
Database Systems
Spring 2013

The Relational Model
SL02

I The Relational Model

I Basic Relational Algebra Operators

I Additional Relational Algebra Operators

I Extended Relational Algebra Operators

I Modification of the Database

I Relational Calculus

DBS13, SL02 1/92 M. Böhlen, ifi@uzh

Literature and Acknowledgments

Reading List for SL02:

I Database Systems, Chapters 3 and 6, Sixth Edition, Ramez Elmasri
and Shamkant B. Navathe, Pearson Education, 2010.

These slides were developed by:

I Michael Böhlen, University of Zürich, Switzerland

I Johann Gamper, Free University of Bozen-Bolzano, Italy

The slides are based on the following text books and associated material:

I Fundamentals of Database Systems, Fourth Edition, Ramez Elmasri
and Shamkant B. Navathe, Pearson Addison Wesley, 2004.

I A. Silberschatz, H. Korth, and S. Sudarshan: Database System
Concepts, McGraw Hill, 2006.

DBS13, SL02 2/92 M. Böhlen, ifi@uzh

The Relational Model

I schema, attribute, domain, tuple, relation, database

I superkey, candidate key, primary key

I entity constraints, referential integrity

DBS13, SL02 3/92 M. Böhlen, ifi@uzh

The Relational Model/1

I The relational model is based on the concept of a relation.

I A relation is a mathematical concept based on the ideas of sets.
I The relational model was proposed by Codd from IBM Research in

the paper:
I A Relational Model for Large Shared Data Banks, Communications of

the ACM, June 1970

I The above paper caused a major revolution in the field of database
management and earned Codd the coveted ACM Turing Award.

I The strength of the relational approach comes from the formal
foundation provided by the theory of relations.

I In practice, there is a standard model based on SQL. There are
several important differences between the formal model and the
practical model, as we shall see.

DBS13, SL02 4/92 M. Böhlen, ifi@uzh

The Relational Model/2

I Edgar Codd, a mathematician and IBM
Fellow, is best known for creating the
relational model for representing data
that led to today’s 12 billion database
industry.

I Codd’s basic idea was that relationships
between data items should be based on
the item’s values, and not on separately
specified linking or nesting.

I The idea of relying only on value-based relationships was quite a
radical concept at that time, and many people were skeptical. They
didn’t believe that machine-made relational queries would be able to
perform as well as hand-tuned programs written by expert human
navigators.

http://www.research.ibm.com/resources/news/20030423_edgarpassaway.shtml

DBS13, SL02 5/92 M. Böhlen, ifi@uzh

Relation Schema

I R(A1,A2, . . . ,An) is a relation schema

I R is the name of the relation.

I A1,A2, . . . ,An are attributes

I Example:
Customer(CustName,CustStreet,CustCity)

DBS13, SL02 6/92 M. Böhlen, ifi@uzh

Attribute

I Each attribute of a relation has a name

I The set of allowed values for each attribute is called the domain of
the attribute

I Attribute values are required to be atomic; that is, indivisible
I The value of an attribute can be an account number, but cannot be a

set of account numbers

I The attribute name designates the role played by a domain in a
relation:

I Used to interpret the meaning of the data elements corresponding to
that attribute

I Example: The domain Date may be used to define two attributes
named “Invoice-date” and “Payment-date” with different meanings

DBS13, SL02 7/92 M. Böhlen, ifi@uzh

Domain

I A domain has a logical definition:
I Example: USA phone numbers are the set of 10 digit phone numbers

valid in the U.S.

I A domain also has a data-type or a format defined for it.
I The USA phone numbers may have a format: (ddd)ddd-dddd where

each d is a decimal digit.
I Dates have various formats such as year, month, date formatted as

yyyy-mm-dd, or as dd mm,yyyy etc.

I The special value null is a member of every domain
I The null value causes complications in the definition of many

operations
I We ignore the effect of null values in our main presentation and

consider their effect later

DBS13, SL02 8/92 M. Böhlen, ifi@uzh

Tuple

I A tuple is an ordered set (= list) of values

I Angle brackets 〈...〉 are used as notation; sometimes regular
parentheses (...) are used as well

I Each value is derived from an appropriate domain
I A customer tuple is a 3-tuple and would consist of three values, for

example:
I (Adams, Spring, Pittsfield)

DBS13, SL02 9/92 M. Böhlen, ifi@uzh

Relational Instance

I r(R) denotes a relation (or relation instance) r on relation schema R

I Example: customer(Customer)

I A relation instance is a subset of the Cartesian product of the
domains of its attributes. Thus, a relation is a set of n-tuples
(a1, a2, . . . , an) where each ai ∈ Di

I Formally, given sets D1,D2, . . . ,Dn a relation r is a subset of
D1 × D2 × . . .× Dn

I Example:

D1 = CustName = {Jones, Smith,Curry , Lindsay , . . .}
D2 = CustStreet = {Main,North,Park , . . .}
D3 = CustCity = {Harrison,Rye,Pittsfield , . . .}
r = { (Jones,Main,Harrison), (Smith,North,Rye),

(Curry ,North,Rye), (Lindsay ,Park ,Pittsfield) }
⊆ CustName × CustStreet × CustCity

DBS13, SL02 10/92 M. Böhlen, ifi@uzh

Example of a Relation

relation name

tuples

attributes

account

AccNr BranchName Balance

A-101 Downtown 500

A-215 Mianus 700

A-102 Perryridge 400

A-305 Round Hill 350

A-201 Brighton 900

A-222 Redwood 700

A-217 Brighton 750

DBS13, SL02 11/92 M. Böhlen, ifi@uzh

The Customer Relation

customer

CustName CustStreet CustCity

Adams Spring Pittsfield

Brooks Senator Brooklyn

Curry North Rye

Glenn Sad Hill Woodside

Green Walnut Stamford

Hayes Main Harrison

Johnson Alma Palo Alto

Jones Main Harrison

Lindsay Park Pittsfield

Smith North Rye

Turner Putnam Stamford

Williams Nassau Princeton

DBS13, SL02 12/92 M. Böhlen, ifi@uzh

Characteristics of Relations
I Relations are unordered, i.e., the order of tuples is irrelevant (tuples

may be stored and retrieved in an arbitrary order)

I The attributes in R(A1, ...,An) and the values in t = 〈v1, ..., vn〉 are
ordered.

