
Simple keypoint tracker

Contents

1 Preliminaries 1

1.1 Outline of the exercise . 1
1.2 Provided code . 2
1.3 Conventions . 2

2 Part 1: Calculate Harris scores 2

3 Part 2: Select keypoints 3

4 Part 3: Describe keypoints 4

5 Part 4 and 5: Match descriptors 4

5.1 Matching quality . 5
5.2 Optimizing your code the smart way - pro�ling . 5

The goal of this laboratory session is to get you familiarized with feature detection, description
and matching.

1 Preliminaries

1.1 Outline of the exercise

In this exercise, you will implement a simple keypoint tracker from scratch, using only the knowledge
you have so far obtained in the class. You will run this keypoint tracker on the �rst 200 frames of
the popular KITTI dataset.

Figure 1: Matching features from the �rst two frames in the KITTI dataset.

You will achieve this with the following steps: First, you will evaluate the Harris score for each
pixel of the input image. Then, you will select keypoints based on the Harris scores. In a next step,
you will evaluate simple image patch descriptors at the selected keypoint locations. Finally, you
will match these descriptors using the SSD norm in order to �nd feature correspondences between
frames.

1

http://www.cvlibs.net/datasets/kitti/

Robotics and Perception Group,
University of Zurich. 2 PART 1: CALCULATE HARRIS SCORES

1.2 Provided code

We provide you with skeletal Matlab code (main.m) which loads the images for you, provides you
with good initial parameters, and does the plotting for you. Your job will be to implement the
code that does the actual logic. We also provide the functions stubs with some comments about
the input and output formats, so if these are not clear from this pdf, they should be clear from the
function stubs. You do not need to reproduce the reference outputs exactly, as slight implementation
di�erences might a�ect the outputs. The main script is subdivided into an initialization part and
the parts below, you can execute the separate parts by hitting Ctrl+Enter while your cursor is in
the corresponding part.

1.3 Conventions

In our code, we use the naming convention that patch_size represents the size of a square patch
in one dimension and patch_radius the amount of pixels between the center pixel of an odd-sized
patch and its border. Thus, patch_size = patch_radius ·2+1 and a patch has patch_size2 pixels.

Furthermore, for all conversions between matrices and vectors, unless otherwise stated, we as-

sume column-wise order. This means that e.g. a matrix A =

[
1 2
3 4

]
gets transormed into a =[

1 3 2 4
]T

and vice-versa. This corresponds to the conventions of Matlab commands reshape
and a = A(:).

2 Part 1: Calculate Harris scores

We detect features using the Harris corner detector. As seen in the lecture, the Harris score for a
given pixel (u, v) is:

Ru,v = det(Mu,v)− κtrace2(Mu,v) (1)

with

Mu,v =

[∑
I2x,u,v

∑
Ix,u,vIy,u,v∑

Ix,u,vIy,u,v
∑
I2y,u,v

]
, (2)

where the sums are performed over a �xed-size image patch around the point for which the score
is evaluated, and Ix and Iy are the image derivatives in the x and y direction respectively. As seen
in the lecture, these can be obtained by convolving the image with the Sobel �lter:

Ix =

−1 0 1
−2 0 2
−1 0 1

 ∗ I, Iy =

−1 −2 −1
0 0 0
1 2 1

 ∗ I (3)

You should be able to evaluate R without any for-loop. The trick is to evaluate (1) without
expressing M as a matrix, but directly with the coe�cients. Then, if you express each coe�cient
of M in a matrix representing the entire image, you should be able to perform (1) with Matlab's
coe�cient-wise operators (.* and .^). Use conv2 with the valid option (in our convention, �lters
are not de�ned at border pixels for which the mask only partially overlaps the image) for convolutions
and padarray to ensure that a harris score is returned for each pixel. By using padarray you simply
set the score to 0 for pixels for which the score is not de�ned. You should obtain roughly the scores
shown in Fig. 2. Some hints:

• You should have intermediate matrices containing as coe�cients Ix, Iy, I
2
x, I

2
y , IxIy,

∑
I2x,
∑
I2y

and
∑
IxIy for each pixel where they are de�ned. In particular, if the size of the image I is

h × w, the sizes of the �rst �ve matrices will be (h − 2) × (w − 2) and the sizes of the last
three matrices, as well as the initial R, will be (h− 1−patch_size)× (w− 1−patch_size). As
written before, you can obtain the �nal R by applying padarray to the initial R.

• The image in Fig. 2 has been obtained by setting all negative scores to 0. You can do this
since in the remainder of this exercise we will only use the positive values.

2

http://rpg.ifi.uzh.ch/docs/teaching/2016/04_filtering.pdf

Robotics and Perception Group,
University of Zurich. 3 PART 2: SELECT KEYPOINTS

Figure 2: Harris scores for the �rst frame of the KITTI dataset.

