
Design and Development of a
Platform Agnostic Supply Chain

Tracking Application

Danijel Dordevic
Student ID: 17-717-778

Zurich, Switzerland

Supervisor: Sina Rafati Niya, Prof. Dr. Burkhard Stiller
Date of Submission: August 27, 2019

University of Zurich
Department of Informatics (IFI)
Binzmuhlestrasse 14, CH-8050 Zurich, Switzerland ifi

IN
D

E
P

E
N

D
E

N
T

S
T

U
D

Y
M

O
D

U
LE

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r



Independent Study Module
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmuhlestrasse 14, CH-8050 Zurich Switzerland
URL: http://www.csg.uzh.ch/



Abstract

While traditional supply chain (SC) systems met their requirements, they eventually
reached their limits, especially in a sense they do not provide enough transparency for
the final consumers. They are also highly specialized in supplying just specific goods,
meaning they are not generic enough to be reused for other types of products. This
is especially true for food, which safety and transparency are paramount to the final
consumers. Traditional SC systems require a lot of manual work which leaves room for
errors and manipulating with goods. Also, traditional systems lack integration between
different systems in the supply chain, which requires more work to make those systems
work together. The commence of the Internet changed the way how traditional SC systems
functioned. The more agile and dynamic way of working was introduced. That allowed the
consumers to interact with their products at any of its stages. While the traditional SC
systems have been improved over time, there is room to advance the existing SC systems
to the next level, especially when speaking about the transparency and making them
more user-friendly for the final consumers. In this independent study, the requirements
mentioned above are addressed by developing the application that can be used by both
consumers and producers.

i



Acknowledgments

I want to take the opportunity and thank my supervisors Sina Rafati, Prof. Dr. Burkhard
Stiller, and other members of the Communication Systems Group at the University of
Zurich for allowing me to pursue this Independent Study Module.

ii



Contents

Abstract i

Acknowledgments ii

Contents iii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Description of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Design and Implementation 4

2.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 React Native . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 State Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Multi-Language Support . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Application Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Producer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Consumer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Evaluation and System Analysis 21

4 Summary and Future Considerations 24

iii



iv CONTENTS

Bibliography 25

Abbreviations 27

List of Figures 27

List of Figures 28

A Installation Guidelines 30

B Contents of the CD 32



Chapter 1

Introduction

1.1 Motivation

A supply chain (SC) represents a network of parties responsible for creating and selling
the products, from the source (raw) materials through its processing in multiple steps and
delivery to the final consumers. This process is known as the distribution channel.

Each of these middlemen represents both a producer and consumer in that chain. It is
crucial that each of them can verify the full history of the product. If any of the stages in
this distribution channel gets compromised, the whole SC is in jeopardy. This is especially
important when dealing with food, which safety is paramount for the final consumers, and
any issue with it could result in fatal consequences for all the parties within the channel.

[1] points out the five major problems in the current SC systems. Each of them is briefly
explained with the proposed solutions and how the SC tracking application developed as
part of this IS tries to tackle some of these problems:

1. Lack of traceability

Even in the Internet era, many products are untraceable, and this is the main con-
cern for many consumers nowadays because they want to know where each ingredient
of their product came from. Traceability would straighten the brand integrity and
increase customer loyalty.

Our application tackles this problem by introducing labels being stuck on the prod-
uct in each step of the channel. The labels hold just a hash, stored on the blockchain,
that can not be forged, and which contains the reference to the data about the
product. This enables the full traceability and transparency not only for the final
consumers but also for each party of the SC system.

2. Inability to maintain the safety and quality of the products

Today’s SC systems are more complex than ever before. The manufactures are under
the pressure to produce and deliver high-quality products in ever limited time. There
are several main challenges like climate changes, delays in transportation, etc. The

1



2 CHAPTER 1. INTRODUCTION

proposed solution for these few issues is that everything starts from the high-quality
raw materials, also the packaging and storing should be taken into account.

3. Inadequate communication between parties

In ever-changing and more complex SC, communication becomes more difficult.
There is little to no knowledge of one another’s actions. Poor communication causes
issues with delays, increase costs, less quality final products.

Our application partly solves these problems by providing valid information about
each product. The information contains the previous actor in the channel, actions
being performed on the product, date, etc.

4. Rising supply chain costs

To run an SC system is ever more expensive mainly due to the high energy costs,
manpower, investing in new technologies.

5. Failure to track and control inventory in warehouses and stores

There has to be a trade-off between too strict and too lax controlling of inventory.
To strict control would incur higher costs without bringing benefits while too lax
control would result in low-quality products.

The SC tracking application again helps to tackle this issue by enabling easy verifi-
cation of each product in each of its stages.

There are several other mechanisms that would enable tracking the product.

RFID [2] is one of them but it would require the usage of expensive chips that would
have to be implemented in each product, also it would require specialized scanners for
validating the products.

GIS [3] uses GPS for tracking the products, but this would introduce even more expensive
equipment. There are use-cases where GIS makes sense, like tracking the products in
real-time.

