
Database Systems
Spring 2013

Database Programming
SL04

I Views

I Recursive Queries

I Integrity Constraints

I Functions and Procedural Constructs

I Triggers

I Accessing Databases

DBS13, SL04 1/62 M. Böhlen, ifi@uzh

Literature and Acknowledgments

Reading List for SL04:

I Database Systems, Chapters 5 (5.2 and 5.3) and 12, Sixth Edition,
Ramez Elmasri and Shamkant B. Navathe, Pearson Education, 2010.

These slides were developed by:

I Michael Böhlen, University of Zürich, Switzerland

I Johann Gamper, Free University of Bozen-Bolzano, Italy

The slides are based on the following text books and associated material:

I Fundamentals of Database Systems, Fourth Edition, Ramez Elmasri
and Shamkant B. Navathe, Pearson Addison Wesley, 2004.

I A. Silberschatz, H. Korth, and S. Sudarshan: Database System
Concepts, McGraw Hill, 2006.

DBS13, SL04 2/62 M. Böhlen, ifi@uzh

Views

I Purpose of views

I Creation and use of views

I Handling views in the DBMS

I Temporary views

DBS13, SL04 3/62 M. Böhlen, ifi@uzh

Views/1

I A view is a table whose rows are not stored in the database. The
rows are computed when needed from the view definition.

I This is useful in cases where
I it is not desirable for all users to see the entire logical model (that is,

all the actual tables stored in the database), or
I the user wants to access computed results (rather than the actual

data stored on the disk)

I Consider a person who needs to know a customer’s name, loan
number and branch name, but has no need to see the loan amount.
This person should see a relation described, in SQL, by

select CustName, borrower .LoanNr ,BranchName
from borrower , loan
where borrower .LoanNr = loan.LoanNr

I A view provides a mechanism to hide data from the view of users, or
to give users direct access to the results of (complex) computations.

DBS13, SL04 4/62 M. Böhlen, ifi@uzh

Views/2

I A view is defined using the create view statement which has the
form

create view v as <query expression>

where <query expression> is any legal SQL expression. The view
name is represented by v .

I Once a view is defined, the view name can be used to refer to the
virtual relation that the view generates.

I When a view is created, the query expression is stored in the
database.

I Any table that is not of the conceptual model but is made visible to
a user as a “virtual table” is called a view.

DBS13, SL04 5/62 M. Böhlen, ifi@uzh

Views/3

I A view consisting of branches and their customers:

create view all customer as
(select BranchName,CustName
from depositor , account
where depositor .AccNr = account.AccNr)
union
(select BranchName,CustName
from borrower , loan
where borrower .LoanNr = loan.LoanNr)

I Find all customers of the Perryridge branch:

select CustName
from all customer
where branche name = ‘Perryridge’

DBS13, SL04 6/62 M. Böhlen, ifi@uzh

Views/4

I The view definition is stored in the meta database.

I The meaning of a query expression that includes views is defined
through view expansion.

I The view expansion of an expression repeats the following
replacement step:

repeat
Find any view relation vi in e1

Replace the view relation vi by the expression defining vi
until no more view relations are present in e1

I As long as the view definitions are not recursive, this loop will
terminate

DBS13, SL04 7/62 M. Böhlen, ifi@uzh

Views/5

I Tables and views can be used interchangeably in queries.

I Tables and views behave differently wrt modification operations.

I Updates to views are restricted. No broad consensus/standard exists
and DBMSs behave differently.

I Roughly, a view shall be updatable if the database system can
determine the reverse mapping from the view schema to the schema
of the underlying base tables.

I The exact definition of updatable views has been enlarged
significantly from SQL-1992 to SQL:1999 (cf. below).

DBS13, SL04 8/62 M. Böhlen, ifi@uzh

Review 4.1
Discuss the behavior of following piece of SQL code.

create view GoodStudents (sid, gpa) as

select sid, gpa

from students

where gpa > 3.0;

insert into GoodStudents values (51234, 2.8);

DBS13, SL04 9/62 M. Böhlen, ifi@uzh

Views/6

I In SQL-92 a view is updatable if it is defined on a single table using
projections and selections with no use of aggregate operations.