3 Part 2: Select keypoints

In the lecture you have seen that to select keypoints, you need to �nd points where R exceeds a
certain threshold. But how to choose that threshold? A popular approach is to select the k points
with highest score instead. We will pursue that approach here, so we won't need to worry about the
threshold. Note that pixels with high scores tend to have neighbors with high scores. To prevent
selecting neighboring pixels as keypoints, perform non-maximum suppression around the highest-
scoring pixel selected at each iteration; that is, set all pixel scores within a radius to 0 (you can use
a square box to make things easier in Matlab).

Your entire function should contain only one for-loop - to iterate over single keypoint selection.
Take a closer look at the ways in which the max function can be used. ind2sub might also be helpful.
Fig. (3) shows what you should roughly get.

Figure 3: Keypoints selected in the �rst frame of the KITTI dataset.

3

Robotics and Perception Group,
University of Zurich. 5 PART 4 AND 5: MATCH DESCRIPTORS

Figure 4: The 16 patch-based descriptors with the highest Harris scores with our code.

4 Part 3: Describe keypoints

We simply describe keypoints using the pixel intensity values of image patches around the keypoint.
Trivial, right? Still, it's useful to verify that your output makes sense after this step. Your function
should return a d× k matrix, where d is the descriptor dimension (total amount of pixels in patch)
and k the amount of keypoints. The ith column of the matrix should contain the patch intensities
around the ith keypoint, stored in column-wise order (see section 1.3). You might want to check out
the reshape function. Also, we recommend to padarray the input matrix so that you don't have to
deal with special cases if a keypoint is closer to the image border than the descriptor patch radius.
You should use at most one for-loop, to iterate over keypoints. Once the descriptors are evaluated,
you should be able to tell where in the image they come from based on the plotting we implemented
for you. Our 16 �best� descriptors (highest Harris score) are shown in Fig. (4). Assuming that the
keypoint selection code started with the keypoint with highest Harris score and put it at the �rst
place (etc.), the 16 �best� descriptors should be stored in the �rst 16 columns.

5 Part 4 and 5: Match descriptors

In this �nal step, we will match descriptors between two images. While this is not quite state-of-the-
art, we can already use this to track keypoints across frames! In part 4, you will use the �rst two
frames of KITTI to develop and debug your descriptors matching. Then in part 5 you will apply
your tracking to the �rst 200 frames of the KITTI dataset, and if all goes well, you should obtain
behavior as shown in the preview video (if your code is e�cient, you should be able to achieve a
similar speed).

While you have learned to use the SSD in the class, we are going to use the euclidean distance
between the patch vectors extracted in the previous part. This allows us to use the Matlab command
pdist2, which will signi�cantly boost performance. Familiarize yourself with this command and use
it for this exercise. Your function should take as input two descriptor matrices, query_descriptors
(descriptors from current frame) and database_descriptors (descriptors from last frame). It should
then return a vector with the same length as the query_descriptors matrix, such that the i-th element
of the result vector is the index of the matching database descriptors for the i-th query descriptor. As
you can imagine, not all query descriptors will be matched. A naive approach would be to look for a
descriptor distance threshold, such that you only match descriptors which have a smaller descriptor
distance between them. However, since we are looking at subsequent frames of a trajectory, we know
that there should be at least one match, and so we will use a dynamic threshold

δ = λ · dmin, (4)

4

Robotics and Perception Group,
University of Zurich. 5 PART 4 AND 5: MATCH DESCRIPTORS

where dmin is the smallest non-zero distance between two descriptors from the two descriptor sets.
Write code that matches a database descriptor at most once, i.e. no database descriptor should be
matched to more than one query descriptor. If all goes well, the plot resulting from executing the
code from part 4 should look like Fig. 1.1. You are then ready to run part 5 and compare with the
preview video.

5.1 Matching quality

Note that the matching is not quite perfect - many keypoints are not matched, and there are occa-
sional outliers (you can tweak λ to trade o� between false negatives and false positives - give it a
try!). In a later exercise, we will see how we can �lter outliers using geometric veri�cation. Apart
from geometric veri�cation, can you think of a simple way to �lter outliers in the given dataset (hint:
camera motion is not too big between frames)?

5.2 Optimizing your code the smart way - pro�ling

If you want to make your code run faster, you might be tempted to make a guess at what part
of your code is slowest and then try to optimize that - don't do that, that's ine�ective! The most
e�ective way to optimize your code is through pro�ling. In Matlab, it's very simple to pro�le code.
Type profile on in the console, then run part 5. Once part 5 is complete, type profile viewer

and inspect the pro�le summary. Is it what you would have expected it to be? Identify one function
that you have written and click on its corresponding entry. You can scroll down and see how much
time each line of code has taken.

5

	Preliminaries
	Outline of the exercise
	Provided code
	Conventions

	Part 1: Calculate Harris scores
	Part 2: Select keypoints
	Part 3: Describe keypoints
	Part 4 and 5: Match descriptors
	Matching quality
	Optimizing your code the smart way - profiling

