email. The latter design decision made to provide higher
privacy for users as this option will facilitate this Dapp
to provide as less identity information of users to other
sides as possible even though they have already entered
all those information (e.g., 1: QR code and 2: image) in
his profile as shown in Figure 2.

SC are designed to establish trust for both sides of con-
tracts by asking them to deposit the same amount of
money in terms of Ether to avoid any malicious beha-
viour.

Figure 2: Flexibility in choosing profile information to share

6 Implementation

In order to provide the means of sending and recei-
ving the identity data, there are few protocols to choose
such as Near Field Communication (NFC), WiFi, WiFi-
Direct, Bluetooth and Bluetooth Low Energy (BLE)
[42], [28]. Selecting the best communication protocol de-
pends on the requirements and use cases, which are high
data rate and security in the introduced SC-based Dapp.

Considering throughput, since both the user profile and
the contract can contain high resolution images, the pay-
load can easily exceed 1 megabyte. Both Bluetooth and
BLE do not provide the bandwidth to transmit larger
files in reasonable time, especially since the achievable
data rates will be below the theoretical limit. Bluetooth
3.0+HS could provide up to 24 Mbps, but is not very
widely used among smart phone users as well as NFC
which is most of the times users don’t know how to run
the NFC or they can’t find the exact location of the
NFC hardware in their phones. Therefore WiFi-Direct
protocol is employed in as the D2D communication pro-
tocol in the presented Dapp as only it can provide the
required throughput.

Considering the security issues, user profile contains per-
sonal data and therefore data transmission should be en-
crypted appropriately. WiFi-Direct encrypts the trans-
mitted data by using 256 bit key length but it is also vul-
nerable against man-in-the-middle (MITM) attacks du-
ring the Wi-Fi Protected Setup (WPS) authentication
procedure. Both Bluetooth and BLE offer Out of band
(OOB)- A channel that cannot be easily intercepted-
and PIN authentication to exchange keys and can be
considered safer when these mechanisms are used. Alt-
hough the exchanged data is personal and allows a po-

6

tential adversary to identify the parties, it does not pro-
vide her with information that could be used directly
to steal money out of a contract or to use the identity
of a party to sign a contract. Even if the parties could
sign a contract with a certified signature in the future,
the private key would never be transmitted to the other
device.

In this P2P system, Android clients use service inter-
faces of the Java library to load and deploy SC. The
Java Web3j library [41] is used to wrap the interface of
a SC in a Java class which is then used by the Andro-
id client to execute transactions on the BC. Web3j uses
the JSON-RPC interface of an external Ethereum client
that is connected to the Ethereum network to deploy
contracts and interact with them as shown in Figure 3.
All SC codes in the proposed Dapp are developed with
Solidity language and their compiled byte-code is stored
in the associated Java wrapper class.

Figure 3: UI for Setting up new contracts or accessing previous
contracts

6.1 Rental and Purchase Smart Contracts

This section discusses the Solidity code for the deve-
loped purchase and rental SC in this Dapp. Users can
setup purchase or rental contracts with the Android cli-
ent by creating new contracts or, using already existing
ones. Listing ?? shows the base contract used for both
contracts that stores details of the rented or purchased
items and of the parties.

In the purchase SC, to conduct a safe purchase both
seller and buyer have to pay a deposit before transaction
can take place and deposited assets are only released
when the buyer confirms reception of the item.

In the rental SC, on one side hirer can specify renting
and deposit fees for an item. On the other side, renter

has to pay the deposit beforehand and only gets it back
after he returned the item and paid the renting fee.

Listing 1.1: The TradeContract

1 pragma s o l i d i t y ˆ 0 . 4 . 8 ;
2 cont rac t TradeContract{
3 s t r i n g public t i t l e ;
4 s t r i n g public d e s c r i p t i o n ;
5 u int public p r i c e ;
6 u int public depos i t ;
7 address public s e l l e r ;
8 address public buyer ;
9 bool public v e r i f y I d e n t i t y ;
10 bytes32 [] private imageSignatures ;
11 enum State { Created , Locked , Inac t ive ,

AwaitPayment }
12 State public s t a t e ;
13 func t i on TradeContract (s t r i n g t i t l e , s t r i n g

d e s c r i p t i o n , bool v e r i f y , u int depos i t ,
u int p r i c e , bytes32 [] imageS ignatures)
{ . . . }

14 mod i f i e r r e q u i r e (bool c o n d i t i o n) {
15 i f (! c o n d i t i o n) throw ; ;}
16 mod i f i e r onlyBuyer () {
17 i f (msg . sender != buyer) throw ; ; }
19 mod i f i e r o n l y S e l l e r () {
20 i f (msg . sender != s e l l e r) throw ; ; }
21 mod i f i e r i nS ta t e (State s t a t e) {
22 i f (s t a t e != s t a t e) throw ; ; }
23 event aborted () ;
24 func t i on abort () ;}

In each contract, description of an item is composed of
a title, textual description and an array of image si-
gnatures. An image signature is calculated by using the
SHA256 cryptographic hash function of an image taken
by the Android client. The reason for not storing a who-
le image in the Ethereum BC is the cost associated with
the high storage usage. Assuming that a PNG or JPG
image with reasonable resolution has a size of 300 kB
and cost of storing one 256 bit word on the Ethereum
BC is 20,000 units of gas, cost for storing one image can
be calculated by:

Pstorage = 937.5× 20000× Pgas × Pwei (1)

Where Pstorage is the price for storing the image in
USD, Pgas is the gas price and Pwei is the dollar ex-
change rate for 1 wei. Absolute price can vary because
both gas price and exchange rate for Ether have a high
volatility. As of July 16, 2017, the average gas price is
4 gwei [21] and the dollar exchange rate for 1 Ether is
approximately 175 $ [10]. This would result in a price of
131.25 $ for storing one single image!

Every contract also stores address of the 2 contractu-
al partners as well as price and deposit for the item.
The deposit is used to ensure contractual compliance
of the parties. Finally, contract stores a boolean value
that indicates whether the parties should exchange per-
sonal information. This indicator is used by client app
to determine whether personal information like addres-
ses, photos or other data should be exchanged between
the parties. Every contract can be aborted in certain cir-
cumstances and therefore declares the aborted function
and an aborted event.

7

6.1.1 Purchase Smart Contract

Purchase contract is derived from the TradeContract
and it is a modified version of the purchase contract
presented in the official Solidity documentation [21] as
shown in Listing 1.2.

