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PostgreSQL Example/1

PostgreSQL Example/2
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Query Processing and Optimization

» One of the most important tasks of a DBMS is to figure out an
efficient evaluation plan (also termed execution plan or access
plan) for high level statements.

» It is particularly important to have evaluation strategies for:
» Selections (search conditions)
» Joins (combining information in relational database)

» Query processing is a 3-step
process:

Query Processing

1. Parsing and translation > Measuring the query costs
(from SQL to RA) » Sorting
2. Opt|m|?at|on (refine RA > Optimizing selections
expression) C
3. Evaluation (exec RA » Optimizing joins
operators)
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Measuring the Query Costs/1

» Query cost is generally measured as the total elapsed time for
answering a query.
» Many factors contribute to time cost and are considered in real
DBMS, including
» CPU cost and network communication
» Disk access
> Difference between sequential and random 1/0
» Buffer Size
» Having more memory reduces need for disk access
» Amount of real memory available for buffers depends on other
concurrent OS procsesses, and is difficult to determine ahead of

actual execution.
> We often use worst case estimates, assuming only the minimum
amount of memory needed for the operation is available
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Measures of Query Cost/2

» Typically disk access is the predominant cost, which is relatively
easy to estimate. The cost of disk accesses is measured by taking
into account

» Number of seeks * average-seek-cost
» Number of blocks read * average-block-read-cost
» Number of blocks written * average-block-write-cost

» Cost to write a block is greater than cost to read a block, since data is
read back after being written to ensure that the write was successful

» For simplicity
» we just use number of block transfers from disk as the cost

measure, and
» we do not include cost of writing output to disk
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Sorting

v

Sorting is important for for several reasons:
» SQL queries can specify that the output is sorted
» Several relational operations can be implemented efficiently if the
input relations are first sorted, e.g., joins
» Often sorting is a crucial first step for efficient algorithms

v

We may build an index on the relation, and then use the index to
read the relation in sorted order.

» With an index sorting is only logical and not physical. This might
lead to one disk block access for each tuple (can be very expensive)

> It may be desirable/necessary to order the records physically.

\{

Relation fits in memory: Use techniques like quicksort

v

Relation does not fit in main memory: Use external sorting, e.g.,
external sort-merge is a good choice
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External Sort-Merge/1

» Step 1: Create N sorted runs (M is # blocks in buffer)
1. Let i be 0 initially.
2. Repeatedly do the following until the end of the relation
2.1 Read M blocks of the relation (or the rest) into memory
2.2 Sort the in-memory blocks
2.3 Write sorted data to run file R;;
2.4 Increment i.

» Step 2: Merge runs (N-way merge) (assume N < M)
(Use N blocks in memory to buffer input runs, and 1 block to buffer
output)
1. Read the first block of each run R; into its buffer page
2. Repeat until all input buffer pages are empty
2.1 Select the first record (in sort order) among all buffer pages
2.2 Write the record to the output buffer. If the output buffer is full write
it to disk.
2.3 Delete the record from its input buffer page.
2.4 If the buffer page becomes empty then
read the next block (if any) of the run into the buffer
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External Sort-Merge/2

» If N > M, several merge passes (step 2) are required:

» In each pass, contiguous groups of M — 1 runs are merged
» A pass reduces the number of runs by a factor of M — 1, and creates
runs longer by the same factor.
» E.g. If M =11, and there are 90 runs, one pass reduces the number
of runs to 9, each run being 10 times the size of the initial runs

» Repeated passes are performed until all runs have been merged into
one.
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External Sort-Merge/3

» Example: M = 3, 1 block = 1 tuple

19
31
24

14
33
16

21
m| 3
16

14
7
2

o g fe o la|a|alo|o|e|»

initial
relation runs

create merge
runs pass—1
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External Sort-Merge/4

» Cost analysis

» b, = number of blocks in r
Initial number of runs: b,/ M
Total number of merge passes required: [logy—1(b,/M)]

» The number of runs decreases by a factor of M-1 in each merge pass
Disk accesses for initial run creation and in each pass is 2b,

vy

v

» Exception: For final pass there is no write cost

Thus total number of disk accesses for external sorting:
Cost = b, (2 [logm—-1(b,/M) | + 1)

v

» Example: Cost analysis of previous example
» 12 (2 * 2 4 1) = 60 disk block transfers
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Selection Evaluation Strategies/1

» The selection operator:
» select * from r where 6
> o9(r)
is used to retrieve those records that satisfy the selection condition

