
Database Systems
Spring 2013

Introduction
SL01

I Organization of the course

I The database field, basic definitions

I DB applications, functionality, users and languages

I Data models, schemas, instances, and redundancy

I Main characteristics of the database approach

I History, advantages and disadvantages of database systems

DBS13, SL01 1/67 M. Böhlen, ifi@uzh



Organization of the Course

I Database curricula at ifi

I Literature

I Lectures

I Exercises

I Content

DBS13, SL01 2/67 M. Böhlen, ifi@uzh



About me

I I have been a database system person since 20 years.

I My previous affiliations (and the first example of a database):

Affiliations

Start End Institution Country

1990 1994 ETH Zürich CH

1994 1995 University of Arizona USA

1995 2003 Aalborg University DK

2003 2009 Free University of Bozen-Bolzano IT

2009 now University of Zürich CH

I For the course it is important that you are precise and that you can
apply your knowledge on relevant examples.

DBS13, SL01 3/67 M. Böhlen, ifi@uzh



About the Database Systems Course

I Slides will be ready shortly before classes on the course web page:
http://www.ifi.uzh.ch/dbtg/teaching/courses/DBS.html

I The textbook is Database Systems by Elmasri and Navathe. Use
this book for preparation throughout the semester.

I Doing the exercises is very important. It is the best
preparation for the exam.

I During the lecture we will solve illustrative examples on the board.
Interaction during class is welcome.

I What is important
I Being able to apply your knowledge to relevant examples.
I Being able to be precise about the key concepts of database systems.

DBS13, SL01 4/67 M. Böhlen, ifi@uzh



About Database Sytems @ifi

I Database Systems (DBS), Spring, 4th semester

I Praktikum Datenbanksysteme (PDBS), Fall, 5th semester

I Distributed Databases (DDBS), Fall, 5th semester

I XML Databases, (XMLDB), Spring, 6th ot 8th semester

I Database Systems Implementation (IDBS), Fall, 7th semester

I Seminar Database Systems (SDBS), Spring, 8th or 6th semester

I Data Warehousing, Spring (DW), Spring even years, 8th semester

I Nonstandard Databases (NDBS), Fall, 9th semester

DBS13, SL01 5/67 M. Böhlen, ifi@uzh



Literature and Acknowledgments

Reading List for SL01:

I Database Systems, Chapters 1 and 2, Sixth
Edition, Ramez Elmasri and Shamkant B.
Navathe, Pearson Education, 2010.

These slides were developed by:

I Michael Böhlen, University of Zürich, Switzerland

I Johann Gamper, Free University of Bozen-Bolzano, Italy

The slides are based on the following text books and associated material:

I Database Systems, Sixth Edition, Ramez Elmasri and Shamkant B.
Navathe, Pearson Education, 2010.

I A. Silberschatz, H. Korth, and S. Sudarshan: Database System
Concepts, McGraw Hill, 2006.

DBS13, SL01 6/67 M. Böhlen, ifi@uzh



The Course/1

I The final exam is written and takes place Tuesday, June 18, 10:15 -
12:00 (check official web pages for details).

I There is no re-exam.

I Office hours after appointment with TAs (after exercise hour or by
email).

I The exercises take place Tuesday 12:00-13:45 (1 group) and
Wednesday 14:00-15:45 (2 groups). Start is February 26. This week
there is no exercise.

I TAs: Katerina Papaioannou (BIN-2.A.01, English), Anton Dignös
(BIN-0.B.06, German), Francesco Cafagna (BIN-2.A.01, English).

DBS13, SL01 7/67 M. Böhlen, ifi@uzh



The Course/2

I Please sign up for the exercise groups by the end of this week by
filling the Doodle (cf. course web page). We will balance the load
across groups.

I The weekly exercises are an important part of the course. The
assessment consists of the completion of 9 out of 12 exercises and
the participation at the final exam. Both parts have to be passed
independently.

I Hand in of the exercises is Tuesday at 12:00 (in class) or before to
TA directly.

I Exercises are only valid for the current year.