Listing 1.2: The Purchase Contract

1 cont rac t Purchase i s TradeContract{
2 func t i on Purchase (s t r i n g t i t l e , s t r i n g

d e s c r i p t i o n , bool v e r i f y , bytes32 []
imageS ignatures) payable

3 TradeContract (t i t l e , d e s c r i p t i o n , v e r i f y ,
msg . va lue / 2 , msg . va lue / 2 ,
imageS ignatures) {

4 i f (2 ∗ p r i c e != msg . va lue) throw ;}
5 event purchaseConfirmed () ;
6 event itemReceived () ;
7 func t i on abort ()
8 o n l y S e l l e r
9 inS ta t e (State . Created) {
10 aborted () ;
11 s t a t e = State . I n a c t i v e ;
12 i f (! s e l l e r . send (this . ba lance)) throw ;}
13 func t i on conf irmPurchase ()
14 inS ta t e (State . Created)
15 r e q u i r e (msg . va lue == 2 ∗ p r i c e)
16 payable {
17 purchaseConfirmed () ;
18 buyer = msg . sender ;
19 s t a t e = State . Locked ;}
20 func t i on conf i rmRece ived ()
21 onlyBuyer
22 inS ta t e (State . Locked) {
23 itemReceived () ;
24 s t a t e = State . I n a c t i v e ;
25 i f (! buyer . send (depo s i t) | | ! s e l l e r . send (

this . ba lance)) throw ;}}

To give an incentive to a seller to not betray a buyer,
the seller has to transmit Ether in the constructor of
the contract. As can be seen in Listing 1.2 lines 3-5,
the value provided must be dividable by 2, otherwise
the contract throws an exception. Thus the actual price
of the item is only half the value provided in the con-
structor. When the buyer executes the confirmPurchase
function, she also has to pay a deposit together with the
actual purchase price. The state of the contract is then
set to “Locked”. From this point on, the funds of the
2 parties are locked and can only be released when the
buyer confirms that she received the item. Locking of
deposits makes sure that no party has a monetary ad-
vantage in betraying other side since both have invested
the same amount of money in the contract and non of
them can get their deposit back when the other party
does not comply.

As long as the contract is in the state Created meaning
that buyer has not accepted the offer, seller can execute
“abort”function and the balance stored in the contract
is refunded to him. In the “confirmReceived”function
the buyer confirms that she received the item. The state
of the contract is set to Inactive meaning that no fur-
ther interaction with it is possible. The deposit is refun-
ded to the buyer and the rest of the balance stored in
the contract is sent back to the seller. Notice that the
state is changed before the Ether is transmitted with
the send function. This prevents an attacker from cal-

ling the function again from its fallback function. Every
time the state of the contract changes, an event is emit-
ted on the event log. This allows the client app to update
its UI and inform the buyer or seller that the state has
changed.

6.1.2 Rental Contract

In the renting contract as presented in Listing 1.3, buy-
er assumes the role of a renter and the seller assumed
as the role of a hirer. The hirer defines details of the
rent item together with its renting price and deposit in
constructor of the contract. Renting price is provided in
wei per second. As long as the contract is in the Created
state, hirer can execute the abort function. When the
renter executes the rent function, she has to pay the de-
posit for the item. State of the contract is set to Locked
and start time for the contract is initialized. When the
renter wants to return an item, the hirer executes the
reclaimItem function which calculates the renting fee
based on the renting time and the price and sets the
state of the contract to AwaitPayment. In the Await-
Payment state, renter can execute returnItem function,
which then returns the deposit and the change to the
buyer. The renting price is sent to the renter. In the
AwaitPayment state, the hirer can also execute the re-
claimItem function again in the case the renter does not
pay in time.

Listing 1.3: The Rental Contract

1 cont rac t Renting i s TradeContract{
2 uint256 private rent ingFee ;
3 uint256 private s t a r t ;
4 func t i on Renting (s t r i n g t i t l e , s t r i n g

d e s c r i p t i o n , bool v e r i f y , bytes32 []
imageSignatures , u int depos i t , u int
r e n t i n g P r i c e)

5 TradeContract (t i t l e , d e s c r i p t i o n , v e r i f y ,
depos i t , r e n t i n g P r i c e , imageS ignatures)

{}
6 event itemRented () ;
7 event itemReturned () ;
8 event paymentRequested () ;
9 func t i on abort ()
10 o n l y S e l l e r
11 inS ta t e (State . Created) {
12 aborted () ;
13 s t a t e = State . I n a c t i v e ;}
14 func t i on rentItem ()
15 inS ta t e (State . Created)
16 r e q u i r e (msg . va lue == depos i t)
17 payable {
18 s t a r t = now ;
19 itemRented () ;
20 buyer = msg . sender ;
21 s t a t e = State . Locked ;}
22 func t i on ca l cu la t eRent ingFee ()
23 r e tu rn s (u int256) {
24 i f (s t a t e == State . I n a c t i v e)
25 return rent ingFee ;
26 i f (s t a r t == 0)
27 return 0 ;
28 uint256 rentingTime = (now − s t a r t) ;
29 return p r i c e ∗ rentingTime ;}
30 func t i on returnItem ()
31 inS ta t e (State . AwaitPayment)
32 onlyBuyer
33 r e q u i r e (msg . va lue >= rent ingFee)
34 payable {
35 itemReturned () ;
36 s t a t e = State . I n a c t i v e ;

8

37 u int change = rent ingFee − msg . va lue ;
38 i f (! buyer . send (depo s i t + change) | | !

s e l l e r . send (this . ba lance)) throw ;}
40 func t i on again
41 func t i on rec la imItem ()
42 o n l y S e l l e r
43 payable
44 r e q u i r e (s t a t e == State . Locked | | s t a t e ==

State . AwaitPayment) {
45 rent ingFee = ca l cu la teRent ingFee () ;
46 paymentRequested () ;
47 s t a t e = State . AwaitPayment ;}}

6.2 Ethereum Client and SC Integration

A full Ethereum client on a remote machine is used to
integrate the Android client with the BC. There are
several Ethereum client implementations available. Go-
Ethereum [25], the Google’s Go implementation called
Go-Ethereum (Geth) is used in this Dapp.

In this Dapp, Web3j Java library [41] is used to deploy
SC on the BC and to interact with SC from the Andro-
id client. Web3j implements the JSON-RPC interface of
the Ethereum client and provides high-level access to a
transaction and its content. This library supports both
local and remote transaction signing and provides tools
to generate Java classes that wrap the interface of Soli-
dity contracts and therefore significantly simplifies the
development of Ethereum Dapps in Java. Java library
contains wrapper classes to deploy SC on the BC and
to execute transactions on them. It also contains a data
access layer used to manage user accounts and stored
contracts on the local Android file system and provides
this functionality through different service classes that
are briefly described in the next subsections.

