
Performance Assessment of
Cardano

Kürsat Aydinli
Zurich, Switzerland

Student ID: 13-926-910

Supervisor: Sina Rafati
Date of Submission: June 29, 2019

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

IN
D

E
P

E
N

D
E

N
T

S
T

U
D

Y
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Independent Study
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Contents

1 Introduction 1

2 Blockchain Description 3

3 Evaliation Scenario 5

3.1 Cloud Infrastructure . 5

3.2 Approach . 6

3.3 Challenges . 7

3.4 Evaluation Pipeline . 10

3.4.1 Script 1 - extract wallets.sh . 10

3.4.2 Script 2 - check tx output.sh . 12

4 Evaluation Results 15

5 Future Work 21

6 Summary and Conclusions 23

List of Figures 25

List of Tables 27

A Evaluation Setup 31

A.1 Installation Guidelines . 31

A.2 Tweaking the Demo-Cluster . 32

A.2.1 Number of Nodes . 32

A.2.2 Number of Wallets . 33

i

ii CONTENTS

B Required Scripts 35

B.1 Script ’do evaluation.sh’ . 35

B.2 Script ’extract wallets.sh’ . 36

B.3 Script ’check tx output.sh’ . 39

Chapter 1

Introduction

The paper at hand initially originated from the endeavor to compare the performance of
different blockchains. In order to do so, various blockchains were screened. With this
respect, important aspects were the usability of the blockchain from the users point of
view as well as the provision of sufficient tutorials and documentation.
In Particular, following blockchains were assessed in a first phase:

• Elastico

• OmniLedger

• RapidChain

• Zilliqa

• Quarkchain

• RedBelly Blockchain

• Algorand

• Cardano

• Snow WHite

• Ripple

• Openchain

• IOTA

• HydraChain

• MultiChain

• Thundercore

• Elph

1

2 CHAPTER 1. INTRODUCTION

• Tendermint

• Harmony-One

Several blockchains were dropped due to missing instructions on how to set up a local
network. Furthermore, the focus was primarily set to PoS-based blockchains. In a second
run, also BFT-based blockchains should be considered.
Having done the first assessment of the blockchains, following ones were included in the
final list:

• PoS-based blockchains

– Cardano

– Harmony-One

– Thundercore

• BFT-based blockchains

– Zilliqa

– Tendermint

– Multichain

The order in the list was set according to the impression of the blockchains usability
degree. For instance, Cardano has been chosen as the first blockchain to investigate
because of its comprehensive documentation and instructions to easily deploy a private
network with API access. Furthermore, Cardano provides quite responsive community
support through its Telegram groups, answering requests within hours. When working
with a foreign framework, such a characteristic is desirable. Because the examination
of the first blockchain took longer than anticipated, the paper only encompasses the
assessment of the Cardano network.

Chapter 2

Blockchain Description

Cardano is a Proof-of-Stake (PoS) blockchain initiated and developed by the IOHK foun-
dation 1, a technology company specialized in peer-to-peer applications and cryptocurren-
cies. Close collaborators in this project are the University of Edinburgh, the University
of Athens and the University of Connecticut.
PoS consensus is a natural alternative to Proof-of-Work (PoW) based systems. While
in traditional PoW environments, the right to append the next block is determined in a
randomized fashion proportionally to the computational power of each miner, the election
mechanism in PoS blockchains selects a random miner proportionally to its stake [3].
The currently employed PoS-based consensus mechanism of Cardano is referred to as
”Ouroboros Praos”, an improvement of their first-generation protocol ”Ouroboros”.
The protocol of Cardano proceeds in epochs, each epoch divided into a fixed number
of units called slots. During every slot, at most one block might be appended to the
blockchain. Thus, there might be slots during which no blocks are generated (see figure
2.1). Note that a slot itself is a relatively short time period, e.g. 20 seconds.

+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−> t
| s l o t 0 | s l o t 1 | . . . | s l o t N |

\ / \
−−−−−−−−−−−−−− epoch M −−−−−−−−−−−−−−− −− epoch M+1 −−

Figure 2.1: Sample notion of physical time in Cardano

At every slot, only one stakeholder might be elected as the slot leader. The leader is
elected with a probability proportional to its stake registered in the genesis block [7].
Furthermore, it is actively intended by Cardano to have frequently empty slots. This
enhances the synchronisation of the blocks in the network. Only a slot leader is aware
that it is indeed a leader for a particular slot. The assignment is unknown to all the other
participants, until the other stakeholders receive a valid block from the slot leader [1].

1https://iohk.io/about/

3

4 CHAPTER 2. BLOCKCHAIN DESCRIPTION

Although the whitepaper of ”Ouroboros Praos” does not speficy when exactly a block
should be generated by the slot leader, the current implementation of Cardano introduces
a system paremeter called network diameter that approximates the time necessary for
the block to be distributed to the whole network. For instance, if this parameter is set
to 5 seconds, then the slot leader needs to generate and announce the block the latest 5
seconds before the end of the current slot [5]. Every epoch has its own dedicated genesis
block. In contrast to regular blocks, a genesis block does not contain transactions. It
contains the epoch index as well as a list of all slot leaders for the upcoming epoch [2].
When a node wants to issue a transaction, it performs following steps: (1) create the
transaction and sign it with the private key, (2) send it to all known nodes (neighbors)
and (3) save it to the local data.
In turn, each of the nodes neighbors forwards the transaction to its neighbors. Eventually,
some slot leader will validate the transaction and include it in the block of the current
slot.
Due to the fact that Cardano is based on the Unspent Transaction Output (UTXO) model,
each transactions contains a list of inputs and outputs whereas outputs from the current
transactions might be used as inputs for the subsequent one [6].
In terms of network topology, Cardano employs three types of nodes: (1) core nodes, (2)
edge nodes and (3) relay nodes. The node groups can be characterized as follows [4]:

Core Nodes These are the most important ones. Only these nodes participate in the
consensus mechanism and can be elected as slot leaders and will be able to create
blocks over this period. To enhance security, core nodes are isolated from the public.
This is achieved by putting them inside a perimeter of relay nodes. Only relay
nodes are allowed to communicate with core nodes. Furthermore, core nodes are
not capable of creating currency transactions, only edge nodes can do so.