DBS13, SL01 8/67 M. Böhlen, ifi@uzh



The Course/3

I Exercises

26+27.2 Databases, relational algebra

05+06.3 Tuple relational calculus, domain relational calculus

12+13.3 PostgreSQL, SQL (metadata, DDL, simple DML)

19+20.3 SQL (advanced DML)

26+27.3 Stored procedures, triggers

09+10.4 Relational database design

16+17.4 Functional dependencies, multivalued dependencies

23+24.4 Entity relationship (ER) model

30.4 From the ER model to the relational model

07+08.5 Query trees and plans

14+15.5 Cost computation, empirical performance tests

21+22.5 Transaction processing

28+29.5 -

DBS13, SL01 9/67 M. Böhlen, ifi@uzh



The Course/4

I Course Content

I Database systems, chapter 1 and 2
I The field, terminology, database system, schema, instance,

functionality, architecture

I Relational model, algebra, and calculus, chapter 3 and 6
I The relational model, relational algebra, tuple relational calculus,

domain relational calculus

I SQL, chapter 4
I Data definition language, data manipulation language

I Constraints, triggers, views, DB programming, chapter 5 and 12
I column constraints, table constraints, assertions, referential integrity,

triggers, stored procedures

I Relational database design, chapter 14 and 15
I design goals, keys, functional dependencies, normal forms, lossless

join decompositions, higher normal forms

DBS13, SL01 10/67 M. Böhlen, ifi@uzh



The Course/5

I Course Content

I Conceptual database design, chapter 7 and 8
I The design process, the entity-relationship model, entity-relationship

to relational model mapping

I Physical database design, chapter 16 and 17
I Physical Storage media, file and buffer manager, indices, B-trees,

hashing

I Query processing and optimization, chapter 18 and 19
I Measures of query cost, selection and join operation, transformation

of relational expressions, evaluation plans

I Transactions, concurrency, recovery, chapter 20, 21, 22
I ACID properties, SQL transactions, concurrency protocols, log-based

recovery

DBS13, SL01 11/67 M. Böhlen, ifi@uzh



The Database Field

I Professional Resources

I Products

I Activities of Database People

I Basic Terminology and Definitions

DBS13, SL01 12/67 M. Böhlen, ifi@uzh



The Field/1

I Conference Publications
I SIGMOD/PODS
I VLDB
I ICDE
I EDBT/ICDT

I Journal Publications
I ACM Transaction on Database System (TODS)
I The VLDB Journal (VLDBJ)
I IEEE Transactions on Knowledge and Data Engineering (TKDE)
I Information Systems (IS)

I DBLP Bibliography (Michael Ley, Uni Trier, Germany)
I http://dblp.uni-trier.de/db/

I DBWorld mailing list
I http://www.cs.wisc.edu/dbworld/

DBS13, SL01 13/67 M. Böhlen, ifi@uzh



The Field/2

DBS13, SL01 14/67 M. Böhlen, ifi@uzh



Products

I Commercial Products
I Oracle
I DB2 (IBM)
I Microsoft SQL Server
I Teradata
I Sybase (SAP)
I Informix (IBM)
I PC “DBMSs”: Access (Microsoft), Paradox, ...
I ...

I Open Source Products
I MySQL (Oracle)
I PostgreSQL
I MonetDB
I ...

We will use PostgreSQL for this course.

DBS13, SL01 15/67 M. Böhlen, ifi@uzh



Oracle’s Solution Stack

Image: Roger Wullschleger, Oracle @ DBTA Workshop on Big Data, Bern, 2012

DBS13, SL01 16/67 M. Böhlen, ifi@uzh



Typical Activities/Jobs of Database People

I Data modeling

I Handling large volumes of complex data

I Distributed databases

I Design of migration strategies

I User interface design

I Development of algorithms

I Design of languages
I New data models and systems

I XML/semi-structured databases
I Stream data processing
I Temporal and spatial databases
I GIS systems

I etc.

DBS13, SL01 17/67 M. Böhlen, ifi@uzh



Basic Definitions/1

About, data, information, and knowledge:

I Data are facts that can be recorded:
I book(Lord of the Rings, 3, 10)

I Information = data + meaning
I book:
I title = Lord of the rings,
I volume nr = 3,
I price in USD = 10

I Knowledge = information + application

DBS13, SL01 18/67 M. Böhlen, ifi@uzh



Basic Definitions/2

I Mini-world: The part of the real world we are interested in

I Data: Known facts about the mini-world that can be recorded

I Database (DB): A collection of related data

I Database Management System (DBMS): A software package to
facilitate the creation/maintenance/querying of databases

I Database System (DBS): DB + DBMS

I Meta Data: Information about the structure of the DB.
I Meta data is organized as a DB itself.

