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SVO: Semi-Direct Visual Odometry for Monocular

and Multi-Camera Systems
Christian Forster, Zichao Zhang, Michael Gassner, Manuel Werlberger, Davide Scaramuzza

Abstract—Direct methods for Visual Odometry (VO) have
gained popularity due to their capability to exploit information
from all intensity gradients in the image. However, low com-
putational speed as well as missing guarantees for optimality
and consistency are limiting factors of direct methods, where
established feature-based methods instead succeed at. Based on
these considerations, we propose a Semi-direct VO (SVO) that
uses direct methods to track and triangulate pixels that are
characterized by high image gradients but relies on proven
feature-based methods for joint optimization of structure and
motion. Together with a robust probabilistic depth estimation
algorithm, this enables us to efficiently track pixels lying on weak
corners and edges in environments with little or high-frequency
texture. We further demonstrate that the algorithm can easily be
extended to multiple cameras, to track edges, to include motion
priors, and to enable the use of very large field of view cameras,
such as fisheye and catadioptric ones. Experimental evaluation
on benchmark datasets shows that the algorithm is significantly
faster than the state of the art while achieving highly competitive
accuracy.

SUPPLEMENTARY MATERIAL

Video of the experiments: https://youtu.be/hR8uq1RTUfA

I. INTRODUCTION

Estimating the six degrees-of-freedom motion of a camera

merely from its stream of images has been an active field

of research for several decades [1–6]. Today, state-of-the-art

visual SLAM (V-SLAM) and visual odometry (VO) algorithms

run in real-time on smart-phone processors and approach

the accuracy, robustness, and efficiency that is required to

enable various interesting applications. Examples comprise the

robotics and automotive industry, where the ego-motion of

a vehicle must be known for autonomous operation. Other

applications are virtual and augmented reality, which requires

precise and low latency pose estimation of mobile devices.

The central requirement for the successful adoption of

vision-based methods for such challenging applications is

to obtain highest accuracy and robustness with a limited

computational budget. The most accurate camera motion esti-

mate is obtained through joint optimization of structure (i.e.,

landmarks) and motion (i.e., camera poses). For feature-based

methods, this is an established problem that is commonly

known as bundle adjustment [7] and many solvers exist,
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which address the underlying non-linear least-squares problem

efficiently [8–11]. Three aspects are key to obtain highest

accuracy when using sparse feature correspondence and bundle

adjustment: (1) long feature tracks with minimal feature drift,

(2) a large number of uniformly distributed features in the

image plane, and (3) reliable association of new features to

old landmarks (i.e., loop-closures).

The probability that many pixels are tracked reliably, e.g.,

in scenes with little or high frequency texture (such as sand

[12] or asphalt [13]), is increased when the algorithm is not

restricted to use local point features (e.g., corners or blobs)

but may track edges [14] or more generally, all pixels with

gradients in the image, such as in dense [15] or semi-dense

approaches [16]. Dense or semi-dense algorithms that operate

directly on pixel-level intensities are also denoted as direct

methods [17]. Direct methods minimize the photometric error

between corresponding pixels in contrast to feature-based

methods, which minimize the reprojection error. The great

advantage of this approach is that there is no prior step of

data association: this is implicitly given through the geometry

of the problem. However, joint optimization of dense structure

and motion in real-time is still an open research problem, as

is the optimal and consistent [18, 19] fusion of direct methods

with complementary measurements (e.g., inertial). In terms

of efficiency, previous direct methods are computationally

expensive as they require a semi-dense [16] or dense [15]

reconstruction of the environment, while the dominant cost

of feature-based methods is the extraction of features and

descriptors, which incurs a high constant cost per frame.

In this work, we propose a VO algorithm that combines

the advantages of direct and feature-based methods. We in-

troduce the sparse image alignment algorithm (Sec. V), an

efficient direct approach to estimate frame-to-frame motion

by minimizing the photometric error of features lying on

intensity corners and edges. The 3D points corresponding to

features are obtained by means of robust recursive Bayesian

depth estimation (Sec. VI). Once feature correspondence is

established, we use bundle adjustment for refinement of the

structure and the camera poses to achieve highest accuracy

(Sec. V-B). Consequently, we name the system semi-direct

visual odometry (SVO).

Our implementation of the proposed approach is exception-

ally fast, requiring only 2.5 milliseconds to estimate the pose

of a frame on a standard laptop computer, while achieving

comparable accuracy with respect to the state of the art

on benchmark datasets. The improved efficiency is due to

three reasons: firstly, SVO extracts features only for selected

keyframes in a parallel thread, hence, decoupled from hard
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real-time constraints. Secondly, the proposed direct tracking

algorithm removes the necessity for robust data association.

Finally, contrarily to previous direct methods, SVO requires

only a sparse reconstruction of the environment.

This paper extends our previous work [20], which was also

released as open source software.1 The novelty of the present

work is the generalization to wide FoV lenses (Sec. VII),

multi-camera systems (Sec. VIII), the inclusion of motion

priors (Sec. IX) and the use of edgelet features. Additionally,

we present several new experimental results in Sec. XI with

comparisons against previous works.

II. RELATED WORK

Methods that simultaneously recover camera pose and scene

structure, can be divided into two classes:

a) Feature-based: The standard approach to solve this

problem is to extract a sparse set of salient image features

(e.g. corners, blobs) in each image; match them in successive

frames using invariant feature descriptors; robustly recover

both camera motion and structure using epipolar geometry;

and finally, refine the pose and structure through reprojection

error minimization. The majority of VO and V-SLAM algo-

rithms [6] follow a variant of this procedure. A reason for the

success of these methods is the availability of robust feature

detectors and descriptors that allow matching images under

large illumination and view-point changes. Feature descriptors

can also be used to establish feature correspondences with

old landmarks when closing loops, which increases both the

accuracy of the trajectory after bundle adjustment [7, 21] and

the robustness of the overall system due to re-localization

capabilities. This is also where we draw the line between VO

and V-SLAM: While VO is only about incremental estimation

of the camera pose, V-SLAM algorithms, such as [22], detect

loop-closures and subsequently refine large parts of the map.

The disadvantage of feature-based approaches is their

low speed due to feature extraction and matching at every

frame, the necessity for robust estimation techniques that

deal with erroneous correspondences (e.g., RANSAC [23], M-

estimators [24]), and the fact that most feature detectors are

optimized for speed rather than precision. Furthermore, relying

only on well localized salient features (e.g., corners), only a

small subset of the information in the image is exploited.

In SVO, features are extracted only for selected keyframes,

which reduces the computation time significantly. Once ex-

tracted, a direct method is used to track features from frame

to frame with sub-pixel precision. Apart from well localized

corner features, the proposed approach allows tracking any

pixel with non-zero intensity gradient.

b) Direct methods: Direct methods estimate structure

and motion directly by minimizing an error measure that is

based on the image’s pixel-level intensities [17]. The local

intensity gradient magnitude and direction is used in the

optimization compared to feature-based methods that consider

only the distance to a feature-location. Pixel correspondence

is given directly by the geometry of the problem, eliminating

the need for robust data association techniques. However, this

1http://github.com/uzh-rpg/rpg svo

makes the approach dependent on a good initialization that

must lie in the basin of attraction of the cost function.

Using a direct approach, the six degrees of freedom (DoF)

motion of a camera can be recovered by image-to-model

alignment, which is the process of aligning the observed

image to a view synthesized from the estimated 3D map.

Early direct VO methods tracked and mapped few—sometimes

manually selected—planar patches [25–29]. By estimating the

surface normals of the patches [30], they could be tracked

over a wide range of viewpoints. In [31], the local planarity

assumption was relaxed and direct tracking with respect to

arbitrary 3D structures computed from stereo cameras was

proposed. For RGB-D cameras, where a dense depth-map

for each image is given by the sensor, dense image-to-

model alignment was subsequently introduced in [32–34]. In

conjunction with dense depth registration this has become

the standard in camera tracking for RGB-D cameras [35–

38]. With DTAM [15], a direct method was introduced that

computes a dense depthmap from a single moving camera

in real-time. The camera pose is found through direct whole

image alignment using the depthmap. However, inferring a

dense depthmaps from monocular images is computationally

intensive and is typically addressed using GPU parallelism,

such as in the open-source REMODE algorithm [39]. Early

on it was realized that only pixels with an intensity gradient

provide information for motion estimation [40]. In this spirit,

a semi-dense approach was proposed in [41] where the depth

is only estimated for pixels with high intensity gradients. In

our experimental evaluation in Sec. XI-A we show that it is

possible to reduce the number of tracked pixels even more for

frame-to-frame motion estimation without any noticeable loss

in robustness or accuracy. Therefore, we propose the sparse

image-to-model alignment algorithm that uses only sparse

pixels at corners and along image intensity gradients.

