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Abstract—Light Detection and Ranging (LiDAR) is used in
various applications, from mapping the environment’s topogra-
phy to self-driving vehicles. Among such applications, the use of
LiDAR for indoor tracking and quantifying visitors’ interest (and
ensuring safe distancing) is still not widely explored. Technologies
based on wireless signals and video captures are typically used for
indoor tracking, but they deficits concerning the lack of accuracy
of captured signals or the lack of user privacy in the case of
traditional surveillance cameras. Despite introducing tracking
challenges inherent in the detection based on light reflection,
LiDAR-based approaches represent a relatively low-cost solution
for accurate indoor tracking. Thus, this paper presents LaFlector,
a LiDAR-based indoor tracking system introducing tracking
heuristics capable of detecting, classifying, and tracking several
objects simultaneously, which are recorded and dynamically
displayed in a 2D coordinate system. LaFlector was evaluated
based on a low-cost 2D LiDAR hardware (Slamtec Mapper
M1M1) and capable of detecting moving objects with high
precision, showing in practice that a LiDAR-based can be used to
track visitors’ interest and count the number of moving objects.

Index Terms—Indoor Tracking, Security, LiDAR

I. INTRODUCTION

Tracking visitor’s interest across a Web-page is a relatively
straightforward task in contrast to the physical, analog world.
For example, digital tracking can be accomplished by tracking
mouse movements [35] that, in its turn, can be used to predict
user experience [25] and optimize the sales process. However,
these insights are equally crucial in physical stores to under-
stand how customers interact with a product or service, which
attracts most customers’ interest. In addition, counting the
number of persons in a closed environment recently became
crucial to reduce the spread of viruses (e.g., SARS-CoV-2) by
ensuring minimum social distancing. Therefore, the research
on approaches and systems to track people within a restricted
area determines a viable research field with commercial and
public health benefits.

Several indoor tracking approaches and techniques based
on wireless signals and video feeds exist. Camera-based
approaches often rely on the employment of one or more
cameras [43], [31], [19], that while providing high accuracy
over wireless signal-based approaches, they pose privacy con-
cerns [16], since the individual’s data is being processed and
captured by a device. Furthermore, wireless approaches are
susceptible to various interference from other wireless signals
and multi-path fading depending on the internal environment

(e.g., WiFi probing [36] and Bluetooth beacons [32], [30]) and
are also susceptible to privacy concerns (e.g., under the EU
General Data Protection Rule (GDPR) [29]). Thus, approaches
that do not affect an individual’s privacy to perform such a
tracking are required, but still lacking.

LiDAR scanners use laser’s reflection to estimate the dis-
tance between the sensor and the object without incurring
privacy concerns, based on the Time Difference of Arrival
- TDoA [43]. Furthermore, LiDARs are applied in different
fields from mapping a given environment’s topography [42]
to self-driving vehicles [41]. For example, in autonomous
driving systems, a LiDAR (combined with other sensors) can
be used to create a map of a vehicle’s surroundings. Therefore,
a precise tracking system based on LiDAR can be used for
on-the-spot tracking at expositions, trade shows, or stores to
acquire valuable data for exhibitors and companies enhancing
advertisements campaigns.

Therefore, this work developed LaFlector, a LiDAR-based
indoor tracking system that introduces heuristics capable of
detecting, classifying, and tracking several objects simultane-
ously, recorded and dynamically displayed in a 2D coordinate
system. LaFlector is designed as a modular engine that re-
ceives tracking data from one or more distributed LiDARs for
subsequent positioning data processing. Objects are detected
and distinguished considering the dynamic mapping of the
environment (limited by the LiDAR’s range) and the logical
path of moving objects. Unique classification is based on
heuristics that consider previous positions, path, and speed
of dynamic objects to predict their next steps. Furthermore,
data processed is output in a standardized form, consisting
of timestamped X and Y coordinates so that data can be
correlated with other data sources (e.g., wireless or video). In
addition to documenting the procedures here for the design,
implementation, and evaluation of LaFlector (single evalua-
tions available in video [24]), the source code is open-sourced
[23] for future contributions.

The remainder of this paper is structured as follows. Sec-
tion II describes the technical aspects of the LiDAR technology
and related concepts. While Section III presents the design and
implementation of LaFlector, Section IV details the evaluation
performed and discusses its results. Section V compares re-
lated work with LaFlector. Finally, Section VI summarizes this
paper and lists future work.



II. BACKGROUND

While the background on LiDAR technology is presented,
including its strengths and weaknesses, properties on data
management (reading, segmenting, classifying, and tracking)
are introduced. Further, it presents details on object tracking
with LiDAR.