DBS13, SL01 19/67 M. Böhlen, ifi@uzh



Basic Definitions/3

DBS13, SL01 20/67 M. Böhlen, ifi@uzh



DBMS Languages/1

I A DBMS offers two types of languages:
I data definition language (DDL) to create and drop tables, etc
I data manipulation language (DML) to select, insert, delete, and

update data

I The standard language for database systems is SQL
I SQL stands for Structured Query Language
I Example SQL query: select * from r
I the original name was SEQUEL
I “Intergalactic data speak” [Michael Stonebraker].

I SQL offers a DDL and a DML.

DBS13, SL01 21/67 M. Böhlen, ifi@uzh



DBMS Languages/2

I We distinguish between
I High level or declarative (non-procedural) languages
I Low level or procedural languages

I High level or non-procedural language:
I For example, the SQL relational language
I Set-oriented (retrieve multiple results)
I Specify what data to retrieve and not how to retrieve it
I Also called declarative languages.

I Low level or procedural language:
I Retrieve data one record at a time
I Specify how to retrieve data
I Constructs such as looping are needed to retrieve multiple records,

along with positioning pointers.

DBS13, SL01 22/67 M. Böhlen, ifi@uzh



Review 1.1
1. Give examples of declarative and procedural approaches from the

real world.

Procedural:

cooking recipe: specifies the steps to cook a meal.

Pascal, C, Java, etc are procedural languages: individual steps are specified.

Declarative:

Search with Google: what to search and not how to search.

borrow a book from the uzh library: which book not how to find it.

SQL is a declarative programming language: what to compute not how to

compute.

DBS13, SL01 23/67 M. Böhlen, ifi@uzh



Applications, Functionality, Users
and Interfaces

I Application Areas of Database Systems

I Functionality of Database Systems

I Users of Database Systems

I DBMS Interfaces

DBS13, SL01 24/67 M. Böhlen, ifi@uzh



Applications of Database Systems

I Traditional Applications
I Numeric and Textual Databases

I More Recent Applications:
I Multimedia Databases
I Geographic Information Systems (GIS)
I Data Warehouses
I Real-time and Active Databases
I Many other applications

I Examples:
I Bank (accounts)
I Insurances
I Stores (inventory, sales)
I Reservation systems
I University (students, courses, rooms)
I online sales (amazon.com)
I online newspapers (nzz.ch)

DBS13, SL01 25/67 M. Böhlen, ifi@uzh



Functionality of Database Systems/1

Typical DBMS functionality:

I Define a particular database in terms of its data types, structures,
and constraints

I Construct or load the initial database contents on a secondary
storage medium

I Manipulating the database:
I Retrieval: Querying, generating reports
I Modification: Insertions, deletions and updates to its content
I Accessing the database through Web applications

I Sharing by a set of concurrent users and application programs
while, at the same time, keeping all data valid and consistent

DBS13, SL01 26/67 M. Böhlen, ifi@uzh



Functionality of Database Systems/2

Additional DBMS functionality:

I Other features of DBMSs:
I Protection or security measures to prevent unauthorized access
I Active processing to take internal actions on data
I Presentation and visualization of data
I Maintaining the database and associated programs over the lifetime

of the database application (called database, software, and system
maintenance)

DBS13, SL01 27/67 M. Böhlen, ifi@uzh



Users of Database Systems/1

Database users have very different tasks. There are those who use and
control the database content, and those who design, develop and
maintain database applications.

I Database administrators:
I Responsible for authorizing access to the database, for coordinating

and monitoring its use, acquiring software and hardware resources,
controlling its use and monitoring efficiency of operations.

I Database Designers:
I Responsible to define the content, the structure, the constraints, and

functions or transactions against the database. They must
communicate with the end-users and understand their needs.