» The strategy/algorithm for the evaluation of the selection operator
depends
» on the type of the selection condition
» on the available index structures
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Review 8.1
Assume a B+ tree index on (BrName, BrCity). What would be the best
way to evaluate the query:

O BrCity<'Brighton’ A Assets<5000 A BrName:’Downtown’(branCh)
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Selection Evaluation Strategies/2

Types of selection conditions:

» Equality queries: 0,—,(r)

» Range queries: 0,<,(r) or 0,>,(r)
» Can be implemented by using
> linear file scan

> binary search
> using indices

» Conjunctive selection: gy, rg,...n0,(F)

» Disjunctive selection: oy, vg,...ve,(r)
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Selection Evaluation Strategies/3

Basic search methods for selection operator:

» File scan
» Class of search algorithms that read the file line by line to locate
and retrieve records that fulfill a selection condition, i.e., og(r)
» Lowest-level operator to access data

» Index scan

» Class of search algorithms that use an index
» Assume B+ tree index and equality conditions, i.e., ga=,(r)
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Selection Evaluation Strategies/4

» Al Linear search: Scan each file block and test all records to see
whether they satisfy the selection condition.
» Fairly expensive, but always applicable (regardless of indexes,
ordering, selection condition, etc)
» Fetching a contiguous range of blocks from disk has been optimized
by disk manufacturers and is cheap in terms of seek time and

rotational delay (pre-fetching)
» Cost estimate (b, = number of blocks in file):
» Worst case: Cost = b,
> If the selection is on a key attribute: Average cost = b,/2 (stop
when finding record)
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Selection Evaluation Strategies/5

» A2 Binary search: Apply binary search to locate records that
satisfy selection condition.
» Only applicable if
> the blocks of a relation are stored contiguously (very rare), and
> the selection condition is a comparison on the attribute on which the
file is ordered
» Cost estimate for o,—,(r):
> [log>(b:)] — cost of locating the first tuple by a binary search on the

blocks
» Plus number of blocks containing records that satisfy selection

condition
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Selection Evaluation Strategies/6

» A3 Primary index + equality on candidate key

» Retrieve a single record that satisfies the equality condition
» Cost = HT; + 1 (height of B+ tree + 1 data block)

» A4 Primary index + equality on non-candidate key
> Retrieve multiple records, where records are on consecutive blocks
» Cost = HT; + # blocks with records with given search key

» A5 Secondary index + equality on search-key
> Retrieve a single record if the search-key is a candidate key
» Cost =HT; +1
» Retrieve multiple records if search-key is not a candidate key

» Cost = HT; + # buckets with search-key value + # retrieved records
» Can be very expensive, since each record may be on a different block
> Linear file scan may be cheaper if many records have to be fetched

DBS13, SL08 20/82 M. Bohlen, ifi@uzh




Selection Evaluation Strategies/7

» A6 Primary index on A + comparison condition

» 0,>,: Use index to find first tuple > v; then scan relation sequentially
» 0,<,: Scan relation sequentially until first tuple > v; do not use
index.

» A7 Secondary index on A + comparison cond.

» 0,>,: Use index to find first index entry > v; scan index sequentially
from there, to find pointers to records.

» 0,<y: Scan leaf pages of index finding record pointers until first entry
> v

» Requires in the worst case one 1/O for each record; linear file scan
may be cheaper if many records are to be fetched
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Review 8.2
Consider relations r1(A, B, C), r2(C, D, E), r3(E, F) with keys
underlined and cardinalities |r1| = 1000, |r2| = 1500, |r3| = 750.
» Estimate the size of r1 X r2 X r3
» Give an efficient strategy for computing the result and compute its
cost
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Join Evaluation Strategies

» There exist several different algorithms for the evaluation of join
operations:
» Nested loop join
Block nested loop join
Indexed nested loop join
Merge join
Hash join

vV v.vYyy

» Choice based on cost estimate

» Examples use the following relations:
» customer = (CustName, CustStreet, CustCity)

» Number of records: n. = 10’000
» Number of blocks: b. = 400

» depositor = (CustName, AccNumber)

» Number of records: ngy = 5000
» Number of blocks: by = 100

DBS13, SL08 23/82 M. Bohlen, ifi@uzh

Nested Loop Join/1

v

Compute the theta join: r Xy s
for each tuple t, in r do
for each tuple t; in s do
test pair (t,, ts) to see if they satisfy the join condition 6
if they do, add t, o ts to the result.
end
end

v

r is called the outer relation, s the inner relation of the join.

