
Single Point Incremental Fourier Transform on 2D
Data Streams

Muhammad Saad∗, Abraham Bernstein∗, Michael H. Böhlen∗, Daniele Dell’Aglio†∗
∗ Department of Informatics, University of Zurich, Zurich, Switzerland
† Department of Computer Science, Aalborg University, Aalborg, Denmark
saad@ifi.uzh.ch, bernstein@ifi.uzh.ch, boehlen@ifi.uzh.ch, dade@cs.aau.dk

Abstract—In radio astronomy, antennas monitor portions of
the sky to collect radio signals. The antennas produce data
streams that are of high volume and velocity (∼2.5 GB/s) and
the inverse Fourier transform is used to convert the collected
signals into sky images that astrophysicists use to conduct their
research. Applying the inverse Fourier transform in a streaming
setting, however, is not ideal since its computational complexity
is quadratic in the size of the image.

In this article, we propose the Single Point Incremental Fourier
Transform (SPIFT), a novel incremental algorithm to produce
sequences of sky images. SPIFT computes the Fourier transform
for a new signal in a linear number of complex multiplications
by exploiting twiddle factors, multiplicative constant coefficients.
We prove that twiddle factors are periodic and show how circular
shifts can be exploited to reuse multiplication results. The cost
of the additive operations can be curbed by exploiting the
embarrassingly parallel nature of the additions, which modern
big data streaming frameworks can leverage to compute slices
of the image in parallel. Our experiments suggest that SPIFT
can efficiently generate sequences of sky images: it computes the
complex multiplications 4 to 12x faster than the Discrete Fourier
Transform, and its parallelisation of the additive operations
shows linear speedup.

I. INTRODUCTION

Radio astronomy scientists study objects in the sky by
collecting data with radio telescopes arrays like ASKAP—the
Australian Square Kilometre Array Pathfinder. Such antennas
collect radio signals that are transformed into images through
a two step process: in the observation stage they measure radio
signals, and in the processing stage they convert the signals
into images by applying the 2D Discrete Fourier Transform
(2D-DFT).

Recently, scientists started to get interested in near-real-time
applications: they want to observe the results of the image as
soon as possible, even while still measuring the radio signals,
and trade image quality with responsiveness [1] using sparse
regularization methods to estimate the final image. A possible
way to tackle the problem of continuously generating such
images is to exploit distributed stream processing frameworks,
which have been developed to process data in a continuous
fashion. One drawback of adapting the processing stage to a
streaming setting is the complexity of the 2D-DFT, which is
O(N2 logN) for an image of size N × N . The 2D-DFT is
executed for every new measured radio signal, making it a
bottleneck of the continuous processing stage. Therefore, in
this article we aim at optimizing the 2D-DFT in a scenario
where radio signals are processed sequentially on top of a

distributed stream processing framework. This is the first study
that focuses on how to reduce the complexity when the 2D-
DFT is computed after each new stream update.

As the main result of this study, we show that, in the context
of 2D-DFT computation for a single point, the updates that
must be applied to the image can be computed in linear time.
Our algorithm, the Single Point Incremental Fourier Transform
(SPIFT), exploits twiddle factors to introduce redundancy in
the computation. SPIFT proposes circular shifts to leverage
this redundancy and reduce from a quadratic to a linear number
of multiplications.

In order to update the image, the 2D-DFT of a single point
must be added to the 2D-DFT of the signals observed in the
past. The cost of the additive operations can be curbed by
exploiting the embarrassingly parallel nature of the matrix
addition. We exploit modern stream processing engine archi-
tectures to slice the image matrix into sub-matrices that are
updated in parallel. Since there is no dependency or need for
communication between these parallel tasks, the parallelization
of the additive operation exhibits a perfect scalability with a
linear speedup.

Our experiments show that the single point Fourier trans-
form with circular shifts is 4-12 times faster than the direct
DFT, which does not use shifts. Also, we found that the
throughput of SPIFT increases linearly with the increase of
the parallelism. Our algorithm is competitive with hardware-
optimized libraries and outperforms them for a parallelism
degree greater than or equal to 8.

Summarising, the contributions of this paper are as follows:
1) We propose the single point Fourier transform (SPFT),

which uses circular shifts to compute the 2D-Fourier
transform of a single point with a linear number of
complex multiplication operations.

2) For a stream setting, we propose the single point in-
cremental Fourier transform (SPIFT) based on SPFT.
SPIFT incrementally computes the 2D-Fourier transform
of the entire stream as observations stream in. SPIFT
uses less floating point operations than the fast Fourier
transform (FFT) and the direct DFT to compute the
2D-Fourier transform of the stream for each point.

3) We implement and evaluate the complete streaming
pipeline with the SPIFT algorithm in Apache Flink.

4) We experimentally study the performance of SPIFT by
comparing it with FFT and direct DFT for various

852

2021 IEEE 37th International Conference on Data Engineering (ICDE)

978-1-7281-9184-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDE51399.2021.00079

20
21

 IE
EE

 3
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
8-

1-
72

81
-9

18
4-

3/
20

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

13
99

.2
02

1.
00

07
9

Authorized licensed use limited to: University Library Zurich / Zentralbibliothek Zurich. Downloaded on July 27,2023 at 13:38:56 UTC from IEEE Xplore. Restrictions apply.

grid sizes and parallelization degrees on real-world and
synthetic observational data.

The rest of the article is organized as follows. Section II
reviews the algorithms for computing the Fourier transform
over streaming data. We introduce the application scenario
and the problem statement in Section III. We describe the
basics of the Fourier transform in Section IV. We present our
main ideas—the circular shifts of twiddle factors and the in-
cremental image computation—in Sections V and VI. We then
propose a streaming pipeline and discuss its implementation
in Apache Flink in Section VII. We evaluate our approach in
Section VIII. We close with conclusions in Section IX. Table I
summarizes the notations and terminologies used in the paper.

II. RELATED WORK

In recent years, distributed stream processing has emerged
as the paradigm to process huge volumes of data with high
data rates. Several initiatives have led to a broad range of
stream processing engines that process huge amounts of data
reactively and continuously [2], [3], [4], [5], [6].

A stream computing approach for radio astronomy imaging
was first discussed for the ASKAP Central Processor [7].
The study focuses on the convolutional gridding algorithm,
i.e., a preliminary step in the radio imaging pipeline to map
visibilities to a regular and finite sized 2D-grid. The authors
use System S to grid a vast number of frequency channels
in parallel, overcoming memory limitations and decreasing
the processing time. Mahmoud et al. [8] use IBM InfoSphere
Streams [9] to compute the power spectral density through a
spectrometer pipeline that takes the 1D-FFT of radio astron-
omy signals, showing that the streaming approach is a viable
solution for a real-time spectrometer pipeline. It significantly
increases the throughput and can be further improved by using
hardware accelerators such as GPUs and FPGAs.

Based upon the input data, existing methods for the Fourier
transformation can be categorized into finite-size data
and record-wise data. To compute the Fourier trans-
form of finite-size data, i.e., a vector a ∈ RN or a matrix
A ∈ RM×N , the Cooley-Tukey FFT [10] is the state-of-the-art
algorithm. FFT optimizations either strive to reduce the total
number of additions and multiplications [11], [12] or exploit
the parallelism offered by hardware accelerators. In this paper
we reduce the number of operations for computing a Single
Point Fourier transform.

The Fourier transform over a data stream is computed
by using a finite-size sliding window over the records. The
window selects a finite-size fragment of records from the
stream. The idea is to efficiently compute the Fourier trans-
form of each window by reusing the Fourier transform of
the previous window. Such techniques [13], [14] reduce the
complexity by not recalculating all Fourier coefficients for
every window. The sliding discrete Fourier transform [15],
[16] further reduces the computational complexity by using
the DFT shift theorem. It is used to efficiently compute the
spectral components of a sequence that is shifted in the time-
domain. However, the finite precision of complex multiplica-

TABLE I
NOTATIONS AND TERMINOLOGY.