Edge Nodes Solely these nodes can issue currency transactions. Since they do not have
any stake, they cannot be elected as slot leaders. Besides that, they cannot directly
communicate to core nodes, only by means of relay nodes.

Relay Nodes They act as an interface between the core nodes and the public internet.
Due to their revealed identity, they might be attacked, but they do not have any
stake. Therefore, relay nodes cannot be elected as slot leaders as well.

Chapter 3

Evaliation Scenario

3.1 Cloud Infrastructure

Amazon Web Services (AWS) has been chosen as the main cloud service provider for this
project. Initially, the free tier was utilized to run the Cardano blockchain. With the free
tier, the user has the opportunity to run VM instances of the type t2.micro for 500 hours
per month without any charge. This instance type comes with one CPU core as well as 1
GB of RAM.
While experimenting with the setup tutorials for Cardano, it has turned out relatively
early that the provided VM capabilities of the free tier are not really sufficient to install
and run Cardano. For this reason, the VM of the free tier was shut down and instead of
that, an instance of the type t3.medium [2 Cores, 4 GB RAM] was utilized.
Furthermore, the VM possesses the AMI of type Amazon Linux AMI 2018.03.0
(HVM), SSD Volume Type and resides in the availability zone us-east-1f (North
Virginia). The reason to use this region is that it resides within the oldest availability
zone and as such, software updates get rolled out there first. During the whole evaluation,
one VM has been used for testing Cardano.

5

6 CHAPTER 3. EVALIATION SCENARIO

3.2 Approach

In favour of a successful evaluation, it is crucial to choose an appropriate environment for
testing the blockchain. Basically there are two ways to do an assessment of Cardano.
One option is to launch a node in the large network itself (e.g. mainnet or other public
testnets of Cardano) including a couple of addresses to accomplish some coin transfers or
execute smart contracts. This approach may be suitable to get a overall feeling of working
with Cardano. Another incentive for this option might be to assess whether a particular
decentralized application (dApp) is compatible with the Cardano ecosystem.
But for the purpose of conducting performance analyses of the entire blockchain, connect-
ing to the mainnet might be an overkill due to the increased complexity implied by the
sheer size of the blockchain. Besides that, having the whole mainnet of Cardano under
the hood while testing is also likely to increase the storage requirements of the chosen
cloud environment.
After consultation with the developer community of Cardano and sharing the background
and objectives of the project at hand, it has been decided to create a local (private) Car-
dano blockchain to do the performance assessment. Not only does this lead to reduced
storage requirements, but the complexity of the evaluation is kept to a certain extent due
to manageable network size and topology.
According to the developer community, launching a private Cardano network includes,
inter alia, following two steps: (1) creation of so-called genesis data, (2) launching of the
single nodes referring to the previously generated genesis object to make sure they all
participate in the same cluster.
Consequently, the next step was to accomplish the two task from above using the official
tutorials from the how-to section of the Cardano GitHub repository1. Unfortunately, this
endeavour was not successful since an end-to-end instruction to accomplish starting a
private network was missing and executing the single tutorials did not lead to the desired
behaviour. Exploring the Cardano forums revealed that there was one person having a
try with the same issue, i.e. creating a local Cardano cluster2. That forum post also did
not receive a valuable answer. In a final attempt, a Stackoverflow inquiry was set up with
the hope of getting some hints with this respect. Sadly, no answers were received.
In summary it can be said that the manual creation of a private Cardano network accross
several AWS instances was not successful.
Fortunately, the Cardano repository includes a script to locally launch a standalone demo-
cluster consisting of 4 nodes and 12 wallets by default3. Throughout the evaluation, this
script was used to simulate a local Cardano network. Various properties of the demo-
cluster (number of nodes, slot duration, transaction fees etc.) are configurable by an
external configuration file.
The downside of using this script is that the generated cluster runs in one single VM
without a configuration option to ’control’ each single node, i.e. specifying a public IP
and port on which the nodes should start. For this reason, the cluster used for this report
runs locally on one AWS instance.

1https://github.com/input-output-hk/cardano-sl/tree/master/docs/how-to
2https://forum.cardano.org/t/how-to-setup-a-private-blockchain-for-cardano/10928/3
3https://github.com/input-output-hk/cardano-sl/blob/master/docs/how-to/demo-cluster.md

3.3. CHALLENGES 7

Once the demo-cluster has been started, common blockchain operations such as sending
transactions, retrieving transaction state or blockchain size can be conducted through
the Cardano wallet API 4. The exact API calls will be mentioned at the corresponding
locations in the report.