DBS13, SL01 28/67 M. Böhlen, ifi@uzh



Users of Database Systems

I End-users: They use the data for queries, reports and some of them
update the database content. End-users can be categorized into:

I Casual: access database occasionally when needed
I Näıve: they make up a large section of the end-user population.

I They use previously well-defined functions in the form of “canned
transactions” against the database.

I Examples are bank-tellers or reservation clerks.

I Sophisticated:
I These include business analysts, scientists, engineers, others

thoroughly familiar with the system capabilities.
I Many use tools in the form of software packages that work closely

with the stored database.

I Stand-alone:
I Mostly maintain personal databases using ready-to-use packaged

applications.
I An example is a tax program user that creates its own internal

database or a user that maintains an address book

DBS13, SL01 29/67 M. Böhlen, ifi@uzh



DBMS Interfaces/1

I User-friendly interfaces
I Menu-based, forms-based, graphics-based, etc.

I Stand-alone query language interfaces
I Example: Entering SQL queries at the DBMS interactive SQL

interface (e.g. psql in PostgreSQL, sqlplus in Oracle)

I Program interfaces for embedding DML in programming languages

I Web Browser as an interface

I Speech as Input and Output

I Parametric interfaces, e.g., bank tellers using function keys.
I Interfaces for the DBA:

I Creating user accounts, granting authorizations
I Setting system parameters
I Changing schemas or access paths

DBS13, SL01 30/67 M. Böhlen, ifi@uzh



DBMS Interfaces/2

I Programmer interfaces for embedding DML in programming
languages:

I Embedded Approach:
embedded SQL (for C, C++, etc.)
SQLJ (for Java)

I Procedure Call Approach:
JDBC for Java
ODBC for other programming languages

I Database Programming Language Approach:
e.g., ORACLE has PL/SQL, a programming language based on SQL;
language incorporates SQL and its data types as integral components

DBS13, SL01 31/67 M. Böhlen, ifi@uzh



DBMS Interfaces/3
I Oracle SQL Developer is a graphical tool for DB development.
I With SQL Developer you can browse database objects, run SQL

statements and SQL scripts, and edit and debug PL/SQL
statements.

DBS13, SL01 32/67 M. Böhlen, ifi@uzh



DBMS Interfaces/4

I pgadmin is the administration and development platform for
PostgreSQL.

DBS13, SL01 33/67 M. Böhlen, ifi@uzh



DBMS Interfaces/5

I The graphical interface supports all PostgreSQL features, from
writing simple SQL queries to developing complex databases.

DBS13, SL01 34/67 M. Böhlen, ifi@uzh



DBMS Interfaces/6

I There are various database system utilities to perform certain
functions such as:

I Loading data stored in files into a database. Includes data conversion
tools.

I Backing up the database periodically on tape.
I Reorganizing database file structures.
I Report generation utilities.
I Performance monitoring utilities.
I Other functions, such as sorting, user monitoring, data compression,

etc.

DBS13, SL01 35/67 M. Böhlen, ifi@uzh



Models, Schemas, Instances and
Redundancy

I Data Models

I Database Schema

I Database Instance

I Redundancy

DBS13, SL01 36/67 M. Böhlen, ifi@uzh



Data Models

I Data Model:
I A set of concepts to describe the structure of a database, the

operations for manipulating these structures, and certain
constraints that the database should obey.

I Structure and Constraints:
I Different constructs are used to define the database structure
I Constructs typically include elements (and their data types) as well

as groups of elements (e.g. entity, record, table), and
relationships among such groups

I Constraints specify some restrictions on valid data; these constraints
must be enforced at all times

I Operations
I Operations are used for specifying database retrievals and updates

by referring to the constructs of the data model.
I Operations on the data model may include basic model operations

(e.g. generic insert, delete, update) and user-defined operations (e.g.
compute student gpa, update inventory)

DBS13, SL01 37/67 M. Böhlen, ifi@uzh



Categories of Data Models

I Conceptual (high-level, semantic) data models:
I Provide concepts that are close to the way many users perceive data.

(Also called entity-based or object-based data models.)

I Physical (low-level, internal) data models:
I Provide concepts that describe details of how data is stored in the

computer. These are usually specified in an ad-hoc manner through
DBMS design and administration manuals

I Implementation (representational) data models:
I Provide concepts that fall between the above two, used by many

commercial DBMS implementations (e.g. relational data models used
in many commercial systems).