LiDAR is a sensing technology that observes ranges (i.e.,
distances) backscattered by a laser, in which a sensor is used
to measure the backscattered light in the environment [20].
Thus, the distance can be estimated by measuring the time
required for the laser light to return, given the speed of light.
The basic principle for LiDAR originated in the early 1960s,
and military institutions drove its technical developments for
measuring distances and weapon guidance [22].

LiDAR

Data Processing
Unit

Connection Ports

Fig. 1: Slamtec Mapper M1M1 LiDAR Device [38]

The device employed in the prototype of LaFlector here
is the Slamtec Mapper M1M1 [38] (cf. Figure 1). It is a 2D
LiDAR able to perform 7,000 measurements per second and
to achieve a maximum range distance of 20 m with a 5 cm
resolution in both indoor and outdoor environments. A Data
Processing Unit (DPU) processes data in real-time, outputs a
high-precision map, and poses with a maximum data mapping
area of 90,000 m2. Further, it provides a 10/100 Mbps Ethernet
port, a 802.11a/b/g/n/ac WiFi module, and Universal Serial
Bus (USB) for communication. Thus, it is suitable for the
tracking of visitors in presentations stands without introducing
deployment complexities.

1) Benefits and Drawbacks: In contrast to tracking so-
lutions such as WiFi-based [30] and Bluetooth-based [32],
LiDAR tracking offers the following benefits:

• Precision: LiDAR scanners present a high precision in
comparison to WiFi-based and Bluetooth-based solu-
tions. E.g., [30] implements a WiFi-based system, which
achieved a deviation of 1.1 m at a maximum distance
of 10.8 m under good conditions, since Received Signal
Strength Indicator (RSSI) values are not reliable, whereas
LiDAR devices can achieve a precision of 5 cm.

• Capturing objects, not devices: While the Android
OS has enabled Medium Access Control (MAC) ad-
dress randomization by default since version 10 [21],

Apple has extended MAC address randomization with
iOS 14 [12]. Thus, device fingerprinting will become
increasingly difficult, which does not affect LiDARs.
Moreover, it allows tracking objects without an intelligent
device, unlike Bluetooth or WiFi tracking.

• Privacy: Data protection regulations have become in-
creasingly strict, which ”light” adheres to automatically.
Tracking via WiFi or Bluetooth data could be complicated
because the MAC address is classified as personal data
according to the GDPR [5]. Thus, LiDAR tracking does
neither process nor even holds information concerning
tracked objects identities.

• Line of Sight: LiDAR sensors can provide accurate
results over long distances (up to 200 m in vehicles) [18].
Hence, LiDAR’s are often used in vehicles in combination
with other sensors [40].

However, LiDAR techniques show drawbacks due to their
dependency on physical properties of light:

• Hidden objects: Due to the principle of operation, a
LiDAR scanner cannot detect objects that are behind
other objects. This limitation can be compensated by a
second scanner capturing objects from a different angle.

• Large data sets: Depending on the resolution of the
scanner (and also the aperture angle and the use case), the
number of data points collected can become extensively
large and data points deriving from static objects that are
usually not of interest. Henceforth, the post-processing
of LiDAR’s data can be more extensive than that of
other measurement techniques (e.g., WiFi-based [30] and
Bluetooth-based [32]).

• Robustness: The performance of a LiDAR scanner
strongly decreases in heavy rain or fog, which can reduce
the detection rate of objects by up to 50% [6], [18].

2) Legal situation: The Slamtec Mapper M1M1 [38] device
considered in this paper contains laser with a power of
28 watts; thus, it is classified according to the IEC 60825-1
standard [14] as a Class 1 laser. Further, even powerful devices,
such as the Slamtec M2M1 model [39] with an extended range
of 40 m, is classified as Class 1. According to the Federal
Office of Public Health of Switzerland a Class 1 laser is safe,
and even direct exposure to the laser beam will not cause any
damage to the human eye [27]. Thus, due to the classification
as a Class 1 laser, such a LiDAR scanner can be used anywhere
and at any height (even eye level).

A. Object Tracking using LiDAR

Tracking can be divided into passive and active tracking.
Active tracking requires participation and configuration of the
client for a specific measurement technique. Passive tracking
works without adaptations in the environment to be analyzed.
This does not mean that signals from devices to be tracked
are not necessary. However, these signals occur without pre-
configuration. For example, in the case of WiFi tracking, these
are outgoing probe requests from the clients [36]. In particular,
LiDAR tracking is a passive tracking technique as it works



independently of the tracked object’s signals. This part is
about the steps that are usually performed to identify and track
objects from the unprocessed laser data. Since the scanner used
in this thesis is a 2D scanner, no 3D-specific process steps are
observed, such as surface matching.