3.3 Challenges

Although it is quite straight-forward to start a private Cardano network, the nature of the
demo-cluster poses some obstacles to the evaluation pipeline which is described in more
detail in the next section.
The first challenge is related to the spending nature of the blockchain. Cardano is based
on the Unspent Transaction Output (UTXO) model, similar to Bitcoin. A single UTXO
can be thought of as a bank note. As such, it can only be spent for one transaction at a
time. It is not possible to spend a part of an UTXO. As an illustration, one cannot spend
a 100 Dollar bill concurrently in two different stores. In this particular case, the person
would need to wait to get the change from the first purchase and then spend it in the
second store.
Similarly in Cardano, once an UTXO has been spent in the course of a currency transac-
tion, it needs to be wait until the transaction is included in the blockchain and the UTXO
balance is re-evaluated.
The current UTXO-statistics for a wallet in Cardano can be queried by following API
call:

$ curl −X GET \
https://127.0.0.1:8090/api/v1/wallets/Ae2..939q/statistics/utxos \
−H 'Accept:application/json;charset=utf−8' \
−−cacert ./state−demo/tls/edge/ca.crt \
−−cert ./state−demo/tls/edge/client.pem

In the above request, the part Ae2..939q denotes the wallet ID for which the UTXO
statistics should be retrieved. Upon successful execution, the response looks as follows:

1 {

2 "data": {

3 "allStakes": 37499998750000,

4 "boundType": "Log10",

5 "histogram": {

6 "10": 0,

7 "100": 0,

8 "1000": 0,

9 "10000": 0,

4https://cardanodocs.com/technical/wallet/api/v1/?v=1.5.1

8 CHAPTER 3. EVALIATION SCENARIO

10 "100000": 0,

11 "1000000": 0,

12 "10000000": 0,

13 "100000000": 0,

14 "1000000000": 0,

15 "10000000000": 0,

16 "100000000000": 0,

17 "1000000000000": 0,

18 "10000000000000": 0,

19 "100000000000000": 1,

20 "1000000000000000": 0,

21 "10000000000000000": 0,

22 "45000000000000000": 0

23 }

24 },

25 "status": "success"

26 }

In the JSON response, it can be observed at which ’levels’ how many UTXOs exist.
Furthermore it can be seen that the wallet is in possession of exactly one UTXO in total:
”100000000000000”: 1
This characteristic holds for all wallets of the demo-cluster and throughout the whole
evaluation of Cardano. In practical terms this means that a wallet, after spending some
coins, has to wait until the transaction has been approved and included in the blocks.
When attempting to issue two immediate transactions without waiting, the second API
request returns following error message:

1 {

2 "status": "error",

3 "diagnostic": {

4 "details": {

5 "help": "Utxo is not enough fragmented to handle

the number of outputs of this transaction.

Query /api/v1/wallets/{walletId}/statistics/

utxos endpoint for more information",

6 "missingUtxos": 1

7 }

8 },

9 "message": "UtxoNotEnoughFragmented"

10 }

A couple of experiments have shown that this waiting time can range from 10 to 30
seconds. In other words, the same wallet can only issue transactions every 10 to 30
seconds.
Logically, this behaviour is insofar unfavourable for stress testing Cardano as a wallet
cannot issue transactions continuously (due to the waiting time).

3.3. CHALLENGES 9

To overcome this obstacle and be able to continuously issue transactions via the API
interface, not only one but many wallets have been created in the demo-cluster. This
way, transactions can be sent to the network without interruptions. Basically it works
by iterating through the wallets and having each wallet committing one transaction, thus
using the available UTXO.
The second challenge encountered was related to the logs of the cluster. In order to
investigate the exact validation duration of a testrun, it is important to know when the
last block was created that still contains transactions. At this point it is noteworthy to
mention that, with respect to the evaluation, a transaction is denoted to be validated once
it is included in a block.
Although the demo-cluster generates log information about created blocks, these logs were
not easily accessible by mainstream editors. The block information is stored in binary
format generated through the RocksDB database engine.
To decode these kind of logs, a separate application would have to be written which utilises
this exact database to retrieve the block information. Because this would be too complex
and effortful, another approach has been taken to retrieve the validation duration of a
testrun.

The wallet API of Cardano allows the user to retrieve detailed information about the
transactions in the blockchain. This can be achieved through following request:

curl https://127.0.0.1:8090/api/v1/transactions \
−−cacert ./state−demo/tls/edge/ca.crt \
−−cert ./state−demo/tls/edge/client.pem

This request also contains the specific state of a transaction. In Cardano, transactions
have following three states: (1) applying, (2) inNewestBlocks and (3) persisted. Here is a
sample response of this kind of request:

1 {

2 "data": [

3 {

4 "amount": 100,

5 "confirmations": 13,

6 "creationTime": "2019-05-14T14:28:41.825214",

7 "direction": "outgoing",

8 "id": "efojuH ...",

9 "inputs": [

10 {

11 "address": "DdzFF ...",

12 "amount": 37499998750000

13 }

14],

15 "outputs": [

16 {

17 "address": "DdzFF ...",

10 CHAPTER 3. EVALIATION SCENARIO

18 "amount": 37499998749900

19 },

20 {

21 "address": "Aertd ...",

22 "amount": 100

23 }

24],

25 "status": {

26 "data": {},

27 "tag": "applying"

28 },

29 "type": "foreign"

30 }

31],

32 "status": "success"

33 }

Given the JSON body, the transaction state can be extracted from the key ”tag”: ”ap-
plying”. To sum it up, the validation duration has been assessed through constantly
querying the transaction state until all transactions have either state ”inNewestBlocks” or
”persisted”.

3.4 Evaluation Pipeline

This section describes in detail how the performance of a testrun is evaluated. The
workflow consists of 2 main steps which are also a consequence of the challenges mentioned
in the previous section. The mentioned scripts can be found in the appendix of the paper.
The evaluation pipeline can be thought of as a black box. The input is the number of
wallets (needs to be configured before launching the demo-cluster) and the output outlines
information regarding the validation duration of all transactions. Hereby, the number of
transactions is the same as the number of wallets.
The entire evaluation process is included in the script do evalutation.sh. The script
itself consists of following two sub-scripts whereby each script in turn takes care of one of
the above mentioned obstacles.