The auto-generated contract code satisfies most of the
functional requirements for the integration code: It im-
plements the Ethereum RPC-API, it converts Java data
types into EVM datatypes and it can signs transactions
locally with the provided Credentials. However it has
some limitations:

• The mechanisms for handling asynchronous operati-
ons are not sufficient for the use case of this Dapp. Or-
dinary Future objects don’t provide methods for re-
gistering handlers from the Android client code. This
problem was solved by using the Java Jdeferred libra-
ry [29] which provides a promise based API similar to
the JQuery [30] API in JS. It simplifies the handling
of asynchronous operations on the Ethereum network
and helps to keep the user interface responsive.

• The generated wrapper code is not flexible enough.
Because it does not support inheritance of Solidity
contracts, common code is copied in all classes. It is
also not possible to specify a Java interface in the
code generation process. Because interfaces are ne-
cessary for proper unit testing and to abstract from
the concrete implementation in the Android UI com-
ponents, the contract wrapper code is only taken as a
starting point for the integration code. The wrapper

classes can not be re-generated dynamically when the
Solidity contracts need to be extended.

6.2.1 ContractService

When deploying or loading a contract object, a lot of
parameters have to be provided to the factory method.
Since the general parameters, like the Web3j client or
the gas price will rarely change, the ContractService
provides methods for deploying and loading purchase
and rental contracts by only specifying the relevant ar-
guments like address of a contract and its constructor
arguments. Further, the ContractService provides an in-
terface for saving and removing contracts from the local
file system.

6.2.2 AccountService

The AccountService is responsible for managing ac-
counts and their associated user profiles and provides
methods for loading, creating and unlocking accounts.
It uses the Web3j client to retrieve general account in-
formation from the BC, like the balance of an account.
There are two different implementations of the Account-
Service:

• The ParityAccountService uses the Parity client of
Web3j to unlock accounts on the Ethereum client.
Transactions are then signed by the Ethereum client.
This implementation only used for testing purposes
since it involves sending the password for the wallet
file in plain text over the network.

• The WalletAccountService uses the WalletUtil class
of Web3j to create and unlock local wallet files on
the Android device. Credentials (private/public key
pairs) are then used to sign transactions locally using
the RawTransactionManager of web3j. Signed tran-
sactions are then sent to the Ethereum client. This
implementation is secure since the password for wal-
let file is not sent over the network but it is also much
slower because decrypting the wallet file on the An-
droid device can take much time. It takes approxima-
tely 30 seconds with weak encryption and 2 minutes
with strong encryption to unlock the wallet file on a
Samsung Galaxy A5 device.

6.2.3 ConnectionService

The ConnectionService is responsible for periodically
checking the connection to the Ethereum client and for
notifying subscribers when the state of a connection
changes. This service provides methods to start and stop
polling and to query a connection’s state to the Ethere-
um client.

6.2.4 EthConvertService

The EthConvertService provides methods to gather real-
time information about Ether exchange rates for diffe-
rent currencies and for converting currencies from/to
Ether. Its implementation uses the RESTful web API of

9

cryptocompare.com [14] to retrieve the exchange rates in
a JSON format.

6.3 Android client

The Android client provides the user interface for the
Dapp. It uses the contract wrapper classes to interact
with contracts on the BC and it uses service instances
to manage contracts and accounts. The Promise-API is
used to dynamically update the UI when transactions
completed. Implementation in client side is composed of
multiple Android Activity classes that share a common
base class. Most UI logic is not implemented in the Ac-
tivities themselves, but in Fragment classes that can be
reused in different contexts.

6.3.1 The ActivityBase class

The ActivityBase class is the base class for all major
Activities of the Android client and contains code that
is used in every Activity:

• It initializes the Android Toolbar and contains the
Toolbar interaction logic

• It handles permission request results (e.g., for acces-
sing the device camera or the external storage)

• It handles completed transactions and other global
messages

• It implements the ApplicationContextProvider inter-
face to provide the ApplicationContext (section 6.3.2)
to the UI components.

6.3.2 ApplicationContext

The implemented Dapp uses a custom app instance to
manage functionality that must be accessible by the UI
components including functionality to access the service
layer, app settings, Android permissions, and Wifi-P2P
interface of a device. It provides these objects through
the ApplicationContext interface that can be accessed
through the ApplicationContextProvider interface that
is implemented on the ActivityBase class.

6.3.3 Activities

Implemented Android client is composed of 6 Main Ac-
tivities:

• Account Activity provides a User Interface (UI) for
accessing, creating and managing Ethereum accounts.
It displays a list of either remote or local accounts
which users can unlock.

• Overview Activity displays a list of purchase- or
rental contracts that belong to an unlocked account.
By selecting a contract item, the details for the con-
tract are displayed in the Detail Activity. The Over-
view Activity also provides the user interface for im-
porting contracts either by scanning QR-codes or by
using the WiFi-Direct channel.

• Create Activity provides a UI to specify and create
new rental- or purchase contracts. Users can specify
price or renting fee of an item together with a textual

description and a set of images. Before deploying the
contract, users can also decide whether the exchange
of personal information between the parties is requi-
red and whether they want to deploy all details of a
contract on BC or whether they want to use the light
deployment mode.

• Detail Activity displays the details of a deployed
contract to the user. Depending on the state of the
contract and the role of the user in the contract, it al-
so displays controls to execute transactions. The De-
tail Activity also provides a UI to scan the profile
of the other contract party and displays the profile
details in a separate tab.

• Profile Activity provides a UI to view and edit ac-
count details such as name, address, and contact de-
tails of a user as well as a profile image. The textual
details of the profile are displayed as a QR-image that
can be scanned by another party to import the profile.

• In Setting Activity user can configure global set-
tings, like endpoint of the Ethereum client, whether
she wants to use local or remote accounts and which
Ethereum transaction parameters should be used by
the Web3j library.

6.4 Device-to-device Communication
Implementation

As discussed in chapter 4, WiFi-Direct protocol is the
most suitable for the use case of exchanging contract and
user information, mainly because of its high throughput
required to exchange larger media files. Android frame-
work provides the WiFi-P2P interface that allows de-
vices to connect directly to each other via WiFi-Direct
without an intermediate access point [28].