v

Always applicable. Requires no indices and can be used with any
kind of join condition.

v

Expensive since it examines every pair of tuples.
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Nested Loop Join/2

» Order of r and s important: Relation r is read once, relation s is
read up to |r| times
» Worst case: Only one block of each relation fits in main memory
Cost = n, * bs + b,
» If the smaller relation fits entirely in memory, use that as the inner
relation.
Cost = bs + b,
» Example:
» Depositor as outer relation:
5’000 * 400 + 100 = 2'000'100 block accesses
» Customer as outer relation:
10’000 * 100 + 400 = 1'000'400 block accesses
» Smaller relation (depositor) fits into memory:
400 + 100 = 500 blocks
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Block Nested Loop Join/1

» Simple nested loop algorithm is not used directly since it is not
block-based.

» Variant of nested loop join in which every block of the inner relation
is paired with every block of the outer relation.

for each block B, of r do
for each block Bs of s do
for each tuple t, in B, do
for each tuple t; in B; do
Check if (t, ts) satisfy the join condition
if they do, add t, o ts to the result.
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Block Nested Loop Join/2

» Worst case: Cost = b, * bs + b,
» Each block in the inner relation s is read once for each block in the
outer relation (instead of once for each tuple in the outer relation)
» Best case: Cost = bs + b,
» Example: Compute depositor X customer, with depositor as the
outer relation.

» Block nested loop join:
Cost = 100 * 400 + 100 = 40'100 blocks (worst case)
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Block Nested Loop Join/3

» Improvements to nested loop and block nested loop algorithms (M
is the number of main memory blocks):

> Block nested loop: Use M-2 disk blocks for outer relation and two
blocks to buffer inner relation and output; join each block of the
inner relation with M-2 blocks of the outer relation.

> Cost = [b/(M —2)] % bs + b,

» If equi-join attribute forms a key on inner relation, stop inner loop on
first match.

» Scan inner loop forward and backward alternately, to make use of the
blocks remaining in buffer (with LRU replacement).
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Indexed Nested Loop Join/1

» Index lookups can replace file scans if
> join is an equi-join or natural join and
» index is available on the inner relation’s join attribute
» index can be constructed just to compute a join
» For each tuple t, in the outer relation r, use the index to look up
tuples in s that satisfy the join condition with tuple ¢,.
» Worst case: Buffer has space for only one page of r, and, for each
tuple in r perform an index lookup on s.
» Cost=n,*xc+ b,
> c is the cost of traversing the index and fetching all matching s tuples
for one tuple of r
> ¢ can be estimated as cost of a single selection on s using the join
condition.
» If indexes are available on join attributes of both r and s, use
relation with fewer tuples as the outer relation.
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Indexed Nested Loop Join/2

» Example: Compute depositor x customer, with depositor as the
outer relation.

» Let customer have a primary B+ tree index on the join attribute
CustName, which contains 20 entries in each index node.

» Since customer has 10’000 tuples, the height of the tree is 4, and one
more access is needed to find the actual data

» depositor has 5'000 tuples and 100 blocks

> Indexed nested loops join:
Cost = 5’000 * 5 + 100 = 25'100 disk accesses.
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Review 8.3

Consider E Mssy=pigrssy D with rp = 50 (number of tuples in relation
D), re = 5000, bp = 10 (number of blocks for relation D), bg = 2000,
ng = 6 (number of available buffer blocks).

Compute the number of 10s for the following evaluation strategies:

1. Block NL, E X D, 4 blocks for E (1 block for D, 1 block for result)

2. Block NL, E X D, 4 blocks for D
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Review 8.3
3. Block NL, D X E, 4 blocks for D

4. Indexed NL, E X D

5. Indexed NL, D X E
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Merge Join/1

» Basic idea of merge join: Use two pointers pr and ps that are
initialized to the first tuple in r and s and move in a synchronized
way through the sorted relations.

» Algorithm

1. Sort both relations on their
join attributes (if not already
sorted on the join attribute).

2. Scan r and s in sort order
and return matching tuples.

3. Move the tuple pointer of the
relation that is less far
advanced in sort order (more
complicated if the join
attributes are not unique -
every pair with same value on
join attribute must be
matched).
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Merge Join/2

» Applicable for equi-joins and natural joins only
» If all tuples for any given value of the join attributes fit in memory
» One file scan of r and s is enough
» Cost = b, + bs (+ the cost of sorting if relations are not sorted)
» Otherwise, a block nested loop join must be performed between the
tuples with the same attributes
» If the relation are not sorted appropriately we first have to sort
them. The combined operator is called a sort-merge join.
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Hash Join/1

» Applicable for equi-joins and natural joins only.