3.4.1 Script 1 - extract wallets.sh

Starting point for this script is the number of wallets in the deployed Cardano cluster.
This property can be set in the configuration file. The main responsibility of the step
represented by this script is to generate transactions and send them to the network in a
continuous way.
More specifically, following tasks are accomplished during this procedures:

3.4. EVALUATION PIPELINE 11

Get All Wallet IDs It is important to retrieve the total of the active wallets which are
registered in the running Cardano blockchain. This is accomplished by following
command:

curl −X GET https://127.0.0.1:8090/api/v1/wallets\
−H 'Accept:application/json;charset=utf−8' \
−−cacert ./state−demo/tls/edge/ca.crt \
−−cert ./state−demo/tls/edge/client.pem

The raw output of the response looks as follows:

1 {

2 "data": [

3 {

4 "balance": 37499998750000,

5 "createdAt": "2019-05-14T11:43:07.194824",

6 "id": "Aefet",

7 "name": "Imported Wallet"

8 }

9],

10 "status": "success"

11 }

The JSON field of interest is ”id”: ”Aefet....”. For this purpose, the response
of the API call needs to be further processed to retrieve this key. The library jq
provides mechanisms to filter whole JSON objects. The extracetd IDs of the wallets
are stored on an external file, each ID on a separate line.

Issue Transactions Given the file containing all wallets IDs, the next step was to iterate
through each wallet and thereby creating a transaction and sending it to the network.
Besides that, prior to starting the issuance of the transactions, the current time in
seconds is saved in a separate file (needed later for evaluation). The API request
for this is the following:

curl −s −X POST https://localhost:8090/api/v1/transactions \
−H ”Accept: application/json;charset=utf−8”\
−H ”Content−Type:application/json;charset=utf−8”\
−−cacert ./state−demo/tls/edge/ca.crt \
−−cert ./state−demo/tls/edge/client.pem \
−d '{
”destinations”: [
{

”amount”: 100,
”address”: ”Aefet....”
}

12 CHAPTER 3. EVALIATION SCENARIO

],
”source”: {

”accountIndex”: 2147483648,
”walletId”: ”Aefet....”
},
”spendingPassword”: ””
}' −−http1.1 &> /dev/null

In the POST request, the sender as well as the receiver wallet address are the same.
Naturally, such a setting (i.e. sending coins to yourself) is not meant to be possible,
but in Cardano this was a valid request. However, the result overall is a decrease of
the specified amount in the mentioned wallet address.

Having performed these two tasks, the evaluation pipeline continues with the next script.

3.4.2 Script 2 - check tx output.sh

Recap that, due to the first script, all transactions have been sent into the network. The
main purpose of this script is to assess the total validation time, i.e. how much seconds
does it take until all transactions have been included in blocks and thus are part of the
blockchain.
Basically this is done through constantly querying the states of all transactions, i.e. ap-
plying, inNewestBlocks or persisted. The API request is the same as the one mentioned
in the Challenges section.
Every second, the transaction states are retrieved and extracted from the JSON response,
again, using the jq library. Upon every retrieval, it is checked if there is still an applying
state represented. If not, this denotes that all transactions are included in blocks and
thus, the current timestamp at this point can be written to the external file which also
contains the starting time in seconds which was written when issuing the first transaction.
This way, it can be assessed how long the validation duration for a particular testrun was.
Furthermore, as additional information, the number of blocks created in the demo-cluster
at this point is retrieved through:

curl −X GET https://localhost:8090/api/v1/node−info \
−H 'Accept: application/json;charset=utf−8' \
−−cacert ./state−demo/tls/edge/ca.crt \
−−cert ./state−demo/tls/edge/client.pem

with following response:

3.4. EVALUATION PIPELINE 13

1 {

2 "data": {

3 "blockchainHeight": {

4 "quantity": 1845,

5 "unit": "blocks"

6 },

7 ...

8 },

9 "status": "success"

10 }

To sum it up, given a certain number of wallets in the cluster, these two scripts perform
the necessary work to observe the total validation duration of all transactions which were
issued to the blockchain. Both scripts can be found in the appendix of the report.

14 CHAPTER 3. EVALIATION SCENARIO

Chapter 4

Evaluation Results

This chapter presents the performance results for the evaluation of the Cardano blockchain.
The single test scenarios have been executed with 3 different network topologies: 2 nodes,
4 nodes and 7 nodes. Hereby, it is referred to the number of core nodes (see chapter De-
scription). During all tests, only one edge node as well as one relay node were operated.
The tables include, inter alia, following information:

• Sending Duration [s] - denotes the elapsed time in seconds between the issuance
of the first and the last transaction.

• Validation Duration [s] - represents the total number of seconds the validation
took, i.e. until no transaction is left with the state applying.

• TPS - validated transactions per second. Calculated by

Transactions

V alidation Duration [s]
(4.1)

• Avg. TPS - represents the average TPS metric of two testruns. Every testrun
constellation is evaluated twice and the avgerate TPS values are used in order to
draw a comparison between different topologies.

15

16 CHAPTER 4. EVALUATION RESULTS

A summary of the tests with a demo-cluster consisting of 2 core nodes is presented in
table 4.1.

Table 4.1: Cardano test results for 2 nodes

Testrun Slot
Duration
[ms]

Slots
per Epoch

Transactions Sending
Duration
[s]

Blocks Validation
Duration
[s]