I There exist alternative definitions of a relation where attributes in a
schema and values in a tuple are not ordered.

depositor

CustName AccNr

Hayes A-102

Johnson A-101

Johnson A-201

Jones A-217

Lindsay A-222

Smith A-215

Turner A-305

DBS13, SL02 13/92 M. Böhlen, ifi@uzh

Review 2.1

1. Is r = {(Tom, 27,ZH), (Bob, 33,Rome, IT)} a relation?
No. Schemas of tuples are different. This is not allowed.

2. Determine the following objects for r(X ,Y) = {(1, a), (2, b), (3, c)}:

I the 2nd attribute of relation r? Y.
I the 3rd tuple of relation r? does not exist (no ordering)
I the tuple in relation r with the smallest value for attribute X ? (1,a)

3. What is the difference between a set and a relation? Illustrate with
an example.
set: elements of a set can be anything
relation: all elements are tuples with the same schema
X = {(a), ∗, {3}, (1, 2)} is a set but not a relation.

DBS13, SL02 14/92 M. Böhlen, ifi@uzh

Database

I A database consists of multiple relations
I Example: Information about an enterprise is broken up into parts,

with each relation storing one part of the information
I account: stores information about accounts
I customer: stores information about customers
I depositor: information about which customer owns which account

I Storing all information as a single relation such as
I bank(AccNr ,Balance,CustName, . . .)

results in
I repetition of information: e.g.,if two customers own the same account
I the need for null values: e.g., to represent a customer without an

account

DBS13, SL02 15/92 M. Böhlen, ifi@uzh

Summary of the Relational Data Model
I A domain D is a set of atomic data values.

I phone numbers, names, grades, birthdates, departments
I each domain includes the special value null

I With each domain a data type or format is specified.
I 5 digit integers, yyyy-mm-dd, characters

I An attribute Ai describes the role of a domain in a relation schema.
I PhoneNr, Age, DeptName

I A relation schema R(A1, ...,An) is made up of a relation name R and a
list of attributes.

I employee(Name,Dept, Salary), department(DName,Manager ,Address)

I A tuple t is an ordered list of values t = (v1, ..., vn) with vi ∈ dom(Ai).
I t = (Tom, SE , 23K)

I A relation r ⊆ D1 × ...× Dn over schema R(A1, ...,An) is a set of n-ary
tuples.

I r = {(Tom, SE , 23K), (Lene,DB, 33K)} ⊆ Names × Departments × Integer

I A database DB is a set of relations.
I DB = {r , s}
I r = {(Tom, SE , 23K), (Lene,DB, 33K)}
I s = {(SE ,Tom,Boston), (DB, Lena,Tucson)}

DBS13, SL02 16/92 M. Böhlen, ifi@uzh

Review 2.2

1. Illustrate the following relations graphically:
r(X ,Y) = {(1, a), (2, b), (3, c)}
s(A,B,C) = {(1, 2, 3)}

R

X Y

1 a

2 b

3 c

S

A B C

1 2 3

2. What kind of object is X = {{(3)}} in the relational model?
X is a database.

3. Are DB1 and DB2 identical databases?
DB1 = {{(1, 5), (2, 3)}, {(4, 4)}}
DB2 = {{(4, 4)}, {(2, 3), (1, 5)}}
Yes. Databases are sets of relations; relations are sets of tuples.
Order is not relevant.

DBS13, SL02 17/92 M. Böhlen, ifi@uzh

Constraints

I Constraints are conditions that must be satisfied by all valid relation
instances

I There are four main types of constraints in the relational model:
I Domain constraints: each value in a tuple must be from the domain

of its attribute
I Key constraints
I Entity constraints
I Referential integrity constraints

DBS13, SL02 18/92 M. Böhlen, ifi@uzh

Key Constraints/1

I Let K ⊆ R
I K is a superkey of R if values for K are sufficient to identify a

unique tuple of each possible relation r
I By “possible” we mean a relation r that could e.g. exist in the

enterprise we are modeling.
I Example: {CustName,CustStreet} and {CustName} are both

superkeys of Customer, if no two customers can possibly have the
same name.

I In real life, an attribute such as CustID would be used instead of
CustName to uniquely identify customers, but we omit it to keep our
examples small, and instead assume customer names are unique.

CuName CuStreet

N. Jeff Binzmühlestr
N. Jeff Hochstr
CuName cannot be a key

ID CuName CuStreet

1 N. Jeff Binzmühlestr
2 N. Jeff Hochstr

ID can be a key

DBS13, SL02 19/92 M. Böhlen, ifi@uzh

Key Constraints/2

I K is a candidate key if K is minimal
Example: {CustName} is a candidate key for Customer, since it is a
superkey and no subset of it is a superkey.

I Primary key: a candidate key chosen as the principal means of
identifying tuples within a relation

I Should choose an attribute whose value never, or very rarely, changes.
I E.g. email address is unique, but may change

DBS13, SL02 20/92 M. Böhlen, ifi@uzh

Entity Constraints

I The entity constraint requires that the primary key attributes of
each relation may not have null values.

I The reason is that primary keys are used to identify the individual
tuples.

I If the primary key has several attributes none of these attribute
values may be null.

I Other attributes of the relation may also disallow null values
although they are not members of the primary key.