Notation Description
At, Bt, Ct, ... a time-indexed 2D-grid or matrix

At,k , Bt,k , Ct,k , ... a time-indexed 2D sub-grid or sub-matrix belong-
ing to partition k.

x, y, z, ... a 1D-vector or 1D-tuple
xt, yt, zt, ... a time-indexed 1D-vector or 1D-tuple
d, e, f , ... scalar values
A[j, *] jth row of 2D-grid or matrix A
A[*, k] kth column of 2D-grid or matrix A
Lut,vt a twiddle factor matrix for coordinates ut,vt
st a record in the visibility stream

J , K, L, ... a function
vist a complex visibility value in the stream at time t
S(t) a stream of all the visibility records till time t

Su,v(t)
all the visibility values vis with same (u, v)
coordinates from the stream S(t)

N the number of rows or columns of a 2D-grid

tive coefficients involved in DFT computations of sliding DFT
induces error in the output. The error is accumulated with
each new record, which compromises accuracy and makes
the approach unstable. Hence, [17] proposes a new sliding
DFT algorithm which guarantees accuracy and stability at the
expense of computational complexity. [18] presents a sliding
Fourier transform that ensures stability as well as accuracy
with the least computational complexity of all algorithms. This
technique is used [19] for botnet detection in real time. When
a window slides multiple time units at time, then [20], [21]
propose to compute the sliding Fourier transform. The 2D-
sliding Fourier transform is introduced by [22]. Hence, the
Fourier transform of a data stream is computed by dividing
the stream into smaller finite-size input sequences.

In case of radio astronomy stream, the Fourier transform of
each record contributes to the sky image. Hence, using a finite-
size sliding window on a data stream only produces partial and
overlapping sky images. In this paper, we, therefore, focus on
an incremental technique that computes Fourier transform of
each record and then adds it up to Fourier transform of all
previous records to give the sky image of all processed records
of stream. The proposed algorithm for computing Fourier
transform of a record requires linear number of complex
multiplication operations.

III. APPLICATION SCENARIO AND PROBLEM DEFINITION

A radio interferometer does not produce sky images directly.
Instead, antennas sense the electric field of radio signals and
produce a voltage, termed visibility. Each pair of antennas
measures the visibility in the so-called UV-plane that is
perpendicular to the direction of the observed source, as
shown in Fig. 1(a). A visibility encodes amplitude and phase
information of a radio signal and is a single Fourier component
of the sky brightness measured at coordinates u,v in the UV-
plane. The distribution and density of the visibilities across
the UV-plane is the UV-coverage. A dense UV-coverage is
necessary to produce high-quality sky images [23].

853

Authorized licensed use limited to: University Library Zurich / Zentralbibliothek Zurich. Downloaded on July 27,2023 at 13:38:56 UTC from IEEE Xplore. Restrictions apply.

(a) Interferometry (b) UV Plane

Fig. 1. A two antenna interferometer observing the source.

The (u, v) coordinates depend upon the length of the
projected vector between two antennas known as baseline, and
the angle between the baseline and the observed source, shown
as θ in Fig. 1(a). The angle and the baseline change due to
the Earth rotation, so at a given point in time a visibility value
is generated at different (u, v) coordinates. The visibilities are
observed at real-valued coordinates in the UV-plane as shown
in Fig. 1(b).

In order to compute the Fourier transform, the visibilities in
the UV-plane must be placed at discrete grid points. The UV-
plane is discretized to regularly-spaced and finite-sized grid,
called visibility grid as shown in Fig. 2(a). This discretization
is termed gridding in the radio astronomy literature [24]. To
generate the sky image the Fourier transform is applied to the
visibility grid, which yields the result in Fig. 2(b).

(a) Visibility Grid (b) Sky Image

Fig. 2. Radio Imaging.

A visibility vist is a complex value measured at coor-
dinate u, v and time t. We assume an already gridded set
of continuously arriving observations, and we denote with
S(t) = (s1, s2, ..., st) the time indexed stream with all
visibility records up to time t. An element st is a triple:

st = 〈ut, vt, vist〉

where ut, vt ∈ R, vist ∈ C and 0 ≤ ut, vt < N . We refer to
all visibilities with the same (u, v) coordinate up to time t as
Su,v(t), i.e., Su,v(t) = {vis | 〈u, u, vis〉 ∈ S(t)}. A visibility
grid Vt is a time-varying N × N matrix that is updated as
new visibility records arrive. We write Vt[u, v] to refer to the
value of the cell with coordinates (u, v). Vt at time t can be

computed incrementally from the visibility grid at time t− 1:

Vt[u, v] =

{
Vt−1[u, v] if (u, v) 6= (ut, vt)

Vt−1[ut, vt] + vist otherwise
(1)

for 0 ≤ u, v < N .
Note that many observations may fall into the same cell.

In this case the visibility value of the cell is the sum of all
visibilities that fall into this cell:

Vt[u, v] =
∑

vis∈Su,v (t)

vis (2)

Example 1: As a running example we use a 4× 4 visibility
grid and the following stream of visibilities:

s1 = 〈2, 1, 1 + 2i〉, s2 = 〈3, 2,−2 + 3i〉,
s3 = 〈2, 1, 3 + 4i〉, . . .

Fig. 3 shows the visibility grids V2 and V3 for stream
S(∞) = (s1, s2, s3, ...). For t = 3 we have S2,1(3) =
(vis1, vis3). Thus, V3[2, 1] = (1 + 2i) + (3 + 4i) = 4 + 6i.

0 0 0 0

0 0 0 0

0 1+2i 0 0

0 0 -2+3i 0

0 1 2 3 v
0

1

2

3

u

(a) V2

0 0 0 0

0 0 0 0

0 4+6i 0 0

0 0 -2+3i 0

0 1 2 3 v
0

1

2

3

u

(b) V3

Fig. 3. Visibility grid V2 at time t = 2 and V3 at time t = 3.

The sky image It is computed by applying the inverse
Fourier transform F to grid Vt:

It = F(Vt)

Problem Definition: Given a record st at time t in
the stream, compute the image It with a linear number of
complex multiplication operations and linearly reduce the time
complexity with the degree of parallelism.

IV. BACKGROUND

The direct computation of the Discrete Fourier Transform
(DFT) is performed by computing the DFT for each cell of a
1D or 2D input grid. We write Fdft(Vt) for the DFT operation
applied to grid Vt and it is computed as [25]:

It = Fdft(Vt) =

N−1∑
u=0

N−1∑
v=0

Vt[u, v] · Lu,v (3)

The term Lu,v denotes an N ×N matrix:

Lu,v =

l0,0 l0,1 · · · l0,N−1
l1,0 l1,1 · · · l1,N−1

...
...

. . .
...

lN−1,0 lN−1,1 · · · lN−1,N−1

854

Authorized licensed use limited to: University Library Zurich / Zentralbibliothek Zurich. Downloaded on July 27,2023 at 13:38:56 UTC from IEEE Xplore. Restrictions apply.

that consists of complex numbers known as twiddle factors
[26]. Twiddle factors are defined as:

lj,k = (e
i2π
N)u·j+v·k

Note that the values of matrix Lu,v depend on the value of
(u, v). Thus, for each cell, we have a different Lu,v matrix.

Twiddle Factors: Let W = e
i2π
N . For any positive integer

N , the twiddle factors are given by Euler’s formula (eiθ =
cos(θ) + isin(θ)) [27], i.e.:

Wm = ei
2πm
N = cos(

2πm

N
) + isin(

2πm

N
) (4)

Thus, a twiddle factor is a complex number on the unit circle
with cos(θ) as its real component and sin(θ) as its imaginary
component. The N distinct twiddle factors are the N th roots
of unity and they are evenly spread across the unit circle as
illustrated in Fig. 4(b) for N = 3 and in Fig. 4(c) for N = 8.

Re

Im

1

i

−1

−i

θ

eiθ

(a) Euler’s formula

Re

Im

W 0

W 1

W 2

(b) cube roots of unity

Re

Im

W 0

W 1
W 2

W 3

W 4

W 5

W 6
W 7

(c) 8th roots of unity

Fig. 4. Illustration of the complex-valued roots of unity.

The twiddle factors Wm are periodic because of the pe-
riodicity of sine and cosine functions, i.e., Wm+N = Wm

[28]. From the periodicity of the twiddle factors we get
Wm%N =Wm. Thus, for each twiddle factor we have:

lj,k =Wu·j+v·k =W (u·j+v·k)%N (5)

The periodicity of the twiddle factors restricts the number
of possible values for the term W (u·j+v·k)%N to N values:
{W 0,W 1, ...,WN−1}. Hence, the N2 cells of the twiddle
factor matrix Lu,v consists of at most N distinct twiddle
factors. In Sec. V we prove that the computations involving
twiddle factors can be reused in a systematic way to reduce
the runtime complexity.