TPS Avg. TPS

#1 7000 20 12 2 10 27 0,444
0,436

#2 7000 20 12 2 10 28 0,428

#3 7000 20 50 21 19 77 0,649
0,645

#4 7000 20 50 21 19 78 0,641

#5 7000 20 100 80 30 161 0,621
0,6025

#6 7000 20 100 80 32 171 0,584

#7 20000 60 200 337 28 478 0,418
0,5075

#8 20000 60 200 335 26 441 0,597

#9 20000 60 300 888 54 974 0,308
0,32

#10 20000 60 300 816 51 903 0,332

Hereby, 5 different constellations were tested which differ basically in the number of trans-
actions sent to the network. Starting with 12 transactions, being the default setting in
the configuration file, the blockchain was also stressed with 50, 100, 200 and 300 trans-
actions (same number as wallets). The reason for not having more than 300 transactions
tested is that the demo-cluster runs into some troubles and difficulties while setting up
the network. During the launch of the network with more than 300 wallets, the setup
exits with a synchronisation error. The Cardano community gave the advise to tweak
around with the configuration properties such as slot duration or number of slots per
epoch. Even after thorough experimenting with the configuration, it was not possible to
get the blockchain running with more than 300 wallets. For this reason, the tests are
restricted to a maximum of 300 transactions.
The results from table 4.1 reveal a maximum achieved TPS of 0,645 which was reached
when issuing 50 transactions. The lowest performance in terms of the transaction through-
put was shown in the default configuration with 300 wallets and 300 transactions. Hereby,
the TPS was 0,32. The overall averaged performance is equal to approximately 0,502 TPS.
Remarkably is that the issuance duration of the transactions increases drastically as the
number of wallets increases. In the case with 12 wallets all transactions were sent within
2 seconds (including the response time of the API request). This results in a TPS sending
rate of 6. In contrast, the sending duration of the transactions with 300 wallets was equal
to an average of 852 seconds, leading to a TPS sending rate of 0,35 which is significantly
lower than the case with less wallets.

17

This behaviour is also inherent to the evaluations of the other two topologies. With re-
spect to this, it can be noted that the transaction sending time does not correlate linearly
with the number of transactions sent.
Table 4.2 gives an overview of the test results for the second scenario of the evaluation,
namely the same constellations as in the previous example, but this time having 4 core
nodes operating in the Cardano cluster.
The behaviour of the dramatically decreasing sending TPS rate can also observed in this
scenario.
With respect to the performance in terms of transaction throughput, the cluster with 4
nodes achieves an overall averaged TPS of 0,483, slightly less than the example with 2
nodes. Hereby, the maximum TPS is equal to 0,588 with 200 transactions whereas the
minimum performance can be stated with 0,334 TPS at 300 transactions. The lowest TPS
metric in this example is achieved at the same transaction level with the first cluster.

Table 4.2: Cardano test results for 4 nodes

Testrun Slot
Duration
[ms]

Slots
per Epoch

Transactions Sending
Duration
[s]

Blocks Validation
Duration
[s]

TPS Avg. TPS

#1 7000 20 12 2 10 30 0,4
0,4305

#2 7000 20 12 1 10 26 0,461

#3 7000 20 50 17 26 98 0,51
0,5205

#4 7000 20 50 18 24 94 0,531

#5 7000 20 100 54 34 185 0,54
0,54

#6 7000 20 100 54 35 185 0,54

#7 20000 60 200 206 21 334 0,598
0,588

#8 20000 60 200 205 22 346 0,578

#9 20000 60 300 795 50 896 0,334
0,334

#10 20000 60 300 803 50 896 0,334

The last scenario considers a cluster with 7 nodes and the same number of transactions
as the previous two tests (see figure 4.3). Having performing 7 nodes does not lead to
surprisingly different performance figures. The TPS values lie in similar value ranges.
This time, the maximum achieved TPS was 0,612 with 200 transactions and the lowest
throughput was equal to 0,4525 TPS with the default configuration.
A difference in this scenario was that the setup with 300 wallets and just as much trans-
actions failed due to the previously mentioned synchronisation issues.
In general, the experiments with the demo-cluster have shown that, the more complex the
network gets, the more difficult and challenging it is to launch it properly and be able to
do an evaluation.

18 CHAPTER 4. EVALUATION RESULTS

Table 4.3: Cardano test results for 7 nodes

Testrun Slot
Duration
[ms]

Slots
per Epoch

Transactions Sending
Duration
[s]

Blocks Validation
Duration
[s]

TPS Avg. TPS

#1 7000 20 12 1 10 27 0,444
0,4525

#2 7000 20 12 2 10 26 0,461

#3 7000 20 50 16 18 91 0,549
0,5375

#4 7000 20 50 16 19 95 0,526

#5 7000 60 100 54 36 186 0,538
0,545

#6 7000 60 100 54 35 181 0,552

#7 20000 60 200 204 23 329 0,62
0,612

#8 20000 60 200 208 21 331 0,604

#9 20000 60 300 sync failed

#10 20000 60 300 sync failed

The following section is dedicated to an inter-topology comparison, i.e. for a given number
of transactions, the TPS performance is outlined for all network structures.
In the default setting with 12 transactions, it can be seen that the best performance is
achieved with the largest network while the cluster with 4 nodes has exhibited the lowest
transaction throughput (see figure 4.1).

Figure 4.1: TPS assessment with 12 transactions

19

Figure 4.2 shows the performance comparison for the setting with 50 transactions. It
seems that an increase of the network does not lead to a better performance. The more
core nodes participate, the lower are the resulting TPS figures.

Figure 4.2: TPS assessment with 50 transactions

This effect becomes even more evident in Figure 4.3. The decrease of the transaction
throughput is more significant with 100 transactions than with 50 transactions.

Figure 4.3: TPS assessment with 100 transactions

When issuing 200 transactions to the network, the cluster size has a positive effect on the
performance. From figure 4.4 it can be observed that the system scales better than the
setup with 50 or 100 transactions.

20 CHAPTER 4. EVALUATION RESULTS

Figure 4.4: TPS assessment with 200 transactions

The experiments have shown that large numbers of transactions (> 50) positively cor-
relate with the scalability of the system in terms of performance gain with increasing
cluster size. This conclusion can also be underpinned when looking at the setup with 300
transactions (for which the diagram is omitted due to failure of the run with 7 nodes).
The test runs with 300 transactions result in a positive correlation between cluster size
and TPS [2 nodes = 0,32 TPS; 4 nodes = 0,334 TPS].
Interestingly, the initial whitepaper of Cardano records quite different performance statis-
tics. A test run with 40 nodes and slot duration of 5 seconds revealed a performance of
approximately 257 TPS on average [7].
Unfortunately, it is not mentioned how many of the three node types (relay, edge, core)
the test run involved exactly. Furthermore, it is not specified whether the transaction
ingestion was carried out by utilizing the REST API.
Compared with the average performance peak of the evaluations at hand, the results from
the whitepaper exhibit roughly 500 times higher values than our assessment.

