

Tutorial: Tensor Approximation in Visualization and Computer Graphics Introduction

Renato Pajarola, Susanne K. Suter, and Roland Ruiters

Introduction

- Renato Pajarola
 - Professor, Visualization and MultiMedia Lab, University of Zürich
- Susanne K. Suter
 - Postdoc, Visualization and MultiMedia Lab, University of Zürich
- Roland Ruiters
 - PhD Student, Computer Graphics Group, University of Bonn

Overview

- Part 1: Introduction of the TA framework
 - Tucker and CANDECOMP/PARAFAC (CP) tensor decompositions
 - Rank-reduced tensor approximations, ALS methods
 - Useful TA properties and features for data visualization
 - Frequency analysis and DCT equivalence
- Part 2: Applications of TA in scientific visualization
 - TA-based volume visualization applications
 - Implementation details of tensor decomposition and tensor reconstruction algorithms
 - Practical examples (MATLAB, vmmlib)
- Part 3: Applications of TA in rendering and graphics
 - Examples for multidimensional datasets in rendering and graphics applications
 - Influence of data organization, parametrization and er- ror metric
 - Clustering and sparsity
 - Processing irregular and sparse input samples

Tutorial Schedule

- Monday May. 6 from 13:40 to 15:20
- Location: Room B.1
 - Introduction (Pajarola, 10min)
 - Tensor Decomposition Models (Pajarola, 25min)
 - Properties and Features (Pajarola, 25min)
 - Applications in Scientific Visualization (Suter, 30min)
- Tuesday May. 7 from 9:00 to 10:40
- Location: Room B.1
 - Implementation Examples in Scientific Visualization (Suter, 25min)
 - Graphics Applications (Ruiters, 30min)
 - Clustering and Sparsity (Ruiters, 25min)
 - Summary/Outlook (Pajarola, 10min)

Motivation

- scientific visualization and computer graphics
- Use a mathematical framework for the decomposition of the input data into bases and coefficients
- Key features of a compact data representation:
 - effective decomposition
 - good data reduction
 - fast access and reconstruction

Compact representation of large scale data sets important in many areas of

Tensor approximation methods have shown to be a powerful and promising tool

Decomposition Bases

- Decompositions into bases and weight coefficients can either use a set of pre-defined fixed bases, or computed bases
- Pre-defined bases are given a priori, often represent some form of frequency analysis, and the decomposition may be fast to compute
 - e.g. Fourier, Discrete Cosine and Wavelet Transforms
- Computed bases, learned from the input data, may provide a better data fit, approximation and fast reconstruction
 - e.g. SVD, PCA and Tensor Decomposition

Tensor Approximation – TA

- TA: Generalization of low rank SVD matrix approximation to higher order data collections
- Data analysis, bases computation via tensor decomposition followed by rank-reduced reconstruction and approximation
 - In the data reduction achieved through reduced bases dimensionality

- $\widetilde{\mathcal{A}} = \mathcal{B} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \mathbf{U}^{(3)}$