In our use-case, combining the QR labels that contain the hash data, and immutable
nature of the blockchain technology is the best candidate for implementing cost-effective,
robust and reliable SC tracking system that is easy to use by all parties.

1.2 Description of Work

The aim of this IS is to develop a mobile application that is an integral part of the SC
Tracking System. It is meant to be used by both producers and final consumers. It
describes the main architectural and implementation decisions. The focus is on seamless
integration of the mobile application into the system, allowing all the parties of the SC
easy, reliable, and cost-effective usage of the system.

Chapter 2 explains the technical and implementation details about the application. The
reasons for choosing certain technologies were given.



1.2. DESCRIPTION OF WORK 3

The section 2.3 explains the flow of the application and kind of a user-guide for both
modes, consumer and producer.

Chapter 3 provides the evaluation details of the application while finally chapter 4 sums
up the overall project and provides some future considerations of the application.



Chapter 2

Design and Implementation

In this section, the architectural decisions and implementation will be explained in de-
tails. The first part describes the overall architecture, system design, high-level overview.
Later, the back-end system will be explained that this application relies on. Lastly, the
application itself will be explained in details starting from the technologies/frameworks
being used.

2.1 System Design

System design is the process of defining the elements of a system with all its components,
modules and interfaces. It can take a bottom-up or top-down approach [5]. A system
diagram is a high-level diagram that depicts the boundaries between the system and its
environment. The figure 2.1 shows the high-level overview of the components and actors
within the system. It can be seen that mobile application plays a central role. It is
a mediator between the producers and consumers, and the back-end system. It shows
that the producers can generate QR codes, store the data on the back-end system and
that the consumers can later validate products by scanning the products/QR codes. This
means that this application can be used both by consumers and producers which will be
explained in details in the following section.

Figure 2.2 shows the use-case diagram of the mobile application. The purpose of the
use-case diagram is to show the interactions between the elements of the system.

The given use case diagram can be breakdown into four main components:

1. System: The application developed. In this case, it represents the food chain
tracking mobile application. It is a rectangle encompassing the use-cases and rela-
tionships. All components within this rectangle are part of the system.

2. Actors: Represent the external entities that use the functionalities provided by the
system. In our case, the actors are the producers and consumers.

4



2.1. SYSTEM DESIGN 5

Figure 2.1: System Design Diagram [6]

3. Use-Cases: The oval-shaped elements representing the functionalities provided by
the system, and used by the actors.

4. Relationships: There are several types of relations.

• Association: Represented as a solid arrow. In this case, there are associations
between the system and users, and consumers. A producer can generate QR
code, sign in/up and update its data. On the other side, consumers can only
scan products/QR codes and show the product’s data.

• Extend: Represented as a dotted arrow, describes the use case that is extended
by some additional functionalities. In this case, generating a QR code can be
extended by the functionality that prints that newly generated QR code.

Container Diagram

Figure 2.3 shows the container diagram. Essentially, every application represents one
container that is runnable/deployable unit that process, stores or serves data. In that
way, the benefits of using the micro-service architecture are leveraged. It represents the
high-level view of the system architecture and how the responsibilities are distributed
across containers. It also shows the major technology choices and how the containers
communicate with each other.

The next part shortly explains each of the components.



6 CHAPTER 2. DESIGN AND IMPLEMENTATION

Producer

Consumer

FC Tracking System

Scan QR Code

Generate QR Code

Update Data

<<extends>>

Select/Add Certificates

<<extends>>
Print QR Code

<<extends>>

Sign In/Up

Select/Add Actions

<<extends>>

<<extends>>

<<extends>>

Figure 2.2: Use Case Diagram

Database Food Chain Tracking System stores all its data in the SQL database. All kind
of SQL-like databases supported by Hibernate can be used to store the data.

RESTFul Web Service Backend application exposing RESTFul APIs that other ap-
plication can call.

Ethereum Node In order to call the smart contract and validate product tag’s hash,
the backend application calls the Ethereum node which can call the smart contract
and validate the given hash value. The backend can easily switch to use a remote
Ethereum node if e.g. the machine that the machine runs on doesn’t have enough
resources to run a node.

Web Application The application used by consumers. It is built as a single-page web
application and its production build is served by Nginx web server.

Reverse Proxy Used in order to hide the internal structure of the system and increase
the overall security. It exposes the server’s and backend’s APIs under the same
origin.

Android Appication Used by producers that can create and validate product tags. It
can also be used by consumers for checking the validity and details of product tags.

React Native Application A mobile application builds with React Native framework
that provides the same look and feel on both Android and iOS platforms. It can
also be used by both producers and consumers and it is intended to provide the
same functionalities as the aforementioned Android application.

Ethereum Network A distributed-computing platform and operating system featuring
smart contract functionality. It runs the smart contract written for this platform
and executes the transactions against the contract.