Incremental Fourier Transform: The visibility record st
at time t updates a single cell of the visibility grid Vt as
shown in (1). The Fourier transform of an updated cell and all
the other cells can be written by replacing Vt[u, v] in (3) with
the definition in (1). At all points where the coordinates (u, v)
are different from (ut, vt), the visibility grid is the same as
the one at the previous time instant; at point (ut, vt) the value
is updated by adding vist:

It = (
N−1∑
u=0
u6=ut

N−1∑
v=0
v 6=vt

Vt−1[u, v] · Lu,v) +

(Vt−1[ut, vt] + vist) · Lut,vt

The linearity property of the Fourier transform, i.e., F(x+
y) = F(x) +F(y) [29], can be used to rearrange the terms
to get the incremental relation:

It = It−1 + vist · Lut,vt (6)

Note that (6) no longer requires to maintain the visibility
grid Vt. For each new stream item st, we compute vist ·
Lut,vt without updating grid Vt−1. We call vist · Lu,v the
Single Point Fourier Transform. This is a scalar multiplication
of a complex visibility value with matrix Lu,v and it requires
N2 complex multiplications. After computing the single point
Fourier transform, the naive incremental update to image It−1
requires N2 complex addition operations. We address both
issues in this paper. For the multiplications we introduce a
circular shifting, while for the additions we divide the matrix
into slices that can be processed independently and do not
have to be combined.

These are the central elements for the incremental compu-
tation of Discrete Fourier transforms and sets the stage for
our improvements of this basic approach in the forms of an
observation about the twiddle factors in Section V, adaptations
of the incremental approach and algorithmic considerations in
Section VI, and the streaming pipeline in Section VII.

V. CIRCULAR SHIFTS IN THE TWIDDLE FACTOR MATRIX

According to (5), row Lut,vt [r, ∗] of matrix Lut,vt is given
as:

Lut,vt [r, ∗] = [W (r·ut+0·vt)%N , ...,W (r·ut+(N−1)vt)%N] (7)

Lemma 5.1: Consider an N × N twiddle factor matrix
Lut,vt . Row r is a p-circular shift of row 0 if element 0 of
row r exists at position p in row 0, i.e.:

∀r, p, j(Lut,vt [r, 0] = Lut,vt [0, p]⇒
Lut,vt [r, j] = Lut,vt [0, (p+ j)%N])

(8)

Proof: Let Lut,vt [r, ∗] be row r and Lut,vt [0,*] be row
0 of the twiddle factor matrix Lut,vt :

Lut,vt [0, ∗] = [W (0·vt)%N , ...,W ((N−1)·vt)%N]

Lut,vt [r, ∗] = [W (r·ut+0vt)%N , ...,W (r·ut+(N−1)·vt)%N]

From the precondition Lut,vt [r, 0] = Lut,vt [0, p] and (7) we
directly get W r·ut%N =W (p·vt)%N . We have to show that for
0 ≤ j < N the elements Lut,vt [s, j] and Lut,vt [0, (p+j)%N]
are equal:

Lut,vt [r, j] = Lut,vt [0, (p+ j)%N]

W (r·ut+j·vt)%N =W ((p+j)vt)%N

=W (p·vt+j·vt)%N

=W ((p·vt)%N+(j·vt)%N)%N

=W (p·vt)%N ·W (j·vt)%N

=W (r·ut)%N ·W (j·vt)%N

=W (r·ut+j·vt)%N

855

Authorized licensed use limited to: University Library Zurich / Zentralbibliothek Zurich. Downloaded on July 27,2023 at 13:38:56 UTC from IEEE Xplore. Restrictions apply.

Thus, if element 0 of row r exists in row 0, then row r is
a circular shift of row 0.

The same reasoning holds for columns. Any two consecutive
elements in a column differ by Wut . The roles of ut and vt are
switched in this case and it follows that column Lut,vt [∗, c] is
a p-circular shift of column 0 if element 0 of column c exists
in column 0.

Example 2: Consider row 0 and row 1 of the 8× 8 twiddle
factor matrix L2,3 in Table II:

L2,3[0, ∗] = [W 0,W 3,W 6,W 1,W 4,W 7,W 2,W 5]

L2,3[1, ∗] = [W 2,W 5,W 0,W 3,W 6,W 1,W 4,W 7]

Element 0 of row L2,3[1, ∗] exists at position p = 6 of row 0,
i.e., L2,3[1, 0] = L2,3[0, 6]. Thus, row 1 is a 6-circular shift
of row 0, i.e., elements L2,3[1, j] and L2,3[0, (6 + j)%8] are
equal for 0 ≤ j < 8.

TABLE II
THE 8× 8 TWIDDLE FACTOR MATRIX L2,3 .

HHHHr
c 0 1 2 3 4 5 6 7

0 W 0 W 3 W 6 W 1 W 4 W 7 W 2 W 5

1 W 2 W 5 W 0 W 3 W 6 W 1 W 4 W 7

2 W 4 W 7 W 2 W 5 W 0 W 3 W 6 W 1

3 W 6 W 1 W 4 W 7 W 2 W 5 W 0 W 3

4 W 0 W 3 W 6 W 1 W 4 W 7 W 2 W 5

5 W 2 W 5 W 0 W 3 W 6 W 1 W 4 W 7

6 W 4 W 7 W 2 W 5 W 0 W 3 W 6 W 1

7 W 6 W 1 W 4 W 7 W 2 W 5 W 0 W 3

Lemma 5.2: Consider an N × N twiddle factor matrix
Lut,vt . If a twiddle factor with exponent ut modulo N , i.e.,
Wut%N , exists in row 0 at index p, then the exponent in row
0 at position (p · r)%N is equal to W (r·ut)%N :

∀p, r(Lut,vt [0, p] =Wut%N ⇒
Lut,vt [0, (p · r)%N] =W (r·ut)%N)

(9)

Proof: The jth element of row 0 is Lut,vt [0, j] =
W (j·vt)%N . We show that, since Wut exists at index p in
row 0, i.e., Wut%N =W p·vt%N , the twiddle factor W r·ut%N

exists at position (p · r)%N in row 0:

Lut,vt [0, (p · r)%N] =W (p·r·vt)%N

=W p%N ·r%N ·vt%N

= (W p%N ·vt%N)r%N

= (W (p·vt)%N)r%N

= (Wut%N)r%N

=W r·ut%N

Similarly, if a twiddle factor with exponent vt, i.e., W vt ,
exists in column 0 then the twiddle factor W (c·vt)%N exists
in column 0.

Example 3: Consider the 8×8 twiddle factor matrix L2,3 in
Table II. Row 0 consists of the twiddle factors with exponents
equal to multiples of 3 module 8. Column 0 consists of the

twiddle factors with exponents equal to multiples of 2 modulo
8. Since, Wut%N = W 2 exists at p = 4, all its multiples
W (r·ut)%N exist in row 0 and their index can be computed
using (9). Since W vt = W 3 does not exist in column 0, it is
not possible to compute the index of all its multiples W (c·3)%N

in column 0. For example, W 1, W 5 and W 7 do not exist in
column 0 of Table II.

A. Row shiftable matrices

An N ×N twiddle factor matrix Lut,vt is row shiftable if
each row is a circular shift of row 0.

Lemma 5.3: Consider an N × N twiddle factor matrix
Lut,vt . Let N be a power of 2 (i.e., N = 2m,m > 0) or N be
a prime number. The twiddle factor matrix is row shiftable if
gcd(ut, N) ≥ gcd(vt, N), where gcd is the greatest common
divisor.

Proof: For a twiddle factor matrix Lut,vt , row 0 consists
of twiddle factors with exponents equal to multiples of vt
modulo N :

Lut,vt [0, ∗] = [W (0·vt)%N , ...,W ((N−1)·vt)%N]

gcd(vt, N) = 1 if row 0 consists of all N twiddle factors,
i.e., Lut,vt [0, ∗] = {W 0,W 1, ...,WN−1}. In this case, Wut

exists in row 0 because 0 ≤ ut < N . According to Lemma
5.2, all multiples of Wut also exist in the row 0, which are
the elements of column 0 or element 0 of every row. Hence,
each row is a circular shift of row 0 if gcd(vt, N) = 1. Note
that gcd(vt, N) is 1 if N is a prime number or vt is an odd
integer but N is a power of 2.
gcd(vt, N) > 1 if both N and vt are even integers. In

this case, row 0 consists of twiddle factors with exponents
that are equal to multiples of gcd(vt, N). Thus, the lower
gcd(vt, N), the higher the number of twiddle factors in row 0.
The gcd(vt, N) is 2 if vt is not a power of 2. When gcd(vt, N)
is 2, row 0 consists of the twiddle factors with the exponents
as multiples of 2, which means all the even exponents from
0 to N-2, i.e., Lut,vt [∗, 0] = {W 0,W 2, ...,WN−2}. Then, for
any even ut when gcd(vt, N) equals 2, Wut exists in row
0. Moreover, according to Lemma 5.2 all its multiples also
exist in row 0, such that every row is a circular shift of row
0. However, when vt is a power of 2, then gcd(vt, N) ≥ 2,
and the row 0 consists of less twiddle factors with not all the
even exponents. In such a case, Wut only exists in row 0 if
the gcd(ut, N) ≥ gcd(vt, N).

