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Disk Storage and Files

I Physical Storage Media

I Storage Access

I File Organization
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Physical Storage Media/1

I Several types of storage media exist in computer systems and are
relevant for DBMS

I The storage media can be organized into a storage hierarchy.
I Classification of storage media

I Speed with which data can be accessed
I Cost per unit of data
I Reliability

I data loss on power failure or system crash
I physical failure of the storage device

I Volatile vs. non-volatile storage
I Volatile storage: Loses contents when power is switched off
I Non-Volatile storage: Contents persist when power is switched off
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Physical Storage Media/2

I Cache
I Volatile
I Fastest and most costly form of storage
I Managed by the computer system hardware

I Main memory
I Volatile
I Fast access (x0 to x00 of nanosecs; 1 nanosec = 10−9 secs)
I Generally only a part of a database is loaded into memory

I Capacities of up to a few Gigabytes (or even Terabytes) widely used
currently

I Capacities have gone up and per-byte costs have decreased steadily
and rapidly (roughly factor of 2 every 2 to 3 years)

I If entire database is kept in memory we have a main memory database
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Physical Storage Media/3

I Flash memory (SSD)
I Non-volatile
I Reads are roughly as fast as main memory
I Writes are slow (few microseconds) and more complicated

I Data cannot be overwritten, but a block must be erased and written
over simultaneously

I Cost per unit of storage roughly similar to main memory
I Widely used in embedded devices such as digital cameras
I Also known as EEPROM (Electrically Erasable Programmable

Read-Only Memory)
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Physical Storage Media/4

I Magnetic disk
I Non-volatile
I Data is stored on spinning disk, and read/written magnetically
I Much slower access than main memory
I Much larger capacities than main memory; typically up to roughly x00

GB - 2 TB currently
I Growing rapidly with technology improvements (factor 2 to 3 every 2

years)

I Primary medium for the long-term storage of data; typically stores
entire DB.

I Data must be moved from disk to main memory for access, and
written back for storage

I Direct data access, i.e., data on disk can be read in any order, unlike
magnetic tape

I Hard disks vs. floppy disks
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Physical Storage Media/5

I Optical disk
I Non-volatile
I Data is read optically from a spinning disk using a laser
I Reads and writes are slower than with magnetic disk
I Different types

I CD-ROM (640 MB) and DVD (4.7 to 17 GB) most popular forms
I Write-one, read-many (WORM) optical disks used for archival storage
I Multiple write versions also available (CD-RW, DVD-RW, and

DVD-RAM)

I Juke-box systems, with large numbers of removable disks, a few
drives, and a mechanism for automatic loading/unloading of disks
available for storing large volumes of data.
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Physical Storage Media/6

I Tape storage
I Non-volatile
I Much slower than disk due to sequential access only
I Very high capacity (up to tens of terabytes)
I Used primarily for backup and for archival data
I Tape can be removed from drive
I Tape storage costs are much cheaper than disk storage costs.
I Tape juke-boxes available for storing massive amounts of data

I Hundreds of terabytes (1 terabyte = 1012 bytes) to even a petabyte
(1 petabyte = 1015 bytes)
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Physical Storage Media/7

I The storage media can be organized in a hierarchy according to their
speed and cost

I Primary storage: Fastest media, but
volatile

I e.g., cache, main memory

I Secondary storage:
Non-volatile,moderately fast access

I e.g., flash memory, magnetic disks
I also called on-line storage

I Tertiary storage: Non-volatile, slow
access time

I e.g., magnetic tape, optical storage
I also called off-line storage

I DBMS must explicitly deal with storage media at all levels of the
hierarchy
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Magnetic Hard Disks/1
I Most DBs are stored on magnetic disks for the following reasons:

I Generally, DBs are too large to fit entirely in main memory
I Data on disks is non-volatile
I Disk storage is cheaper than main memory

I Simplified and schematic structure of a magnetic disk
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Magnetic Hard Disks/2

I Disk controller: Interface between the computer system and the
HW of the disk drive. Performs the following tasks:

I Translates high-level commands, such as read or write a sector, into
actions of the disk HW, such as moving the disk arm or
reading/writing the sector.

I Adds a checksum to each sector
I Ensures successful writing by reading back a sector after writing it
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Magnetic Hard Disks/3

I Performance measures of hard disks
I Access time: the time it takes from when a read or write request is

issued to when the data transfer begins. Is composed of:
I Seek time: time it takes to reposition the arm over the correct track
I Avg. seek time is 1/2 the worst case seek time (2-10 ms on typical

disks)
I Rotational latency: time it takes for the sector to be accessed to

appear under the head
I Avg. latency is 1/2 the worst case latency (e.g., 4-11 ms for

5400-15000 rpm)

I Data-transfer rate: rate at which data can be retrieved from or
stored to disk (e.g., 25-100 MB/s)

I Multiple disks may share a single controller

I Mean time to failure (MTTF): average time the disk is expected
to run continuously without any failure

I Typically several years
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Storage Access Through Blocks/1

I A block is a contiguous sequence of sectors from a single track.

I Blocks are separated by interblock gaps, which hold control
information created during disk initialization.