1) Reading Data: Due to the design of a 360-degree Li-
DAR scanner [38], it is convenient to use the Polar Coordinate
System to specify data points. In such a system, a data point is
defined as the distance (r) and angle (φ) from a starting point
resulting in a tuple (r, φ). The starting point corresponds to
the position of the scanner. In the first step, these data are
converted into Cartesian coordinates (x, y), where x = r sinφ
and y = r cosφ. It is sensible to filter out non-valid data points
to reduce the number of data points and increase the relative
data quality.

2) Segmenting Data: A data set of a LiDAR scanner
contains reflecting objects in a room, too. As a rule, static
objects, such as walls, windows, or fixed objects, are no longer
of interest after the initialization phase. By subtracting the set
of static objects from a newly acquired data set, the resulting
difference is the set of points associated with objects in motion.
If the difference is zero, no moving objects exist in the room
that could be tracked [37].

3) Classifying Data: If an object is detected (i.e., not
belonging to the static objects’ data set), it must be classified.
Based on a 2D scanner, the possibilities are limited by the lack
of surface matching. Thus, it is needed to consider the relation
between the distance and number of data points to distinguish
between static and dynamic objects. For example, if an object
is close to the LiDAR scanner and covers fewer data points
than expected, it will not be identified as a human.

4) Tracking Data: If an object could be identified as a
human, the movement is recorded. However, if persons leave
the room or exceed the maximum measurement distance, a
LiDAR scanner cannot distinguish person A from person B.
Therefore, to solve biometric features [2] or motion analysis
techniques, it should be applied to maintain the tracking even
if two people cross each other.

III. LAFLECTOR’S DESIGN

LaFlector (a wordplay from laser beam emitted by the
LiDAR and the laser’s reflection) is designed to reach a flexible
deployment and operation of individual hardware components
(i.e., sensors, nodes, and sink). It is based on a distributed
architecture in which multiple nodes are connected to the
respective LiDAR sensors sending data to a sink. The sink
is responsible for collecting positioning data and determining
the positioning of dynamic (people) and static (environment)
objects. Thus, pre-processing steps are performed as early
as possible to avoid bottlenecks downstream and reduce the
amount of data forwarded by the sink [23]. The following sec-
tions the assumptions defined for its design, detail LaFlector’s
design, and provide implementation details. LaFlector’s code
is open-source1.

1LaFlector’s source-code: https://gitlab.ifi.uzh.ch/rodrigues/laflector

A. Assumptions

These are considered for an ideal operation of LaFlector:
• LiDAR’s Placement: The scanner is to be placed to

minimize dead spots, horizontally aligned with the floor.
• LiDAR’s Height: Object classification expects a solid

body with a pre-defined width concerning the measured
distance. Thus, the laser must be operated at upper body
height. Placing the scanner at foot level would lead to
incorrect classifications.

• Disturbances: No other devices are continuously trans-
mitting signals at the same wavelength to which the Li-
DAR scanner could respond to. This applies, for example,
to laser pointers or infrared remote controls.

B. Architectural Components

LaFlector’s design (cf. Figure 2) is based on a distributed
architecture consisting of a server acting as a sink and one
or multiple nodes. A node is connected to a LiDAR device
over WiFi or Ethernet, depending on the node’s capabilities.
This node-sink design was chosen to ensure extensibility and
allows for multiple nodes (i.e., LiDAR and data collection) to
be run on one sink (i.e., data processing).

• LiDAR: consists of no other visible sub-components and
is basically handled as a black box. The Slamtec SDK
provides the needed functions to work with the device.

• Node: The node’s software runs either on traditional
X86 or ARM architectures (e.g., System-on-Chip devices,
such as ASUS Tinkerboard or Rasperry PI devices) being
directly connected via a USB port to the LiDAR sensor.
Subcomponents include the SDK Parser, Socket Client,
and Data Pre-Processing as follows:
– The SDK Parser collects the data from the LiDAR and

passes it to the pre-processing.
– The Socket Client connects to the Socket Server of the

sink and receives commands.
– The Data Pre-processing converts the distance (r)

received and the angle (φ) for each data point into
timestamped Cartesian coordinates (x, y).

• The Sink is the largest component consisting of six
subcomponents.
– The Socket Server receives data from one or more

nodes via a TCP connection.
– The Command Line Interface (CLI) provides an in-

terface capturing user inputs, forwarding them to the
socket server, and controlling the behavior of the Data
Processing.

– The Data Processing is responsible to segment, clas-
sify, and track dynamic objects in the line-of-sight of
multiple nodes.