2.2. IMPLEMENTATION 7

ProducerConsumer

Android Application
[Container: Java Android]

Provides all functionalities for the producers
and consumers

Single-Page Web Application
[Container: Nginx web server]

Provides all functionalities for the
consumers

RESTful Web Service
[Container: Java and Spring Boot]

Process the requests from the Android and
Web applications

Database
[Container: Relation Database

Schema]
Stores all relevant data

Ethereum Network
[Blockchain System]

Stores and validates product tag
hashes

Uses
Uses

Reads/Writes
[JDBC]

Uses
[JSON/HTTPS]

Uses
[JSON/HTTPS]

Uses
[JSON/HTTPS]

Uses
[JSON/HTTPS]

Supply Chain Tracking System
[Software System]

Nginx reverse proxy
[Container: Nginx]

Proxies the requests based on the
requested URL

Home

https://foodchain-csg.ch/

UsesUses Uses

React Native Application
[Container: JavaScript and React Native]

Provides all functionalities for the producers
and consumers

Uses

Uses
[JSON/HTTPS]

Figure 2.3: Container Diagram for Food Chain Tracking System.

This overview of the whole ecosystem is given in order to show the role of the Application
being built. In the next section, the implementation details will be explained.

2.2 Implementation

This section covers the implementation details for the Food Chain Mobile Application.
The main goal of this mobile application is to bring the supply chain platform to the pro-
ducers and consumers using the iOS platform. Therefore, the requirement was to build
a mobile application that can run on the iOS platform. There are several possible tech-
nologies/frameworks available for building the iOS applications such as React Native[7]
Flutter[8] and Ionic[9]. In the end, the React Native framework is utilized. This section
will explain the React Native internals, reasons why the React Native was used, and also
the implementation details will be given.



8 CHAPTER 2. DESIGN AND IMPLEMENTATION

2.2.1 React Native

React Native is a JavaScript framework for writing real, natively rendering mobile appli-
cations for iOS and Android. It is based on React [10], Facebook’s JavaScript library for
building user interfaces, but instead of targeting the browser, it targets mobile platforms.
React Native currently supports both iOS and Android and has the potential to expand
to future platforms as well [7].

The fact that by writing JavaScript code and running it natively on both Android and iOS
platforms brings clear benefits. Only one code base should be maintained while utilizing
well established frameworks/tools such as React [10], Redux[11], Material-UI [16] etc.

As mentioned, React Native provides almost native performances. The reason is that the
code written in Java Script gets compiled natively to the target platforms where currently
Android and iOS are supported. Also, the support for a few other platforms is under
development [18]. Figure 2.4 illustrates the flow of the compiling process.

Figure 2.4: React Native compiling flow [17]

The heart of the React Native architecture is the bridge that allows the communication
between JavaScript and a native/target platform. The bridge provides bidirectional and
asynchronous communication between these two different technologies. Figure 2.5 illus-
trates the communication between two different technologies using the bridge.

Figure 2.5: Bridge sitting between JavaScript and Native Threads [17]



2.2. IMPLEMENTATION 9

2.2.2 State Management

Managing application state is a crucial component in any software development process.
React itself provides some useful methods for setting component’s state using setState()

and adding a ’local state’ to a class. The method setState() will set the state in the
corresponding class, which means that the changed state will be accessible just inside that
class and its children classes and components. Managing states just with React is possible
but very ineffective due to growing complexity and performance issues, especially as the
application grows.

Redux [11] is a library that helps to manage application state in a consistent and pre-
dictable manner. The Redux Store is basically the single source of truth for the application
and it can be changed only with pure functions [12]. The React component can connect
to the Redux store by using the react-redux library[13]. That allows the components to
subscribe to the Store changes, and also trigger the update on the Store.

The figure 2.6 shows the Redux flow in React applications. It is important to mention
that when making the asynchronous calls, the additional middleware has to be used that
will update the Redux Store on the call completion. In this application, for that purpose
Redux Thunk [15] was utilized.

Figure 2.6: Redux Flow[14]

Section 2.2.3 explains how the Redux library was utilized to implement multi-language
support.



10 CHAPTER 2. DESIGN AND IMPLEMENTATION

2.2.3 Multi-Language Support

As the global application state is handled with Redux [11], the multi-language support
is implemented with the same library. The language can be changed from the home
screen drawer. Currently, German, English, French, and Italian are implemented. Figure
2.7 shows the open drawer where the buttons for the implemented languages are shown.
The button for the current language is in blue color. By changing the language, the
Redux Store gets updated which triggers the text to change in the whole application.
This allows the managing of all the translations of the application from one central place.
All components that have to display some of the translations, just have to subscribe to
the global Store using the aforementioned react-redux library and select the key of the
corresponding text.

Figure 2.8 shows the home screen in German language while 2.10 shows the same screen
in English translation.

Figure 2.7: Home screen
drawer

Figure 2.8: Home screen - Ger-
man translation

2.2.4 Development Process

There are two main ways of building a React Native application. Using the React Native
CLI [19] or Expo CLI [20].