ID Name CuStreet

1 N. Jeff Binzmühlestr
T. Hurd Hochstr

ID cannot be primary key

ID Name CuStreet

1 N. Jeff Binzmühlestr
2 T. Hurd Hochstr

ID can be primary key

DBS13, SL02 21/92 M. Böhlen, ifi@uzh

Referential Integrity

I A relation schema may have an attribute that corresponds to the
primary key of another relation. The attribute is called a foreign
key.

I E.g. CustName and AccNr attributes of depositor are foreign keys to
Customer and Account respectively.

I Only values occurring in the primary key attribute of the referenced
relation (or null values) may occur in the foreign key attribute of the
referencing relation.

I In a graphical representation of the schema a referential integrity
constraint is often displayed as a directed arc from the foreign key
attribute to the primary key attribute.

ID CuName CuStrNr

1 N. Jeff 2
2 N. Jeff 4

StreetNr Street

2 Binzmühlestr
3 Hochstr

StreetNr 4 does not exist. CuStrNr = 4 is an invalid reference.

DBS13, SL02 22/92 M. Böhlen, ifi@uzh

Review 2.3
1. Determine the candidate keys of relation R:

R

X Y Z

1 2 3

1 4 5

2 2 2

X ist kein Schlüssel

Y ist kein Schlüssel

Z könnte ein Schlüssel sein

XY könnte ein Schlüssel sein

Jede Übermenge von Z und XY könnte ein Schlüssel sein

DBS13, SL02 23/92 M. Böhlen, ifi@uzh

Review 2.3

2. Determine possible superkeys, candidate keys, primary keys and
foreign keys for relations R and S :

R
A B C

a d e
b d c
c e e

S
D E

d a
e a
a a

possible superkeys: A, AB, AC, ABC, BC, D, DE

possible candidate keys: A, BC, D

possible primary keys: A für R, D für S

possible foreign keys: E mit Primärschlüssel A,
B mit Primärschlussel D, E mit Primärschlüssel D

DBS13, SL02 24/92 M. Böhlen, ifi@uzh

Query Languages

I Language in which user requests information from the database.

I Categories of languages

I Procedural: specifies how to do it; can be used for query optimization
I Declarative: specifies what to do; not suitable for query optimization

I Pure languages:
I Relational algebra (procedural)
I Tuple relational calculus (declarative)
I Domain relational calculus (declarative)

I Pure languages form underlying basis of query languages that people
use (such as SQL).

DBS13, SL02 25/92 M. Böhlen, ifi@uzh

The Basic Relational Algebra

I select σ

I project π

I union ∪
I set difference −
I Cartesian product ×
I rename ρ

DBS13, SL02 26/92 M. Böhlen, ifi@uzh

Relational Algebra

I The relational algebra is a procedural language
I The relational algebra consists of six basic operators

I select: σ
I project: π
I union: ∪
I set difference: −
I Cartesian product: ×
I rename: ρ

I The operators take one or two relations as inputs and produce a new
relation as a result.

I This property makes the algebra closed (i.e., all objects in the
relational algebra are relations).

DBS13, SL02 27/92 M. Böhlen, ifi@uzh

Select Operation

I Notation: σp(r)

I p is called the selection predicate

I Definition: t ∈ σp(r)⇔ t ∈ r ∧ p(t)

I p is a condition in propositional calculus consisting of terms
connected by : ∧ (and), ∨ (or), ¬ (not)

I Example: σBranchName=‘Perryridge‘(account)

I Example: σA=B∧D>5(r)
r

A B C D

α α 1 7
α β 5 7
β β 12 3
β β 23 10

σA=B∧D>5(r)

A B C D

α α 1 7
β β 23 10

DBS13, SL02 28/92 M. Böhlen, ifi@uzh

Project Operation

I Notation: πA1,...,Ak
(r)

I The result is defined as the relation of k columns obtained by
deleting the columns that are not listed

I Definition: t ∈ πA1,...,Ak
(r)⇔ ∃x(x ∈ r ∧ t = x [A1, . . . ,Ak])

I There are no duplicate rows in the result since relations are sets

I Example: πAccNr ,Balance(account)

I Example: πA,C (r)

r

A B C

α 10 1
α 20 1
β 30 1
β 40 2

πA,C (r)

A C

α 1
β 1
β 2

DBS13, SL02 29/92 M. Böhlen, ifi@uzh

Union Operation

I Notation: r ∪ s

I Definition: t ∈ (r ∪ s)⇔ t ∈ r ∨ t ∈ s

I For r ∪ s to be valid r and s must have the same schema (i.e.,
attributes).

I Example: πCustName(depositor) ∪ πCustName(borrower)

I Example: r ∪ s

r

A B

α 1
α 2
β 1

s

A B

α 2
β 3

r ∪ s

A B

α 1
α 2
β 1
β 3

DBS13, SL02 30/92 M. Böhlen, ifi@uzh

Set Difference Operation

I Notation: r − s

I Definition: t ∈ (r − s)⇔ t ∈ r ∧ t /∈ s
I Set differences must be taken between (union) compatible relations.

I r and s must have the same arity
I attribute domains of r and s must be compatible

I Example: r − s
r

A B

α 1
α 2
β 1

s

A B

α 2
β 3

r − s

A B

α 1
β 1

DBS13, SL02 31/92 M. Böhlen, ifi@uzh

Cartesian Product Operation

I Notation: r × s

I Definition: t ∈ (r × s)⇔ x ∈ r ∧ y ∈ s ∧ t = x ◦ y

I We assume that the attribute names of r and s are disjoint. If the
attribute names are not disjoint, then renaming must be used.

I Example: r × s

r

A B

α 1
β 2

s

C D E

α 10 a
β 10 a
β 20 b
γ 10 b

r × s

A B C D E

α 1 α 10 a
α 1 β 10 a
α 1 β 20 b
α 1 γ 10 b
β 2 α 10 a
β 2 β 10 a
β 2 β 20 b
β 2 γ 10 b

DBS13, SL02 32/92 M. Böhlen, ifi@uzh

Rename Operation

I Allows us to name the results of relational algebra expressions by
setting relation and attribute names.