I An SQL-92 view is not updatable if the defining query expression
satisfies one of the following conditions:

1. the keyword DISTINCT is used in the view definition
2. the select list contains components other than column specifications,

or contains more than one specification of the same column
3. the FROM clause specifies more than one table reference or refers to

a non-updatable view
4. the GROUP BY clause is used in the view definition
5. the HAVING clause is used in the view definition

DBS13, SL04 10/62 M. Böhlen, ifi@uzh

Views/7

I In SQL:1999 primary key constraints are taken into account for
defining updatability of views.

I With this also views defined through a join can be updated.

I Intuitively, an column of a view is updatable if it can be traced back
to a unique tuple in one of the underlying tables (i.e., each base
tuple appears at most once in the view).

I There are views that can be modified by updating rows and there
are views into which tuples can be inserted.

I View defined through set operations (union, except, intersect)
cannot be inserted into but might be modifiable.

DBS13, SL04 11/62 M. Böhlen, ifi@uzh

With Clause/1

I The with clause provides a way of defining temporary views whose
definition is available only to the query in which the with clause
occurs.

I The with clause is useful to structure complex SQL statements and
eliminate code repetitions.

I Find all accounts with the maximum balance

with
max balance (Value) as (

select max(Balance)
from account

)
select AccNr
from account,max balance
where account.Balance = max balance.Value

DBS13, SL04 12/62 M. Böhlen, ifi@uzh

With Clause/2

I Find all branches where the total account deposit is greater than the
average of the total account deposits at all branches.

with
branch total (BranchName,Value) as (

select BranchName, sum(Balance)
from account
group by BranchName

),
branch total avg (Value) as (

select avg(Value)
from branch total

)
select BranchName
from branch total , branch total avg
where branch total .Value > branch total avg .Value

DBS13, SL04 13/62 M. Böhlen, ifi@uzh

Review 4.2
Consider the DDL statements:

create table account(AccNr integer primary key,

BranchName char(9), Balance integer);

create table depositor(AccNr integer, CustName char(9),

primary key(AccNr, CustName));

create view v as

select CustName, BranchName

from depositor natural join account;

Explain the behavior of the following statements:

update v set BranchName = ’P’ where CustName = ’J’;

update v set CustName = ’M’ where CustName = ’J’;

DBS13, SL04 14/62 M. Böhlen, ifi@uzh

Recursion in SQL

I Recursive views in SQL-1999

I Example of a recursive view

DBS13, SL04 15/62 M. Böhlen, ifi@uzh

Recursion in SQL

I SQL:1999 permits recursive view definition

I Example: find all employee-manager pairs, where the employee
reports to the manager directly or indirectly (that is manager’s
manager, manager’s manager’s manager, etc.)

with recursive empl(EmpName,MgrName) as (
select EmpName,MgrName
from manager
union
select manager .EmpName, empl .MgrName
from manager , empl
where manager .MgrName = empl .EmpName)

select *
from empl

This example view, empl , is called the transitive closure of the
manager relation

DBS13, SL04 16/62 M. Böhlen, ifi@uzh

The Power of Recursion

I Recursive views make it possible to write queries, such as transitive
closure queries, that cannot be written without recursion or
iteration.

I Intuition: Without recursion, a non-recursive non-iterative program
can perform only a fixed number of joins of manager with itself

I This can give only a fixed number of levels of managers
I Given a program we can construct a database with a greater number

of levels of managers on which the program will not work

I Computing transitive closure
I The next slide shows a manager relation
I Each step of the iterative process constructs an extended version of

empl from its recursive definition.
I The final result is called the fixpoint of the recursive view definition.

I Recursive views are required to be monotonic . That is, if we add
tuples to manager the view contains all of the tuples it contained
before, plus possibly more.