» Partition tuples of r and s using the same hash function h, which
maps the values of the join attributes to the set 0, 1, ..., n

» Partitions of r-tuples: ry, 1, ..., s
> All t, € r with h(t,[JoinAttrs]) = i
are put in r;
» Partitions of s-tuples: sp, s1, .., S,
> All ts € s with h(ts[JoinAttrs]) = i
are put in s;

» r-tuples in r; need only to be compared
Wlth S_tuples in Si partitions  partitions

» an r-tuples and s-tuples that satisfy the join condition have the same
hash value 1/, and are mapped to r; and s;, respectively.
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Hash Join/2

» Algorithm for the hash join of r and s

1. Partition the relation s using hash function h. (When partitioning a
relation, one block of memory is reserved as the output buffer for
each partition.)

2. Partition r similarly.

3. For each i:

3.1 Load s; into memory and build an in-memory hash index on it using
the join attribute. This hash index uses a different hash function than
the earlier one h.

3.2 Read the tuples in r; from the disk (block by block). For each tuple t,
probe (locate) each matching tuple t; in s; using the in-memory hash
index. Output the concatenation of their attributes as result tuple.

» Relation s is called the build input and r is called the probe input.
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Hash Join/3

» Cost analysis of hash join
» Partitioning of the two relations: 2 * (b, + bs)
» Complete reading of the two relations plus writing back

» The build and probe phases read each of the partitions once: b, + bs
» Cost = 3% (b, + bs)

» Example: customer X depositor
» Assume that memory size is 20 blocks
» by = 100 and b. = 400.
» depositor is to be used as build input. Partition it into five partitions,
each of size 20 blocks. This partitioning can be done in one pass.

» Similarly, partition customer into five partitions, each of size 80. This
is also done in one pass.

» Partition size of probe relation needs not to fit into main memory!
» Therefore total cost = 3 * (100 + 400) = 1500 block transfers

> lIgnores cost of writing partially filled blocks
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Review 8.4
Consider bc = 400, nc = 10’000, bp = 100, np = 5’000, disk 10 time =
10 msec, memory access time = 60 nsec. Compare the execution times
for NL (best case) and sort merge.
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Query Optimization

Cost estimation

v

\4

Transformation of relational algebra expressions (rewrite rules)

v

Rule-based (aka heuristic) query optimization

\4

Cost-based query optimization
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Query Optimization/1

v

Alternative ways of evaluating a query because of

» Equivalent expressions
» Different algorithms for each operation

v

A query evaluation plan (query plan) is an annotated RA
expression that specifies for each operator how to evaluate it.

v

The cost difference between a good and a bad query evaluation plan
can be enormous
» e.g., performing r x s followed by a selection r.A = s.B is much
slower than performing a join on the same condition

v

The query optimizer needs to estimate the cost of operations

» Depends critically on statistical information about relations
» Estimates statistics for intermediate results to compute cost of
complex expressions
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Query Optimization/2

» Step 1: Parsing and translation
» Translate the query into its internal form (query tree)
» The query tree corresponds to a relational algebra (RA) expression
» Each RA expression can be written as a tree where the algebra
operator is the root and the argument relations are the children.

» Example:
» SQL query: select balance from account where balance < 2500
» RA expression: 0 pajance<2500(Tbaiance(account))

> Tree:
O balance <2500

T balance

account
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Query Optimization/3

» Step 2: Optimization
» An RA expression may have many (semantically) equivalent
expressions
» The following two RA expressions are equivalent:
> Opalance<2500(Thalance (account))
> Thalance(Tbatance<2500(account))
» Each RA operation can be evaluated using one of several different
algorithms.
» Thus, an RA expression can be evaluated in many ways.
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Query Optimization/4

» Step 2: Optimization
» Evaluation plan: Annotated RA expression that specifies for each
operator detailed instructions on how to evaluate it.

> use index on balance to find T balance
accounts with balance < 2500 |

» can perform complete relation Obalance<2500; USe index 1

scan and discard accounts with |
balance > 2500 account
» Goal of query optimization: Among all equivalent evaluation plans
choose the one with lowest cost.
» Cost is estimated using statistical information from the database
catalog, e.g., number of tuples in each relation, size of tuples, etc.