Chapter 5

Future Work

To enhance the performance evaluation of Cardano, starting from the setup of this paper,
following two improvements might be considered:

Increase number of edge nodes As outlined in the description part, only edge nodes
are able to issue currency transactions to the network. In order to better stress the
demo-cluster, many edge nodes could be employed to promote transaction ingestion
at a high rate. In fact, this is crucial to get the most out of a particular cluster. For
instance, having blocks fitting 400 transactions and a block interval of 20 seconds, a
theoretical transaction throughput of 20 TPS might be reached. The precondition
for doing so is to issue the transactions from the edge nodes at a rate of > 20
TPS. With the current setup of one edge node this was not feasible. Adding more
edge nodes to the cluster seems to be a way of substantially increase the overall
performance.
However, this attempt has some drawbacks in terms of effort. First of all, launching
edge nodes in the demo-cluster is not as straightforward as creating core nodes.
Adjusting core nodes is simply done by manipulating configuration values. An edge
node has to be created manually in the launch script.
Besides that, having several edge nodes in a cluster also leads to a much more
complex evaluation pipeline. The reason for this is that every edge nodes has its
own ’view’ of the system. This means that wallets registered through edge node
E1 are not recognized by edge node E2. The same holds for transactions. Issued
currency transactions of E1 cannot be seen by E2. This behaviour requires that
the user needs to evaluate every edge node in a separated fashion and correctly
consolidate the output to be able to provide a statement of the overall network
performance.

Connect multiple demo-clusters With respect to increasing the cluster size, it might
be worth investigating the launch of multiple demo-clusters (e.g. on different VMs)
and then trying to connect them together such that the clusters would form one
single network. It would be interesting to see how the performance would be affected
when an already running cluster would connect to another, second cluster of the
same topology.

21

22 CHAPTER 5. FUTURE WORK

Chapter 6

Summary and Conclusions

This project was dedicated to perform a performance evaluation of the Cardano blockchain
in terms of achieved transaction validation throughput. To do so, following general steps
were taken: (1) start a Cardano network with different constellations, (2) issue transac-
tions to the network and (3) measure the validation duration.
Fortunately, the Cardano repository provided a standalone script which made it easy to
launch a demo-cluster. In contrast, the last two tasks required a pipeline with many
manual steps which are provided by the scripts in the appendix.
Having done the evaluation of Cardano with the network topology presented previously,
the performance was compared to the official test run documented in the whitepaper. It
could be observed that the performance figures are too far apart. The setup from the
whitepaper achieved a much better performance than the evaluation setup of this project.
This is probably due to the fact that only a single edge node was launched within the
scope of this project. As only those nodes can issue transactions, their quantity within
a cluster is likely to have a positive impact on the transaction issue rate which in turn
needs to be as high as possible to fill each block to its maximum. This is necessary to
exhibit high TPS figures overall.
Furthermore, every wallet installed on a computer from a Cardano user represents an edge
node. Thus, the mainnet as well as the testnet contain way more edge nodes than the
demo-cluster from this project. Due to this, the community can expect from the main-
and the testnet also much better performance figures that the setup of the assessment at
hand.

23

24 CHAPTER 6. SUMMARY AND CONCLUSIONS

Bibliography

[1] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pages 66–98. Springer, 2018. https://cryptorating.eu/whitepapers/Cardano/

573.pdf.

[2] IOHK. Blocks in cardano sl. https://cardanodocs.com/technical/blocks/. Ac-
cessed: 2019-05-16.

[3] IOHK. Cardano settlement layer documentation. https://cardanodocs.com/

introduction/. Accessed: 2019-05-16.

[4] IOHK. Cardano sl network topology. https://cardanodocs.com/cardano/

topology/. Accessed: 2019-05-16.

[5] IOHK. Differences between the ouroboros protocol and the implementation. https:

//cardanodocs.com/cardano/differences/. Accessed: 2019-05-16.

[6] IOHK. Transactions in cardano sl. https://cardanodocs.com/cardano/

transactions/. Accessed: 2019-05-16.

[7] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In
Annual International Cryptology Conference, pages 357–388. Springer,
2017. https://whitepaperdatabase.com/wp-content/uploads/2018/03/

cardano-ada-whitepaper.pdf.

25

https://cryptorating.eu/whitepapers/Cardano/573.pdf
https://cryptorating.eu/whitepapers/Cardano/573.pdf
https://cardanodocs.com/technical/blocks/
https://cardanodocs.com/introduction/
https://cardanodocs.com/introduction/
https://cardanodocs.com/cardano/topology/
https://cardanodocs.com/cardano/topology/
https://cardanodocs.com/cardano/differences/
https://cardanodocs.com/cardano/differences/
https://cardanodocs.com/cardano/transactions/
https://cardanodocs.com/cardano/transactions/
https://whitepaperdatabase.com/wp-content/uploads/2018/03/cardano-ada-whitepaper.pdf
https://whitepaperdatabase.com/wp-content/uploads/2018/03/cardano-ada-whitepaper.pdf