DBS13, SL04 17/62 M. Böhlen, ifi@uzh

Example of Fixed-Point Computation

manager

EmpName MgrName

Alon Barinsky

Barinsky Estovar

Corbin Duarte

Duarte Jones

Estovar Jones

Jones Klinger

Rensal Klinger

Iteration nr Tuples added to empl

1 (A,B), (B,E), (C,D), (D,J), (E,J), (J,K), (R,K)

2 (A,E), (B,J), (C,J), (D,K), (E,K)

3 (A,J), (B,K), (C,K)

4 (A,K)

DBS13, SL04 18/62 M. Böhlen, ifi@uzh

Integrity Constraints

I Domain constraints

I Not null constraints

I Primary keys

I Check constraint

I Referential integrity (foreign keys)

I Assertions

DBS13, SL04 19/62 M. Böhlen, ifi@uzh

Integrity Constraints/1

I Integrity constraints guard against damage to the database, by
ensuring that changes to the database do not result in a loss of data
consistency.

I A checking account must have a balance greater than $10,000
I A salary of a bank employee must be at least $4.00 an hour.
I A customer must have a (non-null) phone number.
I A customer can only get a loan if she has an account.

I An integrity constraint is a closed first order formula that must be
true, i.e., that each database instance must satisfy.

I Example: ∀B(account(, ,B) ⇒ B < 10M)

I SQL offers special-purpose syntax and efficient checking
mechanisms for the most important classes of integrity constraints.

DBS13, SL04 20/62 M. Böhlen, ifi@uzh

Integrity Constraints/2

Integrity constraints on single relations:

I domain constraints

I not null

I primary key

I unique

I check(P), where P is a predicate over a single relation

Integrity constraints on multiple relations:

I foreign key

I check(P), where P is a predicate over multiple relations

I assertion

DBS13, SL04 21/62 M. Böhlen, ifi@uzh

Domain Constraints

I Domain constraints are the most elementary form of integrity
constraints. They check values inserted in the database, and they
check queries to ensure that the comparisons make sense.

I New domains can be created from existing data types

I Example:

create domain Dollars integer
create domain Pounds integer

I We cannot assign or compare a value of type Dollars to a value of
type Pounds.

I However, we can convert values of type Dollar as follows:

cast(r .Amnt/1.5 as Pounds)

DBS13, SL04 22/62 M. Böhlen, ifi@uzh

Not Null Constraint

I Declare BranchName for branch to be not null

BranchName char(15) not null

I Declare the domain Dollars to be not null

create domain Dollars integer not null

DBS13, SL04 23/62 M. Böhlen, ifi@uzh

Primary Key

I A primary key ensures that an attribute value is not null and unique
across all rows of a table. Therefore it can be used to identify a
unique row in a table, and is used for query optimization.

I Primary and candidate keys and foreign keys can be specified as part
of the SQL create table statement:

I The primary key clause lists attributes that comprise the primary
key.

I Example:
create table customer (

CustName char(20),
CustStreet char(30),
CustCity char(30),
primary key (CustName))

DBS13, SL04 24/62 M. Böhlen, ifi@uzh

The Unique Constraint

I unique (A1,A2, . . . ,Am)

I The unique specification states that the attributes
A1,A2, . . . ,Am

form a candidate key.

I Candidate keys are permitted to be null (in contrast to primary
keys).

DBS13, SL04 25/62 M. Böhlen, ifi@uzh

The check Clause/1

I check (P), where P is a predicate
Example: Declare BranchName as the primary key for branch and
ensure that the values of assets are non-negative.

create table branch (
BranchName char(15),
BranchCity char(30),
Assets integer,
primary key (BranchName),
check (Assets >= 0))

I Note that with subqueries (not exists, etc) the check constraint can
become very general. Implementations limit the predicates that are
allowed in the check clause.

DBS13, SL04 26/62 M. Böhlen, ifi@uzh

Referential Integrity/1

I Ensures that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another
relation.