– TRhe Database supports the data processing compo-
nent with a time-series database (e.g., InfluxDB) to
store data points delivered by the node.

– The External (Ext.) Storage maintains data being ex-
ported as a standardized timestamped coordinate to be
contrasted or combined with different tracking sources,



Raw
Data

Stamped
Position

Node (ASUS Tinkerboard) Sink (Laptop)

LaFlector

CloudSocket ServerSocket Client
SDK

Parser
Data processing

DatabaseCLI interface VisualizationData pre-processing

(1, 1) (N, 1)

Ext. Storage

Input OutputLiDAR (Slamtec Mapper M1M1)

Fig. 2: LaFlector’s Node-Sink Architecture

for instance, to support measurements from wireless
tracking (e.g., ASIMOV [30] or BluePIL [32]).

– The Visualization provides instant feedback of objects.
To account for the data streaming in the distributed node-

sink architecture, data received by the sink work in a retro-
spective fashion, i.e., work with a local subset of the data
that only uses values from the past. Thus, a rolling time
window is implemented only containing values from the
interval [tc−∆t, tc], with tc being the current time and ∆t the
window size, determined by the update frequency of the nodes
and the expected variance of the data (timestamped position).

C. Merging Upstream Data

To compute a location from pre-processed positions, a
strategy has to be determined to merge data streams in a rolling
time-window from different nodes. Bilinear interpolation is
used to fit individual upstreams sent by nodes at different
cycles with a weighted average of the nearest coordinates. In
a rolling time-window of ∆t s, pre-configured by the sink,
nodes accumulate timestamped (x, y) coordinates until tc is
reached and any missing (x, y) coordinate in the rolling time
window is estimated by the interpolation at the sink. LaFlector
builds upon the assumption that the update cycles of individual
nodes are short enough to legitimize the interpolation between
two data points as a valid estimation of the true state of the
system. To enable the inference of position values at a certain
point in time, measured values must be available preceding
and succeeding a said point.

D. Location Algorithm

If the same object is detected by multiple nodes, a mea-
surement or a set of measurements should be associated
with this object. This association considers the position i.e.,
placement of LiDARs and timestamped coordinates of tracked
objects reported by nodes. However, as LiDARs do not gather
information from the tracked objects i.e., persons, the chal-
lenge is to model the movement pattern so that the same
person is not accounted multiple times. Thus, it is considered
that people follow an almost constant velocity pattern in an
indoor environment, in which there are no sudden acceleration

movements in contrast to their own average velocity. A nearly
constant velocity model is given as follows [9]:

x(k) = Fx(k − 1) + w(k − 1) (1)

where F is the state transition matrix of each person in a
given time tc, and w(k − 1) is a zero-mean white noise
Gaussian process with covariance Q. The white noise is
a statistical model defined in [3] that represents the ”near
constant” velocity variation. F and Q are given as:

Fx = I ⊗
[
1 ∆tk
0 1

]
(2)

and:

Q = I ⊗
T 3

3
T 3

2
T 3

2 T
(3)

where Q is the power spectral density [9] of the process
noise, T is the scan time, ⊗ is the Kronecker product and
I is the identity matrix. This expresses a belief that the
object will have moved in the direction gathered from the last
measurement and that the velocity of said movement will not
have changed abruptly. Values obtained from the previous step
in the pipeline are used as current observations. Therefore,
the following observation vector is used: zk( xk

yk ) Then, the
following observation matrix is defined to express that the
observation corresponds to the x and y coordinates of the
state vector: rk( 0.3 0

0 0.3 ) Those values used were determined
experimentally and work for the evaluation scenario in this
paper. The following heuristics are applied after data collected
by nodes are prepared.

1) Segmentation of Environment: Data segmentation con-
sists of two tasks. While the first task is to detect static objects
i.e., environment, the second task compares a different (x, y)
in T+1 with the static objects to determine moving objects. An
implementation detail specific to the Slamtec Mapper M1M1
LiDAR Device [38] is that matching has to be done with
every laser rotation, and each rotation contains hundreds of
points. Thus, the angle and distance list are written to a Python
dictionary that has the advantage a O(1) lookup time.