6.4.1 Connection Management

WifiP2PManager class of Android WiFi-Direct frame-
work is used to discover other peers in the surrounding
and to connect to them. The WifiP2PManager also al-
lows a client to register callbacks that are invoked when
a method succeeds or fails. Further, it can receive in-
tents that notify the client when specific events occur
on the framework, e.g., when a new device is detected
or when a connection is established or lost [28].

As presented in Listing 1.4, the WifiConnectionManager
class implements the P2PConnectionManager interface
and uses an instance of the WifiP2PManager to discover
new peers and to connect and disconnect to them. It
further accepts a P2PConnectionListener callback that
is invoked when a connection is established or lost, when
available devices in the surrounding change or when an
error occurs during a connection attempt. The purpose
of these interfaces is to decouple the P2P connection
interface from the underlying protocol implementation.

Listing 1.4: The P2P connection interfaces

public interface P2PConnectionManager{ void s t a r t L i s t e n i n g (P2PConnectionListener CL) ;

10

void s t op L i s t e n in g () ;
void connect (S t r ing deviceName) ;
void d i s connec t () ;
}

public interface P2PConnectionListener {
void onConnectionLost () ;
void onPeersChanged (Lis t<Str ing> d e v i c e L i s t) ;
void onConnect ionEstabl i shed (Connect ionInfo CI) ;
void onConnectionError (S t r ing message) ;
}

6.4.2 P2P Service Layer

To facilitate interaction of Android UI Dialogs with the
connection management code and with the data ex-
change code, two interfaces were implemented to accept
a buyer or seller specific callback interface in their re-
questConnection method as shown in Listing 1.5.

Listing 1.5: The P2PSellerService and P2PBuyerService inter-
faces

public interface P2PService<T extends
P2pCallback>

{
void d i s connec t () ;
void requestConnect ion (T c a l l b a c k) ;
}

public interface P2PSe l l e rSe rv i c e extends
P2PService<P2pSe l l e rCal lback>

{
void connect (S t r ing deviceName) ;
}

public interface P2PBuyerService extends
P2PService<P2pBuyerCallback> {

}

Both P2Pbuyer and P2Pseller services implement the
P2PConnectionListener interface and register themsel-
ves on the P2PConnectionManager interface. Both ser-
vices also use a buyer or seller specific Peer implemen-
tation to exchange data with the other device.

The P2PSellerCallback and P2PBuyerCallback interfa-
ces are implemented by the corresponding Android Dia-
logs and their callback methods are invoked by the ser-
vice instance in case of connection specific updates or
errors or directly by the peer instance in case of data
related updates (when profile or contract related data is
requested or has been received or when communication
errors occur).

Listing 1.6: The P2PSellerCallback and P2PBuyerCallback in-
terfaces

public interface P2pCallback {
void onP2pInfoMessage (S t r ing message) ;
void onP2pErrorMessage (S t r ing message) ;
void onTransmissionComplete () ;
}

public interface P2pBuyerCallback extends
P2pCallback

{
void onContractInfoRece ived (Contract In fo

c o n t r a c t I n f o) ;
void onUserPro f i l eRequested (U s e r P r o f i l e L i s t e n e r

l i s t e n e r) ;
}

public interface P2pSe l l e rCa l lback extends
P2pCallback

{
void onContractInfoRequested (

Cont ra c t In f oL i s t ene r l i s t e n e r) ;
void onUserPro f i l eRece ived (U s e r P r o f i l e data) ;
void onPeersChanged (Lis t<Str ing> deviceNames) ;
}

6.4.3 Data Transfer Layer

The actual data exchange protocol used to exchange
contract and profile data is implemented by the buyer-
and seller specific Peer implementations. These instan-
ces are created and started by the service instances after
a connection between two peers is established as in Li-
sting 1.7.

Listing 1.7: The Peer interface

public interface Peer {
void s t a r t () ;
void stop () ;
}

Peer implementations use Java sockets to send and re-
ceive serialized JSON objects in case of profile and con-
tract details, or binary data-streams in case of image fi-
les. In WiFi-Direct, only one peer takes the role of Group
Owner (GO). After the connection is established, only
IP address of the GO is known to both peers. Since as-
signment of group ownership is not deterministic, both
peers can take the role of a server or a client. After a
connection has been established, the GO searches a free
local TCP port and waits a moment before opening the
server socket such that the other peer can also discover
the same free port. After the TCP connection establis-
hed, peers use the opened sockets for the rest of the data
exchange. Detalis of data exchange process is illustrated
in Figure 4.

Figure 4: P2P Data Exchange Process.

The seller peer in first step sends to the buyer peer the
serialized contract info object, which also contains op-
tional profile information of the seller. The profile infor-
mation can contain an optional profile image and the
contract itself can also contain optional images. Since
paths of images are contained in the info objects, the

11

buyer peer knows how many image files to expect. If the
contract info contains the user profile of the seller, the
buyer peer also returns its profile and associated image
back to the seller peer.

7 Evaluations

It is economically important to develop SC-based apps
with the least possible deploying and transaction costs
and for that purpose, first step is to be aware of which
parameters of developed SC affect the total cost of de-
ploying contracts and sending transactions. And second
step is to be able to evaluate the final costs.

7.1 Costs

In this section, empirical results of deploying contracts
codes are compared to the estimated costs which are cal-
culated with introduced cost estimation functions. Re-
sult of these comparisons indicate the high accuracy of
provided estimation functions. One general outcome of
these evaluations is the difference between light and full
contracts which obviously light version has less deploy-
ment costs and this explains and proves the incentives
of developing light SC.

The actual deployment costs in gas for the rental and
purchase SC were evaluated using the browser Solidity
online compiler [21] and the local Ethereum test client.
For the median gas price, a value of 21 gwei (gigawei)
was assumed [23]. For the USD exchange rate, the ave-
rage value of 210 dollar per Ether since May 2017 was
taken as a reference value [22].

According to [21], main costs for deploying a contract
are the costs associated with storing the contract code
(“CREATEDATA”) with cost of 200 gas per byte and
the costs for storing additional data on the storage of
the contract (“STORAGEADD”) with 20,000 gas per
256 bit word. Further, in addition to the 21,000 gas for
a normal contract transaction, 32,000 gas have to be
paid for a transaction that creates a contract [13].