B. Column shiftable matrices

Similar to row shiftable matrices, the twiddle factor matrix
is column shiftable if each column is a circular shift of column
0. Specifically, the twiddle factor matrix is column shiftable if
gcd(vt, N) ≥ gcd(ut, N).

Example 4: Consider Table II with the 8× 8 twiddle factor
matrix L2,3 for coordinate (ut, vt) = (2, 3). From gcd(2, 8) >
gcd(3, 8) and Lemma 5.3 it follows that L2,3 is row shiftable.
Since gcd(vt, N) 6≥ gcd(ut, N), the twiddle factor matrix L2,3

is not column shiftable.

856

Authorized licensed use limited to: University Library Zurich / Zentralbibliothek Zurich. Downloaded on July 27,2023 at 13:38:56 UTC from IEEE Xplore. Restrictions apply.

C. Shiftable matrices
The twiddle factor matrix is row and column shiftable if

ut and vt are odd integers and N be a power of 2. In this
case, gcd(ut, N) = gcd(vt, N) = 1 and column 0 as well
as row 0 include all the twiddle factors. If gcd(ut, N) <
gcd(vt, N), then the twiddle factor matrix is not row shiftable.
If gcd(vt, N) < gcd(ut, N), then the twiddle factor matrix
is not column shiftable. Note that gcd(ut, N) > gcd(vt, N),
gcd(ut, N) = gcd(vt, N), or gcd(ut, N) < gcd(vt, N).
Hence, if N is a prime number or a power of two, we conclude
that for any coordinate ut and vt, either a row or a column
shift exists for an N ×N twiddle factor matrix Lut,vt .

D. Restriction of N to being power of 2 or prime
A circular shift is guaranteed to exist if the size N of

2D matrix is either prime or a power of 2. This is not
an uncommon assumption in the application area. Looking
at state-of-the-art libraries, GPUFFTW (a high performance
FFT library for GPUs) and Intel IPP (specialized for multi-
media and signal processing) are restricted to power of two
transforms. Other libraries, like Intel MKL and FFTW3, accept
any value of N as long as it is composite, i.e., expressed as a
multiple of small prime numbers 2, 3, 5, 7, 11, 13. However,
FFTW3 reports that transforms for sizes of 2 are much faster.

VI. THE SINGLE POINT INCREMENTAL FOURIER
TRANSFORM ALGORITHM

This section introduces the Single Point Incremental Fourier
Transform (SPIFT) Algorithm based on circular shifts.

A. Setting the stage: Single Point Fourier Transform (SPFT)
The Single Point Fourier Transform vist ·Lut,vt of a single

record st can be computed efficiently by shifting a row of the
twiddle factor matrix Lut,vt . First, row 0 of the twiddle factor
matrix is computed:

Lut,vt [0, ∗] = [W (0·vt)%N , ...,W ((N−1)vt)%N]

Next, shift index p is computed such that Wut = Lut,vt [0, p].
Finally, for each row r of a twiddle factor matrix vist ·Lut,vt
is computed as a circular shift of row 0 using (8) and (9):

vist · Lut,vt [r, j] = vist · Lut,vt [0, (p · r + j)%N] (10)

At time instant t, image It can be computed using (6). Since
each row or column of vist · Lut,vt is a circular shift of row
0 or column 0, the computation of Lut,vt can be avoided, and
the incremental update is applied directly to image It−1 using
Lut,vt [0, ∗] or Lut,vt [∗, 0]. For a row shiftable matrix It can
be computed using (6) and (10) for all k = 0, ..., N − 1 as:

It[x, k] = It−1[x, k] + vist · Lut,vt [0, (p · x+ k)%N] (11)

If the matrix Lut,vt is row shiftable, each row of It−1 is
updated directly using a circular shift of row 0 of the twiddle
factor matrix. Similarly, each column of It−1 will be updated
directly using column 0 of the twiddle factor matrix if the
matrix is column shiftable.

The vector vist ·Lut,vt [0, ∗] or vist ·Lut,vt [∗, 0] is computed
only once and requires N complex multiplication operations.

B. Key-Based Partitioning

We use key-based partitioning to distribute image It to
parallel task instances. Each parallel task instance updates a
slice of size N × N

d , where d is the number of parallel task
instances.

If the twiddle factor matrix is row shiftable, then row j of
sub grid It,key can be computed as:

It,key[j, k] = It−1,key[j, k] +

vist · Lut,vt [0, (p(j + (key × rows)) + k)%N]
(12)

Here rows = N/d, j = 0, ..., rows− 1 and k = 0, ..., N − 1.
Similarly, if the twiddle factor matrix is column shiftable, then
column k of sub grid It,key can be computed for all j =
0, ..., rows− 1 as:

It,key[j, k] = It−1,key[j, k] +

vist · Lut,vt [((key × rows) + j + (p× k))%N, 0]
(13)

C. The SPIFT Algorithm

The SPIFT algorithm in Algorithm 1 first determines if
the twiddle factor matrix is row shiftable or column shiftable
for coordinates (ut, vt). As shown earlier, if the condition for
a row shift is not satisfied, then the condition for a column
shift is satisfied (line 1). The shift type is used to compute the
shift index (p) and the shift vector (q). If the matrix is column
shiftable, the shift vector (q) represents the first column (i.e.,
vist ·Lut,vt [∗, 0]) of the twiddle factor matrix given in (10). It
is computed by multiplying the complex value vist with the
twiddle factors such that the exponents of the twiddle factors
are modulo N of multiples of the coordinate ut (line 5). If the
matrix is row shiftable, the shift vector (q) represents the first
row (i.e., vist ·Lut,vt [0, ∗]) of the twiddle factor matrix given
in (10). It is computed by multiplying the complex value vist
with the twiddle factors such that the exponents of twiddle
factors are modulo N of multiples of the coordinate vt (line
7). This computation requires O(N) complex multiplications
and are the only complex multiplication operations in our
algorithm. Finally, Incremental Update is performed using
shift type, shift index and computed vector.

Algorithm 1: SPIFT (ut, vt, vist, N , key, d)

1 isCS ← (vt = 0) or
(ut%2 = 1 and vt%2 = 0) or
(vt%2 = 0 and gcd(ut, N) < gcd(vt, N));

2 p ← ShiftIndex(ut, vt, isCS);
3 for k ← 0 to N do
4 if (isCS) then
5 q[k] ← vist ·Wk·ut%N

6 else
7 q[k] ← vist ·Wk·vt%N

8 It,key ← IncUpdate(It−1,key,q, isCS, p,N, key, d);
9 return It,key

ShiftIndex: After computing the type of shift, the shift
index is computed using Algorithm 2. The shift index p is
determined by matching the coordinate ut with the modulo
of multiple of coordinate vt and vice versa. The lines 3-4 in
Algorithm 2 find the shift index in case the matrix is column

857

Authorized licensed use limited to: University Library Zurich / Zentralbibliothek Zurich. Downloaded on July 27,2023 at 13:38:56 UTC from IEEE Xplore. Restrictions apply.

shiftable whereas lines 6-7 determine the shift index in case
the matrix is row shiftable.

Algorithm 2: ShiftIndex(ut, vt, isCS)

1 if (ut = 0 or vt = 0) then return 0;
2 if (isCS) then
3 for j ← 0 to N do
4 if (vt = jut%N) then return j;
5 else
6 for k ← 0 to N do
7 if (ut = kvt%N) then return k;

IncrementalUpdate: Algorithm 3 computes an image
slice It,key. It directly updates an image slice It−1,key by
taking as input the partition key, type of shift, the shift index
and the vector. If the matrix is column shiftable, the incremen-
tal transform first computes the starting index startidx of the
shift vector q according to (13), for the column k of image
slice in line 4. Then it iterates over each row j in line 6 and
computes its index. Finally, in line 7, the algorithm updates one
cell of the previous image slice. Similarly, lines 9-13 compute
the incremental Fourier transform for row shiftable matrices.