I Logically, a block is a unit of storage allocation and data transfer.
I Data between disk and main memory is transferred in blocks.
I A database file is partitioned into fixed-length blocks.
I Typical block sizes range from 4 to 16 kilobytes

I Smaller blocks: more transfers from disk
I Larger blocks: more space wasted due to partially filled blocks
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Review 7.1
Consider relations r(A) and s(A). r is ordered, s is unordered. Block size
B = 2KB. Tuple size t = 100Bytes. |r | = |s| = 800′000 tuples. The
values of A are uniformly distributed between 5M and 10M. The time for
1 IO is 0.025 sec. Determine the execution times for the following
queries where x = r or x = s: σA=6M(x), σA<5′000′500(x), σA6=6M(x).
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Storage Access Through Blocks/2

I A major goal of DBMSs: Make the transfer of data between disk
and main memory as efficient as possible by

I Optimizing/Minimizing the disk-block access time
I Minimizing the number of block transfers
I Keeping as many blocks as possible in memory (→ buffer manager)

I Techniques to optimize disk-block access:

1. Disk arm scheduling
2. Appropriate file organization
3. Write buffers and log disks
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Storage Access Through Blocks/3

I Disk arm scheduling algorithms: Order pending accesses to tracks
so that disk arm movement is minimized

I Elevator algorithm
I Disk controller orders the requests by track (from outer to inner or

vice versa)
I Move disk arm in that direction, processing the next request in that

direction, till no more requests in that direction
I Then reverse the direction (i.e., inner to outer) and repeat the

previous two steps
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Storage Access Through Blocks/4

I File organization: Optimize block access time by organizing the
blocks to correspond to how data will be accessed

I e.g., store related information on the same or nearby cylinders.
I Files may get fragmented over time

I e.g., if data is inserted to or deleted from the file
I e.g., if free blocks on disk are scattered, which means that a newly

created file has its blocks scattered over the disk
I Sequential access to a fragmented file results in increased disk arm

movement

I Some systems have utilities to defragment the file system, in order to
speed up file access
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Storage Access Through Blocks/5

Updated blocks can be written asychnronously to increase the write
speed.

I Non-volatile write buffers: Speed up disk writes by writing blocks
to a non-volatile, battery backed up RAM or flash memory
immediately; the controller then writes to disk whenever the disk has
no other requests or request has been pending for some time.

I Even if power fails, the data is safe.
I Writes can be reordered to minimize disk arm movement.
I Database operations that require data to be safely stored before

continuing can continue immediately.

I Log disk: A disk devoted to write a sequential log of block updates
I Used exactly like non-volatile RAM
I Write to log disk is very fast since no seeks are required
I No need for special hardware.
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Review 7.2
Consider a disk as follows: block size B = 512 Bytes, interblock gap size
G = 128 Bytes, blocks per track B/T = 20, tracks per surface T/S =
400, double-sided disks D = 15, seek time st = 30 msec, 2400 rotations
per minute. Determine the following values:

1. total capacity per track

2. useful capacity per track

3. number of cylinders

4. useful capacity per cylinder
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Review 7.2
5. transfer rate tr

6. block transfer time btt

7. rotational delay rd

8. bulk transfer rate btr

9. block read time

10. time for 20 random reads

11. time for 20 sequential reads
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Buffer Manager/1

I Buffer: Portion of main memory available to store copies of disk
blocks.

I Buffer Manager: Subsystem that is responsible for buffering disk
blocks in main memory.

I The overall goal is to minimize the number of disk accesses.
I Buffer manager is similar to a virtual-memory manager of an

operating system.
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Buffer Manager/2

I Programs call the buffer manager when they need a block from disk.
I Buffer manager algorithm

1. Programs call the buffer manager when they need a block from disk.
I The requesting program is given the address of the block in main

memory.

2. If the block is not in the buffer:
I The buffer manager allocates space in the buffer for the new block

(replacing/throwing out some other block, if required).
I The block that is thrown out is written back to disk only if it was

modified since the most recent time that it was written to/fetched
from the disk.

I Once space is allocated in the buffer, the buffer manager reads the
block from the disk to the buffer, and passes the address of the block
in memory to the requesting program.

I There exist different strategies/policies to replace buffers

DBS13, SL07 23/102 M. Böhlen, ifi@uzh



Buffer Replacement Policies/1

I LRU strategy: Replace the block least recently used
I Idea: Use past pattern of block references to predict future references
I Applied successfully by most operating systems

I MRU strategy: Replace the block most recently used

I LRU can be a bad strategy in DBMS for certain access patterns
involving repeated scans of data

I Queries in DBs have well-defined access patterns (such as sequential
scans), and a database system can use the information in a user’s
query to predict future references

DBS13, SL07 24/102 M. Böhlen, ifi@uzh



Buffer Replacement Policies/2

I Example: compute a join with nested loops

for each tuple tr of r do

for each tuple ts of s do

if the tuples tr and ts match then ...

I Different access pattern for r and s
I An r-block is no longer needed, after the last tuple is processed (even

if it has been used recently), thus should be removed immediately
I An s-block is needed again after all other s-blocks are processed, thus

MRU is the best strategy
I A mixed strategy with hints on replacement strategy provided by the

query optimizer is preferable
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Review 7.3
Assume a relation r with 3 tuples and a relation s with three tuples.
Assume a block can fit 2 tuples. Illustrate how a nested loop join
processes tuples and how blocks can be used effectively if 2 blocks are
available for the join.
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Buffer Replacement Policies/3

I Pinned block: Memory block that is not allowed to be written back
to disk.