I The rename operator is also used if there are name clashes.
I Various flavors:

I ρr (E) changes the relation name to r .
I ρr(A1,...,An)(E) changes the relation name to r and the attribute

names to A1, ...,Ak .
I ρ(A1,...,An)(E) changes attribute names to A1, ...,Ak .

I Example: ρs(X ,Y ,U,V)(r)

r

A B C D

α α 1 7
β β 23 10

s

X Y U V

α α 1 7
β β 23 10

DBS13, SL02 33/92 M. Böhlen, ifi@uzh

Composition of Operations

I Since the relational algebra is closed, i.e., the result of a relational
algebra operator is always a relation, it is possible to nest
expressions.

I Example: σA=C (r × s)

r

A B

α 1

β 2

s

C D E

α 10 a

β 10 a

β 20 b

γ 10 b

r × s

A B C D E

α 1 α 10 a

α 1 β 10 a

α 1 β 20 b

α 1 γ 10 b

β 2 α 10 a

β 2 β 10 a

β 2 β 20 b

β 2 γ 10 b

σA=C (r × s)

A B C D E

α 1 α 10 a

β 2 β 10 a

β 2 β 20 b

DBS13, SL02 34/92 M. Böhlen, ifi@uzh

Review 2.4

1. Identify and correct syntactic mistakes in the following relational
algebra expressions. The schema of relation R is R(A,B).

σR.A>5(R)
R.A ist kein Attributname. Korrektur: σA>5(R)

σA,B(R)
Selektionsprädikat fehlt. Korrektur: πA,B(R)

R × R
Namenskonflikt. Korrektur: ρT (R × ρS[C ,D](R))

DBS13, SL02 35/92 M. Böhlen, ifi@uzh

Review 2.4

2. Identify and correct syntactic mistakes in the following relational
algebra expressions. Relation Pers has schema
Pers(Name,Age,City).

σName=′Name′(Pers)
OK.

σCity=Zuerich(Pers)
Zuerich ist ein Wert und kein Attribut.
Korrektur: σCity=′Zuerich′(Pers)

σAge>′20′

Alter ist eine Zahl und keine Zeichenkette.
Korrektur: σAlter>20(Pers))

DBS13, SL02 36/92 M. Böhlen, ifi@uzh

Banking Example

I branch(BranchName, BranchCity, Assets)

I customer(CustName, CustStreet, CustCity)

I account(AccNr, BranchName, Balance)

I loan(LoanNr, BranchName, Amount)

I depositor(CustName, AccNr)

I borrower(CustName, LoanNr)

DBS13, SL02 37/92 M. Böhlen, ifi@uzh

Review 2.5 branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)I Find all loans of over $1200.

I Find the loan number for each loan that is greater than $1200.

I Find the names of all customers who have a loan, an account, or
both, from the bank.

DBS13, SL02 38/92 M. Böhlen, ifi@uzh

Review 2.6 branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)

I Find the names of all customers who have a loan at the Perryridge
branch.

I Find the names of all customers who have a loan at the Perryridge
branch but do not have an account at any branch of the bank.

DBS13, SL02 39/92 M. Böhlen, ifi@uzh

Review 2.6 branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)

I Give a different relational algebra expressions that determines the
names of all customers who have a loan at the Perryridge branch.
Compare it to the solution in Review 2.6.

DBS13, SL02 40/92 M. Böhlen, ifi@uzh

Review 2.7 branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)

I Determine the largest account balance.

DBS13, SL02 41/92 M. Böhlen, ifi@uzh

Formal Definition of Relational Algebra Expressions

I A basic expression in the relational algebra consists of either one of
the following:

I A relation in the database
I A constant relation (e.g., {(1, 2), (5, 3)})

I Let E1 and E2 be relational algebra expressions; the following are all
relational algebra expressions:

I E1 ∪ E2

I E1 − E2

I E1 × E2

I σp(E1), p is a predicate on attributes in E1

I πs(E1), s is a list consisting of some of the attributes in E1

I ρx(E1), x is the new name for the result of E1

DBS13, SL02 42/92 M. Böhlen, ifi@uzh

Review 2.8
Assume the following schemas:

train(TrainNr , StartStat,EndStat)
link(FromStat,ToStat,TrainNr ,Departure,Arrival)

1. Sketch an instance of the database.
train

TrainNr StartStat EndStat

IC 706 Zürich Geneva Airport

IR 1798 Zürich Basel

link

FromStat ToStat TrainNr Departure Arrival

Zürich Lenzburg IC 706 5:21 5:40

Lenzburg Aarau IC 706 5:40 5:47

Aarau Olten IC 706 5:49 5:58

Zürich Lenzburg IR 1798 0:08 0:27

DBS13, SL02 43/92 M. Böhlen, ifi@uzh

Review 2.8
2. Determine all direct connections (no change of train) from Zürich to

Olten.

σTrainNr=C∧Departure<D(
σFromStat=‘Zuerich‘(link) ×
σB=‘Olten‘(ρ(A,B,C ,D,E)(link))

DBS13, SL02 44/92 M. Böhlen, ifi@uzh

Additional Relational Algebra
Operators

We define additional operations that do not add expressive power to the
relational algebra, but that simplify common queries. Thus, these are
redundant relational algebra operators.