React Native is a default tool. It is a more flexible way of developing because it allows
developers to link native modules written in other languages (Java, Kotlin, Swift). It even



2.3. APPLICATION MODES 11

allows integrating React Native into an existing native application. The drawback is that
it requires XCode for iOS and Android Studio for Android application. Also, the initial
setup is more complicated.

Expo tries to solve these problems. It provides a set of tools that simplify the development
and testing of React Native applications. It integrates the components of users interface
and services that are usually available in third-party native React Native components.
This significantly simplifies the development process and allows the developers to focus
on building the functionalities of their applications, instead of spending time on setting
up the development environment. Expo also manages the application update when a new
version of React Native is released. Also, building an iOS application without a MAC
machine brings clear benefits. By taking all that into account, Expo was a clear choice.

The typical way to use Expo tool is the managed workflow, figure 2.9.

Figure 2.9: Expo Managed Workflows [21]

Expo allows a very convenient way for testing and debugging applications while using the
managed workflow. It provides a development server and applications for both iOS and
Android platforms. When the development server is up, it will generate a QR code. All
we have to do is to scan the QR code from the Expo application, and the application we
are working on will run on the phone. Hot reload is also available which speeds up the
development process.

2.3 Application Modes

As mentioned, the Food Chain Mobile Application provides the functionalities for both
producers and consumers.

2.3.1 Producer Mode

The producer mode of the application provides a wide set of functionalities that help the
producers to successfully use the Food Chan Tracking system. As shown in 2.2, producers
can log in, register, add or create actions and certificates, generate QR code, see the QR



12 CHAPTER 2. DESIGN AND IMPLEMENTATION

codes they have generated, update their data. Producer’s authentication screen can be
entered by pressing the Producer button from the home screen.

By entering the producer’s authentication screen, two tabs will appear:

• Login

The producer is already registered and it has to enter its username and password
to access the application.

• Sign Up

The producer has not registered yet so it has to create a new account. The following
fields are required:

– Producer Name

The registered name of the producer.

– Licence Number

A number that uniquely identifies each business entities within a country.

– Username

Producer’s username that it can be used for logging into the system. It has to
be unique and with a minimum of 5 characters.

– Password

Required for logging into the system. It has to have a minimum 8 characters.

– Ethereum Account

64 character hex string that represents the producer’s ethereum account num-
ber.

– Website URL

Not required field represents producers URL address if any.

– List of Certificates

The producer can select the certificates from the provided list, it can also add
additional certificates if required as shown in figure 2.13.

– List of Default Actions

The producer can select the default actions while creating an account so it does
not to select them for each product tag generation. New actions can also be
created on the fly as shown in figure 2.14.

Once the producer fills in all the required fields, it has to press the button SignUp
from the figure 2.14. All the fields will be validated on the client-side. If there is any
error, the corresponding error message will be shown. Otherwise, the application
will make an HTTP request against the server that will save the producer data in
the database. Upon successful account creation, the producer will be redirected on
the producer’s welcome page, as shown in figure 2.15.

On successful sign-in/up action, the server will return a JWT token used for au-
thentication. The mobile application will store the token in the Redux store. The
application will include the JWT token in the header for each request that requires
the authentication. The token will be destroyed on the sign-out action.



2.3. APPLICATION MODES 13

Figure 2.10: Home screen Figure 2.11: Producer Login
Screen

Figure 2.12: Producer Sign-up
Screen 1

Figure 2.13: Producer Sign-up
Screen 2

Product Tag Generation

The main functionality of this mobile application is the product tag generation. Upon
successful logging/registration, a producer can generate new product tags. To make it as



14 CHAPTER 2. DESIGN AND IMPLEMENTATION

Figure 2.14: Producer Sign-up
Screen 3

Figure 2.15: Producer Home
Screen

easy as possible, the producer can perform the aforementioned action directly from its
home screen.

The product tag that is about to be created can be the first one in the chain (genesis
product tag), or it can have one or more previous product tags. The application is able
to handle both cases.

In case the product tag depends on one or more previous product tags, the producer has
an option to scan those product tags and link them with the new product tag. That can
be accomplished by pressing the button Scan Product from figure 2.15. By doing that,
the QR scanner will become active as shown in figure 2.16. All the producer has to do
is to scan the QR code. Once the QR code is successfully scanned, the application will
decode the QR code in text format and send a request to the server for validation. If the
QR code is valid, the server will return the information about the product being scanned
and the popup from figure 2.17 will be shown. The producer can continue scanning the
products if he wishes, the application will maintain a list of scanned products. Should
the scanned QR code is invalid, the appropriate error message will appear.

Once the producer is done with the product scanning, it can close the QR scanner. By
doing so, it will be returned to its home screen from figure 2.18. It can be seen that the
list of scanned product is shown. The producer can show the details about each of the
product and also there is a remove button for each of the product. The next step is to
select the actions being performed on the product. The list of actions is just below the
Scan Product button, figure 2.19. The default actions are preselected. The producer
can remove/add actions by toggling the button for each of them. The final step is to press



2.3. APPLICATION MODES 15

Figure 2.16: QR Scanner Figure 2.17: QR Scanner -
Valid Product Tag

Generate Product Tag from figure 2.19. The application will make an HTTP request
against the server and as the payload will contain all the information about the product:

• Producer information

• JWT token for authentication

• List of previous product tags

• List of actions

• Geoinformation

The server will validate the data being sent and if the data is valid, it will generate a new
product tag and its hash value. The hash value will be also stored to the Smart Contract
that is deployed on the Ethereum network. Once the data is successfully stored in the
database, the server will return the success message, the message will include the data
about the new product tag. On successful product tag generation, the popup from figure
2.20 will appear.