Algorithm 3: IncUpdate(It−1,key,q, isCS, p,N, key, d)
1 rows← N/d ;
2 if (isCS) then
3 for k ← 0 to N do
4 startidx← ((key × rows) + (p× k))%N ;
5 for j ← 0 to rows do
6 idx← (startIdx+ j)%N ;
7 It,key[j, k]← It−1,key[j, k] + q[idx]
8 else
9 for j ← 0 to rows do

10 startidx← (p(j + (key × rows)))%N ;
11 for k ← 0 to N do
12 idx← (startIdx+ k)%N ;
13 It,key[j, k]← It−1,key[j, k] + q[idx]
14 return It,key

Our implementation does not actually shift the elements of
vector vist · Lut,vt [0, ∗] or vist · Lut,vt [∗, 0], but manages
the elements in a circular array. That is why we compute
a starting index startIdx of the vector vist · Lut,vt [0, ∗] or
vist · Lut,vt [∗, 0] to update the jth row or kth column of
It−1,key respectively.

Example 5: The DFT of a record s1 = 〈2, 1, 1+2i〉 in Exam-
ple 1 is computed using SPIFT. First, SPIFT determines the
shift type for the coordinates (2,1). The twiddle factor matrix
L2,1 is row shiftable because gcd(2, 4) > gcd(1, 4). Algo-
rithm 2 returns shift index 2 because condition ut = kvt%N
is true for k = 2, which means that twiddle factor W 2 exists at
index 2 in row 0. The shift vector q = [(1+2i) ·W 0, (1+2i) ·
W 1, (1+2i)·W 2, (1+2i)·W 3] = [1+2i,−2+i,−1−2i, 2−i]
is computed by multiplying the complex value 1+2i with the
twiddle factors. Algorithm 3 computes I1 (Fig. 5) by adding
the shift vector q to each row of the image I0.

D. Complexity Analysis of SPIFT, FFT and direct DFT

The asymptotic complexity of the single point Fourier
transform (i.e., the updates that must be applied to the image)

1+2i -2+i -1-2i 2-i

-1-2i 2-i 1+2i -2+i

1+2i -2+i -1-2i 2-i

-1-2i 2-i 1+2i -2+i

0 1 2 3 v
0

1

2

3

u

Fig. 5. Image I1 at time t = 1

using circular shifts is O(N), as it requires N complex
multiplication operations as discussed in Section VI-A. The
asymptotic complexity of the entire SPIFT algorithm is
O(N2 + N) = O(N2). The direct DFT approach in (3)
requires 2N2 complex multiplication operations followed by
N2 complex addition operations, with an overall complexity
of O(N2) for a single point Fourier transform. 2D-FFT has
an asymptotic complexity of O(N2 logN) for computing the
Fourier transform for a single point update. Our experiments
show that there are significant runtime differences between
SPIFT and direct DFT. The asymptotic notation is able
to show the differences for the multiplications but not the
additions.

VII. THE SPIFT STREAMING PIPELINE

In this section we discuss the streaming pipeline and the
data flow for the SPIFT algorithm.

A typical streaming pipeline consists of input sources,
output sinks and the transformations applied to the stream
items. The transformations are performed by using specific
transformation operators with a user-defined or built-in trans-
formation logic. The output of an operator serves as input for
the next transformation operator in the pipeline. Depending
upon the use case the transformation operator must remember
partial results for the records arriving later in the stream.
Results or data that is remembered for future computation
is called State and transformation on such data is called
stateful transformations in stream processing.

Fig. 6 shows the streaming pipeline that computes the
incremental Fourier transform using SPIFT. The pipeline is
divided into three stages, as described below.

Computing ShiftType, ShiftIndex and Partitioning: The
pipeline first reads the source stream of visibility records of
the form st and processes each record independently to incre-
mentally compute the sub grids. The first stage includes three
stateless transformations and a partition operator. The first
transformation operator enriches a stream item st with a bit in-
dicating whether the twiddle factor matrix for this observation
is row shiftable or column shiftable. The second transformation
operator transforms the data element 〈st, 0/1〉 by appending
the shift index p, which is determined with Algorithm 2.
The third operator transforms the data element 〈st, 0/1, p, 〉
into d elements by making d copies, where d is the degree
of parallelism. A unique key is prepended to each copy,
i.e., 〈st, 0/1, p〉 => [〈0, st, 0/1, p〉, 〈1, st, 0/1, p〉, .., 〈d −

858

Authorized licensed use limited to: University Library Zurich / Zentralbibliothek Zurich. Downloaded on July 27,2023 at 13:38:56 UTC from IEEE Xplore. Restrictions apply.

Stream Source
..., st+2, st+1

isRow
Shift

Shift
Index

Keys
Gen Partition

Shift
Vector

Shift
Vector

Shift
Vector

Shift
Vector

SubGrid1
Inc

Update

SubGrid2
Inc

Update

SubGrid3
Inc

Update

SubGrid4
Inc

Update

〈st〉

32B

〈st,0/1〉

33B

〈st,0/1,p〉

37B

〈0,st,0/1,p〉
〈1,st,0/1,p〉
〈2,st,0/1,p〉
〈3,st,0/1,p〉

41B x 4
(164B)

〈0,st,0/1,p〉
(41B)

〈1,st,
0/1,p〉

(41B)

〈2,s
t ,0/1,p〉

(41B)

〈3,st,0/1,p〉
(41B)

〈0,0/1,p,q〉
(32.8KB)

〈1,0/1,p,q〉
(32.8KB)

〈2,0/1,p,q〉
(32.8KB)

〈3,0/1,p,q〉
(32.8KB)

〈0,I
0
,t 〉

〈1,I
1
,t 〉

〈2,I
2,t 〉

〈3,I3,t〉
(16.7MB)

Output Stream

(It−1)

(It)

Fig. 6. The SPIFT Streaming Pipeline with data flow and data size between operators for a 2048×2048 grid. Transformation operators are shown as circles.
A solid line is used for stateless transformation operators. A dashed line is used for stateful transformation operators; the underlined text denotes the State.

1, st, 0/1, p〉]. The fourth operator is a partition operator,
which uses hash-based partition to group the records with the
same key. In the SPIFT pipeline, the number of unique keys
for each update st should be equal to the parallelism degree
of the incremental update operator to ensure that each image
slice is updated independently.

Shift Vector Computation and Parallel Incremental Ad-
dition on Sub Grids: The second stage computes a shift
vector, and performs an incremental addition. Both the shift
vector computation and incremental addition are executed in
parallel in the SPIFT pipeline. At time t, the subgrid Ikey,t
represents the Fourier transform computed from time 0 to t.
First, a stateless transformation computes a shift vector by
transforming data element 〈key, st, 0/1, p〉 to 〈key, 0/1, p,q〉.
The second opreator is a stateful transformation that stores
the subgrid Ikey,t as its state. Each parallel instance of
such stateful transformation takes 〈key, 0/1, p,q〉 as input,
updates the corresponding subgrid Ikey,t by performing the
incremental additions using Algorithm 3, and stores the result
for subsequent updates.

Although the shift vector q is the same for each incremental
update, it is computed by every parallel operator. The reason
is the key-based partitioning in the pipeline, which creates d
copies of 〈st, 0/1, p〉 as illustrated for d = 4 in Fig. 6. If
one computes the shift vector before the partitioning, then it
creates d copies of the shift vector q. This is a bottleneck
that may reduce the throughput. Our experiments for grid size
2048×2048 show that the throughput of the pipeline increased
until parallelism degree 16 and drops by 200% for parallelism
degree 32. At the end, the throughput for a parallelism of 256
was even less than for parallelism degree 1. With the SPIFT
pipeline in Fig. 6 the throughput increases linearly with the
number of parallel threads.

Sub Grid Image Stream: After an incremental update,
each parallel instance produces an updated sub grid It,key

along with its partition key. In the third and last stage, the
pipeline produces a stream of sub grids that can be consumed
by an end user.