I e.g., the r-block before processing the last tuple tr

I Toss immediate strategy: Frees the space occupied by a block as
soon as the final tuple of that block has been processed

I e.g., the r-block after processing the last tuple tr

I MRU + pinned block is the best choice for the join
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Buffer Replacement Policies/4

I Buffer replacement policies in DBMS can use various
information

I Queries have well-defined access patterns (e.g., sequential scans)
I Information in a query to predict future references
I Statistical information regarding the probability that a request will

reference a particular relation.
I e.g., the data dictionary is frequently accessed.

I Heuristic: keep data dictionary blocks in main memory buffer
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File Organization

I File: A file is logically a sequence of records, where
I a record is a sequence of fields;
I the file header contains information about the file.

I Usually, a relational table is mapped to a file and a tuple to a record.
I A DBMS has the choice to

I Use the file system of the operating system (reuse code).
I Manage disk space on its own (OS independent, better optimization,

e.g., Oracle)

I Two approaches to represent files (or records) on disk blocks:
I Fixed length records (fixed-length records are simple, inflexible, and

inefficient in terms of memory)
I Variable length records (variable-length records are complex,

flexible, and efficient in terms of memory)
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Fixed-Length Records/1

I Store record i starting from byte m ∗ (i − 1), where m is the size of
each record.

I Record access is simple but records may cross blocks
I spanned organization: records can be split and span accross block

boundaries using pointers
I unspanned organization: records may not cross block boundaries;

leave free space in blocks if records do not fit

I Deletion of record i is more complicated. Several alternatives exist:

I Move records i + 1, ..., n to i , ..., n − 1

I Move record n to i

I Do not move records, but link all free
records in a free list
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Fixed-Length Records/2

I Free list
I Store the address of the first deleted record in the file header.
I Use this first record to store the address of the second deleted record,

and so on

I Note the additional field to store
pointers.

I More space efficient representations
are possible: No pointers need to be
stored in records that contain data.
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Variable-Length Records/1

I Variable-length records arise in DBMS in several ways:
I Records types that allow variable lengths for one or more fields.
I Storage of multiple record types in a file.
I Record types that allow repeating fields (used in some older models).

I There exist different methods to represent variable-length records:
I Slotted page structure is the most flexible organization of

variable-length records.
I A slotted page structure maintains a directory of slots for each page.

DBS13, SL07 32/102 M. Böhlen, ifi@uzh



Variable-Length Records/2

I Slotted page structure
I Slotted page header contains:

I number of record entries
I end of free space in the block
I location and size of each record

I Records can be moved around in a page to keep them contiguous with
no empty space between them; entry in the header must be updated.

I Pointers should not point directly to record - instead they should
point to the entry for the record in header.
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Organization of Records in Files/1

There are different ways to logically organize records in a file (this is
called the primary file organization):

I Heap file organization: A record can be placed anywhere in the
file where there is space; there is no ordering in the file.

I Sequential file organization: Store records in sequential order
based on the value of the search key of each record.

I Hash file organization: A hash function is computed on some
attribute of each record; the result specifies in which block of the
file the record is placed.

I Generally, each relation is stored in a separate file.
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Organization of Records in Files/2

I Sequential file: The records in the file are ordered by a search key
(one or more attributes)

I Records are chained together by pointers
I Suitable for applications that require sequential processing of the

entire file
I To be efficient, records should also be stored physically in search key

order (or close to it).
I Example: account(account-number,branch-name,balance)
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Organization of Records in Files/3

I It is difficult to maintain the physical order as records are inserted
and deleted.

I Deletion: Store a deletion marker with each record; use pointer chains
to build a free list

I Insertion:
I Locate the position where the record

is to be inserted
I If there is free space insert there
I If no free space, insert the record in

an overflow block

I Need to reorganize the file from time
to time to restore (physical) sequential
order
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Review 7.4
Assume a disk with the following characteristics: block size B = 512
Bytes, blocks per track = 20, tracks per surface = 400, number of
double-sided disks = 15, rotations per minute = 2400 rpm, seek time =
30 msec.

Assume a relation Emp(N 30 Bytes, SSN 9 Bytes, A 40 Bytes, P 9
Bytes) with 20’000 tuples.

Determine the following values:

1. HD capacity

2. size of 1 Emp tuple
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Review 7.4
1. blocking factory (bfr) of Emp (= number of tuples per block)

2. number of blocks used by Emp (unspanned organization)

3. number of blocks used by Emp (spanned organization)

4. average time for a linear search in Emp (contiguous file)
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Index Structures for Files

I Basic Concepts, Types of Indexes

I B+ Tree

I Hashing

I Ordered Indexing versus Hashing

I Index Definition in SQL
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Basic Concepts/1

I Indexing mechanism are used to speed up access to data
I e.g., author catalog in library, book index

I Index file: Consists of records (called index entries) of the form
(search key, pointer) where

I search key is an attribute or set of attributes used to look up records
in a data file

I pointer is a pointer to a record (database tuple) in a data file

I Duplicated search keys in an index file are allowed

I Index files are typically much smaller than the original file
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Basic Concepts/2

I Evaluation of an index must include
I Access Time
I Insertion Time
I Deletion Time
I Space overhead
I Access Type supported efficiently, e.g.,

I Records with a specific value in the attribute, e.g., persons who were
born 1970

I Reocrds with an attribute value falling in a specific range of values,
e.g., persons who were born between 1970 and 1976
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Basic Concepts/3