The popup will say that the product tag is successfully generated, and will show the
Print, Show Details and Close buttons. Since the server returned the hash value of
the new product tag, the producer can print it in its QR code format. By selecting the
Print button, the page with printer options will appear as shown in figure 2.21. The
producer can select a printer and basic printing options, and it is also able to preview the



16 CHAPTER 2. DESIGN AND IMPLEMENTATION

Figure 2.18: List of scanned
products

Figure 2.19: Product Tag ac-
tions and Product Tag Gener-
ation

QR code. Once the producer presses the Print button from the top-right corner from
figure 2.21, the application will connect to the printer and trigger the printing process.

The popup from figure 2.20 offers the option to show the product tag details upon success-
ful generation. This option offers the same functionalities as the one from the Consumer’s
mode where a consumer wants just to validate a product. It will be covered in section
2.3.2.

In case the producer is creating a product tag that is the first one in the chain, all it has to
do is to select the actions being performed on the product, and to click on the Generate
Product Tag button from the figure 2.22. The producer will be warned that it is going
to create a product tag without any previous product tag as shown in the figure 2.23.

In the warning popup from the figure 2.23, the producer can choose to create a product
tag or to scan previous product tags. By selecting the option to create a product tag,
the application will make a request against the server, which will validate the data being
sent. This flow is the same as the case above where there is one or more previous product
tags. Upon successful product tag generation, the producer will see the same popup as in
figure 2.20.

Product History Page

The top button in producer’s home screen from figure 2.15 leads to the page that lists
all the products ever being generated by that producer. The figure 2.24 shows the list of



2.3. APPLICATION MODES 17

Figure 2.20: Product Tag suc-
cessfully generated

Figure 2.21: QR Code Print
Page

Figure 2.22: Generate Product
Tag Button

Figure 2.23: No previous Prod-
uct Tags Warning

product tags sorted in chronological order. For each product tag there are two option:



18 CHAPTER 2. DESIGN AND IMPLEMENTATION

• Details

Producer can show the product tag details in a same way as a Consumer. It will
open a map view as shown in figure 2.29. More details will be given in section 2.3.2.

• Print

There is also an option to print again the QR code of the specific product tag if
needed.

Figure 2.24: Producer’s Prod-
uct History Screen

Figure 2.25: Producer Update
Screen

Producer Settings Page

Producer can enter the settings page by clicking on the Settings button on the top-right
corner on the home screen from figure 2.15. This will open the page from figure 2.25. The
page contains the same form as the sign up page, just the values are already filed with
producer’s details. The producer can update each of the values, add/remove certificates
and default actions. By pressing the Update button, the application will send the data
to the server, which will update the producer’s data in the database.

2.3.2 Consumer Mode

Consumer Mode makes it as easy as possible for the final consumers to validate the
products. The consumer page can be accessed by clicking on the Consumer button from



2.3. APPLICATION MODES 19

the startup screen from figure 2.10. This will open the page from figure 2.26. This page
provides just the list of scanned products and the Scan Product button of the bottom
of the page.

By clicking on the Scan Product button, the QR scanner page will be open, as shown
in figure 2.16. If the product is not valid, the error popup will appear, as shown in
figure 2.27. Otherwise, the popup from figure 2.28. The success popup 2.28 will be
shown. Consumer can right from the popup continue scanning or it can show the product
details. By choosing to show the details, the map view will appear as in figure 2.29. This
example show three pins on the map. Each pin represents one product tag. The green
pin represents a product tag that is scanned, while red pins represent previous product
tags. The pins are numbered, where the lowest number represents the oldest product tag
in the chain and the highest number represents the latest product tag, namely the one
we scanned. This means that all the polylines finaly lead to the latest (scanned) product
tag. The polilynes always form a tree. The leafs represent the genesis product tags and
the root is the product tag we scanned.

By clicking on each of the pin, the popup with product tag details will appear, as in figure
2.30. The popup show the following information about the product:

• Date when the product tag is generated.

• Product tag hash.

• Product tag actions.

• Product tag producer.

• The list of the previous product tags, if any.



20 CHAPTER 2. DESIGN AND IMPLEMENTATION

Figure 2.26: Consumer
Screen

Figure 2.27: Invalid
QR Code

Figure 2.28: Valid QR
Code

Figure 2.29: Map View Figure 2.30: Map View
Details



Chapter 3

Evaluation and System Analysis

This chapter describes the quality of the mobile application’s source code and its robust-
ness. The focus is put on the characteristics of the application while running on the iOS
devices since that was the main intent of this project, to bring the Food Chain Tracking
System to the iOS users.