I Set intersection ∩
I Join 1

I Division ÷
I Assignment ←

DBS13, SL02 45/92 M. Böhlen, ifi@uzh

Set Intersection Operation

I Notation: r ∩ s

I Definition: t ∈ (r ∩ s)⇔ t ∈ r ∧ t ∈ s
I Precondition: union compatible

I r, s have the same arity
I attributes of r and s are compatible

I Note: r ∩ s = r − (r − s)

I Example: r ∩ s
r

A B

α 1
α 2
β 1

s

A B

α 2
β 3

r ∩ s

A B

α 2

DBS13, SL02 46/92 M. Böhlen, ifi@uzh

Theta Join

I Notation: r 1θ s

I Let r and s be relations on schemas R and S, respectively. θ is a
boolean condition on the attributes of r and s.

I r 1θ s is a relation on schema that includes all attributes from
schema R and all attributes from schema S .

I Example:
I R(A,B,C ,D) and S(B,D,E)
I r 1B<X∧D=Y ρ(X ,Y ,Z)(s)
I Schema of result is (A,B,C ,D,X ,Y ,Z)
I Equivalent to: σB<X∧D=Y (r × ρ(X ,Y ,Z)(s))

r

A B C D

α 1 α a
β 2 γ a
γ 4 β b
α 1 γ a
δ 2 β b

s

B D E

1 a α
3 a β

1 a γ

2 b δ
3 b ε

σB<X∧D=Y (r × ρ(X ,Y ,Z)(s))

A B C D X Y Z

α 1 α a 3 a β
β 2 γ a 3 a β

α 1 γ a 3 a β

δ 2 β b 3 b ε

DBS13, SL02 47/92 M. Böhlen, ifi@uzh

Natural Join

I Notation: r 1 s

I Let r and s be relations on schemas R and S, respectively.

I Attributes that occur in r and s must be identical.

I r 1 s is a relation on a schema that includes all attributes from
schema R and all attributes from schema S that do not occur in
schema R.

I Example:
I r 1 s with R(A,B,C ,D) and S(E ,B,D)
I Schema of result is (A,B,C ,D,E)
I Equivalent to: πA,B,C ,D,E (σB=Y∧D=Z (r × ρ(E ,Y ,Z)(s))

r

A B C D

α 1 α a
β 2 γ a
γ 4 β b
α 1 γ a
δ 2 β b

s

B D E

1 a α

3 a β

1 a γ
2 b δ

3 b ε

r 1 s

A B C D E

α 1 α a α

α 1 α a γ

α 1 γ a α
α 1 γ a γ

δ 2 β b δ

DBS13, SL02 48/92 M. Böhlen, ifi@uzh

Division Operation

I Notation: r ÷ s

I Suited for queries that include the phrase “for all”.

I Let r and s be relations on schemas R(A1, . . . ,Am,B1, . . . ,Bn) and
S(B1, . . . ,Bn), respectively

I The result of r ÷ s is a relation with schema R − S = (A1, . . . ,Am)

I Definition: t ∈ (r ÷ s)⇔ t ∈ πR−S(r) ∧ ∀u ∈ s(t ◦ u ∈ r)

I t ◦ u is the concatenation of tuples t and u

I R-S: all attributes of schema R that are not in schema S

I Example: R = (A,B,C ,D), S = (E ,B,D),R − S = (A,C)

DBS13, SL02 49/92 M. Böhlen, ifi@uzh

Division Operation - Examples

I

r

A B

α 1
α 2
α 3
β 1
γ 1
ε 6
ε 1
β 2

s

B

1
2

r ÷ s

A

α

β

I

r

A B C D E

α a α a 1
α a γ a 1
α a γ b 1
β a γ a 1
β a γ b 3
γ a γ a 1
γ a γ b 1
γ a β b 1

s

D E

a 1
b 1

r ÷ s

A B C

α a γ

γ a γ

DBS13, SL02 50/92 M. Böhlen, ifi@uzh

Properties of the Division Operation

I Property
I Let q = r ÷ s
I Then q is the largest relation satisfying q × s ⊆ r

I Definition in terms of the basic algebra operation
Let r(R) and s(S) be relations, and let S ⊆ R

r ÷ s = πR−S(r)− πR−S((πR−S(r)× s)− πR−S ,S(r))

To see why
I πR−S,S(r) simply reorders attributes of r
I πR−S(πR−S(r)× s)− πR−S,S(r)) gives those tuples t in πR−S(r)

such that for some tuple u ∈ s, t ◦ u /∈ r .

DBS13, SL02 51/92 M. Böhlen, ifi@uzh

Assignment Operation

I The assignment operation (←) provides a convenient way to express
complex queries by breaking them up into smaller pieces.

I Write query as a sequential program consisting of
I a series of assignments
I followed by an expression whose value is displayed as a result of the

query.

I Assignment must always be made to a temporary relation variable.

I Example: Write r ÷ s as

temp1← πR−S(r)
temp2← πR−S((temp1× s)− πR−S ,S(r))
result = temp1− temp2

I The result to the right of the ← is assigned to the relation variable on
the left of the ←.

DBS13, SL02 52/92 M. Böhlen, ifi@uzh

Bank Example Queries/1
branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)

I Find all customers who have an account and a loan.

πCustName(borrower) ∩ πCustName(depositor)

I Find the name of all customers who have a loan at the bank and the
loan amount

πCustName,Amount(borrower 1 loan)

DBS13, SL02 53/92 M. Böhlen, ifi@uzh

Bank Example Queries/2 branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)

I Find all customers who have an account from at least the
“Downtown” and the “Uptown” branches.

I Solution 1

πCustName(σBranchName=′Downtown′(depositor 1 account)) ∩
πCustName(σBranchName=′Uptown′(depositor 1 account))

I Solution 2

r ← πCustName,BranchName(depositor 1 account))

s ← πBranchName(σBranchName=‘Downtown‘∨BranchName=‘Uptown‘)(account)

Res ← r ÷ s

DBS13, SL02 54/92 M. Böhlen, ifi@uzh

Review 2.9 branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)

I Find all customers who have an account at all branches located in
Brooklyn city.