DBS13, SL01 38/67 M. Böhlen, ifi@uzh



Database Schema

I Database Schema:
I The description of a database.
I Includes descriptions of the database structure, data types, and the

constraints on the database.

I Schema Diagram:
I An illustrative display of (most aspects of) a database schema.

I Schema Construct:
I A component of the schema or an object within the schema, e.g.,

STUDENT, COURSE.

I The database schema changes very infrequently.

I Schema is also called intension.

DBS13, SL01 39/67 M. Böhlen, ifi@uzh



Database Instance

I Database Instance:
I The actual data stored in a database at a particular moment in time.

This includes the collection of all the data in the database.
I Also called database state (or occurrence or snapshot).
I The term instance is also applied to individual database components,

e.g., record instance, table instance, entity instance

I Initial Database Instance: Refers to the database instance that is
initially loaded into the system.

I Valid Database Instance: An instance that satisfies the structure
and constraints of the database.

I The database instance changes every time the database is updated.

I Instance is also called extension.

DBS13, SL01 40/67 M. Böhlen, ifi@uzh



Example of a Database Description

I Mini-world for the example:
I Part of a UNIVERSITY environment.

I Some mini-world entities (an entity is a specific thing in the
mini-world):

I STUDENTs
I COURSEs
I SECTIONs (of COURSEs)
I DEPARTMENTs
I INSTRUCTORs

I Some mini-world relationships (a relationship relates things of the
mini-world):

I SECTIONs are of specific COURSEs
I STUDENTs take SECTIONs
I COURSEs have prerequisite
I COURSE INSTRUCTORs teach SECTIONs
I COURSEs are offered by DEPARTMENTs
I STUDENTs major in DEPARTMENTs

DBS13, SL01 41/67 M. Böhlen, ifi@uzh



Example of a Database Schema

STUDENT
Name StudNr Class Major

COURSE
CourseName CourseNr CreditHours Department

PREREQUISITE
CourseNr PrerequisiteNr

SECTION
SectionID CourseNr Semester Year Instructor

GRADE REPORT
StudNr SectionId Grade

DBS13, SL01 42/67 M. Böhlen, ifi@uzh



Example of a Database Instance
COURSE

CourseName CourseNr CreditHours Department

Intro to Computer Science CS1310 4 CS
Data Structures CS3320 4 CS

Discrete Mathematics MATH2410 3 MATH
Databases CS3360 3 CS

SECTION
SectionID CourseNr Semester Year Instructor

85 MATH2410 Fall 04 King
92 CS1310 Fall 04 Anderson

102 CS3320 Spring 05 Knuth
112 MATH2410 Fall 05 Chang
119 CS1310 Fall 05 Anderson
135 CS3380 Fall 05 Stone

PREREQUISITE
CourseNr PrerequisiteNr

CS3380 CS3320
CS3380 MATH2410
CS3320 CS1310

GRADE REPORT
StudNr SectionId Grade

17 112 B
17 119 C
8 85 A
8 92 A
8 102 B
8 135 A

DBS13, SL01 43/67 M. Böhlen, ifi@uzh



Redundancy

I During the design of a database the number of tables and their
schemas must be determined.

I A key goal of database design is to avoid redundancy.

I Redundancy is present if information is stored multiple times.

I Example of redundancy: storing the same address multiple times

I Redundancy leads to update anomalies and inconsistent data (e.g.,
a person has multiple and partially invalid addresses)

I The goal of database design, and specifically of database
normalization, is to eliminate redundancy.

I The term controlled redundancy is used if duplication of
information is allowed and if the duplication is controlled by the
DBMS.

DBS13, SL01 44/67 M. Böhlen, ifi@uzh



Review 1.2

Consider the university database instance shown above.

1. Explain why this schema contains redundancy.
2. Give an example of a change that leads to update anomalies.
3. Propose a modified schema that eliminates the redundancy.

In table COURSE the department appears redundantly in CourseNr.

Changing department from CS to CSSE.

Anomaly/inconsistency occurs if the course number is not changed as
well.