Joint optimization of sparse structure and motion, minimiz-

ing the photometric error, has recently been demonstrated in

[42]. However, joint optimization of dense structure and mo-

tion in real-time is still an open research problem. The standard

approach is to estimate the latest camera pose with respect

to a previously accumulated dense map and subsequently,

given a set of estimated camera poses, update the dense map

[15, 43]. Clearly, this separation of tracking and mapping

only results in optimal accuracy when the output of each

stage yields the optimal estimate. Other algorithms optimize a

graph of poses but do not allow a deformation of the structure

once triangulated [16]. Contrarily, some algorithms ignore the

camera poses and instead allow non-rigid deformation of the

3D structure [36, 38]. The obtained results are accurate and vi-

sually impressive, however, a thorough probabilistic treatment

is missing when processing measurements, separating tracking

and mapping, or fixating and removing states. To the best of

our knowledge, it is therefore currently not possible to obtain

accurate covariance estimates from dense VO. Hence, the

consistent fusion [18, 44] with complementary sensors (e.g.,

inertial) is currently not possible. In the proposed work, we

use direct methods only to establish feature correspondence.

Subsequently, bundle adjustment is used for joint optimization

of structure and motion where it is also possible to include
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Fig. 1: Tracking and mapping pipeline

inertial measurements as we have demonstrated in previous

work [45].

III. SYSTEM OVERVIEW

Figure 1 provides an overview of the proposed approach.

We use two parallel threads (as in [21]), one for estimating

the camera motion, and a second one for mapping as the

environment is being explored. This separation allows fast and

constant-time tracking in one thread, while the second thread

extends the map, decoupled from hard real-time constraints.

The motion-estimation thread implements the proposed

semi-direct approach to motion estimation. Our approach is

divided into three steps: sparse image alignment, relaxation,

and refinement (Fig. 1). Sparse image alignment estimates

frame-to-frame motion by minimizing the intensity difference

of features that correspond to the projected location of the

same 3D points. A subsequent step relaxes the geometric

constraint to obtain sub-pixel feature correspondence. This

step introduces a reprojection error, which we finally refine

by means of bundle adjustment.

In the mapping thread, a probabilistic depth-filter is initial-

ized for each feature for which the corresponding 3D point is

to be estimated. New depth-filters are initialized whenever a

new keyframe is selected for corner pixels as well as for pixels

along intensity gradient edges. The filters are initialized with

a large uncertainty in depth and undergo a recursive Bayesian

update with every subsequent frame. When a depth filter’s

uncertainty becomes small enough, a new 3D point is inserted

in the map and is immediately used for motion estimation.

IV. NOTATION

The intensity image recorded from a moving camera C at

timestep k is denoted with I
C

k : ΩC ⊂ R
2 7→ R, where ΩC is

the image domain. Any 3D point ρ ∈ R
3 maps to the image

coordinates u ∈ R
2 through the camera projection model:

u = π(ρ). Given the inverse scene depth ρ > 0 at pixel

ρ3

Tk,k−1

u′3
Ick−1

Ick

u3

ρ2
ρ1

u1

u2

u′1

u′2

TCB
TCB

Fig. 2: Changing the relative pose Tk,k−1 between the current and the
previous frame implicitly moves the position of the reprojected points in the
new image u

′

i. Sparse image alignment seeks to find Tk,k−1 that minimizes
the photometric difference between image patches corresponding to the same
3D point (blue squares). Note, in all figures, the parameters to optimize are
drawn in red and the optimization cost is highlighted in blue.

u ∈ RC

k, the position of a 3D point is obtained using the

back-projection model ρ = π−1
ρ (u). Where we denote with

RC

k ⊆ Ω those pixels for which the depth is known at time

k in camera C. The projection models are known from prior

calibration [46].

The position and orientation of the world frame W with

respect to the kth camera frame is described by the rigid body

transformation TkW ∈ SE(3) [47]. A 3D point Wρ that is

expressed in world coordinates can be transformed to the kth

camera frame using: kρ = TkW Wρ.

V. MOTION ESTIMATION

In this section, we describe the proposed semi-direct ap-

proach to motion estimation, which assumes that the position

of some 3D points corresponding to features in previous

frames are known from prior depth estimation.

A. Sparse Image Alignment

Image to model alignment estimates the incremental camera

motion by minimizing the intensity difference (photometric

error) of pixels that observe the same 3D point.

To simplify a later generalization to multiple cameras, we

introduce a body frame B that is rigidly attached to the camera

frame C with known extrinsic calibration TCB ∈ SE(3) (see

Fig. 2). Our goal is to estimate the incremental motion of the

body frame Tkk−1
.
= TBkBk−1

such that the photometric error

is minimized:

T
⋆
kk−1 = arg min

Tkk−1

∑

u∈R̄C
k−1

1

2
‖rIC

u
(Tkk−1)‖

2
ΣI
, (1)

where the photometric residual rIC
u

is defined by the intensity

difference of pixels in subsequent images I
C

k and I
C

k−1 that

observe the same 3D point ρ
u

:

rIC
u
(Tkk−1)

.
= I

C

k

(

π(TCBTkk−1 ρ
u
)
)

− I
C

k−1

(

π(TCB ρ
u
)
)

. (2)

The 3D point ρ
u

(which is expressed in the reference frame

Bk−1) can be computed for pixels with known depth by means

of back-projection:

ρ
u
= TBC π−1

ρ (u), ∀ u ∈ RC

k−1, (3)
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(a) Sparse (b) Semi-Dense (c) Dense

Fig. 3: An image from the ICL-NUIM dataset (Sec. XI-B3) with pixels used
for image-to-model alignment (marked in green for corners and magenta for
edgelets) for sparse, semi-dense, and dense methods. Dense approaches (c)
use every pixel in the image, semi-dense (b) use just the pixels with high
intensity gradient, and the proposed sparse approach (a) uses selected pixels
at corners or along intensity gradient edges.

However, the optimization in Eq. (1) includes only a subset

of those pixels R̄C

k−1 ⊆ R
C

k−1, namely those for which the

back-projected points are also visible in the image I
C

k:

R̄C

k−1 =
{

u
∣

∣ u ∈ RC

k−1 ∧ π
(

TCBTkk−1TBC π−1
ρ (u)

)

∈ ΩC
}

.

Image to model alignment has previously been used in

the literature to estimate camera motion. Apart from minor

variations in the formulation, the main difference among the

approaches is the source of the depth information as well as

the region RC

k−1 in image I
C

k for which the depth is known.

As discussed in Section II, we denote methods that know

and exploit the depth for all pixels in the reference view

as dense methods [15]. Converseley, approaches that only

perform the alignment for pixels with high image gradients

are denoted semi-dense [41]. In this paper, we propose a novel

sparse image alignment approach that assumes known depth

only for corners and features lying on intensity edges. Fig. 3

summarizes our notation of dense, semi-dense, and sparse

approaches.

To make the sparse approach more robust, we propose to

aggregate the photometric cost in a small patch centered at

the feature pixel. Since the depth for neighboring pixels is

unknown, we approximate it with the same depth that was

estimated for the feature.

To summarize, sparse image alignment solves the non-linear

least squares problem in Eq. (1) with RC

k−1 corresponding

to small patches centered at corner and edgelet features with

known depth. This optimization can be solved efficiently using

standard iterative non-linear least squares algorithms such

as Levenberg-Marquardt. More details on the optimization,

including the analytic Jacobians, are provided in the Appendix.

B. Relaxation and Refinement

Sparse image alignment is an efficient method to estimate

the incremental motion between subsequent frames. However,

to minimize drift in the motion estimate, it is paramount

to register a new frame to the oldest frame possible. One

approach is to use an older frame as reference for image

alignment [16]. However, the robustness of the alignment

cannot be guaranteed as the distance between the frames in

the alignment increases (see experiment in Section XI-A). We

therefore propose to relax the geometric constraints given by

the reprojection of 3D points and to perform an individual

2D alignment of corresponding feature patches. The alignment

n

δu

(a) Edge alignment.

δu

(b) Corner alignment.