Deployment costs for a contract depend on the size of
the contract code and the amount of bytes that it assigns
to the storage in its constructor. Since both the purchase
and the rental contract do not perform any calculation
intensive work in their constructors, their deployment
costs in gas can be estimated using the following formu-
la:

Cgas = (53000 + 200×Nbytes + 20000×Nwords) (2)

Where Cgas is the total transaction cost in gas, Nbytes

is the contract size in bytes and Nwords is the number of
256 bit words that are initialized in the constructor. To
calculate the deployment price in USD, the gas usage

has to be multiplied with the the gas price Pgas and the
USD exchange rate for the Ether Pexchange:

Cdollar = Cgas × Pgas × Pexchange10−18 (3)

7.1.1 Empirical Results

Table 3 summarizes the measured costs for deploying the
rental and purchase contracts in full and light deploy-
ment mode using different amounts of additional data
(images) to store. The values represent the costs in gas
and the values in braces represent the costs in USD.

As it is shown in this Table, in all the three tested SCs
with different number of images as additional data to
be stored, costs for light contracts are significantly lower
than full contracts as their source code use less space.
Further, they use less storage by storing all content attri-
butes (text and images) in a single 32 Byte hash. There-
fore, deployment costs are constant and independent of
the amount of additional data sent in constructor. Mea-
sured values are close to the values estimated by the
simplified Equations 2 and 3 and are shown in Table 4.
The Mean Absolute Percent Error (MAPE) is 5.8.

Table 3: Measured Deployment Costs

gas cost
(USD)

Empty
Contract

With
One
Image
(32 Byte)

With
Two
Images
(64 Byte)

With
Three
Images
(96 Byte)

Purchase
Contract

691,023
(3.05)

697,617
(3.08)

719,104
(3.17)

740,591
(3.27)

Rental
Contract

760,550
(3.35)

797,144
(3.52)

818,631
(3.61)

840118
(3.70)

Purchase
Contract-
light

389,702
(1.72)

389,702
(1.72)

389,702
(1.72)

389,702
(1.72)

Rental
Contract-
light

486,946
(2.15)

486,946
(2.15)

486,946
(2.15)

486,946
(2.15)

7.1.2 Transaction Costs

Transaction costs for the purchase and rental contracts
are dominated by the fix transaction costs “GTX”of
21,000 gas, the costs for adding a 256 bit word to the
storage “STORAGEADD”of 20,000 gas, the costs for
modifying a word on the storage “STORAGEMOD ”of
5,000 gas and the costs for making a call from the
contract that contains Ether “GCALLVALUETRANS-
FER”of 9,000 gas. Other costs are not significant since
no major computation is done in any of the transaction
functions. Therefore, to estimate the transaction costs,
the formula 4 is used which yields to very good results

12

Table 4: Estimated Deployment Costs

gas cost
(USD)

Empty
Contract

With
One
Image
(32 Byte)

With
Two
Images
(64 Byte)

With
Three
Images
(96 Byte)

Purchase
Contract

644,800
(2.84)

664,800
(2.93)

684,800
(3.02)

704,800
(3.11)

Rental
Contract

737,000
(3.25)

757,000
(3.33)

777,000
(3.43)

797,000
(3.52)

Purchase
Contract-
light

363,600
(1.60)

363,600
(1.60)

363,600
(1.60)

363,600
(1.60)

Rental
Contract-
light

454,000
(2.00)

454,000
(2.00)

454,000
(2.00)

454,000
(2.00)

with the MAPE of only 3.8%.

Cgas = 21000 + 20000 ∗Nwords add+

5000 ∗Nwords mod + 9000 ∗Ntx

(4)

Where Cgas is the total cost in gas, Nwords add is the
number of 256 bit words added to the storage in the
transaction, Nwords mod is the number of words that are
modified in the transaction and Ntx is the number of
messages with Ether that are sent in the transaction
function (e.g. for refunding Ether to the buyer or seller).
The total costs in USD can be estimated by Equation
3.

Table 4 compares the measured transaction costs for all
transactions of the rent and purchase contracts to the
estimated costs with Equation 4. It was found that a
variable is only initialized on the storage when a value
different from 0 is assigned to it. For example, the state
variable of the contract is only added in the abort or
confirmPurchase function, when the value changes from
the initial state. This has to be taken into account when
using the formula.

Table 5: Real and Estimated Transaction Costs

gas cost
(USD)

Abort Confirm
Purchase

Confirm
Received

Rent
Item

Reclaim
Item

Return
Item

Measured
Costs

49,584
(0.22)

62,890
(0.28)

41,657
(0.18)

82,721
(0.36)

41,913
(0.18)

48,146
(0.21)

Estimated
Costs

50,000
(0.22)

61,000
(0.27)

44,000
(0.19)

81,000
(0.36)

44,000
(0.19)

45,000
(0.20)

Further analysis and evaluations on security, privacy
and scalability of proposed app is available in [42].

7.2 Application Scalability

There are two factors that limit the number of contracts
that this Dapp can handle concurrently:

• Internal storage limit: Since every contract is sa-
ved on the device, the available free space on the in-
ternal storage limits the number of contracts that can
be stored.

• Synchronization Overhead: Since every loaded
contract is synchronized with the BC through the
Ethereum client on the server, the polling requests
needed to keep track of the contract states could lead
eventually to a very high CPU and network load on
the Android device.

7.2.1 Internal Storage Limit

The internal storage limit available for the application
depends on the total size of the internal storage and
the internal storage space that is occupied by other ap-
ps. The size of one contract depends on the number of
characters and on the number of images used for the
description of a contract item. A minimum JSON seria-
lized contract that stores only 1 character as title, one
character as description plus the metadata needed to
properly load the contract from the BC (address, con-
tract type) has a size of 179 bytes. Therefore the upper
limit for the number of contracts that can be stored on
the internal storage can be expressed with the formula:

Ncontracts ≤ (Sinternal − Soccupied) (5)

Where Ncontracts is the number of contracts, Sinternal

is the total size of the internal storage in bytes and
Soccupied is the internal storage in bytes that is occu-
pied by other apps.

7.2.2 Synchronization Overhead

The synchronization overhead is not a limiting factor in
reality. The only Activity that loads and displays mo-
re than one contract, is the OverviewActivity (section
6.4.2). It uses an Android RecyclerView that can reuses
already instantiated views again when the user scrolls
down in the list. Every time a view is bound the a con-
tract at another position, the view is unregistered from
the old contract and registered on the new contract. A
contract is registered for all events that can happen on
the SC on the BC and every event subscription involves
1 HTTP request to the Ethereum client to check if the
event has been emitted (see section 6.3.2). Debugging
the Dapp revealed that only four different views are used
to display the contracts and therefore only the states for
four contracts have to be tracked on the Ethereum cli-
ent concurrently. In an empirical test that loaded 1000
contracts into the RecyclerView, no performance issues
were detected. When scrolling through the list, contracts
are loaded continuously.