DBS13, SL01 45/67 M. Böhlen, ifi@uzh



Review 1.2

Solution 1:
COURSES

CourseNr CreditHours

CS1310 4

CS3320 4

MATH2410 3

PREREQUISITE

CourseNr PrerequisiteNr

CS3380 CS3320

CS3380 MATH2410

CS3320 CS1310

Solution 2 (suitable for queries that target the area):

COURSES

Area CourseNr CreditHours

CS 1310 4

CS 3320 4

MATH 2410 3

PREREQUISITE

CourseArea CourseNr PrecondArea PrecondNr

CS 3380 CS 3320

CS 3380 MATH 2410

CS 3320 CS 1310

DBS13, SL01 46/67 M. Böhlen, ifi@uzh



Main Characteristics of Database
Systems

I Three Schema Architecture

I Data Independence

I Main Characteristics

DBS13, SL01 47/67 M. Böhlen, ifi@uzh



The ANSI/SPARC Three Schema Architecture/1

I Proposed to support DBMS characteristics of:
I Data independence
I Multiple views of the data

I Not explicitly used in commercial DBMS products, but has been
useful in explaining database system organization.

I Defines DBMS schemas at three levels:
I Internal schema at the internal level to describe physical storage

structures and access paths (e.g indexes).
I Typically uses a physical data model.

I Conceptual schema at the conceptual level to describe the structure
and constraints for the whole database for a community of users.

I Uses a conceptual or an implementation data model.

I External schemas at the external level to describe the various user
views.

I Usually uses the same data model as the conceptual schema.

DBS13, SL01 48/67 M. Böhlen, ifi@uzh



The ANSI/SPARC Three Schema Architecture/2

I Mappings among schema levels are needed to transform requests
and data.

I Programs refer to an external schema, and are mapped by the DBMS
to the internal schema for execution.

I Data extracted from the internal DBMS level is reformatted to match
the user’s external view (e.g., formatting the results of an SQL query
for display in a Web page)

DBS13, SL01 49/67 M. Böhlen, ifi@uzh



The ANSI/SPARC Three Schema Architecture/3

DBS13, SL01 50/67 M. Böhlen, ifi@uzh



Data Independence

I Logical Data Independence:
I The capacity to change the conceptual schema without having to

change the external schemas and their associated application
programs.

I Physical Data Independence:
I The capacity to change the internal schema without having to change

the conceptual schema.
I For example, the internal schema may be changed when certain file

structures are reorganized or new indexes are created to improve
database performance

I When a schema at a lower level is changed, only the mappings
between this schema and higher-level schemas need to be changed
in a DBMS that fully supports data independence.

I The higher-level schemas themselves are unchanged.
I Hence, the application programs need not be changed since they refer

to the external schemas.

DBS13, SL01 51/67 M. Böhlen, ifi@uzh



Review 1.3

1. Give real world examples of data independence.

- Suche mit Google
- Ausleihen eines Buches aus der UZH Bibliothek
- Bewirtschaftung des Bankkontos
- Zugriff auf Noten an der UZH

In all diesen Fällen
- Verwendung der Daten ohne die Organisation der Daten zu kennen
- hat die Anwendung keinen direkter Zugriff auf die Daten

DBS13, SL01 52/67 M. Böhlen, ifi@uzh



Main Characteristics of Database Approach/1

I Insulation between programs and data:
I Called data independence.
I Allows changing data structures and storage organization without

having to change the DBMS access programs.

I Control of redundancy:
I Database systems control (and minimize) redundancy
I The control allows to avoid inconsistent data (happens if only one

copy is updated)

I Data abstraction:
I A data model is used to hide storage details and present the users

with a conceptual view of the database.
I Programs refer to the data model constructs rather than data storage

details

I Support of multiple views of the data:
I Each user may see a different view of the database, which describes

only the data of interest to that user.

DBS13, SL01 53/67 M. Böhlen, ifi@uzh



Main Characteristics of Database Approach/2

I Sharing of data and multi-user transaction processing:
I Allowing a set of concurrent users to retrieve from and to update the

database.
I Concurrency control within the DBMS guarantees that each

transaction is correctly executed or aborted
I Recovery subsystem ensures each completed transaction has its effect

permanently recorded in the database
I OLTP (Online Transaction Processing) is a major part of database

applications. This allows hundreds of concurrent transactions to
execute per second.