I Example: If “Perryridge” is a branch name appearing in one of the
tuples in the account relation, then there exists a tuple in the branch
relation for branch “Perryridge”.

I Foreign keys can be specified as part of the SQL create table
statement.

I The foreign key clause lists the attributes that comprise the foreign
key and the name of the relation referenced by the foreign key. By
default, a foreign key references the primary key attributes of the
referenced table.

DBS13, SL04 27/62 M. Böhlen, ifi@uzh

Referential Integrity/2

Examples of integrity constraints:

create table customer(
CustomerName char(20),
CustStreet char(30),
CustCity char(30),
primary key (CustomerName))

create table branch(
BranchName char(15),
BranchCity char(30),
Assets integer,
primary key (BranchName))

DBS13, SL04 28/62 M. Böhlen, ifi@uzh

Referential Integrity/3

Examples of integrity constraints:

create table account (
AccNr char(10),
BranchN char(15),
Balance integer,
primary key (AccNr),
foreign key (BranchN) references branch)

create table depositor (
CustName char(20),
AccNum char(10),
primary key (CustName,AccNum),
foreign key (AccNum) references account,
foreign key (CustName) references customer)

DBS13, SL04 29/62 M. Böhlen, ifi@uzh

Review 4.3
Assume tables p(X) and q(Y). p.X is a primary key. q.Y is a foreign key
that references p.X

1. Use a check constraint to formulate the foreign key constraint.
2. Formulate a query that returns an empty result if the foreign key is

satisfied and a non-empty result otherwise.

DBS13, SL04 30/62 M. Böhlen, ifi@uzh

Assertions/1

I An assertion is a predicate expressing a condition that the database
must satisfy.

I An assertion in SQL takes the form

create assertion <assertion-name> check <predicate>

I When an assertion is made, the system tests it for validity, and tests
it again on every update that might violate the assertion.

I This testing may introduce a significant amount of overhead; hence
assertions should be used with care.

I Asserting
∀X (P(X))

is achieved using
¬∃¬(P(X))

DBS13, SL04 31/62 M. Böhlen, ifi@uzh

Assertion/2

I Every loan has at least one borrower who maintains an account with
a minimum balance or $1000.00

create assertion balance constraint check
(not exists (

select *
from loan
where not exists (

select *
from borrower , depositor , account
where loan.LoanNr = borrower .LoanNr

and borrower .CustName = depositor .CustName
and depositor .AccNr = account.AccNr
and account.Balance >= 1000)))

DBS13, SL04 32/62 M. Böhlen, ifi@uzh

Assertion/3

I The sum of all loan amounts for each branch must be less than the
sum of all account balances at the branch.

create assertion sum constraint check
(not exists (select *

from branch
where

(select sum(Amount)
from loan
where loan.BranchName = branch.BranchName)
>=
(select sum(Balance)
from account
where loan.BranchName = branch.BranchName)))

DBS13, SL04 33/62 M. Böhlen, ifi@uzh

Review 4.4
Consider the tables

create table branch(BranchName char(9),

BranchCity char(9), Assets integer);

create table account(AccNr integer primary key,

BranchName char(9), Balance integer);

Explain how to efficiently check the integrity constraint

∀BN(account(,BN,) ⇒ branch(BN, ,))

DBS13, SL04 34/62 M. Böhlen, ifi@uzh

Review 4.5
Create a table for cities and a table for states. For each state its capital
shall be recorded and for each city the state it is located in shall be
recorded. Define primary and foreign keys. Discuss your solution.

DBS13, SL04 35/62 M. Böhlen, ifi@uzh

User Defined Functions

I PL/pgSQL value functions

I PL/pgSQL table functions

I External language functions

DBS13, SL04 36/62 M. Böhlen, ifi@uzh

User-Defined Functions (UDF)

I User defined functions or stored procedures allow to execute
application logic in the process space of the DBMS.

I This is good for the performance since it can reduce the amount of
data that is transferred between client and server.

I The SQL standard defines SQL/PSM (SQL/Persistent Stored
Modules).