7.3 Privacy and Security

This section discusses how privacy issues that arise from
storing and exchanging personal user data are addressed

13

in the Dapp. It further discusses possible privacy issues
that can rise when storing contract details on the BC
and how they can be avoided.

7.3.1 Privacy of Personal User Data

In the proposed Dapp, all the profile information inclu-
ding profile images, are stored on internal storage of An-
droid app to prevent other apps on the device access this
data. However, it does not provide protection against an
attacker that has physical access to a non-encrypted file
system or against an attacker that has root access on
the operating system [2]. When user data is exchanged
over WiFi-Direct it is always encrypted using WiFi Pro-
tected Setup (WPS). WPS uses WPA2 to encrypt and
authenticate data and offers good protection against ea-
vesdropping and brute-force attacks but it is vulnerable
against MITM attacks during the short time frame in
which the encryption keys are exchanged.

7.3.2 Privacy of Contracts

Storing contract details in plain text on a SC can cause
privacy issues because the addresses of the seller and the
buyer are also stored on the contract and are therefore
publicly accessible. A party that knows a person with
a particular address (e.g., when it exchanged contract
or user data with that person in the past) can look up
details of other contracts that were signed by that per-
son. To prevent that, the light deployment option can
be used. When using light deployment, only the hash of
the contract details that do not have to be stored on the
BC is stored in the SC.

7.4 Security

This section discusses the most important security
aspects of Ethereum accounts and transactions. In the
proposed Dapp, accounts can either be managed locally
on the Android device or remotely on the server running
the Ethereum client. When using the WalletAccountSer-
vice the local wallet file is decrypted using the password
provided by the user and the credentials are used by the
RawTransactionManager to sign every transaction with
the secret key (SK) belonging to the account. WalletAc-
countService provides protection against eavesdropping
since the wallet password is never sent to the Ethereum
client. It also provides protection against MITM attacks
since a transaction cannot be altered any more after it
has been signed with the SK. Password for a wallet file
is never persisted on the file system and the SK of an
unlocked wallet file is only stored in volatile memory.

There are only two scenarios left in which an attacker
could obtain or use the SK of an account:

• The attacker has root access on the operating system
and can intercept the password from the user by using
a key logger.

• The attacker has physical access to the phone and
the account is still unlocked. In this case the attacker
could use the account to sign rent or purchase con-
tracts and transmit money to her own account.

8 Conclusions

Conventionally, setting up purchase or rental contracts
between two parties requires providing complete and ac-
curate identity information of the both parties besides
the details of exchanged subjects. Hitherto proposals
and apps have followed a centralized approach to ea-
se the required steps to be taken. However, these apps
inherit the disadvantageous of centralized architectures.
Most important challenges in designing such apps are
the P2P communications between parties for transfer-
ring contract information, providing identity informati-
on while ensuring user privacy, legal binding, creating
trust in the system, and data security. To avoid all the
paper work required for setting up legally valid purchase
and rental contracts between two parties and to tackle
the problems in centralized apps, this paper proposed a
SC-based Dapp.

The presented work proposed the design and implemen-
tation of an Android-based, SC-based, and decentrali-
zed app with the goal of satisfying functional and legal
requirements of an automated purchase and rental con-
tracts setting Dapp in adoption to Ethereum BC. This
system is designed with a P2P architecture, which ena-
bles high data rates in D2D communications by using
WiFi-Direct. In addition to the design of a full contract,
the proposed Dapp introduced light-weight contracts,
which enable the opportunity of transferring identity in-
formation between users without the need to store them
in the public BC and, therefore, reduce costs.

Trust to this system is provided by designing the
deposit-based SC to guarantee seller and buyers loyal-
ty to contract and money transfer. High privacy provi-
ded by design as this Dapp is completely independent of
any TTP and seller can specify the contract details in-
cluding price, deposit, textual description, and images
to deploy a contract. Contract details can be exchan-
ged either by scanning a QR-code of a contract or by
using WiFi-Direct. In the latter case, parties can fle-
xibly decide which personal information they want to
share. Contracts are signed on the users local device
and protected by storing only on internal storage and
being encrypted while sent over the network. Proposed
Dapp is highly scalable and is capable of handling large
number of contracts in parallel. Also, it detects network
errors and prevents lose of money by storing contracts
pre-emptively when the network fails during contract
creation transactions.

Evaluations indicate that cost estimation Equations pro-
posed in this paper are accurate and estimate the de-
ployment and transactions of SC costs with high preci-

14

sion. In turn, these equations indicate on how to imple-
ment SCs with least possible costs.

Literature

[1] Airbnb. URL:https://www.airbnb.com, Last visited Sep-
tember 28, 2017

[2] Android, Security Tipps; URL:https://developer.
android.com/training/articles/securitytips.html,
Last visit July 31, 2017.

[3] P. Arana: Benefits and Vulnerabilities of Wi-Fi Protected
Access 2 (WPA2); URL:http://cs.gmu.edu/~yhwang1/
INFS612/Sample_Projects/Fall_06_GPN_6_Final_
Report.pdf, Last visit July 30, 2017.

[4] Bitcoin, Proof of Work ; URL:https://en.bitcoin.it/
wiki/Proof_of_work, Last visit May 9, 2017.

[5] Bluetooth Radio Interface, Modulation and Chan-
nels; URL:http://www.radio-electronics.com/info/
wireless/bluetooth/radio-interface-modulation.
php, Last visit July 21, 2017.

[6] A.Bogner, M.Chanson, A.Meeuw: A Decentralised Sha-
ring App running a Smart Contract on the Ethereum
Blockchain; 6th International Conference on the Internet
of Things(IoT16), Stuttgart, Germany, November 2016.

[7] Brooklyn Microgrid; URL:http://microgridmedia.
com/brooklyn-startup-broadens-solar-power\
-access-with-p2p-energy-exchange/, Last visit
May 9, 2017.

[8] Browser Solidity Online Compiler ; URL:https:
//ethereum.github.io/browser-solidity/, Last
visit September 19, 2017.

[9] E.Bucher:Zustandekommen des Vertrages; URL:http://
www.eugenbucher.ch/pdf_files/Bucher_ORAT_10.pdf,
Last visit May 9, 2017.