The application was developed on the iPhone 6 device and it is also tested on the iPhone X
device. On both devices the application is stable without unexpected crashing even after
heavy usage. All the functionalities that are implemented in the Android application are
also implemented in the React Native application. The focus was put on the user interface
and experience so some UI elements and user flows were improved.

The application was used for demonstrating the FC Tracking Platform capabilities on
several events. One of them was the IEEE International Conference on Blockchain and
Cryptocurrency (14-17 May 2019, Seoul, South Korea) [22]. The application was demon-
strated as a part of the SC Tracking Platform, and the paper was published under the title
A Platform-independent, Generic-purpose, and Blockchain-based Supply Chain Tracking
[23]

The application has been tested and presented on several occasions within the Commu-
nication Systems Group [24]. All the inputs were collected and taken into account so the
final version meets all the requirements while stays stable.

One of the main issues in the first version of the application was that the application was
crashing in an unpredictable manner while scanning the product tags. It turned out that
the problem was with the improper handling on the Redux Thunk asynchronous actions.
The reason was that the Redux global state was not updated properly on some occasions
so the second action for fetching the product data was triggered while the first one had
not been resolved. This issue was solved after heavy debugging and the solution was to
move the handling of product data fetching locally within the QrScanner component class
state instead handling it with Redux.

Other relevant suggestions are:

21



22 CHAPTER 3. EVALUATION AND SYSTEM ANALYSIS

• Add proper test cases. One of the possible test case would be to test the user
registration process and obtaining the JWT token. The test case could be imple-
mented in a way that all the form fields are populated in an automatic manner and
it is validated that the JWT token is obtained and stored properly upon successful
registration.

• Send the Product Tag hash values to the smart contract directly from the mobile
application instead of delegating it to the server. Figure 3.1 shows the current ap-
proach where the server application sends the new hash value to the smart contract.
The better approach would be that the mobile application should send the new
hash value to the smart contract, which would enforce the producers to pay for the
transactions. The problem is that at the time of developing the application, the
Web3j library did not work well with React Native.

:MobileApp :Server :SmartContract

validateProductTag(PTHash)

invalid
errorResponse

[invalid]

valid

successResponse
savePTHash(PTHash)

[valid]

createProductTag(ProductTagsDTO)

Figure 3.1: Product Tag Generation - Server sends the new hash value to the smart contract

• Improve form validation. Both Login and Sign UP forms could have better valida-
tion for their fields. E.g. the password fields could require more strict passwords
(minimum length, symbols, uppercase/lowercase letters).

• Store the JWT token in the phone’s local storage instead of in Redux store. This
would allow automatic login even if the application had been closed and reopened.

Even though the main goal of this IS was to make an iOS application, the React Native
framework builds both Android and iOS applications from the same code base. It is
important to mention that the application behaves much better on the iOS platform
because the React Native framework is much better optimized to work on iOS. The main
issue with the Android platform is the nested scroll view. If there is a nested scroll view,



23

:MobileApp :Server :SmartContract

validateProductTag(PTHash)

invalid
errorResponse

[invalid]

valid
successResponse

savePTHash(PTHash)

[valid]

createProductTag(ProductTagsDTO)

Figure 3.2: Product Tag Generation - Mobile application sends the new hash value to the smart contract

like the action list withing the Sign-Up form, only the outer scroll view will work, and the
event on the inner scroll view will never be triggered. There are several workarounds to
avoid this issue, but none of them is a clean and proper solution. All in all, the application
is much more fluid and stable on iOS than on Android platform.



Chapter 4

Summary and Future Considerations

Food Chain Tracking Platform enables the more transparent and traceable running of
the Supply Chain business. That leads to the mutual trust not just between between
the parties withing the chain, but between them and final consumer which is especially
important today when many scandals in that industry have occurred. This platform and
the mobile application help to improve the business flow by using top-notch technologies
such as Blockchain, without introducing significant costs. The data about the product is
easy accessible and impossible to forge due to the Blockchain nature.

One of the main goals of this Independent Study was to bring the FC Tracking System
to the iOS market while integrating into the existing platform. It allows both consumers
and producers to use the platform in an easy way.

One of the intentions was to examine the capabilities of the React Native framework and
it has been concluded that it meets the expectations. The target applications on both
platforms are quite stable with almost native performances. Maintaining one code base
for both platform is a clear benefit. As written in chapter 3, the React Native does not
work as good on Android platform as on iOS. The possible solution would be to eject the
application from the Expo managed flow 2.2.4 and write the Android native modules for
the parts that do not work well. This breaks the React Native principles since the code
in Java or Cotlin should be written, but it is there as an option. This would increase
the code base and would introduce a new language, but it would solve the compatibility
problems on the other hand.

It has to be mentioned that this application is a functional prototype. It is not production-
ready mostly because of the suggestions made in chapter 3. Once the changes are imple-
mented based on the suggestions, the application will be one step closer to production
readiness.