Fig. 4: Different alignment strategies for corners and edgelets. The alignment
of an edge feature is restricted to the normal direction n of the edge.

of each patch in the new frame is performed with respect

to a reference patch from the frame where the feature was

first extracted; hence, the oldest frame possible, which should

maximally minimize feature drift. However, the 2D alignment

generates a reprojection error that is the difference between the

projected 3D point and the aligned feature position. Therefore,

in a final step, we perform bundle adjustment to optimize both

the 3D point’s position and the camera poses such that this

reprojection error is minimized.

In the following, we detail our approach to feature alignment

and bundle adjustment. Thereby, we take special care of

features lying on intensity gradient edges.

2D feature alignment minimizes the intensity difference

of a small image patch P that is centered at the projected

feature position u′ in the newest frame k with respect to

a reference patch from the frame r where the feature was

first observed (see Fig. 4). To improve the accuracy of the

alignment, we apply an affine warping A to the reference

patch, which is computed from the estimated relative pose

Tkr between the reference frame and the current frame [21].

For corner features, the optimization computes a correction

δu⋆ ∈ R
2 to the predicted feature position u′ that minimizes

the photometric cost:

u′⋆ = u′ + δu⋆, with u′ = π
(

TCB Tkr TBC π−1
ρ (u)

)

(4)

δu⋆ = argmin
δu

∑

∆u∈P

1

2

∥

∥

∥
I

C

k (u
′+δu+∆u)− I

C

r(u+A∆u)
∥

∥

∥

2

,

where ∆u is the iterator variable that is used to compute the

sum over the patch P . This alignment is solved using the

inverse compositional Lucas-Kanade algorithm [48].

For features lying on intensity gradient edges, 2D feature

alignment is problematic because of the aperture problem —

features may drift along the edge. Therefore, we limit the

degrees of freedom in the alignment to the normal direction

to the edge. This is illustrated in Fig. 4a, where a warped

reference feature patch is schematically drawn at the predicted

position in the newest image. For features on edges, we

therefore optimize for a scalar correction δu⋆ ∈ R in the

direction of the edge normal n to obtain the corresponding

feature position u′⋆ in the newest frame:

u′⋆ = u′ + δu⋆ · n, with (5)

δu⋆=argmin
δu

∑

∆u∈P

1

2

∥

∥

∥
I

C

k (u
′+δu·n+∆u)−IC

r(u+A∆u)
∥

∥

∥

2

.

This is similar to previous work on VO with edgelets, where

feature correspondence is found by sampling along the normal

direction for abrupt intensity changes [14, 49–53]. However,
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in our case, sparse image alignment provides a very good

initialization of the feature position, which directly allows us

to follow the intensity gradient in an optimization.

After feature alignment, we have established feature corre-

spondence with subpixel accuracy. However, feature alignment

violated the epipolar constraints and introduced a reprojection

error δu, which is typically well below 0.5 pixels. Therefore,

in the last step of motion estimation, we refine the camera

poses and landmark positions X = {TkW,ρi} by minimizing

the squared sum of reprojection errors:

X ⋆ = argmin
X

∑

k∈K

∑

i∈LC
k

1

2
‖u′⋆

i − π
(

TCB TkW ρi

)

‖2 (6)

+
∑

k∈K

∑

i∈LE
k

1

2
‖nT

i

(

u′⋆
i − π

(

TCB TkW ρi

))

‖2

where K is the set of all keyframes in the map, LC
k the set of

all landmarks corresponding to corner features, and LE
k the set

of all edge features that were observed in the kth camera frame.

The reprojection error of edge features is projected along the

edge normal because the component along the edge cannot be

determined.

The optimization problem in Eq. (6) is a standard bundle

adjustment problem that can be solved in real-time using

iSAM2 [9]. In [45] we further show how the objective function

can be extended to include inertial measurements.

While optimization over the whole trajectory in Eq. (6)

results in the most accurate results (see Sec. XI-B), we found

that for many applications (e.g. for state estimation of micro

aerial vehicles [20, 54]) it suffices to only optimize the latest

camera pose and the 3D points separately.

VI. MAPPING

In the previous section, we assumed that the depth at sparse

feature locations in the image is known. In this section, we

describe how the mapping thread estimates this depth for

newly detected features. Therefore, we assume that the camera

poses are known from the motion estimation thread.

The depth at a single pixel is estimated from multiple

observations by means of a recursive Bayesian depth filter.

New depth filters are initialized at intensity corners and along

gradient edges when the number of tracked features falls below

some threshold and, therefore, a keyframe is selected. Every

depth filter is associated to a reference keyframe r, where

the initial depth uncertainty is initialized with a large value.

For a set of previous keyframes2 as well as every subsequent

frame with known relative pose {Ik, Tkr}, we search for a

patch along the epipolar line that has the highest correlation

(see Fig. 5). Therefore, we move the reference patch along

the epipolar line and compute the zero mean sum of squared

differences. From the pixel with maximum correlation, we

triangulate the depth measurement ρ̃ki , which is used to update

2In the previous publication of SVO [20] and in the open source imple-
mentation we suggested to update the depth filter only with newer frames
k > r, which works well for down-looking cameras in micro aerial vehicle
applications. However, for forward motions, it is beneficial to update the depth
filters also with previous frames k < r, which increases the performance with
forward-facing cameras.

Tr,k

Ir

Ik

ρ̂i

ui
u′i

ρ̃ki

ρmin
i

ρmax
i

Fig. 5: Probabilistic depth estimate ρ̂i for feature i in the reference frame r.
The point at the true depth projects to similar image regions in both images
(blue squares). Thus, the depth estimate is updated with the triangulated depth
ρ̃ki computed from the point u′

i of highest correlation with the reference patch.
The point of highest correlation lies always on the epipolar line in the new
image.

the depth filter. If enough measurements were obtained such

that uncertainty in the depth is below a certain threshold,

we initialize a new 3D point at the estimated depth, which

subsequently can be used for motion estimation (see system

overview in Fig. 1). This approach for depth estimation also

works for features on gradient edges. Due to the aperture

problem, we however skip measurements where the edge is

parallel to the epipolar line.

Ideally, we would like to model the depth with a non-

parametric distribution to deal with multiple depth hypotheses

(top rows in Fig. 6). However, this is computationally too

expensive. Therefore, we model the depth filter according to

[55] with a two dimensional distribution: the first dimension

is the inverse depth ρ [56], while the second dimension γ

is the inlier probability (see bottom rows in Fig. 6). Hence,

a measurement ρ̃ki is modeled with a Gaussian + Uniform

mixture model distribution: an inlier measurement is normally

distributed around the true inverse depth ρi while an outlier

measurement arises from a uniform distribution in the interval

[ρmin
i , ρmax

i ]:

p(ρ̃ki |ρi, γi) = γiN
(

ρ̃ki
∣

∣ρi, τ
2
i

)

+(1−γi)U
(

ρ̃ki
∣

∣ρmin
i , ρmax

i

)

, (7)

where τ2i the variance of a good measurement that can be

computed geometrically by assuming a disparity variance of

one pixel in the image plane [39].

Assuming independent observations, the Bayesian estima-

tion for ρ on the basis of the measurements ρ̃r+1, . . . , ρ̃k is

given by the posterior

p(ρ, γ|ρ̃r+1, . . . , ρ̃k) ∝ p(ρ, γ)
∏

k

p(ρ̃k|ρ, γ), (8)

with p(ρ, γ) being a prior on the true inverse depth and the

ratio of good measurements supporting it. For incremental

computation of the posterior, the authors of [55] show that (8)

can be approximated by the product of a Gaussian distribution

for the depth and a Beta distribution for the inlier ratio:

q(ρ, γ|ak, bk, µk, σ
2
k) = Beta(γ|ak, bk)N (ρ|µk, σ

2
k), (9)

where ak and bk are the parameters controlling the Beta

distribution. The choice is motivated by the fact that the

Beta × Gaussian is the approximating distribution mini-
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(a) After 3 measurements with 70% inlier probability.
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(b) After 30 measurements with 70% inlier probability.

Fig. 6: Illustration of posterior distributions for depth estimation. The his-
togram in the top rows show the measurements affected by outliers. The
distribution in the middle rows show the posterior distribution when modeling
the depth with a single variate Gaussian distribution. The bottom rows show
the posterior distribution of the proposed approach that is using the model
from [55]. The distribution is bi-variate and models the inlier probability
(vertical axis) together with the inverse depth (horizontal axis).

mizing the Kullback-Leibler divergence from the true poste-

rior (8). Upon the k-th observation, the update takes the form

p(ρ, γ|ρ̃r+1, . . . , ρ̃k) ≈ q(d, γ|ak−1, bk−1, µk−1, σ
2
k−1)

· p(ρ̃k|d, γ) · const, (10)

and the authors of [55] approximated the true posterior (10)

with a Beta × Gaussian distribution by matching the first

and second order moments for d̂ and γ. The updates formulas

for ak, bk, µk and σ2
k are thus derived and we refer to the

original work in [55] for the details on the derivation.