[10] E.Bucher: Kaufvertrag im Allgemeinen. URL:http://
www.eugenbucher.ch/pdf_files/Bucher_ORBT_03.pdf,
Last visit May 9, 2017.

[11] V.Buterin: A next-generation smart contract and decen-
tralized application platform. White paper, 2014.

[12] D.Camps-Murr, A.Garcia-Saavedra, P.Serrano:
Device to device communications with WiFi Di-
rect: overview and experimentation. URL:http:
//citeseerx.ist.psu.edu/viewdoc/download;
jsessionid=81D8D0CEA0130A332E2EB14EC8563A1E?
doi=10.1.1.725.7590&rep=rep1&type=pdf, Last visit
July 20, 2017.

[13] CryptoCompare.com: URL:https://www.
cryptocompare.com/, Last visit May 9, 2017.

[14] CryptoCompare.com. URL:https://www.
cryptocompare.com/, Last visited May 9, 2017

[15] Cryptocurrency Market Capitalization; URL:https://
coinmarketcap.com/ Last visit May 9, 2017.

[16] K. Delmolino, M. Arnett, A.E. Kosba, A. Miller, E.
Shi: Step by Step Towards Creating a Safe Smart Con-
tract: Lessons and Insights from a Cryptocurrency Lab.
IACR Cryptology ePrint Archive, 2015, 460, URL:http:
//fc16.ifca.ai/bitcoin/papers/DAKMS16.pdf, Last vi-
sited August 12, 2017

[17] Digix White paper; URL:https://dgx.io/whitepaper.
pdf, Last visit May 9, 2017.

[18] Ebay. URL:http://www.ebay.com, Last visited Septem-
ber 28, 2017

[19] Ebay, general terms of agreement; URL:http://pages.
ebay.ch/help/policies/user-agreement.html, Last
visit May 9, 2017.

[20] Ethereum, Documentation. URL:http://www.ethdocs.
org/en/latest/, Last visited May 9, 2017.

[21] Ethereum.io: Safe Remote Purchase; http://solidity.
readthedocs.io/, Last visit September 19, 2017.

[22] Ethereum, Average Exchange Rate Since May 1, 2017;
URL:https://poloniex.com/ Last visited July 28, 2017.

[23] Ethgasstation: URL:https://ethgasstation.info, Last
visited July, 16, 2017.

[24] Federal law about the electronic signature URL:https:
//www.admin.ch/opc/de/classified-compilation/
20011277/index.html, Last visit May 9, 2017.

[25] Go-Ethereum: URL:https://github.com/ethereum/
go-ethereum, Last visited May 9, 2017.

[26] K.Haataja, K.Hyppönen, S.Pasanen, P.Toivanen:
Bluetooth Security Attacks, Överview of Bluetooth
Security”; SpringerBriefs in Computer Science,
2013. URL:http://www.springer.com/cda/content/
document/cda_downloaddocument/9783642406454-c2.
pdf?SGWID=0-0-45-1434420-p175453762, Last visit
August 12, 2017.

[27] F.Hawlitschek, T.Teubner, G.Henner: Understanding
the Sharing Economy - Drivers and Impediments for Par-
ticipation in Peer-to-Peer Rental; 49th Hawaii Internatio-
nal Conference on System Sciences(HICSS), Koloa, HI,
USA, Januar 2016, ISBN: 978-0-7695-5670-3.

[28] IEEE 802.11 Wi-Fi Standards; URL:http:
//www.radio-electronics.com/info/wireless/wi-fi/
ieee-802-11-standards-tutorial.php, Last visit July
21, 2017.

[29] JDeffered; URL:https://github.com/jdeferred/
jdeferred, Last visited May 9, 2017

[30] JQuery; URL:https://github.com/jquery/jquery,
Last visited May 9, 2017

[31] S.Nakamoto: Bitcoin: A peer-to-peer electronic cash
system [2008]; URL:https://bitcoin.org/bitcoin.pdf,
Last visited May 9, 2017.

[32] D. Primavera: The interplay between de-
centralization and privacy: The case of block-
chain technologies; http://peerproduction.
net/issues/issue-9-alternative-internets/
peer-reviewed-papers/, Last visit September 28,
2017.

[33] QrGen; URL:https://github.com/kenglxn/QRGen,
Last visit May 9, 2017.

[34] Relayrides. URL:https://www.relayrides.com, Last vi-
sited September 28, 2017

[35] Shocard Whitepaper; URL:https://
shocard.com/wp-content/uploads/2016/11/
travel-identity-of-the-future.pdf Last visit May 9,
2017.

[36] SuisseId Multi Signing Platform; URL:https://www.
multisigning.ch/, Last visit August 4, 2017.

[37] Swiss Federal Council: Federal Law on the Sup-
plement to the Swiss Civil Code; URL:https:
//www.admin.ch/opc/de/classified-compilation/
19110009/index.html#a1, Last visited Sep 28, 2017

[38] N.Szabo: The idea of smart contracts [1997]; URL:http:
//www.fon.hum.uva.nl/, Last visited May 9, 2017.

[39] Transactive Grid; URL:https://www.slideshare.net/
JohnLilic/transactive-grid, Last visit May 9, 2017.

[40] S.Viehböck: Brute forcing Wi-Fi Protected Se-
tup; URL:https://sviehb.files.wordpress.com/2011/
12/viehboeck_wps.pdf, Last visited July 11, 2017.

[41] Web3j library; URL:https://github.com/web3j/web3j,
Last visit September 22, 2017.

[42] S.Rafati, F.Schüpfer, T.Bocek, and B.Stiller: A Peer-
to-Peer Purchase and Rental SmartContract-based Ap-
plication, URL:https://files.ifi.uzh.ch/CSG/staff/
Rafati/Purchase-Rental-APP-SC.pdf

Manuskripteingang: 28.09.2017.