I Depending on the ordering of the data and the index file we can
have a

I primary index (same order of data and index; unique keys)
I clustering index (same order of data and index)
I secondary index (different order of data and index)

I Depending on what we put into the index we have a
I sparse index (index entry for some tuples only)
I dense index (index entry for each tuple)

I A primary index is usually sparse

I A clustering index is usually sparse

I A secondary index must be dense

I Note: terminology is not consistent across textbooks
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Primary Index/1

I Primary index
I In a primary index the search key order corresponds to the sequential

order of the records in the data file.
I The search key of a primary index is unique. Thus, the search key is a

candidate key (and is often the primary key).
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Primary Index/2

I Index file:
I The index file is a sequential (ordered) file. The search key appears

only once in the index file.
I For a primary index both index and data are stored on sequential files

(index file and data file)
I Designed for both efficient sequential access and random access
I One of the oldest indexing techniques in DB
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Clustering Index

I Index file:
I The index file is a sequential file. The same search key may occur

multiple times (ordered on nonkey field).
I Both index and data are stored on sequential files (index file and data

file)
I Designed for both efficient sequential access and random access
I One of the oldest indexing techniques in DB

DBS13, SL07 45/102 M. Böhlen, ifi@uzh



Secondary Indexes/1

I Secondary indexes are used to quickly find all records whose values
in a certain field (which is not the search key of the primary index)
satisfy some condition.

I Example: Consider an account relation that is stored sequentially
by account number

I Find all accounts in a particular branch
I Find all accounts with a specified balance or range of balances

I The above query can only be answered by retrieving and checking all
records (very inefficient).

I An additional (secondary) index is needed to answer such queries
efficiently.
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Secondary Indexes/2

I Secondary index: Index whose search key specifies an order
different from the sequential order of the file

I Secondary indexes are non-clustering

I Secondary indexes must be dense, i.e., they must include an index
entry for every search key value and a pointer to every record in the
data file.
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Secondary Indexes/3
I Two options for data pointers

I Duplicate index entries: an index record for every data record
I Buckets: An index record for each search key value; index record

points to a bucket that contains pointers to all the actual records
with that particular search key value

I Example: Secondary index on the balance field of the account
relation using buckets
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Review 7.5
I Relation R(A,B, ...) with 6M tuples.
I Primary index on A. Secondary index on B.
I 200 index entries per block. 50 tuples per block.
I Values of A and B are uniformly distributed in [0, 100M].
I Use indexes to answer Q1 = σ[A > 75M](r) and Q2 = σ[B > 75M](r).

Determine the number of IOs. Interpret the result.
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Sparse Index/1

I Sparse index
I Contains index records for only some search key values.
I Sparse index has (much) fewer entries than records in a table.
I Applicable when records are sequentially ordered on the search key
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Sparse Index/2

I Often a sparse index contains an index entry for every block in file.

I The index entry stores the least search key value of the block it
points to.
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Dense Index/1

I Dense index:
I An index record appears for each record in the data file.
I Dense index can get large (but still is much smaller than the data

file).
I Handling gets easier if there is exactly one entry for each record.
I Alternative definition (used in some textbooks/systems: the index

contains a record for each search key; the index record points to the
first data record with that search key value; the remaining data
records with that search key are stored sequentially
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Primary versus Secondary Indexes

I Indexes offer substantial benefits for lookups

I Updating indexes imposes overhead on DB modifications: whenever
data are modified, all index on this data must be updated too

I Primary indexes can be dense or sparse

I Secondary indexes must be dense

I Sequential scan using primary index is efficient

I A sequential scan using a secondary index is expensive since each
record access may fetch a new block from disk

I A sparse index uses less space than a dense index

I The maintenance overhead for insertion and deletion is less for a
sparse index than for a dense index

I In general a sparse index is slower than a dense index for locating
records.
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Multilevel Index/1

I If an index grows the handling becomes more expensive
I A search for a data record requires several disk block reads from the

index file
I Binary search might be used on index file: log2b disk block reads,

where b is the total number of index blocks
I If overflow blocks are used in the index file, binary search is not

applicable, and sequential scan is required: b disk block reads are
required

I To reduce the number of index block I/Os, treat primary index kept
on disk as a sequential file (like any other data file) and construct a
sparse index on it

I ⇒ multilevel index
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Multilevel Index/2

I Multilevel index
I Inner index: The primary index file on

the data
I Outer index: A sparse index on the

index

I If even outer index is too large to fit in
main memory, yet another level of
index can be created, etc.
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Multilevel Index/3

I Index search: querying
I Start at the root
I Check all entries (the entries are sorted) and follow the appropriate

pointer
I Repeat until you arrive at a leaf where the pointer points to the tuple

I Index update: deletion and insertion
I Indexes at all levels must be updated on insertion and deletion in the

data file
I Update starts with the inner index
I Algorithms are extensions of the single-level algorithms
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B+ Tree/1

I The B+ tree is a multi-level index and is an alternative to
sequential index files

I Advantage of B+ tree index files
I Automatically maintains as many levels of index as appropriate
I Automatically reorganizes itself with small, local changes in the face

of insertions and deletions
I reorganization of entire file is not required to maintain performance

I Disadvantage of B+ tree
I Extra insertion and deletion overhead as well as space overhead

I Advantages of B+ trees by far outweigh disadvantages, and they are
used extensively
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B+ Tree/2