1 for angle in scan_dict.keys():
2 temp_angle = angle
3 while temp_angle not in static_dict.keys():
4 temp_angle = temp_angle + 0.001



5 if temp_angle - angle > 0.005:
6 break
7 if temp_angle in static_dict.keys():
8 # do not allow points that lay behind static

objects, if this happens, something is wrong
in the

9 # room and if the distance difference is bigger
than a threshold it must be a moving object

10 if static_dict.get(temp_angle) > scan_dict.get(
angle) and (

11 static_dict.get(temp_angle) - scan_dict.
get(angle)) > self.
_static_moving_distance:

12 angle_list_moving.append(angle)
13 distance_list_moving.append(scan_dict.get(

angle))

Listing 1: Comparing Dynamic to Static Objects

This snippet shows the acquisition and construction of the
Static Dictionary. This dictionary remains unchanged for the
rest of the current measurement. Once the static dictionary
is created, detection of moving objects can start. Angle and
distance are now retrieved again per rotation and written
to the moving objects dictionary. The moving dictionary is
compared with the static dictionary and as soon as a threshold
(parameter: static-moving-distance) is exceeded, the value is
stored in a separate angle and distance list. These values are
then checked and classified in the next step.

2) Object Classification: Starts with the two lists an-
gle list moving and distance list moving, which contain the
segmented measured values of the last three rotations. The
first task of classification is to distinguish between multiple
objects. To do this, one starts at the first point and compares
it with following one. If the distance between the points is
smaller than a certain threshold (parameter: split-distance) it
must still be the same object. The check points are shifted and
it is checked again. This process is repeated until the object
is completely captured. After the objects from the lists are
separated, they are identified in the next step.

3) Object Identification: Decide whether a set of points that
were previously classified as a human object, can be assigned
to an already existing object (i.e., same person). The set of
points is matched with all objects that are still active.There
are three cases that need to be distinguished:

• No object match: The points do not correspond to
any previously known object. The object must be new
accordingly.

• One object match: The points can be clearly assigned
to an object. In this case, the new position of the object
is set.

• Two or more matches: In this case, it is not possible to
decide which points belong to which object. Assuming
that the objects continue to move in the same direction,
the expected positioning is determined by means of a
direction vector derived from the last way-points.

4) Language and Libraries: The Sink was written in
Python since Python has more and easier to use extensions for
data collection, manipulation, and visualization. That is why
Python is the most used programming language in the field of

Data Science [15]. Python interpreter was running in version
3.9. Apart from the Python standard libraries, the following
additional packages were used:

• InfluxDB: To read the values of the node from the Influx
database, this package was used in version 5.3.1. The
package is also officially recommended by Influx when
using Python [13].

• PyYAML: Instead of writing a simple YAML parser like
in the node, the PyYAML package in version 5.4.1 was
used. This is also because the parameters for the sink are
grouped and therefore a bit harder to read.

• NumPy: This very comprehensive package provides data
structures and functions for mathematical operations.
It was used for the conversion of cartesian and polar
coordinates and the midpoint and distance determination.
It is also a dependency for the matplotlib library. Version
1.20.1 was installed for this thesis.

• Matplotlib: To visualize the results the matplotlib library
(version 3.3.4) was used. It can represent numpy arrays
in coordinate systems.

5) Output: The output is available in two forms. Plot. The
position of the detected objects and their direction vectors are
displayed in a dynamic X/Y coordinate system. This output
form serves for visualization. Logger. The system has a logger
which creates a file with the start time at startup. The verbose
level determines which data is written to the log file and which
is not. This output is used for debugging. Furthermore, the
logger function can be quickly exchanged with a database
client, so that the corresponding data ends up in a database
instead of the log file. This is in case the data should be further
processed or combined with another data source.

Fig. 3: Scenario #2: Two Persons Tracking Plot

IV. EVALUATION AND DISCUSSION

The evaluation of LaFlector was conducted in a 18 m2

room. The windows were covered and there were static objects
in the room (e.g., sofa, table, TV, and chairs). Runs were



performed with the parameter’s default value. To simulate
objects’ appearance, both entering the measurement room and
spontaneously joining the measurement height were attempted.
To test an object’s disappearance, the tracked person left the
room or suddenly went below the measurement height. The
measurement height was 144 cm above the ground for all test
runs. Four scenarios were run five times each:

1) Single Person Tracking: One person moves through the
room at a walking pace. There are no other moving
objects. This scenario is the basis for further evaluations.

2) Two Persons Tracking: Two people move simultane-
ously at a walking pace in the room. They never stand
behind each other and are always at least one meter apart.
Their paths might intersect at different times.

3) Two Persons Crossing: Two people cross paths. For a
short time, one person stands behind the other. They do
not make any hard changes on their direction.

4) Single Person Behind Static Object: A static object
stands in the room, which was captured at the beginning.
A person moves behind the object for a short amount of
time and continue the walking direction.

These runs were measured using the following criteria. A
criterion can be considered as passed or failed.