Fig. 6 shows a small simulation experiment that highlights

the advantage of the model proposed in [55]. The histogram

in the top rows show the measurements that are corrupted

by 30% outlier measurements. The distribution in the middle

rows show the posterior distribution when modeling the depth

with a single variate Gaussian distribution as used for instance

in [41]. Outlier measurements have a huge influence on the

mean of the estimate. The figures in the bottom rows show

the posterior distribution of the proposed approach that is

using the model from [55] with the inlier probability drawn

in the vertical axis. As more measurements are received at

the same depth, the inlier probability increases. In this model,

the mean of the estimate is less affected by outliers while the

inlier probability is informative about the confidence of the

estimate. Fig. 7 shows qualitatively the importance of robust

Correct match

Epipolar line

Reference patch

Outlier match

Fig. 7: Illustration of the epipolar search to estimate the depth of the pixel
in the center of the reference patch in the left image. Given the extrinsic and
intrinsic calibration of the two images, the epipolar line that corresponds to
the reference pixel is computed. Due to self-similar texture, erroneous matches
along the epipolar line are frequent.

depth estimation in self-similar environments, where outlier

matches are frequent.

In [39] we demonstrate how the same depth filter can be

used for dense mapping.

VII. LARGE FIELD OF VIEW CAMERAS

To model large optical distortion, such as fisheye and

catadioptric (see Fig. 8), we use the camera model proposed

in [57], which models the projection π(·) and unprojection

π−1(·) functions with polynomials. Using the Jacobians of the

camera distortion in the sparse image alignment and bundle

adjustment step is sufficient to enable motion estimation for

large FoV cameras.

For estimating the depth of new features (c.f., Sec. VI), we

need to sample pixels along the epipolar line. For distorted

images, the epipolar line is curved (see Fig. 7). Therefore, we

regularly sample the great circle, which is the intersection

of the epipolar plane with the unit sphere centered at the

camera pose of interest. The angular resolution of the sampling

corresponds approximately to one pixel in the image plane.

For each sample, we apply the camera projection model π(·)
to obtain the corresponding pixel coordinate on the curved

epipolar line.

VIII. MULTI-CAMERA SYSTEMS

The proposed motion estimation algorithm starts with an

optimization of the relative pose Tkk−1. Since in Sec. V-A

we have already introduced a body frame B, which is rigidly

attached to the camera, it is now straightforward to generalize

sparse image alignment to multiple cameras. Given a camera

rig with M cameras (see Fig. 9), we assume that the relative

pose of the individual cameras c ∈ C with respect to the body

frame TCB is known from extrinsic calibration3. To generalize

sparse image alignment to multiple cameras, we simply need

to add an extra summation in the cost function of Eq. (1):

T
⋆
kk−1 = arg min

Tkk−1

∑

C∈C

∑

u∈R̄C
k−1

1

2
‖rIC

u
(Tkk−1)‖

2
ΣI
. (11)

The same summation is necessary in the bundle adjustment

step to sum the reprojection errors from all cameras. The

remaining steps of feature alignment and mapping are indepen-

dent of how many cameras are used, except that more images

are available to update the depth filters. To summarize, the

3We use the calibration toolbox Kalibr [46], which is available at https:
//github.com/ethz-asl/kalibr
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(a) Perspective (b) Fisheye (c) Catadioptric

Fig. 8: Different optical distortion models that are supported by SVO.

only modification to enable the use of multiple cameras is to

refer the optimizations to a central body frame, which requires

us to include the extrinsic calibration TCB in the Jacobians as

shown in the Appendix.

IX. MOTION PRIORS

In feature-poor environments, during rapid motions, or in

case of dynamic obstacles it can be very helpful to employ

a motion prior. A motion prior is an additional term that is

added to the cost function in Eq. (11), which penalizes motions

that are not in agreement with the prior estimate. Thereby,

“jumps” in the motion estimate due to unconstrained degrees

of freedom or outliers can be suppressed. In a car scenario for

instance, a constant velocity motion model may be assumed

as the inertia of the car prohibits sudden changes from one

frame to the next. Other priors may come from additional

sensors such as gyroscopes, which allow us to measure the

incremental rotation between two frames.

Let us assume that we are given a relative translation

prior p̃kk−1 (e.g., from a constant velocity assumption) and

a relative rotation prior R̃kk−1 (e.g., from integrating a gyro-

scope). In this case, we can employ a motion prior by adding

additional terms to the cost of the sparse image alignment step:

T
⋆
kk−1 = arg min

Tkk−1

∑

C∈C

∑

u∈R̄C
k−1

1

2
‖rIC

u
(Tkk−1)‖

2
ΣI

(12)

+
1

2
‖pkk−1 − p̃kk−1‖

2
Σp

+
1

2
‖ log(R̃Tkk−1Rkk−1)

∨‖2ΣR
,

where the covariances Σp,ΣR are set according to the uncer-

tainty of the motion prior and the variables (pkk−1, Rkk−1)
.
=

Tkk−1 are the current estimate of the relative position and

orientation (expressed in body coordinates B). The logarithm

map maps a rotation matrix to its rotation vector (see Eq. (18)).

Note that the same cost function can be added to the bundle

adjustment step. For further details on solving Eq. (12), we

refer the interested reader to the Appendix.

X. IMPLEMENTATION DETAILS

In this section we provide additional details on various

aspects of our implementation.

TBC2
TBC1

Tkk−1
Body Frame

Fig. 9: Visual odometry with multiple rigidly attached and synchronized
cameras. The relative pose of each camera to the body frame TBCj is known
from extrinsic calibration and the goal is to estimate the relative motion of
the body frame Tkk−1.

A. Initialization

The algorithm is bootstrapped to obtain the pose of the first

two keyframes and the initial map using the 5-point relative

pose algorithm from [58]. In a multi-camera configuration, the

initial map is obtained by means of stereo matching.

B. Sparse Image Alignment

For sparse image alignment, we use a patch size of 4 × 4
pixels. In the experimental section we demonstrate that the

sparse approach with such a small patch size achieves com-

parable performance to semi-dense and dense methods in

terms of robustness when the inter-frame distance is small,

which typically is true for frame-to-frame motion estimation.

In order to cope with large motions, we apply the sparse image

alignment algorithm in a coarse-to-fine scheme. Therefore,

the image is halfsampled to create an image pyramid of five

levels. The photometric cost is then optimized at the coarsest

level until convergence, starting from the initial condition

Tkk−1 = I4×4. Subsequently, the optimization is continued

at the next finer level to improve the precision of the result.

To save processing time, we stop after convergence on the

third level, at which stage the estimate is accurate enough to

initialize feature alignment. To increase the robustness against

dynamic obstacles, occlusions and reflections, we additionally

employ a robust cost function [24, 34].

C. Feature Alignment

For feature alignment we use a patch-size of 8 × 8 pixels.

Since the reference patch may be multiple frames old, we use

an affine illumination model to cope with illumination changes

[59]. For all experiments we limit the number of matched

features to 180 in order to guarantee a constant cost per frame.

D. Mapping

In the mapping thread, we divide the image in cells of fixed

size (e.g., 32 × 32 pixels). For every keyframe a new depth-

filter is initialized at the FAST corner [60] with highest score

in the cell, unless there is already a 2D-to-3D correspondence

present. In cells where no corner is found, we detect the pixel

with highest gradient magnitude and initialize an edge feature.

This results in evenly distributed features in the image.

To speed up the depth-estimation we only sample a short

range along the epipolar line; in our case, the range corre-

sponds to twice the standard deviation of the current depth

estimate. We use a 8 × 8 pixel patch size for the epipolar

search.
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(a) Synthetic scene (b) Depth of the scene

(c) Sparse (d) Semi-Dense (e) Dense

Fig. 10: An image from the Urban Canyon dataset [61] (Sec. XI-A) with
pixels used for image-to-model alignment (marked in green) for sparse, semi-
dense, and dense methods. Dense approaches use every pixel in the image,
semi-dense use just the pixels with high intensity gradient, and the proposed
sparse approach uses selected pixels at corners or along intensity gradient
edges.