I B+ tree: a rooted tree with the following properties

P0 K1 P1 ... Km−1 Pm−1

P1 K1 ... Pm−1 Km−1 Pm

I Balanced tree, i.e., all paths from root to leaf are of the same length
(at most dlogdm/2e(K )e for K search key values)

I A node contains up to m − 1 search key values and m pointers, and
the search key values within a node are sorted

I Nodes are between half and completely full
I Internal nodes have between dm/2e and m children
I Leaf nodes have between d(m − 1)/2e and m - 1 search key values
I Root node: If it is a leaf, it can have between 0 and m − 1 search

key values; otherwise, it has at least 2 children
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Terminology and Notation

I A pair (Pi ,Ki ) in a leaf node is an entry

I A pair (Ki ,Pi ) in an internal (i.e., non-leaf) node is an entry

I L[i ] denotes the value of the ith entry in node L

I Data pointers are stored at leaf nodes only

I Leaf nodes are linked together: the last pointer in a node points to
the next leaf node.

I Note that there are many small variations of B+ tree; textbooks
differ; stick to approach described on these slides.
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B+ Tree Node Structure/1

P1 K1 P2 K2
... Pm−1 Km−1 PmI Leaf nodes

I K1, . . . ,Km−1 are the search key values
I P1, ...,Pm−1 are pointers to records or buckets of records (for leaf

nodes)
I The search keys in a node are ordered: K1 < K2 < K3 < ... < Km−1

I Pi points to the database tuples with search keys X equal to Ki

I P1,. . . ,Pm−1 either point to a file record with search key value Ki

(unique) or to a bucket of pointers to file records with search key
value Ki (non-unique)

I Bucket structure is only needed if search key does not form a primary
key

I Pointer Pm points to next leaf node in search key order
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B+ Tree Node Structure/2

P0 K1 P1 K2 P2
... Km−1 Pm−1I Internal nodes

I Form a multi-level sparse index on the leaf nodes

I P0, ...,Pm−1 are pointers to children (for non-leaf nodes)

I Pi points to a subtree with search keys X such that Ki ≤ X < Ki+1

I P0 points to the subtree where all search key values are less than K1

I For 1 ≤ i < m − 1: Pointer Pi points to the subtree where all search
key values are greater than or equal to Ki and less than Ki+1

I Pointer Pm−1 points to the subtree where all search key values are
greater than or equal to Km−1
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Example of B+ Tree/1

I B+ tree for account file (m=5 pointers per node)
I Leaf nodes: between 2 and 4 search key values (d(m − 1)/2e and

m − 1)
I Non-leaf nodes other than root: between 3 and 5 children (d(m/2e

and m))
I Root node: at least 2 children

Perryridge

Brighton Downtown Mianus Perryridge Redwood Round Hill
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Example of B+ Tree/2

I B+ tree for account file (m=3)
I Leaf nodes: between 1 and 2 search key values (d(m − 1)/2e and

m − 1)
I Non-leaf nodes other than root: between 2 and 3 children (d(m/2e

and m))
I Root node: at least 2 children

Perryridge

Mianus Redwood

Brighton Downtown Mianus Perryridge Redwood Round Hill
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Observations about B+ Trees/1

I B+ tree for account file
I Since the inter-node connections are done by pointers, logically close

blocks need not be physically close
I gives flexibility
I increases times for seeks and latency

I The non-leaf levels of the B+ tree form a hierarchy of sparse indexes
(= multilevel index on leaf nodes)

I The B+ tree contains a relatively small number of levels
I dlogdm/2e(K)e for K search key values in the file
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Observations about B+ Trees/2

I Search is efficient, since only a small number of index blocks
need to be read

I Compare to the log2(b) disk block reads for binary search in
sequential index files

I Typically the root node and perhaps the first level nodes are kept in
main memory, which further reduces the disk block reads.

I Insertions and deletions to the main file can be handled
efficiently, as the index can be restructured in logarithmic time
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Queries on B+ Trees/1

I Steps to find all records with a search key value of k (we
assume a dense index):

1. Set C = root node
2. while C is not a leaf node do

Search for the largest search key value ≤ k
if such a value exists, assume it is Ki

then set C = the node pointed to by Pi

else set C = the node pointed to by P0

3. If there is a key value Ki in C such that Ki = k
then follow pointer Pi to the desired record or bucket
else no record with search key value k exists
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Queries on B+ Trees/2

I Example: Find all records with a search key value equal to Mianus
I Start from the root node
I No search key ≤ Mianus exists, thus follow P0

I Mianus is the largest search key ≤ Mianus, thus follow P1

I search key = Mianus exists, thus follow the first data pointer to fetch
record

Perryridge

Mianus Redwood

Brighton Downtown Mianus Perryridge Redwood Round Hill
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Queries on B+ Trees/3

I In processing a query, a path is traversed in the tree from the root
to some leaf node

I For K search key values in the data file, the path length is at most
dlogdm/2e(K )e

I A node generally corresponds to a disk block, typically 4KB, and m
is typically ≈ 400 (10 bytes per index entry)

I With 1 million search key values and m = 400, at most
log200(1, 000, 000) = 3 nodes are accessed in a lookup

I Contrast this with a balanced binary tree (or binary search) with 1
million search key values: around 20 nodes are accessed in a lookup

I This difference is significant since every node access may need a disk
I/O, costing around 20 milliseconds.
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Intuition for B+ Tree Insertions/1