I PostgreSQL supports different kinds of user-defined functions:
I Query language functions i.e., written in SQL
I Procedural language functions such as PL/pgSQL
I C-language functions, dynamically loadable objects (shared libraries)

I UDF functions can
I Make Arithmetic calculations
I Query tables
I Manipulate tables
I Return single values or tables

DBS13, SL04 37/62 M. Böhlen, ifi@uzh

PL/pgSQL Functions/1

I Structure
create function somefunc()
returns < retype > as $$

[declare
< declarations >]

begin
< statements >

end;

$$ language plpgsql;

I < retype >
integer
record
table
. . .

DBS13, SL04 38/62 M. Böhlen, ifi@uzh

PL/pgSQL Functions/2

I < declarations >

quantity integer := 30;

tbl row account%rowtype;

I < statements >

quantity := 4;

if quantity < 5 then
quantity := 5;
end if;

while quantity < 10 loop
quantity := quantity + 1;
end loop;

DBS13, SL04 39/62 M. Böhlen, ifi@uzh

PL/pgSQL Value Functions/1

I A value function returns a value (or tuple).

I A value function can be used instead of a value in an SQL
statement.

I Returning a single value is fairly straightforward and does not raise
new performance issues.

I Example (cf. next slide): Define a function that, given the name of
a customer, returns the count of the number of accounts owned by
the customer.

DBS13, SL04 40/62 M. Böhlen, ifi@uzh

PL/pgSQL Value Functions/2

I Count of the number of accounts owned by a customer:
create function accountCnt(CName varchar(9))
returns integer as $$
declare

accCnt integer;
begin

select count(*) into accCnt
from depositor
where depositor .CustName = CName;
return accCnt;

end;
$$ language plpgsql;

I Usage: select accountCnt(‘Bob‘);

DBS13, SL04 41/62 M. Böhlen, ifi@uzh

PL/pgSQL Table Functions/1

I Table functions return a table.

I Table functions can be used instead of a table.

I Table functions allow input parameters.

I The type of the return table must be defined.

I In the simplest case a table function returns the result of an SQL
query as its result.

I Example (cf. next slide): Define a function that returns all accounts
with a balance above an application-specified threshold.

DBS13, SL04 42/62 M. Böhlen, ifi@uzh

PL/pgSQL Table Functions/2

I All accounts with a balance above a threshold:

create function highAccnts (limitVal integer)
returns table (AccNum char(10),

BrName char(15)
Bal integer) as $$

begin
return query

select AccNr ,BranchName,Balance
from account A
where A.Balance > highAccnts.limitVal ;

end;
$$ language plpgsql;

I Usage: select * from highAccnts(1000);

DBS13, SL04 43/62 M. Böhlen, ifi@uzh

PL/pgSQL Table Functions/3

I Table functions may return large tables.

I The cursor mechanism (similar to iterators) was introduced to deal
with result tables.

I A cursor points to the current row and a loop is used to iterate
through all rows of a table.

I With a cursor the return type is a record that represents a row in a
database table.

I For each row actions can be executed and optionally one or more
result rows can be returned.

I Example (cf. next slide): Define a function that returns all accounts
with a balance above an application-specified threshold.

DBS13, SL04 44/62 M. Böhlen, ifi@uzh

PL/pgSQL Table Functions/4

I Accounts with balance above a threshold:

create function highAccnts (limitVal integer)
returns setof account as $$
declare

accrow account%rowtype;
begin

for accrow in select * from account loop
if accrow .Balance > highAccnts.limitVal then

return next accrow ;
end if;

end loop; end; $$ language plpgsql;

I Usage: select * from highAccnts(1000);

DBS13, SL04 45/62 M. Böhlen, ifi@uzh

PostgreSQL C-Language Functions/1

I Define a function adding 1 to its argument

#include "postgres.h"

#include <string.h>

#include "fmgr.h"

#include "utils/geo_decls.h"

PG_FUNCTION_INFO_V1(add_one);