XI. EXPERIMENTAL EVALUATION

We implemented the proposed VO system in C++ and

tested its performance in terms of accuracy, robustness, and

computational efficiency. We first compare the proposed sparse

image alignment algorithm against semi-dense and dense im-

age alignment algorithms and investigate the influence of the

patch size used in the sparse approach. Finally, in Sec. XI-B

we compare the full pipeline in different configurations against

the state of the art on 22 different dataset sequences.

A. Image Alignment: From Sparse to Dense

In this section we evaluate the robustness of the proposed

sparse image alignment algorithm (Sec. V-A) and compare

its performance to semi-dense and dense image alignment

alternatives. Additionally, we investigate the influence of the

patch-size that is used for the sparse approach.

The experiment is based on a synthetic dataset with known

camera motion, depth and calibration [61].4 The camera

performs a forward motion through an urban canyon as the

excerpt of the dataset in Fig. 10a shows. The dataset consists

of 2500 frames with 0.2 meters distance between frames and

a median scene depth of 12.4 meters. For the experiment, we

select a reference image Ir with known depth (see Fig. 10b)

and estimate the relative pose Trk of 60 subsequent images

k ∈ {r + 1, . . . , r + 60} along the trajectory by means of

image to model alignment. For each image pair {Ir, Ik}, the

alignment is repeated 800 times with initial perturbation that

is sampled uniformly within a 2 m range around the true

value. We perform the experiment at 18 reference frames along

the trajectory. The alignment is considered converged when

the estimated relative pose is closer than 0.1 meters from

the ground-truth. The goal of this experiment is to study the

magnitude of the perturbation from which image to model

4The Urban Canyon dataset [61] is available at http://rpg.ifi.uzh.ch/fov.html
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Fig. 11: Convergence probability of the model-based image alignment algo-
rithm as a function of the distance to the reference image and evaluated for
sparse image alignment with patch sizes ranging from 1× 1 to 5× 5 pixels,
semi-dense, and dense image alignment. The colored region highlights the
68% confidence interval.
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alignment is capable to converge as a function of the distance

to the reference image. The performance in this experiment

is a measure of robustness: successful pose estimation from

large initial perturbations shows that the algorithm is capable

of dealing with rapid camera motions. Furthermore, large

distances between the reference image Ir and test image Ik

simulates the performance at low camera frame-rates.

For the sparse image alignment algorithm, we extract 100

FAST corners in the reference image (see Fig. 10c) and

initialize the corresponding 3D points using the known depth-

map from the rendering process. We repeat the experiment

with patch-sizes ranging from 1×1 pixels to 5×5 pixels. We

evaluate the semi-direct approach (as proposed in the LSD

framework [41]) by using pixels along intensity gradients (see

Fig. 10d). Finally, we perform the experiment using all pixels

in the reference image as proposed in DTAM [15].

The results of the experiment are shown in Fig. 11. Each

plot shows a variant of the image alignment algorithm with the

vertical axis indicating the percentage of converged trials and

the horizontal axis the frame index counted from the reference

frame. We can observe that the difference between semi-dense

image alignment and dense image alignment is marginal. This

is because pixels that exhibit no intensity gradient are not

informative for the optimization as their Jacobians are zero

[40]. We suspect that using all pixels becomes only useful

when considering motion blur and image defocus, which is

out of the scope of this evaluation. In terms of sparse image

alignment, we observe a gradual improvement when increasing

the patch size to 4× 4 pixels. A further increase of the patch

size does not show improved convergence and will eventually

suffer from the approximations adopted by not warping the

patches according to the surface orientation.

Compared to the semi-dense approach, the sparse ap-

proaches do not reach the same convergence radius, partic-

ularly in terms of distance to the reference image. For this

reason SVO uses sparse image alignment only to align with

respect to the previous image (i.e., k = r + 1), in contrast to

LSD [41] which aligns with respect to the last keyframe.

In terms of computational efficiency, we note that the

complexity scales linearly with the number of pixels used

in the optimization. The plots show that we can trade-off

using a high frame rate camera and a sparse approach with

a lower frame-rate camera and a semi-dense approach. The

evaluation of this trade-off would ideally incorporate the power

consumption of both the camera and processors, which is out

of the scope of this evaluation.

B. Real and Synthetic Experiments

In this section, we compare the proposed algorithm against

the state of the art on real and synthetic datasets. Therefore,

we present results of the proposed pipeline on the EUROC

benchmark [62], the TUM RGB-D benchmark dataset [63],

the synthetic ICL-NUIM dataset [37], and our own dataset that

compares different field of view cameras. A selection of these

experiments, among others (e.g., from the KITTI benchmark),

can also be viewed in the video attachment of this paper.

1) EUROC Datasets: The EUROC dataset [62] consists

of stereo images and inertial data that were recorded with

a VI-Sensor [64] mounted on a micro aerial vehicle. The

dataset contains 11 sequences, totaling 19 minutes of video,

recorded in three different indoor environments. Extracts from

the dataset are shown in Fig. 12a and 12b. The dataset provides

a precise ground-truth trajectory that was obtained using a

Leica MS50 laser tracking system.

In Table I we present results of various monocular and stereo

configurations of the proposed algorithm. For comparison, we

provide results of ORB-SLAM [22], LSD-SLAM [16], and

DSO [42]. The listed results of ORB-SLAM and DSO were

obtained from [42], which provides results with and without

enforcing real-time execution. To provide a fair comparison

with ORB-SLAM and LSD-SLAM, their capability to detect

large loop closures via image retrieval was deactivated.

To understand the influence of the proposed extensions of

SVO, we run the algorithm in various configurations. We show

results with FAST corners only, with edgelets, and with using

motion priors from the gyroscope (see Sec. IX). In these first

three settings, we only optimize the latest pose; conversely,

the keyword “Bundle Adjustment” indicates that results were

obtained by optimizing the whole history of keyframes by

means of the incremental smoothing algorithm iSAM2 [9].

Therefore, we insert and optimize every new keyframe in the

iSAM2 graph when a new keyframe is selected. In this setting,

we do neither use motion priors nor edgelets. Since SVO is

a visual odometry, it does not detect loop-closures and only

maintains a small local map of the last five to ten keyframes.

Additionally, we provide results with the same configuration

using both image streams of the stereo camera. Therefore, we

apply the approach introduced in Sec. VIII to estimate the

motion of a multi-camera system.

To obtain a measure of accuracy of the different approaches,

we align the final trajectory of keyframes with the ground-truth

trajectory using the least-squares approach proposed in [65].

Since scale cannot be recovered using a single camera, we also

rescale the estimated trajectory to best fit with the ground-truth

trajectory. Subsequently, we compute the Euclidean distance

between the estimated and ground-truth keyframe poses and

compute the mean, median, and Root Mean Square Error

(RMSE) in meters. We chose the absolute trajectory error

measure instead of relative drift metrics [63] because the final

trajectory in ORB-SLAM consists only of a sparse set of

keyframes, which makes drift measures on relatively short

trajectories less expressive. The reported results are averaged

over five runs.

The results show that using a stereo camera in general

results in higher accuracy. Apart from the additional visual

measurements, the main reason for the improved results is

that the stereo system does not drift in scale and inter camera

triangulations allow to quickly initialize new 3D landmarks

in case of on-spot rotations. On this dataset, SVO achieves

in most runs a higher accuracy than LSD-SLAM as well as

ORB-SLAM in the real-time configuration. However, if real-

time execution is not enforced or a more powerful processor

is used, ORB-SLAM can further optimize the trajectory and

thereby significantly improve the accuracy. DSO achieves con-
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(a) (b) (c) Machine Hall 1 (d) Machine Hall 2

Fig. 12: Figures (a) and (b) show excerpts of the EUROC dataset [62] with tracked corners marked in green and edgelets marked in magenta. Figures (c) and
(d) show the reconstructed trajectory and pointcloud on the first two trajectories of the dataset.
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Machine Hall 01 0.08 0.08 0.04 0.04 0.17 0.17 0.10 0.06 0.02 0.61 0.05 0.05 0.18
Machine Hall 02 0.08 0.07 0.07 0.05 0.27 0.27 0.12 0.07 0.03 0.72 0.05 0.05 0.56
Machine Hall 03 0.29 0.27 0.27 0.06 0.43 0.42 0.41 × 0.03 1.70 0.18 0.26 2.69
Machine Hall 04 2.67 2.42 0.17 × 1.36 1.00 0.43 0.40 0.22 6.32 2.50 0.24 2.13
Machine Hall 05 0.43 0.54 0.12 0.12 0.51 0.60 0.30 × 0.71 5.66 0.11 0.15 0.85

Vicon Room 1 01 0.05 0.04 0.04 0.05 0.20 0.22 0.07 0.05 0.16 1.35 0.12 0.47 1.24
Vicon Room 1 02 0.09 0.08 0.04 0.05 0.47 0.35 0.21 × 0.18 0.58 0.11 0.10 1.11
Vicon Room 1 03 0.36 0.36 0.07 × × × × × 0.78 0.63 0.93 0.66 ×

Vicon Room 2 01 0.09 0.07 0.05 0.05 0.30 0.26 0.11 × 0.02 0.53 0.04 0.05 ×
Vicon Room 2 02 0.52 0.14 0.09 × 0.47 0.40 0.11 × 0.21 0.68 0.13 0.19 ×
Vicon Room 2 03 × × 0.79 × × × 1.08 × 1.25 1.06 1.16 1.19 ×

TABLE I: Absolute translation errors (RMSE) in meters of the EUROC dataset after translation and scale alignment with the ground-truth trajectory and
averaging over five runs. Loop closure detection and optimization was deactivated for ORB and LSD-SLAM to allow a fair comparison with SVO. The results
of ORB-SLAM and DSO were obtained from [42].