26 BIBLIOGRAPHY

List of Figures

2.1 Sample notion of physical time in Cardano 3

4.1 TPS assessment with 12 transactions . 18

4.2 TPS assessment with 50 transactions . 19

4.3 TPS assessment with 100 transactions . 19

4.4 TPS assessment with 200 transactions . 20

27

28 LIST OF FIGURES

List of Tables

4.1 Cardano test results for 2 nodes . 16

4.2 Cardano test results for 4 nodes . 17

4.3 Cardano test results for 7 nodes . 18

29

30 LIST OF TABLES

Appendix A

Evaluation Setup

A.1 Installation Guidelines

This chapter describes the steps required to run the evaluation pipeline and reproduce
the evaluation results. The guidelines assume a Unix environment:

• Install Nix:

sh <(curl https://nixos.org/nix/install)
. /root/.nix−profile/etc/profile.d/nix.sh

• Create Nix config file:

cd /etc/
mkdir nix
cd nix
touch nix.conf
nano nix.conf

Once the file is open, paste following content to the file:

bui ld−users−group =
s u b s t i t u t e r s = https : // hydra . iohk . i o https : //

cache . n ixos . org
trusted−s u b s t i t u t e r s =
trusted−publ ic−keys = hydra . iohk . i o : f /Ea+s+dFdN+3Y/G+

FDgSq+a5NEWhJGzdjvKNGv0/EQ= cache . n ixos . org−1:6
NCHdD59X431o0gWypbMrAURkbJ16ZPMQFGspcDShjY=

31

32 APPENDIX A. EVALUATION SETUP

• Clone Cardano repository: Assuming git is installed 1

git clone https://github.com/input−output−hk/cardano−sl.git

• Launch demo-cluster:

cd cardano−sl/
nix−build −A demoCluster −o launch demo cluster
./launch demo cluster

The configuration file can be found under ’/nix/store/c818janh7s1h4x6vkswrjlbbix7dh1ig-
cardano-config/configuration.yaml’.
Once the demo-cluster is running and the wallets are importet (can be observed
from the logs in the terminal), the evaluation script can be launched:

sh do evaluation.sh

For this purpose, the three scripts from the appendix need to be included into
the current working directory, i.e. cardano-sl/. The finalization of the evaluation
will create the file duration check.sh (same directory). This file logs the starting
timestamp of the transaction ingestion, the time when the sending of the trnsactions
are done as well as the final timestamp, after all transactions are included in blocks.
Furthermore, the file states the total number of blocks generated up until then.

A.2 Tweaking the Demo-Cluster

Manipulating topology properties such as number of cores or wallets require adjustment
of the configuration file as well as the launch script of the demo-cluster.

A.2.1 Number of Nodes

To increase or decrease the number of core nodes, open the launch script and adjust
following location accordingly:

...

cardano -sl-cluster -prepare -environment "DEMO_" --cores 2 --

relays 1 --edges 1

cardano -sl-cluster -demo --cores 2 --relays 1 --edges 0 &

...

1https://www.atlassian.com/git/tutorials/install-git

A.2. TWEAKING THE DEMO-CLUSTER 33

Hereby, the argument –cores X needs to be set on both lines with the same number.
Furthermore, the configuration file needs to be adjusted on the following line:

...

dev: &dev

core: &dev_core

genesis: &dev_core_genesis

...

spec: &dev_core_genesis_spec

initializer:

testBalance:

poors: 100

richmen: 2 #change here

...

The porperty richmen: should correspond to the same number of core nodes specified
previously in the launch script.
Once these two properties are set, the demo-cluster will launch with the newly specified
number of nodes. However, the evaluation of this paper has only worked with up to 7
nodes. It might be possible that the configuration file needs more adaptations in order to
launch more nodes successfully.

A.2.2 Number of Wallets

As mentioned above, the number of wallets has determined the number of transactions
which were sent to the network in the course of the test runs. This configuration also
requires changes in both files. In the launch script, edit following line:

...

echo "Importing 11 poor HD keys/wallet ..."

for i in {0..99} #change here

do

...

To include more then the 12 wallets by default, increase the upper bound of the for loop
to 1 minus the desired value (since the indices are 0-based). For instance, if it is intended
to have 100 wallets, then set the upper bound to 99 and so on.
The corresponding manipulation of the configuration file needs to take place at this line:

...

dev: &dev

core: &dev_core

genesis: &dev_core_genesis

...

spec: &dev_core_genesis_spec

initializer:

testBalance:

34 APPENDIX A. EVALUATION SETUP

poors: 100 #change here

richmen: 2

...

But this time with the difference that the key needs to be set exactly to the desired value.
For instance, when aiming to have 100 wallets, then set the key poors: to 100.
Note that, in case the values of the configuration file and the launch script do not corre-
spond, the blockchain will stop growing after some height, i.e. no further blocks will be
created and thus, pending transactions will never be applied and validated.

Appendix B

Required Scripts

B.1 Script ’do evaluation.sh’

Listing B.1: ’do evaluation.sh’

#!/bin/sh

echo "Starting Evaluation"

echo "Executing script extract_wallets.sh..."

sh extract_wallets.sh

echo "Execuing script check_tx_output.sh..."

sh check_tx_output.sh

echo "Done. Please check the output file duration_check.sh"

35

36 APPENDIX B. REQUIRED SCRIPTS

B.2 Script ’extract wallets.sh’

Listing B.2: ’extract wallets.sh’

#!/bin/sh

echo "Extracting all Wallets ..."

echo "Get total number of wallets"

curl -X GET https ://127.0.0.1:8090/ api/v1/wallets\

-H ' Accept: application/json;charset=utf -8 ' \

--cacert ./state -demo/tls/edge/ca.crt \

--cert ./state -demo/tls/edge/client.pem --output

all_wallets.json

num_wallets=$(jq '. meta.pagination.totalEntries ' all_wallets.

json)

echo "$num_wallets"

echo "Get total number of pages"