SPIFT implementation in Apache Flink: We implemented
the SPIFT streaming pipeline in Apache Flink [4], which
is a platform for distributed stream processing. We selected
Apache Flink as it is one of the most widely adopted streaming
platform.

The SPIFT streaming pipeline code written in Java with
lambda expressions for Apache Flink is shown in Listing 1.
The map, flatMap are the transformation operators. The
elements on the left side of an arrow represent the input
whereas the transformation/output is represented on the right
side of an arrow. The keyBy operator is the partition operator
and parameter 0 indicates that the partition was performed on
the basis of first field of the input. Function IncUpdate uses
the AggregatingState provided by Apache Flink, to store
sub grid Ikey as state. The setParallelism(d) operator
runs d parallel instances of the transformation operator. The
addSink operator is used to specify the output sink.

S.map(s->Tuple2.of(s,isColumnShift(s)))
.map((s,isCS)->

Tuple3.of(s,isCS,ShiftIndex(s,isCS)))
.flatMap(s,isCS,p->KeysGen(s,isCS,p))
.keyBy(0)
.map((key,s,isCS,p)->

Tuple4.of(key,isCS,p,ComputeVector(s,isCS))
.setParallelism(d)
.flatMap((key,isCS,p,q)->IncUpdate(key,isCS,p,q))
.setParallelism(d)
.addSink(key,Ikey,t)

Listing 1. SPIFT streaming pipeline Java code with lambda expressions for
Apache Flink

Transformation operators that are equivalent to the
ones used in Listing 1, i.e., map, flatMap, keyBy,
setParallelism, and addSink are available in other dis-
tributed stream processing frameworks such as Apache Spark

859

Authorized licensed use limited to: University Library Zurich / Zentralbibliothek Zurich. Downloaded on July 27,2023 at 13:38:56 UTC from IEEE Xplore. Restrictions apply.

[2] and Apache Storm. Hence, the SPIFT streaming pipeline
in Fig. 6 can easily be implemented in other frameworks.

VIII. PERFORMANCE EVALUATION

This section evaluates the benefits of circular shifting and
compares SPIFT with baseline algorithms as well as state-of-
the-art hardware optimized libraries.

A. Experimental Setup

Metrics: We are interested in evaluating: (1) the time per-
formance of using shifts for computing a single point Fourier
transform, (2) the time performance of SPIFT compared to
the direct 2D discrete Fourier transform, the Cooley-Tukey 2D
fast Fourier transform, and hardware optimized FFT libraries,
(3) the scalability of SPIFT, (4) the average throughput per
second, and (5) the accuracy of SPIFT. We vary the grid size
and the number of threads.

Datasets: As a real world dataset we use observations
taken on 2019-11-24 for the project Evolutionary Map of the
Universe (EMU) [30]. We use the dataset of beam 20.1 We set
grid sizes between 512 and 8192, which are typical values used
in radio astronomy. We vary the number of threads between
1 and 256. We also consider a synthetic data stream with
uniform distributions.2 The script generates each stream item
by sampling four values from uniform distributions: u, v are
sampled from U(0, N) and visreal, visimg are sampled from
U(−10000, 10000), where visreal and visimg are the real
and imaginary components of the visibility. The experiments
show that the performance of SPIFT and DFT and FFT
algorithms is independent of the datasets and we usually report
the numbers for the EMU dataset.

Algorithms: We compare SPIFT with the direct DFT
computation for a single point, as well as with an in-place
implementation of a radix-2 FFT algorithm. We also compare
the performance of SPIFT with state-of-the-art hardware opti-
mized libraries: FFTW3 [31] and Intel MKL 3. The parameters
used for computing the transform with FFTW3 and Intel
MKL were: Backward Transform, Complex-to-Complex, Out-
of-place, and Double precision. We also compare our parallel
implementation of SPIFT with the parallel implementations
of the FFTW3 and Intel MKL libraries.

Hardware: We use a machine with two Intel E5-2680 v2
2.80GHz processors and 128 GB RAM. Each processor has
10 cores with two threads per core. To evaluate the scalability
of our algorithm, we used a cluster of eight such machines
connected through a Gigabit-Ethernet network. Apache Flink
chooses one node as job manager to serve as master node
for distributing and scheduling tasks among slave nodes and
the remaining nodes as task executors to provide task slots
for parallel processing. We allocated 6GB memory to the job
manager JVM and 12 GB to each of the task executor JVM.

1https://gitlab.ifi.uzh.ch/Saad/spift/, file scienceData_SB10635_
EMU_2205-51.beam20_averaged_cal.ms

2https://gitlab.ifi.uzh.ch/Saad/spift/, file pyGen.py
3https://software.intel.com/mkl

B. Runtime Gain from Circular Shifting

This experiment investigates the time performance of the
single point Fourier transform (vist ·Lut,vt) with and without
shifts. Fig. 7 shows that our approach with shifts performs
better as the grid size increases: it is approximately 5 times
faster for smaller grid sizes (i.e., 512, 1024 and 2048), 6 times
faster when the grid size is 4096, and 12 times faster for grid
size 8192. The experiment confirms the analytical analysis:
the single point Fourier transform requires N complex multi-
plication operations when using shifts and a quadratic number
of complex multiplication operations when shifts are not used.

 0.001

 0.01

 0.1

 1

 10

512 1024 2048 4096 8192

Ti
m

e
(s

)

Grid Size (N x N)

Without Shift
With Shift

Fig. 7. Time Performance of Single Point Fourier Transform computed with
and without shifts.

C. Runtime Comparison of SPIFT, direct DFT, and FFT

In this experiment, we study the time performance of
SPIFT by comparing it with FFT and DFT, as well as
with hardware-optimized libraries that implement FFT. Fig. 8
shows the time it takes for the algorithms to compute the
Fourier transform of a 2D-grid after a new record has arrived
in the stream. Analytically, the total number of floating op-
erations for a single point is 10N2 logN for FFT, 14N2 for
direct DFT and 2N2 + 2N for SPIFT.

 0.001

 0.01

 0.1

 1

 10

 100

512 1024 2048 4096 8192

Ti
m

e
(s

)

Grid Size (N x N)

FFT (Radix-2)
FFT (MKL)

FFT (FFTW3)
DFT

SPIFT

Fig. 8. Runtime Comparison of Single Point Incremental with Direct Discrete
and Fast Fourier transform and hardware optimized FFTW3 and Intel MKL.

We measure the performance of the five algorithms when
the grid size varies from 512 × 512 to 8192 × 8192. SPIFT
performs 1.8 to 7.7 times faster than the direct DFT
computation of a single point. The performance gain of SPIFT
over DFT increases as the grid size increases. SPIFT performs
17 to 46 times faster than FFT. Fig. 8 shows that SPIFT is
competitive with mature libraries even without advanced opti-
mizations. These optimizations are orthogonal to the circular

860

Authorized licensed use limited to: University Library Zurich / Zentralbibliothek Zurich. Downloaded on July 27,2023 at 13:38:56 UTC from IEEE Xplore. Restrictions apply.

shifting we propose in this paper. The differences between the
solid and the dotted/dashed blue lines i.e. FFT with Radix-
2 vs. FFT-MKL/FFTW3 in Fig. 8 illustrate the potential of
applying optimizations that have been developed for mature
FFT libraries. We think that some of these optimizations could
be applied to SPIFT resulting in an even better performance.

D. Break Down of the Runtime of SPIFT

This experiment investigates the main steps of the SPIFT
algorithm: the vector computation and the incremental addition
and highlight the possibility of optimizing the latter with
paralellization. As shown in Fig. 9, the shift vector compu-
tation takes only about 1% of the total time for computing
SPIFT. This operation includes the time for finding the shift
type, shift index, and N complex multiplication operations
of twiddle factors with the complex value. The incremental
addition, which takes up the bulk of the time, is trivially
parallelizable and can be split up without overhead. The image
is divided into slices, which are processed independently. As
Fig. 9 highlights for a parallelism degree of d = 256 processes,
the time for incremental addition can be reduced to roughly
the time required for shift vector computation.

1e-5

1e-4

1e-3

1e-2

1e-1

1

512 1024 2048 4096 8192

Ti
m

e
(s

)

Grid Size (NxN)

Vector Computation
Inc. Addition

Inc. Addition (d = 256)

Fig. 9. Runtime of Shift Vector Computation and Incremental Addition
operation (without and with a parallization degree of d = 256) in the SPIFT
algorithm.