24



Bibliography

[1] THE NETWORK EFFECT Beyond Supply Chains, FIXING THE 5 BIG PROB-
LEMS IN THE FOOD SUPPLY CHAIN https://supplychainbeyond.com/5-big-

problems-in-the-food-supply-chain/, Last visited August 2019.

[2] The Wikipedia Website, Radio-frequency identification https://en.wikipedia.

org/wiki/Radio-frequency_identification, Last visited August 2019

[3] GIS AS A DECISION SUPPORT FOR SUPPLY CHAIN MANAGEMENT, San-
jay Kumar and Suneeta Agrawal, https://pdfs.semanticscholar.org/5841/

cf5a366bc442415c9fdd2728696f1d0cdf25.pdf, Last visited August 2019

[4] The Wikipedia Website, Global Positioning System https://en.wikipedia.org/

wiki/Global_Positioning_System, Last visited August 2019

[5] Techopedia Website, System Design page https://www.techopedia.com/

definition/29998/system-design, Last visited June 2019.

[6] Design and Development of anAndroid-based Supply ChainTracking Application,
Atif Ghulam Nabi

[7] Learning React Native by Bonnie Eisenman, Oreilly Safary, https://www.oreilly.
com/library/view/learning-react-native/9781491929049/ch01.html, Last
visited July 2019

[8] Flutter Official Website, https://flutter.dev, Last visited July 2019

[9] Ionic Framework Official Website, https://ionicframework.com/, Last visited July
2019

[10] React Website, https://reactjs.org/, Last visited July 2019

[11] Redux Website, https://redux.js.org/, Last visited July 2019

[12] Pure functions in JavaScript, https://www.nicoespeon.com/en/2015/01/pure-

functions-javascript/, Last visited July 2019

[13] React Redux website, Official React bindings for Redux https://react-redux.js.

org/, Last visited July 2019

25

https://supplychainbeyond.com/5-big-problems-in-the-food-supply-chain/
https://supplychainbeyond.com/5-big-problems-in-the-food-supply-chain/
https://en.wikipedia.org/wiki/Radio-frequency_identification
https://en.wikipedia.org/wiki/Radio-frequency_identification
https://pdfs.semanticscholar.org/5841/cf5a366bc442415c9fdd2728696f1d0cdf25.pdf
https://pdfs.semanticscholar.org/5841/cf5a366bc442415c9fdd2728696f1d0cdf25.pdf
https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.wikipedia.org/wiki/Global_Positioning_System
https://www.techopedia.com/definition/29998/system-design
https://www.techopedia.com/definition/29998/system-design
https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch01.html
https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch01.html
https://flutter.dev
https://ionicframework.com/
https://reactjs.org/
https://redux.js.org/
https://www.nicoespeon.com/en/2015/01/pure-functions-javascript/
https://www.nicoespeon.com/en/2015/01/pure-functions-javascript/
https://react-redux.js.org/
https://react-redux.js.org/


26 BIBLIOGRAPHY

[14] Hackernoon website, Redux Step by Step: A Simple and Robust Workflow for
Real Life Apps https://hackernoon.com/redux-step-by-step-a-simple-and-

robust-workflow-for-real-life-apps-1fdf7df46092, Last visited July 2019

[15] Github website, Redux Thunk, Thunk middleware for Redux. https://github.com/
reduxjs/redux-thunk, Last visited July 2019

[16] Material-UI Website, https://material-ui.com/, Last visited July 2019

[17] Understanding the React Native bridge concept, Marvin Frachet, Hackermoon Web-
site https://hackernoon.com/understanding-react-native-bridge-concept-

e9526066ddb8, Last visited July 2019

[18] Out-of-Tree Platforms, React Native official Docs https://facebook.github.io/

react-native/docs/out-of-tree-platforms, Last visited July 2019

[19] Getting Started, The React Native CLI, React Native Official Docs https:

//facebook.github.io/react-native/docs/getting-started.html#the-

react-native-cli-1, Last visited August 2019

[20] Expo Official Website https://expo.io/, Last visited August 2019

[21] Expo Official Docs https://docs.expo.io/versions/v34.0.0/introduction/

managed-vs-bare/, Last visited August 2019

[22] IEEE International Conference on Blockchain and Cryptocurrency, Homepage http:
//icbc2019.ieee-icbc.org/, Last visited September 2019

[23] A Platform-independent, Generic-purpose, and Blockchain-based Supply Chain
Tracking, IEEE https://ieeexplore.ieee.org/document/8751415, Last visited
September 2019