» Step 3: Evaluation
» The query-execution engine takes an evaluation plan, executes that
plan, and returns the answers.
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Review 8.5
Display the trees that correspond to the following algebra expressions:
» RAl = TI'A(R]. X O’X:y(R2 X FB’C(R?) — R4) X R5))
> RA2 = 7TA(R1) U UX>5(R2)
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Query Optimization/5

» Example: Find the names of all customers who have an account at
any branch located in Brooklyn.
> 7TCustName(UBranchCity:’BrookIyn’(branCh X (account > depositor)))

» Produces a large intermediate relation
» Transformation into a more efficient expression
T CustName (O BranchCity=' Brooklyn’ (branch) > (account > depositor))

customer-name

Il

/ 2
O pbranch-city=Brooklyn ]

I’

account depositor branch account

customer-name

I1
<|5 branch-city=Brooklyn
[l

deposiro
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Query Optimization/6

» Goal of query optimizer: Find the most efficient query evaluation
plan for a given query.
» Cost-based optimization:
1. Generate logically equivalent expressions by using equivalence rules to
rewrite an expression into an equivalent one
2. Annotate resulting expressions with information about
algorithms/indexes for each operator
3. Choose the cheapest plan based on estimated cost
» Rule-based/heuristic optimization:
1. Generate logically equivalent expressions, controlled by a set of
heuristic query optimization rules
» In general, it is not possible to identify the optimal query tree since
there are too many. Instead, a reasonably efficient one is chosen.
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Statistical Information/1

» The cost of an operation depends on the size and other statistics of
its inputs, which is partially stored in the database catalog and can
be used to estimate statistics on the results of various operations.

n,: number of tuples in a relation r.

b,: number of blocks containing tuples of r.

s,: size of a tuple of r.

f.: blocking factor of r, i.e., the number of tuples of r that fit into

one block.

» V(A, r): number of distinct values that appear in r for attribute A,
same as the size of wa(r).

» SC(A, r): selection cardinality of attribute A of relation r; average
number of records that satisfy equality on A.

vV vy VvYy
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Statistical Information/2

» f;: average fan-out of internal nodes of index i, for tree-structured
indexes such as B+ trees.
» HT;: number of levels in index i, i.e., the height of /.
» For a Bf-tree on attribute A of relation r, HT; = [logr.(V (A, r))]
» For a hash index, HT; is 1.
» [B;: number of lowest-level index blocks in /, i.e, the number of
blocks at the leaf level of the index.

» For accurate statistics, the catalog information has to be updated
every time a relation is modified.

» Many systems update statistics only during periods of light system
load (or when requested explicitly), thus statistics is not completely
accurate.

» Plan with lowest estimated cost might not be the cheapest

» PostgreSQL: run ANALYZE once a day
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Rewriting Relational Algebra Expressions

» Two relational algebra expressions are equivalent if on every legal
database instance the two expressions generate the same set of
tuples

» Note: order of tuples is irrelevant

» Two expressions in the multiset version of the relational algebra are
said to be equivalent if on every legal database instance the two
expressions generate the same multiset of tuples

» An equivalence rule states that two different expressions are
equivalent and can replace each other
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Equivalence Rules/1

» E,E;,... = RA expressions
0,601,... = predicates/conditions

» ER1 Conjunctive selection operations can be deconstructed into a
sequence of individual selections.
091A92(E) = 091(092(E))

» ER2 Selection operations are commutative.
06,(00,(E)) = 06,(00,(E))

» ER3 Only the last in a sequence of projections is needed, the others
can be omitted (Li are lists of attributes).
7TL1(’/TL2(. .. (’/TL,,(E)) e )) = 7TL1(E)

» ER4 Selections can be combined with Cartesian product and theta
joins
(a) Ug(El X Ez) = El ] E2
(b) 0p1(E1 g2 E2) = E1 >ging2 B2
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Equivalence Rules/2

» ER5 Theta joins (and natural joins) are commutative.
E1 Xl E2 = E2 Xl E1

» ERO6 Associativity
(a) Natural join operations are associative:
(El > E2) > E3 = E1 > (E2 > E3)
(b) Theta joins are associative in the following way:
(E1 >91 E2) o003 E3 = E1 p1n63 (E2 g2 E3)
where 0, involves attributes from only E; and Ejs.
Any of these conditions might be empty, hence, the Cartesian
product operation is also associative