Mean St.D. CPU@20 fps

SVO Mono 2.53 0.42 55 ±10%
SVO Mono + Prior 2.32 0.40 70 ± 8%
SVO Mono + Prior + Edgelet 2.51 0.52 73 ± 7%
SVO Mono + Bundle Adjustment 5.25 10.89 72 ±13%

SVO Stereo 4.70 1.31 90 ± 6%
SVO Stereo + Prior 3.86 0.86 90 ± 7%
SVO Stereo + Prior + Edgelet 4.12 1.11 91 ± 7%
SVO Stereo + Bundle Adjustment 7.61 19.03 96 ±13%

ORB Mono SLAM (No loop closure) 29.81 5.67 187 ±32%
LSD Mono SLAM (No loop closure) 23.23 5.87 236 ±37%

TABLE II: The first and second column report mean and standard devitation
of the processing time in milliseconds on a laptop with an Intel Core i7 (2.80
GHz) processor. Since all algorithms use multi-threading, the third column
reports the average CPU load when providing new images at a constant rate
of 20 Hz.

sistently very high accuracy and mostly outperforms SVO in

the monocular setting. More elaborate photometric modeling

as proposed in DSO [42] may help SVO to cope with the

abrupt illumination changes that are present in the Vicon Room

sequences. Together with frequent on-spot rotations, this is the

main reason why SVO fails on these sequences.

The strength of SVO becomes visible when analyzing the

timing and processor usage, which are reported in Table II. In

the table, we report the mean time to process a single frame in

Thread Intel i7 [ms] Jetson TX1 [ms]

Sparse image alignment 1 0.66 2.54
Feature alignment 1 1.04 1.40
Optimize pose & landmarks 1 0.42 0.88
Extract features 2 1.64 5.48
Update depth filters 2 1.80 2.97

TABLE III: Mean time consumption in milliseconds by individual components
of SVO Mono on the EUROC Machine Hall 1 dataset. We report timing results
on a laptop with Intel Core i7 (2.80 GHz) processor and on the NVIDIA Jetson
TX1 ARM processor.

milliseconds and the standard deviation over all measurements.

Since all algorithms make use of multi-threading and the time

to process a single frame may therefore be misleading, we ad-

ditionally report the CPU usage (continuously sampled during

execution) when providing new images at a constant rate of

20 Hz to the algorithm. All measurements are averaged over

3 runs of the first EUROC dataset and computed on the same

laptop computer (Intel Core i7-2760QM CPU). In Table III,

we further report the average time consumption of individual

components of SVO on the laptop computer and an NVIDIA

TX1 ARM processor. The results show that the SVO approach

is up to ten times faster than ORB-SLAM and LSD-SLAM

and requires only a fourth of the CPU usage. The reason

for this significant difference is that SVO does not extract



11

features and descriptors in every frame, as in ORB-SLAM, but

does so only for keyframes in the concurrent mapping thread.

Additionally, ORB-SLAM—being a SLAM approach—spends

most of the processing time in finding matches to the map

(see Table I in [66]), which in theory results in a pose-

estimate without drift in an already mapped area. Contrarily,

in the first three configurations of SVO, we estimate only the

pose of the latest camera frame with respect to the last few

keyframes. Compared to LSD-SLAM, SVO is faster because

it operates on significantly less numbers of pixels, hence,

also does not result in a semi-dense reconstruction of the

environment. This, however, could be achieved in a parallel

process as we have shown in [39, 54, 67]. The authors of

DSO report timings between 151 ms per keyframe and 18 ms

for a regular frame in a single-threaded real-time setting. For

a five-times real-time setting, the numbers are 65 ms and 9 ms

respectively. Similarly, processing of a keyframe in SVO takes

approximately 10 milliseconds longer than a regular frame

when bundle adjustment is activated, which explains the high

standard deviation in the timing results. Using a motion prior

further helps to improve the efficiency as the sparse-image-

alignment optimization can be initialized closer to the solution,

and therefore needs less iterations to converge.

An edgelet provides only a one-dimensional constraint in

the image domain, while a corner provides a two-dimensional

constraint. Therefore, whenever sufficient corners can be de-

tected, the SVO algorithm prioritizes the corners. Since the

environment in the EUROC dataset is well textured and pro-

vides many corners, the use of edgelets does not significantly

improve the accuracy. However, the edgelets bring a benefit in

terms of robustness when the texture is such that no corners

are present.

2) TUM Datasets: A common dataset to evaluate visual

odometry algorithms is the TUM Munich RGB-D benchmark

[63]. The dataset was recorded with a Microsoft Kinect RGB-

D camera, which provides images of worse quality (e.g.

rolling shutter, motion blur) than the VI-Sensor in the EUROC

dataset. Fig. 13 shows excerpts from the “fr2_desk” and

“fr2_xyz” datasets which have a trajectory length of 18.8 m

and 7 m respectively. Groundtruth is provided by a motion

capture system. Table IV shows the results of the proposed

algorithm (averaged over three runs) and comparisons against

related works. The resulting trajectory and the recovered

landmarks are shown in Fig. 14. The results from related works

were obtained from the evaluation in [22] and [16]. We argue

that the better performance of ORB-SLAM and LSD-SLAM

is due to the capability to detect loop-closures.

3) ICL-NUIM Datasets: The ICL-NUIM dataset [37] is

a synthetic dataset that aims to benchmark RGB-D, visual

odometry and SLAM algorithms. The dataset consists of two

times four trajectories of length 6.4 m, 1.9 m, 7.3 m, and

11.1 m. The synthesized images are corrupted by noise to

simulate real camera images. The datasets are very challenging

for purely vision-based odometry due to difficult texture and

frequent on-spot rotations as can be seen in the excerpts from

the dataset in Fig. 15.

Table V reports the results of the proposed algorithm

(averaged over five runs). Similar to the previous datasets, we

(a) fr2 desk (b) fr2 xyz

Fig. 13: Impressions from the TUM RGB-D benchmark dataset [63] with
tracked corners in green and edgelets in magenta.

(a) fr2 desk (side) (b) fr2 desk (top)

Fig. 14: Estimated trajectory and pointcloud of the TUM “fr2 desk” dataset.

fr2 desk fr2 xyz
RMSE [cm] RMSE [cm]

SVO Mono (with edgelets) 9.7 1.1
SVO Mono + Bundle Adjustment 6.7 0.8

LSD-SLAM [16] © 4.5 1.5
ORB-SLAM [22] © 0.9 0.3
PTAM [21] × / × 0.2 / 24.3
Semi-Dense VO [41] 13.5 3.8

Direct RGB-D VO [34] ⋆ 1.8 1.2
Feature-based RGB-D SLAM [68] ⋆ © 9.5 2.6

TABLE IV: Results on the TUM RGB-D benchmark dataset [63]. Results for
[16, 34, 41, 68] were obtained from [16] and for PTAM we report two results
that were published in [22] and [41] respectively. Algorithms marked with ⋆

use a depth-sensor, and © indicates loop-closure detection. The symbol ×
indicates that tracking the whole trajectory did not succeed.

report the root mean square error after translation and scale

alignment with the ground-truth trajectory. Fig. 16 shows the

reconstructed maps and recovered trajectories on the “living

room” datasets. The maps are very noisy due to the fine

grained texture of the scene. We also run LSD-SLAM on the

dataset and provide results of ORB-SLAM and DSO that we

both obtained from [42]. Due to the difficult texture in this

dataset, we had to set a particularly low FAST corner threshold

to enable successful tracking (to 5 instead of 20).