#Round up to the next integer

num_pages=$(((num_wallets + 50 -1) / 50))

echo "$num_pages"

echo "Creating final JSON sceleton"

rm -rf all_wallets.json

echo "{" >> all_wallets.json

echo ' "all_wallets" :[' >> all_wallets.json

#Loop through every available page and append the JSON data

to the final output file

for i in $(seq 1 $num_pages); do

curl -X GET ' https ://127.0.0.1:8090/ api/v1/wallets?page = ' $i '&
per_page =50 ' \

-H ' Accept: application/json;charset=utf -8 ' \

--cacert ./state -demo/tls/edge/ca.crt \

--cert ./state -demo/tls/edge/client.pem --http1.1 >>

all_wallets.json

echo "," >> all_wallets.json

done

B.2. SCRIPT ’EXTRACT WALLETS.SH’ 37

echo "]" >> all_wallets.json

echo "}" >> all_wallets.json

#Extract the ID elements of the JSON output

grep -Po ' "id":.*?[^\\]" , ' all_wallets.json >

output_wallet_id.txt

#Beautify the output and cut leading and traling characters

sed '{ s/^.\{6\}//;s/.\{2\}$ //} ' output_wallet_id.txt >

output_wallet_id_cleaned.txt

file="output_wallet_id_cleaned.txt"

#Write Start Time to the final output

rm -rf duration_check.sh

now=`date +%s`
echo "Start Time:" >> duration_check.sh

echo "$now" >> duration_check.sh

while IFS= read line

do

echo "Creating transaction ..."

curl -s -X POST https :// localhost :8090/ api/v1/transactions \

-H "Accept: application/json; charset=utf -8" \

-H "Content -Type: application/json; charset=utf -8" \

--cacert ./state -demo/tls/edge/ca.crt \

--cert ./state -demo/tls/edge/client.pem \

-d '{
"destinations": [

{

"amount": 100,

"address": " ' $line ' "
}

],

"source": {

"accountIndex": 2147483648 ,

"walletId": " ' $line ' "
},

"spendingPassword": ""

} ' --http1 .1 &> /dev/null

done <"$file"

echo "Waiting for all Transactions to be sent ..."

38 APPENDIX B. REQUIRED SCRIPTS

#wait

echo $ '\ nAll transactions have been sent to the network !! '
tx_sent=`date +%s`
echo "Finished sending transactions:" >> duration_check.sh

echo "$tx_sent" >> duration_check.sh

B.3. SCRIPT ’CHECK TX OUTPUT.SH’ 39

B.3 Script ’check tx output.sh’

Listing B.3: ’check tx output.sh’

#!/bin/sh

echo "Get total number of transactions ..."

curl https ://127.0.0.1:8090/ api/v1/transactions \

--cacert ./state -demo/tls/edge/ca.crt \

--cert ./state -demo/tls/edge/client.pem --http1.1 --output

all_transactions.json

num_transactions=$(jq '. meta.pagination.totalEntries '
all_transactions.json)

echo "$num_transactions"

echo "Get total number of pages"

#Round up to the next integer

num_pages=$(((num_transactions + 50 -1) / 50))

echo "$num_pages"

while sleep 1;

do

rm -rf all_transactions.json

#Boolean to assess if all transactions are in blocks

file_is_ok="true"

#Boolean to stop checking transactions due to some still

being applied , jump again to outer while loop and wait for

1 sec

intercept_check="false"

#Loop through every available page and check the transaction

states , fetching the newest transactions first

for i in $(seq 1 $num_pages); do

Do an API call to get all TXs

curl -X GET ' https ://127.0.0.1:8090/ api/v1/transactions?
sort_by=DES\[created_at \]& page = ' $i '& per_page =50 ' \

--cacert ./state -demo/tls/edge/ca.crt \

--cert ./state -demo/tls/edge/client.pem --http1.1 --output

output_tx.json

#Extract the tag elements of the TX json file

40 APPENDIX B. REQUIRED SCRIPTS

grep -Po ' "tag":.*?[^\\]" , ' output_tx.json >

output_tx_cleaned.txt

#Given the cleaned up TX states , check if the file is OK

file="output_tx_cleaned.txt"

echo "checking Transactions for page ' $i ' "

#Checking the lines of the tx output

while IFS= read line

do

if [["$line" == *"applying"*]]; then

echo "$line"

file_is_ok="false"

intercept_check="true"

break

fi

done <"$file"

if [["$intercept_check" == *"true"*]]; then

echo "intercepting transaction check at page

' $i ' "
break

fi

done

#Check if all Transactions are OK. If so, then write final

commands to the evaluation script

if [["$file_is_ok" == *"true"*]]; then

echo "Transactions are all applied!"

now=`date +%s`
echo "End Time:" >> duration_check.sh

echo "$now" >> duration_check.sh

#Get total number of blocks

curl -X GET https :// localhost :8090/ api/v1/node -info \

-H ' Accept: application/json;charset=utf -8 ' \

--cacert ./state -demo/tls/edge/ca.crt \

--cert ./state -demo/tls/edge/client.pem --output

total_blocks.json

echo "Total Blocks created:" >> duration_check.sh

num_blocks=$(jq '. data.blockchainHeight.quantity '
total_blocks.json)

echo "$num_blocks" >> duration_check.sh

B.3. SCRIPT ’CHECK TX OUTPUT.SH’ 41

exit 1

fi

done

	Introduction
	Blockchain Description
	Evaliation Scenario
	Cloud Infrastructure
	Approach
	Challenges
	Evaluation Pipeline
	Script 1 - extract_wallets.sh
	Script 2 - check_tx_output.sh

	Evaluation Results
	Future Work
	Summary and Conclusions
	List of Figures
	List of Tables
	Evaluation Setup
	Installation Guidelines
	Tweaking the Demo-Cluster
	Number of Nodes
	Number of Wallets

	Required Scripts
	Script 'do_evaluation.sh'
	Script 'extract_wallets.sh'
	Script 'check_tx_output.sh'