» Commutativity and associativity of join operations are important for
join reordering.
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Equivalence Rules/3

» ERY7 The selection operation distributes over the theta join
operation under the following conditions:

» (a) When all attributes in 6, involve only the attributes of one of the
expressions (E1) being joined:
Ugo(El Xlg Eg) = UGO(EI) Xl E2

» (b) When 6y involves only the attributes of E; and 6, involves only
the attributes of Es:
oo1n02(E1 g E2) = 091(Er) g 0g2(E2)

DBS13, SL08 52/82 M. Bohlen, ifi@uzh




Equivalence Rules/4

» ER8 The projection operation distributes over the theta join
operation as follows:

» Let Ly and L, be sets of attributes from E; and E;, respectively.

» (a) if 6 involves only attributes from Ly U Ly:
T1,0L, (E1 Mo Ex) = mp, (E1) Mg 71, (E2)

» (b) Consider a join E; My E;.
> Let L3 be attributes of E; that are involved in join condition 6, but
are not in L; U Ly, and
> Let L4 be attributes of E; that are involved in join condition 6, but
are not in L1 U L, and
T uL, (E1 WMo E2) = miun, (ot (Er) Mo m,u, (E2))
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Equivalence Rules/5

» ER9 The set operations union and intersection are commutative
EUE=EKUEK
EENE=E6ENEK
Set difference is not commutative

» ER10 Set union and intersection are associative.
(El U E2) UEs=EFKU (E2 U E3)
(El N E2) NE =EnN (E2 N E3)
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Equivalence Rules/6

» ER11 The selection operation distributes over U,N and —.
O‘Q(El — E2) = J@(El) — O’g(Ez)
Ug(El U E2) = 0’9(E1) U O'Q(E2)
Ug(El N Ez) = G@(El) N UQ(EQ)

Also O’g(El — EQ) = O’g(El) — E2
and similarly for N in place of —, but not for U

» ER12 The projection operation distributes over union
7TL(E1 U E2) = 7TL(E) U 7TL(E2)
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Review 8.6

Determine the equivalences that hold. Give counterexamples for the false
ones.

1. 0’9()(79[:(/4)) = X79F(0'9(A)), attr(9) - attr(X)

2. nx(A—B) =nx(A) — nx(B)

3. AM(B™MC) = (AXB)xC

4. ANB=AUB—(A—B)—(B—A)
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Rewrite Examples/1

v

Example 1: Bank database
» branch = (BranchName, BranchCity, Assets)
» account = (AccNumber, BranchName, Balance)
» depositor = (CustName, AccNumber)

v

Query: Find the names of all customers who have an account at
some branch located in Brooklyn.
T CustName (O BranchCity=' Brooklyn’ (branch X (account X depositor)))
» Transformation using rule ER7(a):
T CustName

(0 BranchCity="Brooklyn' (branch) X (account X depositor))

» Performing the selection as early as possible reduces the size of the
intermediate relation to be joined.
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Rewrite Examples/2

» Example 2: Multiple transformations are often needed

» Query: Find the names of all customers with an account at Brooklyn
whose balance is below $1000.

7"—Cust’Name(O—BranchCity:’ Brooklyn’ Abalance <1000
(branch X (account X depositor)))

» Rewrite using rule ER6(a) (join associativity):

T CustName (UBranchCity:’Brook/yn’/\balance< 1000
(branch X account) M depositor)

» Rewrite using rule ER7(b) (perform selection early)
UBranchCity:’Brooklyn’(branCh) bl Ubalance<1000(account)
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Rewrite Examples/3

» Example 2 (continued)
» Tree representation after multiple transformations

- T customer-name
cusiomer-name
| >
G pranch-city=Brooklyn / \
A balance < 1000
X depositon
X / \
]/ \N © branch-city=Brooklyn O patance < 1000
ranch / \
account depositor branch account
G lnial Expression Trce ) Lree Al Mulinle Tonsfonnalions
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Rewrite Examples/4

» Example 3: Projection operation
» Query:
T CustName (O BranchCity=' Brooklyn (branch) X account) X depositor)
» When we compute
JBram:hCity:’Brooklyn’(branCh) X account
we obtain an intermediate relation with schema
(BranchName, BranchCity, Assets, AccNumber, Balance)

» Push projections using equivalence rules ER8(a) and ER8(b); thus,
eliminate unneeded attributes from intermediate results:
T CustName