Both operations are affected by the grid size, which explains
why the execution time increases when the grid size increases.
The incremental addition with a quadratic complexity is a
bottleneck in a streaming environment. As discussed in Section
VIII-E, we overcome this bottleneck by performing additions
in parallel, which we study in the next experiment.

E. Scalability of SPIFT

In this experiment we compare SPIFT with parallel im-
plementations of FFT of modern libraries. For the hardware-
optimized libraries, due to the non-trivial challenge required
of setting up an environment for using MPI routines in a
distributed setting, we only perform experiments with the
multi-threaded routines on SMP. Hence, we perform FFTW3
and Intel MKL experiments on a single machine from the
cluster, as detailed in Section VIII-A. For SPIFT, which runs
on top of Apache Flink, two machines were used, one as a job
manager and the other as a task executor. Since, each machine
has 40 cores, we consider parallelism degree up to 32.

Fig. 10 shows the time performance of SPIFT when the
parallelism ranges between 2 and 32 for different grid sizes.
The graphs confirm that computing the additive operations
through parallelism reduces the time complexity. The multi-
threaded SPIFT outperforms parallel FFTW3 for the consid-
ered parallelism degrees. The performance gain for SPIFT
increases with an increase of the parallelism because SPIFT
does not have any parallel overhead since the incremental
additions are performed independently over the disjoint slices/-
subgrids with no communication required between tasks. The
performance gain is 1.25 to 4.95 times with an increase of the
parallelism for grid sizes 512 × 512 and 1024 × 1024. The
performance gain increases from 3 to 31 times, 2 to 21 times,
and 4 to 10 times for grid size 2048 × 2048, 4096 × 4096,
and 8192×8192 respectively. SPIFT outperforms Intel MKL
up to 2 to 3 times for parallelism degree greater or equal to
8 except for grid size 8192× 8192. SPIFT only outperforms
Intel MKL at parallelism degree 32 for grid size 8192×8192.
The parallel multi-dimensional FFT becomes relatively slower
with an increase of the parallelism, because it is computed by
taking 1D-Fourier transforms across rows or columns and by
dividing them equally among processors. Although, the rows
or columns are transformed by different processors, they are
still interleaved in memory. This causes memory contention,
which increases with the increase in parallelism and results in
a decrease of the performance. 4

F. Throughput

In this experiment, we evaluate the throughput of the stream-
ing pipeline. For this experiment, we executed the streaming
pipeline in a cluster of eight machines, as detailed in Section
VIII-A. Fig. 11 shows the throughput, i.e., the number of
single point updates processed per second by SPIFT. The
throughput in a streaming pipeline is dictated by the slowest
task in the pipeline. The slowest task in the SPIFT streaming
pipeline are the quadratic number of additions. By partitioning
the image and computing the additions in parallel we get
a linear speedup with the degree of parallelization. As the
execution time decreases, more updates can be processed
leading to an increase of the throughput as the degree of
parallelism increases. This also confirms the advantage of
exploiting parallelization for SPIFT.

In an interferometer array, the pairs of antennas produce a
single visibility value every constant interval of time known
as integration time. The ASKAP array has 36 antennas with
integration time of 5 secs. The 36 antennas forms 630 unique
pairs, with the addition of 36 self-pairs, resulting in 666
visibility values per beam per frequency channel [32] every
5 seconds. In our setting, SPIFT can handle a 512 × 512
grid for this update rate with parallelism degree 1. Increasing
the parallelism, SPIFT can handle grid sizes of up to 4096.
Dealing with grid size 8192 requires a parallelism degree
larger than 256.

4http://www.fftw.org/parallel/parallel-fftw.html

861

Authorized licensed use limited to: University Library Zurich / Zentralbibliothek Zurich. Downloaded on July 27,2023 at 13:38:56 UTC from IEEE Xplore. Restrictions apply.

 0.0001

 0.001

 0.01

21 22 23 24 25

Ti
m

e(
s)

Parallelism Degree

512 x 512

FFTW
MKL

SPIFT
 0.0001

 0.001

 0.01

 0.1

21 22 23 24 25

Parallelism Degree

1024 x 1024

FFTW
MKL

SPIFT
 0.001

 0.01

 0.1

 1

21 22 23 24 25

Parallelism Degree

2048 x 2048

FFTW
MKL

SPIFT
 0.01

 0.1

 1

21 22 23 24 25

Parallelism Degree

4096 x 4096

FFTW
MKL

SPIFT
 0.1

 1

 10

21 22 23 24 25

Parallelism Degree

8192 x 8192

FFTW
MKL

SPIFT

Fig. 10. Runtime comparison of a parallel SPIFT, parallel FFTW3 and parallel Intel MKL performed on a SMP hardware.

 0.1

 1

 10

 100

 1000

 10000

 100000

20 21 22 23 24 25 26 27 28

512

T
h

ro
u

g
h

p
u

t
(p

er
 s

ec
o

n
d

)

Parallelism Degree

 0.1

 1

 10

 100

 1000

 10000

20 21 22 23 24 25 26 27 28

512 1024

T
h

ro
u

g
h

p
u

t
(p

er
 s

ec
o

n
d

)

Parallelism Degree

 0.1

 1

 10

 100

20 21 22 23 24 25 26 27 28

512 1024 8192
T

h
ro

u
g

h
p

u
t

(p
er

 s
ec

o
n

d
)

Parallelism Degree

Fig. 11. Average Throughput of SPIFT with Apache Flink.

G. Varying Update Rate effect on the Throughput

In this experiment, we computed the throughput for all
considered grid sizes with parallelism degree 8. We study the
throughput over update rates 100 and 1000. We controlled the
update rate using the ThrottledIterator provided by Apache
Flink over the input source. The graph in Fig. 12 shows
throughput for an average input rate of 100 and 1000 updates
per second. The graph also shows the maximum attainable
throughput of the SPIFT pipeline with the consumption rate
decided by Apache Flink without our control (as reported
in Section VIII-F). We see that the throughput is equal
to the update rate, whenever the update rate is less than
the maximum throughput. If the update rate is higher than
the maximum achievable throughput, Apache Flink throttles
the throughput so that the update rate does not surpass the
maximum attainable throughput. For example, the maximum
attainable throughput for grid 512×512 is 3571, hence, with an
update rate of 100 and 1000 records the average throughput
remains 100 and 1000 records per second. In contrast, the
maximum attainable throughput for grid size 1024 × 1024 is
795. Thus, the input rate of 1000 is throttled to 795.

 1

 10

 100

 1000

 10000

512 1024 2048 4096 8192

Av
er

ag
e

Th
ro

ug
hp

ut

 (p
er

 s
ec

on
d)

Grid Size (N x N)

Update Rate (100/s)
Update Rate (1000/s)

Maximum Throughput

Fig. 12. Throughput of SPIFT at different update rates.

The relation between input rate and throughput is not

surprising. In a streaming pipeline, the maximum attained
throughput and the rate at which pipeline reads from the input
source are dictated by the slowest task in the pipeline, which is
the incremental addition in the SPIFT pipeline. Backpressure
occurs at the key map operator, because the task partition
operator produces data faster than the downstream shift vector
operator can consume. Apache Flink deals with backpressure
by propagating it upstream to one of its tasks, eventually
slowing down the emission rate of the source.

H. Accuracy of SPIFT

This experiment assesses the accuracy of incremental
Fourier transform. We consider the EMU and the synthetic
datasets with 100K updates, and we compare the Fourier
transform of each dataset computed with SPIFT and the one
computed with a non-incremental FFT of the FFTW3 library.
We evaluate the accuracy by measuring the root mean square
error of both transforms and report the results in Fig. 13. The
root mean square errors are of the order of 10−6 for the EMU
dataset and 10−10 for the synthetic dataset. A low root mean
square error suggests that incremental the Fourier transform is
comparably as accurate as the non-incremental one. The graph
also shows that SPIFT remains accurate as well as stable even
with the increase in transform size.

 1x10-10
 1x10-9
 1x10-8
 1x10-7
 1x10-6
 1x10-5
 0.0001
 0.001
 0.01

512 1024 2048 4096 8192R
oo

t M
ea

n
Sq

ua
re

 E
rr

or

Grid Size (N x N)

EMU Dataset Synthetic Dataset

Fig. 13. Root Mean Square errors of SPIFT and FFTW3.