[24] Department of Informatics - Communication Systems Group, University of Zurich
https://www.csg.uzh.ch/csg/en/, Last visited September 2019

https://hackernoon.com/redux-step-by-step-a-simple-and-robust-workflow-for-real-life-apps-1fdf7df46092
https://hackernoon.com/redux-step-by-step-a-simple-and-robust-workflow-for-real-life-apps-1fdf7df46092
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://material-ui.com/
https://hackernoon.com/understanding-react-native-bridge-concept-e9526066ddb8
https://hackernoon.com/understanding-react-native-bridge-concept-e9526066ddb8
https://facebook.github.io/react-native/docs/out-of-tree-platforms
https://facebook.github.io/react-native/docs/out-of-tree-platforms
https://facebook.github.io/react-native/docs/getting-started.html#the-react-native-cli-1
https://facebook.github.io/react-native/docs/getting-started.html#the-react-native-cli-1
https://facebook.github.io/react-native/docs/getting-started.html#the-react-native-cli-1
https://expo.io/
https://docs.expo.io/versions/v34.0.0/introduction/managed-vs-bare/
https://docs.expo.io/versions/v34.0.0/introduction/managed-vs-bare/
http://icbc2019.ieee-icbc.org/
http://icbc2019.ieee-icbc.org/
https://ieeexplore.ieee.org/document/8751415
https://www.csg.uzh.ch/csg/en/


Abbreviations

REST Representational State Transfer
API Application Programming Interface
SQL Structured Query Language
QR Quick Response
SC Supply Chain
IS Independent Study Module
JSON JavaScript Object Notation
URL Uniform Resource Locator
iOS An operating system used for mobile devices manufactured by Apple Inc.
UI User Interface
CLI Command Line Interface
MAC A family of PCs designed, manufactured and sold by Apple Inc.
PC Personal Computer
JWT JSON Web Token
HTTP HyperText Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers

27



List of Figures

2.1 System Design Diagram [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Use Case Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Container Diagram for Food Chain Tracking System. . . . . . . . . . . . . 7

2.4 React Native compiling flow [17] . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Bridge sitting between JavaScript and Native Threads [17] . . . . . . . . . 8

2.6 Redux Flow[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Home screen drawer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.8 Home screen - German translation . . . . . . . . . . . . . . . . . . . . . . . 10

2.9 Expo Managed Workflows [21] . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.10 Home screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.11 Producer Login Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.12 Producer Sign-up Screen 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.13 Producer Sign-up Screen 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.14 Producer Sign-up Screen 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.15 Producer Home Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.16 QR Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.17 QR Scanner - Valid Product Tag . . . . . . . . . . . . . . . . . . . . . . . 15

2.18 List of scanned products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.19 Product Tag actions and Product Tag Generation . . . . . . . . . . . . . . 16

2.20 Product Tag successfully generated . . . . . . . . . . . . . . . . . . . . . . 17

2.21 QR Code Print Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

28



LIST OF FIGURES 29

2.22 Generate Product Tag Button . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.23 No previous Product Tags Warning . . . . . . . . . . . . . . . . . . . . . . 17

2.24 Producer’s Product History Screen . . . . . . . . . . . . . . . . . . . . . . 18

2.25 Producer Update Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.26 Consumer Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.27 Invalid QR Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.28 Valid QR Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.29 Map View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.30 Map View Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Product Tag Generation - Server sends the new hash value to the smart
contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Product Tag Generation - Mobile application sends the new hash value to
the smart contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.1 Expo Development Server User Interface . . . . . . . . . . . . . . . . . . . 30



Appendix A

Installation Guidelines

Since we do not have an Apple developer account that is not free, the application can run
on a device only by building the source code from the local machine.

The easiest way to run the application is to run the expo server by running the command
expo start from the project root directory. This will bring up the Expo development
server and provide the interface in the browser as the figure A.1 shows.

Figure A.1: Expo Development Server User Interface

The next step is to install the Expo client application on your phone. The links for the
Android and iOS platforms are:

• Android: https://play.google.com/store/apps/details?id=host.exp.exponent&
hl=en

30

https://play.google.com/store/apps/details?id=host.exp.exponent&hl=en
https://play.google.com/store/apps/details?id=host.exp.exponent&hl=en


31

• iOS: https://apps.apple.com/us/app/expo-client/id982107779

The final step is to scan the given QR code from bottom-left corner of the Expo devel-
opment server. This will trigger the code build for the target platform and send it to the
phone. Once the built code is sent to the phone, the Expo application will run it as it
was the native application.

When you run the application for the first time, it will ask you for the permissions to
access the camera and location services.

In the future, once the Apple Development Account is obtained, the Expo flow from the
section 2.2.4 should be utilized to publish the application to the iOS marketplace.

https://apps.apple.com/us/app/expo-client/id982107779


Appendix B

Contents of the CD

• A copy of the Food Chain Native Client Repository (fc-native-client)

• A PDF file of the Independent Study report

• The LaTeX source code of the Master Project report

• Slides used for the final presentation

32


	Abstract
	Acknowledgments
	Contents
	Introduction
	Motivation
	Description of Work

	Design and Implementation
	System Design
	Implementation
	React Native
	State Management
	Multi-Language Support
	Development Process

	Application Modes
	Producer Mode
	Consumer Mode


	Evaluation and System Analysis
	Summary and Future Considerations
	Bibliography
	Abbreviations
	List of Figures
	List of Figures
	Installation Guidelines
	Contents of the CD