15

URL: https://www.airbnb.com
URL:https://developer.android.com/training/articles/securitytips.html
URL:https://developer.android.com/training/articles/securitytips.html
URL: http://cs.gmu.edu/~yhwang1/INFS612/Sample_Projects/ Fall_06_GPN_6_Final_Report.pdf,
URL: http://cs.gmu.edu/~yhwang1/INFS612/Sample_Projects/ Fall_06_GPN_6_Final_Report.pdf,
URL: http://cs.gmu.edu/~yhwang1/INFS612/Sample_Projects/ Fall_06_GPN_6_Final_Report.pdf,
URL: https://en.bitcoin.it/wiki/Proof_of_work,
URL: https://en.bitcoin.it/wiki/Proof_of_work,
URL: http://www.radio-electronics.com/info/wireless/bluetooth/radio-interface-modulation.php,
URL: http://www.radio-electronics.com/info/wireless/bluetooth/radio-interface-modulation.php,
URL: http://www.radio-electronics.com/info/wireless/bluetooth/radio-interface-modulation.php,
URL: http://microgridmedia.com/ brooklyn-startup-broadens-solar-power\ -access-with-p2p-energy-exchange/
URL: http://microgridmedia.com/ brooklyn-startup-broadens-solar-power\ -access-with-p2p-energy-exchange/
URL: http://microgridmedia.com/ brooklyn-startup-broadens-solar-power\ -access-with-p2p-energy-exchange/
URL: https://ethereum.github.io/browser-solidity/,
URL: https://ethereum.github.io/browser-solidity/,
URL:http://www.eugenbucher.ch/pdf_files/Bucher_ORAT_10.pdf,
URL:http://www.eugenbucher.ch/pdf_files/Bucher_ORAT_10.pdf,
URL:http://www.eugenbucher.ch/pdf_files/Bucher_ORBT_03.pdf,
URL:http://www.eugenbucher.ch/pdf_files/Bucher_ORBT_03.pdf,
URL: http://citeseerx.ist.psu.edu/viewdoc/ download;jsessionid=81D8D0CEA0130A332E2EB14EC8563A1E?doi=10.1.1.725.7590 &rep=rep1&type=pdf
URL: http://citeseerx.ist.psu.edu/viewdoc/ download;jsessionid=81D8D0CEA0130A332E2EB14EC8563A1E?doi=10.1.1.725.7590 &rep=rep1&type=pdf
URL: http://citeseerx.ist.psu.edu/viewdoc/ download;jsessionid=81D8D0CEA0130A332E2EB14EC8563A1E?doi=10.1.1.725.7590 &rep=rep1&type=pdf
URL: http://citeseerx.ist.psu.edu/viewdoc/ download;jsessionid=81D8D0CEA0130A332E2EB14EC8563A1E?doi=10.1.1.725.7590 &rep=rep1&type=pdf
URL:https://www.cryptocompare.com/,
URL:https://www.cryptocompare.com/,
URL: https://www.cryptocompare.com/
URL: https://www.cryptocompare.com/
URL: https://coinmarketcap.com/
URL: https://coinmarketcap.com/
URL: http://fc16.ifca.ai/bitcoin/papers/DAKMS16.pdf
URL: http://fc16.ifca.ai/bitcoin/papers/DAKMS16.pdf
URL: https://dgx.io/whitepaper.pdf
URL: https://dgx.io/whitepaper.pdf
URL: http://www.ebay.com
URL: http://pages.ebay.ch/help/policies/user-agreement.html,
URL: http://pages.ebay.ch/help/policies/user-agreement.html,
URL: http://www.ethdocs.org/en/latest/
URL: http://www.ethdocs.org/en/latest/
http://solidity.readthedocs.io/
http://solidity.readthedocs.io/
URL: https://poloniex.com/
URL: https://ethgasstation.info
URL: https://www.admin.ch/opc/de/ classified-compilation/20011277/index.html,
URL: https://www.admin.ch/opc/de/ classified-compilation/20011277/index.html,
URL: https://www.admin.ch/opc/de/ classified-compilation/20011277/index.html,
URL: https://github.com/ethereum/go-ethereum
URL: https://github.com/ethereum/go-ethereum
URL:http://www.springer.com/cda/content/document/cda_downloaddocument/ 9783642406454-c2.pdf?SGWID=0-0-45-1434420-p175453762
URL:http://www.springer.com/cda/content/document/cda_downloaddocument/ 9783642406454-c2.pdf?SGWID=0-0-45-1434420-p175453762
URL:http://www.springer.com/cda/content/document/cda_downloaddocument/ 9783642406454-c2.pdf?SGWID=0-0-45-1434420-p175453762
URL:http://www.radio-electronics.com/info/wireless/wi-fi/ ieee-802-11-standards-tutorial.php
URL:http://www.radio-electronics.com/info/wireless/wi-fi/ ieee-802-11-standards-tutorial.php
URL:http://www.radio-electronics.com/info/wireless/wi-fi/ ieee-802-11-standards-tutorial.php
URL:https://github.com/jdeferred/jdeferred
URL:https://github.com/jdeferred/jdeferred
URL: https://github.com/jquery/jquery
URL: https://bitcoin.org/bitcoin.pdf
http://peerproduction.net/issues/issue-9-alternative-internets /peer-reviewed-papers/
http://peerproduction.net/issues/issue-9-alternative-internets /peer-reviewed-papers/
http://peerproduction.net/issues/issue-9-alternative-internets /peer-reviewed-papers/
URL: https://github.com/kenglxn/QRGen
URL: https://www.relayrides.com
URL:https://shocard.com/wp-content/uploads/2016/11/travel-identity-of-the-future.pdf
URL:https://shocard.com/wp-content/uploads/2016/11/travel-identity-of-the-future.pdf
URL:https://shocard.com/wp-content/uploads/2016/11/travel-identity-of-the-future.pdf
URL: https://www.multisigning.ch/
URL: https://www.multisigning.ch/
URL:https://www.admin.ch/opc/de/classified-compilation/19110009/index.html#a1
URL:https://www.admin.ch/opc/de/classified-compilation/19110009/index.html#a1
URL:https://www.admin.ch/opc/de/classified-compilation/19110009/index.html#a1
URL: http://www.fon.hum.uva.nl/
URL: http://www.fon.hum.uva.nl/
URL: https://www.slideshare.net/JohnLilic/transactive-grid
URL: https://www.slideshare.net/JohnLilic/transactive-grid
URL: https://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf
URL: https://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf
URL: https://github.com/web3j/web3j
URL: https://files.ifi.uzh.ch/CSG/staff/Rafati/Purchase-Rental-APP-SC.pdf
URL: https://files.ifi.uzh.ch/CSG/staff/Rafati/Purchase-Rental-APP-SC.pdf

	
	 Introduction
	 Related Work
	 Legal Aspects of Purchase and Rental Contracts
	 Legal Validity of SC-based Applications

	 Device-to-device Communication
	 Design
	 Implementation
	 Rental and Purchase Smart Contracts
	 Ethereum Client and SC Integration
	 Android client
	 Device-to-device Communication Implementation

	 Evaluations
	 Costs
	 Application Scalability
	 Privacy and Security
	 Security

	 Conclusions