IX. CONCLUSION

In this paper, we have proposed an incremental algorithm for
computing Fourier transform with each record in the stream.
The proposed algorithm requires the least number of floating
point operations for computing a Fourier transform of a single
point when compared to state of the art algorithms. The main
technique of our algorithm is to reduce the complex multi-
plication operations by reusing the computations of twiddle

862

Authorized licensed use limited to: University Library Zurich / Zentralbibliothek Zurich. Downloaded on July 27,2023 at 13:38:56 UTC from IEEE Xplore. Restrictions apply.

factors for a 2D-grid of size N × N , where N is power of
two or N is prime. Our evaluations showed that the number
of floating point operations increases rapidly when grid size
increases for FFT and direct DFT; more than for our
proposed SPIFT algorithm. We have reduced the number of
complex multiplication operations but the time complexity of
additive operations is reduced by adding parallelism. SPIFT
is scalable by increasing parallelism and is ideal for larger grid
sizes.

We developed this research in the radio astronomy context,
but SPIFT may find application in other fields where data is
collected continuously and the streaming requirements emerge.
For example, in medicine, real-time MRI seems to work
similarly to the radio astronomy process described in this
article. In our future work, we will better study such problems
to properly understand if SPIFT can be applied out of the box.
We will also study the deployment of SPIFT on GPUs.

Acknowledgments: There are a number of people and
organization we would like to thank: the Swiss National
Science Foundation for the partial support under contract
number #407550 167177; Bärbel Koribalski, Keith Bannister
and Wasim Raja from the Australia Telescope National Facility
(ATNF) for the helpful insights while studying the radio imag-
ing domain; Nicolas Spielmann who has implemented and
evaluated the single point Fourier transform with circular shifts
in his Bachelor’s thesis [33]; and the anonymous reviewers for
their constructive and valuable comments.

REFERENCES

[1] X. Cai, L. Pratley, and J. D. McEwen, “Online radio interferometric
imaging: assimilating and discarding visibilities on arrival,” Monthly
Notices of the Royal Astronomical Society, vol. 485, no. 4, pp. 4559–
4572, 03 2019.

[2] Z. Matei, C. Mosharaf, F. Michael J., S. Scott, and S. Ion, “Spark:
cluster computing with working sets,” Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, 2010.

[3] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and
S. Whittle, “The dataflow model: A practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order
data processing,” Proc. VLDB Endow., vol. 8, no. 12, pp. 1792–1803,
Aug. 2015.

[4] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink : Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, vol. 36, no. 4, 2015.

[5] K. Jay, N. Neha, and R. Jun, “Kafka: A distributed messaging system
for log processing,” In Proceedings of the NetDB.1–7, 2011.

[6] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell, “Samza: Stateful scalable stream process-
ing at linkedin,” Proc. VLDB Endow., vol. 10, no. 12, pp. 1634–1645,
Aug. 2017.

[7] A. Biem, B. Elmegreen, O. Verscheure, D. Turaga, H. Andrade, and
T. Cornwell, “A streaming approach to radio astronomy imaging,” in
2010 IEEE International Conference on Acoustics, Speech and Signal
Processing, March 2010, pp. 1654–1657.

[8] M. Mahmoud, A. Ensor, A. Biem, B. Elmegreen, and S. Gulyaev, “Data
provenance and management in radio astronomy: A stream computing
approach,” Studies in Computational Intelligence, vol. 426, 12 2011.

[9] C. Ballard and I. B. M. Corporation, IBM Infosphere Streams Harnessing
Data in Motion, ser. IBM redbooks. Vervante, 2010.

[10] W. Cochran, J. Cooley, D. Favin, H. Helms, R. Kaenel, W. Lang,
G. Maling, D. Nelson, C. Rader, and P. Welch, “What is the fast fourier
transform?” IEEE Transactions on Audio and Electroacoustics, vol. 15,
no. 2, pp. 45–55, June 1967.

[11] P. Duhamel and H. Hollmann, “‘split radix’ fft algorithm,” Electronics
Letters, vol. 20, no. 1, pp. 14–16, 1984.

[12] S. G. Johnson and M. Frigo, “A modified split-radix fft with fewer
arithmetic operations,” IEEE Transactions on Signal Processing, vol. 55,
no. 1, pp. 111–119, Jan 2007.

[13] B. Sherlock, “Windowed discrete fourier transform for shifting data,”
Signal Processing, vol. 74, no. 2, pp. 169 – 177, 1999.

[14] B. G. Sherlock and D. M. Monro, “Moving discrete fourier transform,”
IEE Proceedings F - Radar and Signal Processing, vol. 139, no. 4, pp.
279–282, Aug 1992.

[15] E. Jacobsen and R. Lyons, “The sliding dft,” IEEE Signal Processing
Magazine, vol. 20, no. 2, pp. 74–80, March 2003.

[16] E. Jacobsen and R. Lyons, “An update to the sliding dft,” IEEE Signal
Processing Magazine, vol. 21, no. 1, pp. 110–111, Jan 2004.

[17] K. Duda, “Accurate, Guaranteed Stable, Sliding Discrete Fourier Trans-
form [DSP Tips & Tricks],” IEEE Signal Processing Magazine, vol. 27,
no. 6, pp. 124–127, Nov 2010.

[18] C. Park, “Fast, Accurate, and Guaranteed Stable Sliding Discrete Fourier
Transform [sp Tips & Tricks],” IEEE Signal Processing Magazine,
vol. 32, no. 4, pp. 145–156, July 2015.

[19] X. Yu, X. Dong, G. Yu, Y. Qin, D. Yue, and Y. Zhao, “Botnet detection
based on incremental discrete fourier transform,” JNW, vol. 5, pp. 568–
576, 2010.

[20] C. Park and S. Ko, “The Hopping Discrete Fourier Transform [sp Tips &
Tricks],” IEEE Signal Processing Magazine, vol. 31, no. 2, pp. 135–139,
March 2014.

[21] A. Srivastava and V. Karwal, “Windowed r-point update algorithm for
discrete fourier transform,” in 2013 International Conference on Signal
Processing and Communication (ICSC), Dec 2013, pp. 185–190.

[22] C. Park, “2d discrete fourier transform on sliding windows,” IEEE
Transactions on Image Processing, vol. 24, no. 3, pp. 901–907, March
2015.

[23] Synthesis Imaging in Radio Astronomy II, ser. Astronomical Society of
the Pacific Conference Series, vol. 180, Jan. 1999.

[24] A. Thompson, J. Moran, and G. Swenson, Jr, Interferometry and
Synthesis in Radio Astronomy, 01 1991, vol. -1.

[25] W. Burger and M. J. Burge, Digital Image Processing: An Algorithmic
Introduction Using Java, 2nd ed. Springer Publishing Company,
Incorporated, 2016.

[26] W. M. Gentleman and G. Sande, “Fast fourier transforms: For fun and
profit,” in Proceedings of the November 7-10, 1966, Fall Joint Computer
Conference, ser. AFIPS ’66 (Fall). New York, NY, USA: ACM, 1966,
pp. 563–578.

[27] J. Stillwell, Mathematics and its history. Springer, 2010.
[28] M. R. Spiegel, Theory and Problems of Complex Variables (SI (Metric)

Edition). Schaum’s Outline Series, 1981.
[29] E. O. Brigham, The Fast Fourier Transform and Its Applications. USA:

Prentice-Hall, Inc., 1988.
[30] R. P. Norris, A. M. Hopkins, J. Afonso, S. Brown, J. J. Condon,

L. Dunne, I. Feain, R. Hollow, M. Jarvis, M. Johnston-Hollitt, and
et al., “Emu: Evolutionary map of the universe,” Publications of the
Astronomical Society of Australia, vol. 28, no. 3, p. 215–248, 2011.

[31] M. Frigo and S. G. Johnson, “Fftw: an adaptive software architecture
for the fft,” in Proceedings of the 1998 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP ’98 (Cat.
No.98CH36181), vol. 3, May 1998, pp. 1381–1384 vol.3.

[32] T. Cornwell and B. Humphreys, “Askap science processing, askap-
sw-0020,” 2016. [Online]. Available: https://www.atnf.csiro.au/projects/
askap/ASKAP-SW-0020.pdf

[33] N. Spielmann, “Implementation of Single-Point Discrete Fourier Trans-
form on two dimensional data,” B.Sc. thesis, University of Zurich, 2020.

863

Authorized licensed use limited to: University Library Zurich / Zentralbibliothek Zurich. Downloaded on July 27,2023 at 13:38:56 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T13:47:20-0400
	Preflight Ticket Signature