πCustName,BranchName(depositor 1 account))

÷
πBranchName(σBranchCity=‘Brooklyn‘(branch))

DBS13, SL02 55/92 M. Böhlen, ifi@uzh

Extended Relational Algebra
Operators

Extended relational algebra operators add expressive power to the basic
relational algebra.

I Generalized Projection π

I Aggregate Functions ϑ

I Outer Join d|><| , |><|d , d|><|d

DBS13, SL02 56/92 M. Böhlen, ifi@uzh

Generalized Projection

I Extends the projection operation by allowing arithmetic functions to
be used in the projection list: πF1,F2,...,Fn(E)

I E is a relational algebra expression

I Each of F1,F2, . . . ,Fn are arithmetic expressions involving constants
and attributes in the schema of E .

I Example: Given relation credit info(CustName, Limit,CredBal), find
how much more each person can spend:

πCustName,Limit−CreditBal(credit info)

DBS13, SL02 57/92 M. Böhlen, ifi@uzh

Aggregate Functions and Operations

I Aggregation function takes a collection of values and returns a
single value as a result.

avg: average value
min: minimum value
max: maximum value
sum: sum of values

count: number of values

I Aggregation operation in relational algebra

G1,G2,...,GnϑF1(A1),F2(A2),...,Fn(An)(E)

E is any relational-algebra expression
I G1,G2 . . . ,Gn is a list of attributes on which to group (can be empty)
I Each Fi is an aggregate function
I Each Ai is an attribute name

DBS13, SL02 58/92 M. Böhlen, ifi@uzh

Aggregate Operation - Example

I Relation r , Res ← ρRes(SumC)(ϑsum(C)(r))

r

A B C

α α 7
α β 7
β β 3
β β 10

Res

sumC

27

I Balance per branch:
Res ← ρRes(BName,SumBal)(BranchNameϑsum(Balance)(account))
account

BranchName AccNr Balance

Perryridge A-102 400
Perryridge A-201 900
Brighton A-217 750
Brighton A-215 750
Redwood A-222 700

Res

BName SumBal

Perryridge 1300
Brighton 1500
Redwood 700

DBS13, SL02 59/92 M. Böhlen, ifi@uzh

Outer Join

I An extension of the join operation that avoids loss of information.

I Computes the join and then adds tuples from one relation that do
not match tuples in the other relation to the result of the join.

I Uses null values:

I null signifies that the value is unknown or does not exist
I All comparisons involving null are (roughly speaking) false by

definition.
I We shall study precise meaning of comparisons with nulls later

DBS13, SL02 60/92 M. Böhlen, ifi@uzh

Outer Join Example/1

I Example relations:
loan

LoanNr BranchName Amount

L-170 Downtown 3000
L-230 Redwood 4000
L-260 Perryridge 1700

borrower

CustName LoanNr

Jones L-170
Smith L-230
Hayes L-155

I Join

loan 1 borrower

LoanNr BranchName Amount CustName

L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith

DBS13, SL02 61/92 M. Böhlen, ifi@uzh

Outer Join Example/2

I Example relations:
loan

LoanNr BranchName Amount

L-170 Downtown 3000
L-230 Redwood 4000
L-260 Perryridge 1700

borrower

CustName LoanNr

Jones L-170
Smith L-230
Hayes L-155

I Left Outer Join (preserves tuples from left)

loan d|><| borrower

LoanNr BranchName Amount CustName

L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-260 Perryridge 1700 null

DBS13, SL02 62/92 M. Böhlen, ifi@uzh

Outer Join Example/3

I Example relations:
loan

LoanNr BranchName Amount

L-170 Downtown 3000
L-230 Redwood 4000
L-260 Perryridge 1700

borrower

CustName LoanNr

Jones L-170
Smith L-230
Hayes L-155

I Right Outer Join (preserves tuples from right)

loan |><|d borrower

LoanNr BranchName Amount CustName

L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-155 null null Hayes

DBS13, SL02 63/92 M. Böhlen, ifi@uzh

Outer Join Example/4

I Example relations:
loan

LoanNr BranchName Amount

L-170 Downtown 3000
L-230 Redwood 4000
L-260 Perryridge 1700

borrower

CustName LoanNr

Jones L-170
Smith L-230
Hayes L-155

I Full Outer Join (preserves all tuples)

loan d|><|d borrower

LoanNr BranchName Amount CustName

L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-260 Perryridge 1700 null
L-155 null null Hayes

DBS13, SL02 64/92 M. Böhlen, ifi@uzh

Modification of the Database

I The content of the database may be modified using the following
operations:

I Deletion
I Insertion
I Updating

I All these operations are expressed using the assignment operator.

DBS13, SL02 65/92 M. Böhlen, ifi@uzh

Deletion

I A delete request is expressed similarly to a query, except instead of
displaying tuples to the user, the selected tuples are removed from
the database.

I Can delete only entire tuples; cannot delete values of particular
attributes only.

I A deletion is expressed in relational algebra by:

r ← r − E

where r is a relation and E is a relational algebra query.

DBS13, SL02 66/92 M. Böhlen, ifi@uzh

Deletion Examples

I Delete all account records in the Perryridge branch.

accout ← account − σBranchName=′Perryridge′(account)

I Delete all loan records with amount in the range of 10 to 50

loan← loan − σAmount≥10∧Amount≤50(loan)

I Delete all accounts at branches located in Needham.

r1 ← σbranch city=′Needham′(accout 1 branch)

r2 ← πAccNr ,BranchName,Balance(r1)

r3 ← πCustName,AccNr (r2 1 depositor)

account ← account − r2

depositor ← depositor − r3

DBS13, SL02 67/92 M. Böhlen, ifi@uzh

Insertion

I To insert data into a relation, we either:
I specify a tuple to be inserted
I write a query whose result is a set of tuples to be inserted

I In relational algebra, an insertion is expressed by:

r ← r ∪ E

where r is a relation and E is a relational algebra expression.