I Insert a record with search key value of k
1. Find the leaf node in which the search key value would appear
2. If the search key value is already there then

I Add record to the data file

3. If the search key value is not there and leaf is not full then
I Add record to the data file
I Insert (pointer, key-value) pair in the leaf node such that the search

keys are still in order

4. If search value is not there and leaf is full then

4.1 Take all entries (including the new one being inserted) in sorted order;
place the first half in the original node and the rest in a new node

4.2 Insert the smallest entry of the new node into the parent of the node
being split

4.3 If the parent is full then split it and propagate the split further up

I Splitting proceeds upwards until a node that is not full is
found

I In the worst case the root node may be split, increasing the height of
the tree by 1
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B+ Tree Insertion Algorithm

Algorithm 1: B+TreeInsert(L,k,p)

if L is not yet full then
insert (k,p) into L

else
create new node L’;
if L is a leaf then

L := L + (k, p); k ′ := Ld(m + 1)/2e ;
move entries greater or equal to k’ from L to L’;

else
L := L + (k, p); k ′ := Ldm/2e ;
move entries greater or equal to k’ from L to L’;
delete entry with value k’ from L’

if L is not the root then B+TreeInsert(parent(L),k’,L’);
else create new root with children L and L’ and value k’
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B+ Tree Insertions/3

I Example:

I B+ tree before insertion of Clearview
Perryridge

Mianus Redwood

Brighton Downtown Mianus Perryridge Redwood Round Hill

I B+ tree after insertion of Clearview

Perryridge

Clearview Mianus Redwood

Brighton Clearview Downtown Mianus Perryridge Redwood Round Hill
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Review 7.6
Assume an empty B+ tree of order 4. Show the B+ tree after the
following insertions: +2 +3 +5 ; +7 ; +11 ; +17 ; +19 +23 ; +29 +31
; +8 +9 ; Show the B+ tree at the points indicated by a semicolon.
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Intuition for B+ Tree Deletions/1

I Deletion of a record with search key k
1. Find leaf node with (pointer, key-value) entry; remove entry
2. If the node has too few entries due to the removal, and the entries in

the node and a sibling fit into a single node then
I Coalesce siblings, i.e., insert all search key values in the two nodes

into a single node (the one on the left if it exists; the right otherwise)
and delete the other node

I Delete the entry in parent node that is between the two nodes by
applying the deletion procedure recursively

3. If the node has too few entries due to the removal, and the entries in
the node and a sibling do not fit into a single node then

I Redistribute the pointers between the node and a sibling such that
both have more than the minimum number of entries

I Update the corresponding search key value in the parent of the node

I Node deletions may cascade upwards till a node with dm/2e or more
pointers is found. If the root node has only one pointer after
deletion, it is deleted and the child becomes the root.
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B+ Tree Deletion Algorithm
Algorithm 2: B+TreeDelete(L,k,p)

delete (p,k) from L;
if L is root with one child then root := child;
else if L has too few entries then

L’ is previous sibling of L [next if there is no previous] ;
k’ is value in parent that is between L and L’;
if entries L and L’ fit on one page then

if L is leaf then move entries from L to L’;
else move k’ and all entries from L to L’;
B+TreeDelete(parent(L),k’,L)

else
if L is leaf then

move last [first] entry of L’ to L;
replace k’ in parent(L) by value of first entry in L [L’];

else
move [first] last entry of L’ to L;
replace k’ in parent(L) by value of first entry of L [L’];
replace value of first entry in L [L’] by k’;
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B+ Tree Deletions/3

I Example: Before deleting Downtown

Perryridgs

Downtown Mianus Redwood

Brighton Clearview Downtown Mianus Perryridge Redwood Round Hill

I After deleting Downtown

Perryridgs

Mianus Redwood

Brighton Clearview Mianus Perryridge Redwood Round Hill

I The removal of the leaf node containing Downtown do not result in
its parent having too little pointers. So the cascaded deletions
stopped with the deleted leaf node’s parent.
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B+ Tree Deletions/4

I Example: Before deleting Perryridge
Perryridge

Mianus Redwood

Brighton Clearview Mianus Perryridge Redwood Round Hill

I After deleting Perryridge

Mianus Perryridge

Brighton Clearview Mianus Redwood Round Hill

I Node with Perryridge becomes underfull and is merged with its
sibling.

I As a result Perryridge node’s parent becomes underfull, and is
coalesced with its sibling (and an entry is deleted from their
parent).

I Root node then has only one child and is deleted.
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B+ Tree Deletions/5

I Example: Before deleting Perryridge

Perryridge

Downtown Mianus Redwood

Brighton Clearview Downtown Mianus Perryridge Redwood Round Hill

I After deleting Perryridge

Mianus

Downtown Perryridge

Brighton Clearview Downtown Mianus Redwood Round Hill

I Parent of leaf containing Perryridge became underfull and borrowed
a pointer from its left sibling (redistribute entries).