• Positioning (Pos.): The tracking is accurate and contin-
uous. The criterion is considered as passed if the object
is tracked accordingly to the real position and there are
no unexpected jumps in the way-points.

• Classification (Class.): The person is recognized and cor-
rectly classified. No static objects or objects are classified
as human objects. The criterion is considered as passed
when the number of human objects is correctly detected.

• Identification (Id.): The same object is always identified
as the same. If a person reappearing from behind a
static object is classified as a new object, the criterion is
considered failed. If two people cross each other and the
system can no longer assign the objects because the object
identification was lost, the criterion is considered failed.

A. Results

Table I presents how often a criterion was not met in 5
runs. In general, it can be stated that the location algorithm
worked as expected for most scenarios. However, there were
failures in the identification and classification in Scenarios
#3 and #4, which are explained in the next sections. Results

TABLE I: Failures in Each Scenario

# Scenario Pos. Class. Id.

1 Single Person Tracking 0 0 0
2 Two Persons Tracking 0 0 0
3 Two Persons Crossing 0 0 2
4 Person behind Object 0 0 1

are represented with the created plots of the LaFlector. A
series of snapshots visualize the first scenario. These snapshots
were taken at a regular interval (every 5 seconds) during the
run, in which the last snapshot represents the remaining three

Fig. 4: Scenario #3: Two Persons Crossing Plot

scenarios before the object disappears/dies. Way-points are
recorded for the evaluation. In the usual tracking mode, the
way-points are not displayed by default. If desired, the plotting
of way-points can be enabled in the plotter class.

1) Scenario #1: Single Person: In the first scenario, during
all five runs, the person was correctly detected, tracked with-
out interruption, and removed again after disappearing (i.e.,
marked as “dead”). No static objects were classified as people.
Figure 5 depicts the progress of the run with a running time
of 40 s, in which the object alternately moved and remained
stationary.

2) Scenario #2: Two or More Persons not Crossing Paths:
In the second scenario, two people were successfully tracked,
as illustrated in Figure 3. Both persons were recognized at the
same time, and their path was tracked correctly. Even when
two people/objects were close to each other (but not behind
each other), the identification worked without any issues in
five runs. The tracking was performed during 35 s.

3) Scenario #3: Two Persons Crossing Paths: In the third
scenario, two people cross paths, assuming that they do not
change their speed significantly. If a person started walking
while being covered by the other person, there would be no
heuristic possibility to detect this. Since according to the last
confirmed information, the person was at rest. The five cross-
ings were performed with the following estimated crossing
angles: twice 180 degrees, once 120 degrees, once 90 degrees,
once 60 degrees. In two out of five cases, the individuals could
not be positively identified after crossing. The smaller the
crossing angle, the higher the probability that the recognition
fails because the persons are not distinguishable for the LiDAR
for a longer time. Accordingly, the identification of the objects
failed at 90 and 60-degree crossing angles. The best results can
be achieved when the persons cross at a straight angle (180
degrees). The plot of a run with a duration of 8 seconds and
a straight angle is depicted in Figure 4.



(a) T0 (b) T4 (c) T8

(d) T12 (e) T16 (f) T20

Fig. 5: Snapshot Series of a tracking run, where (a) Object not detected in T0, (b), Object is detected and tracking started in
T4, (c) In T8, active tracking and direction vector is visible, (d) Object stopped and no direction vector is calculated in T12
(e) Active tracking and direction vector visible in T16, and (f) Object died and all way-points cleared in T20 [T measured in
seconds]. Video captures of the evaluation can be found at [24].

4) Scenario #4: Single Person Behind Static Object: A
flaw in the location algorithm occurred in the second run
of Scenario #4, after reappearing behind the static object.
The object was identified as a new object instead of the
original due to a sudden change in speed or change of walking
directly behind the static object. Once the model defined
in [3] represents a ”near constant” velocity variation, the
heuristic prediction model failed considering the covariance Q
defined in the white noise Gaussian process. This highlights
the importance of choosing a suitable location model for the
characteristics of the environment. Considering that abrupt
accelerations are exceptions for an indoor tracking reproducing
the behavior of an exhibition, it is possible to tolerate such
outliers.

B. Discussion

The results clearly reflect the strengths and weaknesses of
a LiDAR sensor from Section II. As expected, the positioning
was accurate. However, as a natural disadvantage of tracking
devices based on light reflection, it is not possible to track
when objects are obscured by other objects regardless of
whether they are static or in motion. Herein, it can only be
evaluated with a certain probability whether the object still
exists and where it is located when reappearing. How well this

Fig. 6: Scenario #4: Single Person behind Object Plot

case works also depends significantly on the parameterization.
For example, if people are expected to move close to each
other, the split-distance and existing-new-threshold parameters
should be decreased. This increases the probability that the
persons will be detected. At the same time, it increases the



risk that single persons will be detected as several.
The LiDAR interface was responsible for making the data

from the LiDAR scanner available for data processing. The
data processing always received the latest laser data via the
Influx database and the data acquisition worked without any
interruptions via the socket.