I The insertion of a single tuple is expressed by letting E be a
constant relation containing one tuple.

DBS13, SL02 68/92 M. Böhlen, ifi@uzh

Insertion Examples

I Insert information into the database specifying that Smith has
$1200 in account A-973 at the Perryridge branch.

account ← account ∪ {(‘A-973‘, ‘Perryridge‘, 1200)}
depositor ← depositor ∪ {(‘Smith‘, ‘A-973‘)}

I Provide as a gift for all loan customers in the Perryridge branch, a
$200 savings account. Let the loan number serve as the account
number for the new savings account.

r1 ← σBranchName=′Perryridge′(borrower 1 loan)

account ← account ∪ πLoanNr ,BranchName,200(r1)

depositor ← depositor ∪ πCustName,LoanNr (r1)

DBS13, SL02 69/92 M. Böhlen, ifi@uzh

Updating

I A mechanism to change a value in a tuple without changing all
values in the tuple; logically this can be expressed by an insertion
and deletion; in actual systems updating is much faster than
inserting and deleting.

I In relational algebra this can be expressed by replacing r by the
result computed by the relational algebra expression E ; often the
expression is the generalized projection.

r ← E

r ← πF1,F2....,Fi ,...(r)

I Each Fi is either
I the ith attribute of r , if the ith attribute is not updated, or,
I if the attribute is to be updated Fi is an expression, which defines the

new value for the attribute

DBS13, SL02 70/92 M. Böhlen, ifi@uzh

Update Examples

I Make interest payments by increasing all balances by 5%.

account ← πAccNr ,BranchName,Balance∗1.05(account)

I Pay all accounts with balances over $10,000 6% interest and pay all
others 5%.

account ←
πAccNr ,BranchName,Balance∗1.06(σBalance>100000(account))

∪
πAccNr ,BranchName,Balance∗1.05(σBalance≤100000(account))

DBS13, SL02 71/92 M. Böhlen, ifi@uzh

Relational Calculus

I First Order Predicate Logic

I Tuple Relational Calculus

I Domain Relational Calculus

DBS13, SL02 72/92 M. Böhlen, ifi@uzh

Relational Calculus

I A relational calculus expression creates a new relation, which is
specified in terms of variables that range over

I tuples of the stored database relations (in tuple calculus)
I attributes of the stored relations (in domain calculus).

I In a relational calculus expression, there is no order of operations to
specify how to compute the query result.

I A calculus expression specifies only what information the result
should contain; hence relational calculus is a non-procedural or
declarative language.

I In relational algebra we must write a sequence of operations to
specify a retrieval request; hence relational algebra is a procedural
way of stating a query.

I Relational calculus is closely related to and a subset of first order
predicate logic.

DBS13, SL02 73/92 M. Böhlen, ifi@uzh

First Order Predicate Logic

Syntax:

I logical symbols: ∧, ∨, ¬, ⇒, ∃, ∀, ...

I constant: string, number, ...; ’abc’, 14, ...

I identifier: character sequence starting with a letter

I variable: identifier starting with capital letter; X , Y , ...

I predicate symbol: identifier starting with lower case letter

I build-in predicate symbol: =, <,>,≤,≥, 6=, ...

I term: constant, variable

I atom: predicate, built-in predicate; p(t1, ..., tn), t1 < t2, ...
with terms t1, ..., tn; predicate symbol p

I formula: atom, A ∧ B, A ∨ B, ¬A, A⇒ B, ∃XA, ∀XA, (A), ...
with formulas A, B; variable X

DBS13, SL02 74/92 M. Böhlen, ifi@uzh

Review 2.10

Decide which of the following formulas are syntactically correct first order
predicate logic formulas.

I less than(99, 27)

I loves(mother(′hans ′), france ∨ italy)

I ∀X (danish(X)⇒ danish(′bill clinton′)

I ∀P(P(′hans ′))

I ∀C (neighbour(′england ′,C))

I ∃C (neighbour(′italien′,C))

I ∀P(smart(P) ∧ ¬alive(P)⇒ famous(P))

DBS13, SL02 75/92 M. Böhlen, ifi@uzh

Selected Properties and Terminology

FOPL Equivalences

I ∀X (A) = ¬∃X (¬A)

I A⇒ B = ¬A ∨ B

Set theory

I A− B = A− (A ∩ B)

Terminology

I A variable is free if it is not quantified

I A variable is bound if it is quantified

DBS13, SL02 76/92 M. Böhlen, ifi@uzh

Domain Independence

I Relational calculus only permits expressions that are domain
independent, i.e., expressions that permit sensible answers (e.g., no
infinite results).

I Domain independence is not decidable. There exist various syntactic
criteria that ensure domain independence, e.g., safe expressions,
range restricted expressions, etc.

I Examples:
I emp(X) is domain independent
I ¬emp(X) is not domain independent
I stud(X) ∧ ¬emp(X) is domain independent
I X > 6 is not domain independent

DBS13, SL02 77/92 M. Böhlen, ifi@uzh

Review 2.11

Use first order predicate calculus expressions to express the following
natural language statements:

I Anyone who is dedicated can learn databases.

I No man is independent.

I Dogs that bark do not bite.

I Not all men can walk.

I Every person owns a computer.

I Lars likes everyone who does not like himself.

DBS13, SL02 78/92 M. Böhlen, ifi@uzh

Tuple Relational Calculus/1

Syntax:

I logical symbols: ∧, ∨, ¬, ⇒, ∃, ∀, ...

I constant: string, number, ...; ’abc’, 14, ...

I identifier: character sequence starting with a letter

I variable: identifier starting with lower case letter; t, d , ...

I predicate symbol: identifier starting with lower case letter

I build-in predicate symbol: =, <,>,≤,≥, 6=, ...