A lower threshold results in detection of many low-quality

features. However, features are only used in SVO once their

corresponding scene depth is sucessfully estimated by means

of the robust depth filter described in Sec. VI. Hence, the

process of depth estimation helps to identify the stable features

with low score that can be reliably used for motion estimation.

In this dataset, we were not able to refine the results of

SVO with bundle adjustment. The reason is that the iSAM2

backend is based on Gauss Newton which is very sensitive to
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(a) (b)

Fig. 15: Impressions from the synthetic ICL-NUIM dataset [37] with tracked
corners marked in green and edgelets in magenta.

(a) Living Room 0 (b) Living Room 3

Fig. 16: Results on the ICL-NUIM [37] noisy synthetic living room dataset.
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Living Room 0 0.04 0.02 0.01 0.02 0.01 0.02 0.12
Living Room 1 0.07 0.07 0.02 0.03 0.02 0.03 0.05
Living Room 2 0.09 0.10 0.07 0.37 0.06 0.33 0.03

Living Room 3 × 0.07 0.03 0.07 0.03 0.06 0.12

Office Room 0 0.57 0.34 0.20 0.29 0.21 0.29 0.26
Office Room 1 × 0.28 0.89 0.60 0.83 0.64 0.08

Office Room 2 × 0.14 0.30 0.30 0.36 0.23 0.31
Office Room 3 0.08 0.08 0.64 0.46 0.64 0.46 0.56

TABLE V: Absolute translational errors (RMSE) in meters after translation
and scale alignment on ICL-NUIM dataset [37] (average over five runs). The
symbol × indicates that tracking the whole trajectory did not succeed. Results
of ORB-SLAM and DSO were obtained from [42]. Loop closure detection and
optimization was deactivated for ORB and LSD-SLAM for a fair comparison
with SVO.

underconstrained variables that render the linearized problem

indeterminant. The frequent on-spot rotations and very low

parallax angle triangulations result in many underconstrained

variables. Using an optimizer that is based on Levenberg

Marquardt or adding additional inertial measurements [45]

would help in such cases.

4) Circle Dataset: In the last experiment, we want to

demonstrate the usefulness of wide field of view lenses for

VO. We recorded the dataset with a micro aerial vehicle that

we flew in a motion capture room and commanded it to fly a

perfect circle with downfacing camera. Subsequently, we flew

the exact same trajectory again with a wide fisheye camera.

Excerpts from the dataset are shown in Fig. 17. We run SVO

(without bundle adjustment) on both datasets and show the

(a) Perspective. (b) Fisheye.

Fig. 17: SVO tracking with (a) perspective and (b) fisheye camera lens.
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−0.5

x
[m
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ORB SLAM (no loop-closure) SVO Perspective

SVO Fisheye Groundtruth

Fig. 18: Comparison of perspective and fisheye lense on the same circular
trajectory that was recorded with a micro aerial vehicle in a motion capture
room. The ORB-SLAM result was obtained with the perspective camera
images and loop-closure was deactivated for a fair comparison with SVO.
ORB-SLAM with a perspective camera and with loop-closure activated
performs as good as SVO with a fisheye camera.

resulting trajectories in Fig. 18. To run SVO on the fisheye

images, we use the modifications described in Sec. VII. While

the recovered trajectory from the perspective camera slowly

drifts over time, the result on the fisheye camera perfectly

overlaps with the groundtruth trajectory. We also run ORB-

SLAM and LSD-SLAM on the trajectory with the perspective

images. The result of ORB-SLAM is as close to the ground-

truth trajectory as the SVO fisheye result. However, if we

deactivate loop-closure detection (shown result) the trajectory

drifts more than SVO. We were not able to run LSD-SLAM

and ORB-SLAM on the fisheye images as the open source

implementations do not support very large FoV cameras. Due

to the difficult high-frequency texture of the floor, we were

not able to initialize LSD-SLAM on this dataset. A more in-

depth evaluation of the benefit of large FoV cameras for SVO

is provided in [61].

XII. DISCUSSION

In this section we discuss the proposed SVO algorithm in

terms of efficiency, accuracy, and robustness.

A. Efficiency

Feature-based algorithms incur a constant cost of feature

and descriptor extraction per frame. For example, ORB-SLAM
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requires 11 milliseconds per frame for ORB feature extraction

only [22]. This constant cost per frame is a bottleneck for

feature-based VO algorithms. On the contrary, SVO does not

have this constant cost per frame and benefits greatly from the

use of high frame-rate cameras. SVO extracts features only for

selected keyframes in a parallel thread, thus, decoupled from

hard real-time constraints. The proposed tracking algorithm,

on the other hand, benefits from high frame-rate cameras:

the sparse image alignment step is automatically initialized

closer to the solution and, thus, converges faster. Therefore,

increasing the camera frame-rate actually reduces the compu-

tational cost per frame in SVO. The same principle applies to

LSD-SLAM. However, LSD-SLAM tracks significantly more

pixels than SVO and is, therefore, up to an order of magnitude

slower. To summarize, on a laptop computer with an Intel i7

2.8 GHz CPU processor ORB-SLAM and LSD-SLAM require

approximately 30 and 23 milliseconds respectively per frame

while SVO requires only 2.5 milliseconds (see Table II).

B. Accuracy

SVO computes feature correspondence with sub-pixel accu-

racy using direct feature alignment. Subsequently, we optimize

both structure and motion to minimize the reprojection errors

(see Sec. V-B). We use SVO in two settings: if highest

accuracy is not necessary, such as for motion estimation of

micro aerial vehicles [54], we only perform the refinement

step (Sec. V-B) for the latest camera pose, which results

in the highest frame-rates (i.e., 2.5 ms). If highest accuracy

is required, we use iSAM2 [9] to jointly optimize structure

and motion of the whole trajectory. iSAM2 is an incremental

smoothing algorithm, which leverages the expressiveness of

factor graphs [8] to maintain sparsity and to identify and

update only the typically small subset of variables affected

by a new measurement. In an odometry setting, this allows

iSAM2 to achieve the same accuracy as batch estimation of

the whole trajectory, while preserving real-time capability.

Bundle adjustment with iSAM2 is consistent [45], which

means that the estimated covariance of the estimate matches

the estimation errors (e.g., are not over-confident). Consistency

is a prerequisite for optimal fusion with additional sensors

[18]. In [45], we therefore show how SVO can be fused with

inertial measurements. LSD-SLAM, on the other hand, only

optimizes a graph of poses and leaves the structure fixed once

computed (up to a scale). The optimization does not capture

correlations between the semi-dense depth estimates and the

camera pose estimates. This separation of depth estimation

and pose optimization is only optimal if each step yields the

optimal solution.

C. Robustness

SVO is most robust when a high frame-rate camera is used

(e.g., between 40 and 80 frames per second). This increases

the resilience to fast motions as it is demonstrated in the

video attachment. A fast camera, together with the proposed

robust depth estimation, allows us to track the camera in

environments with repetitive and high frequency texture (e.g.,

grass or asphalt as shown in Fig. 19). The advantage of

Fig. 19: Successful tracking in scenes of high-frequency texture.

the proposed probabilistic depth estimation method over the

standard approach of triangulating points from two views only

is that we observe far fewer outliers as every depth filter un-

dergoes many measurements until convergence. Furthermore,

erroneous measurements are explicitly modeled, which allows

the depth to converge in highly self-similar environments.

A further advantage of SVO is that the algorithm starts

directly with an optimization. Data association in sparse image

alignment is directly given by the geometry of the problem

and therefore, no RANSAC [23] is required as it is typical

in feature-based approaches. Starting directly with an opti-

mization also simplifies the incorporation of rotation priors,

provided by a gyroscope, as well as the use of multi-camera

rigs. Using multiple cameras greatly improves resilience to on-

spot rotations as the field of view of the system is enlarged and

depth can be triangulated from inter-camera-rig measurements.

Finally, the use of gradient edge features (i.e., edgelets)

increases the robustness in areas where only few corner

features are found. Our simulation experiments have shown

that the proposed sparse image alignment approach achieves

comparable performance as semi-dense and dense alignment

in terms of robustness of frame-to-frame motion estimation.