From the first scenario, it can be deduced that the segmen-
tation of static and moving objects works reliably. The moving
object was recognized as such and tracked. Further, scenario
2 shows that the system can also detect and track two or more
people simultaneously. Errors occurred in scenario 3, in which
LaFlector could no longer determine which of the intersecting
persons was in two out of five cases. Scenario 4 further
demonstrates that heuristic to predict movement worked as
expected being able to associate the path with the object.

Objects were recognized after disappearance except for
one case. It follows that when two crossing objects are in
motion, the system appears to be less accurate than when
one of the objects is static. It is possible that even better
results could be obtained with more complex, finer-grained
heuristic prediction. However, this would also require a higher
resolution LiDAR scanner. In particular, far away objects from
the scanner would otherwise take too long to be reliably
detected since the density of measurement points decreases
with distance.

The graphical illustrations from the results are from the
plotter of the system. The log file created with each run
contains the desired information according to the selected log
level. It is, therefore possible to read (x, y) points that an
object had during a run. With a simple code extension, the
logger’s data could be made available for further processing
or combination with another data source. Therefore, the re-
quirement of expandability can also be confirmed.

V. RELATED WORK

This section covers existing tracking techniques using Li-
DAR scanners. To properly classify the related work, it is
important to categorize how a LiDAR device can be used since
classification methods depend on the deployment scenario.
This classification is depicted in Figure 7 and detail in the next
sections. Further, existing work regarding tracking humans
using LiDAR are presented and compared with LaFlector.

2D

Multilayer

3D

Static LiDAR

Moving LiDAR

Heuristics

Machine
Learning

Capturing Positioning Classification

Additional
Data Sources

Fig. 7: LiDAR Related Work Categorization

In [10], a 2D LiDAR is used on vehicles to distinguish
flat and uneven surfaces and derive the course of a road.
This is achieved by evaluating the distance between the single

measuring points. On roads without any curbs the system
achieves at least a score of 92% in detecting the edge of the
road. If curbs are present the value drops to 80%. This can be
explained by smaller variations in the measured values caused
by a sidewalk than in uneven ground.

[7] employs multiple 2D LiDAR sensors mounted at dif-
ferent heights to provide more data than a single 2D scanner
but less than 3D LiDAR. This allows an object measured in a
particular layer to be verified with the other layers in terms of
tracking. In their evaluation with LiDARS mounted on a car,
the pedestrian detection rate increased from 70.5% with one
layer to 91.6% with 4 layers.

A 3D LiDAR captures multiple angles and provides signif-
icantly more data points than a 2D or a multilayer approach.
Further, The points distributed over different heights allow
effective surface matching. For example, if an object is com-
pletely flat over its entire height it can concluded that is not
human. [37] presents an experiment in which two people walk
through a room and hide behind obstacles and come out again,
the false-negative rate was halved from 30 frames to 15 frames
using surface matching for a total of 696 frames.

A. Positioning

While static LiDAR scanners usually focus on detecting
objects, for moving LiDAR sensors the own positioning is
of additional interest. This process is also known as SLAM
(Simultaneous Localization and Mapping). This can for exam-
ple be used for measuring rooms. Samsung also uses LiDAR
sensors for this purpose in its new robot vacuum cleaners [4].
To create the map of an environment, a robot can move to
different points. Its movements can be determined by the
LiDAR itself and depending on the construction also by wheel
positions. To correct errors, positions are also approached mul-
tiple times to correct errors accumulated during the movement.
This is also called loop detection (approaching a location
twice) and loop closure (error correction) [11].

While LiDAR is used mounted directly on vehicles, as
shown previously, they can also be used statically at road
intersections. Based on the size of the set of points, the
distance from the LiDAR, and the direction taken, it is
possible to decide whether it is a pedestrian or a vehicle.
This information can be used to optimize the flow of traffic at
intersections. In a potentially further step in connected driving,
approaching vehicles could be warned of pedestrians or even
force an emergency brake [44].

B. Object Classification Strategies

Further, most approaches are based on the ROS (Robot
Operating System). The ROS is an open-source framework for
robot software development [33]. For example, Leg Detector
(LD) is the most popular ROS package for people detecting
with a LiDAR sensor. Recognition at LD is based on a machine
learning classifier [34].