I term: constant, attribute of a tuple; t.Name, ...

I atom: predicate, built-in predicate; p(t), t.Sal < 5000, ...

I formula: atom, A ∧ B, A ∨ B, ¬A, A⇒ B, ∃tA, ∀tA, (A), ...

I A tuple relational calculus query is of the form

{ t1.Aj , t2.Ak , ..., tn.Am | formula }

DBS13, SL02 79/92 M. Böhlen, ifi@uzh

Tuple Relational Calculus/2

I The tuple relational calculus is based on specifying a number of
tuple variables.

I Each tuple variable usually ranges over a particular database
relation, meaning that the variable may take as its value any
individual tuple from that relation.

I For example, to indicate that tuple variable t ranges over all tuples
of emp we write emp(t).

I Example: To determine first and last names of all employees whose
salary is above $50,000, we write the following TRC expression:

{ t.FName, t.LName | emp(t) ∧ t.Sal > 50000 }

DBS13, SL02 80/92 M. Böhlen, ifi@uzh

Tuple Relational Calculus/3

I Each free tuple variable is bound successively to each tuple of the
relation it ranges over.

I Each combination of bound tuples variables that makes the formula
true produces a result tuple according to the specification to the left
of the bar |.

I Example: Determine last names and department of all employees:

{ t.LName, d .DName | emp(t) ∧ dept(d) ∧ t.DNo = d .DNo }

DBS13, SL02 81/92 M. Böhlen, ifi@uzh

Review 2.12 branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)I Find all loans of over $1200.

I Find the loan number for each loan of an amount greater than
$1200,

I Find the names of all customers who have a loan, an account, or
both, from the bank.

DBS13, SL02 82/92 M. Böhlen, ifi@uzh

Review 2.13 branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)

I Find the names of all customers who have a loan at the Perryridge
branch.

I Find the names of all customers who have a loan at the Perryridge
branch but do not have an account at any branch of the bank.

DBS13, SL02 83/92 M. Böhlen, ifi@uzh

Review 2.14 branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)

I Determine the largest account balance.

DBS13, SL02 84/92 M. Böhlen, ifi@uzh

Domain Relational Calculus/1

Syntax:

I logical symbols: ∧, ∨, ¬, ⇒, ∃, ∀, ...

I constant: string, number, ...; ’abc’, 14, ...

I identifier: character sequence starting with a letter

I variable: identifier starting with capital letter; X , Y , ...

I predicate symbol: identifier starting with lower case letter

I build-in predicate symbol: =, <,>,≤,≥, 6=, ...

I term: constant, variable

I atom: predicate, built-in predicate; p(X , ..., 22), X < 5000, ...

I formula: atom, A ∧ B, A ∨ B, ¬A, A⇒ B, ∃X (A), ∀X (A), (A), ...

I A domain relational calculus query is of the form

{ X1, ...,Xn | formula }

DBS13, SL02 85/92 M. Böhlen, ifi@uzh

Domain Relational Calculus/2

I The domain relational calculus is based on specifying a number of
variables that range over single values from domains of attributes.

I In the domain calculus the position of attributes is relevant.
Attribute names are not used.

I Often the anonymous variable is used to shorten notation:
r(, ,X ,) = ∃U,V ,W (r(U,V ,X ,W))

I Example: To determine first and last names of all employees whose
salary is above $50,000, we write the following DRC expression:

{ FN, LN | emp(FN, , LN, ,Sal) ∧ Sal > 50000 }

DBS13, SL02 86/92 M. Böhlen, ifi@uzh

Review 2.15 branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)I Find all loans of over $1200.

I Find the loan number for each loan of an amount greater than
$1200.

I Find the names of all customers who have a loan, an account, or
both, from the bank.

DBS13, SL02 87/92 M. Böhlen, ifi@uzh

Review 2.16 branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)

I Find the names of all customers who have a loan at the Perryridge
branch.

I Find the names of all customers who have a loan at the Perryridge
branch but do not have an account at any branch of the bank.

DBS13, SL02 88/92 M. Böhlen, ifi@uzh

Review 2.17 branch(BranchName, BranchCity, Assets)
customer(CustName, CustStreet, CustCity)
account(AccNr, BranchName, Balance)
loan(LoanNr, BranchName, Amount)
depositor(CustName, AccNr)
borrower(CustName, LoanNr)

I Determine the largest account balance.

DBS13, SL02 89/92 M. Böhlen, ifi@uzh

Review 2.18
I Consider the following DRC expressions. Formulate equivalent

relational algebra expressions. Assume column i of relation r has
name rci .

I {X ,Y | p(X) ∧ q(X ,Y)}

I {X | p(X , 2) ∧ X > 7}

I {X | p(X) ∧ ¬∃Y (q(X ,Y))}

I {X | p(X) ∧ ¬∃Y (p(Y) ∧ Y > X)}

DBS13, SL02 90/92 M. Böhlen, ifi@uzh

Summary/1

I The Relational Model
I attribute, domain, tuple, relation, database, schema

I Basic Relational Algebra Operators
I Selection σ
I Projection π
I Union ∪
I Difference −
I Cartesian product ×
I Rename ρ

I Additional Relational Algebra Operators
I Join (theta, natural) 1
I Division ÷
I Assignment ←

DBS13, SL02 91/92 M. Böhlen, ifi@uzh

Summary/2

I Extended Relational Algebra Operators
I Generalized projection π
I Aggregate function ϑ
I Outer joins d|><| , |><|d , d|><|d

I Modification of the database
I insert, delete, update

I Relational Calculus
I tuple relational calculus
I domain relational calculus

I Know syntax of RA, TRC and DRC expressions.

I Be able to translate natural language queries into RA, TRC and
DRC expressions.

I Be able to freely move between RA, TRC and DRC.

DBS13, SL02 92/92 M. Böhlen, ifi@uzh