I Search key value in the parent’s parent changes as a result.
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Review 7.7
Consider the final B+ tree from review 7.6. Show the B+ trees after the
following operations: -19 ; -17 -11 ; -9 ; -8 ; Show the B+ tree at the
points indicated by a semicolon.
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Static Hashing/1

I Disadvantage of sequential and B+ tree index file
organization

I B+ tree: index structure must be accessed to locate data
I Sequential file: binary search on large file might be required
I This leads to additional block IO

I Hashing
I provides a way to avoid index structures and to access data directly
I provides also a way of constructing indexes

I A bucket is a unit of storage containing one or more records
(typically a disk block; possibly multiple contiguous disk blocks).
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Static Hashing/2

I Hash file organization
I We obtain the bucket where a record is stored directly from its search

key value using a hash function.
I Constant access time
I Avoids the use of an index

I Hash function h: A function from the set of all search key values K
to the set of all bucket addresses B.

I Function h is used to locate records for access, insertion, and deletion.
I Records with different search key values may map to the same bucket;

thus entire bucket has to be searched sequentially to locate a record.
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Static Hashing/3

I Example: Hash file organization of account file, using branch-name
as key

I 10 buckets

I Binary representation of the ith
character is assumed to be i, e.g.
binary(B) = 2

I Hash function h
I Sum of the binary representations

of the characters modulo 10, e.g.,
I h(Perryridge) = 5
I h(Round Hill) = 3
I h(Brighton) = 3

DBS13, SL07 81/102 M. Böhlen, ifi@uzh



Hash Functions/1

I Worst hash function maps all search key values to the same bucket
I This makes access time proportional to the number of search key

values in the file.

I An ideal hash function has the following properties:
I The distribution is uniform, i.e., each bucket is assigned the same

number of search key values from the set of all possible values.
I The distribution is random, so in the average case each bucket will

have the same number of records assigned to it irrespective of the
actual distribution of search key values in the file.

DBS13, SL07 82/102 M. Böhlen, ifi@uzh



Hash Functions/2

I Example: 26 buckets and a hash function that maps branch names
beginning with the i-th letter of the alphabet to the i-th bucket

I Simple, but not a uniform distribution, since we expect more branch
names to begin, e.g., with B and R than Q and X.

I Example: Hash function on the search key balance by splitting the
balance into equal ranges: 1 - 10000, 10001 - 20000, etc.

I Uniform but not random distribution

I Typical hash function: Perform computation on the internal binary
representation of the search key.

I e.g., for a string search key, add the binary representations of all
characters in the string and return the sum modulo the number of
buckets
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Bucket Overflow/1

I Bucket overflow: If a bucket has not enough space, a bucket
overflow occurs; two reasons for bucket overflow

I Insufficient buckets: the number of buckets nB must be chosen to
be nB > n/f, where n = total number of records and f = number of
records in bucket

I Skew in distribution of records: A bucket may overflow even when
other buckets still have space. This can occur due to two reasons:

I multiple records have same search key value
I hash function produces non-uniform distribution of key values

I Although the probability of bucket overflow can be reduced, it
cannot be eliminated!

I Handled by using overflow buckets
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Bucket Overflow/2

I Overflow chaining (closed hashing)
I If a record is inserted into bucket b, and b is already full, an overflow

bucket is provided, where the record is inserted
I The overflow buckets of a given bucket are chained together in a list.
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Hash Indexes

I Hash index: organizes the search key values with their associated
record pointers into a hash file structure.

I Buckets contain search keys and pointers to the data records
I Multiple (search key, pointer)-pairs might be required (different from

index-sequential file)

I Example: Index on account
I h: Sum of digits in

account-number modulo 7
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Deficiencies of Static Hashing/1

I In static hashing, the fixed set B of bucket addresses presents a
serious problem

I Databases grow and shrink with time
I If initial number of buckets is too small, performance will degrade due

to too much overflows.
I If file size at some point in the future is anticipated and number of

buckets allocated accordingly, significant amount of space is wasted
initially.

I If database shrinks, again space will be wasted
I One option is periodic re-organization of the file with a new hash

function, but it is very expensive.

I These problems can be avoided by using techniques that allow the
number of buckets to be modified dynamically

I ⇒ dynamic hashing
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Deficiencies of Static Hashing/2

I Dynamic hashing: Allows the hash function to be modified
dynamically.

I Extendable hashing: one form of dynamic hashing
I Hash function h generates values over a large range - typically b-bit

integers, with b = 32.
I At any time use only a prefix of h to index into the bucket address

table
I Let the size of the prefix be i bits, 0 ≤ i ≤ 32

I Bucket address table has size = 2i

I Value of i grows and shrinks as the size of DB grows and shrinks;
initially i = 0

I The actual number of buckets is ≤ 2i

I Multiple entries in the bucket address table may point to the same
bucket.

I All such entries have a common hash prefix, ij ≤ i, which is stored
with each bucket j

I The number of buckets changes dynamically due to coalescing and
splitting of buckets.
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Extendable Hashing

I General structure of extendable hashing
I i indicates the number of bits that are used from the hash value.
I Consecutive entries may point to the same bucket (leads to a smaller

prefix associated with this bucket).
I In this structure, i2 = i3 = i = 2, whereas i1 = i − 1 = 1 (thus, two

entries point to bucket 1)
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Lookup in Extendable Hashing

I Lookup: Locate the bucket containing search key value Kj

1. Compute h(Kj) = X
2. Use the first i (hash prefix) high order bits of X as a displacement

into the bucket address table, and follow the pointer to the
appropriate bucket
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Updates in Extendable Hashing/1

I Insertion of a record with search key value Kj

1. Use lookup to locate the bucket, say bucket j
2. If there is room in bucket j then

I Insert the record in the bucket.