I Self-describing nature of a database system:
I A DBMS catalog stores the description of a particular database (e.g.

data types, data structures, and constraints)
I The description is called metadata.
I This allows the DBMS software to work with different database

applications.

DBS13, SL01 54/67 M. Böhlen, ifi@uzh



Main Characteristics of Database Approach/3

Example of a DBMS catalog (just the idea; oversimplified):

RELATIONS
RelationName NrOfColumns

STUDENT 4

COURSE 4

SECTION 5

GRADE REPORT 3

PRERQUISITE 2

COLUMNS
ColumnName DataType BelongsToRelation

Name Character(30) STUDENT

StudentNr CHARACTER(4) STUDENT

Class INTEGER(1) STUDENT

... ... ...

I PostgreSQL 8.3.9: 74 objects in the system catalog

I Oracle 10.2: 1821 objects in the system catalog

DBS13, SL01 55/67 M. Böhlen, ifi@uzh



DBMS Architecture

SQL

DBMS1

Parser

Analyzer/Rewriter

Optimizer

Executor

Files and Access Methods

Buffer Manager

Disk Manager

Recovery
Manager

Transaction
Manager

Lock
Manager

Data and Index Files

1
Image: Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill 2003

DBS13, SL01 56/67 M. Böhlen, ifi@uzh



History

I History of Database Technology

I Advantages of Database Technology

I Limitations of Database Technology

DBS13, SL01 57/67 M. Böhlen, ifi@uzh



History of Database Technology/1

I Network Model:
I The first network DBMS was implemented by Honeywell in 1964-65

(IDS System).
I Adopted heavily due to the support by CODASYL (Conference on

Data Systems Languages) (CODASYL - DBTG report of 1971).

I Advantages:
I The network model is able to model complex relationships.
I Can handle most situations for modeling using record types and

relationship types.
I Language is navigational; uses constructs like FIND, FIND member,

FIND owner, FIND NEXT within set, GET, etc.
I Programmers can do optimal navigation through the database.

I Disadvantages:
I Navigational and procedural nature of processing
I Database contains a complex array of pointers that thread through a

set of records.
I Little scope for automated query optimization

DBS13, SL01 58/67 M. Böhlen, ifi@uzh



History of Database Technology/2

I Hierarchical Data Model:
I Initially implemented in a joint effort by IBM and North American

Rockwell around 1965. Resulted in the IMS family of systems.
I IBM’s IMS product had (and still has) a very large customer base

worldwide
I Hierarchical model was formalized based on the IMS system
I Other systems based on this model: System 2k (SAS inc.)

I Advantages:
I Simple to construct and operate
I Corresponds to a number of natural hierarchically organized domains,

e.g., organization chart
I Language is simple; Uses constructs like GET, GET UNIQUE, GET

NEXT, GET NEXT WITHIN PARENT, etc.

I Disadvantages:
I Navigational and procedural nature of processing
I Database is visualized as a linear arrangement of records
I Little scope for ”query optimization”

DBS13, SL01 59/67 M. Böhlen, ifi@uzh



History of Database Technology/3
I Relational Model:

I Proposed in 1970 by E.F. Codd (IBM)
I Heavily researched and experimented within IBM Research and

universities
I First commercial system in 1981-82.
I Now in several commercial products (e.g. DB2, ORACLE, MS SQL

Server, SYBASE, INFORMIX).
I Several free open source implementations, e.g. MySQL, PostgreSQL
I Currently most dominant for developing database applications.
I SQL relational standards: SQL-89 (SQL1), SQL-92 (SQL2), SQL-99,

SQL3, . . .

I Advantages:
I High level of abstraction (conceptual and physical level are separated)
I Elegant mathematical model
I High level (declarative) query languages

I Disadvantages:
I Performance (was slow at the beginning because there is no

navigational access to data)

DBS13, SL01 60/67 M. Böhlen, ifi@uzh



History of Database Technology/4

I Object-oriented models:
I Object-oriented database management systems (OODBMSs) were

introduced in late 1980s and early 1990s to cater to the need of
complex data processing in CAD and other applications.