PeTra (People Tracking) [8] is a system based on a Con-
volutional Neural Network (CNN). PeTra was developed for
use on mobile robots. This means that the scanner’s working



height was assumed to be 30 to 50 cm above the ground.
Accordingly, the system was designed and trained to detect
human legs. In comparison with the LD Package PeTra was
able to achieve higher accuracy.

[26] presents an approach for tracking people using heuris-
tics and a LiDAR sensor. The team was able to identify
an object that was obscured by another object through the
prediction from the reappearance. But it was also noted that
a changing velocity of a hidden object leads to a mismatch
between the hypothesis and the reallocation. In any case, this
leads to the result that the object can no longer be identified
with confidence.

C. Heuristic Approach

Heuristics in the sense of computing is defined as ”pro-
ceeding to a solution by trial and error or by rules that are
only loosely defined” in the Oxford Dictionary of English [28].
In terms of tracking, this means expecting a moving object’s
appearance at a certain time and place. As a loose rule, the
object’s current motion can give an expected value for a future
point in time.

D. Machine Learning Approach

While in the heuristic approach, rules are defined manually,
in machine learning, these rules are automatically constructed
based on a training data set. The classification of objects
belongs to the supervised learning methods. This means that,
for example, to recognize a leg, you need a training set that
contains legs and non-legs representations and the information
whether it is a leg or not. From this information, a model can
be derived using a learning method. This model can then be
used to make predictions [17]. Neural networks are suitable
as a learning method for the classification of image and sound
files [1].

The same goals can be addressed by using both moving
or static LiDAR sensors. The detection of persons can take
place at intersections or at the vehicle itself. For the purpose
of this paper (i.e., the tracking of people in a room) it is
more appropriate to keep the LiDAR static. Due to the static
positioning, the height of the LiDAR can be freely chosen.
LaFlector is designed to be operating at heights of 1.20 m to
1.50 m. Thus, the system does not recognize legs but only
upper bodies, which does not affect the accuracy.

LaFlector uses a 2D LiDAR, allowing a deployable system
to be constructed at lower cost than with 3D sensors. Since no
training data set is available for a neural network supporting
the given LiDAR, the heuristic approach was chosen. In the
classification, as in related works, the width of the object is
used. Techniques such as surface matching cannot be used
since the measurement consists only of a single layer.

Efforts have been done on LiDAR tracking, but most focus
on moving LiDAR sensors whereas LaFlector follows the
static placement approach. The system is designed to be
extensible with a second LiDAR. In combination of with
a low-cost 2D LiDAR sensor and detection at body height
instead of leg, this paper provides additional contributions over

existing related work. In contrast to the recognition of legs,
where it must always be taken into consideration that legs
could be behind each other, the recognition at body height
offers chances for higher recognition rates.

VI. SUMMARY AND FUTURE WORK

This paper presented LaFlector, a LiDAR-based indoor
tracking system that introduces heuristics capable of detect-
ing, classifying, and tracking several objects simultaneously,
recorded and dynamically displayed in a 2D coordinate sys-
tem. A key takeaway is that LiDAR scanners were shown
in the experiments to be sensitive to environmental influences
(e.g., light incidence) and how many data points it takes to get
a reliable result. In the initial phase, this also led to many trial
and error attempts. Many parameters depend on the LiDAR
device itself and its specifications. The experiments performed
demonstrated the effectiveness of LaFlector’s tracking algo-
rithm in different indoor scenarios, in which situations were
explored, where people made abrupt movements and remained
behind other objects, preventing the reflection of light. In this
sense, the use of heuristics allowed LaFlector to estimate the
positioning of the previous object.

As next steps the addition of further sensors (besides
LiDARs, such as based on Wireless and Bluetooth) is planned
for to allow for the extension of the measurement range for
improvements of the localization accuracy and to counterattack
errors. While algorithms used for localization are theoretically
capable of working with multiple sources, approaches to
extend ranges will have to include strategies for the selection
of the most useful measurements during the merging stage.

ACKNOWLEDGMENTS

This work was supported by Innosuisse, the Swiss Agency
for Innovation Demands under Grant No. 42193.1 IP-ICT.
Also, the authors would also like to thank Simon Tuck,
Livealytics AG, who supported the research and development
during those experiments in Corona times of limited public
accessibility and with many discussions on different setups
and interpretations.

REFERENCES

[1] S. Albawi and T. Mohammed, “Understanding of a Convolutional
Neural Network ,” The International Conference on Engineering and
Technology, 2017.

[2] D. Baltieri, R. Vezzani, R. Cucchiara, Utasi, C. Benedek, and
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