Datum

add_one(PG_FUNCTION_ARGS)

{

int32 arg = PG_GETARG_INT32(0);

PG_RETURN_INT32(arg + 1);

}

DBS13, SL04 46/62 M. Böhlen, ifi@uzh

PostgreSQL C-Language Functions/2

I Compile as dynamic library func.so

I Map to a DBMS function
create function add one(integer)
returns integer
as ‘func‘, ‘add one‘
language c strict;

I Usage:

select add one(5);

DBS13, SL04 47/62 M. Böhlen, ifi@uzh

Triggers

I Purpose of triggers

I Definition of triggers

DBS13, SL04 48/62 M. Böhlen, ifi@uzh

Triggers/1

I A database trigger is a procedural piece of code that is
automatically executed in response to certain events on a particular
table in a database.

I Triggers are executed when a specified condition occurs during
insert/delete/update.

I Triggers are actions that fire automatically if the condition is
satisfied.

I Triggers follow an event-condition-action (ECA) model
I Event: Database modification (e.g., insert, delete, update)
I Condition: Any expression that evaluates to true/false
I Action: Sequence of SQL statements that will be executed

DBS13, SL04 49/62 M. Böhlen, ifi@uzh

Triggers/2

I Example of a trigger: When a new employees is added to a
department, modify the TotSal of the Department to include the
new employees salary

create trigger TotSal1
after insert on employee
for each row
when (new.Dno is not null)

update department
set TotSal = TotSal + new.Salary
where Dno = new.Dno;

I The above syntax is the one of the SQL standard.

DBS13, SL04 50/62 M. Böhlen, ifi@uzh

Triggers/3

Explanation of the trigger:

I We create a trigger TotSal1
I Trigger TotSal1 will execute after insert on employee table.

I Instead of after we could also have before or instead of.
I Instead of insert we could also have update or delete.

I The trigger fires (is executed) for each row that is inserted.
I The trigger fires for each statement if for each statement is

specified instead.

I The when condition determines if a trigger is executed or not.

I The trigger will update department by setting the new TotSal to be
the sum of old TotSal and new.Salary where the Dno matches the
new.Dno

DBS13, SL04 51/62 M. Böhlen, ifi@uzh

Triggers/4

A PostgreSQL example of a trigger.

create or replace function checkTemp() returns trigger as $$
declare
begin

if new.val < -273 then
raise exception ’invalid value: %’, new.val;

end if;
return new;

end;
$$ language plpgsql;

create trigger TrigTempCheck
before insert or update
on temperature
for each row
execute procedure checkTemp();

DBS13, SL04 52/62 M. Böhlen, ifi@uzh

Review 4.6
List advantages and disadvantages of triggers.

DBS13, SL04 53/62 M. Böhlen, ifi@uzh

Accessing Databases

I Embedded SQL

I ODBC

I JDBC

DBS13, SL04 54/62 M. Böhlen, ifi@uzh

Accessing Databases

I API (application-program interface) for a program to interact with a
database server

I Application makes calls to
I Connect with the database server
I Send SQL commands to the database server
I Fetch tuples of result one-by-one into program variables

I Embedded SQL: many languages allow to embed SQL statements
in their code. The embedded code can be

I static (i.e., code is known at compile time)
I dynamic (i.e., code is unknown at compile time; created at runtime)

I ODBC (Open Database Connectivity) is a Microsoft standard works
with C, C++, C#, and Visual Basic

I JDBC (Java Database Connectivity) is from Sun Microsystems and
works with Java

DBS13, SL04 55/62 M. Böhlen, ifi@uzh

Embedded SQL/1

I The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, Java, and Cobol.

I A language to which SQL queries are embedded is referred to as a
host language, and the SQL structures permitted in the host
language comprise embedded SQL.