I OBJECTSTORE, VERSANT, GEMSTONE, O2, ORION, IRIS.
I Object Database Standard: ODMG-93, ODMG-version 2.0,

ODMG-version 3.0.
I Pure OODBMSs have disappeared. Many relational DBMSs have

incorporated object database concepts, leading to a new category
called object-relational DBMSs (ORDBMSs).

I Data on the web and E-commerce applications:
I Web contains data in HTML with links among pages.
I This has given rise to a new set of applications and E-commerce is

using standards like XML.
I Script programming languages such as PHP and JavaScript allow

generation of dynamic Web pages that are partially generated from a
database.

DBS13, SL01 61/67 M. Böhlen, ifi@uzh



History of Database Technology/5

I New functionality is being added to DBMSs in the following areas:
I Scientific Applications
I XML (eXtensible Markup Language)
I Image Storage and Management
I Audio and Video Data Management
I Data Warehousing and Data Mining
I Spatial Data Management
I Time Series and Historical Data Management
I Key-value stores (NoSQL)

I The above gives rise to new research and development in
incorporating new data types, complex data structures, new
operations and storage and indexing schemes in database systems.

DBS13, SL01 62/67 M. Böhlen, ifi@uzh



Advantages of Using a DBMS/1

I Controlling redundancy in data storage.

I Restricting unauthorized access to data.

I Providing persistent storage for program objects.

I Providing storage structures (e.g., indexes) for efficient query
processing.

I Providing backup and recovery services.

I Providing multiple interfaces to different classes of users.

I Representing complex relationships among data.

I Enforcing integrity constraints on the database (= good data
quality).

I Drawing inferences and actions from the stored data using deductive
and active rules.

DBS13, SL01 63/67 M. Böhlen, ifi@uzh



Advantages of Using a DBMS/2

I Potential for enforcing standards:
I This is very crucial for the success of database applications in large

organizations. Standards refer to data item names, display formats,
screens, report structures, meta-data (description of data), Web page
layouts, etc.

I Reduced application development time:
I Incremental time to add each new application is reduced.

I Flexibility to change data structures:
I Database structure may evolve as new requirements are defined.

I Availability of current information:
I Extremely important for on-line transaction systems such as airline,

hotel, car reservations.

I Economies of scale:
I Wasteful overlap of resources and personnel can be avoided by

consolidating data and applications across departments.

DBS13, SL01 64/67 M. Böhlen, ifi@uzh



When to not use a DBMS

I Main inhibitors of using a DBMS:
I High initial investment and possible need for additional hardware.
I Overhead for providing generality, security, concurrency control,

recovery, and integrity functions.

I When a DBMS may be unnecessary:
I If the database and applications are simple, well defined, and not

expected to change.
I If there are stringent real-time requirements that may not be met

because of DBMS overhead.
I If access to data by multiple users is not required.

I When no DBMS may suffice:
I If the database system is not able to handle the complexity of data

because of modeling limitations
I If the database users need special operations not supported by the

DBMS.

DBS13, SL01 65/67 M. Böhlen, ifi@uzh



Summary/1

I Data models, schemas, instances
I data model = structures + constraints + operations
I schema = intension; schema consists of structures and constraints;

schema changes infrequently
I relation instance = relation = extension; relation instance is the

actual data that is compatible with the schema; changes often

I Key characteristics of database systems
I controlled redundancy: database systems is aware of redundancy

and provides support for updates that could violate the consistency of
the data

I data independence: separation of program and data; makes it
possible to, e.g., reorganize internal schema without changing
conceptual schema

I data abstraction: high level query language that is independent of
storage structure

I data dictionary (metadata) that stores information about the
database itself (self-describing)

DBS13, SL01 66/67 M. Böhlen, ifi@uzh



Summary/2

I Three-Schema Architecture
I multiple views of the data
I ANSI/SPARC three schema arcitecture
I external, conceptual, and internal schema

I DBMS Languages and Interfaces
I stand-alone command line interfaces: psql, sqlplus, ...
I programming interfaces: ODBC, JDBC
I database development tools: pgadmin, SQL developer

I Architectures and History
I 1-tier, 2-tier, 3-tier
I network, hierarchical, relational, object-oriented, object-relational

DBS13, SL01 67/67 M. Böhlen, ifi@uzh