(7 AccNumber (O BranchCity= Brooklyn’ (branch) X account)
X depositor)
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Rewrite Examples/5

» Example 4: Join ordering
» For all relations rq, r», and r3:
(nXrR)Xrr=rNX(mnXrn)
» If rn X r3 is quite large and r; X ry is small, we choose
(rl X r2) X r3
so that we compute and store a smaller temporary relation.
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Rewrite Examples/6

» Example 5: Join ordering

» Consider the expression
T CustName (O BranchCity='Brooklyn’ (branch) X account X depositor)

» Could compute account X depositor first, and join result with

O BranchCity="'Brooklyn’ (branCh)
but account M depositor is likely to be a large relation.

» Since it is more likely that only a small fraction of the bank's
customers have accounts in branches located in Brooklyn, it is
better to compute first

O BranchCity='Brooklyn' ( branch) X account
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Review 8.7

Show how to rewrite and optimize the following SQL query:
select E.LName
from Employee E, WorksOn W, Project P
where P.PName = ’A’
and P.PNum = W.PNo
and W.ESSN = E.SSN
and E.BDate = ’31.12.1957’
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Enumeration of Equivalent Expressions

» Query optimizers use the equivalence rules to systematically
generate expressions that are equivalent to the given expression

> repeat
For each expression found so far, use all applicable
equivalence rules, and add newly generated expressions
to the set of expressions found so far
until no more expressions can be found

» This approach is very expensive in space and time

» Reduce space requirements by sharing common subexpressions:

» When E1 is generated from E2 by an equivalence rule, usually only
the top level of the two are different, subtrees below are the same and
can be shared (e.g. when applying join associativity)

» Time requirements are reduced by not generating all expressions
(e.g. take cost estimates into account)
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Evaluation Plan

» Evaluation plan (query plan/query tree): Defines exactly what
algorithm is used for each operation, and how the execution of the
operations is coordinated.

IT cstomer-name (sort to remove duplicates

4 (hash-join)

-

P (merge-join) depositor

Pipeline

b ipclV

&} branch-city=Brooklyn
(use index 1)

O balance < 1000
(use linear scan)
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Choosing Evaluation Plans

» When choosing the best evaluation plan, the query optimizer must
consider the interaction of evaluation techniques:

» Choosing the cheapest algorithm for each operation independently
may not yield best overall algorithm, e.g.

> merge join may be costlier than hash join, but may provide a sorted
output which reduces the cost for an outer level aggregation.
> nested loop join may provide opportunity for pipelining

» Practical query optimizers combine elements of the following two
broad approaches:
1. Cost-based optimization: Search all plans and choose the best plan
in a cost-based fashion.
2. Rule-based optimization: Uses heuristics to choose a plan.

DBS13, SL08 66/82 M. Bohlen, ifi@uzh

Heuristic Optimization/1

» Heuristic optimization transforms the query-tree by using a set of
heuristic rules that typically (but not in all cases) improve execution
performance.

» Overall goal of heuristic rules:

» Try to reduce the size of (intermediate) relations as early as
possible

» Heuristic rules

» Perform selection early (reduces the number of tuples)

» Perform projection early (reduces the number of attributes)

» Perform most restrictive selection and join operations before other
similar operations.

» Some (old) systems use only heuristics

» Modern database systems combine heuristics (consider some plans
only) with cost-based optimization (determine database specific cost
of each plan).
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Heuristic Optimization/2

» Example: Consider the expression oy(r X s), where 6 is on
attributes in s only.
» Selection early rule would push down the selection operator,
producing r X gg(s).
» This is not necessarily the best plan if
> relation r is extremely small compared to s,
> and there is an index on the join attributes of s,
> but there is no index on the attributes used by 6.
» The early select would require a scan of all tuples in s, which is
probably more expensive than the join
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Heuristic Optimization/3

» Steps in typical heuristic optimization

1. Break up conjunctive selections into a sequence of single selection
operations (rule ER1).

2. Move selection operations down the query tree for the earliest
possible execution (rules ER2, ER7(a), ER7(b), ER11).

3. Execute first those selection and join operations that will produce the
smallest relations (rule ERG).

4. Replace Cartesian product operations that are followed by a selection
condition by join operations (rule ER4(a)).

5. Deconstruct and move as far down the tree as possible lists of
projection attributes, creating new projections where needed (rules
ER3, ER8(a), ER8(b), ER12).