3. Else
I The bucket must be split and insertion re-attempted
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Updates in Extendable Hashing/2

I Split a bucket j when inserting search key value Kj
I If i > ij (more than one pointer to bucket j) then

I Allocate a new bucket z, and set ij and iz to the old ij + 1.
I Update bucket address table entries that point to j according to

prefix (some will now point to z)
I Remove and reinsert each record in bucket j.
I Recompute new bucket for Kj and insert record in the bucket (further

splitting is required if the bucket is still full).

I If i = ij (only one pointer to bucket j) then
I Increment i and double the size of the bucket address table.
I Replace each entry in the table by two entries that point to the same

bucket.
I Recompute new bucket address table entry for Kj

I Overflow buckets needed instead of splitting (or in addition) in some
cases, e.g., too many records with same hash value.
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Updates in Extendable Hashing/3

I Deletion of a key value K

1. Locate K in its bucket and remove it (search key from bucket and
record from the file).

2. The bucket itself can be removed if it becomes empty (with
appropriate updates to the bucket address table).

3. Coalescing of buckets can be done (can coalesce only with a buddy
bucket having same value of ij and same ij -1 prefix, if it is present).

4. Decreasing bucket address table size is also possible.

I Note: Decreasing bucket address table size is an expensive
operation and should be done only if number of buckets becomes
much smaller than the size of the table
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Review 7.8
Consider the following hash function: h(Brighton) = 0010, h(Downtown)
= 1010, h(Mianus) = 1100, h(Perryridge) = 1111, h(Redwood) = 0011.
Assume a bucket size of two and extendable hashing with an address
table size of 1. Show the hash table after the following modifications:

I insert 1 Brighton and 2 Downtown records
I insert 1 Mianus record
I insert 1 Redwood record
I insert 3 Perryridge records
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Extendable Hashing: Discussion

I Benefits of extendable hashing
I Hash performance does not degrade with growth of file
I Minimal space overhead
I No buckets are reserved for future growth, but are allocated

dynamically.

I Disadvantages of extendable hashing
I Extra level of indirection to find desired record
I Bucket address table may itself become very big (larger than

memory)
I Need a tree structure to locate desired record in the structure

I Changing size of bucket address table is expensive
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Ordered Indexing versus Hashing

I Cost of periodic re-organization
I Hashmaps (e.g., Google’s sparse and dense hash maps) do not

provide constant insert/lookup time because of reorganization

I Relative frequency of insertions and deletions
I B+ trees are better than hashing if there are many database updates

I Is it desirable to optimize average access time at the expense of
worst-case access time?

I Hashing has a better average time but no worst case guarantees

I Expected type of queries:
I Hashing is generally better at retrieving records having a specified

value of the key.
I If range queries are common, ordered indexes are to be preferred

I There is no ordering in hash organization, and hence there is no
notion of ”next record in sort order”.
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Berkeley DB
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Index Definition in SQL

I SQL-92 does not define syntax for indexes because these are not
considered part of the logical data model

I All DBMSs (must) provide support for indexes

I Create an index:

create index <IdxName> on <RelName> (<AttrList>)
E.g,: create index BrNaIdx on branch (branch-name)

I Create unique index to indirectly specify and enforce the condition
that the search key is a candidate key.

I Not really required if SQL unique integrity constraint is supported

I To drop an index: drop index <index-name>

E.g,: drop index BrNaIdx
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Indexes in PostgreSQL

I CREATE [UNIQUE] INDEX name ON table name
”(” col [DESC] { ”,” col [DESC] } ”)” [. . . ]

I CREATE INDEX MajIdx ON Enroll (Major);

I CREATE INDEX MajIdx ON Enroll USING HASH (Major);

I CREATE INDEX MajMinIdx ON Enroll (Major, Minor);

I Properties of indexes:
I Indexes are automatically maintained as data are inserted, deleted,

and updated.
I Indexes slow down database modification statements.
I Creating an index can take a long time.
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Indexes in Oracle

I B+ tree indexes in Oracle

CREATE [UNIQUE] INDEX name ON table name
”(” col [DESC] { ”,” col [DESC] } ”)” [pctfree n] [. . . ]

I pct free specifies how many percent of a index page are left unfilled
initially (dafult to 10%)

I In index definitions UNIQUE should not be used because it is a logical
concept.

I Oracle creates a B+ Tree index for each unique (and primary key)
declaration.

CREATE TABLE BOOK (
ISBN INTEGER, Author VARCHAR2 (30) , . . . );

CREATE INDEX book auth ON book(Author);

I Creating a hash-partitioned global index:

CREATE INDEX CustLNameIX ON customers (LName)
GLOBAL PARTITION BY HASH (LName) PARTITIONS 4;
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Summary/1

I Physical storage media
I storage hierarchy: cache, RAM, flash, disk, optical disk, tape, ...

I Accessing the storage
I block-based access:

I know characteristics of disks
I compute number of IOs
I compute execution time

I buffer manager

I Organization of files
I fixed-length record, variable-length record
I heap file (unordered), sequential file (ordered), hash file
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Summary/2

I Definition of and differences between index types
I primary, clustering and secondary index
I dense and sparse index

I B+ tree
I universal database access structure; also for range predicates
I definition (node, leaf, non-leaf, entry)
I insertion and deletion

I Hashing
I static and extendable hashing
I no index structure needed for primary index (hash function gives

record location directly)
I good for equality predicates (used heavily in applications)

I Index definition in SQL
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