XIII. CONCLUSION

In this paper, we proposed the semi-direct VO pipeline

“SVO” that is significantly faster than the current state-of-the-

art VO algorithms while achieving highly competitive accu-

racy. The gain in speed is due to the fact that features are only

extracted for selected keyframes in a parallel thread and feature

matches are established very fast and robustly with the novel

sparse image alignment algorithm. Sparse image alignment

tracks a set of features jointly under epipolar constrains and

can be used instead of KLT-tracking [69] when the scene

depth at the feature positions is known. We further propose

to estimate the scene depth using a robust filter that explicitly

models outlier measurements. Robust depth estimation and

direct tracking allows us to track very weak corner features

and edgelets. A further benefit of SVO is that it directly

starts with an optimization, which allows us to easily integrate

measurements from multiple cameras as well as motion priors.

The formulation further allows using large FoV cameras with

fisheye and catadioptric lenses. The SVO algorithm has further
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proven successful in real-world applications such as vision-

based flight of quadrotors [54] or 3D scanning applications

with smartphones.
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APPENDIX

In this section, we derive the analytic solution to the multi-

camera sparse-image-alignment problem with motion prior.

Given a rig of M calibrated cameras c ∈ C with known

extrinsic calibration TCB, the goal is to estimate the incremental

body motion TBB−1 by minimizing the intensity residual r
I

C
i

of corresponding pixels in subsequent images. Corresponding

pixels are found by means of projecting a known point on the

scene surface ρi
.
= B−1ρi (prefix B− 1 denotes that the point

is expressed in the previous frame of reference) into images of

camera C that were recorded at poses k and k− 1, which are

denoted I
C

k and I
C

k−1 respectively. To improve the convergence

properties of the optimization (see Sec. XI-A), we accumulate

the intensity residual errors in small patches P centered at

the pixels where the 3d points project. Therefore, we use

the iterator variable ∆u to sum the intensities over a small

patch P . We further assume that a prior of the incremental

body motion T̃kk−1
.
= (R̃, p̃) is given. The goal is to find the

incremental camera rotation and translation Tkk−1
.
= (R,p)

that minimizes the sum of squared errors:

(R⋆,p⋆) = arg min
(R,p)

C(R,p), with (13)

C(R,p) =
∑

C∈C

N
∑

i=1

∑

∆u∈P

1

2
‖r

I
C
i,∆u

‖2ΣI
+

1

2
‖rR‖

2
ΣR

+
1

2
‖rp‖

2
Σp

,

where N is the number of visible 3D points. We have furder

defined the image intensity and prior residuals as:

r
I

C
i,∆u

.
= I

C

k

(

π(TCB(Rρi + p)) + ∆u
)

− I
C

k−1

(

π(TCB ρi) + ∆u
)

rR
.
= log(R̃TR)∨

rp
.
= p− p̃ (14)

For readability, we write the cost function in matrix form

C(R,p) = r(R,p)TΣ−1r(R,p), (15)

where Σ is a block-diagonal matrix composed of the measure-

ment covariances. Since the residuals are non-linear in (R,p),
we solve the optimization problem in an iterative Gauss-

Newton procedure [70]. Therefore, we substitute the following

perturbations in the cost function:

R ← R exp(δφ∧), p ← p+ Rδp, (16)

where the hat operator (.)∧ forms a 3 × 3 skew-symmetric

matrix from a vector in R
3.

As it is common practice for optimizations involving rota-

tions [45, 70], we use the exponential map exp(·) to perturb

the rotation in the tangent space of SO(3) which avoids

singularities and provides a minimal parametrization of the

rotation increment. The exponential map (at the identity)

exp : so(3) → SO(3) associates a 3 × 3 skew-symmetric

matrix to a rotation and coincides with the standard matrix

exponential (Rodrigues’ formula):

exp(φ∧) = I+
sin(‖φ‖)

‖φ‖
φ∧ +

1− cos(‖φ‖)

‖φ‖2
(

φ∧
)2

. (17)

The inverse relation is the logarithm map (at the identity),

which associates R ∈ SO(3) to a skew symmetric matrix:

log(R) =
ϕ · (R− R

T)

2 sin(ϕ)
with ϕ = cos−1

(

tr (R)− 1

2

)

. (18)

Note that log(R)∨ = aϕ, where a and ϕ are the rotation axis

and the rotation angle of R, respectively.

Substituting the perturbations makes the residual errors a

function defined on a vector space. This allows us to linearize

the quadratic cost at the current estimate, form the normal

equations, and solve them for the optimal perturbations:

JTΣ−1J [δφT δpT]T = −JTΣ−1r(R,p), (19)

where we introduced the variable J, which stacks all Jacobian

matrices from the linearization. The solution is subsequently

used to update our estimate in (R,p) according to (16). This

procedure is repeated until the norm of the update vectors is

sufficiently small, which indicates convergence.

In the following, we show how to linearize the residuals to

obtain the Jacobians. Therefore, we substitute the perturbations

in the residuals and expand:

rR(R exp(δφ∧)) (20)

= log(R̃TR exp(δφ∧))∨
(a)
≃ rR(R) + J

−1
r (log(R̃TR)∨)δφ

rp(p+ Rδp) (21)

= (p+ Rδp)− p̃ = rp(p) + Rδp

r
I

C
i
(R exp(δφ∧)) (22)

= I
C

k

(

π(TCB(R exp(δφ∧)ρi + p))
)

− I
C

k−1

(

π(TCB ρi)
)

(b)
≃ I

C

k

(

π(TCB(Rρi + p))
)

− I
C

k−1

(

π(TCB exp(δφ
∧)−1ρi)

)

(c)
≃ I

C

k

(

π(TCB(Rρi + p))
)

− I
C

k−1

(

π(TCB(I− δφ∧)ρi)
)

(d)
= I

C

k

(

π(TCB(Rρi + p))
)

− I
C

k−1

(

π(TCBρi + TCBρ
∧
i δφ)

)

(e)
≃ r

I
C
i
(R)−

∂IC

k−1(u)

∂u

∣

∣

∣

u=π(cρi)

∂π(ρ)

∂ρ

∣

∣

∣

ρ=cρi

RCBρ
∧
i δφ

r
I

C
i
(p+ Rδp) (23)

= I
C

k

(

π(TCB(Rρi + p+ Rδp))
)

− I
C

k−1

(

π(TCB ρi)
)

(b)
≃ I

C

k

(

π(TCB(Rρi + p))
)

− I
C

k−1

(

π(TCB(ρi − δp))
)

(e)
≃ r

I
C
i
(R) +

∂IC

k−1(u)

∂u

∣

∣

∣

u=π(cρi)

∂π(ρ)

∂ρ

∣

∣

∣

ρ=cρi

RCBδp

In step (a), we have used a first-order expansion of the matrix

logarithm:

log
(

exp(φ∧) exp(δφ∧)
)∨
≈ φ+ J

−1
r (φ)δφ, (24)



15

which holds for small values of δφ. The term J
−1
r is the

inverse of the right Jacobian of SO(3) [70, 71]:

J
−1
r (φ) = I+

1

2
φ∧ +

(

1

‖φ‖2
+

1 + cos(‖φ‖)

2‖φ‖ sin(‖φ‖)

)

(φ∧)2.

In step (b), we invert the perturbation and apply it to the

reference frame. This trick stems from the inverse compo-

sitional [48] formulation, which allows us to keep the term

containing the perturbation constant such that the Jacobian of

the intensity residual remains unchanged over all iterations,

greatly improving compuational efficiency. In (c), we first used

that exp(δφ∧)−1 = exp(−δφ∧) and subsequently used the

first-order approximation of the exponential map:

exp(δφ) ≃ I+ δφ∧. (25)

For step (d), we used a property of skew symmetric matrices

δφ∧ρ = −ρ∧δφ. (26)

Finally, in step (e), we perform a Taylor expansion around the

perturbation. The term
∂IC

k−1
(u)

∂u
denotes the image derivative

at pixel u and
∂π(ρ)
∂ρ

is the derivative of the camera projection

function, which for standard pinhole projection with focal

length (fx, fy) and camera center (cx, cy) takes the form

∂π(ρ)

∂ρ
=

[

fx
x
z

0 − cx
z2

0 fy
y
z
− cy

z2

]

with ρ = [x, y, z]T. (27)

To summarize, the Jacobians of the residuals are:

∂rR

∂δφ
= J

−1
r (Log(R̃TR)) (28)

∂rp

∂δp
= R

∂r
I

C
i

∂δφ
= −

∂IC

k−1(u)

∂u

∣

∣

∣

u=π(cρi)

∂π(ρ)

∂ρ

∣

∣

∣

ρ=cρi

RCBρ
∧
i

∂r
I

C
i

∂δp
=

∂IC

k−1(u)

∂u

∣

∣

∣

u=π(cρi)

∂π(ρ)

∂ρ

∣

∣

∣

ρ=cρi

RCB
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