6. Identify those subtrees whose operations can be pipelined, and
execute them using pipelining.
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Cost-Based Optimization/1

Basic working of a cost-based query optimizer:
» Algorithm
1. Use transformations (equivalence rules) to generate multiple
candidate evaluation plans from the original evaluation plan.
2. Cost formulas estimate the cost of executing each operation in each
candidate evaluation plan.
» Cost formulas are parameterized by
- statistics of the input relations;
- dependent on the specific algorithm used by the operator;
- CPU time, 1/O time, communication time, main memory usage, or
a combination.
3. The candidate evaluation plan with the least total cost is selected
for execution.
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Cost-Based Optimization/2

v

Cost-based optimization can be used to determine the best join
order.

v

A good ordering of joins is important for reducing the size of
temporary results (|r|, ..., |r|").

» Consider finding the best join-order for rp X r» X ...rp,

There are (2(m — 1))!/(m — 1)! different join orders for above
expression.

» With m = 3, the number is 12
» With m =7, the number is 665,280
» With m = 10, the number is greater than 17.6 billion

v
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Cost-Based Optimization/3

» Cost-based optimization is expensive, but worthwhile for queries on
large datasets
» Typical queries have a small number m of operations; generally
m<10
» With dynamic programming time complexity of optimization with
bushy trees is O(3™).
» With m = 10, this number is 59000 instead of 17.6 billion!

» Space complexity is O(2™)
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Review 8.8
Consider a DB with the following characteristics:
» |[r1(A, B, C)| = 1000, V(C, r1) = 900
» [r2(c, D, E)| = 1500, V(C, r2) = 1100, V(E, r2) = 50
» [r3(E, F)| =750, V(E, r3) = 100
Estimate the size of r1 X r2 X r3 and determine an efficient evaluation
strategy.
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Cost-Based Optimization Example/1

v

Example: ossy—0810643773(Emp)
Statistics:
» |Emp| = 10'000 tuples
» 5 tuples per block
» Secondary BT-tree index of depth 4 on SSN
» SSN is primary key

v

v

Plan p1: full table scan

» cost(pl) = (10'000/5)/2 = 1'000 blocks
Plan p2: BT-tree lookup

» cost(p2) =4 + 1 = 5 blocks

v
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Cost-Based Optimization Example/2

v

Example: oppno>15(Emp)
Statistics:
» |Emp| = 10'000 tuples
» 5 tuples per block
» Primary index on DNo of depth 2
» 50 different departments

v

v

Plan p1: full table scan
» cost (pl) = 10'000/5 = 2'000 blocks
Plan p2: index search
» cost(p2) = 2 + (50-15)/50*(10'000/5) = 1'400 blocks

v
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Cost-Based Optimization Example/3

v

Emp Xpno=pnum Dept

Statistics:

|Emp| = 10'000 tuples ; 5 Emp tuples per block
|Dept| = 125; 10 Dept tuples per block

Hash index on Emp(DNo)

4 EmpDept result tuples per block

v

vV vy VvYyy

v

Plan pl: Block nested loop with Emp as outer loop
> cost(pl) = (10'000/5) + (10°000,/5) * (125/10) + (10'000/4)
= 30’500 10s
» (10.000/4 is cost of writing final output)

Plan p2: Indexed nested loop with Dept as outer loop and hashed
lookup in Emp
» cost(p2) = (125/10) + 125 * (10'000/125/5) + (10'000/4)
= 4’513 10s
» 10'000/125/5 is the average number of blocks/department

v
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PostgreSQL Query Optimization/1

PostgreSQL Query Optimization/2
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Summary/1

» Query evaluation techniques:

» Physical sorting:
» Physical sorting is a basic and important technique
» The same sort order should be useful to many operators and not just
one (global optimization versus local optimization)

» Evaluation techniques for selections:
» Use primary index if available; secondary index is much worse
» Equality conditions are selective and should be optimized
> Linear scan with sequential 10 is the base line for selections

» Evaluation techniques for joins:
> nested loop: base line; avoid whenever possible
> sort merge: robust and fast
» hash join: fastest; only for equality
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Summary/2

» Query optimization techniques

» Equivalence rules for relational algebra expressions (must hold for
multisets)

» Rule-based query optimization is based on heuristics (usually the
goal is to keep intermediate results as small as possible)

» Cost-based query optimization uses statistical information to find
the cheapest (or reasonably cheap) plan
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