I EXEC SQL statement is used to identify embedded SQL request to
the preprocessor

EXEC SQL <embedded SQL statement>;

Note: this varies by language (e.g., #sql {. . .}; for Java)

DBS13, SL04 56/62 M. Böhlen, ifi@uzh

Embedded SQL/2

int main () {

EXEC SQL BEGIN DECLARE SECTION;

char relname[20];

EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO

tcp:postgresql://pg.ifi.uzh.ch/boehlen AS conn USER boehlen/xxx;

EXEC SQL DECLARE cur CURSOR FOR

SELECT relname FROM pg_class;

EXEC SQL OPEN cur;

while (true) {

EXEC SQL FETCH IN cur INTO :relname;

printf("%s\n", relname);

if (sqlca.sqlcode != 0) break;

}

EXEC SQL CLOSE cur;

EXEC SQL DISCONNECT;

return 0;

}

DBS13, SL04 57/62 M. Böhlen, ifi@uzh

ODBC/1

I Open DataBase Connectivity (ODBC) standard
I standard for application program to communicate with a DBMS.
I application program interface (API) to

I open a connection with a database,
I send queries and updates,
I get back results.

I Applications such as GUI, spreadsheets, etc. can use ODBC

I Each database system supporting ODBC provides a “driver” library
that must be linked with the client program.

I When client program makes an ODBC API call, the code in the
library communicates with the server to carry out the requested
action, and fetch results.

DBS13, SL04 58/62 M. Böhlen, ifi@uzh

ODBC/2

int main() {

SQLAllocEnv(&hEnv);

SQLAllocConnect(hEnv, &hDbc);

SQLConnect(hDbc, "PostgreSQL", SQL_NTS, "boehlen", SQL_NTS, "xxx", SQL_NTS);

SQLAllocStmt(hDbc,&hstmt);

SQLPrepare(hstmt,

"select tablename from pg_tables where tableowner=’boehlen’", SQL_NTS);

SQLExecute(hstmt);

SQLBindCol(hstmt, 1, SQL_C_CHAR, (SQLPOINTER)name, 30, NULL);

for (;;) {

if (SQLFetch(hstmt)) break;

printf(" ’%s’\n", name);

}

SQLFreeStmt(hstmt, SQL_DROP);

SQLDisconnect(hDbc);

SQLFreeConnect(hDbc);

SQLFreeEnv(hEnv);

}

DBS13, SL04 59/62 M. Böhlen, ifi@uzh

JDBC/1

I JDBC is a Java API for communicating with database systems
supporting SQL

I JDBC supports a variety of features for querying and updating data,
and for retrieving query results

I JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of
relation attributes

I Model for communicating with the database:
I Open a connection
I Create a “statement” object
I Execute queries using the Statement object to send queries and fetch

results
I Exception mechanism to handle errors

DBS13, SL04 60/62 M. Böhlen, ifi@uzh

JDBC/2
import java.sql.*;

public class pgJDBC {

public static void main(String[] argv) {

Class.forName("org.postgresql.Driver");

Connection conn = DriverManager.getConnection(

"jdbc:postgresql://pg.ifi.uzh.ch/boehlen?ssl=true" +

"&sslfactory=org.postgresql.ssl.NonValidatingFactory",

"boehlen", "xxx");

Statement stmt = conn.createStatement();

ResultSet rset = stmt.executeQuery(

"select tablename from pg_tables where tableowner=’boehlen’");

while (rset.next())

System.out.println(rset.getString(1));

}

}

DBS13, SL04 61/62 M. Böhlen, ifi@uzh

Summary

I Views are essential to break up large tasks (SQL statements) in
small, independent and manageable blocks.

I Recursive queries are used to compute ancestors, descendants,
transitive closures, etc.

I Integrity constraints ensure a good data quality. Enforcing
integrity constraints is not easy: people try to work around.

I Functions and procedural constructs are used heavily by many
applications. For example PostGIS uses functions heavily to add
advanced spatial functionality to PostgreSQL.

I Program access is through ODBC and JDBC. General-purpose
graphical tools exist to interact with databases.

DBS13, SL04 62/62 M. Böhlen, ifi@uzh

